Natural
Resources
Conservation
Service

In cooperation with
Michigan Department of
Agriculture; Michigan
Agricultural Experiment Station; Michigan State University, Cooperative Extension Service; and Michigan Technological University

Soil Survey of Marquette County, Michigan

How To Use This Soil Survey

General Soil Map

The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

MAP SHEET

National Cooperative Soil Survey

This soil survey is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey. This survey was made cooperatively by the Natural Resources Conservation Service; the Michigan Department of Agriculture; the Michigan Agricultural Experiment Station; Michigan State University, Cooperative Extension Service; and Michigan Technological University. The survey is part of the technical assistance furnished to the Marquette County Soil and Water Conservation District. Financial assistance was provided by the Marquette County Board of Commissioners.

Major fieldwork for this soil survey was completed in 1996. Soil names and descriptions were approved in 1997. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 1996. The most current official data are available on the Internet.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

Nondiscrimination Statement

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 7206382 (TDD). USDA is an equal opportunity provider and employer.

Cover Photo Caption

An area of the Keewaydin-Michigamme-Rock outcrop association showing the rugged nature of the Huron Mountain region. The lake in the photo is Ives Lake, one of several lakes in the survey area.

Additional information about the Nation's natural resources is available online from the Natural Resources Conservation Service at http://www.nrcs.usda.gov.

Contents

How To Use This Soil Survey i
Foreword xiii
General Nature of the County 1
History and Development 1
Climate 3
Physiography 4
Industry and Transportation Facilities 12
Farming 12
Lakes and Streams 12
Recreation 13
How This Survey Was Made 13
Survey Procedures 14
General Soil Map Units 17

1. Buckroe-Yalmer Association 17
2. Zeba-Jacobsville Association 18
3. Cunard-Nahma Association 19
4. Keewaydin-Michigamme-Rock Outcrop Association 20
5. Schweitzer-Michigamme-Rock Outcrop Association 22
6. Pits-Dumps, Mine-Slickens Association 23
7. Kalkaska-Ishpeming-Rock Outcrop Association 24
8. Deer Park Association 25
9. Rubicon-Sayner Association 25
10. Grayling Association 26
11. Kalkaska-Carbondale-Deford Association 27
12. Pence Association 28
13. Sundog-Minocqua-Channing Association 29
14. Rubicon-Keweenaw Association 31
15. Goodman-Sundog-Greenwood Association 32
16. Sagola-Rubicon Association 33
17. Carbondale-Tawas Association 34
18. Shoepac-Ensley-Charlevoix Association 35
19. Shoepac-Carbondale Association 36
20. Emmet-Carbondale Association 37
21. Munising-Fence-Paquin Association 38
22. Munising-Yalmer Association 39
23. Skanee-Munising-Gay Association 40
24. Keweenaw-Kalkaska-Waiska Association 42
25. Garlic-Alcona-Voelker Association 43
Detailed Soil Map Units 45
10B-Grayling sand, 0 to 6 percent slopes 46
10D-Grayling sand, 6 to 18 percent slopes 47
10E-Grayling sand, 18 to 35 percent slopes 48
11C-Deer Park sand, 1 to 10 percent slopes 50
11D-Deer Park sand, 6 to 18 percent slopes 51
12B-Rubicon sand, 0 to 6 percent slopes 52
12D—Rubicon sand, 6 to 18 percent slopes 54
12E—Rubicon sand, 18 to 35 percent slopes 56
12F-Rubicon sand, 35 to 70 percent slopes 57
13B—Kalkaska sand, 0 to 6 percent slopes 58
13D—Kalkaska sand, 6 to 18 percent slopes 60
13E—Kalkaska sand, 18 to 35 percent slopes 61
13F—Kalkaska sand, 35 to 70 percent slopes 62
14B—Rousseau fine sand, 0 to 6 percent slopes 64
14D—Rousseau fine sand, 6 to 18 percent slopes 65
15A-Croswell sand, 0 to 3 percent slopes 66
16A-Paquin sand, 0 to 3 percent slopes 68
17A—Au Gres sand, 0 to 3 percent slopes 69
18—Kinross mucky peat 71
19-Deford muck 72
20B—Rousseau-Ocqueoc fine sands, 0 to 6 percent slopes 73
20D—Rousseau-Ocqueoc fine sands, 6 to 18 percent slopes 75
20E—Rousseau-Ocqueoc fine sands, 18 to 35 percent slopes 77
22B-Alcona loamy very fine sand, 1 to 6 percent slopes 79
24B—Munising fine sandy loam, 1 to 6 percent slopes 81
24D-Munising fine sandy loam, 6 to 18 percent slopes 84
25B—Munising-Yalmer complex, 1 to 6 percent slopes 86
25D—Munising-Yalmer complex, 6 to 18 percent slopes 88
26A-Skanee cobbly fine sandy loam, 0 to 3 percent slopes, stony 91
27-Gay muck, stony 93
28B—Keweenaw loamy sand, 1 to 6 percent slopes 94
28D—Keweenaw loamy sand, 6 to 18 percent slopes 95
28E—Keweenaw loamy sand, 18 to 35 percent slopes 96
29B-Yalmer fine sand, 1 to 6 percent slopes 98
29D-Yalmer fine sand, 6 to 18 percent slopes 100
31D—Trenary silt loam, 6 to 18 percent slopes 102
32A—Charlevoix silt loam, 0 to 3 percent slopes 103
33-Ensley muck 105
34B—Onaway fine sandy loam, 1 to 6 percent slopes 106
34D—Onaway fine sandy loam, 6 to 18 percent slopes 108
34E-Onaway fine sandy loam, 18 to 35 percent slopes 110
35B-Champion cobbly fine sandy loam, 1 to 6 percent slopes, very stony 111
35D-Champion cobbly fine sandy loam, 6 to 18 percent slopes, very stony 112
36A-Net cobbly very fine sandy loam, 0 to 3 percent slopes, very stony 114
37-Witbeck very stony muck, extremely bouldery 116
38B—Pence fine sandy loam, 0 to 6 percent slopes 117
38D—Pence fine sandy loam, 6 to 18 percent slopes 118
38 E -Pence fine sandy loam, 18 to 35 percent slopes 120
39B-Amasa very fine sandy loam, 1 to 6 percent slopes 121
39D-Amasa very fine sandy loam, 6 to 18 percent slopes 122
39E—Amasa very fine sandy loam, 18 to 35 percent slopes 124
40B—Waiska cobbly loamy sand, 0 to 6 percent slopes 125
40D—Waiska cobbly loamy sand, 6 to 18 percent slopes 126
41A—Channing fine sandy loam, 0 to 3 percent slopes 127
42-Minocqua muck 129
43B—Karlin sandy loam, 1 to 6 percent slopes 130
43D—Karlin sandy loam, 6 to 18 percent slopes 131
44B-Carlshend fine sandy loam, 1 to 6 percent slopes, stony 133
45A-Zeba cobbly fine sandy loam, 0 to 3 percent slopes, very stony 134
46-Jacobsville muck, very stony 136
48-Burt muck 137
50A—Sundell loam, 0 to 3 percent slopes 138
51-Nahma muck 140
52B—Summerville fine sandy loam, 1 to 6 percent slopes 141
55F—Michigamme-Rock outcrop complex, 25 to 70 percent slopes, very bouldery 142
56D—Peshekee-Rock outcrop complex, 6 to 18 percent slopes, very bouldery 144
56E—Peshekee-Rock outcrop complex, 18 to 35 percent slopes, very bouldery 145
56F—Peshekee-Rock outcrop complex, 35 to 70 percent slopes, very bouldery 147
57-Carbondale and Tawas soils 148
58-Greenwood and Dawson soils 150
59-Chippeny and Nahma mucks 151
60-Histosols and Aquents, ponded 153
61-Pits, borrow 154
62B—Udorthents and Udipsamments, nearly level and gently sloping 154
64-Pits and Dumps, mine 155
65B—Udorthents-Urban land complex, nearly level and gently sloping 155
66B—Udipsamments-Urban land complex, nearly level and gently sloping 156
67B—Urban land-Rubicon complex, 0 to 6 percent slopes 157
68-Pits, quarries 159
69B-Escanaba loamy fine sand, 1 to 6 percent slopes 159
69D—Escanaba loamy fine sand, 6 to 18 percent slopes 161
70B—Nadeau fine sandy loam, 1 to 6 percent slopes 163
70D—Nadeau fine sandy loam, 6 to 18 percent slopes 164
71B—Evart-Pelkie-Sturgeon complex, 0 to 4 percent slopes 166
72B-Emmet fine sandy loam, 1 to 6 percent slopes 168
72D—Emmet fine sandy loam, 6 to 18 percent slopes 169
72E—Emmet fine sandy loam, 18 to 35 percent slopes 171
73B—Gogebic cobbly silt loam, 1 to 6 percent slopes, very stony 173
73D—Gogebic cobbly silt loam, 6 to 18 percent slopes, very stony 175
74D—Schweitzer-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very stony 177
74F—Schweitzer-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very stony 179
76C—Garlic-Alcona-Voelker complex, 1 to 12 percent slopes, dissected 181
76E—Garlic-Alcona-Voelker complex, 8 to 35 percent slopes, dissected 184
76F—Garlic-Alcona-Voelker complex, 15 to 70 percent slopes, dissected 186
77D—Garlic-Alcona-Voelker complex, 6 to 18 percent slopes 188
77E—Garlic-Alcona-Voelker complex, 18 to 35 percent slopes 190
78C—Keweenaw-Kalkaska complex, 1 to 12 percent slopes, dissected 192
78E—Keweenaw-Kalkaska complex, 8 to 35 percent slopes, dissected 194
78F—Keweenaw-Kalkaska complex, 15 to 60 percent slopes, dissected 196
79B—Keweenaw-Munising complex, 1 to 6 percent slopes 198
80B—Sayner-Rubicon complex, 1 to 6 percent slopes 200
80D-Sayner-Rubicon complex, 6 to 18 percent slopes 201
80E—Sayner-Rubicon complex, 18 to 35 percent slopes 203
81B—Pelissier gravelly sandy loam, 1 to 6 percent slopes 204
81D—Pelissier gravelly sandy loam, 6 to 18 percent slopes 206
81E—Pelissier gravelly sandy loam, 18 to 35 percent slopes 207
84D—Rubicon-Ishpeming-Rock outcrop complex, 6 to 25 percent slopes 208
84F—Rubicon-Ishpeming-Rock outcrop complex, 25 to 60 percent slopes 210
85A—Solona fine sandy loam, 0 to 3 percent slopes 212
86B-Mashek fine sandy loam, 0 to 4 percent slopes 214
87B—Cunard fine sandy loam, 1 to 6 percent slopes 215
88-Cathro-Ensley mucks 217
89B-Emmet-Solona fine sandy loams, 0 to 6 percent slopes 219
90B-Emmet-Escanaba complex, 1 to 6 percent slopes 221
90D—Emmet-Escanaba complex, 6 to 18 percent slopes 223
91B-Onaway-Nadeau fine sandy loams, 1 to 6 percent slopes 226
92A—Ensley-Solona complex, 0 to 3 percent slopes 228
93-Tawas-Deford mucks 229
94B—Keweenaw-Kalkaska complex, 1 to 6 percent slopes 232
94D—Keweenaw-Kalkaska complex, 6 to 18 percent slopes 233
94E—Keweenaw-Kalkaska complex, 18 to 35 percent slopes 235
95B—Liminga fine sand, 1 to 6 percent slopes 237
95D—Liminga fine sand, 6 to 18 percent slopes 238
100E—Sayner-Rubicon complex, 8 to 35 percent slopes, dissected 239
100F-Sayner-Rubicon complex, 15 to 60 percent slopes, dissected 241
103D—Rubicon-Ocqueoc-Rock outcrop complex, 6 to 25 percent slopes 243
104C-Fence very fine sandy loam, 1 to 12 percent slopes, dissected 245
105C-Munising fine sandy loam, 1 to 12 percent slopes, dissected 246
106B—Sagola-Rubicon complex, 1 to 6 percent slopes, bouldery 249
106D—Sagola-Rubicon complex, 6 to 18 percent slopes, bouldery 250
107B—Goodman-Sundog silt loams, 1 to 6 percent slopes, bouldery 252
107D—Goodman-Sundog silt loams, 6 to 18 percent slopes, bouldery 254
107F—Goodman-Sundog silt loams, 18 to 45 percent slopes, bouldery 257
108B—Goodman-Sundog-Wabeno silt loams, 1 to 6 percent slopes, bouldery 258
108D—Goodman-Sundog-Wabeno silt loams, 6 to 18 percent slopes, bouldery 261
109B—Rubicon-Keweenaw complex, 1 to 6 percent slopes, very bouldery 264
109D—Rubicon-Keweenaw complex, 6 to 18 percent slopes, very bouldery 266
109F—Rubicon-Keweenaw complex, 18 to 45 percent slopes, very bouldery 268
110B—Nadeau-Mancelona complex, 1 to 6 percent slopes 269
110D—Nadeau-Mancelona complex, 6 to 18 percent slopes 271
111B—Grayling sand, 0 to 4 percent slopes, rocky 273
112D—Keewaydin-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 274
112F—Keewaydin-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very bouldery 276
113B—Vanriper very cobbly silt loam, 1 to 6 percent slopes, rocky, very bouldery 278
113D—Vanriper very cobbly silt loam, 6 to 18 percent slopes, rocky, very bouldery 279
113F—Vanriper very cobbly silt loam, 18 to 45 percent slopes, rocky, very bouldery 281
114B—Vanriper very cobbly silt loam, 1 to 6 percent slopes, very bouldery 283
114D—Vanriper very cobbly silt loam, 6 to 18 percent slopes, very bouldery 284
114F—Vanriper very cobbly silt loam, 18 to 45 percent slopes, very bouldery 285
117B-Fence very fine sandy loam, 1 to 6 percent slopes 287
118A—Croswell-Deford complex, 0 to 3 percent slopes 289
119B—Yalmer-Kalkaska complex, 1 to 6 percent slopes 291
119D—Yalmer-Kalkaska complex, 6 to 18 percent slopes 292
121B—Onota gravelly sandy loam, 1 to 6 percent slopes 294
122—Pleine very cobbly muck, very stony 296
123A-Tula cobbly very fine sandy loam, 0 to 3 percent slopes, very stony 297
124B—Gogebic-Dishno cobbly silt loams, 1 to 6 percent slopes, rocky, very stony 299
124D—Gogebic-Dishno cobbly silt loams, 6 to 18 percent slopes, rocky, very stony 301
125D—Keweenaw-Kalkaska-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 303
125F-Keweenaw-Kalkaska-Rock outcrop complex, 25 to 70 percent slopes,
very bouldery 305
126B—Sundog silt loam, 1 to 6 percent slopes 307
126D—Sundog silt loam, 6 to 18 percent slopes 308
126E—Sundog silt loam, 18 to 35 percent slopes 310
127B—Sundog silt loam, 1 to 6 percent slopes, bouldery 312
127D—Sundog silt loam, 6 to 18 percent slopes, bouldery 313
127F-Sundog silt loam, 18 to 45 percent slopes, bouldery 315
128B—Kalkaska-Waiska complex, 1 to 6 percent slopes 316
128D—Kalkaska-Waiska complex, 6 to 18 percent slopes 318
128E—Kalkaska-Waiska complex, 18 to 35 percent slopes 319
129C—Kalkaska-Munising complex, 1 to 12 percent slopes, dissected 321
130A—Chabeneau silt loam, 0 to 3 percent slopes 323
131-Witbeck-Cathro complex, very bouldery 324
132—Slickens 326
133B—Keewaydin-Dishno complex, 1 to 6 percent slopes, rocky, bouldery 327
133D—Keewaydin-Dishno complex, 6 to 18 percent slopes, rocky, bouldery 328
134B—Keewaydin cobbly fine sandy loam, 1 to 6 percent slopes, bouldery 330
134D—Keewaydin cobbly fine sandy loam, 6 to 18 percent slopes, bouldery 332
134F—Keewaydin cobbly fine sandy loam, 18 to 45 percent slopes, bouldery 333
135A—Witbeck-Net complex, 0 to 3 percent slopes, extremely bouldery 334
136A-Minocqua-Channing complex, 0 to 3 percent slopes 336
137D—Keewaydin-Sundog complex, 6 to 18 percent slopes, very bouldery 338
137F—Keewaydin-Sundog complex, 18 to 45 percent slopes, very bouldery 340
138D—Sundog-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 342
138F-Sundog-Rock outcrop complex, 25 to 70 percent slopes, very bouldery 344
139B—Sundog silt loam, 1 to 6 percent slopes, rocky, very bouldery 346
139D—Sundog silt loam, 6 to 18 percent slopes, rocky, very bouldery 347
140B—Champion-Dishno complex, 1 to 6 percent slopes, rocky, very stony 349
140D—Champion-Dishno complex, 6 to 18 percent slopes, rocky, very stony 351
141D—Pelissier-Rock outcrop complex, 6 to 25 percent slopes 353
142B—Pelissier gravelly sandy loam, 1 to 6 percent slopes, rocky 354
142D—Pelissier gravelly sandy loam, 6 to 18 percent slopes, rocky 356
144B—Farquar gravelly sandy loam, 0 to 4 percent slopes 357
145C—Munising-Yalmer complex, 1 to 12 percent slopes, dissected, very stony 358
146B—Munising-Skanee complex, 0 to 6 percent slopes, stony 360
147A—Skanee-Gay complex, 0 to 3 percent slopes, very stony 362
148B—Shoepac-Ensley complex, 0 to 6 percent slopes 364
149-Evart-Cathro complex 366
150-Shag muck 368
151A-Spear very fine sandy loam, 0 to 3 percent slopes 369
153D—Ishpeming-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 370
153F—Ishpeming-Rock outcrop complex, 25 to 70 percent slopes, very bouldery 372
154B—Rubicon-Sayner complex, 1 to 6 percent slopes, rocky 374
154D—Rubicon-Sayner complex, 6 to 18 percent slopes, rocky 375
155A—Zeba-Jacobsville complex, 0 to 3 percent slopes, very stony 377
156B—Duel loamy sand, 1 to 6 percent slopes, very stony 379
157B—Reade-Nahma complex, 0 to 6 percent slopes, stony 380
158C—Munising-Onota-Yalmer complex, 1 to 12 percent slopes, dissected, stony 382
159A—Jeske sand, 0 to 3 percent slopes 384
160B—Paquin-Finch sands, 0 to 5 percent slopes 386
161B-Yellowdog very channery sand, 0 to 6 percent slopes, stony 387
162B—Buckroe very channery loamy sand, 0 to 6 percent slopes, stony 389
165B—Chocolay-Waiska complex, 1 to 6 percent slopes, stony 390
166-Skandia mucky peat 392
167-Skandia-Jacobsville complex, stony 393
168B—Yellowdog-Burt complex, 0 to 6 percent slopes 394
170B—Chocolay very cobbly fine sandy loam, 1 to 6 percent slopes, very stony 396
171B—Paavola very gravelly loamy sand, 1 to 6 percent slopes, stony 397
172D—Buckroe-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 399
172F—Buckroe-Rock outcrop complex, 25 to 70 percent slopes, very bouldery 401
173B-Pence fine sandy loam, 1 to 6 percent slopes, rocky, bouldery 402
173D-Pence fine sandy loam, 6 to 18 percent slopes, rocky, bouldery 403
174D-Yalmer-Rubicon-Urban land complex, 4 to 18 percent slopes 405
175E-Kalkaska-Waiska complex, 8 to 35 percent slopes, dissected 407
175F-Kalkaska-Waiska complex, 15 to 70 percent slopes, dissected 408
176B-Greenwood-Croswell complex, 0 to 6 percent slopes 410
177E-Frohling fine sandy loam, 8 to 35 percent slopes, dissected 412
177F-Frohling fine sandy loam, 15 to 70 percent slopes, dissected 414
178D—Schweitzer-Kalkaska-Rock outcrop complex, 6 to 25 percent slopes, very stony 416
178F-Schweitzer-Kalkaska-Rock outcrop complex, 25 to 70 percent slopes, very stony 418
179E—Schweitzer-Michigamme complex, 18 to 35 percent slopes, rocky, very stony 420
180E-Kalkaska-Frohling complex, 8 to 35 percent slopes, dissected 422
180F-Kalkaska-Frohling complex, 15 to 70 percent slopes, dissected 424
181E-Frohling-Tokiahok complex, 8 to 35 percent slopes, dissected, very stony 426
181F-Frohling-Tokiahok complex, 15 to 70 percent slopes, dissected, very stony 429
184C—Dishno-Witbeck-Rock outcrop complex, 0 to 12 percent slopes, very bouldery 431
185B-Northland loamy fine sand, 0 to 4 percent slopes 433
187B-Reade silt loam, 0 to 4 percent slopes 434
190B-Emmet-Cunard fine sandy loams, 1 to 6 percent slopes, stony 436
191B-Nahma-Sundell complex, 0 to 4 percent slopes 437
193E-Frohling-Tokiahok complex, 18 to 35 percent slopes 439
194E-Sporley silt loam, 8 to 35 percent slopes, dissected 441
196E-Frohling-Onota-Tokiahok complex, 8 to 35 percent slopes, dissected, stony 443
197B—Shoepac-Trenary silt loams, 1 to 6 percent slopes 446
198B—Shoepac-Reade silt loams, 1 to 4 percent slopes 448
199-Udorthents, ash 449
200A—Charlevoix-Ensley complex, bedrock substratum, 0 to 3 percent slopes 450
201B—Sauxhead-Jacobsville complex, 0 to 6 percent slopes, very stony 452
202B—Sauxhead sandy loam, 1 to 6 percent slopes, very stony 454
203A—Au Gres-Deford complex, 0 to 3 percent slopes 455
204B—Gogebic-Tula complex, 1 to 6 percent slopes, very stony 457
206B—Traunik gravelly fine sandy loam, 1 to 6 percent slopes 459
207D—Dishno-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very bouldery 460
208F—Keewaydin-Michigamme cobbly fine sandy loams, 18 to 45 percent slopes, rocky, very bouldery 462
209B—Garlic-Fence complex, 1 to 6 percent slopes 464
M-W-Miscellaneous water 466
W-Water 466
Use and Management of the Soils 467
Crops and Pasture 467
Yields per Acre 471
Land Capability Classification 472
Prime Farmland 473
Woodland Management and Productivity 473
Forest Habitat Types 479
Recreation 482
Wildlife Habitat 483
Engineering 485
Building Site Development 486
Sanitary Facilities 487
Construction Materials 489
Water Management 490
Soil Properties 493
Engineering Index Properties 493
Physical Properties 494
Chemical Properties 496
Water Features 496
Soil Features 498
Classification of the Soils 501
Soil Series and Their Morphology 501
Alcona Series 502
Amasa Series 503
Au Gres Series 504
Buckroe Series 505
Burt Series 505
Carbondale Series 506
Carlshend Series 507
Cathro Series 508
Chabeneau Series 508
Champion Series 509
Channing Series 510
Charlevoix Series 511
Chippeny Series 513
Chocolay Series 513
Croswell Series 514
Cunard Series 515
Dawson Series 516
Deer Park Series 517
Deford Series 517
Dishno Series 518
Duel Series 519
Emmet Series 520
Ensley Series 521
Escanaba Series 521
Evart Series 523
Farquar Series 523
Fence Series 524
Finch Series 526
Frohling Series 527
Garlic Series 528
Gay Series 529
Gogebic Series 530
Goodman Series 532
Grayling Series 533
Greenwood Series 533
Ishpeming Series 534
Jacobsville Series 535
Jeske Series 536
Kalkaska Series 536
Karlin Series 537
Keewaydin Series 538
Keweenaw Series 539
Kinross Series 540
Liminga Series 541
Mancelona Series 542
Mashek Series 543
Michigamme Series 544
Minocqua Series 545
Munising Series 546
Nadeau Series 548
Nahma Series 549
Net Series 550
Northland Series 551
Ocqueoc Series 552
Onaway Series 553
Onota Series 554
Paavola Series 555
Paquin Series 556
Pelissier Series 557
Pelkie Series 559
Pence Series 560
Peshekee Series 561
Pleine Series 562
Reade Series 562
Rousseau Series 564
Rubicon Series 565
Sagola Series 566
Sauxhead Series 567
Sayner Series 568
Schweitzer Series 569
Shag Series 571
Shoepac Series 572
Skandia Series 573
Skanee Series 574
Solona Series 575
Spear Series 576
Sporley Series 577
Sturgeon Series 578
Summerville Series 578
Sundell Series 579
Sundog Series 580
Tawas Series 581
Tokiahok Series 582
Traunik Series 583
Trenary Series 585
Tula Series 586
Vanriper Series 587
Voelker Series 588
Wabeno Series 589
Waiska Series 591
Witbeck Series 591
Yalmer Series 593
Yellowdog Series 594
Zeba Series 594
Formation of the Soils 597
Factors of Soil Formation 597
Parent Material 597
Plant and Animal Life 598
Climate 598
Relief 598
Time 599
Processes of Soil Formation 599
References 601
Glossary 603
Tables 621
Table 1.-Temperature and Precipitation 622
Table 2.-Freeze Dates in Spring and Fall 623
Table 3.-Growing Season 624
Table 4.-Acreage and Proportionate Extent of the Soils 625
Table 5.-Land Capability and Yields per Acre of Crops 630
Table 6.-Capability Classes and Subclasses 643
Table 7.-Prime Farmland 644
Table 8.-Woodland Management and Productivity 645
Table 9.-Equipment Limitations on Woodland 729
Table 10.-Forest Habitat Types 765
Table 11.-Recreational Development 802
Table 12.-Wildlife Habitat 833
Table 13.-Building Site Development 857
Table 14.-Sanitary Facilities 888
Table 15.-Construction Materials 921
Table 16.-Water Management 951
Table 17.-Engineering Index Properties 1002
Table 18.-Physical Properties of the Soils 1109
Table 19.-Chemical Properties of the Soils 1144
Table 20.—Soil Moisture Status by Depth 1179
Table 21.-Ponding Frequency, Duration, and Depth 1232
Table 22.-Flooding Frequency and Duration 1259
Table 23.-Soil Features 1283
Table 24.-Classification of the Soils 1302
Interpretive Groups 1305

Foreword

Soil surveys contain information that affects land use planning in survey areas. They include predictions of soil behavior for selected land uses. The surveys highlight soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

Soil surveys are designed for many different users. Farmers, foresters, and agronomists can use the surveys to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the surveys to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the surveys to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described, and information on specific uses is given. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

John Bricker
State Conservationist
Natural Resources Conservation Service

Soil Survey of
 Marquette County, Michigan

By Charles Schwenner, Natural Resources Conservation Service
Fieldwork by Jamie Antoniewicz, William Anzalone, Loren Berndt, Thomas Berndt, Lawrence Carey, Gerald Davis, Robert Evon, Dwight Jerome, Lyle Linsemier, Thomas Purkey, Charles Schwenner, Bradley Sneed, and Kenneth Wikgren, Natural Resources Conservation Service
United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the Michigan Department of Agriculture; the Michigan Agricultural Experiment Station; Michigan State University, Cooperative Extension Service; and Michigan Technological University

Marquette County is in the north-central part of the Upper Peninsula of Michigan (fig. 1). It borders Lake Superior. It has an area of 1,198,912 acres, or about 1,873 square miles. The population of the county was 70,887 in 1990. Marquette, the county seat, had a population of 21,900 in 1990.

About 83 percent of the county is forested. Only about 2 percent is classified as farmland. Forestry, mining, and recreation are the major land uses.

About 250 different kinds of soil are in Marquette County. The soils vary widely in texture, natural drainage, slope, and other characteristics. Because of steep slopes, droughtiness, and rockiness, many of the soils are best suited to woodland. The subsoil in most of the moderately well drained soils has a restrictive layer that limits residential development and the use of forestry equipment. About 18 percent of the survey area consists of poorly drained mineral soils and very poorly drained organic soils.

General Nature of the County

This section provides general information about Marquette County. It describes history and development, climate, physiography, industry and transportation facilities, farming, lakes and streams, and recreation.

History and Development

The region on the southern shore of Lake Superior was little noticed by the earliest European explorers. Although it was part of the colonial territory claimed by France and later by England, no settlements were attempted. Only very small groups of Chippewa Indians appear to have utilized the region but apparently not on a permanent basis. The county was named in honor of the Jesuit priest Jacques Marquette. Marquette, an early explorer and missionary, probably camped in the area during his travels in the late 1600s. It is likely that the area was visited by Governor Lewis Cass in 1820 and by Henry Schoolcraft in 1832, but no records exist.

Figure 1.-Location of Marquette County in Michigan.

In 1836, a treaty made by the U.S. Government with the Chippewa Indians ceded land east of the Escanaba and Chocolay Rivers to the United States. In 1842, a similar treaty ceded the land west of that line. The formation of Marquette County was authorized in 1843 by an act of the Michigan Legislature when the entire Upper Peninsula of Michigan was divided into six counties. The first recorded observations of the county were made in 1844 by a government survey team sent to establish township lines and make geological observations. Headed by William Austin Burt, the team discovered iron deposits near present-day Negaunee. Within a year, the first mining operation, the Jackson Mining Company, was established to work these deposits. Another mining company, the Marquette Iron Company, was formed in 1849, and the settlement that developed around its operations became the city and port of Marquette. In 1850, the U.S. census found only 136 persons and 18 dwellings in the entire county. Nevertheless, the next year saw a county government established and the first election.

