Hometop nav spacerAbout ARStop nav spacerHelptop nav spacerContact Ustop nav spacerEn Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
United States Department of Agriculture Agricultural Research Service
Search
 
 
National Programs
International Programs
Find Research Projects
The Research Enterprise
Office of Scientific Quality Review
Research Initiatives
 

Research Project: Foreign Animal Diseases, Immune Protection and Diagnostics Project Number: 1940-32000-055-04
Project Type: Specific Cooperative Agreement

Start Date: Jun 01, 2008
End Date: May 31, 2012

Objective:
1. Develop novel approaches to inducing mucosal immune responses to FMDV vaccines with the capacity to cross-neutralize a broader array of virus sub-types. 1.A. Evaluate the efficacy of mucosal adjuvants, delivered via the replication-defective human adenovirus 5 (hAd5) vector system along with the hAd5-FMD vaccine, for augmenting immunity and protection following intranasal administration to swine. 1.B. Assess the cross-neutralization and cross-protection afforded by capsid-based vaccines engineered with chimeric VP1 G-H loops bearing immunogenic or toleragenic epitopes to broaden the specificity of the vaccine. 2. Determination of classical swine fever virus genetic determinants of virulence, immunogenicity and antigenicity. 2.A. Evaluate immunogenicity and protective efficacy of genetically modified CSFV glycoproteins. 2.B. Evaluate the role of non-structural proteins in CSFV virulence. 3. Develop and validate grating coupled surface Plasmon resonance imaging multiplexed microarray biosensor platform for the rapid detection of FMDV and CSFV, and the characterization of host responses to each pathogen.

Approach:
1. Evaluation of mucosal adjuvants efficacy delivered through the ad5 platform, to induce mucosal immune responses to FMDV. Evaluate in vivo mucosal adjuvants alone or in combination with FMDV vaccine for induction of rapid protection in swine. Determine cross-neutralization and cross-protection provided by capsid-based vaccines engineered with chimeric VP1 G-H loops containing immunogenic or toleragenic epitopes. An epitope map will be created using anti-sera from murine bearing cross-reactive immune responses between FMDV types O and SAT3. Testing chimeric GH loop bearing hAd5 vectors in swine will be conducted to assess cross-neutralization. Challenge studies will be performed utilizing homo-typic and heterotypic virus. 2. Evaluate the role of non-structural proteins in CSFV virulence and protection against infection will be performed through; complete cloning of CSFV structural proteins into Baculovirus transfer vectors, completing the production of recombinant Baculovirus expressing parental CSFV structural proteins and of autonomous replication CSFV defective genomes, and by completing the immunogenicity studies in naïve swine with sera from infected swine. 3. Development and validation of the GCSPRI device will be done to use as rapid detection of FMDV and CSFV. Identify diagnostic reagents and develop host immune response characterization. Assay conditions and sensor chip configurations will be optimized to capture host leukocyte populations. In vivo virus detection will be tested through immune response by GCSPRI and by traditional bioassay.

   

 
Project Team
Rodriguez, Luis
 
Related National Programs
  Animal Health (103)
 
 
Last Modified: 01/16/2009
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House