Exposure Sensitivity to Biofunctionalized Polymer-Based Nanoparticles

Robert A. Latour Professor of Bioengineering Clemson University

Bacterial Binding to Host is Mediated by Adhesins

Transmission electron micrograph of *E. coli* adhering to epithelium in the intestine of a pig.

Moon, H.W. 1997. Comparative histopathology of intestinal infections. In: Mechanisms in the pathogenesis of enteric diseases (P.S. Paul, D.H. Francis and D.A. Benfield, eds.) Adv. Exptl. Med. Biol. 412:1. Plenum Press, New York.

Bacterial Cell Binding Strategies

High NP Concentration: Bacterial Isolation Intermediate NP Concentration: Bacterial Agglutination Low NP Concentration: Bacterial Tagging

Nanoparticle Chemical Structure: Mannose Functionalization

Nanoparticle Design Strategy

Functionalized PEG side chains extending from hydrophobic polymer backbone chain.

Diagram illustrates the self assembly into the nanoparticles followed by photochemical curing.

Nanoparticle

E. coli - NP Interaction

TEM images (dark-field) showing the agglutination of *E. coli* ORN178 mediated by D-mannose-tethered nanoparticles

(a,b) Lower magnification and (c,d) higher magnification

(e) *E. coli* ORN178 only (similarly with bare nanoparticles)

(f) *E. coli* ORN208 with the same D-mannose-tethered polymeric nanoparticles.

Acute Nanoparticle Exposure Sensitivity Studies

- In vitro studies

 cell toxicity studies
- In vivo studies
 - -Skin (rabbit)
 - Ocular (rabbit)
 - Inhalation (rat)
 - Ingestion (rat)
- In vivo studies: poultry

In Vitro Results: Dermal Fibroblasts

1 ml cells + medium / 50 μl 2wt% np solution (core-PEG np)P = proliferating cells;NonP = nonproliferating cellsnp = with nanoparticles;C = control (w/o np)

	Total Cell Count			
<u>Trial</u>	<u>P(C)</u>	<u>P(np)</u>	<u>NonP(C)</u>	<u>NonP(np)</u>
Mean (N=4):	95,625	95,000	316,875	281,875
95%CI:	29,476	28,865	86,619	35,779
p value:	0.963 (not significant)		0.300 (not significant)	

Dermal Test: Mannan Nanoparticles

Site preparation

Applying gauze

Application of dose (1 mL, 2.0 wt.%)

Overview after procedure

Results: Dermal Test (48 hrs)

Ocular Test: Mannan Nanoparticles

Right and left eye before procedure

Application of dose (0.1mL at 2.0 wt.%)

Right eye 1 min. after dose

Results: Ocular Test

48 hr.

Inhalation Studies: FITC-labeled Mannan-NP

Inhalation Study: Lung Tissue (fluorescence) 72 hr.

Alveolar Sac / Alveolar duct

Control (200x)

Test (200x)

Inhalation study: Lung Tissue (H&E stain)

Alveolar Sac / Alveolar duct

Control (1000x)

Test (1000x)

Dark spots are nuclei of endothelial and connective tissue cells. Red spots are red blood cells. No detectable difference.

Ingestion Studies: FITC-labeled Mannan-NP

Oral Ingestion: Small Intestine Tissue (H&E stain) 72 hr.

Transverse sections

Test (400x)

No apparent difference.

Oral Ingestion: Kidney (H&E stain) 72 hr.

Control (400x)

Glomerulus

Test (400x)

No apparent difference.

Oral Ingestion: Liver (H&E stain) 72 hr.

Control (200x)

Test (200x)

No apparent difference.

Poultry Studies

- 1-2 poults/pen gavaged with 0.1, 0.5 or 1.0 mL per day of core-PEG nanoparticles, 2wt.%.
- 3 control poults/pen gavaged with distilled water
- Body weights at 1, 3 and 6 wk; observation to 14 wk
- Commercial feed and water *ad libitum*

Poult Performance: 6-week Body Weight

No significant effect of nanoparticles on poult body weight.

Concluding Remarks

- In vitro & in vivo studies conducted with polystyrene-based nanoparticles.
- No adverse cellular response for dermal fibroblast cells.
- No apparent adverse tissue response from dermal, ocular, inhalation, or ingestion routes of exposure.
- No adverse growth response from poultry studies.
- Further in vitro and in vivo studies planned.

Acknowledgements

- USDA for funding support
- Collaborators:
 - Clemson University
 - F.J. Stutzenberger, T.-R.J. Tzeng, P.G. Luo, Dept. of Microbiology
 - Y.-P. Sun, L. Qu, S. Taylor, Dept. of Chemistry
 - S. Molugu, L. Jenkins, Dept. of Bioengineering
 - K. Bryant, J. Rodgers, Dept. of Envir. Toxicology
 - North Carolina State University, Dept. of Poultry Science
 - Jesse Grimes, B.W. Sheldon, J.L. Franklin, & M.J. Wineland