With the start of settlement and mining operations, transportation became of paramount importance. The difficulty of obtaining supplies, food, and mail added to the isolation experienced by the inhabitants during the winter months. In 1854, the first county road was opened. This road, between Negaunee and Marquette, allowed iron ore to be hauled to Lake Superior for loading on ships. Outgoing ore or incoming passengers and supplies had to be transferred to small boats until a wharf was built that same year.

Early mining operations were sporadic and ineffective until the Soo Locks were opened in 1855. In 1857, a new dock was built in Marquette that allowed ships to be loaded more quickly. That same year the Iron Mountain Railroad was completed between Ishpeming and Marquette. The railroad greatly increased the movement of ore. More rail lines were quickly added in the next few years.

In 1860, iron ore production was 100,000 tons and the county population was 2,821 . Demand for ore increased greatly during the Civil War, and nearly 900,000 tons was being produced by 1870 . This production accounted for 25 percent of the total U.S. output. The county had 35 mines in the 1870s, and about 80 percent of mining operations centered around Negaunee and Ishpeming. Mining activity had also started in Republic, Champion, Michigamme, and Humboldt.

By 1909, production had increased to 4.2 million tons of iron ore from 48 mines. The first modern concrete and steel ore dock was completed in 1912, and a similar one was added in 1931. By this time, however, the population of the county, which had peaked in 1910 at 46,076 , started to decline. This decline was caused in large part by the decrease in ore production at Negaunee and Ishpeming, where large-scale mining had ended by 1929. The county has seen the mining-out of high grade ore, but new processes to concentrate low grade ore have kept the industry viable in the county.

The early mines and forges in the county quickly created a demand for pine lumber and hardwood charcoal. Rivers were used to float white pine logs to Lake Superior, where they were loaded on ships or rafted to sawmills, such as those at Big Bay. Clarksburg, Northland, and Mashek also were founded around the lumber industry. Because of second-growth forests and the demand for pulp, the wood industry is still an important element in the local economy.

With an increasing population during the mining era, agriculture also became important. Green Garden was the first agricultural center in the county. Yalmer, Skandia, and Carlshend also were established as farming communities. Dairy, livestock, small grain, hay, apples, and potatoes were the important crops. Many farms were settled under the Homestead Act, and their numbers increased until about the middle of the 1900s. Since then, a large decrease in farming has occurred; today, the contribution of farming to the local economy is minor.

Government had become an important employer in Marquette County by 1889, when the Upper Peninsula State Prison was built. The importance of government increased further when Northern State Normal School (now Northern Michigan University) opened in 1899. K.I. Sawyer Air Force Base, activated in 1956 near Gwinn, played an important role in national defense and was also a large employer until its closure in 1995.

Climate

The climate in the county is highly varied because of topographic diversity and the county's proximity to Lake Superior. These variations cause differences in the climate over distances of only a few miles.

Table 1 provides data on temperature and precipitation for the survey area as recorded at Van Riper State Park and Marquette in the period 1971 to 2000. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring.Table 3 provides data on the length of the growing season.

In winter, the average temperature is 14.2 degrees F at Van Riper Park State and 20.9 degrees at Marquette. The average daily minimum temperature is 3.2 degrees at Van Riper State Park and 14.0 degrees at Marquette. The lowest temperature on record for Van Riper State Park is -44 degrees recorded on February 17, 1979, and the lowest temperature on record for Marquette is -24 degrees recorded on February 3, 1996.

In summer, the average temperature is 61.8 degrees at Van Riper State Park and 64 degrees at Marquette. The average daily maximum temperature is 76.2 degrees at Van Riper State Park and 73.2 degrees at Marquette. The highest recorded temperature at Van Riper State Park is 98 degrees recorded on July 28, 1988, and the highest temperature on record for Marquette is 104 degrees recorded on July 19, 1977.

Growing degree days are shown in table 1. They are equivalent to "heat units." During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (40 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The total annual precipitation is 33.24 inches at Van Riper State Park and 30.02 inches at Marquette. Of these totals, between 8 and 9 inches, or about 30 percent, usually falls in June through August. The growing season for most crops falls within this period. The heaviest 1-day rainfall on record was 4.41 inches at Van Riper State Park on September 2, 1957, and 4.06 inches at Marquette on October 24, 1959. Thunderstorms occur on about 29 days each year, and most occur between June and September.

The average seasonal snowfall is 129.7 inches at Van Riper State Park and 119.7 inches in downtown Marquette on the lakeshore. Across the county, the western upland areas that get the most lake-effect snow receive between 140 and 160 inches of snow annually, including around 150 inches at the Marquette airport. The annual snowfall decreases to the south and east, and approximately 80 to 100 inches falls in the extreme southern parts of the county. The greatest snow depth at any one time during the period of record was 60 inches at Van Riper State Park (recorded on February 14, 1996) and 41 inches at Marquette (recorded on March 14, 1997). At Van Riper State Park, on the average, 153 days of the year have at least 1 inch of snow on the ground. At Marquette, on the average, 135 days of the year have at least 1 inch of snow on the ground. The heaviest 1-day snowfall on record was 25 inches at Van Riper State Park (recorded on February 12, 1965) and 17.3 inches at Marquette (recorded on March 14, 1997).

The average relative humidity in midafternoon is about 55 percent in May and nearly 75 percent in December. Humidity is higher at night, and the average at dawn is about 80 percent in most months and nearly 90 percent from June to September. The sun shines 60 percent of the time possible in summer and 34 percent in winter. The prevailing wind is from the northwest for much of the year, but it is from the south during the summer. Average windspeed is highest, around 10 miles per hour, in March and April.

Physiography

Prepared by Ken Wikgren, soil scientist, Natural Resources Conservation Service.
The topography of Marquette County is dominated by steep, Precambrian bedrock hills that in some areas occur alongside sharply contrasting sandstone benches. Much of the region is covered by glacial deposits ranging from hilly, bedrock-controlled moraines and steep, dissected sandy deposits to gently rolling ground moraines and nearly level outwash plains. Elevation ranges from 1,200 to more than 1,800 feet in the highlands. It is about 602 feet at the Lake Superior shoreline. The geology of the region has played a key role in determining the physiography, soils, and vegetation that together comprise the various ecosystems delineated on the landscape by this survey.

The bedrock of Marquette County consists of Precambrian, Cambrian, and Ordovician rocks (fig. 2). Correlation of the bedrock units and understanding the geologic history of this region are problematic, especially regarding the Precambrian. The Precambrian was a time of intense and repeated folding, faulting, metamorphism, mountain building, erosion, sedimentation, and subsidence. The igneous and metamorphic rocks now exposed can vary greatly over short distances, and many are obscured by glacial deposits, vegetation, and water. Basically, the Precambrian rocks are over 2.5 billion years old, are part of the Canadian Shield, and were uplifted to spectacular heights over 600 million years ago during the Penokean Orogeny near the end of the Precambrian. As these mountains were eroded, stream and lake sediments

Figure 2.-Generalized cross section showing the bedrock geology of Marquette County. (Modified after Martin, 1936, and Kelley, 1968).
were deposited that led to the formation of the Jacobsville Sandstone. Later, in the Cambrian and into the Ordovician, Michigan was invaded by seas that led to marine sandstone, dolomite, and limestone formations (Dorr and Eschman, 1970).

The central and western parts of Marquette County are dominated by Precambrian igneous and metamorphic rock. The Keewatin rocks include the Kitchi and Mona Formations, consisting of schists and greenstones that, at nearly 3.5 billion years old, are among the oldest known rocks on earth. An outcrop of the Mona Formation can be seen in a roadcut along U.S. 41 about 7 miles west of Marquette. Rocks of Laurentian and/or Algoman age consist primarily of granite and gneiss. They include the Palmer and Republic Formations. A good example of Laurentian granite is at Sugarloaf

Mountain north of Marquette. Rock formations of the Early Huronian period include the Wewe Slate, the Kona Dolomite, and the Chocolay Group consisting of quartzite and dolomite. Outcrops of Kona Dolomite can be seen at Lindberg's Gravel Pits along CO 480. Algal structures found in the Kona provide evidence of simple plant life that existed 2 billion years ago. The Middle Huronian rocks include the Siamo Slate, Ajibik Quartzite, and Negaunee Iron Formation. An outcrop of Siamo Slate with bands of quartzite can be seen in a roadcut along U.S. 41 about 2.5 miles east of Negaunee. Rock formations of the Late Huronian include the Goodrich Quartzite, the Greenwood Quartzite, the Clarksburg Volcanics, and the Michigamme Formation, which consists of slate, graphitic slate, graywacke, schist, gneiss, and beds of iron ore known as the Bijiki Iron Formation.

The iron formations of the Middle and Late Huronian period are collectively known as the Marquette Range and include the mining locations around Negaunee, Ishpeming, National Mine, Humboldt, Champion, Michigamme, Republic, Palmer, and Gwinn. The iron formations consist of bands of silica and iron oxides, hematite, magnetite, limonite, jaspillite, and taconite interbedded with slate and chert. The iron mining industry has been and still is of great importance to the economy of the Upper Peninsula. The presence of iron formations has influenced the properties of the eroded sediments from these Precambrian rocks and is reflected in the Jacobsville Sandstone and the soils that formed in parent material derived from all of these rocks. Especially significant are the red color and high iron content of the soils and ground water throughout the region.

The Jacobsville Sandstone occurs at the unconformity between the Precambrian and Cambrian and is generally considered to be Early and Middle Cambrian in age. The Jacobsville Formation consists of a succession of red to white, coarse grained to fine grained, feldspathic and quartzose sandstone with layers of shale and conglomerate. Along the Lake Superior shore north of Marquette, at Presque Isle and Freeman's Landing, cliffs of Jacobsville Sandstone exhibit beautiful red and white streaks resulting from the oxidation, reduction, and leaching of iron. The Late Cambrian period is represented by the Munising Formation consisting of white and light gray, dolomitic and glauconitic sandstone and red, green, and gray shale. An outcrop of white Munising Sandstone can be seen at the south end of Stump Lake in Sec. 11, T. 45 N., R. 25 W. Rocks of Early Ordovician age consist primarily of dolomite and dolomitic sandstone. They include the Trempealeau Formation and the Prairie du Chien Group. The Middle Ordovician rocks are dominantly limestone, dolomite, and shale. They include the Black River and Trenton Groups. Good examples of fossiliferous dolomite and limestone can be seen along the Escanaba River in southern Marquette County; the younger rocks are visible as one travels south towards Boney Falls.

An ancient Precambrian mountain range bordered by a sequence of sedimentary rocks has led to the formation of the diverse topography and Lake Superior basin of today. Glacial ice and flowing water tend to choose the path of least resistance. Differential rates of erosion between hard and soft bedrock have helped to create a magnificent landscape featuring numerous islands, waterfalls, and cliffs.

During the Pleistocene Ice Age, the survey area was repeatedly covered by glacial ice. As the ice sheet moved generally from the north, it slid over the mountains and carved grooves and striations in the Precambrian bedrock on the up-ice sides and quarried dramatic rock escarpments on the down-ice sides. Huron Mountain in far northern Marquette County is an example of this rugged topography typical of many Precambrian bedrock hills throughout the region.

The glacial landforms and deposits of the region are the result of the last major glacial stage known as the Greatlakean (formerly Valderan) advance (see landform map). The sequence of events that occurred has not yet been deciphered with any degree of certainty. There probably were several glacial ice substages. Major ice lobes
were likely centered in the vicinity of Marquette to the east, Keweenaw Bay to the west, and the Huron Mountains to the north. There may have been others. The Huron Mountains acted as a major obstacle to the movement of the glacier. The ice advanced much faster over the sedimentary rocks to the west and east, greatly influencing the path of the lobes and leading to the formation of the current landscape, the Lake Superior and Lake Michigan shorelines, and the interlobate areas and may even have contributed to the formation of a "driftless" area hundreds of miles to the south. The Marquette Readvance of the ice sheet occurred approximately 10,000 years ago and may have been the last major advance (Farrand and Drexler, 1985). Minor local glaciation in the Huron Mountains may have occurred later in the Pleistocene and into the Holocene (Black, 1969).

The thickness of the glacial deposits ranges from 0 to more than 500 feet. The deposits include till, drainage channel deposits, outwash, lacustrine deposits, and eolian deposits. In some areas there is only a thin layer of basal till that closely reflects the bedrock over which the glacier passed. In other areas there may be several layers of glacial deposits representing a sequence of advances, ablation of ice, and proglacial activity (fig. 3).

The Marquette Lobe covered much of eastern and southeastern Marquette County. The relatively low relief inherent from the softer sedimentary bedrock allowed the glacier to impart a fluted pattern to the surface characterized by parallel grooves and intervening ridges grading into drumlins to the south and west. An example of a fluted ground moraine is in the area around Carlshend, and well formed drumlins can be seen southeast of Northland. The reddish brown loamy till becomes less red and more calcareous to the south as the bedrock influence changes from sandstone to dolomite and limestone.

In much of northwestern and central Marquette County, the landscape is determined by the topography of the Precambrian bedrock. These bedrock-controlled moraines are characterized by rock hills 50 to 500 feet high interlaced with glacial channels containing sandy and gravelly deposits, swamps, and small lakes. The rock outcrops commonly have talus slopes on the south faces and are strewn with boulders. Glacial deposits are relatively thin and vary greatly in thickness. The loamy or sandy till has a high content of rock fragments and tends to be brown over gneiss and granite, grayish brown over slate, and reddish brown over iron formations. Many areas have a silty or loamy eolian cap. Areas around Champion and Ishpeming are typical examples of this landform.

In southwestern and south-central Marquette County, there appears to be an interlobate area developed in the lee of the Huron Mountains. This is an area of disintegration moraines characterized by a chaotic mound and pit topography, closed depressions, and outwash deposits. Deposits include sandy or loamy till with a silty or loamy eolian cap and sandy or gravelly outwash. Surface stones and boulders are common. The area around Witch Lake is an example of this landform.

Eskers, crevasse fillings, kame terraces, kames, and kettles are ice-contact features that occur throughout the area of ablation on the disintegration moraines and are found on many of the other moraines as well. These features consist of stratified sandy and gravelly deposits, commonly grading into proglacial outwash. The outwash plains consist of broad, flat areas of sandy and gravelly deposits that in places grade into finer lacustrine sediments at the margin. Examples are the Yellow Dog Plains, Mulligan Plains, and Sands Plains.

The area between the uplands and Lake Superior has been strongly modified by glaciofluvial and glaciolacustrine activity, guided by the Precambrian bedrock and contrasting Jacobsville Sandstone to create a marvelously scenic and rugged landscape. As the ice front in the Huron Mountains melted back from its final advance, outlets were opened for glacial lakes Duluth and Agassiz, causing catastrophic flooding. As water from these huge lakes to the west poured east, various outlet

Figure 3.-Diagrammatic cross section of Marquette County showing the topography, dominant soils, elevation, landforms, parent material, and underlying bedrock. The dominant soils listed correspond with those on the general soil map. The landforms, bedrock geology, and parent material in the diagram correspond with those on the landform map and the generalized bedrock geology map.
channels were cut. The Cliff River gorge and Lake Ann basin were two of the channels. Bedrock benches were formed as flood waters scoured the Jacobsville Sandstone. Flood deposits left behind include the boulders south of Rush Lake and a 35 -feet-high gravel bar between Lake Ann and Huron Mountain (Simpson and others, 1990).

The reddish brown sandy loam till deposited along Lake Superior strongly reflects the Jacobsville Sandstone. In some locations the Precambrian rocks added rock fragments to the till. As the glacier melted away, some of this material was washed and reworked by glacial meltwaters. Much of the area along CO 510 between Negaunee and Big Bay is a sandy, water-worked, bedrock-controlled moraine. Other areas were covered by deeper waters of glacial lakes. Much of the area along U.S. 41 between Harvey and Skandia is a till-floored lake plain. An example of a varved glaciolacustrine deposit can be seen in the southwest corner of Chocolay Township.

After the removal of the ice, the crust of the earth began to rebound. As the land rose, the water levels of the Great Lakes fluctuated as outlets changed. Once the outlets of the Great Lakes stabilized, around 6,000 years ago, the level of ancestral Lake Superior rose to the Nipissing level of 605 feet. Wave-cut cliffs and beaches of the former Nipissing shore are now at 640 feet as the isostatic rebound continues. Examples of Nipissing beaches and escarpments can be seen alongside the current Lake Superior beach at Wetmore Landing. Sandstone benches can be seen at Presque Isle and Big Bay Point.

After the ice age ended, numerous lakes and streams have remained as remnants of glacial erosion, ablation, and drainage. Synclinal bedrock structure, with the younger, less resistant bedrock in the basin, influenced the subsequent glacial activity to form Lake Superior and Lake Michigamme. Some of the lake basins, such as that of Mountain Lake, were gouged out of the bedrock by glacial ice. Others, such as Rush Lake, were deepened by catastrophic flood waters. Conway Lake, Saux Head Lake, and Lake Independence are former lagoons of Lake Nipissing that were uplifted by rebound and cut off from Lake Superior by beaches. Some lake basins were filled by large blocks of ice, which melted out to form the current lake. Ives Lake is an example of an ice-block lake. The major rivers and even minor streams once drained great volumes of glacial meltwater, as evidenced by the large canyons, rocky gorges, and impressive terraces. The Yellow Dog, Peshekee, Escanaba, and Chocolay Rivers, for example, are now confined to smaller channels and include areas ranging from bedrock gorges and waterfalls to small flood plains and marshes.

In postglacial times, erosion and deposition continued to modify the landscape. Rock faces were once again exposed as they were stripped of sediment. Smooth slopes of glacial deposits were dissected by drainageways. Shorelines were modified by waves and currents. Eroded silts and sands were deposited, dried, blown by the wind, and redeposited. Alluvial soils were deposited on flood plains, and organic deposits formed in swamps. Small, shallow lakes filled with vegetation and became bogs. In time, as vegetation began to stabilize the soil, the various ecosystems of today began to form, reflecting the complex physiography of Marquette County.

Landform Descriptions

The following paragraphs describe the characteristics of some of the major landforms depicted on the landform map. The map was prepared by Jamie Antoniewicz, soil scientist, Natural Resources Conservation Service.

Bedrock-controlled ground moraine (glacial channels).-This landform occurs as a moderately sloping to very steep, bedrock-controlled moraine covered by sandy or loamy till of variable thickness. The till generally has a high content of rock fragments, and it may have a silty or loamy eolian cap. Topography is controlled by bedrock features; rock outcrops are common. In some areas the rock outcrops are closely spaced and locally dominate the landform. In other areas the rock outcrops are spaced farther apart or are more subdued. This landform is interlaced with outwash channels containing sandy and gravelly soils.

The soils in areas of this landform are characterized by a loamy or silty mantle over sandy or loamy till. They typically have a high content of rock fragments. Surface stones and boulders are common throughout the landform.

Bedrock types include gneiss, schist, granite, and slate. Iron formations of iron oxides and hematite occur locally. Two small areas of this landform occur on the Alger County border where the bedrock is Jacobsville Sandstone.

Bedrock-controlled ground moraine (sandy drift dominant).-This landform occurs as a moderately sloping to very steep moraine of predominantly sandy drift deposited over and around surface bedrock features. Topography is controlled by bedrock features. Small areas of loamy till, sandy and gravelly outwash, and organic soils are included.

The sandy soils in areas of this landform vary greatly in content of rock fragments. The soils can be unstratified till or stratified glaciofluvial deposits. Surface stones and boulders occur randomly and in varying densities throughout the landform.

Bedrock types include gneiss, schist, granite, slate, and greenstone. Iron formations occur locally.

Disintegration moraine (eolian cap).-This landform occurs as a gently rolling to very steep series of moraines of sandy and loamy till. A silty or loamy eolian cap covers more than 90 percent of the landform. This landform is characterized by a chaotic mound and pit topography, generally randomly oriented, with many enclosed depressions.

The soils in areas of this landform are characterized by a silty or loamy mantle over sandy or loamy till. They typically have a high content of rock fragments. Surface stones and boulders occur throughout the landform.

Bedrock types include gneiss, schist, granite, slate, and graywacke. Iron formations occur locally in thin bands.

Outwash plain.-This landform occurs as a nearly level to moderately sloping area of sands and gravels deposited by glacial meltwater. The area may or may not have a loamy mantle. Areas of outwash are generally flat, uniform landforms, but areas of pitted outwash also occur in the county.

Granite and gneiss bedrock outcrops occur in some areas of this landform.
Sandy disintegration moraine.-This landform occurs as a gently rolling to very hilly system of moraines consisting of sandy glacial drift. The landform is characterized by a chaotic mound and pit topography, generally randomly oriented, with enclosed depressions. Small or medium sized areas of sandy or gravelly outwash also are included. Some areas that have an abundance of surface rock fragments occur locally.

The sandy soils in areas of this landform vary greatly in content of rock fragments. A thin loamy mantle, generally less than 10 inches thick, occurs randomly throughout the landform. Abrupt changes between materials of differing lithology are common.

Drumlinized ground moraine.-This landform occurs as a moderately sloping to steep till plain characterized by numerous, roughly parallel, elongated oval hills of compact, calcareous, loamy till, which are generally oriented in a northeast/southwest direction. Areas of sandy and gravelly outwash soils in the form of eskers or channels of outwash along with large areas of organic soils occur between the drumlins.

Limestone, dolomite, and dolomitic sandstone bedrock breaks the surface intermittently in areas of this landform, particularly along rivers and creeks.

The predominantly loamy soils in areas of this landform are characterized by an acid to neutral solum 20 to 40 inches thick over calcareous loamy till. The soils generally have a low or moderate content of rock fragments. Small areas of soils that are shallow and moderately deep to bedrock occur on the flats.

Fluted ground moraine.-This landform occurs as a nearly level to moderately sloping till plain consisting of predominantly calcareous, loamy till. Small areas of outwash and sandy till are included. The gently rolling parallel grooves and ridges of this landform are generally oriented in a north/south direction, and organic soils and ponded areas are in the depressions and drainageways. Acidic loamy till occurs in the western and northern parts of this landform.

This landform is underlain by limestone, dolomite, and dolomitic sandstone bedrock. The bedrock crops out at the surface locally.

Deep and very deep, loamy soils are dominant in areas of this landform. Small or medium sized areas of soils that are shallow and moderately deep to bedrock also occur.

Till-floored lake plain.-This landform occurs as gently undulating to very hilly areas of sandy and loamy till and lacustrine deposits intermixed with sandy glaciofluvial deposits. The landform was formed when sand, silt, and till deposits were reworked by glacial meltwaters of variable speed and volume. Most of this landform was once covered by glacial lake water and then was exposed when the water level was lowered or the elevation of the land was raised. Wave action of the glacial lake waters along with other glaciofluvial processes resulted in the mixing and reworking of existing glacial drift deposits. This "water-working" action created a landform where soils and surface textures are variable within short distances.

The soils in areas of this landform range from sandy to silty. Stratified and varved glaciolacustrine soils of widely varying textures are a common component. Narrow or moderately wide channels of sandy and gravelly soils occur within this landform. The content of rock fragments in the soils varies widely. Generally, the soils that have a high content of rock fragments occur closer to Lake Superior. As the distance from the lake increases, the content of rock fragments in the soil decreases.

Dissected moraine.-This landform occurs as hilly to very steep dissected uplands of sandy and loamy drift characterized by a dendritic ravine pattern and the presence of ephemeral streams.

The dominant soils in areas of this landform are acidic, sandy and loamy drift. Silty and gravelly soils also occur. The soils typically have a low or moderate content of rock fragments. Surface stones and boulders occur in some parts of the landform but not in others.

Beach ridges and dunes.-This landform occurs as nearly level to strongly sloping, sandy lake deposits on dunes and beach ridges. The ridges are roughly parallel to the shoreline, representing successive positions of an advancing shoreline. Much of this landform exhibits a ridge-and-swale topography of wet and dry, sandy soils.

The sandy soils in areas of this landform typically have no rock fragments or have only a low content of rock fragments. Small, scattered gravelly spots also occur.

Sandstone benches.-This landform occurs as nearly level to very steep deposits of sandy and loamy drift and residual soils that are shallow or moderately deep over sandstone bedrock. Most of this landform has been covered by glacial lake water. Sandstone rock outcrops occur in some areas.

Glaciolacustrine and glaciofluvial processes have greatly influenced the soils. Some soils have a high content of rock fragments, and others are relatively free of rock fragments. Stratified soils of water-worked drift over bedrock are common. Small areas of deep, loamy and gravelly soils are included. Surface stones are common throughout most of the landform.

Red and brown Jacobsville Sandstone dominates this landform. Small areas of shale and conglomerate rock also are included.

Swamp.-This landform occurs as level or nearly level areas of shallow to deep organic deposits over outwash or till. Small areas of well drained high ground too small to map separately occur within these swamps. There are scattered outcroppings of bedrock.

Ground moraine.-This landform occurs as a nearly level to moderately sloping till plain consisting predominantly of calcareous, loamy till and areas of sandy and gravelly outwash. Medium sized and large areas of continuous swamp occur within this landform. Areas of soils that are shallow and moderately deep to bedrock occur on structural benches within the ground moraine.

The predominantly loamy soils in areas of this landform are characterized by an acid solum 30 to 40 inches thick over calcareous loamy till. The soils generally have a low to moderate content of rock fragments.

This landform is underlain by limestone, dolomite, and dolomitic sandstone bedrock, which influences the soil characteristics. The bedrock breaks the surface intermittently, particularly along creeks and rivers.

Industry and Transportation Facilities

Government, services, retail trade, iron mining, timber harvesting, and tourism are the major sources of employment in Marquette County. Prior to its closure in 1995, K.I. Sawyer Air Force Base was the predominant government employer. The Empire and Tilden iron mines are now the leading source of employment in the county. Health care (Marquette General Hospital, Bell Memorial Hospital, and Marquette Medical-Dental Center) and Northern Michigan University are the major service sector employers.

The main roads in the county are U.S. Highway 41 and State Highways M-28, M-94, $\mathrm{M}-35$, and $\mathrm{M}-95$. Two freight-only railroads service the county, and Marquette County Airport provides regularly scheduled passenger service.

Farming

Agriculture is a relatively small industry in Marquette County. Farms make up about 26,624 acres, or 2.3 percent of the total acreage in the county. Major crops produced include grass and mixed hay, alfalfa, potatoes, barley, oats, and corn for grain and silage. The 1997 agricultural census counted 108 farms averaging 247 acres; only 6 farms were larger than 500 acres. The total acreage in cropland is 12,378 acres on 90 farms. The remaining farmland consists of woodland, wetland, and homesteads. In 1997, Marquette County had 2,556 cattle and calves, including 772 milk cows and 568 beef cows.

In the early years, small farming was common in the settled regions of Marquette County. These farms provided meat, dairy, and various grains, fruits, and vegetable products to the lumber and mining concerns scattered throughout the area. Over time, many of these farms have reverted to woodland or have been converted to recreational areas or hobby farms.

Agricultural production in Marquette County is limited because of the short, cool growing season, the distance to markets, the scarcity of productive soils, and the limited local markets.

Dairy, potatoes, and beef production are the most stable farming enterprises in Marquette County. Hay production for the pleasure horse market also is an ongoing enterprise. There are some small, specialized livestock and crop production businesses for the regional market. Because of the long period of idleness or minimal inputs on cropland, many sites in Marquette County are suitable for conversion to organic production practices.

Lakes and Streams

Marquette County has 1,755 natural lakes. Lake Michigamme and Lake Independence are the largest, covering 4,360 and 1,860 acres, respectively. There are also 69 manmade lakes, ponds, and hydroelectric reservoirs. The Dead River storage Basin is the largest, covering about 2,102 acres. In addition, there are 55 miles of Lake Superior shoreline.

Approximately 1,416 miles of rivers and streams flow within the county. The Michigamme, Escanaba, Yellow Dog, Dead, Chocolay, Peshekee, and Black Rivers are the major rivers. The Chocolay, Dead, and Yellow Dog Rivers flow into Lake Superior,
and the Black, Escanaba, Michigamme, and Peshekee Rivers flow south into Lake Michigan. There are more than 20 waterfalls in the county.

Recreation

Opportunities for recreational activities abound in Marquette County. The rugged hills, vigorous forests, the numerous lakes, rivers, and waterfalls, the abundant snowfall, and the extensive Lake Superior shoreline provide an ideal setting for a variety of outdoor activities. Many residents and tourists enjoy sightseeing, hiking, camping, canoeing, kayaking, swimming, mountain biking, fishing, hunting, crosscountry skiing, snowshoeing, snowmobiling, and ATV riding. Areas open to public recreation include thousands of acres of State forest, National forest, and commercial forest reserve lands. Streams in the region are famous for trout, and Lake Superior is legendary for lake trout, salmon, and steelhead. Hunting, especially for small game and white-tailed deer, is very popular. Excellent facilities are available for camping and golfing, and the county has numerous resorts, marinas, outfitters, and ski centers.

How This Survey Was Made

This survey was made to provide information about the soils and miscellaneous areas in the survey area. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of
soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

The descriptions, names, and delineations of the soils in this survey area may not fully agree with those of the soils in adjacent survey areas. Differences are the result of an improved knowledge of soils, modifications in series concepts, or variations in the intensity of mapping or in the extent of the soils in the survey areas.

