CPI Bias from Supercenters: Does the BLS Know that Wal-Mart Exists?

Jerry Hausman and Ephraim Leibtag¹
MIT and Economic Research Service, U.S. Department of Agriculture
First draft, June 23, 2004²

I. Introduction

Hausman (2003) discusses four sources of bias in the present calculation of the CPI. The most often discussed substitution bias is a second order bias while the other three sources of bias are all first order in their effects: "new good bias", "quality bias," and "outlet substitution bias." A "pure price" index based approach of surveying prices to estimate a COLI cannot succeed in solving the three problems of first order bias. Neither the BLS nor the recent report C. Schultze and C. Mackie, eds., At What Price (AWP, 2002), recognizes that to solve these problems, which have been long known, both quantity and price data are necessary. We discuss economic and econometric approaches to measuring the first order bias effects from outlet substitution bias. We demonstrate the use of scanner data that permits implementation of techniques that allow the problem to be solved.

Over the past decade, "non-traditional" shopping formats have captured significant share from "traditional grocery." P. Little (2004) describes the two categories of alternative retail outlets as "high-spend" outlets, which are low price, one-stop shopping destinations, and "low and medium-spend" stores which are mostly convenience stores that serve a "fill-in" role in between trips to the "high-spend" outlets. He includes supercenters (Wal-Mart, Kmart, Meijer, etc.), warehouse clubs (Sam's Club, Costco and BJ's), and mass merchants (Wal-Mart, Kmart, Target, etc.) as the primary outlets for these "high-spend" expenditures. Using 2003 data, he estimates that these outlets have 24.8% of food expenditures, with supercenters having 45.6% of the category. Over the past few years Wal-Mart has become the largest supermarket chain in the U.S. Wal-Mart,

¹ We thank Jie Yang and Ketan Patel for outstanding research assistance.

² First draft: do not quote or cite without permission. No views in this paper reflect the U.S. Department of Agriculture's position on these issues.

³ Sam's Club is owned by Wal-Mart.

excluding its Sam's Club, now has supermarket- related revenues approximately 51% larger than the runner-up Kroger, and larger than Albertsons and Safeway, the third and fourth largest supermarket chains, combined. Nationwide Wal-Mart has a 14% market share (in 2003), despite not being in a number of regional markets, and an 18% share when Sam's Clubs are included. Within the "medium-low spend" category, Little estimates convenience stores that also sell gasoline as the fastest growing store type with 85.5% of the 12.4% total share for the category. Little calculates that total traditional grocery outlets, including conventional supermarkets and superstores (a larger version of the conventional supermarket), have decreased to a 56.3% dollar share in 2003. He also forecasts that in 5 years, the "high-spend category" will grow from 24.8% to 31%, with supercenters comprising 54.8% of the total while traditional grocery outlets decrease from 56.3% to 48.3%. Thus, he expects Wal-Mart to become increasingly important over the next few years, continuing the trend of change over the past decade.

Wal-Mart began selling food in 1988 and in 2002 because the U.S. largest grocery chain. Wal-Mart now is larger than Kroger, Albertsons, and Safeway, which are the next largest supermarket chains. Significant consolidation has occurred in the supermarket industry, but Wal-Mart continues to grow at a significantly faster rate than these supermarket chains. The majority of Wal-Mart's grocery sales arise from its over 1400 (as of April 2004) supercenters which are 180,000 square foot stores that are both discount stores and grocery stores, although it also has "Neighborhood Market" stores that are about the size (40,000 sq. feet) of an average supermarket. While most of the stores are in the South and Southwest, Wal-Mart is increasing moving into urban centers with openings expected in Los Angeles and Chicago, along with other urban centers.

Over the 10-year period from 1991-2001 margins increased in supermarkets as the price of food sold at supermarkets grew at approximately twice the rate of the PPI for food.⁵ Various studies have demonstrated that food items at Wal-Mart are 8%-27% lower

⁴ Wal-Mart management has given guidance that it expects to open between 230-240 new supercenters in 2005 for an increase of about 16%. See Dow Jones, "Factiva," April 19, 2004. Morgan Stanley reports that Wal-Mart is seeking 16%-17% growth in supermarket sales compared with 3% industry growth. See M. Wiltamuth and R. Fariborz, "Food Retail," June 2004. Wal-Mart has grown at a 16% rate over the past three years.

⁴ Wal-Mart has sometimes had difficulty in receiving planning approval for its stores. Currently, Wal-Mart has either no presence or an extremely limited presence in New England, the New York metro area, California, and the Pacific Northwest. However, its expansion into new areas has proceeded over the past few years.

⁵ See Callahan and Zimmerman (2003).

priced that at the large supermarket chains, even after discounts for loyalty card and other special are taken into account.⁶ After entry by Wal-Mart conventional supermarkets typically decrease their prices (or do not increase them as much as in non-Wal-Mart markets) because of the increased competition.

Remarkably, the large expansion and continuing expansion of Wal-Mart and other supercenter food outlets has almost no effect on the BLS calculation of the CPI for food. The BLS employs a "linking procedure" that assumes "quality-adjusted" prices at Wal-Mart are exactly equal to prices at conventional supermarkets. Thus, when a Wal-Mart store replaces, say a Kroger, in the BLS sample of stores from which it collects prices, it links the lower Wal-Mart price to the higher Kroger price to remove any difference. Even though packaged food items are physically identical at the two stores, the BLS procedure does not recognize any price difference between the stores. This procedure is not based on any empirical study. Rather, it is based on mere assumption. The assumption is completely inconsistent with actual real world market outcomes where Wal-Mart has expanded very quickly in markets that it entered. Thus, Wal-Mart and other supercenters are nowhere in the food CPI so that we find that the BLS does not know that Wal-Mart "exists" in terms of the estimation of a CPI. We also believe that observed consumer behavior cannot be explained by the BLS assumption of a compensating "quality differential." We specify a theoretical model of consumer behavior that demonstrates this point below.

II. Current BLS Procedure

The BLS methodology updates its samples of stores from which it collects prices periodically. It makes two adjustments. First it updates the products in the market basket that consumers purchase. The BLS also updates the stores at which these purchases are made. The BLS sometimes takes a very long time to incorporate new products in the

⁶ A recent December 2003 study by UBS Investment Research found a price gap of 17.3% to 26.2%, "Price Gap Tightens, Competition Looks Hot Hot." The previous year UBS found a price gap of 20.8% to 39.1%. For example for a specified identical market basket UBS finds Wal-Mart supercenters to have an average price 19.1% less expensive in Tampa and 22.8% less expensive in Las Vegas. In 2002, Salomon Smith Barney estimated the price gap to be between 5% and 25%. See L. Cartwright, "Empty Baskets, September 12, 2002.

