

United States Department of Agriculture Animal and Plant Health Inspection Service

Economic Analysis: Risk to U.S. Apple, Grape, Orange and Pear Production from the Light Brown Apple Moth, *Epiphyas postvittana* (Walker)

USDA-APHIS-PPQ-CPHST-PERAL

November 2007

Authors:

Glenn Fowler: Risk Analyst Lynn Garrett: Economist Alison Neeley: Risk Analyst Dan Borchert: Risk Analyst Brian Spears: Senior Risk Analyst

Reviewers:

Robert Griffin: Director; USDA-APHIS-PPQ-CPHST-PERAL Barney Caton: Assistant Director; USDA-APHIS-PPQ-CPHST-PERAL Parveen Setia: Chief, Policy Analysis and Development; USDA-APHIS-PPD

Agency Contact:

Dr. Glenn Fowler 1730 Varsity Drive Suite 300 Raleigh, NC 27606 Phone: 919-855-7511 Fax: 919-855-7599 Email: glenn.fowler@aphis.usda.gov

Executive Summary

We conducted this economic analysis at the request of USDA-APHIS-PPQ-EDP. Our objective was to quantitatively characterize the economic costs to apple, grape, orange and pear crops that would result from the introduction of the light brown apple moth (LBAM), *Epiphyas postvittana*, into the conterminous United States. This information can be used to inform regulatory policy and funding decisions regarding LBAM.

Our economic analysis had two components: 1) a geospatial analysis that identified areas at risk for LBAM introduction based on climate and host and 2) a quantitative analysis, using a probabilistic modeling approach, which estimated the economic losses LBAM could cause if introduced into these areas due to damage, control, quarantines and research. Economic effects outside of the agricultural crop (apple, grape, orange and pear) production sector, e.g. trade effects, are beyond the scope of this analysis and are not provided.

Our geospatial analysis estimated that LBAM could establish throughout the majority of the conterminous United States. This establishment range included the majority of the growing area for the analyzed crops.

Our quantitative model estimated the mean total annual costs if LBAM were introduced in the at-risk areas to be \$105 million. The 5th and 95th percentile values were: \$77 million and \$134 million, i.e. 95 percent of the time, total annual costs exceeded \$77 million.

The combined results of our geospatial and quantitative analyses indicate that LBAM could cause substantial economic losses to U.S. apple, grape, orange and pear crops if introduced throughout the conterminous United States. We note LBAM is highly polyphagous and would probably cause additional economic damage to other crops and sectors of the U.S. economy, e.g. domestic and international trade. Also, because LBAM can occur in nursery stock, this industry could provide another pathway for its introduction outside of the quarantined area in addition to movement on agricultural commodities.

Table of Contents

Introduction	5
Methods	6
Geospatial Analysis of U.S. At-Risk Areas based on Climate and Hosts	6
Quantitative Economic Analysis	7
Quantitative Model	8
Results and Discussion	10
Literature Cited	16
Appendices	18
	Introduction. Methods. Geospatial Analysis of U.S. At-Risk Areas based on Climate and Hosts Quantitative Economic Analysis. Quantitative Model. Results and Discussion. Literature Cited. Appendices.

List of Tables

1	PERT distribution input parameters used in the model	9
2	Model outputs for estimated LBAM annual economic costs if introduced into counties at risk	
	for introduction	14

List of Figures

LBAM detections as of November 3, 2007.	6
Climate match analysis for areas conducive to LBAM establishment	11
Counties at risk for LBAM introduction based on climate match	11
Apple acreage in counties at risk for LBAM introduction	12
Grape acreage in counties at risk for LBAM introduction	12
Orange acreage in counties at risk for LBAM introduction	13
Pear acreage in counties at risk for LBAM introduction	13
Cumulative distribution functions for estimated annual costs to apples, grapes, oranges and	
pears if LBAM were introduced into at-risk areas	14
Cumulative distribution functions for estimated annual quarantine and research costs if LBAM	
were introduced into at-risk areas	15
Cumulative distribution functions for estimated total annual crop damage and total annual	
costs if LBAM were introduced into at-risk areas	15
	LBAM detections as of November 3, 2007. Climate match analysis for areas conducive to LBAM establishment. Counties at risk for LBAM introduction based on climate match. Apple acreage in counties at risk for LBAM introduction. Grape acreage in counties at risk for LBAM introduction. Orange acreage in counties at risk for LBAM introduction. Pear acreage in counties at risk for LBAM introduction. Pear acreage in counties at risk for LBAM introduction. Cumulative distribution functions for estimated annual costs to apples, grapes, oranges and pears if LBAM were introduced into at-risk areas. Cumulative distribution functions for estimated annual quarantine and research costs if LBAM were introduced into at-risk areas. Cumulative distribution functions for estimated total annual crop damage and total annual costs if LBAM were introduced into at-risk areas.