Survey Procedures

The general procedures followed in making this survey are described in the "National Soil Survey Handbook" (USDA/NRCS) and the "Soil Survey Manual" (Soil Survey Division Staff, 1993) of the Natural Resources Conservation Service.

The soil survey maps made for conservation planning prior to the start of the project, including the published soil survey maps and interpretations for the MarquetteHumboldt area (1977) and for the Chocolay area (1975), were among the references used. Previously made soil maps were field checked, revised, and incorporated into this project. Other references include bedrock and glacial geology maps, which were studied and used to plan mapping strategy.

Before the actual fieldwork began, preliminary boundaries of slopes and landforms were plotted stereoscopically on 1:20,000 leaf-off aerial photography. Soil scientists used U.S. Geological Survey topographic maps at a scale of 1:24,000 to relate land and image features.

A reconnaissance was made by vehicle before the soil scientists traversed the surface on foot and examined the soils. In areas where the soil pattern is very complex, traverses and random observations were spaced as close as 200 yards. In areas where the soil pattern is relatively simple, traverses were about $1 / 4$ mile apart.

As they traversed the surface, the soil scientists divided the landscape into segments. For example, a hillside would be separated from a swale or a gently sloping ridgetop from a very steep side slope. Observations of such items as landforms, blown-down trees, vegetation, roadbanks, excavated pits, and rock outcrops were
made without regard to spacing. Soil boundaries were determined on the basis of soil examinations, observations, and photo interpretation. The soil material was examined with the aid of a hand auger or a spade to a depth of about 5 feet. The pedons described as typical were observed and studied in pits that were dug with shovels, mattocks, and digging bars or excavated with a backhoe.

Each year of the project, notes were taken on the composition of map units. These notes were supplemented with transects and additional soil investigations as mapping progressed and the composition of individual map units was determined for the soil survey area.

Samples for chemical and physical analyses were taken from representative sites of some soils in the survey area. The analyses were made by the National Soil Survey Laboratory, Lincoln, Nebraska. The results of the analyses are stored in a computerized data file at the laboratory. The results of the analyses and descriptions of the laboratory procedures can be obtained by request.

After completion of the soil mapping on aerial photographs, map unit delineations were transferred by hand to another set of photographs. The mapping was transferred to two different scales of photographs. Map sheets 16 through 38 and map sheets 40 through 69 (see Index to Map Sheets) were compiled at a scale of 1:12,000. The remaining map sheets were compiled at a scale of $1: 24,000$. The areas that were transferred to 1:12,000 photos coincide with the area that currently has the most intensive land use in the county. These areas also are anticipated to be subject to the most intense pressure for development in the near future. The goal of transferring the mapping to larger scale photographs in this area was to show more detail and allow smaller map unit delineations in the areas where future development is anticipated. Cultural features were recorded from observations of the maps and the landscape.

The National Cooperative Soil Survey is a system of site classification for multipleuse resource management based primarily on soils. The soil survey of Marquette County, however, has integrated a number of additional factors into its classification of land and forest sites. The multi-factor approach to site classification is based on the interrelationship between vegetation, physiography, and soils.

In the process of making this soil survey, a considerable amount of time was spent in the field by trained personnel observing and recording data about the soils, vegetation, and physiography of Marquette County. Soils data were collected and analyzed as outlined elsewhere in this section and in the Soil Properties section of this report.

Vegetative data were collected on the overstory, understory, and ground cover on forested sites. Key indicator plants were used to identify the habitat type according to the Habitat Type Classification System explained in the Forest Habitat Types section of this report. The physiography was studied and landforms were identified based on the bedrock and glacial geology as described in the Physiography section of this report.

The information gathered and reviewed is utilized to develop units that can be delineated on maps and accurately described. The goal is to provide several levels of land units that are visible to the land user and relatively permanent in endurance and usefulness. For broad base planning, the general soil map and geology maps can be used, but these are limited by scale and the complexity of the survey area. At the more intense detailed soil map level, the multi-factor approach becomes more practical.

Marquette County has a diverse and complex variety of forest communities, landforms, and soil types. It is possible to identify a tremendous number of map units. In making this soil survey, the project members have worked to correlate these units into what should be useful delineations. These units are distinguished on the basis of such factors as landform, rockiness, stoniness, and potential forest productivity as well as soil classification.

General Soil Map Units

The general soil map in this publication shows broad areas that have a distinctive pattern of soils, relief, and drainage. These broad areas are called associations. Each association on the general soil map is a unique natural landscape. Typically, it consists of one or more major soils or miscellaneous areas and some minor soils or miscellaneous areas. It is named for the major soils or miscellaneous areas. The components of one association can occur in another but in a different pattern.

The general soil map can be used to compare the suitability of large areas for general land uses. Areas of suitable soils can be identified on the map. Likewise, areas where the soils are not suitable can be identified.

Because of its small scale, the map is not suitable for planning the management of a farm or field or for selecting a site for a road or building or other structure. The soils in any one association differ from place to place in slope, depth, drainage, and other characteristics that affect management.

1. Buckroe-Yalmer Association

Shallow and very deep, nearly level to very steep, excessively drained and moderately well drained, sandy soils; on sandstone benches

Setting

Landform: Sandstone benches
Slope range: 0 to 70 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association (fig. 4).
Buckroe and similar soils-60 percent
Yalmer and similar soils-30 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Buckroe

Depth class: Shallow to sandstone
Drainage class: Excessively drained
Parent material: Sandy beach deposits over sandstone bedrock
Texture of the surface layer: Very channery loamy sand
Slope: Nearly level to very steep

Yalmer

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Sandy mantle over loamy till
Texture of the surface layer: Fine sand
Slope: Nearly level to rolling

Figure 4.-Typical pattern of soils and parent material in the Buckroe-Yalmer association.

Soils of Minor Extent

- Deer Park and Waiska soils on knolls and ridges
- Burt and Carbondale soils in depressions and drainageways
- Yellowdog soils and areas of rock outcrop in landscape positions similar to those of the Buckroe soils

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Building roads on the contour, installing water bars and culverts, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be needed in very hilly areas.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Such harvest methods as selective cutting can reduce the windthrow hazard.
- Site preparation helps to control plant competition.

2. Zeba-Jacobsville Association

Moderately deep, nearly level, somewhat poorly drained and poorly drained, loamy soils; on sandstone benches

Setting

Landform: Sandstone benches
Slope range: 0 to 3 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Zeba and similar soils-50 percent
Jacobsville and similar soils-20 percent
Soils of minor extent-30 percent
Soil Properties and Qualities

Zeba

Depth class: Moderately deep to sandstone Drainage class: Somewhat poorly drained Parent material: Loamy till over sandstone Texture of the surface layer: Cobbly fine sandy loam Slope: Nearly level

Jacobsville

Depth class: Moderately deep to sandstone
Drainage class: Poorly drained
Parent material: Loamy till over sandstone
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Burt, Carbondale, Gay, Greenwood, and Skandia soils in landscape positions similar to those of the Jacobsville soils
- Waiska soils in gently undulating areas
- Skanee soils in landscape positions similar to those of the Zeba soils

Use and Management

Major use: Woodland

Management concerns: Equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- Access is easiest during the winter. Year-round logging roads require a gravel base.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Harvest methods that do not leave the remaining trees widely spaced reduce the windthrow hazard.

3. Cunard-Nahma Association

Moderately deep, nearly level and gently undulating, well drained and poorly drained, loamy soils; on dolomitic benches

Setting

Landform: Dolomitic benches Slope range: 0 to 6 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Cunard and similar soils- 55 percent
Nahma and similar soils-25 percent
Soils of minor extent-20 percent

Soil Properties and Qualities

Cunard

Depth class: Moderately deep to dolomitic sandstone, dolomite, or limestone Drainage class: Well drained
Parent material: Loamy till over dolomite, dolomitic sandstone, or limestone
Texture of the surface layer: Fine sandy loam
Slope: Gently undulating

Nahma

Depth class: Moderately deep to dolomitic sandstone, dolomite, or limestone Drainage class: Poorly drained
Parent material: Loamy till over dolomite, dolomitic sandstone, or limestone Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Carbondale, Cathro, and Ensley soils in depressions and drainageways
- Emmet, Shoepac, and Reade soils on knolls and ridges

Use and Management
Major use: Woodland
Management concerns: Equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- The seasonal high water table in areas of the Nahma soils restricts the use of equipment to midsummer or winter.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Nahma soils.
- Harvest methods that do not leave the remaining trees widely spaced reduce the windthrow hazard.

4. Keewaydin-Michigamme-Rock Outcrop Association

Rock outcrop and very deep and moderately deep, nearly level to very hilly, well drained soils; on bedrock-controlled moraines

Setting

Landform: Bedrock-controlled moraines Slope range: 1 to 70 percent

Composition

Extent of the association: 21 percent of the survey area
Extent of the components in the association (fig. 5).
Keewaydin and similar soils-45 percent
Michigamme and similar soils-20 percent
Rock outcrop-10 percent
Soils of minor extent-25 percent

Soil Properties and Qualities

Keewaydin

Depth class: Very deep
Drainage class: Well drained
Parent material: Loamy and silty eolian deposits over gravelly and sandy till

Figure 5.-Typical pattern of soils and parent material in the Keewaydin-Michigamme-Rock outcrop association.

Texture of the surface layer: Cobbly fine sandy loam Slope: Nearly level to very hilly

Michigamme

Depth class: Moderately deep to igneous or metamorphic bedrock
Drainage class: Well drained
Parent material: Silty or loamy mantle over loamy till overlying igneous or metamorphic bedrock
Texture of the surface layer: Cobbly fine sandy loam Slope: Gently rolling to very hilly

Soils of Minor Extent

- Carbondale, Cathro, Net, and Witbeck soils in depressions and drainageways
- Champion, Dishno, Peshekee, and Sundog soils in landscape positions similar to those of the major soils

Use and Management

Major use: Woodland

Management concerns: Erosion hazard, equipment limitations, and plant competition Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be necessary in the very hilly areas.
- Selective cutting can reduce the windthrow hazard.
- Site preparation helps to control plant competition.

5. Schweitzer-Michigamme-Rock Outcrop Association

Rock outcrop and very deep and moderately deep, gently rolling to very hilly, well drained, loamy soils; on bedrock-controlled moraines

Setting

Landform: Bedrock-controlled moraines Slope range: 6 to 70 percent

Composition

Extent of the association: 4 percent of the survey area
Extent of the components in the association:
Schweitzer and similar soils-40 percent
Michigamme and similar soils-20 percent
Rock outcrop-10 percent
Soils of minor extent-30 percent

Soil Properties and Qualities

Schweitzer

Depth class: Very deep
Drainage class: Well drained
Parent material: Silty or loamy eolian deposits over loamy and sandy till
Texture of the surface layer: Cobbly very fine sandy loam
Slope: Gently rolling to very hilly

Michigamme

Depth class: Moderately deep to igneous or metamorphic bedrock
Drainage class: Well drained
Parent material: Silty or loamy mantle over loamy till overlying igneous or metamorphic bedrock
Texture of the surface layer: Cobbly fine sandy loam
Slope: Gently rolling to very hilly

Soils of Minor Extent

- Kalkaska, Pence, and Peshekee soils in landscape positions similar to those of the major soils
- Carbondale, Cathro, and Pleine soils in depressions and drainageways
- Gogebic soils in nearly level to rolling areas

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, windthrow hazard, and plant competition
Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be necessary in the very hilly areas.
- Such harvest methods as selective cutting can reduce the windthrow hazard.
- Site preparation helps to control plant competition.

6. Pits-Dumps, Mine-Slickens Association

Setting

Landform: Bedrock-controlled moraines
Slope range: 0 to 70 percent

Composition

Extent of the association: 2 percent of the survey area
Extent of the components in the association (fig. 6):
Pits and Dumps, mine- 70 percent
Slickens-20 percent
Components of minor extent-10 percent

Components of Minor Extent

- Keewaydin, Michigamme, and Peshekee soils on knolls and ridges
- Udorthents and Udipsamments on dikes of slickens basins
- Rock outcrop and water

Use and Management

Major uses: Active and inactive open-pit iron mines
Management concerns: Onsite investigation is needed to determine the suitability for specific uses.

Figure 6.-Typical pattern of components and underlying material in the Pits-Dumps, mineSlickens association.

7. Kalkaska-Ishpeming-Rock Outcrop Association

Rock outcrop and very deep and moderately deep, gently rolling to very hilly, somewhat excessively drained, sandy soils; on bedrock-controlled moraines

Setting

Landform: Bedrock-controlled moraines Slope range: 6 to 70 percent

Composition

Extent of the association: 5 percent of the survey area
Extent of the components in the association:
Kalkaska and similar soils-55 percent
Ishpeming and similar soils-20 percent
Rock outcrop-10 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Kalkaska

Depth class: Very deep
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Gently rolling to very hilly

Ishpeming

Depth class: Moderately deep to igneous or metamorphic bedrock
Drainage class: Somewhat excessively drained
Parent material: Sandy till or glaciofluvial deposits over igneous or metamorphic bedrock
Texture of the surface layer: Sand
Slope: Gently rolling to very hilly

Soils of Minor Extent

- Carbondale and Tawas soils in depressions and drainageways
- Keweenaw, Pelissier, Rubicon, Sayner, and Waiska soils in landscape positions similar to those of the Kalkaska and Ishpeming soils

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, and seedling mortality Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be necessary in the very hilly areas.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

8. Deer Park Association

Very deep, nearly level to rolling, excessively drained, sandy soils; on beach ridges and dunes

Setting

Landform: Beach ridges and dunes Slope range: 1 to 18 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Deer Park and similar soils-85 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Deer Park

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy beach deposits
Texture of the surface layer: Sand
Slope: Nearly level to rolling

Soils of Minor Extent

- Deford, Greenwood, and Tawas soils in depressions and drainageways
- Croswell soils in the slightly lower positions on the landscape
- Rubicon soils in landscape positions similar to those of the Deer Park soils

Use and Management

Major use: Woodland

Management concerns: Equipment limitations and seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

9. Rubicon-Sayner Association

Very deep, nearly level to very hilly, excessively drained, sandy soils; on outwash plains and outwash terraces

Setting

Landform: Outwash plains and outwash terraces Slope range: 0 to 70 percent

Composition

Extent of the association: 6 percent of the survey area
Extent of the soils in the association:
Rubicon and similar soils-65 percent

Sayner and similar soils-20 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Rubicon

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Nearly level to very hilly

Sayner

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy and gravelly outwash
Texture of the surface layer: Loamy sand
Slope: Gently undulating to very hilly

Soils of Minor Extent

- Grayling, Ocqueoc, and Rousseau soils in landscape positions similar to those of the major soils
- Greenwood and Tawas soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, and seedling mortality Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be necessary in the very hilly areas.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

10. Grayling Association

Very deep, nearly level to very hilly, excessively drained, sandy soils; on outwash plains

Setting

Landform: Outwash plains
Slope range: 0 to 35 percent

Composition

Extent of the association: 3 percent of the survey area
Extent of the soils in the association:
Grayling soils- 90 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Grayling

Depth class: Very deep

Drainage class: Excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Nearly level to very hilly

Soils of Minor Extent

- Pelissier, Rubicon, and Sayner soils in landscape positions similar to those of the Grayling soils
- Croswell soils in the slightly lower positions on the landscape
- Kinross soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, and seedling mortality Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be necessary in the very hilly areas.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

11. Kalkaska-Carbondale-Deford Association

Very deep, nearly level to very hilly, somewhat excessively drained, very poorly drained, and poorly drained, sandy and mucky soils; on outwash plains and outwash terraces

Setting

Landform: Outwash plains and outwash terraces Slope range: 0 to 35 percent

Composition

Extent of the association: 6 percent of the survey area
Extent of the soils in the association:
Kalkaska and similar soils-30 percent
Carbondale and similar soils-25 percent
Deford and similar soils-25 percent
Soils of minor extent-20 percent

Soil Properties and Qualities

Kalkaska

Depth class: Very deep
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Nearly level to very hilly
Carbondale
Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits

Texture of the surface layer: Muck
Slope: Nearly level

Deford

Depth class: Very deep
Drainage class: Poorly drained
Parent material: Sandy outwash
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Keweenaw, Rousseau, and Rubicon soils in landscape positions similar to those of the Kalkaska soils
- Au Gres, Croswell, and Paquin soils in nearly level and gently undulating areas
- Evart and Greenwood soils in depressions and drainageways

Use and Management

Major use: Woodland

Management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Access is easiest during the winter. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Carbondale and Deford soils.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate in areas of the Kalkaska soils.
- Harvest methods that do not leave the remaining trees widely spaced can reduce the windthrow hazard.

12. Pence Association

Very deep, nearly level to very hilly, somewhat excessively drained, sandy soils; on outwash plains and outwash terraces

Setting

Landform: Outwash plains and outwash terraces
Slope range: 0 to 35 percent

Composition

Extent of the association: 3 percent of the survey area
Extent of the soils in the association:
Pence and similar soils- 85 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Pence

Depth class: Very deep
Drainage class: Somewhat excessively drained
Parent material: Loamy mantle over sandy outwash

Texture of the surface layer: Fine sandy loam
Slope: Nearly level to very hilly

Soils of Minor Extent

- Gogebic, Rubicon, Sayner, and Sundog soils in landscape positions similar to those of the Pence soils
- Carbondale and Greenwood soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard and equipment limitations Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- Special care is needed in laying out logging roads and operating logging equipment in the very hilly areas. The grade should be kept as low as possible.

13. Sundog-Minocqua-Channing Association

Very deep, nearly level to very hilly, well drained, poorly drained, and somewhat poorly drained, loamy soils; on outwash plains and outwash terraces

Setting

Landform: Outwash plains and outwash terraces
Slope range: 0 to 35 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association (fig. 7):
Sundog and similar soils-30 percent
Minocqua and similar soils-25 percent
Channing and similar soils-25 percent
Components of minor extent-20 percent

Soil Properties and Qualities

Sundog

Depth class: Very deep
Drainage class: Well drained
Parent material: Silty or loamy mantle over sandy and gravelly outwash
Texture of the surface layer: Silt loam
Slope: Nearly level to very hilly

Minocqua

Depth class: Very deep
Drainage class: Poorly drained
Parent material: Loamy deposits overlying stratified sandy and gravelly outwash
Texture of the surface layer: Muck
Slope: Nearly level

Channing

Depth class: Very deep
Drainage class: Somewhat poorly drained
Parent material: Loamy deposits overlying stratified sandy and gravelly outwash

Figure 7.-Typical pattern of soils and parent material in the Sundog-Minocqua-Channing association.

Texture of the surface layer: Fine sandy loam Slope: Nearly level

Components of Minor Extent

- Pelissier and Pence soils in landscape positions similar to those of the Sundog soils
- Chabeneau soils in landscape positions between those of the Sundog and Channing soils
- Carbondale and Tawas soils in depressions and drainageways
- Areas of rock outcrop

Use and Management

Major use: Woodland

Management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, and plant competition

Management considerations:

- Building roads on the contour, installing water bars, and seeding logging roads help to prevent excessive soil loss.
- The seasonal high water table in areas of the Minocqua and Channing soils restricts the use of equipment to midsummer, when the soils are dry, or midwinter, when there is adequate snow cover. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Special care is needed in laying out logging roads and operating logging equipment in the very hilly areas of the Sundog soils. The grade should be kept as low as possible.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Minocqua and Channing soils.
- Harvest methods that do not leave the remaining trees widely spaced reduce the windthrow hazard in areas of the Minocqua and Channing soils.

14. Rubicon-Keweenaw Association

Very deep, gently undulating to very hilly, excessively drained and well drained, sandy soils; on disintegration moraines

Setting

Landform: Disintegration moraines
Slope range: 1 to 45 percent

Composition

Extent of the association: 5 percent of the survey area
Extent of the soils in the association:
Rubicon and similar soils-55 percent
Keweenaw and similar soils-35 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Rubicon

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Gently undulating to very hilly

Keweenaw

Depth class: Very deep
Drainage class: Well drained
Parent material: Sandy till
Texture of the surface layer: Cobbly loamy sand
Slope: Gently undulating to very hilly

Soils of Minor Extent

- Sayner soils in landscape positions similar to those of the major soils
- Croswell soils in nearly level areas
- Carbondale, Deford, and Greenwood soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, and plant competition
Management considerations:

- Building logging roads on the contour, installing water bars and culverts, and seeding logging roads help to prevent excessive soil loss in the very hilly areas.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Special care is needed in laying out logging roads and operating logging equipment in the very hilly areas. The grade should be kept as low as possible.
- Site preparation helps to control plant competition.

15. Goodman-Sundog-Greenwood Association

Very deep, nearly level to very hilly, well drained, loamy soils and very poorly drained, peaty soils; on disintegration moraines

Setting

Landform: Disintegration moraines
Slope range: 0 to 45 percent

Composition

Extent of the association: 6 percent of the survey area
Extent of the soils in the association (fig. 8):
Goodman and similar soils-45 percent
Sundog and similar soils- 35 percent
Greenwood and similar soils-10 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Goodman

Depth class: Very deep
Drainage class: Well drained
Parent material: Silty mantle over sandy till
Texture of the surface layer: Silt loam
Slope: Gently undulating to very hilly

Sundog

Depth class: Very deep
Drainage class: Well drained
Parent material: Silty or loamy mantle over sandy and gravelly outwash
Texture of the surface layer: Silt loam
Slope: Gently undulating to very hilly

Greenwood

Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits
Texture of the surface layer: Peat
Slope: Nearly level

Soils of Minor Extent

- Keewaydin soils in landscape positions similar to those of the Goodman and Sundog soils
- Wabeno soils in nearly level to gently sloping areas
- Cathro, Tawas, and Witbeck soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, and plant competition Management considerations:

- Building logging roads on the contour, installing water bars and culverts, and seeding logging roads help to prevent excessive soil loss in the very hilly areas.
- Special care is needed in laying out logging roads and operating logging equipment in the very hilly areas. The grade should be kept as low as possible.
- Such harvest methods as selective cutting can reduce the seedling mortality rate.

Figure 8.-Typical pattern of soils and parent material in the Goodman-Sundog-Greenwood association.

- Because of extreme acidity and wetness, the Greenwood soils are generally unsuited to woodland.

16. Sagola-Rubicon Association

Very deep, gently undulating to very hilly, well drained and excessively drained, loamy and sandy soils; on disintegration moraines

Setting

Landform: Disintegration moraines
Slope range: 1 to 18 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Sagola and similar soils-55 percent
Rubicon and similar soils-30 percent
Soils of minor extent-15 percent
Soil Properties and Qualities

Sagola

Depth class: Very deep
Drainage class: Well drained
Parent material: Loamy till
Texture of the surface layer: Fine sandy loam
Slope: Gently undulating to very hilly

Rubicon

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Gently undulating to very hilly

Soils of Minor Extent

- Pelissier soils in landscape positions similar to those of the major soils
- Carbondale soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Equipment limitations, seedling mortality, and plant competition
Management considerations:

- Year-round logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate in areas of the Rubicon soils.
- Site preparation helps to control plant competition.

17. Carbondale-Tawas Association

Very deep, nearly level, very poorly drained, mucky soils; in swamps on lake plains, outwash plains, and moraines

Setting

Landform: Swamps on lake plains, outwash plains, and moraines Slope range: 0 to 1 percent

Composition

Extent of the association: 2 percent of the survey area Extent of the soils in the association:

Carbondale and similar soils-50 percent
Tawas and similar soils- 30 percent
Soils of minor extent-20 percent

Soil Properties and Qualities

Carbondale

Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits
Texture of the surface layer: Muck
Slope: Nearly level
Tawas
Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits over sandy outwash
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Au Gres, Croswell, and Deford soils in the slightly higher positions on the landscape
- Rubicon and Kalkaska soils on knolls and ridges

Use and Management

Major use: Woodland
Management concerns: Equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- Access is easiest in winter, when the soils are frozen or have adequate snow cover.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.

18. Shoepac-Ensley-Charlevoix Association

Very deep, nearly level and gently undulating, moderately well drained, poorly drained, and somewhat poorly drained, loamy soils; on fluted ground moraines

Setting

Landform: Fluted ground moraines
Slope range: 0 to 6 percent

Composition

Extent of the association: 5 percent of the survey area
Extent of the soils in the association:
Shoepac and similar soils-55 percent
Ensley and similar soils-20 percent
Charlevoix and similar soils- 15 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Shoepac

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Loamy till
Texture of the surface layer: Silt loam
Slope: Gently undulating

Ensley

Depth class: Very deep
Drainage class: Poorly drained
Parent material: Loamy till
Texture of the surface layer: Muck
Slope: Nearly level

Charlevoix

Depth class: Very deep
Drainage class: Somewhat poorly drained
Parent material: Loamy till
Texture of the surface layer: Silt loam
Slope: Nearly level

Soils of Minor Extent

- Escanaba and Trenary soils in gently rolling and rolling areas
- Cathro and Nahma soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to summer, when the soils are dry, or midwinter, when the soils are frozen or have adequate snow cover.
- Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Because of wetness and plant competition, trees are generally not planted on the Ensley and Charlevoix soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.

19. Shoepac-Carbondale Association

Very deep, nearly level and gently undulating, moderately well drained and very poorly drained, loamy and mucky soils; on fluted ground moraines

Setting

Landform: Fluted ground moraines
Slope range: 0 to 6 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Shoepac and similar soils-60 percent
Carbondale and similar soils- 30 percent
Soils of minor extent-10 percent

Soil Properties and Qualities

Shoepac

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Loamy till
Texture of the surface layer: Silt loam
Slope: Gently undulating

Carbondale

Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Trenary soils in gently rolling and rolling areas
- Cathro, Ensley, and Nahma soils in depressions and drainageways

Use and Management

Major use:Woodland
Management concerns: Equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- In areas of the Carbondale soils, access is easiest during the winter, when the soils are frozen or have adequate snow cover.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Because of wetness and plant competition, trees are generally not planted on the Carbondale soils.
- Harvest methods that do not leave the remaining trees widely spaced can reduce the windthrow hazard.

20. Emmet-Carbondale Association

Very deep, nearly level to steep, well drained and very poorly drained, loamy and mucky soils; on drumlinized ground moraines

Setting

Landform: Drumlinized ground moraines
Slope range: 0 to 35 percent

Composition

Extent of the association: 10 percent of the survey area
Extent of the soils in the association(fig. 9):
Emmet and similar soils- 35 percent
Carbondale and similar soils- 35 percent
Soils of minor extent-30 percent
Soil Properties and Qualities

Emmet

Depth class: Very deep
Drainage class: Well drained
Parent material: Loamy till
Texture of the surface layer: Fine sandy loam
Slope: Gently undulating to steep

Carbondale

Depth class: Very deep
Drainage class: Very poorly drained
Parent material: Organic deposits
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Escanaba, Nadeau, and Onaway soils in landscape positions similar to those of the Emmet soils
- Cathro, Ensley, and Solona soils in depressions and drainageways

Figure 9.-Typical pattern of soils and parent material in the Emmet-Carbondale association.

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, and plant competition

Management considerations:

- Building roads on the contour, installing water bars and culverts, and seeding logging roads help to prevent soil loss in steep areas of the Emmet soils.
- Special care is needed in laying out logging roads and operating logging equipment in the very hilly areas. The grade should be kept as low as possible.
- Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- In areas of the Carbondale soils, access is easiest during the winter, when the soils are frozen or have adequate snow cover.
- Because of wetness and plant competition, trees are generally not planted on the Carbondale soils.
- Harvest methods that do not leave the remaining trees widely spaced can reduce the windthrow hazard in areas of the Carbondale soils.

21. Munising-Fence-Paquin Association

Very deep, nearly level to moderately sloping, moderately well drained, loamy, silty, and sandy soils; on dissected moraines and till-floored lake plains

Setting

Landform: Dissected moraines and till-floored lake plains Slope range: 0 to 12 percent

Composition

Extent of the association: 1 percent of the survey area
Extent of the soils in the association:
Munising and similar soils-40 percent

Fence and similar soils-30 percent
Paquin and similar soils-15 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Munising

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Loamy till
Texture of the surface layer: Fine sandy loam
Slope: Nearly level to moderately sloping
Fence
Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Stratified loamy deposits
Texture of the surface layer: Very fine sandy loam
Slope: Gently undulating

Paquin

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Nearly level

Soils of Minor Extent

- Frohling soils in very hilly to steep areas
- Carbondale, Cathro, Ensley, and Skanee soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, windthrow hazard, and plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing culverts and water bars.
Skidders should not be used during periods when ruts form easily. Year-round logging roads require a gravel base.
- Selective cutting can reduce the windthrow hazard.
- Site preparation helps to control plant competition.

22. Munising-Yalmer Association

Very deep, nearly level to gently sloping, moderately well drained, loamy and sandy soils; on till-floored lake plains

Setting

Landform: Till-floored lake plains
Slope range: 1 to 12 percent

Composition

Extent of the association: 2 percent of the survey area
Extent of the soils in the association:
Munising and similar soils-40 percent

Yalmer and similar soils- 30 percent
Soils of minor extent-30 percent

Soil Properties and Qualities

Munising

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Loamy till
Texture of the surface layer: Fine sandy loam
Slope: Nearly level to gently sloping

Yalmer

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Sandy mantle over loamy till
Texture of the surface layer: Fine sand
Slope: Nearly level to gently sloping

Soils of Minor Extent

- Frohling and Tokiahok soils in very hilly areas
- Kalkaska and Waiska soils in landscape positions similar to those of the major soils
- Carbondale, Gay, and Skanee soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, windthrow hazard, and plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing culverts and water bars.
Skidders should not be used during periods when ruts form easily. Year-round logging roads require a gravel base.
- Selective cutting can reduce the windthrow hazard.
- Site preparation helps to control plant competition.