⁷ When customers shift from conventional supermarkets to Wal-Mart no change occurs in the food CPI. To the extent that prices at Wal-Mart decrease (or increase) at a different rate that conventional stores, the food CPI will take account of this change with a lagged effect over time.

market basket as in the case of cellular telephones, which were not included for 15 years after their introduction. Hausman (1999) demonstrates the significant bias from the delay in the introduction of cellular telephone. Cage (1996) describes the current BLS procedure of the "Continuing Point-of-Purchase Survey" (CPOPS), which provides the BLS with a sampling frame of outlets visited by urban consumers. Approximately 20% of all sampling units participate in a given year. In 1999 the BLS began collecting the CPOPs data using computer assisted telephone interviews (CATI The new procedure, known as TPOPS, allowed an updated list of commodities in all sample units in each year, rather than only a 20% rotation per year. While the products can change, note that the expenditure shares across categories did not change with this procedure. The expenditure shares are only updated on a considerably less frequent basis since the CPOPs data does not collect expenditure data or quantity data.

When the BLS collects data, it collects the name and address of the retail establishment reported by respondents and estimates of the total daily expenditure by POPS category. The expenditure weights are not used to update the expenditure weights used in the weighted average of prices; rather they are used in the selection of outlets so that those outlets with larger expenditure weights receive a greater probability of selection. The use of CATI allows for between 20%-25% of the products and services to be re-sampled in every sampling unit each year.

TPOPS outlet rotation allows a closer approach to actual consumer shopping patterns as they change. As more households shop at Wal-Mart, the probability of a Wal-Mart being included in a given market increases. Item rotation also occurs as discussed above. However, when an identical item is sampled at the new outlet, even if the product is physically identical to the item sampled in the old outlet, the BLS does not take account of the lower price. Thus, if a 12 ounce box of Kellogg Rice Krispies is purchased at a Wal-Mart that is newly included to replace a Kroger that has been dropped, the BLS links the new lower price to the old higher price so no price change occurs. This linking procedure creates outlet substitution bias in the estimation of the CPI. In the AWP (2002,

_

⁸ The following discussion follows Cage (1998) closely.

⁹ Note that this procedure may introduce bias because higher priced outlets will have higher expenditure weights than lower priced outlets in many situations, mainly depending on the expenditure elasticity of the market basket chosen.

p. 168) discussion ("whitewash") of BLS procedures, it is claimed that consumer shopping comprises a package and that non-monetary benefits exactly balance out the effects of the lower price. This finding was based on absolutely no empirical evidence whatsoever. The finding is also completely inconsistent with the real world market facts that expenditures at supercenters grows quickly when they become available. Indeed, Wal-Mart is now the largest supermarket chain in the U.S.

This "compensating service effect" explanation is also inconsistent with the "indirect price effect" that we estimate subsequently, where we find that as expenditure at supercenters increases in a given market, the prices at traditional supermarkets decrease. For example, after two Wal-Mart supercenters opened in Houston, a nearby Kroger's sales dropped 10%, the Kroger store reduced worker hours by 30%-40%, and it decreased its prices. Presumably this price decrease is caused by greater competition. Thus, consumers demonstrate with their expenditure choice that they prefer lower priced outlets, and the higher priced supermarket must respond in a competitive manner. The AWP description of the BLS assumption that markets are in equilibrium is inconsistent with the real world market data, which find that prices from traditional stores decrease from the increased competition.

Thus, when a new set of stores are included in the BLS sample, the linking procedure eliminates all of the price differences. Even though the box of Kellogs Rice Krispies is identical in all respects, the BLS assumes that the quality of the shopping experience completely explains the difference in price. Thus, lower prices from increased expenditure at non-traditional retail outlets have no effect on the CPI. In all respects, the BLS assumes that Wal-Mart does not exist in constructing the CPI.

Reinsdorf (1993) found that food and motor-fuel prices during a two-year overlap period led to new samples prices being lower by about 1.25% compared to the outgoing samples. Since sample rotation occurs every 5 years, this finding would create a 0.25% bias per year. However, Reinsdorf's quantitative findings have not been totally accepted because of concerns about product quality as well as differences in coverage. The AWP

¹⁰ P. Callahan and A. Zimmerman (2003) report on these effects. The regional head of Kroger's stated, "Wal-Mart made us look at ourselves and reinvent ourselves."

(2002, p. 176) recommended that the BLS continue its current practice and disregard the effect of Wal-Mart and other supercenters on prices and price indices.

III. A Utility-Consistent Economic Model of Shopping Destination

The BLS assumes that an exact compensating "quality differential" exists between shopping at a supercenter store with its lower prices and a conventional supermarket. Service quality and other factors supposedly allow the BLS to assume that quality adjusted prices are exactly the same when the BLS links the prices. However, this assumption is inconsistent with real world market behavior that finds when Wal-Mart opens a store in a new geographic market, it rapidly gains share while conventional supermarkets lose share. We believe that a better model than the implicit BLS model is to consider Wal-Mart supercenters as a new choice to consumers. Some consumers find the choice to be superior while others continue to shop at conventional supermarkets. Thus, the arrival of Wal-Mart in a given geographic market is similar to the introduction of a new good into the geographic market. Hausman (1997, 2003) discusses how new products should be included in a correct cost of living index (COLI). Here, rather than a completely new product, e.g. cellular telephones, an existing product is expanded into a new geographic market. However, the effect on consumers is similar since they now have increased choice in their shopping trips.

For our economic model we consider the conditional choice of consumers to shop at either a conventional supermarket or at a lower price, and perhaps lower service quality, supercenter. For ease of exposition, we use a two-stage choice model in which at the lower stage the consumer considers his or her shopping behavior conditional on type of store. The consumer calculates a price index for shopping at either type of store, takes account of service and other quality differences, and then at the upper stage decides

¹¹ Supermarket chains sometimes exit a geographic market after Wal-Mart enters. Albertsons exited the Houston market after Wal-Mart entry. However, in our model we assume that consumers continue to have access to traditional supermarkets, even if a given chain exits the market.

¹² As we discussed above, these conventional supermarkets typically decrease price because of the increased competition from Wal-Mart. If the BLS consistently applied its "quality adjustment" procedure it would ignore these price decreases at conventional supermarkets because presumably they arise from reduced service quality. However, the BLS fully incorporates these price decreases, demonstrating that its approach is based on no correct economic assumptions.

which type of store to shop at.¹³ We use the two-stage approach of Hausman (1985) and Hausman, Leonard and McFadden (1995), although neither of the models was designed precisely for the situation of shopping destination choice.