List of Appendices

1	Summary crop data for areas at risk for LBAM introduction	18
2	LBAM crop data for five affected Australian States for the 1993/1994 production year	19
3	Quarantine and research proportions of grower costs	19
4	U.S. crop production (1,000s of hectares) from 1996 to 2005	20
5	Model for estimating LBAM annual economic costs to apples, grapes, oranges and pears if	
	introduced into at-risk areas in the conterminous United States	21
6	Model formula table for estimating LBAM annual economic costs to apples, grapes, oranges	
	and pears if introduced into at-risk areas in the conterminous United States	22
7	Model for calculating the quarantine proportion confidence intervals	23
8	Model formula table for calculating the quarantine proportion confidence intervals	23
9	Model for calculating the research proportion confidence intervals	24
10	Model formula table for calculating the research proportion confidence intervals	24

I. Introduction

We conducted this economic analysis at the request of USDA-APHIS-PPQ-EDP. Our objective was to quantitatively characterize the annual economic costs that the light brown apple moth (LBAM), *Epiphyas postvittana*, could cause to U.S. apple, grape, orange and pear crops if it were to establish throughout its potential range in the conterminous United States. This information can be used to inform regulatory policy and funding decisions regarding LBAM.

LBAM is a polyphagous multivoltine tortricid moth (Johnson *et al.*, 2007). It is a significant agricultural and nursery pest in Australia and New Zealand where it attacks a variety of hosts including: citrus, grapes, pome fruits and stone fruits. LBAM damages hosts by feeding on the leaves, fruit and stems and can cause both internal and external fruit damage. If left untreated, LBAM crop damage levels have been estimated to be as high as 40 to 90 percent (Sutherst, 2000).

On February 7, 2006, an LBAM detection was confirmed in Berkeley, California (USDA-APHIS, 2007). Trapping evidence indicated that LBAM may have been present in California since 2006. The LBAM detection resulted in the implementation of a joint emergency response by the USDA, CDFA and affected counties. As of November 3, 2007, LBAM has been detected in 12 California counties (USDA-APHIS, 2007a) (Figure 1).

LBAM's detection in California has resulted in surveys, quarantines and aerial control programs at the costs of tens of millions of dollars. Because LBAM can be transported via agricultural and nursery stock pathways (Johnson *et al.*, 2000; USDA-APHIS, 2007a), it has the potential to spread long distances outside of the quarantined area and cause additional economic losses. In this analysis we characterized the potential annual economic losses to U.S. apples, grapes, oranges and pears due to LBAM damage, control costs, quarantines and research if it were to be introduced into the conterminous United States. We did not analyze potential economic losses to sectors outside of agricultural production, e.g. trade.

Figure 1. LBAM detections as of November 3, 2007.

II. Methods

In this analysis we characterized the risk, in terms of annual economic costs, posed by LBAM to apple, grape, orange and pear production in the conterminous United States. We chose these commodities because:

- data regarding LBAM's economic effects on them has been reported in Australia (Sutherst, 2000),
- LBAM is considered an economic pest on them with documented economic crop value losses identified and
- they are high value commodities covering a wide geographic production range in the United States (USDA-NASS, 2005, 2005a).

The methods used here can be adapted to other commodities if needed. Our economic analysis had two components: 1) a geospatial analysis that identified areas at risk for LBAM introduction and 2) a quantitative analysis that estimated the range of economic damage LBAM could cause if introduced into these areas.

A. Geospatial Analysis of U.S. At-Risk Areas based on Climate and Hosts

We used Borchert's (2007) degree day (DD) model, which was generated using parameters from Danthanarayana (1975), to visualize areas where LBAM could establish based on climate. We considered areas where LBAM could complete at least three generations (\geq 1,926 DD at a base

temperature of 7.5°C) to be at risk for permanent establishment based on its behavior in Australia (Borchert, 2007; CABI, 2006; Danthanarayana, 1975; Wearing *et al.*, 1991). We simulated our DD model using the NAPPFAST (2007) system and ten year historical daily climatology (1997 to 2006) at a 10 km² resolution.

We masked areas below USDA Plant Hardiness Zone 6 as being too cold for LBAM permanent establishment using the NAPPFAST (2007) climate match tool (USDA-ARS, 1990) (Figure 2). This establishment threshold estimate was based on LBAM's global distribution in relation to the USDA Plant Hardiness Zones (Borchert pers. comm., 2007; CABI, 2006; USDA-ARS, 1990).

We geospatially visualized counties that intersected the climate match area for LBAM establishment with ArcGIS 9.2 (ESRI, 2007) (Figure 3). The use of ArcGIS reflects the expertise of the authors and should not be interpreted as product endorsement. The at-risk counties were joined to total apple, grape, orange and pear crop acreage data for 2002 and the crop acreage per county was geospatially visualized (USDA-NASS, 2002) (Figures 4 to 7).

We summed each crop's acreage in at-risk counties for each affected State and divided this value by the total State acreage for each crop (USDA-NASS, 2002). This proportion was multiplied times the total value of each crop (2004 data for apples, grapes and pears and 2005 data for oranges) to estimate the economic value of each crop in the at-risk counties (USDA-NASS, 2005, 2005a) (Appendix 1).

B. Quantitative Economic Analysis

We constructed a quantitative model that characterized the economic damage that could occur if LBAM were introduced into at-risk areas in the conterminous United States (Appendices 5 and 6). Our model estimated the range of economic damage for each crop and the total for all four crops. In addition we quantitatively characterized the economic costs associated with quarantines and research.

