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ABSTRACT: The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear mod- 
ulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new 
relationship is proposed that performs better than existing equations found in the literature. This relationship 
can be manipulated to calculate the shear modulus G 12 of orthotropic specimens such as wood-based panels 
solely from off-axis tension (or compression) tests. The proposed relationship reduces to classical theory for the 
isotropic case. In all cases tested, the newly proposed relationship is a better fit to the data than the traditional 
orthotropic elasticity equation. 

INTRODUCTION 

The shear strength and modulus of rigidity of composite 
wood materials are required for the rigorous design of many 
lumber-panel structural components such as trusses with gus- 
set plates, box beams, folded plate roofs, roof or floor dia- 
phragms, shear walls, and engineered wood products such as 
the webs of I-joists. Allowable shear strength values are read- 
ily available for the design of solid lumber and other engi- 
neered wood products such as glulam; however, the elastic 
shear modulus, or modulus of rigidity G 12, is often experi- 
mentally obtained for new and unique panel products. Yet, it 
is difficult to readily conduct pure shear tests that could di- 
rectly calculate G 12. 

Wood composite panel products, similar to those mentioned 
above, are traditionally modeled as orthotropic solids. In x-y 
space, the modulus of elasticity (MOE) may vary from its 
strongest value E 1 ( x -axis aligned with the longitudinal grain 
direction) to E,, typically 90° away from the strong axis. The 
problems of complicated test setups and specimen size effects 
( Annual 1997) notwithstanding, the experimentally obtained 
shear modulus G 12 should relate to the two principal MOE E 1 

and E 2, the Poisson ratio v 12, and to the MOE at some angle 
q to the x -axis E q by means of coordinate transformation of 
orthotropic elasticity relations (Jones 1975) 

Such a relationship is more effective than the empirically de- 
rived Hankinson formula (Bodig and Jayne 1982) 

in capturing the properties of panel products such as plywood, 
which can have a very small MOE at q = 45°, and large, 
approximately equal MOE at q = 0° ( E 1) and q = 90° ( E 2). 

The original intention of this study was to investigate the 
use of ( 1 )  as a predictor of the shear modulus solely using 
uniaxial tests. These uniaxial tests establish E 1, E 2, and E,. 
Advantages of measurement of shear modulus by tension tests 
have been investigated by others (Rosen 1972; Ebrahimi and 
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Sliker 1981). A minor difficulty of using (1) to do this, was 
the need to experimentally obtain Poisson-ratios. The proposed 
method has eliminated this need. 

The major difficulty in achieving the original objective was 
the somewhat surprising realization that (1) is ineffective in 
modeling E q. This study has analyzed a historical set of data 
(Norris and McKinnon 1956) as well as newly gathered data 
on a variety of wood-based panel products (plywood, oriented 
strand board, particleboard), and has demonstrated that there 
is a lack of fit between (1) [or its alternate forms via (3) or 
(5)] and the experimental data. Standard methods were used 
to determine E (ASTM D 3500) from 0° to 90°, and also to 
determine G 12 by means of a plate twisting test (ASTM D 
3 044). 

Several researchers have investigated the off-axis MOE by 
means of traditional theory of elasticity, but without the em- 
pirical approach adopted herein. Bindzi and Samson (1995) 
recently have shown another format of (1) as follows: 

(3) 
E 1 E 2 E q = 

E 1 sin 2 q (sin 2 q + a cos 2 q) + E 2  cos 4 q 

where the nondimensional parameter a is given by 

To complete the review of the literature, another equivalent 
formulation of (1) was presented by Liu and Ross (1998) 

(5) 
E 1 E 2 

E 2 cos 2 q (cos 2 q + a sin 2 q) + E 1 sin 4 q 

where the nondimensional parameter a is given by 

E q = 

It can be shown, however, that (3) and (5) are completely 
equivalent to (1) and are, consequently, equally ineffective in 
modeling composite wood panel MOE variations. 

Given the poor performance of (1), the revised objective of 
this study became the demonstration of an improved equation 
relating E 1 E 2, G 12, and E q. We have proposed such a rela- 
tionship for modeling E q, which reduces to the classical elas- 
ticity equation for the isotropic case (E 1 = E 2). This equation 
can be used in two ways. First, it can be used in conjunction 
with an experimentally determined E 1, E 2, and G 12 to better 
predict E q. Second, it can be rewritten to solve for G 12 based 
on E 1, E 2, and E q, at any angle q, each of which could be 
obtained from tension tests. Using the new relationship to ex- 
tract G 12 could be advantageous if the plate twisting test 
(ASTM D 3044) is not available. 
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(4) 
E 2 – 2 v 12 a = G 12 

(6) – 2 v 12 
E 1 

G 12 
a = 



NEW RELATIONSHIP 

The proposed relationship was formulated to appear similar 
to (1), yet without the Poisson ratio term. The Poisson ratio 
term was not included in this relationship to reduce the number 
of input variables. This simplification is reasonable as the Pois- 
son ratio term in (1) can be one order of magnitude smaller 
than the others, because v 12 is often approximately 0.1. Fur- 
thermore, this simplification eliminates the need to obtain 
transverse strains. 