We allow for consumers choice of shopping at either a conventional supermarket, j=1, or at a supercenter, j=2. Conditional on choosing to shop at one of these two types of stores the consumer has a *conditional expenditure function*

$$y = e(p_0, p_1^j, p_2^j, ..., p_n^j; \overline{u}) = e(p, \overline{u})$$
 solves min $\sum_i p_i x_i$ such that $u(x) = \overline{u}$ (3.1)

where p_0 is a vector of prices of all non-food items assumed the same for destination choice, $p^j = \{p_1^j, p_2^j, ... p_n^j\}$ are the prices of the n goods in the two types of outlets denoted by the superscript j, and \overline{u} is the utility level of the consumer. The conditional demand for each type of product, depending on the type of outlet j chosen is:

$$x_{i}^{j} = \frac{\partial e(p_{0}, p^{j}, \overline{u})}{\partial p_{i}^{j}} = \frac{-\frac{\partial v(p_{0}, p^{j}, y)}{\partial p_{i}^{j}}}{\frac{\partial v(p_{0}, p^{j}, y)}{\partial v}} \quad i = 1..., n$$
(3.2)

where the indirect utility function v(p,y) is derived from the duality relationship with the expenditure function. Using duality corresponding to any level of utility in equation (3.1) and any vector of prices, a price index exists that corresponds to the minimum expenditure required to achieve a given level of utility \overline{u} . Indeed, the utility consistent price index is the level of expenditure needed to achieve the utility level:

$$\Pi(p^{j}, \overline{u}) = e(p^{j}, \overline{u}) = y^{j}(p^{j}, \overline{u}) = y^{j} = \sum_{i} p_{i}^{j} x_{i}^{j}$$
(3.3)

¹³ We assume that consumers do not divide their shopping trips between different types of stores, although this behavior could be incorporated into the model.

¹⁴ As written, equation (3.1) assumes that both types of stores carry all goods. To the extent that supermarkets carry a wider variety of products that supercenters, the prices for supercenters can be entered as virtual prices that set demand to zero. See Hausman (1997) for an explanation of virtual prices.

An "average price" \overline{p}^j can then be calculated by dividing y^j by a quantity index \overline{x}^j so that $y^j = \overline{p}^j \overline{x}^j$. 15

We now move to the top level where the consumer decides whether to shop at the conventional supermarket or at the supercenter outlet. We expect $y^1 > y^2$ because most prices in supermarkets exceed the prices in supercenters. Consider the use of the binomial logit model for choice between traditional supermarkets and supercenters.¹⁶ The probability of choosing the traditional supermarket is:

$$pr(j=1) = \frac{1}{1 + \exp(\beta_0 + \beta_1(\overline{p}^1 - \overline{p}^2))}$$
(3.4)

where a log price index or other type of price index (e.g. a Stone price index) can also be used depending on the precise form of the underlying expenditure (utility) and demand functions in equation (3.1) and (3.2).¹⁷

If we can assume that the overall units of a good are the same, e.g. Kellogg's Rice Krispies, we can simplify so that the overall demand for good i becomes:

$$\hat{x}_i(p_0, p^1, p^2, y) = pr(j = 1)x_i(p_0, p^1, y) + pr(j = 2)x_i(p_0, p^2, y)$$
 (3.5)

where the right hand side demands are the conditional demands from equation (3.2) and have common units. Similarly, to calculate the unconditional price for the representative consumer we take overall expenditure on good i and divide by the quantity of equation (3.5):

$$\hat{p}_i(p_0, p^1, p^2, y) = \Xi_i(p_0, p^1, p^2, y) / \hat{x}_i(p_0, p^1, p^2, y)$$
(3.6)

¹⁵ Instead of the average price we can also divide expenditure by utility to get a "cost of utils" index.

¹⁶ Because of only two choices, the independence of irrelevant alternative assumption does not create a problem here. With more than two choices a nested logit or multinomial probit model could be used. See Hausman et. al. (1995) for a derivation with the nested logit model.

¹⁷ An exact aggregation approach when using a Gorman generalized polar form appears in Hausman et. al. (1995).

where Ξ_i is expenditure on good i. If choice j=2 does not exist in a given geographic market, then the price index of equation (3.6) is just the traditional supermarket price so that $\hat{p}_i(p^1, p^{2*}, y) = p^1$ where p^{2*} are the virtual prices, which cause demand at supercenters to be zero. But when supercenters become available, consumers who choose to shop at supercenters do so to maximize their utility and the correct price index is an expenditure weighted average of the two prices. This expenditure weighted approach to price averages is the procedure we use in the empirical work that follows.

Thus, the exact cost of living index becomes

$$P(p_0, p^2, p^1, \overline{u}) = \frac{y^2(p_0, p^1, p^2, \overline{u})}{y^1(p_0, p^1, p^{2^*}, \overline{u})} = \frac{e(p_0, p^1, p^2, \overline{u})}{e(p_0, p^1, p^{2^*}, \overline{u})}$$
(3.7)

which gives the ratio of the required amount of income when supercenters are present in the market compared to the situation where supercenters are not present and prices are at the virtual level p^{2*} , which causes demand to be zero. Equation (3.7) demonstrates how the new good approach applies to supercenters when the correct unit of observation is a geographic market, rather than a new product. Taking the appropriate weighted averages of equation (3.7) leads to an expenditure share weighted approach.

Thus, we do not find support for the BLS assumption of an exact compensating quality differential when consumers can choose which type of outlet at which to shop. Some consumers continue to shop at traditional supermarkets when supercenters become available, while other consumers shift to shopping at supercenters. In terms of the representative consumer we calculate the probability weights for each type of choice multiplied by the demand at each type of outlet and divide this weighted demand into expenditure to derive the price index. As more supercenters become available in a given geographic market, more consumers choose to shop at supercenters and its expenditure weight increases. We continuously update the expenditure weights to allow for this observed market determined change in shopping destination choices. Consumers in their

revealed preference choices determine the appropriate weights to be used in the price index.

We find that Wal-Mart should exist in the estimation of a price index, contrary to the current BLS procedure. However, note that as Hausman (2003) emphasized, to implement this approach both *prices and quantities* need to be available, which necessitates the use of scanner data. The BLS approach, which only collects price data, cannot implement the correct price index approach. Without quantity data, the BLS will always be required to make one or another arbitrary assumption regarding "service adjusted" quality levels. Observation of actual consumer choice in terms of quantities purchased allows us to resolve the problem.