23. Skanee-Munising-Gay Association

Very deep, nearly level to rolling, somewhat poorly drained, moderately well drained, and poorly drained, loamy soils; on till-floored lake plains and ground moraines

Setting

Landform:Till-floored lake plains and ground moraines Slope range: 0 to 18 percent

Composition

Extent of the association: 6 percent of the survey area
Extent of the soils in the association (fig. 10).
Skanee and similar soils-40 percent
Munising and similar soils-30 percent
Gay and similar soils-15 percent
Soils of minor extent-15 percent

Figure 10.-Typical pattern of soils and parent material in the Skanee-Munising-Gay association.

Soil Properties and Qualities

Skanee

Depth class: Very deep
Drainage class: Somewhat poorly drained
Parent material: Loamy till
Texture of the surface layer: Cobbly fine sandy loam
Slope: Nearly level

Munising

Depth class: Very deep
Drainage class: Moderately well drained
Parent material: Loamy till
Texture of the surface layer: Fine sandy loam
Slope: Gently undulating to rolling
Gay
Depth class: Very deep
Drainage class: Poorly drained
Parent material: Loamy till
Texture of the surface layer: Muck
Slope: Nearly level

Soils of Minor Extent

- Carbondale and Tawas soils in depressions and drainageways
- Yalmer soils in landscape positions similar to those of the Munising soils

Use and Management

Major use:Woodland
Management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, and plant competition
Management considerations:

- In areas of the Munising soils, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Access is easiest during the winter, when the soils are frozen or have adequate snow cover. Year-round roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Trees are generally not planted on the Skanee and Gay soils because of wetness and plant competition.
- Selective cutting can reduce the windthrow hazard.

24. Keweenaw-Kalkaska-Waiska Association

Very deep, moderately sloping to very steep, well drained, somewhat excessively drained, and excessively drained, sandy soils; on dissected moraines and till-floored lake plains

Setting

Landform: Dissected moraines and till-floored lake plains Slope range: 8 to 70 percent

Composition

Extent of the association: 2 percent of the survey area
Extent of the soils in the association:
Keweenaw and similar soils-40 percent
Kalkaska and similar soils-30 percent
Waiska and similar soils- 15 percent
Soils of minor extent-15 percent

Soil Properties and Qualities

Keweenaw

Depth class: Very deep
Drainage class: Well drained
Parent material: Sandy till
Texture of the surface layer: Loamy sand
Slope: Moderately sloping to very steep

Kalkaska

Depth class: Very deep
Drainage class: Somewhat excessively drained
Parent material: Sandy outwash
Texture of the surface layer: Sand
Slope: Moderately sloping to very steep

Waiska

Depth class: Very deep
Drainage class: Excessively drained
Parent material: Sandy and gravelly outwash
Texture of the surface layer: Cobbly loamy sand
Slope: Moderately sloping to very steep

Soils of Minor Extent

- Munising and Yalmer soils in nearly level to moderately sloping areas
- Paquin soils in nearly level and gently undulating areas
- Deford and Tawas soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, seedling mortality, and plant competition
Management considerations:

- Skid trails and roads should be located in the less sloping areas between ravines.
- Seeding logging roads helps to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be needed in the very steep areas.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Site preparation helps to control plant competition.

25. Garlic-Alcona-Voelker Association

Very deep, moderately sloping to very steep, well drained, sandy and loamy soils; on dissected moraines and till-floored lake plains

Setting

Landform: Dissected moraines and till-floored lake plains Slope range: 8 to 70 percent

Composition

Extent of the association: 4 percent of the survey area
Extent of the soils in the association:
Garlic and similar soils-50 percent
Alcona and similar soils- 15 percent
Voelker and similar soils- 15 percent
Soils of minor extent-20 percent

Soil Properties and Qualities

Garlic

Depth class: Very deep
Drainage class: Well drained
Parent material: Sandy glaciofluvial sediments
Texture of the surface layer: Fine sand
Slope: Moderately sloping to very steep

Alcona

Depth class: Very deep
Drainage class: Well drained
Parent material: Stratified sandy and loamy glaciolacustrine deposits
Texture of the surface layer: Loamy very fine sand
Slope: Moderately sloping to very steep

Voelker

Depth class: Very deep
Drainage class: Well drained
Parent material: Sandy outwash over loamy glaciolacustrine deposits

Texture of the surface layer: Fine sand
Slope: Moderately sloping to very steep

Soils of Minor Extent

- Frohling, Keweenaw, and Tokiahok soils in landscape positions similar to those of the major soils
- Fence and Yalmer soils in nearly level to moderately sloping areas
- Carbondale and Tawas soils in depressions and drainageways

Use and Management

Major use: Woodland
Management concerns: Erosion hazard, equipment limitations, seedling mortality, and plant competition
Management considerations:

- Skid trails should be located in the less sloping areas between ravines.
- Seeding logging roads helps to prevent excessive soil loss.
- Special logging methods, such as yarding with a cable, may be needed in the very steep areas.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Site preparation helps to control plant competition.

Detailed Soil Map Units

The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of a unit for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. The contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown
on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Munising fine sandy loam, 1 to 6 percent slopes, is a phase of the Munising series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Emmet-Escanaba complex, 1 to 6 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Histosols and Aquents, ponded, is an undifferentiated group in this survey area.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Pits and Dumps, mine (map unit 64), is an example. Table 4 gives the acreage and proportionate extent of each map unit. Other tables give properties of the soils and the limitations, capabilities, and potentials for many uses. The Glossary defines many of the terms used in describing the soils or miscellaneous areas.

10B-Grayling sand, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash plains Shape of areas: Irregular
Size of areas: 25 to 1,000 acres

Typical Profile

Surface layer:

0 to 3 inches-very dark gray sand
Subsoil:
3 to 23 inches-brown and strong brown sand
Substratum:
23 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
Map Unit Composition
Grayling soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross soils in depressions and drainageways
- The moderately well drained Croswell soils in the slightly lower positions on the landscape

Similar components:

- Soils that have a substratum of gravelly sand
- Soils that are darker in the upper part of the subsoil
- Soils that are fine sand throughout

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

10D-Grayling sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash plains
Shape of areas: Irregular
Size of areas: 5 to 150 acres

Typical Profile

Surface layer:
0 to 3 inches-very dark gray sand
Subsoil:
3 to 23 inches-brown and strong brown sand

Substratum:

23 to 80 inches-light brown sand
Soil Properties and Qualities
Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Off-road—slight; on roads and trails—moderate Hazard of soil blowing: Severe

Map Unit Composition

Grayling soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross soils in depressions and drainageways
- The moderately well drained Croswell soils in the lower positions on the landscape

Similar components:

- Soils that are fine sand throughout
- Soils that are darker in the upper part of the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

10E—Grayling sand, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash plains
Shape of areas: Irregular
Size of areas: 5 to 50 acres

Typical Profile

Surface layer:
0 to 3 inches-very dark gray sand

Subsoil:

3 to 23 inches-brown and strong brown sand
Substratum:
23 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Severe

Map Unit Composition
Grayling soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross soils in depressions and drainageways
- The moderately well drained Croswell soils in the lower positions on the landscape

Similar components:

- Soils that are fine sand throughout
- Soils that are darker in the upper part of the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development
Major management concerns: Slope

Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

11C—Deer Park sand, 1 to 10 percent slopes

Setting

Landform: Nearly level to gently sloping areas on beach ridges and dunes
Distinctive landscape features: Beach ridges
Shape of areas: Elongated
Size of areas: 4 to 450 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches-very dark gray sand
Subsurface layer:
3 to 11 inches-pale brown sand
Subsoil:
11 to 28 inches-strong brown and brown sand
Substratum:
28 to 80 inches—pale brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Severe

Map Unit Composition

Deer Park soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross soils in depressions and drainageways
- The moderately well drained Croswell soils in the slightly lower positions on the landscape
- Areas of dunes and beaches adjacent to Lake Superior

Similar components:

- Soils that have a substratum of gravelly sand
- Soils that have a darker brown subsoil and support different vegetative cover

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

11D—Deer Park sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on beach ridges and dunes
Distinctive landscape features: Beach ridges
Shape of areas: Elongated
Size of areas: 6 to 40 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches-very dark gray sand
Subsurface layer:
3 to 11 inches-pale brown sand

Subsoil:

11 to 28 inches-strong brown and brown sand
Substratum:
28 to 80 inches-pale brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained

Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe

Map Unit Composition
Deer Park soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross soils in depressions and drainageways
- The moderately well drained Croswell soils in the lower positions on the landscape

Similar components:

- Soils that have a darker brown subsoil and support different vegetative cover

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

12B—Rubicon sand, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash plains, beach ridges, and outwash terraces
Shape of areas: Irregular
Size of areas: 5 to 1,000 acres

Typical Profile

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches—brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Pelissier soils in landscape positions similar to those of the Rubicon soil

Similar components:

- Soils that are fine sand throughout
- Soils that have a loamy substratum
- Soils that have a seasonal high water table at a depth of 50 to 80 inches

Use and Management

Woodland (fig. 11)

Major management concerns: Equipment limitations, seedling mortality Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity

Figure 11.-A stand of jack pine in an area of Rubicon sand, 0 to 6 percent slopes. The area in the foreground has recently been clearcut. This forest management practice is commonly used for jack pine regeneration.

Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

12D—Rubicon sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash plains, beach ridges, and outwash terraces
Shape of areas: Irregular
Size of areas: 5 to 150 acres

Typical Profile

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand

Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Pelissier soils in landscape positions similar to those of the Rubicon soil

Similar components:

- Soils that are fine sand throughout
- Soils that have a loamy substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope

Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

12E—Rubicon sand, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash plains and outwash terraces
Shape of areas: Irregular
Size of areas: 7 to 60 acres

Typical Profile

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Pelissier soils in landscape positions similar to those of the Rubicon soil

Similar components:

- Soils that are fine sand throughout
- Soils that have a loamy substratum
- Soils that are gravelly sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality

Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

12F—Rubicon sand, 35 to 70 percent slopes

Setting

Landform: Very steep areas on outwash plains and outwash terraces
Shape of areas: Irregular
Size of areas: 15 to 75 acres

Typical Profile

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford soils in depressions and drainageways
- The excessively drained Pelissier soils in landscape positions similar to those of the Rubicon soil

Similar components:

- Soils that are fine sand throughout
- Soils that have a loamy substratum
- Soils that are gravelly sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

13B—Kalkaska sand, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash terraces, outwash plains, and moraines
Shape of areas: Irregular
Size of areas: 15 to 550 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter

Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
Map Unit Composition
Kalkaska soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Paquin and Yalmer soils in landscape positions similar to those of the Kalkaska soil
- The excessively drained Waiska soils in landscape positions similar to those of the Kalkaska soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are fine sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

13D—Kalkaska sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces, outwash plains, and moraines
Shape of areas: Irregular
Size of areas: 20 to 150 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer: 2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe
Map Unit Composition
Kalkaska soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Yalmer soils in landscape positions similar to those of the Kalkaska soil
- The excessively drained Waiska soils in landscape positions similar to those of the Kalkaska soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are fine sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

13E—Kalkaska sand, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash terraces, outwash plains, and moraines Shape of areas: Irregular
Size of areas: 5 to 25 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand

Subsoil:

6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Severe
Map Unit Composition
Kalkaska soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Tokiahok soils in landscape positions similar to those of the Kalkaska soil
- The excessively drained Waiska soils in landscape positions similar to those of the Kalkaska soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are fine sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

13F—Kalkaska sand, 35 to 70 percent slopes

Setting

Landform: Very steep areas on outwash terraces, outwash plains, and moraines Shape of areas: Irregular
Size of areas: 5 to 95 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter

Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Severe

Map Unit Composition

Kalkaska soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Tokiahok soils in landscape positions similar to those of the Kalkaska soil
- The excessively drained Waiska soils in landscape positions similar to those of the Kalkaska soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are fine sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development
 Major management concerns: Slope
 Management considerations:

- Because of the slope, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

14B—Rousseau fine sand, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on till-floored lake plains and outwash plains
Shape of areas: Irregular
Size of areas: 5 to 55 acres

Typical Profile

Surface layer:
0 to 3 inches—black fine sand
Subsurface layer:
3 to 6 inches-brown fine sand
Subsoil:
6 to 27 inches-dark brown and strong brown fine sand
Substratum:
27 to 80 inches-brown fine sand that has thin depositional strata of reddish brown loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Rousseau soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The well drained Ocqueoc soils in landscape positions similar to those of the Rousseau soil

Similar components:

- Soils that are medium sand throughout

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

14D—Rousseau fine sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on till-floored lake plains and outwash plains Shape of areas: Irregular
Size of areas: 5 to 110 acres

Typical Profile

Surface layer:
0 to 3 inches-black fine sand

Subsurface layer:

3 to 6 inches-brown fine sand
Subsoil:
6 to 27 inches-dark brown and strong brown fine sand
Substratum:
27 to 80 inches-brown fine sand that has thin depositional strata of reddish brown loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Severe
Map Unit Composition
Rousseau soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The well drained Ocqueoc soils in landscape positions similar to those of the Rousseau soil

Similar components:

- Soils that are medium sand throughout

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

15A-Croswell sand, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on outwash plains, outwash terraces, and till-floored lake plains
Shape of areas: Irregular
Size of areas: 8 to 300 acres

Typical Profile

Surface layer:
0 to 3 inches-very dark brown sand
Subsurface layer:
3 to 7 inches-pinkish gray sand
Subsoil:
7 to 22 inches-reddish brown and yellowish red sand
22 to 34 inches-strong brown, mottled sand

Substratum:
34 to 70 inches-light brown, mottled sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Croswell soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils on low ridges and knolls
- The somewhat poorly drained Au Gres and poorly drained Deford and Kinross soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly sand
- Soils that have a loamy surface layer and subsoil
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity

Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of this soil can result in the pollution of ground water.

16A—Paquin sand, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on outwash plains, moraines, and till-floored lake plains Shape of areas: Irregular
Size of areas: 5 to 100 acres

Typical Profile

Organic mat:
0 to 4 inches-black, well decomposed forest litter
Surface layer:
4 to 11 inches-reddish gray sand
Subsoil:
11 to 12 inches-dark reddish brown sand
12 to 14 inches-dark reddish brown, strongly cemented sand
14 to 27 inches-brown sand
27 to 36 inches-strong brown, mottled sand
Substratum:
36 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid in the surface layer and in the upper part of the subsoil, moderate or moderately rapid in the middle and lower parts of the subsoil, and rapid in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Paquin soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford soils in depressions and drainageways
- The well drained Garlic soils on low ridges and knolls
- The well drained Voelker and excessively drained Waiska soils in the slightly higher positions on the landscape

Similar components:

- Soils in which the subsoil is less cemented

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of this soil can result in the pollution of ground water.

17A—Au Gres sand, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on outwash plains, outwash terraces, and till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 8 inches-dark reddish gray sand
Subsoil:
8 to 13 inches-dark reddish brown, mottled sand
13 to 27 inches-yellowish red, mottled sand
Substratum:
27 to 80 inches-brown, mottled sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Au Gres soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford and Kinross soils in depressions and drainageways
- The excessively drained Rubicon and moderately well drained Paquin soils on low ridges and knolls

Similar components:

- Soils that are fine sand throughout
- Soils that have a loamy substratum
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of this soil can result in the pollution of ground water.

18-Kinross mucky peat

Setting

Landform: Depressions and drainageways on outwash plains, moraines, and tillfloored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 60 acres

Typical Profile

Surface layer:
0 to 3 inches-black mucky peat
3 to 5 inches-very dark gray muck
Subsurface layer:
5 to 10 inches-light brownish gray, mottled sand
Subsoil:
10 to 30 inches-very dark brown and dark brown, mottled sand
30 to 42 inches-dark yellowish brown, mottled sand

Substratum:

42 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Kinross soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and Finch soils in the slightly higher positions on the landscape
- The very poorly drained Dawson and Greenwood soils in landscape positions similar to those of the Kinross soil
- The excessively drained Rubicon soils on hills and knolls

Similar components:

- Soils that have a substratum of gravelly sand
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

19-Deford muck

Setting

Landform: Depressions and drainageways on outwash plains, moraines, and tillfloored lake plains
Shape of areas: Irregular or elongated
Size of areas: 6 to 40 acres

Typical Profile

Surface layer:
0 to 6 inches—black muck

Substratum:

6 to 30 inches-grayish brown and brown, mottled sand
30 to 80 inches-very dark gray sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Deford soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and moderately well drained Croswell soils in the slightly higher positions on the landscape
- The very poorly drained Tawas soils in the slightly lower positions on the landscape
- The excessively drained Rubicon and Kalkaska soils on hills and knolls

Similar components:

- Soils in which the lower part of the substratum is gravelly sand or gravelly fine sandy loam

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields
 Major management concerns: Ponding
 Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

20B—Rousseau-Ocqueoc fine sands, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash plains and till-floored lake plains
Shape of areas: Irregular
Size of areas: 10 to 500 acres

Typical Profile

Rousseau

Surface layer:
0 to 3 inches-black fine sand

Subsurface layer:
3 to 6 inches—brown fine sand

Subsoil:

6 to 27 inches-dark brown and strong brown fine sand

Substratum:

27 to 80 inches-brown fine sand that has thin depositional strata of reddish brown loamy fine sand

Ocqueoc

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sand
Subsurface layer:
2 to 7 inches-pinkish gray fine sand
Subsoil:
7 to 27 inches-reddish brown and yellowish red fine sand

Substratum:

27 to 33 inches—dark brown loamy fine sand
33 to 80 inches—stratified reddish brown very fine sandy loam and light reddish brown loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rousseau—rapid; Ocqueoc—rapid in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Rousseau-low; Ocqueoc—moderate
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Rousseau soil and similar soils: 50 to 70 percent
Ocqueoc soil and similar soils: 15 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The well drained Alcona soils in landscape positions similar to those of the major soils
- The moderately well drained Croswell soils in the slightly lower positions on the landscape

Similar components:

- Soils that are medium sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Equipment limitations, seedling mortality, plant competition
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Soil blowing, droughtiness

Management considerations:

- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Leaving crop residue on the surface and adding other organic material conserve moisture.

Pasture

Major management concerns: Overgrazing and seasonal droughtiness
Management considerations:

- Proper stocking rates, controlled grazing, and restricted use during dry periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving

Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability
Management considerations:

- The poor filtering capacity of the Rousseau soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Ocqueoc soil.

20D—Rousseau-Ocqueoc fine sands, 6 to 18 percent slopes

Setting
Landform: Gently rolling and rolling areas on outwash plains and till-floored lake plains Shape of areas: Irregular Size of areas: 10 to 300 acres

Typical Profile

Rousseau

Surface layer:
0 to 3 inches—black fine sand
Subsurface layer:
3 to 6 inches-brown fine sand
Subsoil:
6 to 27 inches-dark brown and strong brown fine sand

Substratum:
27 to 80 inches-brown fine sand that has thin depositional strata of reddish brown loamy fine sand

Ocqueoc

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sand
Subsurface layer:
2 to 7 inches-pinkish gray fine sand
Subsoil:
7 to 27 inches-reddish brown and yellowish red fine sand
Substratum:
27 to 33 inches-dark brown loamy fine sand
33 to 80 inches-stratified reddish brown very fine sandy loam and light reddish brown loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rousseau—rapid; Ocqueoc—rapid in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Rousseau-low; Ocqueoc—moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe

Map Unit Composition

Rousseau soil and similar soils: 50 to 70 percent Ocqueoc soil and similar soils: 15 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The well drained Alcona soils in landscape positions similar to those of the major soils

Similar components:

- Soils that are medium sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Land use: Dominant use—woodland; other uses—cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, seasonal droughtiness
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.

Pasture

Major management concerns: Overgrazing and seasonal droughtiness Management considerations:

- Proper stocking rates, controlled grazing, and restricted use during dry periods help to keep the pasture in good condition.

Building site development
Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope, poor filtering capacity, restricted permeability Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- The poor filtering capacity of the Rousseau soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Ocqueoc soil.

20E—Rousseau-Ocqueoc fine sands, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on till-floored lake plains and outwash plains
Shape of areas: Irregular
Size of areas: 10 to 100 acres

Typical Profile

Rousseau

Surface layer:
0 to 3 inches-black fine sand

Subsurface layer:

3 to 6 inches-brown fine sand
Subsoil:
6 to 27 inches-dark brown and strong brown fine sand
Substratum:
27 to 80 inches-brown fine sand that has thin depositional strata of reddish brown loamy fine sand

Ocqueoc

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sand
Subsurface layer:
2 to 7 inches-pinkish gray fine sand
Subsoil:
7 to 27 inches-reddish brown and yellowish red fine sand
Substratum:
27 to 33 inches-dark brown loamy fine sand
33 to 80 inches-stratified reddish brown very fine sandy loam and light reddish brown loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rousseau—rapid; Ocqueoc—rapid in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Rousseau-low; Ocqueoc-moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Severe

Map Unit Composition

Rousseau soil and similar soils: 50 to 70 percent
Ocqueoc soil and similar soils: 15 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford soils in depressions and drainageways
- The well drained Alcona soils in landscape positions similar to those of the major soils

Similar components:

- Soils that are medium sand throughout
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

22B—Alcona loamy very fine sand, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains and ground moraines
Shape of areas: Irregular
Size of areas: 5 to 20 acres

Typical Profile

Organic mat:
0 to 3 inches-black, partially decomposed forest litter

Surface layer:

3 to 9 inches-brown loamy very fine sand
Subsoil:
9 to 18 inches-dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches-reddish brown fine sandy loam and brown loamy fine sand
Substratum:
49 to 63 inches-stratified, reddish brown loamy sand, reddish brown fine sandy loam, and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Alcona soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Ocqueoc and somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Alcona soil
- The poorly drained Deford soil in depressions and drainageways
- The moderately well drained Fence soils in the slightly lower positions on the landscape

Similar components:

- Soils that have a substratum of sand

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Overgrazing, seasonal droughtiness
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

24B—Munising fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on ground moraines and till-floored lake plains Shape of areas: Irregular
Size of areas: 5 to 250 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep

Permeability: Moderate in the surface layer and in the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Munising soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways
- Moderately well drained soils that have bedrock at a depth of 20 to 60 inches; in landscape positions similar to those of the Munising soil

Similar components:

- Soils that have more gravel and cobbles in the surface layer and the upper part of the subsoil
- Soils that are fine sand in the surface layer and the upper part of the subsoil
- Soils that have a substratum of sand

Use and Management

Land use: Dominant use-woodland (fig. 12), other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, compaction, content of organic matter

Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Figure 12.-A hardwood forest in an area of Munising fine sandy loam, 1 to 6 percent slopes. Sugar maple is the dominant tree species.

Pasture

Major management concerns: Seasonal wetness
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

24D—Munising fine sandy loam, 6 to 18 percent slopes

 SettingLandform: Gently rolling and rolling areas on ground moraines and till-floored lake plains
Shape of areas: Irregular
Size of areas: 5 to 125 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam

Substratum:

59 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe
Hazard of soil blowing: Moderate
Map Unit Composition
Munising soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Keweenaw soils in landscape positions similar to those of the Munising soil
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils that have more gravel and cobbles in the surface layer and the upper part of the subsoil
- Soils that are fine sand in the surface layer and the upper part of the subsoil
- Soils that have a substratum of sand

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, compaction, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal wetness
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development
Major management concerns: Cutbanks caving, seasonal wetness, slope

Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, slope Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

25B—Munising-Yalmer complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on ground moraines and till-floored lake plains Shape of areas: Irregular
Size of areas: 10 to 75 acres

Typical Profile

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter

Surface layer:

2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-mottled, very firm, dark reddish gray loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-mottled, very firm, reddish brown fine sandy loam and dark reddish gray loamy fine sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum; Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Munising-slow; Yalmer-very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Munising soil and slight in areas of the Yalmer soil
Hazard of soil blowing: Munising-moderate; Yalmer-severe

Map Unit Composition

Munising soil and similar soils: 55 to 70 percent
Yalmer soil and similar soils: 15 to 30 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- Moderately well drained soils that have bedrock at a depth of 20 to 60 inches; in landscape positions similar to those of the major soils
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways
- The excessively drained Kalkaska and Waiska soils in landscape positions similar to those of the major soils
Similar components:
- Soils that have more gravel and cobbles in the surface layer and the upper part of the subsoil
- Soils that have a substratum of sand

Use and Management

Land use: Dominant uses-woodland, pasture; other use-cropland

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- In areas of the Munising soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Pasture
Major management concerns: Overgrazing, compaction

Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter, seasonal droughtiness
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

25D—Munising-Yalmer complex, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on ground moraines and till-floored lake plains
Shape of areas: Irregular
Size of areas: 10 to 44 acres

Typical Profile

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam

Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-mottled, very firm, dark reddish gray loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-mottled, very firm, reddish brown fine sandy loam and dark reddish gray loamy fine sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum; Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe in areas of the
Munising soil and moderate in areas of the Yalmer soil
Hazard of soil blowing: Munising-moderate; Yalmer-severe

Map Unit Composition

Munising soil and similar soils: 55 to 70 percent
Yalmer soil and similar soils: 15 to 30 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways
- The excessively drained Kalkaska and Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Soils that have more gravel and cobbles in the surface layer and the upper part of the subsoil
- Soils that have a substratum of sand

Use and Management

Land use: Dominant uses-woodland, pasture; other use-cropland

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Pasture

Major management concerns: Overgrazing, compaction
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter, seasonal droughtiness
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, slope Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

26A-Skanee cobbly fine sandy loam, 0 to 3 percent slopes, stony

Setting

Landform: Nearly level areas on ground moraines and till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-very dark gray cobbly fine sandy loam
Subsurface layer:
4 to 7 inches-grayish brown, mottled cobbly fine sandy loam
Subsoil:
7 to 12 inches-brown sandy loam
12 to 14 inches-reddish brown, mottled, very firm loamy sand and sandy loam
14 to 30 inches-reddish brown, mottled, very firm sandy clay loam and fine sandy loam
Substratum:
30 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow
in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Skanee soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising soils on knolls and the poorly drained Gay soils in depressions and drainageways
- The somewhat poorly drained Zeba soils, which have bedrock at a depth of 20 to 40 inches; in landscape positions similar to those of the Skanee soil
Similar components:
- Soils that are sand in the surface layer and the upper part of the subsoil
- Soils that have a substratum of sand

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition

Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or winter, when the soil has an adequate snow cover.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Nutrient loss, seasonal wetness, tilth, compaction, content of organic matter
Management considerations:

- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Shallow surface ditches help to remove surface water after heavy rains.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal wetness
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Seasonal wetness, cutbanks caving Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

27-Gay muck, stony

Setting

Landform: Depressions and drainageways on ground moraines and till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 300 acres

Typical Profile

Surface layer:
0 to 2 inches—black muck
2 to 5 inches-very dark grayish brown fine sandy loam
Subsurface layer:
5 to 18 inches—brown, mottled loamy sand
Subsoil:
18 to 31 inches-reddish brown, mottled sandy loam
Substratum:
31 to 80 inches—reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Gay soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising soils on knolls
- The somewhat poorly drained Skanee soils in the slightly higher positions on the landscape
- The poorly drained Jacobsville and very poorly drained Cathro soils in landscape positions similar to those of the Gay soil

Similar components:

- Soils that have a substratum of sand, gravelly sand, or stratified silt loam to find sand
- Soils that are slightly alkaline in the substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

28B—Keweenaw loamy sand, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains and moraines
Shape of areas: Irregular
Size of areas: 5 to 300 acres

Typical Profile

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand

Subsoil:

3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 36 inches-reddish brown loamy sand and light reddish brown sand
36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Slight

Hazard of soil blowing: Moderate

Map Unit Composition

Keweenaw soil and similar soils: 85 to 95 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising and Yalmer soils in landscape positions similar to those of the Keweenaw soil
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are sand throughout

Use and Management

Woodland

Major management concerns: Plant competition
Management considerations:

- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: None

28D—Keweenaw loamy sand, 6 to 18 percent slopes Setting

Landform: Gently rolling and rolling areas on till-floored lake plains and moraines Shape of areas: Irregular
Size of areas: 8 to 150 acres

Typical Profile

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches—reddish brown loamy sand
Subsoil:
3 to 25 inches—dark reddish brown and reddish brown loamy sand
25 to 36 inches—reddish brown loamy sand and light reddish brown sand
36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid

Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Keweenaw soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising and Yalmer soils in landscape positions similar to those of the Keweenaw soil
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
Similar components:
- Soils that are sand throughout

Use and Management

Woodland

Major management concerns: Erosion hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

28E—Keweenaw loamy sand, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on till-floored lake plains and moraines
Shape of areas: Irregular
Size of areas: 12 to 50 acres

Typical Profile

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 36 inches-reddish brown loamy sand and light reddish brown sand
36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keweenaw soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the Keweenaw soil
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are sand throughout

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

29B-Yalmer fine sand, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on ground moraines and till-floored lake plains Shape of areas: Irregular
Size of areas: 15 to 350 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-mottled, very firm, dark reddish gray loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-mottled, very firm, reddish brown fine sandy loam and dark reddish gray loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid in the surface layer and the upper part of the subsoil and very
slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Yalmer soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Kalkaska soils in landscape positions similar to those of the Yalmer soil
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils that are fine sandy loam in the surface layer and the upper part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, seasonal droughtiness, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal droughtiness
Management considerations:

- Proper stocking rates, controlled grazing, and restricted use during dry periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
Septic tank absorption fields
Major management concerns: Seasonal wetness, restricted permeability

Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

29D-Yalmer fine sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on ground moraines and till-floored lake plains
Shape of areas: Irregular
Size of areas: 25 to 90 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-mottled, very firm, dark reddish gray loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-mottled, very firm, reddish brown fine sandy loam and dark reddish gray loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe

Map Unit Composition

Yalmer soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent
Components of Minor Extent
Dissimilar components:

- The excessively drained Kalkaska and well drained Tokiahok soils in landscape positions similar to those of the Yalmer soil
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils that are fine sandy loam in the surface layer and the upper part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, seasonal droughtiness, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal droughtiness
Management considerations:

- Proper stocking rates, controlled grazing, and restricted use during dry periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields
 Major management concerns: Seasonal wetness, restricted permeability, slope
 Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

31D—Trenary silt loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on ground moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches—reddish gray silt loam
Subsoil:
5 to 15 inches—dark reddish brown silt loam and reddish brown fine sandy loam
15 to 21 inches-brown and reddish brown, very firm fine sandy loam
21 to 48 inches—reddish brown loamy fine sand and fine sandy loam
Substratum:
48 to 80 inches—reddish brown cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Trenary soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Shoepac and somewhat poorly drained Charlevoix soils in the lower positions on the landscape
- The well drained Keweenaw soils in landscape positions similar to those of the Trenary soil
- The poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have a substratum of sand or gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Carefully managed reforestation helps to control undesirable understory plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope, restricted permeability Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

32A—Charlevoix silt loam, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on fluted ground moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 140 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 3 inches-very dark gray silt loam
Subsurface layer:
3 to 8 inches-brown silt loam
Subsoil:
8 to 12 inches-brown, mottled silt loam
12 to 28 inches-reddish brown, mottled fine sandy loam
Substratum:
28 to 80 inches-reddish brown, mottled cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer
Available water capacity: Moderate

Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Charlevoix soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Sundell soils in landscape positions similar to those of the Charlevoix soil
- The moderately well drained Shoepac soils in the slightly higher positions on the landscape
- The poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have more gravel and cobbles in the surface layer and subsoil
- Soils that are sand in the upper 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Seasonal wetness
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness
Management considerations:

- Mounding or adding suitable fill material helps to raise the absorption field above the water table.