Then, the equation was modified to enforce agreement to 
experimentally obtained shear data by means of curve fitting. 
This was done by means of the calibrating term containing the 
nondimensional parameter A, where A = E 2/ E 1. The result is 
as follows: 

(7) 

We have calibrated (7) to the ASTM D 3044 plate twisting 
data because that standard is based on well-accepted theoret- 
ical foundations (Hearmon and Adams 1952; Kuipers 1974). 
This empirical approach ensured that (7) could also be used 
to extract the shear modulus solely from tension test data. Hav- 
ing such a broad database to work with gave us confidence in 
our empirical approach. We have demonstrated that (7) per- 
forms better than (1) for a wide variety of wood-based panels. 

The second application of (7) is to use it to solve for G 12 

based solely on E q tests. Rewriting (7) gives the following 
results: 

cos 2 q sin 2 q 

However, if there is substantial variation in the experimental 
readings of E q, then the resulting value calculation of G 12 may 
have an unacceptably large variation (Seo et al. 1992). Actu- 
ally, (8) is unstable at two particular angles, which are a func- 
tion of the orthotropicity of the material. To minimize the ef- 
fects of the variation of E q in a systematic fashion, we have 
adopted the method proposed by Seo et al. (1992), who used 
this method to extract the shear modulus of orthotropic sheets 
of paper. Therefore 

cos 4 q i sin 4 q i 1 
( X 2 ) i + – 

E 1 E 2 (  E q ) i  (9) 

where i = 1, 2, 3, , . . , n number of tests; and all other terms 
as previously defined. Define 

F ( X 1 i , X 2 i ) = S '' 
( X 1 i + X 2 i ) 2 (10) 

i = 1 

Minimizing for n trials 

(11) 

yields 

Then 

2 S X 1 i ( SX 1 i + X 2 i ) = 0 
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APPLICATION TO EXPERIMENTAL DATA 

We conducted tests to determine E q and G 12 for plywood, 
oriented strand board, and particleboard. The value of E q was 
found for q = 0°, 30°, 45°, 60°, and 90° by means of tension 
tests conforming to ASTM D 3500. Four grades of plywood, 
three grades of oriented strand board, and four grades of par- 
ticleboard were tested. Three replicates of these five angles 
(15 specimens) were tested for each of the 15 different panels 
for a total of 225 tension tests. Then, 60 plate twisting tests 
(4 on each panel) were performed on specimens taken from 
these panels in accordance with ASTM D 3044 to calculate 
the shear modulus G 12. These values will be referred to as 
G 123044. Table 1 summarizes the materials tested. Also exam- 
ined were historical data (Norris and McKinnon 1956) on spe- 
cially fabricated plywood panels. This data set contained 12 
replicates of E q tests at angles of 0 = 0°, 15°, 30°, 45°, 60°, 
75°, and 90°, resulting in 84 tension tests for each type of 
plywood. In all, there were 504 tension tests and 72 shear tests 
performed on these six types of specially fabricated plywood. 
Table 2 summarizes the historical data that we analyzed. Table 
3 shows an example calculation of how we extracted the shear 
modulus solely from tension tests. The reason for presenting 
these calculations is to clarify the steps needed to extract the 
shear modulus from (8) by means of (9) – (13) and to show 
that it can easily be performed in a spreadsheet environment. 
Eqs. (1), (3), (5), and (7) were tested on all of these data in 
the following manner: 

I. First the behavior of all four E, equations [(1), (3), (5), 
and (7)] was checked by putting E 1 ( E 0°), E 2 ( E 90°), and 
G 123044. Graphical representations of typical experimental 
data (solid symbols); (1), (3), and (5) (solid lines all co- 
inciding); and (7) (dashed line with crosses) are shown 
in Figs. 1 and 2. Note that the agreement is the best for 
the newly proposed equation [(7)]. Also note that (1), 
(3), and (5) all require a value of Poisson's ratio. The 
following relationship for Poisson's ratio was used (Nor- 
ris and McKinnon 1956): 

(14) 

+ + = 
I cos 4 q sin 4 q cos 2 q sin 2 q 
E q E 1 E 2 ( A 2 A ) G 12 

(8) G 12 = 
( A 2 A ) · [ ( ) ] E q E 1 

+ E 2 

1 – cos 4 q sin 4 q 

(12) 

(13) 