IV. Data Description

This study uses a customized subset of the ACNielsen Homescan scanner panel data for the four years 1998-2001. The ACNielsen Homescan data is a consumer panel consisting of approximately 61,500 randomly selected households across the U.S. and includes purchase as well as demographic information for all households in the sample. Homescan households are randomly recruited to join the panel using sampling techniques to ensure household representation for demographic variables such as household income, family composition, education, and household location. Each household is equipped with an electronic home-scanning unit, and household members record every UPC-coded food purchase they make by scanning in the UPC of the food products that they buy from all retail outlets that sell food for home consumption.

The panel is recruited on a permanent basis, subject to turnover from normal attrition or adjustments to demographic targets necessitated by Census revisions.¹⁸ The Homescan panel is considered by many in the food industry as the most reliable household based panel data due to its long-standing reputation in the marketplace and its utilization of hand-held technology that minimizes the recording burden for participants. The ACNielsen Homescan consumer panel collects consumer shopping and purchase data from all outlet channels, including grocery, drug, mass and convenience stores. The panel is geographically dispersed and is demographically balanced so the sample profile

_

 $^{^{18}}$ Households lost through attrition are replaced with others having similar key characteristics.

matches the US population as closely as possible. The panel data is also projected to census estimates that are updated regularly to reflect population changes.

Household panel data allows for observation of the ongoing purchase habits and practices of household and demographic groups. Tracking and analyzing this information over time can reveal the dynamics of consumer behavior such as who is buying what products, what different products are purchased during a given shopping trip, and how often a product is purchased. Panel data quantifies the composition of category or brand volume which can be used to measure the impact of store choice on the purchase level of product quantities and prices. Data are collected after each panelist shopping trip. Members of the panel record their purchases, capturing not only what is purchased, but also where the purchase was made, and whether the purchase was a promotional, sale, or coupon item.

These data are useful in price analysis since we are able to observe actual purchase choices by consumers. However, in terms of food purchase behavior, the key missing information is consumer purchases of food away from home (primarily restaurant meals) so one needs to assume that the unknown levels of food away from home purchases do not somehow bias the average prices paid by an individual household for their food at home purchases. Once this assumption is made these data are useful for analysis of the impact of store choice on average prices paid for food at home items. Consumer panel information can be used to measure the average prices paid by a representative group of households over time. This measurement of average price paid can be aggregated across households and/or across time to measure price change for different categories of products.

Along with the description of each product, the price and quantity that was purchased is recorded on a daily basis. National and regional level aggregates can be calculated using transaction data from households located in 50 local U.S. markets as well as households in non-metro/rural areas that are included in this data set. For 21 of these 50 markets, a large enough number of panelists are included to enable comparisons across markets for all UPC-coded products. ¹⁹

¹⁹ Albany, Atlanta, Baltimore, Birmingham, Boston, Buffalo-Rochester, Charlotte, Chicago, Cincinnati, Cleveland, Columbus, Dallas, Denver, Des Moines, Detroit, Grand Rapids, Hartford-New Haven, Houston, Indianapolis,

The Economic Research Service (ERS) of the USDA purchased a sub-sample of transaction level data from the Fresh Foods Homescan Panel²⁰ comprised of households that not only recorded their UPC-coded transactions, but also recorded their random-weight (non-UPC coded) food purchases over the year(s) that they participated in the panel. This sub-sample was used for this study in order to be able measure the entire market basket of household purchases of food for at-home consumption²¹. Of this group of 15,000 households per year, the sample was restricted to households that participated in the panel for at least 10 out of 12 months per year²².

Standard demographic information is collected on an annual basis from each household and each household's home market/city and census region is identified for stratification purposes (see below). Each household is then assigned a projection factor (weight) based on its demographics in order to aggregate the data to be representative at the market, regional, and national level. ²³

These data were constructed based on a stratified random sample with households as the primary sampling unit. A stratified random sample is used to ensure that the sample of households matches Census-based demographic and geographic targets. One function of the design is to allow description of 8 major markets for cross-market comparisons. ²⁴

Jacksonville, Kansas City, Little Rock, Los Angeles, Louisville, Memphis, Miami, Milwaukee, Minneapolis, Nashville, New Orleans-Mobile, New York, Oklahoma City-Tulsa, Omaha, Orlando, Philadelphia, Phoenix, Pittsburgh, Portland, Raleigh-Durham, Richmond, Sacramento, Salt Lake City, San Antonio, San Diego, San Francisco, Seattle, St. Louis, Syracuse, Tampa, Washington, D.C.

²⁰ The Fresh Foods Homescan Panel contained 12,000 households in 1998 and 1999 and was expanded to 15,000 households in 2000 and 2001.

²¹ If only UPC-coded products were used to measure food-at-home expenditures, many fruit, vegetable, meat, and poultry purchases would not be recorded in the data and food-at-home expenditure shares by store type would not accurately measure true household and market expenditure shares. This is especially true in this situation when alternative channel stores sell less random weight items than conventional retailers. Leaving out random weight items would then tend to overstate the shares of food expenditures of alternative retail outlets.

²² In total, there were 9,501 unique households in the data with some subset participating each year creating a total of 28,996 household by year observations. In 1998 there were 7,624 households, 7,124 households in 1999, 7,523 households in 2000, and 8,216 households in 2001. Some households participated in the panel for more than one year. Of the 9,501 households in the data, 5,247 households participated for all four years, 1,877 households participated for three years, and 2,377 households were one year participants.

²³ Age, gender, education, occupation, of head(s) of household, number of household members, household income, household composition, race, and ethnicity.

The strata for 1998 and 1999 are based on six cities (ACNielsen major markets)
Atlanta, Baltimore/Washington, Chicago, Los Angeles, New York, and San Antonio. All other households fall into one of four census regions: East, Central, South, and West.

1998-1999

Stratum	Description	
1	Atlanta	
2	Baltimore-Washington	
3	Chicago	
4	Los Angeles	
5	New York	
6	San Antonio	
For all other households- Census Regions are used as strata:		
7	East	
8	Central	
9	South	
10	West	

Nielsen augmented their stratification scheme in 2000, selecting 2 additional major markets.

2000-2001

Stratum	Description
1	Atlanta
2	Baltimore-Washington
3	Chicago
4	Los Angeles
5	New York City
6	Philadelphia
7	San Antonio
8	San Francisco

 $^{^{24}\;}Atlanta,\;Baltimore/Washington,\;Chicago,\;Los\;Angeles,\;New\;York,\;Philadelphia,\;San\;Antonio,\;San\;Francisco.$

For all other households- Census Regions are used as strata:

9	East
10	Central
11	South
12	West

There was no known or intentional clustering in the sample construction. The projection factor (weight) reflects the sample design and demographic distribution within the strata.