33-Ensley muck

Setting

Landform: Depressions and drainageways on fluted ground moraines and drumlinized ground moraines
Shape of areas: Elongated or oval
Size of areas: 5 to 60 acres

Typical Profile

Surface layer:
0 to 5 inches-black muck
Subsurface layer:
5 to 7 inches—black mucky loam
Subsoil:
7 to 19 inches-brown, mottled fine sandy loam
Substratum:
19 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Ensley soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet soils on hills and knolls
- The somewhat poorly drained Solona soils in the slightly higher positions on the landscape
- The very poorly drained Cathro soils in the lower positions on the landscape

Similar components:

- Soils in which the surface layer is 9 to 15 inches thick
- Soils that have bedrock at a depth of 40 to 80 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only when skid roads and access roads are frozen or when the snow cover is adequate.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

34B—Onaway fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlins and ground moraines Shape of areas: Oval or irregular Size of areas: 15 to 500 acres

Typical Profile

Organic mat:
0 to 3 inches—black, partially decomposed forest litter

Surface layer:

 3 to 6 inches—brown fine sandy loamSubsoil:
6 to 13 inches-brown fine sandy loam
13 to 18 inches-dark brown sandy clay loam
18 to 25 inches-brown gravelly fine sandy loam
Substratum:
25 to 80 inches-light brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil and moderately slow in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Onaway soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Escanaba, Nadeau, and Cunard soils in landscape positions similar to those of the Onaway soil
- The somewhat poorly drained Solona and poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have less than 18 percent clay in the argillic horizon

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, compaction
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development
Major management concerns: None

Septic tank absorption fields
 Major management concerns: Restricted permeability
 Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

34D—Onaway fine sandy loam, 6 to 18 percent slopes

 SettingLandform: Moderately sloping and strongly sloping areas on drumlins and ground moraines
Shape of areas: Oval or irregular
Size of areas: 5 to 150 acres

Typical Profile

Organic mat:
0 to 3 inches-black, partially decomposed forest litter

Surface layer:

3 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-brown fine sandy loam
13 to 18 inches-dark brown sandy clay loam
18 to 25 inches-brown gravelly fine sandy loam
Substratum:
25 to 80 inches-light brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil and moderately slow in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Onaway soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Escanaba and Nadeau soils in landscape positions similar to those of the Onaway soil
- The poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have less than 18 percent clay in the argillic horizon

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture
 Major management concerns: Erosion, compaction
 Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Slope
Management considerations:

- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

34E—Onaway fine sandy loam, 18 to 35 percent slopes

Setting

Landform: Steep areas on drumlins and ground moraines
Shape of areas: Oval or irregular
Size of areas: 5 to 90 acres

Typical Profile

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-brown fine sandy loam
13 to 18 inches-dark brown sandy clay loam
18 to 25 inches-brown gravelly fine sandy loam
Substratum:
25 to 80 inches-light brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil and
moderately slow in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Onaway soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Escanaba and Nadeau soils in landscape positions similar to those of the Onaway soil
- The poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have less than 18 percent clay in the argillic horizon

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

35B-Champion cobbly fine sandy loam, 1 to 6 percent slopes, very stony

Setting
Landform: Gently undulating areas on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 350 acres
\section*{Typical Profile}
Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 26 inches-dark reddish brown and reddish brown cobbly fine sandy loam
26 to 36 inches-reddish brown, mottled, very firm gravelly sandy loam
36 to 43 inches-brown, mottled, very firm gravelly loamy sand
Substratum:
43 to 80 inches-brown gravelly loamy sand
\section*{Soil Properties and Qualities}
Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderately rapid in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Champion soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways
- The well drained Sundog soils in landscape positions similar to those of the Champion soil

Similar components:

- Soils that have igneous and metamorphic bedrock at a depth of 40 to 60 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

35D—Champion cobbly fine sandy loam, 6 to 18 percent slopes, very stony

Setting
Landform: Gently rolling and rolling areas on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 20 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 26 inches-dark reddish brown and reddish brown cobbly fine sandy loam
26 to 36 inches-reddish brown, mottled, very firm gravelly sandy loam
36 to 43 inches-brown, mottled, very firm gravelly loamy sand
Substratum:
43 to 80 inches-brown gravelly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow
in the lower part of the subsoil, and moderately rapid in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Champion soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Net soils in depressions and drainageways
- The well drained Keewaydin and Sundog soils in landscape positions similar to those of the Champion soil

Similar components:

- Soils that have igneous and metamorphic bedrock at a depth of 40 to 60 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, slope Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

36A-Net cobbly very fine sandy loam, 0 to 3 percent slopes, very stony

Setting

Landform: Nearly level areas on bedrock-controlled moraines and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-pinkish gray cobbly very fine sandy loam
Subsoil:
5 to 18 inches-dark brown and reddish brown, mottled cobbly very fine sandy loam
18 to 45 inches-brown, mottled, very firm gravelly fine sandy loam
Substratum:
45 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum

Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Net soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils on knolls
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have more cobbles and stones in the surface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

37-Witbeck very stony muck, extremely bouldery

Setting

Landform: Depressions and drainageways on bedrock-controlled moraines and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Surface layer:
0 to 8 inches-black very stony muck
Subsurface layer:
8 to 15 inches-gray very stony fine sandy loam and greenish gray, mottled very stony very fine sandy loam
Subsoil:
15 to 24 inches—dark olive gray, mottled very stony fine sandy loam and olive gray, mottled gravelly fine sandy loam

Substratum:

24 to 80 inches-dark gray, mottled gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 3 to 10 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Witbeck soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Net soils in the slightly higher positions on the landscape
- The well drained Keewaydin soils on knolls

Similar components:

- Soils in which the substratum is stratified sand and gravelly sand
- Soils in which the organic surface layer is more than 15 inches thick

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of low strength, suitable surfacing material is needed on year-round logging roads and landings. Culverts are needed to maintain the natural drainage system.
- Large stones and boulders on the surface can hinder harvesting operations and damage equipment.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.

Building site development
 Major management concerns: Ponding
 Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

38B—Pence fine sandy loam, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash terraces and outwash plains Shape of areas: Irregular or elongated Size of areas: 5 to 600 acres

Typical Profile

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-dark brown and brown fine sandy loam
13 to 16 inches-strong brown loamy coarse sand
16 to 31 inches-dark yellowish brown coarse sand
Substratum:
31 to 80 inches-dark yellowish brown and yellowish brown, stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid or very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Pence soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways
- The well drained Sundog soils in landscape positions similar to those of the Pence soil

Similar components:

- Soils that have more gravel in the subsoil
- Soils that have a surface layer of sand or loamy sand

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

38D—Pence fine sandy loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces and outwash plains Shape of areas: Irregular or elongated
Size of areas: 5 to 50 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-dark brown and brown fine sandy loam
13 to 16 inches-strong brown loamy coarse sand
16 to 31 inches-dark yellowish brown coarse sand
Substratum:
31 to 80 inches-dark yellowish brown and yellowish brown, stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid or very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Pence soil and similar soils: 85 to 90 percent Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways
- The well drained Sundog soils in landscape positions similar to those of the Pence soil

Similar components:

- Soils that have more gravel in the subsoil
- Soils that have a surface layer of sand or loamy sand

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land.

Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

38E—Pence fine sandy loam, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash terraces and outwash plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-dark brown and brown fine sandy loam
13 to 16 inches-strong brown loamy coarse sand
16 to 31 inches-dark yellowish brown coarse sand

Substratum:

31 to 80 inches-dark yellowish brown and yellowish brown, stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid or very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Pence soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways
- The excessively drained Rubicon soils in landscape positions similar to those of the Pence soil

Similar components:

- Soils that have more gravel in the subsoil
- Soils that have a surface layer of sand or loamy sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on
the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

39B—Amasa very fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash plains, outwash terraces, and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 100 acres

Typical Profile

Surface layer:

0 to 2 inches—black very fine sandy loam
Subsurface layer:
2 to 5 inches—brown very fine sandy loam
Subsoil:
5 to 16 inches—dark brown very fine sandy loam
Substratum:
16 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsoil and rapid or very rapid in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Amasa soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Amasa soil
- The poorly drained Deford and Minocqua soils in depressions and drainageways
- The moderately well drained Chabeneau soils in the slightly lower positions on the landscape
Similar components:
- Soils that have fewer cobbles and pebbles in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

39D—Amasa very fine sandy loam, 6 to 18 percent slopes Setting
 Landform: Gently rolling and rolling areas on outwash plains, outwash terraces, and disintegration moraines
 Shape of areas: Irregular or elongated
 Size of areas: 15 to 200 acres

Typical Profile

Surface layer:
0 to 2 inches-black very fine sandy loam
Subsurface layer:
2 to 5 inches-brown very fine sandy loam
Subsoil:
5 to 16 inches-dark brown very fine sandy loam
Substratum:
16 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsoil and rapid or very rapid in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Amasa soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Amasa soil
- The poorly drained Deford and Minocqua soils in depressions and drainageways
- The moderately well drained Chabeneau soils in the lower landscape positions

Similar components:

- Soils that have fewer cobbles and pebbles in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

39E—Amasa very fine sandy loam, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash plains, outwash terraces, and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Surface layer:
0 to 2 inches-black very fine sandy loam
Subsurface layer:
2 to 5 inches—brown very fine sandy loam
Subsoil:
5 to 16 inches-dark brown very fine sandy loam

Substratum:

16 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsoil and rapid or very rapid in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate
Map Unit Composition
Amasa soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Amasa soil
- The poorly drained Deford and Minocqua soils in depressions and drainageways
- The moderately well drained Chabeneau soils in the lower landscape positions

Similar components:

- Soils that have fewer cobbles and pebbles in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

40B—Waiska cobbly loamy sand, 0 to 6 percent slopes

Setting

Landform: Nearly level and undulating areas on outwash terraces and outwash plains Shape of areas: Irregular or elongated
Size of areas: 10 to 500 acres

Typical Profile

Surface layer:
0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches—reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Waiska soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Waiska soil
- The poorly drained Minocqua and Deford soils in depressions and drainageways

Similar components:

- Soils that have fewer cobbles and pebbles in the substratum

Use and Management

Woodland

Major management concerns: None

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

40D—Waiska cobbly loamy sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces and outwash plains Shape of areas: Irregular or elongated
Size of areas: 10 to 150 acres

Typical Profile

Surface layer:
0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability:Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Waiska soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the Waiska soil
- Deford and Minocqua soils in depressions and drainageways

Similar components:

- Soils that have fewer cobbles and pebbles in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns:
Management considerations: Poor filtering capacity, slope

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

41A-Channing fine sandy loam, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on outwash terraces and outwash plains
Shape of areas: Irregular or elongated
Size of areas: 45 to 50 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches-dark reddish brown fine sandy loam
Subsurface layer:
5 to 9 inches-reddish gray, mottled very fine sandy loam
Subsoil:
9 to 18 inches-brown, mottled very fine sandy loam

18 to 22 inches-brown, mottled fine sandy loam
22 to 28 inches-strong brown, mottled gravelly sand

Substratum:

28 to 80 inches-brown gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Channing soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross and Minocqua soils in depressions and drainageways
- The somewhat excessively drained Pence soils on ridges and knolls
- The moderately well drained Chabeneau soils in the slightly higher positions on the landscape

Similar components:

- Soils that are sand or loamy sand in the surface layer and subsurface layer
- Soils that have a seasonal high water table at a depth of 40 to 80 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of this soil can result in the pollution of ground water.

42-Minocqua muck

Setting

Landform: Depressions and drainageways on outwash terraces and outwash plains Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres

Typical Profile

Organic mat:
0 to 2 inches-dark brown, undecomposed sphagnum moss
Surface layer:
2 to 5 inches—black muck
5 to 7 inches-very dark gray mucky fine sandy loam
Subsurface layer:
7 to 11 inches-dark grayish brown, mottled fine sandy loam
11 to 18 inches-grayish brown, mottled very fine sandy loam
Subsoil:
18 to 23 inches-dark grayish brown, mottled fine sandy loam
Substratum:
23 to 80 inches-dark grayish brown gravelly coarse sand
Soil Properties and Qualities
Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Low
Drainage class: Poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Minocqua soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing soils in the slightly higher positions on the landscape
- The very poorly drained Tawas soils in landscape positions similar to those of the Minocqua soil
- The well drained Sundog soils on knolls and ridges

Similar components:

- Soils that are sand in the subsurface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding

Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

43B—Karlin sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash terraces, outwash plains, and disintegration moraines
Shape of areas: Irregular
Size of areas: 10 to 450 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-brown sandy loam
Subsoil:
4 to 15 inches-dark brown and brown sandy loam
15 to 29 inches-brown sand
Substratum:
29 to 80 inches-yellowish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat excessively drained

Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Karlin soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford soils in depressions and drainageways
- The moderately well drained Chabeneau soils in the slightly lower positions on the landscape

Similar components:

- Soils that are sand in the surface layer and the upper part of the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

43D—Karlin sandy loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces, outwash plains, and disintegration moraines
Shape of areas: Irregular
Size of areas: 5 to 80 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches—brown sandy loam

Subsoil:
4 to 15 inches-dark brown and brown sandy loam
15 to 29 inches-brown sand
Substratum:
29 to 80 inches-yellowish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil
and rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Karlin soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford soils in depressions and drainageways
- The moderately well drained Chabeneau soils in the lower positions on the landscape

Similar components:

- Soils that are sand in the surface layer and subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope

Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

44B-Carlshend fine sandy loam, 1 to 6 percent slopes, stony

Setting
Landform: Gently undulating areas on sandstone benches
Shape of areas: Irregular
Size of areas: 20 to 50 acres
\section*{Typical Profile}
Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches-dark reddish gray fine sandy loam
Subsoil:
3 to 14 inches-dark reddish brown fine sandy loam
Bedrock:
14 to 25 inches-yellowish brown, mottled, weathered sandstone 25 inches-pale brown and light gray sandstone

Soil Properties and Qualities

Depth class: Shallow to sandstone bedrock
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails—moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Carlshend soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising soils in landscape positions similar to those of the Carlshend soil
- The somewhat poorly drained Zeba and poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils that have sandstone bedrock at a depth of more than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, cutbanks caving, seasonal wetness Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness

Management considerations:

- Because of wetness and the depth to bedrock, this soil is poorly suited to use as a site for septic tank absorption fields. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material that raises the site a sufficient distance above the bedrock and the water table can help to overcome these limitations.

45A—Zeba cobbly fine sandy loam, 0 to 3 percent slopes, very stony

Setting
Landform: Nearly level areas on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres
\section*{Typical Profile}
Organic mat:
0 to 4 inches—black, well decomposed forest litter
Surface layer:
4 to 10 inches-reddish gray cobbly fine sandy loam
Subsoil:
10 to 14 inches-reddish brown, mottled cobbly fine sandy loam
14 to 31 inches-mottled, brown loamy sand and reddish brown sandy loam
Bedrock:
31 inches-very dusky red sandstone bedrock

Soil Properties and Qualities

Depth class: Moderately deep to sandstone bedrock
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Zeba soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Onota soils on knolls
- The moderately well drained Chocolay and Carlshend soils in the slightly higher positions on the landscape
- The poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches
- Soils that have a subsoil of gravelly sand

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Depth to bedrock, seasonal wetness Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above bedrock and the water table.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness
Management considerations:

- Because of wetness and the depth to bedrock, this soil is poorly suited to use as a site for septic tank absorption fields. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding
with a suitable filtering material that raises the site a sufficient distance above the bedrock and the water table can help to overcome these limitations.

46—Jacobsville muck, very stony

Setting

Landform: Depressions and drainageways on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 8 to 350 acres

Typical Profile

Surface layer:
0 to 4 inches-black muck
Subsurface layer:
4 to 9 inches-dark gray, mottled loam
Subsoil:
9 to 16 inches-reddish brown, mottled sandy loam
Substratum:
16 to 25 inches-reddish brown, mottled sandy loam
25 to 28 inches-reddish brown, mottled, soft weathered sandstone
Bedrock:
28 inches-reddish brown sandstone

Soil Properties and Qualities

Depth class: Moderately deep to sandstone bedrock
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Jacobsville soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Zeba soils in the slightly higher positions on the landscape
- The moderately well drained Chocolay and Sauxhead soils on knolls

Similar components:

- Soils that have a substratum of gravelly sand
- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition

Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Depth to bedrock, ponding
Management considerations:

- Because of the depth to bedrock and ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Depth to bedrock, ponding Management considerations:

- Because of the depth to bedrock and ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

48-Burt muck

Setting

Landform: Depressions and drainageways on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 5 to 300 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 5 inches—black muck
5 to 7 inches—black mucky loamy sand
Subsurface layer:
7 to 8 inches—reddish gray, mottled gravelly sand
Subsoil:
8 to 18 inches—dark reddish brown, mottled gravelly sand
Bedrock:
18 inches-dark reddish brown sandstone

Soil Properties and Qualities

Depth class: Shallow to sandstone bedrock
Permeability: Rapid
Available water capacity: Very low
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded

Flooding: None

Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Burt soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Jeske and Zeba soils in the slightly higher positions on the landscape
- The excessively drained Buckroe and Yellowdog soils in the higher positions on the landscape

Similar components:

- Soils that have bedrock at a depth of more than 20 inches
- Soils that have a loamy subsurface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of the depth to bedrock and ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of the depth to bedrock and ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

50A—Sundell loam, 0 to 3 percent slopes

Setting

Landform: Depressions and drainageways on ground moraines over limestone, dolomite, or dolomitic sandstone

Shape of areas: Irregular or elongated
Size of areas: 8 to 30 acres

Typical Profile

Organic mat:
0 to 1 inch-well decomposed forest litter
Surface layer:
1 to 8 inches—black, mottled loam
Subsurface layer:
8 to 11 inches-brown and black, mottled fine sandy loam
Subsoil:
11 to 17 inches-brown, mottled fine sandy loam
Substratum:
17 to 22 inches-light brown, mottled gravelly fine sandy loam
Bedrock:
22 inches-pale brown dolomite

Soil Properties and Qualities

Depth class: Moderately deep to dolomite, dolomitic sandstone, or limestone
Permeability: Moderate
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Sundell soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Nahma soils in the slightly lower positions on the landscape
- Moderately well drained soils in the slightly higher positions on the landscape
- The well drained Cunard soils on knolls

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Depth to bedrock, seasonal wetness
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above bedrock and the water table.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness
Management considerations:

- Because of seasonal wetness and the depth to bedrock, this soil is poorly suited to use as a site for septic tank absorption fields. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

51-Nahma muck

Setting

Landform: Depressions and drainageways on ground moraines
Shape of areas: Irregular
Size of areas: 8 to 150 acres

Typical Profile

Surface layer:
0 to 11 inches—black muck
Subsurface layer:
11 to 14 inches-very dark grayish brown mucky loam
Subsoil:
14 to 17 inches—dark gray, mottled loam
17 to 19 inches-brown, mottled loam

Substratum:

19 to 24 inches-brown, mottled gravelly fine sandy loam
Bedrock:
24 inches-dolomitic sandstone

Soil Properties and Qualities

Depth class: Moderately deep to dolomitic sandstone, dolomite, or limestone
Permeability: Moderate
Available water capacity: Low
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Nahma soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Sundell and Solona soils in the slightly higher positions on the landscape
- The very poorly drained Chippeny and Carbondale soils in landscape positions similar to those of the Nahma soil

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of ponding and the depth to bedrock, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of ponding and the depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

52B—Summerville fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 85 acres

Typical Profile

Surface layer:

0 to 5 inches-very dark grayish brown fine sandy loam
Subsoil:
5 to 13 inches—dark brown fine sandy loam
Bedrock:
13 inches-pale brown dolomitic sandstone

Soil Properties and Qualities

Depth class: Shallow to dolomitic sandstone, dolomite, or limestone Permeability: Moderate
Available water capacity: Very low
Drainage class: Well drained

Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Summerville soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Sundell and poorly drained Nahma soils in depressions and drainageways
- The well drained Emmet soils in landscape positions similar to those of the Summerville soil

Similar components:

- Soils that have bedrock at a depth of more than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- The depth to bedrock should be considered when road locations and landing sites are planned.
- Because of the depth to bedrock, planting is not practical on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Depth to bedrock
Management considerations:

- Excavation is hampered by the limited depth to bedrock.

Septic tank absorption fields

Major management concerns: Depth to bedrock
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the limited depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

55F-Michigamme-Rock outcrop complex, 25 to 70 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines over igneous and metamorphic bedrock

Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 6 to 2,000 acres

Typical Profile

Michigamme

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 5 inches—dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 24 inches—dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Michigamme

Depth class: Moderately deep to igneous or metamorphic bedrock
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart Permeability: Moderate
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Rapid
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Michigamme soil and similar soils: 55 to 80 percent
Rock outcrop: 10 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keewaydin and Schweitzer soils in landscape positions similar to those of the Michigamme soil
- The moderately well drained Dishno soils in areas that have slopes of less than 18 percent
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Rock outcrops and boulders may interfere with the use of harvesting equipment and the placement of haul roads.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

56D—Peshekee-Rock outcrop complex, 6 to 18 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines over igneous and metamorphic bedrock
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 5 to 60 acres

Typical Profile

Peshekee

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches—dark brown cobbly very fine sandy loam
Subsurface layer:
3 to 5 inches-reddish gray cobbly very fine sandy loam
Subsoil:
5 to 14 inches—dark reddish brown cobbly very fine sandy loam
Bedrock:
14 inches-granite

Soil Properties and Qualities

Peshekee

Depth class: Shallow to igneous or metamorphic bedrock
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Very low

Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Hazard of water erosion: Off-road—slight; on roads and trails-severe
Hazard of soil blowing: Moderate
Map Unit Composition
Peshekee soil and similar soils: 30 to 55 percent
Rock outcrop: 30 to 55 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Dishno and somewhat excessively drained Ishpeming soils in landscape positions similar to those of the Peshekee soil
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 20 inches
- Soils in areas where the surface stones and boulders are 1 to 3 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the slope, the depth to bedrock, the large boulders, and the rock outcrops, logging operations are not practical in areas of this map unit.

Building site development

Major management concerns: Depth to bedrock, slope
Management considerations:

- Excavation is hampered by the depth to bedrock.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Depth to bedrock, slope
Management considerations:

- This map unit is generally unsuited to use as a site for septic tank absorption fields because of the limited depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies.

56E—Peshekee-Rock outcrop complex, 18 to 35 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines over igneous and metamorphic bedrock
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 5 to 150 acres

Typical Profile

Peshekee

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches—dark brown cobbly very fine sandy loam

Subsurface layer:

3 to 5 inches—reddish gray cobbly very fine sandy loam
Subsoil:
5 to 14 inches—dark reddish brown cobbly very fine sandy loam
Bedrock:
14 inches-granite

Soil Properties and Qualities

Peshekee

Depth class: Shallow to igneous or metamorphic bedrock
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Very low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Peshekee soil and similar soils: 30 to 55 percent
Rock outcrop: 30 to 55 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming soils in landscape positions similar to those of the Peshekee soil
- The moderately well drained Dishno soils in areas that have slopes of less than 18 percent
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 20 inches
- Soils in areas where the surface stones and boulders are less than 1 to 3 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the slope, the depth to bedrock, large boulders, and the rock outcrop, logging operations are not practical in areas of this map unit.

Building site development

Major management concerns: Slope

Management considerations:

- Because of the slope, this map unit is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

56F—Peshekee-Rock outcrop complex, 35 to 70 percent slopes, very bouldery

Setting

Landform: Very steep areas on bedrock-controlled moraines over igneous and metamorphic bedrock
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 8 to 1,000 acres

Typical Profile

Peshekee

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches—dark brown cobbly very fine sandy loam
Subsurface layer:
3 to 5 inches-reddish gray cobbly very fine sandy loam
Subsoil:
5 to 14 inches—dark reddish brown cobbly very fine sandy loam

Bedrock:

14 inches-granite

Soil Properties and Qualities

Peshekee
Depth class: Shallow to igneous or metamorphic bedrock
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Very low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Peshekee soil and similar soils: 30 to 55 percent
Rock outcrop: 30 to 55 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming soils in landscape positions similar to those of the Peshekee soil
- The moderately well drained Dishno soils in areas that have slopes of less than 18 percent
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 20 inches
- Soils in areas where the surface stones and boulders are less than 1 to 3 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the slope, the depth to bedrock, large boulders, and the rock outcrops, logging operations are not practical in areas of this map unit.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

57-Carbondale and Tawas soils

Setting

Landform: Depressions and drainageways on moraines, outwash plains, and tillfloored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 3,000 acres

Typical Profile

Carbondale

Surface tier:
0 to 6 inches-black muck
Subsurface tier:
6 to 38 inches-black muck
Bottom tier:
38 to 80 inches-black mucky peat

Tawas

Surface tier:
0 to 6 inches—black muck
Subsurface tier:
6 to 25 inches-black muck

Substratum:
25 to 80 inches-grayish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Carbondale—moderately slow to moderately rapid; Tawas—moderately slow to moderately rapid in the surface and subsurface tiers and rapid in the substratum
Available water capacity: Very high
Drainage class: Very poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Carbondale soil and similar soils: 20 to 80 percent
Tawas soil and similar soils: 10 to 75 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Deford and Ensley soils near the edges of the mapped areas
- Moderately well drained, sandy and loamy soils on low knolls
- Excessively drained to well drained, sandy soils and well drained, loamy soils on ridges and knolls

Similar components:

- Tawas soils that have a loamy substratum
- Carbondale soils that have a bottom tier of muck

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted in areas of this map unit.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding, excess humus, low strength
Management considerations:

- Because of ponding and the instability of the organic material, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, excess humus, low strength, restricted permeability
Management considerations:

- Because of ponding, restricted permeability, and the instability of the organic material, these soils are generally unsuited to use as sites for septic tank absorption fields.