S = 
1 

G 12 
, ( X 1) i A 2 A , 

cos 2 q i sin 2 q i = 

S 
S 

1 – 
= – = 

( X 1 i ) 2 

Gxy S ( X1i X 2 i ) 

TABLE 1. Materials Tested in This Study 

Panel type 
(1) 

Grade 
(2) 

Thickness 
(mm) 

(3) 

Specimen 
names 

(4) 

Number of 
shear 

specimens 
(5) 

Number of 
tension 

specimens 
(6) 

Plywood 

Oriented strand board 

Particleboard 

N 
A- 
A-C 
C-C 
Mill 1 
Mill 2 
Mill 3 
Mill 1 
Mill 2 
Mill 3 
Mill 4 

12.7 
12.7 
19.1 
12.7 
12.7 
12.7 
15.7 
15.7 
25.4 
25.4 
25.4 

N1, N2 
A1, A2 
A3, A4 
C1, C2 
O1 
O2 
O3 
P1 
P2 
P3 
P4 

8 30 
8 30 
8 30 
8 30 
4 15 
4 15 
4 15 
4 15 
4 15 
4 15 
4 15 

TABLE 2. Materials from Norris and McKinnon Report (1956) 

Panel 
type 
(1) 

Plywood 

Number 
of piles 

(2) 

Ply 
thickness 

(mm) 
(3) 

Specimen 
names 

(4) 

Number 
of shear 

specimens 
(5) 

Number of 
tension 

specimens 
(6) 

3 1.59 
5 1.59 
7 1.59 
5 0.79 
7 0.79 
9 0.79 

T2 
T3 
T4 
T5 
T6 
T7 

12 84 
12 84 
12 84 
12 84 
12 84 
12 84 



Theta 
(degrees) 

10,090 
15 
15 
30 
30 
30 
45 
45 
45 
60 
60 
60 
75 
75 
75 

10,090 
10,090 
10,090 
10,090 
10,090 
10.090 
10,090 
10,090 
10,090 
10,090 
10,090 
10,090 
10,090 
10,090 

4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 
4,629 

(MPa) 

4,978 0.12776 – 1.136E-04 
5,647 
4,923 
2,489 
2,606 
2,668 
1,889 
1,800 
1,765 
2,186 
2,200 
2,213 
3,620 
3,303 
3.420 

Total 

0.12776 
0.12776 
0.38327 
0.38327 
0.38327 
0.51102 
0.51102 
0.51102 
0.38327 
0.38327 
0.38327 
0.12776 
0.12776 
0.12776 

– 8.984845 
– 1.159E-04 
– 3.325E-04 
– 3.144E-04 
– 3.055E-04 
– 4.505E-04 
– 4.769E-04 
– 4.877E-04 
– 3.298E-04 
– 3.269E-04 
– 3.241E-04 
– 8.775E-05 
– 1.143E-04 
– 1.039E-04 

X 12 

(7) 

0.01632 
0.01632 
0.01632 
0.14689 
0.14689 
0.14689 
0.26114 
0.26114 
0.26114 
0.14689 
0.14689 
0.14689 
0.01632 
0.01632 
0.01632 
1.76272 

X 1 X 2 

– 1.452E-05 
– 1.148E-05 
– 1.480E-05 
– 1.274E-04 
– 1.205E-04 
– 1.171E-04 
– 2.302E-04 
– 2.437E-04 
– 2.492E-04 
– 1.264E-04 
– 1.253E-04 
– 1.242E-04 

– 1.460E-05 

(8) 

– 1.121E-05 

– 1.327E-05 
– 1.06461E-05 

Note: G calc = (–sum 1/sum 2) = 1,142 MPa. 

FIG. 2. T5, T6, and T7 Specimens 
FIG. 1. T2, T3, and T4 Specimens 

where vTL, = species-dependent material property. For ex- 
ample, for yellow poplar, vTL is 0.019 (“The elastic” 
1946). 

2 .  The shear modulus calculations, based on the newly pro- 
posed (7) as well as the traditional orthotropic elasticity 
equation [(1)] are compared. I n  both cases, the error min- 
imization scheme of (9)-(13) was applied. The value of 
shear modulus extracted from ( I )  will be designated as 

G 12 eqn 1 and that from (7) will be designated as G 12 eqn 7 to 
differentiate them from the plate twisting test results 
called G 123044. Fig. 3 summarizes these findings by show- 
ing G 123044 versus the extracted values of G 12 eqn l and 
G 12 eqn 7. If the extracted values of G 12 fell on a 45° line 
in this plot, then the extracted values would coincide 
perfectly with the independently obtained plate twisting 
values G 12 3044. Clearly, only G 12 eqn 7 falls near the 45° line. 
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TABLE 3. Application of G12 Extraction to Data, Specimen T2 

(1) 

E 1 

(MPa) 
(2) 