The information that is captured on a transaction level basis includes: date of purchase, store name and channel type identifier²⁵, store department identifier²⁶, item description, brand name, number of units purchased, price paid, promotions/sales/coupons used (if any). For retail stores that ACNielsen tracks with their store-level scanner data²⁷, prices are verified through store-level price and promotion checks.

Warehouse shipment data are used to supplement scanner-generated data collected from households or provided to ACNielsen through their store-level scanner data. Warehouse shipment data is used to estimate the balance of sales moving through other food retailers. This information is Census data (i.e., non-projected, actual shipment data) supplied to ACNielsen by wholesale co-operators.

Some question the quality of household panel data when they try to reconcile it with store-level scanner data. There is the perception that the volumetric data from each source should be the same. However, panel data and store data are not always equal because measurement methodologies differ. Store-level data records millions of shopping transactions while panel data records a specific group of shoppers. In addition, panel data only represents household-based purchases, so there are no small businesses or other institutional purchases included in the panel.

_

²⁵ Grocery, Drug, Mass Merchandiser, Supercenter, Club, Convenience, Other (including dollar stores, bakeries, military stores, online purchases, health food stores, and vending machines)

²⁶ Dry Grocery, Dairy, Frozen-Produce-Meat, Random Weight.

²⁷ The ACNielsen store-level sample is updated through both replacement of canceled or closed stores and *Continuous Sample Improvement Program* -- when the sample is changed intentionally to ensure that changes in the universe are reflected in the sample.

Both types of information have their uses, and by combining the two, one can quantify the composition of volume, understand the reasons behind consumer behavior changes, and measure the impact of store choice on average prices. Store-level scanning data may show that sales were down in a particular store for some group of products in a given time period. Panel data provide insight into whether the lost volume is due to fewer buyers or if the existing buyers purchased less at the given store or chain of stores. Panel data also provide information on which competitors gained the lost expenditures of the store in question.

V. Effects on Prices

Our empirical approach first investigates the effect of supercenters, mass merchandisers, and club stores, (non-traditional retail outlets: SMC) on prices paid by households. Two effects are present. The direct effect is that as more of these SMC stores operate in a given geographic market, the average prices paid by households will decrease. Prices for food categories in SMC stores are typically 5%-55% less than prices for the same product in supermarkets and other conventional retail outlets. Thus, as a high proportion of households buy their food at non-traditional retail outlets, the average price paid in a market will decrease.

A. Price Difference between Supermarkets and Alternative Retail Outlets

In Table 5.1 we calculate the ratios of average prices across different types of outlets for 14 food categories. Column 2 compares the prices for the food categories in traditional supermarkets compared to prices for these same categories in non-traditional stores (hereafter SMC).

Table 5.1: Ratio of Supermarket and Other Outlet Prices to SMC Prices

Product	Supermarket/SMC	All Outlets/SMC
Apple	1.546	1.531
Banana	1.384	1.368
Bread	1.108	1.098
Butter/Margarine	1.096	1.096
Cereal	1.172	1.166

Coffee	1.203	1.194
Eggs	1.312	1.305
Ice Cream	1.320	1.331
Milk	1.207	1.199
Potato	1.412	1.402
Soda	0.891	0.974
Tomato	1.358	1.321
Water	1.058	1.165
Yogurt	1.413	1.411
Average	1.203	1.194

The largest difference in average price was for apples where SMC prices were about 50% lower than traditional supermarkets over the 48 month period. Bottled water was the lowest price difference with SMC prices about 5% less expensive. Soda was the only item with a lower price in traditional supermarkets than in SMCs. When we take an average across all of the food categories we find that traditional supermarket have prices that are 20.3% higher than SMC prices. We find this difference to be quite large.²⁸

In column 3 of Table 5.1 we compare the price in all non-SMC outlets, including traditional supermarkets, to the price of these food categories in SMCs. We find the results to be quite similar with the main differences occurring in soda and bottled water. We find the same overall results that SMC stores offer significantly lower prices than other retail outlets.

We do not find any indication that SMC stores change (increase) their prices at a greater or lower rate than traditional supermarkets and other retail outlets. However, we cannot do the comparison of price changes in equilibrium because as the presence of SMC stores increases, traditional retail outlets, and most importantly traditional supermarkets, decrease their prices as a competitive response.

B. Direct and Indirect Effects on Prices from SMC stores

Another important effect exists from the expansion of SMC stores. Their increasing presence also increases competition among traditional food retailers. These

.

²⁸ The estimated difference is in line with stock analyst reports who have previously sampled the difference in prices over a very few markets.

supermarkets must decrease prices to remain competitive. The well-publicized strike in the Los Angeles area in early 2004 when traditional supermarkets wanted to decrease health benefit for their employees demonstrates the effect that potential entry of supercenters can have on competition. We call this supercenter/SMC effect on traditional supermarkets the indirect price effect. Both the direct and indirect price effects lead to lower average prices for households.

To investigate both the direct and indirect effects on average prices, we do an econometric analysis using the ACNielsen Homescan data. These data are particularly useful since they provide household data and allow for a stratified random sample of all households. Importantly they provide both price and quantity data across all stores. Since Wal-Mart and some other large non-traditional retail stores no longer participate in the IRI or ACNielsen store level data collection, household data collection provide a source of price and quantity data that are not available elsewhere.²⁹

We analyze data at the market level using a fixed effects specification with 48 monthly observations for each market during the period 1998-2001:

$$p_{it} = \alpha_i + \delta_t + \beta e_{it} + \varepsilon_{it} \qquad i = 1,34 \quad t = 1,48$$
(5.1)

where p_{it} is the average log price paid for a given product, α_i is a fixed effect for a market, δ_i is a monthly fixed effect, e_{it} is percentage expenditure for a given product in SMC stores, and β is thee elasticity coefficient that wee estimate. We use market fixed effects rather than random effects because expenditure in SMC stores is unlikely to be uncorrelated with the stochastic disturbance, e.g. Hausman (1978). In this situation a fixed effects estimator yields the efficient estimator. However, we make two further econometric adjustments. First, expenditure in SMC stores on a given product may well not be econometrically pre-determined. Thus, we use instrumental variable estimation (2SLS) where as the instrument we use the overall proportion of food expenditure in SMC stores in a given market as the instrumental variable. Also, we use an

²⁹ Since the SMC stores continue to collect the data for internal use, we believe that if the BLS were to begin to use scanner data these large stores would likely allow use of their data under confidentiality restrictions. However, the household data provide an adequate source of information for most uses.

autoregressive model for the stochastic disturbance (AR1) to capture the time series aspect of the data and to achieve more efficient estimates. However, least squares with robust standard errors leads to quite similar results.