Our model was comprised of steps, e.g. quantities and proportions, which were informed using scientific, economic and agricultural sources (Auclair *et al.*, 2005). We used a PERT distribution to model step inputs. The PERT is a continuous distribution that is defined by a minimum, most likely and maximum value (Vose, 2000, Palisade, 2002). We chose the PERT because it concentrates values towards the center of the distribution which increases its objectivity and decreases the effects of extreme values (Auclair *et al.*, 2005; Groenendaal, 2006; Vose, 2000).

To simulate the model we used @Risk 4.52 professional probabilistic modeling software (Palisade, 2002a). The use of @Risk reflects the expertise of the authors and should not be interpreted as product endorsement. We used Latin Hypercube sampling with a fixed random generator seed of one and 10,000 iterations in the model simulation settings.

We provided summary statistics for specified model outputs. We also reported the model outputs graphically using a cumulative distribution function (cdf). The cdf can be used to estimate the probability of being less than or equal to a value on the *x*-axis (Vose, 2000). This is done by moving vertically up from the *x*-value to the graph intercept and horizontally left to the associated probability on the *y*-axis.

1. Quantitative Model

Step 1. Crop production value in the LBAM at-risk areas

We used the total estimated 2002 annual crop values for each crop in the at-risk counties from the geospatial analysis as the most likely value in the PERT distribution for each crop (Table 1). To account for variation in annual production, we assumed a normal distribution and calculated the mean and standard deviation in U.S. production (thousands of hectares) for each crop from 1996 to 2005 (FAOSTAT, 2007) (Appendix 4). We calculated the proportion of the mean that the standard deviation comprised and then the proportion value at three standard deviations. The most likely value for each crop was then adjusted by \pm the product of itself and the proportion at three standard deviations to generate the minimum and maximum values in the PERT distribution (Table 1). This range captures 99.73 percent of each crops estimated annual value distribution (Vose, 2000).

Step 2. Proportion of crop value damaged by LBAM

We modeled this step by dividing the LBAM damage and control costs of each crop, for the 1993/1994 production year, in five Australian States by the total economic value of each crop in each State for the 1993/1994 production year (McLennan, 1995; Sutherst, 2000) (Table 1; Appendix 2). We used the resulting minimum, mean and maximum proportions, for each crop in the five State data set, as parameters in the PERT distribution (Table 1).

Step 3. Estimated crop damage costs in the LBAM at-risk areas

This value was equal to the product of steps 1 and 2 for each crop.

Step 4. Total estimated crop damage costs in the LBAM at-risk areas

This value was equal to the sum of the damage costs for all four analyzed crops from step 3.

Step 5. Relative proportion of total estimated crop damage costs due to quarantines in LBAM atrisk areas

We estimated the potential costs of quarantines if LBAM were introduced into the U.S. at-risk areas using data from Australia (Sutherst, 2000). There is uncertainty regarding this estimate because LBAM could exhibit different relative quarantine costs in the United States. During the 1993/1994 production season, the LBAM quarantine costs in five Australian States for apples, grapes, oranges and pears was 8 percent of the total LBAM crop damage costs for these crops. We used this proportion as the most likely value in the PERT distribution. We assumed a normal distribution and estimated the minimum and maximum values for the PERT distribution based on the 99 percent confidence interval values (Caton pers. comm., 2007; Cochran, 1977) (Table 1; Appendices 3, 7 and 8).

Step 6. Estimated quarantine costs in the LBAM at-risk areas

This value was equal to the product of steps 4 and 5.

Step 7. Relative proportion of total estimated crop damage costs due to research in the LBAM atrisk areas

We estimated the potential costs of research if LBAM were introduced into the at-risk areas using the methodology for the proportional quarantine cost estimate. Similarly, there is uncertainty regarding this estimate due to potential differences in relative research costs between the United States and Australia. During the 1993/1994 production season, the LBAM research costs in five Australian States was 4.8 percent of the total LBAM crop damage costs to apples, grapes, oranges and pears. We used this proportion as the most likely value in the PERT distribution. We assumed a normal distribution and estimated the minimum and maximum values for the PERT distribution based on the 99 percent confidence interval values as above (Table 1; Appendices 3, 9 and 10).

Step 8. Estimated research costs in the LBAM at-risk areas

This value was equal to the product of steps 4 and 7.

Step 9. Total estimated costs in the LBAM at-risk areas

This step estimates the total costs from crop damage, control, quarantines and research if LBAM were introduced into the at-risk areas within the conterminous United States. It is equal to the sum of steps 4, 6 and 8.

Step	Description	Сгор	Minimum	Most Likely	Maximum
1	Annual crop value	Apples	985,177,216	1,338,556,000	1,691,934,784
	(based on 2002	Grapes	2,267,873,034	2,745,609,000	3,223,344,966
	estimated crop	Oranges	1,370,093,120	1,556,924,000	1,743,754,880
	values)	Pears	228,545,040	249,776,000	271,006,960
2	Proportion of crop	Apples	0.003	0.020	0.040
	damaged	Grapes	0.001	0.010	0.015
		Oranges	0.007	0.023	0.036
		Pears	0.003	0.021	0.035
5	Quarantine Costs				
	Proportion	All four crops	0.010	0.080	0.150
7	Research Costs				
	Proportion	All four crops	0.000	0.048	0.103

Table 1. PERT distribution input parameters used in the model.