E 2 

(MPa) 
(3) 

E 0 

(4) 
X 1 
(5) 

X 2 
(6) 



Specimen 

A1 
A2 
A3 
A4 
C1 
C2 
N1 
N2 
T2 
T3 
T4 
T5 
T6 

O1 
O2 
O3 
P1 
P2 
P3 
P4 

Average 
Standard de- 

viation 

T7 

TABLE 4. Comparison of Shear Modulus Values 

G 12 eqn 7 

(MPa) 
(2) 
570 
441 

1,071 
763 
905 
492 
932 
514 

1,142 
1,056 

886 
1,257 
1,211 
1,758 
1,732 
2,263 
1,776 

819 
693 

1,067 
843 
— 

— 

G 12 3044 

(MPa) 
(3) 
666 
603 
572 
526 
746 
693 
717 
640 

1,280 
1,429 
1,005 
1,409 
1,056 
1,382 
1,788 
1,745 
2,018 

929 
888 

1,147 
1,126 
— 

— 

Ratio 
G 12 eqn 7 / 

(4) 
G 12 3044 

0.86 
0.73 
1.87 
1.45 
1.21 
0.71 
1.20 
0.80 
0.89 
0.74 
0.88 
0.89 
1.15 
1.27 
0.97 
1.30 
0.88 
0.88 
0.78 
0.93 
0.75 
1.01 

0.29 I 

G 12 eqn 1 

(MPa) 
(5) 
481 
381 
534 
458 
451 
464 
505 
500 
555 
633 
581 
777 
739 
771 
974 

1,254 
1,209 

567 
703 

1,017 
661 
— 

— 

Ratio 
G 12 eqn 1 / 
G 12 3044 

(6) 
0.72 
0.63 
0.93 
0.87 
0.60 
0.67 
0.65 
0.78 
0.43 
0.44 
0.58 
0.55 
0.70 
0.56 
0.54 
0.72 
0.60 
0.61 
0.79 
0.89 
0.59 
0.66 

0.136 

DISCUSSION OF RESULTS 

The proposed equation [(7)] is generally a better fit than (1) 
[or the equivalent (3) or (5)]. On some specimens, (1) per- 
formed equally as well as (7). A more substantial verification 
of the new equation is its ability to predict the experimental 
shear modulus G 12 3044 as well as match the E q data. Table 4 
summarizes these results. The average ratio of G 12 eqn 7 / G 12 3044 
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= 1.01 is excellent, although the standard deviation is quite 
high at 0.291. Compare this, however, to G 12 extracted from 
(1). Here we have better standard deviation (0.123) but the 
average ratio G 12 eqn 1 / G 12 3044 = 0.60. This difference in shear 
modulus predictions is highlighted in Fig. 3. The scatter of the 
G 12 eqn 1 data (circles in Fig. 3) is small, but the trendline is 
nowhere near the target line of 45°. Eq. (7) was calibrated such 
that the average G 12 eqn 7 would be statistically close to G 12 3044 

(here G 12 eqn 7/ G 12 3044 = 1.01). This means that individual values 
of G 12 predicted by (7) will be higher than G 12 3044. It would 
be possible, however, to redefine (7) to produce a somewhat 
more conservative value of G 12 eqn 7. 

This method as presented in this paper requires off-axis 
data; thus it cannot be used if only parallel and perpendicular 
to grain test data ( E 1 and E 2) are available. Currently, we are 
formulating empirical methods of estimating the shear modu- 
lus based solely on E 1 and E 2. 

CONCLUSIONS 

This study has improved the relationship governing the off- 
axis modulus of elasticity of orthotropic wood-based panels. 
The newly proposed relationship utilized the modulus of elas- 
ticity along the 1 and 2 axes, as well as the shear modulus, 
and it removed the need for a value of Poisson's ratio. This is 
an advantage over previous similar studies that required care- 
ful measurement of transverse strains. A useful application of 
the newly proposed equation is to solve it for the shear mod- 
ulus. This allows for the calculation of shear modulus based 
solely on axial tests. This could be used to verify in-plane 
shear modulus data, or it could be used in place of the more 
cumbersome panel twisting test. 
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APPENDIX II. NOTATION 

The fol lowing symbols are used in this paper: 

A = nondimensional parameter, ratio of E 1/ E 2; 
a = nondimensional parameter, function of Ei, G, and v 12; 

Ei = Young’s modulus or modulus of elasticity, where i = 1, 
2, or q; 1 being strong axis, 2 being weak axis, and q 
being some angle from strong axis; 

G eqn i = shear modulus extracted from off-axis data, i being 
equation of interest; 

G12 = shear modulus, along principal axes of panel; 
G 12 3044 = shear modulus experimentally determined from plate 

twisting test ASTM D 3044; and 
v 12 = Poisson’s ratio. 
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