For our initial econometric investigation of 14 food products (with more to be done) we use 34 markets, each with over 12,000 food transactions per year. The 34 markets are listed in Table 5.1:

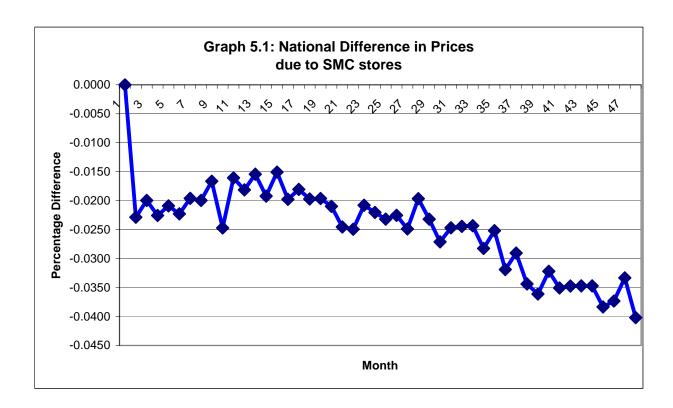
Table 5.1: Markets Used in Econometric Analysis

		HARTFORD-NEW
BOSTON	DENVER	HAVEN
CHICAGO	DETROIT	PHOENIX
HOUSTON	MIAMI	SALT LAKE CITY
INDIANAPOLIS	MILWAUKEE	COLUMBUS
KANSAS CITY	MINNEAPOLIS	CHARLOTTE
LOS ANGELES	PHILADELPHIA	DES MOINES
NEW YORK	PITTSBURGH	GRAND RAPIDS
SAN FRANCISCO	PORTLAND, OR	OMAHA
SEATTLE	ST. LOUIS	SAN ANTONIO
ATLANTA	TAMPA	SYRACUSE
CINCINNATI	BALTIMORE	
	BUFFALO-	
CLEVELAND	ROCHESTER	

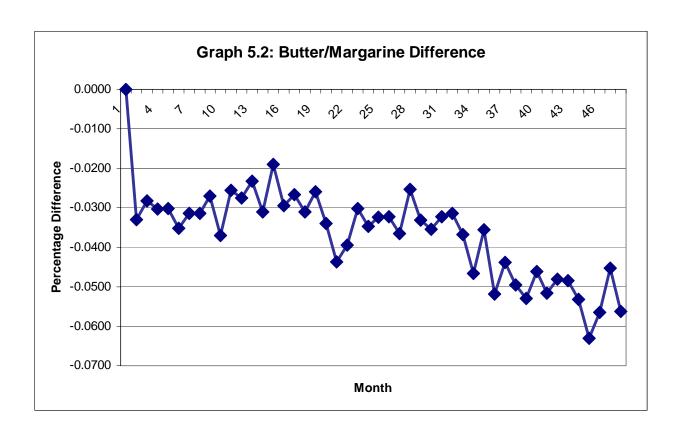
For each of these markets we standardized purchases on a physical unit measure and estimated the effect of increasing purchases in SMC stores. Since we have fixed effects for each market, persistent cost and price differences should be take account of as well as seasonal effects given the presence of monthly fixed effects. We give the econometric estimates for these 14 food categories across the 34 markets in Table 5.2:

Table 5.2: Average Price for Food Products across 34 Markets

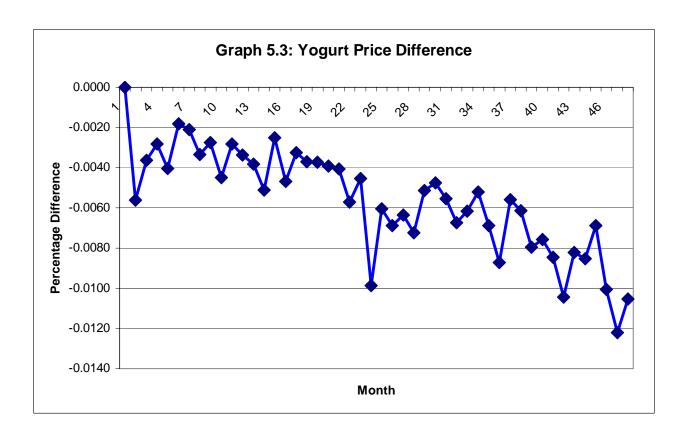
National Results


AR(1) IV Regression Results	
(Asymptotic standard errors)	
<u>Product</u>	All Stores
Apple	-0.1036
	(0.2298)
Banana	-0.1545

	(0.1747)
Bread	-0.0642
	(0.0898)
Butter/Margarine	-0.8192
	(0.2445)
Cereal	-0.1079
	(0.1275)
Coffee	-0.6548
	(0.4774)
Eggs	-0.4324
	(0.0995)
Ice Cream	-0.3516
	(0.3053)
Milk	-0.2411
	(0.0748)
Potato	-0.6406
	(0.2346)
Soda	-0.3756
	(0.1489)
Tomato	-0.8157
	(0.4942)
Water	-0.7231
	(0.9446)
Yogurt	-0.1832
	(0.1635)


All of the estimated elasticity coefficients are negative as expected. Thus as households spend increasing amounts of expenditure at SMC stores, the average prices paid for food items decrease. While the effects are estimated with varying amount of precision, overall the results are highly significantly different from zero. No obvious pattern of coefficient size seems to exist: we find the largest effect for butter/margarine, tomatoes, potatoes, and coffee, which are a mix of branded and unbranded products. Yet, we find relatively small effects for apples and bananas, which are typically unbranded products, but we also find relatively small effects for cereal and yogurt, which typically are branded products. Overall, we find a statistically negative effect on average prices as shopping in SMC stores increases. Thus, we find the "direct effect" operates as household shift their expenditure from traditional supermarkets to lower priced SMC outlets.

In Graph 5.1 we depict the difference in average prices paid by households due to the spread of SMC stores over the period. During the sample period from January 1998 to December 2001 the expenditure share of SMC stores increased from 0.1090 to 0.1693.


Their expenditure share increased by .0603 or by 55.3% over the 48 months or 11.6% per year. We take the econometric estimates from Table 5.2 and use them to estimate the decrease in average price for each food category. We then average across food categories and plot the results in Graph 5.1, which demonstrates the increasing effect on average food prices as supercenters becomes more available and households increase their expenditures at these retail outlets. We find that food prices are 4.0% lower than otherwise, or an effect of about 1% year.

We now consider two of the individual food products. In Graph 5.2 we plot the effect of increased expenditure in SMC stores on the average price of butter/margarine.

The estimated coefficient for butter/margarine in Table 5.2 is quite large at -0.8192. The estimated effect of the spread of SMC stores on the price of butter/margarine is -5.63% over the 48 month period. We next plot the effect on the price of yogurt in Graph 5.3. The estimated coefficient for the price of yogurt is considerably smaller at -0.1832.