III. Results and Discussion

Our geospatial analysis estimated that LBAM could establish throughout the majority of the conterminous United States with the West Coast, Southwestern and Southeastern States at highest risk (Figures 2 to 7). This establishment range captures the majority of the growing areas for the analyzed crops. The percentage of the annual crop value produced within the at-risk areas were: apples (85%), grapes (97%), oranges (100%) and pears (94%) (Appendix 1).

Our quantitative model estimated the total annual crop costs due to damage and control if LBAM were introduced in the at-risk areas (Table 2; Figures 8 and 10). The 5th, mean and 95th percentile values were: \$68,641,000; \$93,173,000 and \$118,458,000. The crops listed in descending order or economic loss and percentage of total crop damage costs were: oranges (38%), apples (29%), grapes (28%) and pears (5%). The 5th, mean and 95th percentile values for the total annual estimated costs with the addition of quarantines and research were: \$77,092,000; \$105,210,000 and \$134,448,000 (Table 2, Figures 9 and 10).

The combined results of our geospatial and quantitative analyses indicate that LBAM could cause substantial economic losses to U.S. apple, grape, orange and pear crops if introduced into the conterminous United States. We note LBAM is highly polyphagous (CABI, 2006; Johnson *et al.*, 2007) and would probably cause additional economic damage to other crops and sectors of the U.S. economy, e.g. domestic and international trade. Also, because LBAM can occur in nursery stock, this industry could provide another pathway for its introduction outside of the quarantined area in addition to movement on agricultural commodities (Johnson *et al.*, 2007; USDA-APHIS, 2007a).

Figure 2. Climate match analysis for areas conducive to LBAM establishment. The results are reported in terms of frequency of years from 1997 to 2006 where enough degree days occurred for LBAM to complete three or more generations.

Figure 3. Counties at risk for LBAM introduction based on climate match.

Figure 4. Apple acreage in counties at risk for LBAM introduction.

Figure 5. Grape acreage in counties at risk for LBAM introduction.

Figure 6. Orange acreage in counties at risk for LBAM introduction.

Figure 7. Pear acreage in counties at risk for LBAM introduction.

Table 2. Model outputs for estimated LBAM annual economic costs if introduced into counties at risk for introduction. Because each item is a separate output the total costs will not equal the sum of the other costs.

Item	5th Percentile	Mean	95th Percentile
Apple	12,041,000	27,439,000	44,301,000
Grape	13,060,000	25,623,000	37,146,000
Orange	20,656.000	35,031,000	49,028,000
Pear	2,534,000	5,080,000	7,485,000
Total Crop Costs	68,641,000	93,173,000	118,458,000
Quarantine Costs	3,186,000	7,454,000	12,353,000
Research Costs	1,575,000	4,583,000	8,027,000
Total Costs	77,092,000	105,210,000	134,448,000

Figure 8. Cumulative distribution functions for estimated annual costs to apples, grapes, oranges and pears if LBAM were introduced into at-risk areas.

Figure 9. Cumulative distribution functions for estimated annual quarantine and research costs if LBAM were introduced into at-risk areas.

Figure 10. Cumulative distribution functions for estimated total annual crop damage and total annual costs if LBAM were introduced into at-risk areas.

IV. Literature Cited

Auclair, A.N.D.; Fowler, G.; Hennessey, M.K.; Hogue, A.T.; Keena, M.; Lance, D.R.; McDowell, R.M.; Oryang, D.O. and Sawyer, A.J. 2005. Assessment of the risk of introduction of *Anoplophora glabripennis* (Coleoptera: Cerambycidae) in municipal solid waste from the quarantine area of New York City to landfills outside of the quarantine area: a pathway analysis of the risk of spread and establishment. Journal of Economic Entomology. 98 (1):47-60.

Borchert, D. 2007. Risk analyst. USDA-APHIS-PPQ-CPHST-PERAL. Raleigh, North Carolina.

- CABI. 2006. Crop protection compendium, 2006 ed. Wallingford, U.K.: CAB International [CD-ROM].
- Caton, B. 2007. Assistant Lab Director. Plant Epidemiology and Risk Analysis Laboratory. USDA-APHIS-PPQ-CPHST-PERAL. Raleigh, North Carolina.
- Cochran, W.G. 1977. Sampling techniques. 3rd ed. Wiley. New York. 428 pp.
- Danthanarayana, W. 1975. The bionomics, distribution and host range of the light brown apple moth, *Epiphyas postvittana* (Walk.) (Tortricidae). Australian Journal of Zoology, 23(3): 419-437.
- ESRI. 2007. Environmental Systems Research Institute. Redlands, California. www.esri.com
- FAOSTAT. 2007. Food and Agriculture Organization of the United Nations. http://apps.fao.org/default.htm
- Groenendaal, H. 2006. Introduction to quantitative analysis. Vose Consulting. Princeton, New Jersey. June 7 to 9.
- Johnson, M.W.; Pickel, C.; Strand, L.L.; Varela, L.G.; Wilen, C.A.; Bolda, M.P.; Flint, M.L.; Frankie, Lam, W.K. and Zalom, F.G. 2007. Light brown apple moth in California: quarantine, management, and potential impacts. University of California Agriculture and Natural Resources. UC Statewide Integrated Pest Management Program. 21 pp.
- McLennan, W. 1995. Value of agricultural commodities produced Australia 1993 94. Australian Bureau of Statistics. Catalogue No. 7503.0. 26 pp.
- NAPPFAST. 2007. North Carolina State University Animal and Plant Health Inspection Service Plant Pest Forecasting System. www.nappfast.org
- Palisade Corporation. 2002. A concise summary of @Risk probability distribution functions. Newfield, N.Y.