58-Greenwood and Dawson soils

Setting

Landform Closed depressions on outwash plains, till-floored lake plains, and moraines Shape of areas: Oval or irregular
Size of areas: 5 to 600 acres

Typical Profile

Greenwood

Surface tier:
0 to 8 inches-dark brown peat
Subsurface tier:
8 to 11 inches-black muck
Bottom tier:
11 to 65 inches-very dark brown mucky peat
65 to 80 inches-dark brown mucky peat

Dawson

Surface tier:

0 to 6 inches-dark brown peat
Subsurface tier:
6 to 11 inches-black muck
11 to 34 inches-very dark brown muck

Substratum:

34 to 36 inches-black sand
36 to 80 inches-dark grayish brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Greenwood—moderate or moderately rapid; Dawson—moderately slow
to moderately rapid in the surface and subsurface tiers and rapid in the substratum
Available water capacity: Very high
Drainage class: Very poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Greenwood soil and similar soils: 50 to 85 percent
Dawson soil and similar soils: 10 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Kinross and somewhat poorly drained Au Gres soils in the slightly higher positions at the edges of the mapped areas
- The moderately well drained Croswell and Paquin soils on low knolls
- The excessively drained Rubicon soils on ridges and knolls

Similar components:

- Greenwood soils that have a bottom tier of muck

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- These soils are generally unsuited to woodland management because of the extreme acidity, the instability of the organic matter, and the wetness. Overcoming these limitations is not practical.

Building site development

Major management concerns: Ponding, excess humus, low strength, subsidence Management considerations:

- Because of ponding and the instability of the organic material, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, excess humus, low strength, subsidence, restricted permeability
Management considerations:

- Because of ponding, restricted permeability, and the instability of the organic material, these soils are generally unsuited to use as sites for septic tank absorption fields.

59-Chippeny and Nahma mucks

Setting

Landform: Depressions and drainageways on moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 250 acres

Typical Profile

Chippeny

Surface tier:
0 to 6 inches-black muck
Subsurface tier:
6 to 29 inches—black muck
Substratum:
29 to 33 inches—very dark gray silt loam
33 to 38 inches-gray silt loam
Bedrock:
38 inches-gray limestone
Nahma
Surface layer:
0 to 11 inches-black muck

Subsurface layer:
11 to 14 inches-very dark grayish brown mucky loam
Subsoil:
14 to 17 inches-dark gray, mottled loam
17 to 19 inches-brown, mottled loam
Substratum:
19 to 24 inches-brown, mottled gravelly fine sandy loam
Bedrock:
24 inches-dolomitic sandstone

Soil Properties and Qualities

Depth class: Moderately deep to limestone, dolomite, or dolomitic sandstone
Permeability: Chippeny-moderately slow to moderately rapid in the surface layer and subsoil and moderate or moderately slow in the substratum; Nahma-moderate Available water capacity: Chippeny-moderate; Nahma-low
Drainage class: Chippeny—very poorly drained; Nahma—poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Chippeny soil and similar soils: 50 to 65 percent
Nahma soil and similar soil: 20 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Sundell soils in the slightly higher positions on the landscape
- The moderately well drained Reade and Shoepac soils on low ridges and knolls

Similar components:

- Soils that have bedrock at a depth of more than 51 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development
Major management concerns: Ponding, depth to bedrock, low strength

Management considerations:

- Because of ponding, the depth to bedrock, and the instability of the organic material, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, depth to bedrock, restricted permeability Management considerations:

- Because of ponding, the depth to bedrock, and restricted permeability, these soils are generally unsuited to use as sites for septic tank absorption fields.

60-Histosols and Aquents, ponded

Setting

Landform: Areas of open marsh in depressions and drainageways Shape of areas: Elongated
Size of areas: 5 to 200 acres

Soil Properties and Qualities

Texture: Sandy, loamy, or mucky
Depth class: Very deep
Permeability: Very slow
Available water capacity: High
Drainage class: Very poorly drained
Surface runoff class: Ponded
Frequency of flooding: Frequent
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Slight

Map Unit Composition

Histosols: 55 to 80 percent
Aquents: 10 to 35 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Contrasting components:

- The very poorly drained Carbondale and Tawas soils in landscape positions similar to those of the major soils
- Areas of open water
- Well drained, sandy and loamy soils on knolls and ridges

Use and Management

Wildlife habitat

Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, these soils are unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding

Management considerations:

- Because of ponding, these soils are unsuited to use as sites for septic tank absorption fields.

61-Pits, borrow

Setting
Landform: Pits
Shape of areas: Oval or irregular
Size of areas: 3 to 300 acres
Map Unit Composition
Pits: 100 percent

Use and Management

Source of sand and gravel

Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

62B-Udorthents and Udipsamments, nearly level and gently sloping

Setting

Landscape position: Nearly level and gently sloping areas where the original soil material has been altered as a result of cutting and filling
Shape of areas: Irregular or oval
Size of areas: 5 to 85 acres

Typical Profile

Udorthents

Surface layer:
0 to 6 inches—reddish brown cobbly fine sandy loam
Substratum:
6 to 80 inches—reddish brown gravelly sandy loam

Udipsamments

Surface layer:
0 to 6 inches-strong brown sand
Substratum:
6 to 80 inches-light brown sand

Soil Properties and Qualities

[^0]
Map Unit Composition

Udorthents and similar soils: 30 to 55 percent Udipsamments and similar soils: 30 to 55 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- Areas of rock outcrop
- Somewhat poorly drained and poorly drained soils

Similar components:

- Undisturbed areas of Udorthents and Udipsamments

Use and Management

Land use: Urban land or idle areas
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

64-Pits and Dumps, mine

Setting

Landscape position: Nearly level to very steep areas at active and former mining locations
Shape of areas: Irregular or oval
Size of areas: 10 to 3,600 acres

Map Unit Composition

About 70 percent of this map unit consists of open pit iron mines. Currently, large active iron mines are in operation at the Tilden and Empire mines near National Mine and Palmer. Inactive mines, such as the Republic, Humboldt, and several smaller mines near Negaunee, Ishpeming, and Gwinn, also are included in this unit. Some of these areas remain idle and are revegetating naturally. Other areas are being revegetated through reclamation efforts. Some small areas of water are included.

About 20 percent of this map unit consists of made land. These areas include roads, parking lots, railroad tracks, buildings, and small manmade ponds.

About 10 percent of this map unit is rock outcrop.

Use and Management

Land use: Active and inactive iron mines
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

65B—Udorthents-Urban land complex, nearly level and gently sloping

Setting
Landscape position: Nearly level and gently sloping urban areas
Shape of areas: Irregular
Size of areas: 20 to 100 acres

Typical Profile

Udorthents

Surface layer:
0 to 6 inches-reddish brown cobbly very fine sandy loam

Substratum:

6 to 80 inches-reddish brown very cobbly sandy loam

Soil Properties and Qualities

Udorthents

Depth class: Very deep
Permeability: Moderate or moderately slow
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow; medium or rapid in some areas, such as streets, parking lots, and other manmade areas
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Slight

Map Unit Composition

Udorthents and similar soils: 40 to 60 percent
Urban land: 25 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Areas of rock outcrop
- Somewhat poorly drained and poorly drained soils in depressions
- Excessively drained, sandy soils in landscape positions similar to those of the Udorthents
Similar components:
- Undisturbed areas of Udorthents

Use and Management

Land use: Udorthents-commercial, residential, and industrial sites; Urban landstreets, parking lots, buildings, and other structures
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

66B—Udipsamments-Urban land complex, nearly level and gently sloping

Setting

Landscape position: Nearly level and gently sloping urban areas
Shape of areas: Irregular
Size of areas: 10 to 1,800 acres

Typical Profile

Udipsamments
Surface layer:
0 to 6 inches-strong brown sand

Substratum:
6 to 80 inches-light brown sand
Soil Properties and Qualities
Udipsamments
Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Very slow or slow; medium or rapid in some areas, such as
streets, parking lots, and other manmade areas
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Udipsamments and similar soils: 50 to 60 percent
Urban land: 25 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Areas of rock outcrop
- Poorly drained and very poorly drained soils in depressions
- Moderately well drained and well drained, loamy soils in landscape positions similar to those of the Udipsamments

Similar components:

- Undisturbed areas of Udipsamments

Use and Management

Land use: Udipsamments—residential, commercial, and industrial sites; Urban land— streets, parking lots, buildings, and other structures
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

67B—Urban land-Rubicon complex, 0 to 6 percent slopes

Setting

Landscape position: Nearly level and gently undulating urban areas mixed with areas of undisturbed soils
Shape of areas: Irregular
Size of areas: 5 to 200 acres

Typical Profile

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-dark brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Rubicon-very deep
Permeability: Rubicon—rapid
Available water capacity: Rubicon-low
Drainage class: Rubicon-excessively drained
Surface runoff class: Rubicon-very slow; Urban land-dominantly very slow or slow but medium or rapid in some areas, such as streets, parking lots, and other manmade areas
Flooding: None
Content of organic matter: Rubicon-low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Urban land: 50 to 70 percent
Rubicon soil and similar soils: 25 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Areas of rock outcrop
- The moderately well drained Yalmer soils in landscape positions similar to those of the Rubicon soil
- Somewhat poorly drained and poorly drained soils in depressions and drainageways

Similar components:

- Soils that have cobbly or gravelly textures

Use and Management

Land use: Urban land-streets, parking lots, buildings, and other structures;
Rubicon-residential, commercial, and industrial sites

Gardens, lawns, and environmental plantings

Major management concerns: Rubicon-droughtiness, soil blowing
Management considerations:

- Plants that can withstand droughtiness should be selected for planting.
- A good plant cover and mulch can help to control soil blowing.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- Sanitary facilities should be connected to public sewers and sewage treatment facilities.
- In areas where there are no sewage lines and septic tank absorption fields are installed, the poor filtering capacity of the Rubicon soil can result in the pollution of ground water.
- On large lots, an absorption system of shallow trenches with shrubbery planted around the perimeter of the system and low, uniform application rates help to minimize the risk of ground-water pollution.

68-Pits, quarries

Setting

Shape of areas: Irregular
Size of areas: 3 to 10 acres

Map Unit Composition

This map unit consists of small quarries in Sands Township that have been mined for Kona dolomite. Some small granite quarries north of Gwinn also are included in mapping. These areas were mined for use in the construction of the Sawyer Airport runways.

Use and Management

Land use: Quarries mined as a source of building, construction, and landscaping material
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

69B-Escanaba loamy fine sand, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlins and ground moraines Shape of areas: Elongated
Size of areas: 5 to 100 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black loamy fine sand
Subsurface layer:
3 to 6 inches—reddish gray loamy fine sand
Subsoil:
6 to 26 inches-dark reddish brown and brown loamy fine sand
26 to 42 inches-reddish brown loamy fine sand and dark reddish brown fine sandy loam
Substratum:
42 to 80 inches-reddish brown gravelly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsurface layer and the upper
part of the subsoil and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None

Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Escanaba soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet, Onaway, and Rousseau soils in landscape positions similar to those of the Escanaba soil
- The somewhat poorly drained Charlevoix and Solona soils in shallow depressions and drainageways
- The moderately well drained Shoepac soils in the slightly lower positions on the landscape

Similar components:

- Soils that have a substratum of sand or loamy sand

Use and Management

Land use: Dominant use—woodland; other uses—cropland, pasture, building site development

Woodland

Major management concerns: Equipment limitations, seedling mortality, plant competition
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Soil blowing, seasonal droughtiness
Management considerations:

- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Leaving crop residue on the surface and adding other organic material conserve moisture.

Pasture

Major management concerns: Erosion, compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability

Management considerations:

- Increasing the size of the absorption area may be necessary to compensate for the restricted permeability in the substratum.

69D—Escanaba loamy fine sand, 6 to 18 percent slopes

Setting

Landform: Moderately sloping and strongly sloping areas on drumlins and ground moraines
Shape of areas: Elongated
Size of areas: 6 to 60 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black loamy fine sand
Subsurface layer:
3 to 6 inches—reddish gray loamy fine sand
Subsoil:
6 to 26 inches-dark reddish brown and brown loamy fine sand
26 to 42 inches-reddish brown loamy fine sand and dark reddish brown fine sandy loam
Substratum:
42 to 80 inches—reddish brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsurface layer and the upper part of the subsoil and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Escanaba soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet, Onaway, and Rousseau soils in landscape positions similar to those of the Escanaba soil
- The somewhat poorly drained Charlevoix and Solona soils in shallow depressions and drainageways
- The moderately well drained Shoepac soils in the slightly lower positions on the landscape

Similar components:

- Soils that have a substratum of sand or loamy sand

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Soil blowing, droughtiness, water erosion, nutrient loss Management considerations:

- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.

Pasture

Major management concerns: Erosion, compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope Management considerations:

- Increasing the size of the absorption area may be necessary to compensate for the restricted permeability in the substratum.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption field functions properly.

70B—Nadeau fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on eskers, outwash terraces, and outwash plains Shape of areas: Elongated
Size of areas: 5 to 65 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches—black fine sandy loam
Subsurface layer:
5 to 7 inches—brown fine sandy loam
Subsoil:
7 to 10 inches-brown gravelly fine sandy loam
10 to 23 inches-reddish brown gravelly fine sandy loam and very gravelly sandy loam
23 to 36 inches-brown very gravelly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Nadeau soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet and Onaway soils in landscape positions similar to those of the Nadeau soil
- The poorly drained Minocqua soils in depressions and drainageways
- The moderately well drained Northland soils in the slightly lower positions on the landscape
Similar components:
- Soils that are sand in the surface layer and subsurface layer

Use and Management

Land use: Dominant use—woodland; other uses—cropland, pasture, building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, droughtiness, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

70D—Nadeau fine sandy loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on eskers, outwash terraces, and outwash plains

Shape of areas: Irregular or elongated
Size of areas: 5 to 40 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches-black fine sandy loam
Subsurface layer:
5 to 7 inches-brown fine sandy loam
Subsoil:
7 to 10 inches-brown gravelly fine sandy loam
10 to 23 inches-reddish brown gravelly fine sandy loam and very gravelly sandy loam
23 to 36 inches-brown very gravelly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Nadeau soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet and Onaway soils in landscape positions similar to those of the Nadeau soil
- The poorly drained Minocqua soils in depressions and drainageways
- The moderately well drained Northland soils in the lower positions on the landscape

Similar components:

- Soils that are sand in the surface layer and subsurface layer

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

71B—Evart-Pelkie-Sturgeon complex, 0 to 4 percent slopes

Setting
Landform: Evart—depressions and old stream channels; Sturgeon—low terraces;
Pelkie-low knolls and ridges
Distinctive landscape features: Flood plains
Shape of areas: Elongated
Size of areas: 5 to 200 acres

Typical Profile

Evart

Surface layer:
0 to 10 inches-very dark brown, mottled silt loam
Subsurface layer:
10 to 18 inches-black, mottled loamy fine sand
Substratum:
18 to 80 inches-grayish brown sand with few thin bands of very dark brown organic material

Pelkie

Surface layer:

0 to 7 inches-very dark brown loamy fine sand

Substratum:

7 to 19 inches-strong brown loamy fine sand
19 to 30 inches-strong brown fine sand
30 to 80 inches-brown, mottled sand

Sturgeon

Surface layer:

0 to 6 inches-dark brown very fine sandy loam
Substratum:
6 to 24 inches-stratified, dark brown and yellowish brown, mottled loamy very fine sand and very fine sandy loam

24 to 35 inches-dark grayish brown, mottled very fine sandy loam 35 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Evart—rapid; Pelkie—rapid; Sturgeon—moderate in the surface layer and the upper part of the substratum and rapid in the lower part of the substratum
Available water capacity: Evart—low; Pelkie—low; Sturgeon—moderate
Drainage class: Evart-poorly drained; Pelkie—moderately well drained; Sturgeonsomewhat poorly drained
Surface runoff class: Very slow
Frequency of flooding: Occasional
Content of organic matter: Evart and Sturgeon—moderate; Pelkie—low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Evart soil and similar soils: 35 to 50 percent
Pelkie soil and similar soils: 25 to 35 percent
Sturgeon soil and similar soils: 15 to 25 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Tawas, Carbondale, and Cathro soils in depressions and old stream channels

Similar components:

- Evart soils that have a substratum of silt loam

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed in areas of the Evart soil. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- The seasonal high water table and spring flooding in areas of the Sturgeon and Pelkie soils restrict the use of equipment to midsummer, when the soils are dry, or midwinter, when there is an adequate snow cover.
- Landing sites generally can be used only during the driest time of the year.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of flooding, trees are generally not planted in areas of these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Seasonal flooding
Management considerations:

- Because of flooding, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Seasonal flooding

Management considerations:

- Because of flooding, these soils are generally unsuited to use as sites for septic tank absorption fields.

72B—Emmet fine sandy loam, 1 to 6 percent slopes

Setting
Landform: Nearly level and gently sloping areas on drumlins and ground moraines
Shape of areas: Oval or elongated
Size of areas: 5 to 200 acres

Typical Profile

Surface layer:
0 to 3 inches—black fine sandy loam
Subsurface layer:
3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches—brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam
Substratum:
28 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Emmet soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Solona and poorly drained Ensley soils in depressions and drainageways
- The well drained Escanaba and Nadeau soils in landscape positions similar to those of the Emmet soil
- The moderately well drained Mashek soils in the slightly lower positions on the landscape
Similar components:
- Soils that are sandy clay loam in the lower part of the subsoil
- Soils that have dolomitic sandstone at a depth of 40 to 80 inches

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture, building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: None

Septic tank absorption fields

Major management concerns: Restricted permeability
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

72D-Emmet fine sandy loam, 6 to 18 percent slopes

Setting

Landform: Moderately and strongly sloping areas on drumlins and ground moraines
Shape of areas: Oval or elongated
Size of areas: 5 to 150 acres
Typical Profile
Surface layer:
0 to 3 inches-black fine sandy loam

Subsurface layer:
3 to 5 inches—dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches-brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam

Substratum:

28 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and
moderately slow in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Emmet soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Solona and poorly drained Ensley soils in depressions and drainageways
- The well drained Escanaba and Nadeau soils in landscape positions similar to those of the Emmet soil
- The moderately well drained Mashek soils in the lower positions on the landscape

Similar components:

- Soils that are sandy clay loam in the lower part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter

Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Slope
Management considerations:

- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption field functions properly.

72E—Emmet fine sandy loam, 18 to 35 percent slopes

Setting

Landform: Steep areas on drumlins and ground moraines
Shape of areas: Oval or elongated
Size of areas: 5 to 50 acres

Typical Profile

Surface layer:

0 to 3 inches-black fine sandy loam

Subsurface layer:

3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches-brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam

Substratum:

28 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Permeability: Moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Emmet soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Ensley soils in depressions and drainageways
- The well drained Escanaba and Nadeau soils in landscape positions similar to those of the Emmet soil

Similar components:

- Soils that are sandy clay loam in the lower part of the subsoil

Use and Management

Land use: Dominant use—woodland; other use—pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields
 Major management concerns: Slope
 Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

73B—Gogebic cobbly silt loam, 1 to 6 percent slopes, very stony

Setting
Landform: Gently undulating areas on bedrock-controlled moraines
Shape of areas: Irregular
Size of areas: 5 to 200 acres
\section*{Typical Profile}
Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black cobbly silt loam
Subsurface layer:
3 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 13 inches-dark reddish brown cobbly fine sandy loam
13 to 18 inches-reddish brown, firm cobbly sandy loam
18 to 62 inches-reddish brown, mottled, very firm very gravelly sandy loam and very gravelly loamy sand
Substratum:
62 to 80 inches—reddish brown very gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the middle and lower parts of the subsoil, and moderate in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Gogebic soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Tula and poorly drained Pleine soils in depressions and drainageways
- The moderately well drained Dishno soils in landscape positions similar to those of the Gogebic soil
- The well drained Schweitzer soils in the slightly higher positions on the landscape

Similar components:

- Soils that are sand or loamy sand in the upper part of the subsoil

Use and Management

Land use: Dominant use—woodland; other uses—cropland, pasture, building site development

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Stones, water erosion, soil blowing, nutrient loss, tilth, compaction, content of organic matter
Management considerations:

- Stones on the surface and cobblestones in the surface layer interfere with the use of tillage, planting, and harvesting equipment. Removing the stones and cobblestones can minimize wear on equipment.
- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal wetness Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development
Major management concerns: Seasonal wetness

Management considerations:

- Wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields
 Major management concerns: Seasonal wetness, restricted permeability Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

73D—Gogebic cobbly silt loam, 6 to 18 percent slopes, very stony

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Shape of areas: Irregular
Size of areas: 7 to 100 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black cobbly silt loam
Subsurface layer:
3 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 13 inches—dark reddish brown cobbly fine sandy loam
13 to 18 inches-reddish brown, firm cobbly sandy loam
18 to 62 inches—reddish brown, mottled, very firm very gravelly sandy loam and very gravelly loamy sand

Substratum:

62 to 80 inches—reddish brown very gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and subsurface layer and the upper part of
the subsoil, very slow in the middle and lower parts of the subsoil, and moderate
in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Gogebic soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Tula and poorly drained Pleine soils in depressions and drainageways
- The moderately well drained Dishno and well drained Schweitzer soils in landscape positions similar to those of the Gogebic soil
Similar components:
- Soils that are sand or loamy sand in the upper part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Stones, water erosion, soil blowing, nutrient loss, tilth, compaction, content of organic matter
Management considerations:

- Stones on the surface and cobblestones in the surface layer interfere with the use of tillage, planting, and harvesting equipment. Removing the stones and cobblestones can minimize wear on equipment.
- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Seasonal wetness
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Seasonal wetness, slope
Management considerations:

- Wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, slope
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption field functions properly.

74D-Schweitzer-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very stony

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines over igneous and metamorphic bedrock
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 8 to 300 acres

Typical Profile

Schweitzer

Surface layer:

0 to 1 inch—black cobbly very fine sandy loam
Subsurface layer:
1 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 15 inches-dark reddish brown cobbly very fine sandy loam
15 to 21 inches-brown cobbly very fine sandy loam
21 to 61 inches-reddish brown, very firm very cobbly sandy loam and very cobbly loamy sand
Substratum:
61 to 80 inches—reddish brown very cobbly loamy sand

Michigamme

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 5 inches—dark reddish gray cobbly fine sandy loam

Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Schweitzer—very deep; Michigamme—moderately deep to igneous or metamorphic bedrock
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Schweitzer-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Michigamme-moderate
Available water capacity: Low
Drainage class: Schweitzer-well drained; Michigamme—well drained
Seasonal high water table: More than 6 feet
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Schweitzer soil and similar soils: 40 to 60 percent
Michigamme soil and similar soils: 15 to 30 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- The moderately well drained Dishno and Gogebic soils in areas that have slopes of less than 18 percent
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Michigamme soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The areas of rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Slope, depth to bedrock
Management considerations:

- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas of this map unit that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.
- In areas of the Michigamme soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Slope, restricted permeability, depth to bedrock Management considerations:

- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas of this map unit that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.
- In areas of the Schweitzer soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Areas of the Michigamme soil are generally unsuited to use as sites for septic tank absorption fields because of the limited depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby groundwater supplies. Mounding with a suitable filtering material helps to overcome this limitation.

74F-Schweitzer-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very stony

Setting

Landform: Very hilly areas on bedrock-controlled moraines over igneous and metamorphic bedrock
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 6 to 900 acres

Typical Profile

Schweitzer

Surface layer:
0 to 1 inch—black cobbly very fine sandy loam

Subsurface layer:

1 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 15 inches-dark reddish brown cobbly very fine sandy loam
15 to 21 inches-brown cobbly very fine sandy loam
21 to 61 inches-reddish brown, very firm very cobbly sandy loam and very cobbly loamy sand
Substratum:
61 to 80 inches-reddish brown very cobbly loamy sand

Michigamme

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Schweitzer—very deep; Michigamme—moderately deep to igneous or metamorphic bedrock
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Schweitzer—moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Michigamme-moderate
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Schweitzer—rapid; Michigamme—medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Schweitzer soil and similar soils: 40 to 60 percent
Michigamme soil and similar soils: 15 to 30 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- The moderately well drained Gogebic and Dishno soils in areas that have slopes of less than 18 percent
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Michigamme soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily.
- Rock outcrops and stones may interfere with the use of harvesting equipment and the placement of haul roads.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

76C—Garlic-Alcona-Voelker complex, 1 to 12 percent slopes, dissected

Setting
Landform: Nearly level to moderately sloping areas on dissected moraines
Distinctive landscape features: Dissected uplands with mainly parallel ravines that are 50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 10 to 470 acres

Typical Profile

Garlic

Organic mat:
0 to 1 inch—black, well decomposed leaf litter
Surface layer:
1 to 9 inches-reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand
26 to 46 inches-brown fine sand
Substratum:
46 to 80 inches-brown fine sand

Alcona

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 9 inches-brown loamy very fine sand
Subsoil:
9 to 18 inches-dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches-reddish brown fine sandy loam and brown loamy fine sand
Substratum:
49 to 63 inches-stratified, reddish brown loamy sand and fine sandy loam and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand

Voelker

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-dark gray fine sand
Subsurface layer:
5 to 11 inches-reddish gray fine sand
Subsoil:
11 to 23 inches-dark reddish brown and reddish brown, strongly cemented fine sand
23 to 31 inches-brown, moderately cemented fine sand
31 to 39 inches-brown loamy very fine sand and reddish brown very fine sandy loam
Substratum:
39 to 54 inches-stratified, reddish brown loamy very fine sand, very fine sandy loam, and silt loam
54 to 80 inches-stratified, brown sand, very fine sand, and silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Garlic—rapid; Alcona—moderate; Voelker—rapid in the surface layer and subsurface layer, moderate or moderately rapid in the upper part of the subsoil, rapid in the lower part of the subsoil, and moderately slow in the substratum
Available water capacity: Garlic-low; Alcona and Voelker-moderate
Drainage class: Well drained
Surface runoff class: Garlic and Voelker-very slow; Alcona-slow
Flooding: None

Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Garlic and Voelker-severe; Alcona—moderate

Map Unit Composition

Garlic soil and similar soils: 45 to 65 percent Alcona soil and similar soils: 15 to 25 percent Voelker soil and similar soils: 15 to 25 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines
- The moderately well drained Paquin, Munising, and Fence soils in landscape positions similar to those of the major soils

Similar components:

- Garlic soils that have more gravel
- Alcona soils that are silt loam in the lower part of the subsoil and in the substratum

Use and Management

Land use: Dominant use—woodland; other uses—building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Garlic and Voelker soils, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability, slope Management considerations:

- The poor filtering capacity of the Garlic soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in the Alcona and Voelker soils.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption fields function properly.

76E-Garlic-Alcona-Voelker complex, 8 to 35 percent slopes, dissected

Landform: Moderately sloping to steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel. They are 10 to 30 feet deep and 20 to 100 feet wide and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 400 acres

Setting

Typical Profile

Garlic

Organic mat:
0 to 1 inch—black, well decomposed leaf litter
Surface layer:
1 to 9 inches—reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand
26 to 46 inches-brown fine sand
Substratum:
46 to 80 inches-brown fine sand

Alcona

Organic mat:
0 to 3 inches—black, partially decomposed forest litter
Surface layer:
3 to 9 inches-brown loamy very fine sand
Subsoil:
9 to 18 inches-dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches—reddish brown fine sandy loam and brown loamy fine sand
Substratum:
49 to 63 inches-stratified, reddish brown loamy sand and fine sandy loam and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand

Voelker

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches—dark gray fine sand
Subsurface layer:
5 to 11 inches—reddish gray fine sand
Subsoil:
11 to 23 inches—dark reddish brown and reddish brown, strongly cemented fine sand
23 to 31 inches-brown, moderately cemented fine sand
31 to 39 inches-brown loamy very fine sand and reddish brown very fine sandy loam

Substratum:

39 to 54 inches-stratified, reddish brown loamy very fine sand, very fine sandy loam, and silt loam
54 to 80 inches-stratified, brown sand, very fine sand, and silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Garlic—rapid; Alcona—moderate; Voelker—rapid in the surface layer and subsurface layer, moderate or moderately rapid in the upper part of the subsoil, rapid in the lower part of the subsoil, and moderately slow in the substratum
Available water capacity: Garlic-low; Alcona and Voelker-moderate
Drainage class: Well drained
Surface runoff class: Garlic and Voelker-slow; Alcona-medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Garlic and Voelker-severe; Alcona-moderate

Map Unit Composition

Garlic soil and similar soils: 45 to 65 percent Alcona soil and similar soils: 15 to 25 percent Voelker soil and similar soils: 15 to 25 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines
- The well drained Frohling soils in landscape positions similar to those of the major soils

Similar components:

- Garlic soils that have more gravel
- Alcona soils that are silt loam in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- In areas of the Garlic and Voelker soils, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized, and skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability, slope Management considerations:

- The poor filtering capacity of the Garlic soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in the Alcona and Voelker soils.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to septic tank absorption fields.