Thus, in Graph 5.3 the effect on the average price of yogurt over the 48 month period is – 1.1%. From Graphs 5.2 and 5.3 we see that significantly different price effects exist for different food products due to the spread of SMC stores and increased expenditure by households.

We now repeat the econometrics to test for the "indirect effect" of lower conventional supermarket prices because of increased competition from SMC stores. In equation (5.1) we replace the left hand variable p_{it} , which is the average log price paid for a given product, with \tilde{p}_{it} , which is the average price paid in supermarkets. We give the results in Table 5.3:

Table 5.3: Average Price for Food Products in Supermarkets across 34 Markets

National Results for Supermarkets

National Results for Supermarkets			
AR(1) IV Regression Results			
(Asymptotic standard errors)			
<u>Product</u>	<u>Supermarkets</u>		
Apple	-0.2307		
	(0.2233)		
Banana	-0.0437		
	(0.1447)		
Bread	0.0066		
	(0.0890)		
Butter/Margarine	-0.6853		
	(0.2089)		
Cereal	0.0832		
	(0.1538)		
Coffee	-0.4763		
	(0.6005)		
Eggs	-0.1915		
	(0.0922)		
Ice Cream	-0.3985		
	(0.2895)		
Milk	-0.1247		
	(0.0887)		
Potato	-0.5092		
	(0.2244)		
Soda	-0.2728		
	(0.1513)		
Tomato	-0.6956		
	(0.4791)		
Water	-0.5950		
	(0.8155)		
Yogurt	-0.0759		
	(0.1833)		

We estimate 12 of the 14 coefficients to be negative, with the only exceptions being bread and cereal, neither of which is statistically significant.³⁰ As would be expected from economic theory, the effects of increased SMC store expenditures are smaller for all but two products, apples and ice cream.³¹ Thus, the "direct effect" on average prices

³⁰ We find very similar results if we group the remaining Nielsen categories with supermarket: drug stores, convenience, and "other". These other outlet categories have relatively low expenditure levels compared to traditional supermarkets.

³¹ Neither difference is statistically significant.

paid by household arising from substitution to lower priced SMC stores exceeds the "indirect effect" of decreased prices in supermarkets. Nevertheless, we do find some quite large indirect effects as in butter/margarine, coffee, ice cream, potatoes, tomatoes, and bottled water. The spread of supercenters leads to lower prices both for households that shift their food shopping from supermarket to SMC stores but also for households who continue to shop at supermarkets because of lower prices caused by the increased supercenter competition.

In terms of one of the questions we posed at the beginning of the paper, the spread of supercenters does significantly affect prices paid by households. However, to correctly estimate the effect both <u>quantities and prices</u> must be utilized. Holding prices fixed as households shift their expenditure to SMC outlets, we find the average prices they pay decreases. However, prices also change because as households shift their purchasing behavior, the increased competition forces supermarket to lower their prices. Both of these effects, the direct effect and indirect effect, lead to lower average prices paid by households for food items.

VI. Effect on Price Indices

Since our scanner based data set includes observation on both quantity and price, we are able to construct a price index that takes account of both increased expenditure at SMC stores as well as the effects of substitution when consumers face lower prices. Thus, we are to consider a source of first order bias in the CPI, outlet substitution bias, as well as the source of second order bias, substitution bias that occurs with the lower prices at the SMC outlets.

First we document increased food expenditure at SMC outlets. In January 1998 in our sample of 34 markets, we find an expenditure share of 0.1090. At the end of the sample, 48 months later, in December 2001 we an expenditure share of 0.1693. Thus, the expenditure increased by .0603 or by 55.3% over the 48 months or 11.6% per year. The share has continued to increase as new SMC food outlets have continued to open and as consumers have increasingly shopped at these outlets.

We now estimate the effect of this increased expenditure in lower priced SMC outlets on the 14 food categories we considered above and an overall food price index. We consider three indices in Table 6.1: (1) Continuous update: a continuously updated, Divisia-style, price index where aggregates food expenditure shares across outlets from the current month are used to construct a share weighted average price for each food category. Note that since we have scanner data we can update both the food expenditure shares (quantity data) and the price data each month. This continuous updating allows us to control for both outlet substitution bias, a first order bias in the CPI, and substitution bias, a second order bias in the CPI. (2) BLS Constant Weights: we keep the expenditure shares constant over the 48 months. We use current prices each month, but we take a weighted average using the expenditure weights as of January 1998. Thus, both outlet substitution bias and price substitution bias are present in the calculated index. (3) BLS with updated yearly expenditure weights: In January of each year we rotate stores and link the prices to the preceding December. We are assuming here that the BLS TPOPS procedure leads to a correctly reweighted sample each year, but that price linking removes the lower price effect of the shift to by consumers to increasing expenditure at SMC stores. We now update the expenditure weights across stores based on the previous December. We continue to use the BLS linking procedure. Thus, we continue to have outlet substitution bias but we have reduced price substitution bias because of the yearly updates. While we cannot tell exactly which method BLS used, we believe method (2) is closer to current BLS procedures.

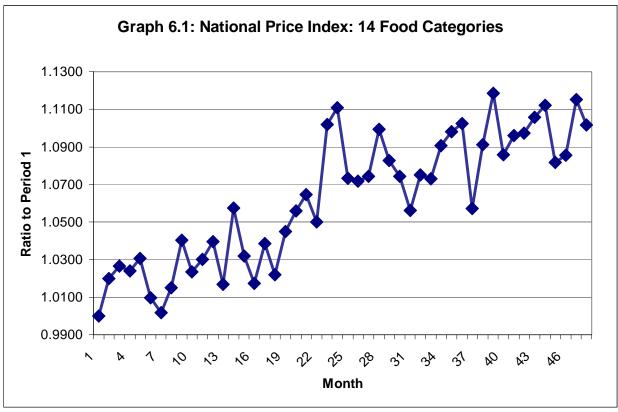
Table 6.1: Price Index Calculations for food Expenditure: 1998-2001

Product	Continuous Update	Constant Weights	Yearly Update ³²
Apple	1.016	1.028	1.032
Banana	0.710	0.720	0.717
Bread	1.104	1.106	1.104
Butter/Margarine	1.162	1.168	1.172
Cereal	1.043	1.054	1.051
Coffee	0.897	0.909	0.915

_

³² Our understanding is that the BLS currently updates the expenditure weight biennially. Here we update them annually to provide a more accurate set of expenditure weights so as to highlight the effect of the BLS procedure of linking price differences.