Palisade Corporation. 2002a. Newfield, N.Y.

- Sutherst, R.W. 2000. Pests and pest management: impact of climate change. A report for the Rural Industries Research and Development Corporation. CSIRO Entomology. RIRDC Publication No 00/16. RIRDC Project No CSE-76A. 34 pp.
- USDA-APHIS. 2007. LBAM situation report November 3, 2007. United States Department of Agriculture. Animal and Plant Health Inspection Service.
- USDA-APHIS. 2007a. Federal domestic quarantine order: *Epiphyas postvittana* (Light Brown Apple Moth) (LBAM) DA-2007-42. United States Department of Agriculture. Animal and Plant Health Inspection Service. http://www.pestalert.org/OPRFiles/LBAM%20Federal%20Order%20Sept%2017%202007%20w ith%20Appendix.pdf
- USDA-ARS. 1990. USDA Plant Hardiness Zone Map. Miscellaneous publication number 1475. United States Department of Agriculture. Agriculture Research Service. Washington, D.C.
- USDA-NASS. 2002. 2002 Census of agriculture CD. United States Department of Agriculture. National Agricultural Statistics Service. http://www.nass.usda.gov/census/census02/cens02/census02/census02/census02/census02/census02/cens
- USDA-NASS. 2005. Annual non-citrus fruits and nuts, 2004 summary. July 2005 for value of commercial utilized production. United States Department of Agriculture. National Agricultural Statistical Service. 83 pp.
- USDA-NASS. 2005a. Citrus fruits, 2005 summary. September 2005 for value of production. United States Department of Agriculture. National Agricultural Statistical Service. 53 pp.
- Vose, D. 2000. Risk analysis: a quantitative guide. 2nd edition. John Wiley and Sons, Ltd. New York. 418 pp.
- Wearing, C.H.; Thomas, W.P.; Dugdale, J.S. and Danthanarayana. W. 1991. Tortricid pests of pome and stone fruits, Australian and New Zealand species. *In*: van der Geest, L.P.S. and Evenhuis, H.H. (ed). Tortricid pests: their biology, natural enemies and control. World crop pests. Volume 5. Amsterdam, Netherlands: Elsevier. 453-472.

V. Appendices

Appendix 1. Summary crop data for areas at risk for LBAM introduction.