76F—Garlic-Alcona-Voelker complex, 15 to 70 percent slopes, dissected

Setting

Landform: Moderately steep to very steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 1,600 acres

Typical Profile

Garlic
Organic mat:
0 to 1 inch—black, well decomposed leaf litter
Surface layer:
1 to 9 inches-reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand 26 to 46 inches-brown fine sand
Substratum:
46 to 80 inches-brown fine sand

Alcona

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 9 inches-brown loamy very fine sand

Subsoil:
9 to 18 inches—dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches-reddish brown fine sandy loam and brown loamy fine sand

Substratum:

49 to 63 inches-stratified, reddish brown loamy sand and fine sandy loam and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand

Voelker

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-dark gray fine sand
Subsurface layer:
5 to 11 inches-reddish gray fine sand
Subsoil:
11 to 23 inches-dark reddish brown and reddish brown, strongly cemented fine sand
23 to 31 inches-brown, moderately cemented fine sand
31 to 39 inches-brown loamy very fine sand and reddish brown very fine sandy loam
Substratum:
39 to 54 inches-stratified, reddish brown loamy very fine sand, very fine sandy loam, and silt loam
54 to 80 inches-stratified, brown sand, very fine sand, and silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Garlic—rapid; Alcona—moderate; Voelker—rapid in the surface layer and subsurface layer, moderate or moderately rapid in the upper part of the subsoil, rapid in the lower part of the subsoil, and moderately slow in the substratum
Available water capacity: Garlic—low; Alcona and Voelker-moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Garlic and Voelker—severe; Alcona—moderate

Map Unit Composition

Garlic soil and similar soils: 45 to 65 percent Alcona soil and similar soils: 15 to 25 percent Voelker soil and similar soils: 15 to 25 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling soils in landscape positions similar to those of the major soils
- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines

Similar components:

- Alcona soils that are silt loam in the lower part of the subsoil and in the substratum
- Garlic soils that have more gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines.
- In areas of the Garlic and Voelker soils, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

77D—Garlic-Alcona-Voelker complex, 6 to 18 percent slopes

Setting
Landform: Gently rolling and rolling areas on till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 200 acres

Typical Profile

Garlic

Organic mat:
0 to 1 inch—black, well decomposed leaf litter
Surface layer:
1 to 9 inches-reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand
26 to 46 inches-brown fine sand

Substratum:
46 to 80 inches-brown fine sand

Alcona

Organic mat:
0 to 3 inches—black, partially decomposed forest litter
Surface layer:
3 to 9 inches—brown loamy very fine sand
Subsoil:
9 to 18 inches-dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches-reddish brown fine sandy loam and brown loamy fine sand
Substratum:
49 to 63 inches-stratified, reddish brown loamy sand and fine sandy loam and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand
Voelker
Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-dark gray fine sand
Subsurface layer:
5 to 11 inches—reddish gray fine sand
Subsoil:
11 to 23 inches—dark reddish brown and reddish brown, strongly cemented fine sand
23 to 31 inches-brown, moderately cemented fine sand
31 to 39 inches-brown loamy very fine sand and reddish brown very fine sandy loam
Substratum:
39 to 54 inches-stratified, reddish brown loamy very fine sand, very fine sandy loam, and silt loam
54 to 80 inches-stratified, brown sand, very fine sand, and silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Garlic—rapid; Alcona—moderate; Voelker—rapid in the surface layer and subsurface layer, moderate or moderately rapid in the upper part of the subsoil, rapid in the lower part of the subsoil, and moderately slow in the substratum
Available water capacity: Garlic—low; Alcona and Voelker-moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Garlic and Voelker—severe; Alcona—moderate

Map Unit Composition

Garlic soil and similar soils: 30 to 50 percent
Alcona soil and similar soils: 15 to 35 percent
Voelker soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Alcona soils that are silt loam in the lower part of the subsoil and in the substratum
- Garlic soils that have more gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Garlic and Voelker soils, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability, slope Management considerations:

- The poor filtering capacity of the Garlic soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Alcona and Voelker soils.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

77E—Garlic-Alcona-Voelker complex, 18 to 35 percent slopes

Setting
Landform: Very hilly areas on till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres

Typical Profile

Garlic
Organic mat:
0 to 1 inch—black, well decomposed leaf litter

Surface layer:
1 to 9 inches-reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand
26 to 46 inches-brown fine sand
Substratum:
46 to 80 inches-brown fine sand

Alcona

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 9 inches-brown loamy very fine sand
Subsoil:
9 to 18 inches-dark brown very fine sandy loam
18 to 26 inches-brown fine sandy loam
26 to 49 inches-reddish brown fine sandy loam and brown loamy fine sand

Substratum:

49 to 63 inches-stratified, reddish brown loamy sand and fine sandy loam and reddish gray very fine sandy loam
63 to 80 inches-stratified, reddish brown very fine sand and loamy very fine sand

Voelker

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-dark gray fine sand
Subsurface layer:
5 to 11 inches-reddish gray fine sand
Subsoil:
11 to 23 inches-dark reddish brown and reddish brown, strongly cemented fine sand
23 to 31 inches-brown, moderately cemented fine sand
31 to 39 inches-brown loamy very fine sand and reddish brown very fine sandy loam
Substratum:
39 to 54 inches-stratified, reddish brown loamy very fine sand, very fine sandy loam, and silt loam
54 to 80 inches-stratified, brown sand, very fine sand, and silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Garlic—rapid; Alcona—moderate; Voelker—rapid in the surface layer and
subsurface layer, moderate or moderately rapid in the upper part of the subsoil,
rapid in the lower part of the subsoil, and moderately slow in the substratum
Available water capacity: Garlic-low; Alcona and Voelker-moderate
Drainage class: Well drained
Surface runoff class: Garlic and Voelker—slow; Alcona—medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Garlic and Voelker-severe; Alcona-moderate

Map Unit Composition

Garlic soil and similar soils: 30 to 50 percent Alcona soil and similar soils: 15 to 35 percent Voelker soil and similar soils: 15 to 35 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Alcona soils that are silt loam in the lower part of the subsoil and in the substratum
- Garlic soils that have more gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- In areas of the Garlic and Voelker soils, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

78C—Keweenaw-Kalkaska complex, 1 to 12 percent slopes, dissected

Setting

Landform: Nearly level to moderately sloping areas on dissected moraines Distinctive landscape features: Dissected uplands with mainly parallel ravines that are

50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide.
Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 10 to 1,100 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches—reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 80 inches-reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw-well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 40 to 55 percent
Kalkaska soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising and Yalmer soils and the excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that have more gravel
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Carefully managed reforestation helps to control undesirable understory plants.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption fields function properly.

78E—Keweenaw-Kalkaska complex, 8 to 35 percent slopes, dissected

Setting
Landform: Moderately sloping to steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 10 to 110 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 80 inches-reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Keweenaw—medium; Kalkaska—slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 40 to 55 percent
Kalkaska soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines
- The well drained Frohling and Voelker soils and the excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that are gravelly sand in the substratum
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

78F-Keweenaw-Kalkaska complex, 15 to 60 percent slopes, dissected

Setting

Landform: Moderately steep to very steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 1,100 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 80 inches-reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand

Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
\section*{Substratum:}
32 to 80 inches-brown sand
\section*{Soil Properties and Qualities}
Depth class: Very deep
Permeability:Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 40 to 55 percent
Kalkaska soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines
- The well drained Frohling and Voelker soils and the excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that have more gravelly sand in the substratum
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes can reduce the hazard of erosion.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope

Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

79B—Keweenaw-Munising complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains
Shape of areas: Irregular
Size of areas: 5 to 200 acres

Typical Profile

Keweenaw

Surface layer:

0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 80 inches-reddish brown loamy sand and light reddish brown sand

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Keweenaw-moderately rapid; Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Keweenaw—well drained; Munising—moderately well drained
Surface runoff class: Keweenaw-very slow; Munising-slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-slight in areas of the
Keweenaw soil and moderate in areas of the Munising soil
Hazard of soil blowing: Moderate

Map Unit Composition

Keweenaw soil and similar soils: 45 to 60 percent Munising soil and similar soils: 25 to 40 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Munising soils that have a substratum of silt loam
- Keweenaw soils that are sand throughout

Use and Management

Land use: Dominant use-woodland; other uses-pasture, building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Munising soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- In areas of the Munising soil, the seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has adequate snow cover.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Pasture

Major management concerns: Erosion, soil compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Munising soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
Septic tank absorption fields
Major management concerns: Seasonal wetness, restricted permeability

Management considerations:

- In areas of the Munising soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Munising soil.

80B—Sayner-Rubicon complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash plains and outwash terraces Shape of areas: Irregular
Size of areas: 12 to 500 acres

Typical Profile

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches-dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand
Substratum:
27 to 80 inches-stratified, light yellowish brown sand and gravelly sand

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Sayner-very low; Rubicon—low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Sayner-moderate; Rubicon-severe

Map Unit Composition

Sayner soil and similar soils: 35 to 50 percent
Rubicon soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The moderately well drained Croswell soils in the slightly lower positions on the landscape
Similar components:
- Sayner soils that have a surface layer of sandy loam
- Rubicon soils that are fine sand throughout

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.

80D—Sayner-Rubicon complex, 6 to 18 percent slopes

Setting

Landscape position: Gently rolling and rolling areas on outwash plains and outwash terraces
Shape of areas: Irregular
Size of areas: 9 to 100 acres

Typical Profile

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter

Surface layer:

1 to 2 inches—dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand
Substratum:
27 to 80 inches—stratified, light yellowish brown sand and gravelly sand

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Sayner-very low; Rubicon-low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails-moderate
Hazard of soil blowing: Sayner-moderate; Rubicon—severe

Map Unit Composition

Sayner soil and similar soils: 35 to 50 percent
Rubicon soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The moderately well drained Croswell soils in areas that have slopes of less than 4 percent
Similar components:
- Sayner soils that have a surface layer of sandy loam
- Rubicon soils that are fine sand throughout

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope

Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

80E—Sayner-Rubicon complex, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash plains and outwash terraces
Shape of areas: Irregular
Size of areas: 10 to 90 acres

Typical Profile

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches-dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand

Substratum:

27 to 80 inches-stratified, light yellowish brown sand and gravelly sand

Rubicon

Surface layer:

0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

[^1]
Map Unit Composition

Sayner soil and similar soils: 35 to 50 percent
Rubicon soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The moderately well drained Croswell soils in areas that have slopes of less than 4 percent

Similar components:

- Sayner soils that have a surface layer of sandy loam
- Rubicon soils that are fine sand throughout

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development
 Major management concerns: Slope
 Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

81B—Pelissier gravelly sandy loam, 1 to 6 percent slopes

 SettingLandform: Gently undulating areas on outwash terraces and outwash plains Shape of areas: Irregular
Size of areas: 5 to 400 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed leaf litter
Surface layer:
2 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 10 inches—dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 80 inches-strong brown and reddish yellow very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsoil and very rapid in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Pelissier soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils in landscape positions similar to those of the Pelissier soil
- The moderately well drained Farquar soils in the slightly lower positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have less gravel

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity

Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

81D—Pelissier gravelly sandy loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces and outwash plains Shape of areas: Oval or elongated
Size of areas: 9 to 80 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed leaf litter
Surface layer:
2 to 6 inches—brown gravelly sandy loam
Subsoil:
6 to 10 inches-dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 80 inches-strong brown and reddish yellow very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsoil and very rapid in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe
Hazard of soil blowing: Moderate
Map Unit Composition
Pelissier soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils in landscape positions similar to those of the Pelissier soil
- The moderately well drained Farquar soils in the slightly lower positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have less gravel

Use and Management

Woodland

Major management concerns: Erosion hazard

Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

81E—Pelissier gravelly sandy loam, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash terraces, eskers, kames, and moraines Shape of areas: Oval or elongated
Size of areas: 6 to 60 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed leaf litter

Surface layer:

2 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 10 inches-dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 80 inches-strong brown and reddish yellow very gravelly coarse sand
Soil Properties and Qualities
Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsoil and very rapid in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate
Map Unit Composition
Pelissier soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils in landscape positions similar to those of the Pelissier soil
- The moderately well drained Farquar soils in areas that have slopes of less than 4 percent
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have less gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography. The grade should be kept as low as possible.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

84D—Rubicon-Ishpeming-Rock outcrop complex, 6 to 25 percent slopes

Setting
Landform: Gently rolling and rolling outwash terraces on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 5 to 150 acres

Typical Profile

Rubicon

Surface layer:

0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand

Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand
Ishpeming
Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches—brown sand
Subsoil:
6 to 13 inches-dark brown and brown sand
13 to 24 inches-strong brown sand
Substratum:
24 to 38 inches-brown loamy fine sand
Bedrock:
38 inches-granite

Soil Properties and Qualities

Depth class: Rubicon—very deep; Ishpeming—moderately deep to igneous or metamorphic bedrock
Permeability: Rapid
Available water capacity: Rubicon—low; Ishpeming—very low
Drainage class: Rubicon-excessively drained; Ishpeming—somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Severe
Map Unit Composition
Rubicon soil and similar soils: 45 to 65 percent Ishpeming soil and similar soils: 15 to 30 percent
Rock outcrop: 15 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches
- Rubicon soils that are fine sand throughout or are gravelly sand in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on
the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized and skid roads should be built on the contour or on the gentler slopes.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Ishpeming soil, buildings should be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, depth to bedrock, slope Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- Areas of the Ishpeming soil are generally unsuited to use as sites for septic tank absorption fields because of the slope and the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies.
- In areas of the Rubicon soil that have slopes of less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

84F-Rubicon-Ishpeming-Rock outcrop complex, 25 to 60 percent slopes

Setting
Landform: Very hilly outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 5 to 500 acres

Typical Profile

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches—pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Ishpeming

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches—brown sand
Subsoil:
6 to 13 inches-dark brown and brown sand
13 to 24 inches-strong brown sand
Substratum:
24 to 38 inches-brown loamy fine sand
Bedrock:
38 inches-granite

Soil Properties and Qualities

Depth class: Rubicon—very deep; Ishpeming—moderately deep to igneous or metamorphic bedrock
Permeability: Rapid
Available water capacity: Rubicon-low; Ishpeming-very low
Drainage class: Rubicon-excessively drained; Ishpeming—somewhat excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 45 to 65 percent Ishpeming soil and similar soils: 15 to 30 percent
Rock outcrop: 15 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches
- Rubicon soils that are fine sand throughout or that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because loose sand and the slope can hinder the traction of wheeled equipment, logging roads should be stabilized and skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map is generally unsuited to use as a site for septic tank absorption fields.

85A-Solona fine sandy loam, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on drumlinized ground moraines
Shape of areas: Elongated or irregular
Size of areas: 5 to 25 acres

Typical Profile

Surface layer:

0 to 6 inches—black fine sandy loam

Subsurface layer:

6 to 18 inches-brown fine sandy loam
Subsoil:
18 to 25 inches-brown, mottled fine sandy loam
Substratum:
25 to 80 inches-brown, mottled gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate

Available water capacity: Moderate
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Solona soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet soils on low ridges and knolls
- The poorly drained Ensley soils in the slightly lower positions on the landscape
- The moderately well drained Mashek soils in the slightly higher positions on the landscape

Similar components:

- Soils that have a substratum of sand or gravelly sand

Use and Management

Land use: Dominant use—woodland; other uses—cropland, pasture, building site development

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Cropland

Major management concerns: Seasonal wetness, nutrient loss, tilth Management considerations:

- Ensuring that the nutrients in manure and fertilizer applications do not exceed the plant nutrient requirements can help to protect the ground water.
- Subsurface drains can reduce the wetness if a suitable outlet is available.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.

Pasture

Major management concerns: Seasonal wetness, surface compaction Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development
Major management concerns: Seasonal wetness

Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.

86B—Mashek fine sandy loam, 0 to 4 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlinized ground moraines Shape of areas: Irregular
Size of areas: 5 to 140 acres

Typical Profile

Surface layer:
0 to 3 inches—dark brown fine sandy loam
Subsoil:
3 to 17 inches-dark brown fine sandy loam
17 to 27 inches-brown loamy fine sand and reddish brown fine sandy loam
27 to 38 inches-reddish brown cobbly fine sandy loam
38 to 43 inches-brown, mottled cobbly fine sandy loam
Substratum:
43 to 80 inches-brown, mottled, very firm cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil, moderately slow in the lower part of the subsoil, and very slow in the substratum
Available water capacity: Moderate
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Mashek soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet soils in the slightly higher positions on the landscape
- The somewhat poorly drained Solona soils in the lower positions on the landscape
- The poorly drained Ensley soils in depressions and drainageways

Similar components:

- Soils that have a substratum of sand or gravelly sand

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture, building site development

Woodland

Major management concerns: Equipment limitations, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Special harvest methods may be needed to control undesirable species.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be necessary.

Cropland

Major management concerns: Seasonal wetness, content of organic matter, tilth, compaction
Management considerations:

- A subsurface drainage system can lower the water table.
- Because of the restricted permeability of the soil, subsurface drains should be narrowly spaced.
- Keeping crop residue on the surface, regularly adding other organic material, and applying a system of no-till planting increase the content of organic matter.
- Applying a system of conservation tillage and deferring tillage when the soil is wet help to prevent the deterioration of tilth.

Pasture

Major management concerns: Seasonal wetness, compaction, overgrazing Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

87B—Cunard fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 40 acres

Typical Profile

Surface layer:
0 to 4 inches—black fine sandy loam
Subsurface layer:
4 to 6 inches-brown fine sandy loam
Subsoil:
6 to 10 inches-brown fine sandy loam
10 to 19 inches-dark brown loam
Substratum:
19 to 27 inches-brown gravelly fine sandy loam
Bedrock:
27 inches-pale brown dolomitic sandstone

Soil Properties and Qualities

Depth class: Moderately deep to dolomitic sandstone, dolomite, or limestone
Permeability: Moderate
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Cunard soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet and Summerville soils in landscape positions similar to those of the Cunard soil
- The poorly drained Nahma soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 40 inches

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, tilth, low content of organic matter Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Compaction, overgrazing
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Depth to bedrock
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Depth to bedrock
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

88-Cathro-Ensley mucks

Setting

Landform: Depressions and drainageways on fluted and drumlinized ground moraines Shape of areas: Elongated
Size of areas: 10 to 1,000 acres

Typical Profile

Cathro

Surface tier:
0 to 6 inches-black muck
Subsurface tier:
6 to 31 inches-black muck
Substratum:
31 to 80 inches-dark grayish brown fine sandy loam

Ensley

Surface layer:
0 to 5 inches—black muck
Subsurface layer:
5 to 7 inches-black mucky loam

Subsoil:
7 to 19 inches-brown, mottled fine sandy loam Substratum:

19 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Cathro-moderately slow to moderately rapid in the surface and
subsurface tiers and moderately slow in the substratum; Ensley-moderate
Available water capacity: Cathro-very high; Ensley-moderate
Drainage class: Cathro—very poorly drained; Ensley—poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Cathro soil and similar soils: 45 to 65 percent
Ensley soil and similar soils: 20 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Emmet and Onaway soils on knolls and ridges
- The somewhat poorly drained Solona soils in the slightly higher positions on the landscape

Similar components:

- Soils that have bedrock at a depth of 40 to 80 inches
- Ensley soils that have a substratum of gravelly sand
- Cathro soils in which the organic layer is more than 51 inches thick

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, these soils are generally unsuited to building site development.

Septic tank absorption fields
 Major management concerns: Ponding
 Management considerations:

- Because of ponding, these soils are generally unsuited to use as sites for septic tank absorption fields.

89B—Emmet-Solona fine sandy loams, 0 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlins and ground moraines Shape of areas: Elongated or irregular
Size of areas: 10 to 50 acres

Typical Profile

Emmet

Surface layer:

0 to 3 inches—black fine sandy loam
Subsurface layer:
3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches—brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam
Substratum:
28 to 80 inches—reddish brown gravelly fine sandy loam

Solona

Surface layer:
0 to 6 inches—black fine sandy loam
Subsurface layer:
6 to 18 inches—brown fine sandy loam
Subsoil:
18 to 25 inches-brown, mottled fine sandy loam
Substratum:
25 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Emmet—moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum; Solona-moderate
Available water capacity: Moderate
Drainage class: Emmet-well drained; Solona—somewhat poorly drained
Surface runoff class: Emmet—slow; Solona—very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Emmet soil and slight in areas of the Solona soil
Hazard of soil blowing: Moderate

Map Unit Composition

Emmet soil and similar soils: 50 to 70 percent
Solona soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Ensley soils in depressions and drainageways
- The moderately well drained Mashek soils in areas that have slopes of less than 4 percent
- The well drained Nadeau soils in landscape positions similar to those of the major soils

Similar components:

- Emmet soils that are sand or loamy sand in the surface layer and the upper part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture, building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Emmet soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily.
- Year-round logging roads require roadfill and a gravel base. Culverts are needed to maintain the natural drainage system.
- In areas of the Solona soil, the seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- Landing sites generally can be used only during the driest time of the year.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, tilth, content of organic matter, seasonal wetness
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.
- Subsurface drains can reduce the wetness if a suitable outlet is available.

Pasture

Major management concerns: Surface compaction, seasonal wetness, overgrazing Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Seasonal wetness
Management considerations:

- In areas of the Solona soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability Management considerations:

- In areas of the Solona soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

90B-Emmet-Escanaba complex, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlins and ground moraines Shape of areas: Oval or elongated
Size of areas: 15 to 300 acres

Typical Profile

Emmet

Surface layer:

0 to 3 inches-black fine sandy loam
Subsurface layer:
3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches-brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam

Substratum:

28 to 80 inches-brown gravelly fine sandy loam

Escanaba

Organic mat:
0 to 1 inch—partially decomposed forest litter
Surface layer:
1 to 3 inches-black loamy fine sand
Subsurface layer:
3 to 6 inches-reddish gray loamy fine sand
Subsoil:
6 to 26 inches-dark reddish brown and brown loamy fine sand
26 to 42 inches-reddish brown loamy fine sand and dark reddish brown fine sandy loam
Substratum:
42 to 80 inches-reddish brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep

Permeability: Emmet-moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum; Escanaba-moderately rapid in the surface layer and subsurface layer and the upper part of the subsoil and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Moderate

Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Emmet soil and slight in areas of the Escanaba soil
Hazard of soil blowing: Emmet—moderate; Escanaba—severe

Map Unit Composition

Emmet soil and similar soils: 45 to 65 percent
Escanaba soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Solona and poorly drained Ensley soils in depressions and drainageways
- The somewhat excessively drained Mancelona soils in landscape positions similar to those of the major soils
- The well drained Rousseau soils in landscape positions similar to those of the major soils

Similar components:

- Emmet soils that have a subsoil of sandy clay loam

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- In areas of the Emmet soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Loose sand in areas of the Escanaba soil can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, droughtiness, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability
Management considerations:

- In areas of the Emmet soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

90D—Emmet-Escanaba complex, 6 to 18 percent slopes

Setting

Landform: Moderately sloping and strongly sloping areas on drumlins and ground moraines
Shape of areas: Oval or elongated
Size of areas: 10 to 150 acres

Typical Profile

Emmet

Surface layer:

0 to 3 inches—black fine sandy loam
Subsurface layer:
3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches-brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam
Substratum:
28 to 80 inches-brown gravelly fine sandy loam

Escanaba

Organic mat:
0 to 1 inch—partially decomposed forest litter
Surface layer:
1 to 3 inches-black loamy fine sand

Subsurface layer:
3 to 6 inches-reddish gray loamy fine sand
Subsoil:
6 to 26 inches-dark reddish brown and brown loamy fine sand
26 to 42 inches-reddish brown loamy fine sand and dark reddish brown fine sandy loam
Substratum:
42 to 80 inches—reddish brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Emmet—moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum; Escanaba—moderately rapid in the surface layer and subsurface layer and the upper part of the subsoil and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—severe in areas of the Emmet soil and moderate in areas of the Escanaba soil
Hazard of soil blowing: Emmet—moderate; Escanaba—severe
Map Unit Composition
Emmet soil and similar soils: 45 to 65 percent
Escanaba soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Solona and poorly drained Ensley soils in depressions and drainageways
- The somewhat excessively drained Mancelona soils in landscape positions similar to those of the major soils
- The well drained Rousseau soils in landscape positions similar to those of the major soils

Similar components:

- Emmet soils that have a subsoil of sandy clay loam

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Loose sand in areas of the Escanaba soil can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, droughtiness, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope Management considerations:

- In areas of the Emmet soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

91B—Onaway-Nadeau fine sandy loams, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently sloping areas on drumlins and ground moraines Shape of areas: Oval or elongated Size of areas: 5 to 75 acres

Typical Profile

Onaway

Organic mat:
0 to 3 inches—black, partially decomposed forest litter
Surface layer:
3 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-brown fine sandy loam
13 to 18 inches-dark brown sandy clay loam
18 to 25 inches-brown gravelly fine sandy loam
Substratum:
25 to 80 inches-light brown gravelly fine sandy loam

Nadeau

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches-black fine sandy loam
Subsurface layer:
5 to 7 inches-brown fine sandy loam
Subsoil:
7 to 10 inches-brown gravelly fine sandy loam
10 to 23 inches—reddish brown gravelly fine sandy loam and very gravelly sandy loam
23 to 36 inches-brown very gravelly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Onaway-moderate in the surface layer and subsoil and moderately slow
in the substratum; Nadeau-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Onaway—moderate; Nadeau—low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Onaway soil and similar soils: 45 to 65 percent
Nadeau soil and similar soils: 20 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Ensley soils in depressions and drainageways
- The moderately well drained Northland soils in the slightly lower positions on the landscape
Similar components:
- Onaway soils that are fine sandy loam in the lower part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, droughtiness, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, crop residue management, stripcropping, vegetative barriers, and cover crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Erosion, surface compaction
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Caving of cutbanks is a concern affecting shallow excavations. Trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability, poor filtering capacity

Management considerations:

- In areas of the Onaway soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- The poor filtering capacity in areas of the Nadeau soil can result in the pollution of ground water.

92A—Ensley-Solona complex, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on drumlinized and fluted ground moraines
Shape of areas: Elongated
Size of areas: 8 to 200 acres

Typical Profile

Ensley

Surface layer:
0 to 5 inches—black muck

Subsurface layer:

5 to 7 inches-black mucky loam
Subsoil:
7 to 19 inches—brown, mottled fine sandy loam
Substratum:
19 to 80 inches-brown gravelly fine sandy loam

Solona

Surface layer:
0 to 6 inches-black fine sandy loam
Subsurface layer:
6 to 18 inches-brown fine sandy loam
Subsoil:
18 to 25 inches-brown, mottled fine sandy loam
Substratum:
25 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Ensley—poorly drained; Solona—somewhat poorly drained
Surface runoff class: Ensley-very slow or ponded; Solona-very slow
Flooding: None
Content of organic matter: Ensley—high; Solona—low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Ensley soil and similar soils: 45 to 65 percent
Solona soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent
Components of Minor Extent
Dissimilar components:

- The moderately well drained Mashek soils on low knolls
- The well drained Emmet soils on hills and knolls
- The very poorly drained Cathro soils in the slightly lower positions on the landscape

Similar components:

- Ensley soils that have a substratum of gravelly sand
- Soils that have bedrock at a depth of 40 to 80 inches

Use and Management

Land use: Dominant use-woodland; other use-pasture

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover (fig. 13).
- Landing sites generally can be used only during the driest time of the year.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Special harvest methods may be needed to control undesirable plants.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Pasture

Major management concerns: Surface compaction, wetness
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Seasonal wetness, ponding
Management considerations:

- In areas of the Solona soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Areas of the Ensley soil are generally unsuited to building site development because of ponding.

Septic tank absorption fields

Major management concerns: Seasonal wetness, ponding
Management considerations:

- In areas of the Solona soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Areas of the Ensley soil are generally unsuited to use as sites for septic tank absorption fields because of ponding.

93-Tawas-Deford mucks

Setting

Landform: Depressions and drainageways on outwash plains, till-floored lake plains, and moraines

Figure 13.-Skidder ruts in an area of Ensley-Solona complex, 0 to 3 percent slopes. Restricting the use of equipment to periods when the ground is relatively dry or is frozen helps to prevent the formation of ruts.

Shape of areas: Elongated
Size of areas: 5 to 300 acres

Typical Profile

Tawas

Surface tier:
0 to 6 inches—black muck
Subsurface tier:
6 to 25 inches—black muck

Substratum:
25 to 80 inches-grayish brown sand

Deford

Surface layer:
0 to 6 inches—black muck

Substratum:

6 to 30 inches-grayish brown and brown, mottled sand
30 to 80 inches-very dark gray sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Tawas—moderately slow to moderately rapid in the surface and subsurface tiers and rapid in the substratum; Deford—rapid
Available water capacity: Tawas—very high; Deford-low
Drainage class: Tawas—very poorly drained; Deford—poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Tawas soil and similar soils: 45 to 65 percent
Deford soil and similar soils: 20 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Rousseau and excessively drained Rubicon soils on hills and knolls
- The somewhat poorly drained Au Gres and moderately well drained Croswell soils in the slightly higher positions on the landscape
Similar components:
- Tawas soils in which the organic layers are more than 51 inches thick
- Tawas soils that have a loamy substratum
- Deford soils that have a substratum of gravelly sand or gravelly fine sandy loam

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding, excess humus
Management considerations:

- Because of ponding, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, excess humus
Management considerations:

- Because of ponding and low strength, these soils are generally unsuited to use as sites for septic tank absorption fields.

94B—Keweenaw-Kalkaska complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains and moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 200 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 36 inches-reddish brown loamy sand and light reddish brown sand
36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability:Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 35 to 50 percent

Kalkaska soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising and Yalmer soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that are fine sand
- Kalkaska soils that have more than 50 percent ortstein in the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.