Eggs	0.893	0.905	0.903
Ice Cream	1.092	1.112	1.110
Milk	1.083	1.091	1.091
Potato	1.355	1.373	1.381
Soda	1.084	1.074	1.081
Tomato	1.569	1.581	1.582
Water	1.160	1.162	1.174
Yogurt	1.102	1.120	1.115
Average Difference/year		0.0022	0.0026


In Table 6.1 we see that Method (1), the Continuous Update procedure, almost always leads to lower price increases or greater price decreases for all food products over the 48 month period. For example, the first product apples have a price increase estimated at 1.6%. Method (2), which is closest to the BLS method, calculates an increase of 2.8%. The difference is 0.12 percentage points or a difference of 15.0% per year. Method (3), which allows for yearly updated expenditure weights, calculates an increase of 3.2% per year or 0.16 percentage points more than Method (1) or a difference of 18.9% per year. To our surprise, while Method (1) finds the lowest price increase as expected, Method (2) often estimates a higher price increase than Method (3). We would expect Method (3) to usually have estimated changes in between Method (1) estimates and Method (2) estimates. We need to further investigate this outcome in future drafts of the paper.

When we take average yearly changes across all food categories we find the estimated difference between Method (1) and Method (2) to be 0.22% a year. This estimate of approximately 0.22% per year is quite close to Reinsdorf's (1993) estimate. In terms of the BLS CPI-U for food at home which averaged 2.29% over this period, the 0.22% per year difference is 9.8%. Thus, we estimate that the BLS CPI-U has an upward bias of about 10% because of its linking procedure, which eliminates the effect of households shifting their expenditure to lower price supercenter outlets such as Wal-Mart.

We next compare Method (1) to Method (3), which allows for updated expenditure weights each year. Here we find an estimated difference between Method (1) and Method (3) of increase of about 0.26% per year. We find an upward bias in the

BLS CPI-U measure of food at home to be upward biased by 11.4%. The years 1998-2001 were generally a period of low inflation, but we still find significant difference in estimates of the food price indices dues to shift towards lower price outlets. Thus, updating the expenditure weights significantly reduces the bias in the estimated price index

In Graph 6.1 we plot the Method (1) price index where January 1998 is set equal to 1.0. Over the entire period we estimate a price increase of 9.9% or 2.39% per year.

.

While this estimate is over the 14 food products we have investigated to date, we note that the BLS CPI-U food at home index increased by 9.48% over the same period or 2.29% per year. The estimates are quite comparable, but the CPI-U index is over a much wider range of food products than the index we have computed. We intend to widen the range of food categories we for which estimate the effects of shifts to lower price outlets in future versions of this paper.

VII. Conclusion

Over the past 15 years the largest development in food retailing has been the start of Wal-Mart supercenters that compete most closely with traditional supermarkets. Wal-Mart has expanded greatly, mostly in the South and Southwest, and become the largest supermarket chain in the U.S. Wal-Mart is now expanding into additional geographic markets in California and the upper Midwest, so its effects will become even more important.³³ Wal-Mart offers identical food items at an average price about 15%-25% lower than traditional supermarkets. Wal-Mart's entry into a new geographic market creates a direct price effect by offering a lower price option to consumers and an indirect price effect by causing traditional supermarkets to lower their prices because of the increased competition.

The BLS procedure currently does not take account of the lower price option that Wal-Mart offers when it enters and expands in a given geographic market. The BLS only captures the indirect price effect. Instead, the BLS "links out" Wal-Mart's lower prices by assuming that an exact "compensating service quality differential" exists that exactly counteracts Wal-Mart's lower prices. If this assumption were correct, we would not see the rapid gain in market share by Wal-Mart after its entry into a market.

We find that a more appropriate approach to the analysis is to let the choice to shop at Wal-Mart be considered as a "new good" to consumers when Wal-Mart enters a geographic market. Some consumers continue to shop at traditional supermarkets while other consumers choose to shop at Wal-Mart. For the representative consumer we take a utility-consistent probability weighted average of the choice of shopping destination.³⁴ This approach leads to a continuously updated expenditure weighted average price calculation, which we apply to food data in 34 markets over a 48 month period. However, this approach requires quantity data as well as price data, so the BLS would need to begin to use scanner data to implement our approach. Currently the BLS collects only price data, but does not collect quantity (or expenditure) data that it incorporates into the CPI except at lengthy intervals.

³³ Wal-Mart has announced plans to open 40 supercenters in California in the next 3-5 years, Wiltamuth op. cit.

³⁴ The BLS approach assumes that consumers are not made better off by an expanded choice set, contrary to almost all economic theory.

We find a significant difference between our approach and the BLS approach, even for the relatively low food inflation period of 1998-2001 that we study in this paper. Our estimates are that the BLS CPI-U food at home inflation is too high by about 0.22 percentage points, which leads to an upward bias in the estimate inflation rate of about 10% per year. We intend to expand our approach to more food categories in further research, but we find that the BLS should take account of Wal-Mart and other non-traditional retail outlets, rather than making believe that Wal-Mart does not exist.

References

Cage, R., "New Methodology for Selecting CPI Outlet Samples," <u>Monthly Labor Review</u>, December 1996, p. 49

Callahan, P. and A. Zimmerman, "Grocery Chains Fighting Wal-Mart for Market Share," Wall Street Journal, May 31, 2003.

Hausman, J., "Specification Tests in Econometrics," Econometrica, 46, 1978

Hausman, J., "The Econometrics of Nonlinear Budget Sets," Econometrica, 53, 1985

Hausman, J., "Valuation of New Goods Under Perfect and Imperfect Competition," ed. T. Bresnahan and R. Gordon, <u>The Economics of New Goods</u>, University of Chicago Press, 1997.

Hausman, J., "Cellular Telephone, New Products and the CPI," <u>Journal of Business and Economics Statistics</u>, 1999.

Hausman, J., "Sources of Bias and Solutions to Bias in the CPI", <u>Journal of Economic Perspectives</u>, 2003

Hausman, J., G. Leonard, and D. McFadden, "A Utility-Consistent Combined Discrete Choice and Count Data Model: Assessing Recreational Use Losses Due to Natural Resource Damage," <u>Journal of Public Economics</u>, 56, 1995.

Little, P. "Channel Blurring Redefines the Grocery Market," <u>Competitive Edge</u>, June 2004.

Reinsdorf, M., "The Effect of Outlet Price differentials in the U.S. Consumer Price Index," in M.F. Foss et. al. eds, <u>Price Measurements and their Use</u>, Chicago; University of Chicago Press, 1993.

Schultze C. and C. Mackie, eds.; <u>At What Price?</u>, Washington: Nation Academy of Sciences Press, 2002.