		Light Br	rown Apple Moth ((LBAM)		
	Estimated State, Region and	National Econ	omic Impact Estin	nates for Selected	d Major Host Comn	nodities
	for Counties in States H	aving Climatic	Conditions Suffici	ent to Support Li	BAM Life Cycle \$1,	000
Region		Apple	Grape	Pears	Oranges	Total
East	Alabama	N/R	N/R	N/R	N/R	\$0
	Connecticut	\$47,420	N/R	\$348	N/R	\$47,768
	Delaware	N/R	N/R	N/R	N/R	\$0
	Florida	N/R	N/R	N/R	\$1,089,751	\$1,089,751
	Georgia	\$1,228	\$1,135	N/R	N/R	\$2,363
	Kentucky	\$997	N/R	N/R	N/R	\$997
	Maine	\$3,952	N/R	N/R	N/R	\$3,952
	Maryland	\$4,424	N/R	N/R	N/R	\$4,424
	Massachusetts	\$2,914	N/R	N/R	N/R	\$2,914
	Mississippi	N/R	N/R	N/R	N/R	\$0
	New Hampshire	\$1,527	N/R	N/R	N/R	\$1,527
	New Jersey	\$5,440	N/R	N/R	N/R	\$5,440
	New York	\$18,372	\$3,502	\$957	N/R	\$22,831
	North Carolina	\$21,303	\$2,187	N/R	N/R	\$23,490
	Ohio	\$1,169	\$73	N/R	N/R	\$1,242
	Pennsylvania	\$30,777	\$1,243	\$1,404	N/R	\$33,424
	Rhode Island	\$785	N/R	N/R	N/R	\$785
	South Carolina	\$909	N/R	N/R	N/R	\$909
	Tennessee	\$880	N/R	N/R	N/R	\$880
	Virginia	\$20,963	\$4.477	N/R	N/R	\$25,441
	West Virginia	\$6,980	N/R	N/R	N/R	\$6,980
Central	Arkansas	\$443	\$3.498	N/R	N/R	\$3,940
oonna	Illinois	\$2 057	N/R	N/R	N/R	\$2,057
	Indiana	\$137	N/R	N/R	N/R	\$137
	Kansas	\$107 \$44	N/P	N/P	N/R	\$107 \$14
	Louisiana	VI/D	N/R	N/D	N/R	φ 44
	Louisiana	N/R ©4.447	1N/K			φU Φ1.00E
	Missouri Oldakaraa	\$1,147	3078 N/D	IN/R	N/R	\$1,825
	Oklanoma	N/R	N/R	N/R	N/R	\$U
14/	l exas	N/R	\$2,280	N/R	\$1,567	\$3,848
West	Arizona	\$607	\$1,692	N/R	\$2,185	\$4,484
	California	\$93,367	\$2,559,303	\$67,166	\$463,420	\$3,183,256
	Colorado	\$8,744	N/R	\$720	N/R	\$9,463
	Idaho	\$14,470	N/R	N/R	N/R	\$14,470
	Nevada	N/R	N/R	N/R	N/R	\$0
	New Mexico	\$543	N/R	N/R	N/R	\$543
	Oregon	\$27,628	\$31,485	\$62,946	N/R	\$122,059
	Utah	\$279	N/R	\$54	N/R	\$334
	Washington	\$1,019,051	\$134,056	\$116,181	N/R	\$1,269,289
Cron Value	at Risk from I BAM - National Total	\$1 338 556	\$2 745 609	\$2/0 776	\$1 556 924	\$5 890 866
orop value	East Regional Total	\$170.040	¢10.617	\$2,700	\$1,000,751	¢1,030,000
	Control Regional Total	¢170,040	\$12,017	\$2,709	\$1,009,751	φ1,273,117 ¢11.0E0
		\$3,027 \$1,404,000	\$0,400 \$0,700 F00	ΦU \$247.000	\$1,307	φ11,000 ¢4,000,000
	west Regional Total	\$1,164,689	\$2,720,530	\$247,068	\$405,005	\$4,603,898
Total U.S. R Utilized Pro	Reported Commercial Crop Value for duction USDA - NASS	\$1,581,260	\$2,841,569	\$264,334	\$1,564,658	\$6,251,821
Percent of N	National Aggregated Crop Value at Risk	85%	97%	94%	100%	94%
Estimate of Based on 0 2000) apple	f LBAM Annual Grower Costs When Gross Value of Selected Hosts (Sutherst, es 2%, grapes 1%, pears 2.1% and	\$27,440	\$25,626	\$5,079	\$35,031	\$93,176
oranges 2.2	2%					
Estimated G (Sutherst, 2	Grower Annual Costs 88.6% of crop value 000)	\$24,312	\$22,704	\$4,500	\$31,037	\$82,554
Estimated G 11.4% of cro Cost 7.1% c	Sovernment and Research Annual Costs op value - (Note: Quarantine Inspection of crop value) (Sutherst, 2000)	\$3,128	\$2,921	\$579	\$3,994	\$10,622
Number of 0 Cycle With I	Counties Identified to Support LBAM Life Reported Acreage Greater than 0 in 2002	720	579	441	75	1,815

N/R - No crop value reported by USDA, National Agricultural Statistical Service.

Sources: 2002 U.S. Agricultural Census, Table 31 for Total Acreage USDA, National Agricultural Statistical Service, Annual Noncitrus Fruits and Nuts, 2004 Summary, July 2005 for Value of Commercial Utilized Production USDA, National Agricultural Statistical Service, Citrus Fruits, 2005 Summary, September 2005 for Value of Production

Sutherst, Robert W. 2000. Pests and Management Impact of Climate Change - A report for the Rural Industries Research and Development Corporation. RIRDC Publication No 00/16

Appendix 2. LBAM crop data for five affected Australian States for the 1993/1994 production year (McLennan, 1995; Sutherst, 2000).

State	LBAM Grape Value	Total Grape Value	Grape Proportion	LBAM Orange Value	Total Orange Value	Orange Proportion
NSW	488,000	74,800,000	0.007	1,072,000	79,000,000	0.014
Vic	1,629,000	114,900,000	0.014	1,845,000	51,000,000	0.036
SA	2,269,000	148,000,000	0.015	3,025,000	83,600,000	0.036
Tas	18,000	1,700,000	0.011	na	na	na
WA	17,000	17,000,000	0.001	18,000	2,700,000	0.007
Min	17,000	1,700,000	0.001	18,000	2,700,000	0.007
ML	884,200	71,280,000	0.010	1,490,000	54,075,000	0.023
Max	2,269,000	148,000,000	0.015	3,025,000	83,600,000	0.036
State		Total Apple Value	Apple Dreparties		Total Door Value	Door Proportion
Vic	2 236 000	01 200 000	0.010	2 081 000	74,200,000	0.027
	2,230,000	91,300,000	0.024	2,081,000	74,200,000	0.020
JA	1,023,000	25,600,000	0.040	191,000	5,500,000	0.035
	87,000	33,200,000	0.018	9,000	700,000	0.013
WA	87,000	32,100,000	0.003	20,000	5,900,000	0.003
Min	87.000	25 800 000	0.003	9.000	700.000	0.003
MI	916.400	44 240 000	0.000	469 400	17 600,000	0.000
Max	2 236 000	91 300 000	0.020	2 081 000	74 200 000	0.021
Max	2,200,000	01,000,000	0.0+0	2,001,000	14,200,000	0.000
State	LBAM Total Damage Value	Total Value	Total Proportion			
NSW	2,240,000	194,300,000	0.012			
Vic	7,791,000	331,400,000	0.024			
SA	6,510,000	262,900,000	0.025			
Tas	627,000	35,600,000	0.018			
WA	142,000	57,700,000	0.002			
Min	142,000	35,600,000	0.002			
ML	3,462,000	176,380,000	0.016			

0.016 0.025

Appendix 3. Quarantine and research proportions of grower costs (Sutherst, 2000).

Item	Value	Proporiton	Proportion relative to grower cost
grower cost	18.7	0.886255924	1.000
quarantines	1.5	0.071090047	0.080
research	0.9	0.042654028	0.048
total	21.1	1	

176,380,000 331,400,000

3,462,000 7,791,000

Max

Year	Apples	Oranges	Pears and Quinces	Grapes
1996	189.2	327.1	27.8	327.32
1997	189.39	341.4	27.06	338.02
1998	189.23	335.08	26.78	346.48
1999	186.49	335.9	26.76	366.13
2000	173.9	328.97	26.73	383.02
2001	169.18	329.74	26.33	377.36
2002	159.77	321.89	25.95	384.43
2003	158.01	320.39	25.96	384.86
2004	155.59	308.82	25.88	377.61
2005	153.32	298.5	25.15	378.32
Mean	172.408	324.779	26.440	366.355
SD	15.197	13.023	0.745	21.238
SD Proportion	0.088	0.040	0.028	0.058
3 SD Proportions	0.264	0.120	0.085	0.174

Appendix 4. U.S. crop production (1,000s of hectares) from 1996 to 2005 (FAOSTAT, 2007).

Appendix 5. Model for estimating LBAM annual economic costs to apples, grapes, oranges and pears if introduced into at-risk areas in the conterminous United States. Most likely values are reported in each cell. Color codes: yellow = parameter, green = probabilistic function, fuschia = output.

	A	В	С	D	E	F	G	Н
1	Step	Value	Parameters					
	Commercial apple production value in							
2	LBAM at-risk areas	1,338,556,000	min/ml/max	985,177,216	1,338,556,000	1,691,934,784	3 SD	0.264
	Proportion of apple crop damaged by							
3	LBAM	0.021	min/ml/max	0.003	0.020	0.040		
	LBAM apple crop damage value in							
4	LBAM at-risk areas	27,440,398						
5								
	Commercial grape production value in							
6	LBAM at-risk areas	2,745,609,000	min/ml/max	2,267,873,034	2,745,609,000	3,223,344,966	3 SD	0.174
	Proportion of grape crop damaged by							
7	LBAM	0.009	min/ml/max	0.001	0.01	0.015		
	LBAM grape crop damage value in							
8	LBAM at-risk areas	25,625,684						
9								
	Commercial orange production value in							
10	LBAM at-risk areas	1,556,924,000	min/ml/max	1,370,093,120	1,556,924,000	1,743,754,880	3 SD	0.12
	Proportion of orange crop damaged by							
11	LBAM	0.023	min/ml/max	0.007	0.023	0.036		
	LBAM orange crop damage value in							
12	LBAM at-risk areas	35,030,790						
13								
	Commercial pear production value in							
14	LBAM at-risk areas	249,776,000	min/ml/max	228,545,040	249,776,000	271,006,960	3 SD	0.085
. –	Proportion of pear crop damaged by							
15	LBAM	0.020	min/ml/max	0.003	0.021	0.035		
	LBAM pear crop damage value in							
16	LBAM at-risk areas	5,078,779						
17								
4.0	Total crop damage in LBAM at-risk	00 475 054						
18	areas	93,175,651						
19	Deletive evenenties cost mean attice	0.000		0.040	0.000	0.450		
20	Relative quarantine cost proportion	0.080	min/mi/max	0.010	0.080	0.150		
21		7,454,052						
22	Polative research east properties	0.040	min/ml/movi	0.000	0.040	0.400		
23	Relative research cost proportion	4 594 490	min/mi/max	0.000	0.048	0.103		
24		4,581,136						
25	Total agata from LDAM area domonia]						
200	TOTAL COSTS FROM LEAIVI CROP damage,	405 040 000						
26	quarantines and research	105,210,839						

Appendix 6. Model formula table for estimating LBAM annual economic costs to apples, grapes, oranges and pears if introduced into at-risk areas in the conterminous United States.

	А	В	С	D	E	F	G	Н
1	Step	Value	Parameters					
2	Commercial apple production value in LBAM at-risk areas	=RiskPert(D2,E2,F2)	min/ml/max	=E2-(E2*H2)	1,338,556,000	=E2+(E2*H2)	3 SD	0.264
3	Proportion of apple crop damaged by LBAM	=RiskPert(D3,E3,F3)	min/ml/max	0.003	0.020	0.040		
4	LBAM apple crop damage value in LBAM at-risk areas	=RiskOutput("LBAM apple economic damage")+B2*B3						
5								
6	Commercial grape production value in LBAM at-risk areas	=RiskPert(D6,E6,F6)	min/ml/max	=E6-(E6*H6)	2,745,609,000	=E6+(E6*H6)	3 SD	0.174
7	Proportion of grape crop damaged by I BAM	=RiskPert(D7 E7 E7)	min/ml/max	0.001	0.01	0.015		
8	LBAM grape crop damage value in LBAM at-risk areas	=RiskOutput("LBAM grape economic damage")+B6*B7						
9								
10	Commercial orange production value in LBAM at-risk areas	=RiskPert(D10,E10,F10)	min/ml/max	=E10-(E10*H10)	1,556,924,000	=E10+(E10*H10)	3 SD	0.12
11	LBAM	=RiskPert(D11,E11,F11)	min/ml/max	0.007	0.023	0.036		
12	LBAM orange crop damage value in LBAM at-risk areas	=RiskOutput("LBAM orange economic damage")+B10*B11						
13								
14	Commercial pear production value in LBAM at-risk areas	=RiskPert(D14,E14,F14)	min/ml/max	=E14-(E14*H14)	249,776,000	=E14+(E14*H14)	3 SD	0.085
15	Proportion of pear crop damaged by LBAM	=RiskPert(D15,E15,F15)	min/ml/max	0.003	0.021	0.035		
16	LBAM pear crop damage value in LBAM at-risk areas	=RiskOutput("LBAM pear economic damage")+B14*B15						
17								
18	Total crop damage in LBAM at-risk areas	=RiskOutput("total crop damage in LBAM at-risk areas")+B4+B8+B12+B16						
19	· · · · · ·							
20	Relative guarantine cost proportion	=RiskPert(D20,E20,F20)	min/ml/max	0.010	0.080	0.150		
21	Quarantine costs	=RiskOutput("quarantine costs")+B18*B20						
22								
23	Relative research cost proportion	=RiskPert(D23,E23,F23)	min/ml/max	0.000	0.048	0.103		
24	Research Costs	=RiskOutput("research costs")+B18*B23						
25								
26	Total costs from LBAM crop damage, quarantines and research	=RiskOutput("total LBAM costs")+B18+B21+B24						

Appendix 7. Model for calculating the quarantine proportion confidence intervals (Caton pers. comm., 2007; Cochran, 1977).

	А	В	С	D	E	F
1	Quarantine proportion	Calculation				
2	proportion	0.08000	numerator	8	denominator	100
3	st. dev. prop	0.02713	n	100		
4						
5	95%					
6	Z	1.96				
			<==Note: if lower limit less than 0, it indicates the proportion is not significantly			
/	lower	0.02683	different from zero at this P			
8	upper	0.13317				
9						
10	99%					
11	z	2.58				
12	lower	0.01001				
13	upper	0.14999				

Appendix 8. Model formula table for calculating the quarantine proportion confidence intervals (Caton pers. comm., 2007; Cochran, 1977).

	А	В	С	D	E	F
1	Quarantine proportion	Calculation				
2	proportion	=D2/F2	numerator	8	denominator	100
3	st. dev. prop	=SQRT(((B2*(1-B2))/D3))	n	100		
4						
5	95%					
6	Z	1.96				
			<==Note: if lower limit			
			less than 0, it indicates			
			the proportion is not			
			significantly different			
7	lower	=B2-(B6*B3)	from zero at this P			
8	upper	=B2+(B6*B3)				
9						
10	99%					
11	z	2.58				
12	lower	=B2-(B11*B3)				
13	upper	=B2+(B11*B3)				

Appendix 9. Model for calculating the research proportion confidence intervals (Caton pers. comm., 2007; Cochran, 1977).

	A	В	С	D	E	F
1	Research proportion	Calculation				
2	proportion	0.04800	numerator	4.8	denominator	100
3	st. dev. prop	0.02138	n	100		
4						
5	95%					
6	Z	1.96				
			<==Note: if lower limit less than 0, it indicates the proportion is not significantly different from			
7	lower	0.00610	zero at this <i>P</i>			
8	upper	0.08990				
9						
10	99%					
11	Z	2.58				
12	lower	-0.00715				
13	upper	0.10315				

Appendix 10. Model formula table for calculating the research proportion confidence intervals (Caton pers. comm., 2007; Cochran, 1977).

	A	В	С	D	E	F
1	Research proportion	Calculation				
2	proportion	=D2/F2	numerator	4.8	denominator	100
3	st. dev. prop	=SQRT(((B2*(1-B2))/D3))	n	100		
4						
5	95%					
6	Z	1.96				
7	lower	-B2-(B6*B3)	<==Note: if lower limit less than 0, it indicates the proportion is not significantly different from zero at this <i>P</i>			
/ 8	upper	=B2+(B6*B3)				
g	арры					
10	99%					
11	Z	2.58				
12	lower	=B2-(B11*B3)				
13	upper	=B2+(B11*B3)				