94D—Keweenaw-Kalkaska complex, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on till-floored lake plains and moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 250 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches-reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand

25 to 36 inches—reddish brown loamy sand and light reddish brown sand 36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw-well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 35 to 50 percent
Kalkaska soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that are fine sand
- Kalkaska soils that have more than 50 percent ortstein in the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

94E—Keweenaw-Kalkaska complex, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on till-floored lake plains and moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 75 acres

Typical Profile

Keweenaw

Surface layer:
0 to 1 inch—black loamy sand
Subsurface layer:
1 to 3 inches—reddish brown loamy sand
Subsoil:
3 to 25 inches-dark reddish brown and reddish brown loamy sand
25 to 36 inches-reddish brown loamy sand and light reddish brown sand
36 to 80 inches-firm, reddish brown loamy sand and light reddish brown sand

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 35 to 50 percent
Kalkaska soil and similar soils: 35 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
- The excessively drained Waiska soils in landscape positions similar to those of the major soils

Similar components:

- Kalkaska soils that are fine sand
- Kalkaska soils that have more than 50 percent ortstein in the subsoil
- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes and should be stabilized.
- Planting seedlings that can withstand the droughty conditions in areas of the Kalkaska soil can lower the seedling mortality rate. Replanting is needed in some areas.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields
 Major management concerns: Slope
 Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

95B—Liminga fine sand, 1 to 6 percent slopes Setting

Landform: Gently undulating areas on till-floored lake plains and outwash plains Shape of areas: Irregular or oval
Size of areas: 10 to 200 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter

Surface layer:

1 to 2 inches—black fine sand

Subsurface layer:

2 to 4 inches—reddish gray fine sand
Subsoil:
4 to 9 inches—dark reddish brown fine sand
9 to 19 inches-reddish brown fine sand
19 to 30 inches-strong brown fine sand
Substratum:
30 to 80 inches-brown fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Liminga soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Alcona soils in landscape positions similar to those of the Liminga soil
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that are medium sand throughout
- Soils that are loamy in the lower part of the subsoil and in the substratum
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

95D—Liminga fine sand, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on till-floored lake plains and outwash plains Shape of areas: Irregular or oval
Size of areas: 10 to 200 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter

Surface layer:

1 to 2 inches-black fine sand

Subsurface layer:

2 to 4 inches-reddish gray fine sand
Subsoil:
4 to 9 inches-dark reddish brown fine sand
9 to 19 inches-reddish brown fine sand
19 to 30 inches-strong brown fine sand
Substratum:
30 to 80 inches-brown fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe

Map Unit Composition

Liminga soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Alcona soils in landscape positions similar to those of the Liminga soil
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways
Similar components:
- Soils that are medium sand throughout
- Soils are loamy in the lower part of the subsoil and in the substratum
- Soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns:
Management considerations: Poor filtering capacity, slope

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

100E—Sayner-Rubicon complex, 8 to 35 percent slopes, dissected

Setting
Landform: Moderately sloping to steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 10 to 180 acres

Typical Profile

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches-dark reddish gray loamy sand
Subsoil:
2 to 14 inches—dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand
Substratum:
27 to 80 inches-light yellowish brown, stratified sand and gravelly sand
Rubicon
Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Sayner—medium; Rubicon—slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Sayner—moderate; Rubicon—severe

Map Unit Composition

Sayner soil and similar soils: 45 to 65 percent
Rubicon soil and similar soils: 30 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Kinross soils on the bottom of ravines
- The well drained Frohling soils in landscape positions similar to those of the major soils

Similar components:

- Rubicon soils that have loamy bands in the lower part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads and
skid roads in the less sloping areas between the ravines and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss and reduce the equipment limitation.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

100F-Sayner-Rubicon complex, 15 to 60 percent slopes, dissected

Abstract

Setting Landform: Moderately steep to very steep areas on dissected moraines Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams. Shape of areas: Irregular Size of areas: 40 to 250 acres

Typical Profile

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches-dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand
Substratum:
27 to 80 inches—light yellowish brown, stratified sand and gravelly sand

Rubicon

Surface layer:

0 to 1 inch—black sand

Subsurface layer:

1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches—brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Sayner—moderate; Rubicon—severe

Map Unit Composition

Sayner soil and similar soils: 45 to 65 percent
Rubicon soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres and poorly drained Kinross soils on the bottom of ravines
- The well drained Frohling soils in landscape positions similar to those of the major soils

Similar components:

- Rubicon soils that have loamy bands in the lower part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes reduces the hazard of erosion.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development
 Major management concerns: Slope
 Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

103D—Rubicon-Ocqueoc-Rock outcrop complex, 6 to 25 percent slopes

Setting

Landform: Gently rolling and rolling terraces on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 300 acres

Typical Profile

Rubicon

Surface layer:

0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand
Ocqueoc
Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sand
Subsurface layer:
2 to 7 inches-pinkish gray fine sand
Subsoil:
7 to 27 inches-reddish brown and yellowish red fine sand

Substratum:

27 to 33 inches-dark brown loamy fine sand
33 to 80 inches-stratified, firm, reddish brown very fine sandy loam and light reddish brown loamy very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rubicon—rapid; Ocqueoc—rapid in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: Rubicon-low; Ocqueoc-moderate
Drainage class: Rubicon-excessively drained; Ocqueoc-well drained
Surface runoff class: Slow
Flooding: None

Content of organic matter: Low

Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Severe

Map Unit Composition

Rubicon soil and similar soils: 35 to 50 percent Ocqueoc soil and similar soils: 15 to 30 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways

Similar components:

- Rubicon soils that are fine sand throughout or that have a substratum of gravelly sand
- Soils that have a seasonal high water table at a depth of 40 to 60 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes and should be stabilized.
- The rock outcrop should be considered when locations for roads and landing sites are planned.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability, slope
Management considerations:

- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.
- In areas of the Ocqueoc soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

104C—Fence very fine sandy loam, 1 to 12 percent slopes, dissected

Setting
Landform: Nearly level to moderately sloping, dissected areas on till-floored lake plains
Distinctive landscape features: Dissected uplands with mainly parallel ravines that are 50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 350 acres

Typical Profile

Surface layer:

0 to 3 inches-very dark gray very fine sandy loam

Subsurface layer:

3 to 7 inches-reddish gray very fine sandy loam
Subsoil:
7 to 16 inches-dark reddish brown and reddish brown very fine sandy loam
16 to 19 inches-yellowish brown loamy very fine sand
19 to 42 inches-reddish brown and red, mottled silt loam and reddish brown very fine sandy loam
Substratum:
42 to 57 inches-stratified, reddish brown, mottled silt loam and very fine sandy loam and red silty clay loam
57 to 80 inches-stratified, reddish brown, mottled silt loam and brown very fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum
Available water capacity: High
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Fence soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Sporley, Garlic, and Voelker soils in landscape positions similar to those of the Fence soil
- Somewhat poorly drained and poorly drained, loamy soils on the bottom of ravines

Similar components:

- Soils that have a substratum of sandy loam

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope, wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas. Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope, seasonal wetness Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Mounding or adding suitable fill material helps to raise the absorption field above the water table.

105C-Munising fine sandy loam, 1 to 12 percent slopes, dissected

Setting
Landform: Nearly level to moderately sloping, dissected areas on till-floored lake plains Distinctive landscape features: Dissected uplands with mainly parallel ravines that are 50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and

have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide.
Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 550 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Munising soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Skanee and poorly drained Gay soils on the bottom of ravines
- The well drained Frohling soils in areas that have slopes of more than 8 percent
- Soils in areas where surface stones are approximately 3 to 25 feet apart

Similar components:

- Soils that have stratified sand to silt loam in the substratum
- Soils that are sand in the surface layer and the upper part of the subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, seasonal wetness, low content of organic matter
Management considerations:

- Water erosion can be controlled by diversions, crop residue management, contour stripcropping, field stripcropping, cover crops, grassed waterways, conservation tillage, crop rotations that include grasses and legumes, grade-stabilization structures, or a combination of these.
- During wet periods, grassed waterways help to remove surface water.
- Crop residue management, green manure crops, applications of manure, cover crops, and conservation tillage help to maintain or improve tilth and increase the available water capacity and the content of organic matter.

Pasture

Major management concerns: Compaction, seasonal wetness, seasonal droughtiness Management considerations:

- Restricted grazing during wet periods helps to prevent compaction and poor tilth.
- Proper stocking rates, controlled grazing, and restricted use during dry periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, slope Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

106B—Sagola-Rubicon complex, 1 to 6 percent slopes, bouldery

Setting

Landform: Gently undulating areas on ground moraines and disintegration moraines
Shape of areas: Irregular
Size of areas: 10 to 100 acres

Typical Profile

Sagola

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 5 inches—brown fine sandy loam
Subsoil:
5 to 20 inches-brown fine sandy loam
20 to 56 inches-reddish brown sandy loam and brown loamy sand

Substratum:

56 to 80 inches—strong brown sandy loam

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches—brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Sagola—moderate; Rubicon—rapid
Available water capacity: Sagola—moderate; Rubicon—low
Drainage class: Sagola—well drained; Rubicon—excessively drained
Surface runoff class: Sagola—slow; Rubicon—very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Sagola soil and slight in areas of the Rubicon soil
Hazard of soil blowing: Sagola—moderate; Rubicon—severe
Map Unit Composition
Sagola soil and similar soils: 50 to 70 percent
Rubicon soil and similar soils: 15 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keweenaw and Escanaba soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Sagola soils that have a substratum of gravelly sand
- Rubicon soils that are fine sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- In areas of the Sagola soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Rubicon soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.

106D—Sagola-Rubicon complex, 6 to 18 percent slopes, bouldery

Setting

Landform: Gently rolling and rolling areas on ground moraines and disintegration moraines
Shape of areas: Irregular
Size of areas: 5 to 400 acres

Typical Profile

Sagola

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 5 inches-brown fine sandy loam
Subsoil:
5 to 20 inches-brown fine sandy loam
20 to 56 inches-reddish brown sandy loam and brown loamy sand
Substratum:
56 to 80 inches-strong brown sandy loam

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Sagola—moderate; Rubicon-rapid
Available water capacity: Sagola-moderate; Rubicon-low
Drainage class: Sagola-well drained; Rubicon-excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe in areas of the
Sagola soil and moderate in areas of the Rubicon soil
Hazard of soil blowing: Sagola—moderate; Rubicon-severe
Map Unit Composition
Sagola soil and similar soils: 50 to 70 percent
Rubicon soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keweenaw and Escanaba soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Sagola soils that have a substratum of gravelly sand
- Rubicon soils that are fine sand

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Rubicon soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes. Logging roads and skid roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

107B—Goodman-Sundog silt loams, 1 to 6 percent slopes, bouldery

Setting

Landform: Gently undulating areas on disintegration moraines
Shape of areas: Irregular or oval
Size of areas: 6 to 200 acres

Typical Profile

Goodman

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray silt loam
Subsoil:
4 to 19 inches-brown and strong brown silt loam
19 to 30 inches-brown and reddish brown silt loam
30 to 71 inches-dark reddish brown sandy loam and reddish brown loamy sand Substratum:

71 to 80 inches-brown loamy sand

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Goodman-moderate in the surface layer and subsoil and moderately
rapid in the substratum; Sundog-moderate in the surface layer and subsurface
layer and the upper part of the subsoil and very rapid in the substratum
Available water capacity: Goodman—high; Sundog—moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Goodman soil and similar soils: 50 to 70 percent
Sundog soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Greenwood soils in depressions
- The moderately well drained Wabeno and Chabeneau soils in the slightly lower positions on the landscape
- The well drained Keweenaw soils in landscape positions similar to those of the major soils

Similar components:

- Goodman soils that are sandy loam in the surface layer and the upper part of the subsoil
- Sundog soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are spaced 10 to 60 feet apart

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, droughtiness, content of organic matter, boulders
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.
- Boulders on the surface interfere with the use of tillage, planting, and harvesting equipment. Removing the boulders may be necessary before areas of this map unit can be used as cropland.

Pasture

Major management concerns: Surface compaction, erosion
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development
 Major management concerns: Cutbanks caving
 Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability, poor filtering capacity Management considerations:

- In areas of the Goodman soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.

107D—Goodman-Sundog silt loams, 6 to 18 percent slopes, bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular or oval
Size of areas: 10 to 1,000 acres

Typical Profile

Goodman

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 4 inches—pinkish gray silt loam
Subsoil:
4 to 19 inches-brown and strong brown silt loam
19 to 30 inches-brown and reddish brown silt loam
30 to 71 inches-dark reddish brown sandy loam and reddish brown loamy sand

Substratum:
71 to 80 inches—brown loamy sand

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches—brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches—dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart Permeability: Goodman-moderate in the surface layer and subsoil and moderately rapid in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Goodman—high; Sundog—moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Goodman soil and similar soils: 50 to 70 percent
Sundog soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Greenwood soils in depressions
- The moderately well drained Wabeno and Chabeneau soils in areas that have slopes of less than 6 percent
- The well drained Keweenaw soils in landscape positions similar to those of the major soils

Similar components:

- Goodman soils that are sandy loam in the surface layer and the upper part of the subsoil
- Sundog soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are spaced 10 to 60 feet apart

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, droughtiness, content of organic matter, boulders
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.
- Boulders on the surface interfere with the use of tillage, planting, and harvesting equipment. Removing the boulders may be necessary before areas of this map unit can be used as cropland.

Pasture

Major management concerns: Surface compaction, erosion
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, poor filtering capacity, slope Management considerations:

- In areas of the Goodman soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

107F—Goodman-Sundog silt loams, 18 to 45 percent slopes, bouldery

Setting
Landform: Very hilly areas on disintegration moraines
Shape of areas: Irregular or oval
Size of areas: 10 to 1,000 acres
\section*{Typical Profile}
\section*{Goodman}
Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 4 inches—pinkish gray silt loam
Subsoil:
4 to 19 inches-brown and strong brown silt loam
19 to 30 inches-brown and reddish brown silt loam
30 to 71 inches—dark reddish brown sandy loam and reddish brown loamy sand Substratum:
71 to 80 inches-brown loamy sand
\section*{Sundog}
Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches—brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
\section*{Substratum:}
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Goodman-moderate in the surface layer and subsoil and moderately rapid in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Goodman—high; Sundog—moderate
Drainage class: Well drained
Surface runoff class: Rapid
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Goodman soil and similar soils: 50 to 70 percent
Sundog soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Greenwood soils in depressions
- The well drained Keweenaw soils in landscape positions similar to those of the major soils

Similar components:

- Goodman soils that are sandy loam in the surface layer and the upper part of the subsoil
- Sundog soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are spaced 10 to 60 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, erosion hazard, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

108B—Goodman-Sundog-Wabeno silt loams, 1 to 6 percent slopes, bouldery

Setting

Landform: Gently undulating areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 10 to 150 acres

Typical Profile

Goodman

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 4 inches—pinkish gray silt loam
Subsoil:
4 to 19 inches-brown and strong brown silt loam
19 to 30 inches-brown and reddish brown silt loam
30 to 71 inches-dark reddish brown sandy loam and reddish brown loamy sand
Substratum:
71 to 80 inches-brown loamy sand

Sundog

Surface layer:
0 to 1 inch-very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Wabeno

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches-gray silt loam
Subsoil:
3 to 23 inches-reddish brown and yellowish red silt loam
23 to 29 inches-brown, mottled silt loam
29 to 57 inches-dark brown and brown, mottled, very firm sandy loam and loamy sand
Substratum:
57 to 80 inches-brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Goodman-moderate in the surface layer and subsoil and moderately rapid in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum; Wabeno-moderate in the surface layer and subsurface layer and the upper part of the subsoil, slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Goodman-high; Sundog and Wabeno-moderate
Drainage class: Goodman and Sundog-well drained; Wabeno-moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Goodman soil and similar soils: 35 to 50 percent
Sundog soil and similar soils: 15 to 30 percent
Wabeno soil and similar soils: 15 to 30 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Greenwood soils in depressions
- The somewhat poorly drained Net soils in depressions and drainageways
- The well drained Keweenaw soils in landscape positions similar to those of the major soils

Similar components:

- Goodman soils that are sandy loam in the surface layer and the upper part of the subsoil
- Sundog soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are spaced 10 to 60 feet apart

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- The seasonal high water table in areas of the Wabeno soil restricts the use of equipment until midsummer, when the soil is dry, or midwinter, when there is adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, droughtiness, content of organic matter, boulders
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.
- Boulders on the surface interfere with the use of tillage, planting, and harvesting equipment. Removing the boulders may be necessary before areas of this map unit can be used as cropland.

Pasture

Major management concerns: Surface compaction, erosion
Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Wabeno soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields

Major management concerns: Restricted permeability, seasonal wetness, poor filtering capacity
Management considerations:

- In areas of the Wabeno soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas of the Wabeno soil, mounding or adding suitable fill material helps to raise the absorption field above the water table.
- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.

108D—Goodman-Sundog-Wabeno silt loams, 6 to 18 percent slopes, bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 10 to 160 acres

Typical Profile

Goodman

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 4 inches—pinkish gray silt loam
Subsoil:
4 to 19 inches-brown and strong brown silt loam
19 to 30 inches-brown and reddish brown silt loam
30 to 71 inches-dark reddish brown sandy loam and reddish brown loamy sand Substratum:

71 to 80 inches-brown loamy sand

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Wabeno

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches-gray silt loam
Subsoil:
3 to 23 inches-reddish brown and yellowish red silt loam
23 to 29 inches-brown, mottled silt loam
29 to 57 inches-dark brown and brown, mottled, very firm sandy loam and loamy sand
Substratum:
57 to 80 inches-brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Goodman-moderate in the surface layer and subsoil and moderately rapid in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum; Wabeno-moderate in the surface layer and subsurface layer and the upper part of the subsoil, slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Goodman-high; Sundog and Wabeno-moderate
Drainage class: Goodman and Sundog-well drained; Wabeno-moderately well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Goodman soil and similar soils: 35 to 50 percent
Sundog soil and similar soils: 15 to 30 percent
Wabeno soil and similar soils: 15 to 30 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways
- The very poorly drained Greenwood soils in depressions

Similar components:

- Areas of well drained Wabeno soils
- Goodman soils that are sandy loam in the surface layer and subsoil
- Sundog soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are spaced 10 to 60 feet apart

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition

Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- The seasonal high water table in areas of the Wabeno soil restricts the use of equipment until midsummer, when the soil is dry, or midwinter, when there is adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, droughtiness, content of organic matter, boulders
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.
- Boulders on the surface interfere with the use of tillage, planting, and harvesting equipment. Removing the boulders may be necessary before areas of this map unit can be used as cropland.
Pasture
Major management concerns: Surface compaction, erosion

Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Wabeno soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, seasonal wetness, poor filtering capacity, slope
Management considerations:

- In areas of the Wabeno soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas of the Wabeno soil, mounding or adding suitable fill material helps to raise the absorption field above the water table.
- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

109B—Rubicon-Keweenaw complex, 1 to 6 percent slopes, very bouldery

Setting

Landform: Gently undulating areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 150 acres

Typical Profile

Rubicon

Surface layer:

0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand

Keweenaw

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray cobbly loamy sand
Subsoil:
4 to 12 inches-reddish brown cobbly loamy sand
12 to 23 inches-light brown cobbly sand and yellowish red cobbly loamy sand

23 to 37 inches-brown loamy sand
37 to 80 inches-brown sand and dark brown loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Rubicon—rapid; Keweenaw—moderately rapid
Available water capacity: Low
Drainage class: Rubicon-excessively drained; Keweenaw—well drained
Surface runoff class: Rubicon—very slow; Keweenaw—slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Rubicon—severe; Keweenaw—moderate

Map Unit Composition

Rubicon soil and similar soils: 35 to 55 percent
Keweenaw soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Pelissier and well drained Pence soils in landscape positions similar to those of the major soils
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils in areas where the surface boulders are less than 9 feet apart
- Rubicon soils that are sandy loam in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- In areas of the Rubicon soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity

Management considerations:

- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.

109D—Rubicon-Keweenaw complex, 6 to 18 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 1,000 acres

Typical Profile

Rubicon

Surface layer:
0 to 1 inch—black sand

Subsurface layer:

1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Keweenaw

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray cobbly loamy sand
Subsoil:
4 to 12 inches-reddish brown cobbly loamy sand
12 to 23 inches-light brown cobbly sand and yellowish red cobbly loamy sand
23 to 37 inches-brown loamy sand
37 to 80 inches-brown sand and dark brown loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Rubicon—rapid; Keweenaw—moderately rapid
Available water capacity: Low
Drainage class: Rubicon-excessively drained; Keweenaw-well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Rubicon-severe; Keweenaw-moderate

Map Unit Composition

Rubicon soil and similar soils: 35 to 50 percent
Keweenaw soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Pelissier and well drained Pence soils in landscape positions similar to those of the major soils
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils in areas where the surface boulders are less than 9 feet apart
- Rubicon soils that are sandy loam in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- In areas of the Rubicon soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

109F—Rubicon-Keweenaw complex, 18 to 45 percent slopes, very bouldery

Setting

Landform: Very hilly areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 400 acres

Typical Profile

Rubicon

Surface layer:

0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand
Keweenaw
Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray cobbly loamy sand
Subsoil:
4 to 12 inches—reddish brown cobbly loamy sand
12 to 23 inches-light brown cobbly sand and yellowish red cobbly loamy sand
23 to 37 inches-brown loamy sand
37 to 80 inches-brown sand and dark brown loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Rubicon—rapid; Keweenaw—moderately rapid
Available water capacity: Low
Drainage class: Rubicon-excessively drained; Keweenaw—well drained
Seasonal high water table: More than 6 feet
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Rubicon—severe; Keweenaw—moderate

Map Unit Composition

Rubicon soil and similar soils: 35 to 50 percent
Keweenaw soil and similar soils: 30 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Pelissier and well drained Pence soils in landscape positions similar to those of the major soils
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils in areas where the surface boulders are less than 9 feet apart
- Rubicon soils that are sandy loam in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- In areas of the Rubicon soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

110B—Nadeau-Mancelona complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash terraces
Shape of areas: Irregular
Size of areas: 8 to 200 acres
Typical Profile

Nadeau

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches-black fine sandy loam
Subsurface layer:
5 to 7 inches—brown fine sandy loam

Subsoil:
7 to 10 inches-brown gravelly fine sandy loam
10 to 23 inches-reddish brown gravelly fine sandy loam and very gravelly sandy loam
23 to 36 inches-brown very gravelly sand

Substratum:

36 to 80 inches—brown very gravelly sand

Mancelona

Surface layer:
0 to 3 inches—black sandy loam
Subsurface layer:
3 to 10 inches-gray loamy sand
Subsoil:
10 to 12 inches-dark reddish brown loamy fine sand
12 to 18 inches-brown loamy fine sand
18 to 33 inches-yellowish brown sand
33 to 37 inches-brown gravelly sandy loam

Substratum:

37 to 80 inches-light yellowish brown and dark yellowish brown, stratified very gravelly sand and sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Nadeau-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum; Mancelona-moderately rapid in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Nadeau-well drained: Mancelona—somewhat excessively drained
Surface runoff class: Nadeau-slow; Mancelona—very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Nadeau soil and slight in areas of the Mancelona soil
Hazard of soil blowing: Moderate

Map Unit Composition

Nadeau soil and similar soils: 50 to 75 percent Mancelona soil and similar soils: 20 to 40 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Minocqua soils in depressions and drainageways
- The well drained Rousseau and Emmet soils in landscape positions similar to those of the major soils
- The moderately well drained Northland soils in the slightly lower positions on the landscape

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition

Management considerations:

- In areas of the Nadeau soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.

110D—Nadeau-Mancelona complex, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces
Shape of areas: Irregular
Size of areas: 5 to 100 acres

Typical Profile

Nadeau

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches—black fine sandy loam
Subsurface layer:
5 to 7 inches—brown fine sandy loam
Subsoil:
7 to 10 inches-brown gravelly fine sandy loam
10 to 23 inches-reddish brown gravelly fine sandy loam and very gravelly sandy loam
23 to 36 inches-brown very gravelly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Mancelona

Surface layer:
0 to 3 inches-black sandy loam
Subsurface layer:
3 to 10 inches-gray loamy sand

Subsoil:

10 to 12 inches-dark reddish brown loamy fine sand
12 to 18 inches-brown loamy fine sand
18 to 33 inches-yellowish brown sand
33 to 37 inches-brown gravelly sandy loam

Substratum:

37 to 80 inches—light yellowish brown and dark yellowish brown, stratified very gravelly sand and sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Nadeau-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum; Mancelona-moderately rapid in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Nadeau—well drained: Mancelona—somewhat excessively drained Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe in areas of the Nadeau soil and moderate in areas of the Mancelona soil
Hazard of soil blowing: Moderate

Map Unit Composition

Nadeau soil and similar soils: 50 to 75 percent Mancelona soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Minocqua soils in depressions and drainageways
- The well drained Rousseau and Emmet soils in landscape positions similar to those of the major soils
- The moderately well drained Northland soils in the lower positions on the landscape

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

111B—Grayling sand, 0 to 4 percent slopes, rocky Setting

Landform: Nearly level and gently undulating areas on outwash plains Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 20 to 450 acres

Typical Profile

Surface layer:
0 to 3 inches-very dark gray sand

Subsoil:

3 to 23 inches-brown and strong brown sand
Substratum:
23 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
\section*{Map Unit Composition}

Grayling soil and similar soils: 85 to 95 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 10 percent
Components of Minor Extent
Dissimilar components:

- The moderately well drained Croswell soils in depressions and drainageways
- The somewhat excessively drained Ishpeming soils in landscape positions similar to those of the Grayling soil

Similar components:

- Soils that have a substratum of gravelly sand

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development
Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

112D—Keewaydin-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular or elongated
Size of areas: 5 to 600 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand
Michigamme
Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 5 inches—dark reddish gray cobbly fine sandy loam

Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Keewaydin—very deep; Michigamme—moderately deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum; Michigamme-moderate
Available water capacity: Keewaydin-moderate; Michigamme—low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 45 to 60 percent
Michigamme soil and similar soils: 15 to 25 percent
Rock outcrop: 10 to 20 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Witbeck and very poorly drained Cathro soils in depressions and drainageways
- The moderately well drained Champion and Dishno soils in areas that have slopes of less than 18 percent
Similar components:
- Soils that have bedrock at a depth of less than 20 inches
- Keewaydin soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are less than 3 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Michigamme soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Depth to bedrock, slope
Management considerations:

- In areas of the Michigamme soil, mounding or adding suitable fill material helps to raise the absorption field above the bedrock.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

112F—Keewaydin-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 6 to 1,100 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand
Michigamme
Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam

Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Keewaydin—very deep; Michigamme—moderately deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum; Michigamme-moderate
Available water capacity: Keewaydin—moderate; Michigamme—low
Drainage class: Well drained
Surface runoff class: Rapid
Flooding: None
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 45 to 60 percent Michigamme soil and similar soils: 15 to 25 percent
Rock outcrop: 10 to 20 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Witbeck and very poorly drained Cathro soils in depressions and drainageways
- The moderately well drained Dishno soils in areas that have slopes of less than 18 percent
Similar components:
- Soils that have bedrock at a depth of less than 20 inches
- Keewaydin soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are less than 3 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

113B—Vanriper very cobbly silt loam, 1 to 6 percent slopes, rocky, very bouldery

Setting

Landform: Gently undulating areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 6 to 80 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches—brown very cobbly silt loam
Subsoil:
3 to 20 inches-dark brown and dark yellowish brown very cobbly very fine sandy loam
Substratum:
20 to 80 inches—olive brown very cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Vanriper soil and similar soils: 75 to 90 percent

Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Witbeck soils in depressions and drainageways
- The moderately well drained Dishno and Champion soils in landscape positions similar to those of the Vanriper soil

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, seedling mortality, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of the content of cobbles, machine planting is not practical on this soil.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Large stones
Management considerations:

- Because of the content of cobbles, stones, and boulders, excavation is difficult and cutbanks are unstable. Trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability, large stones
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Because of the content of cobbles, stones, and boulders, installing septic tank absorption fields may be difficult.

113D—Vanriper very cobbly silt loam, 6 to 18 percent slopes, rocky, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular or elongated
Size of areas: 12 to 300 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter

Surface layer:
1 to 3 inches-brown very cobbly silt loam
Subsoil:
3 to 20 inches-dark brown and dark yellowish brown very cobbly very fine sandy loam

Substratum:

20 to 80 inches—olive brown very cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Vanriper soil and similar soils: 75 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Dishno and Champion soils in landscape positions similar to those of the Vanriper soil
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of the content of cobbles, stones, and boulders, machine planting is not practical on this soil.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Large stones, slope
Management considerations:

- Because of the content of cobbles, stones, and boulders, excavation is difficult and cutbanks are unstable. Trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, large stones, slope
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Because of the content of cobbles, stones, and boulders, installing septic tank absorption fields may be difficult.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

113F-Vanriper very cobbly silt loam, 18 to 45 percent slopes, rocky, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 10 to 120 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches-brown very cobbly silt loam
Subsoil:
3 to 20 inches—dark brown and dark yellowish brown very cobbly very fine sandy loam
Substratum:
20 to 80 inches—olive brown very cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Rapid
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Severe
 Hazard of soil blowing: Moderate

Map Unit Composition

Vanriper soil and similar soils: 75 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Vanriper soil
- The poorly drained Witbeck soils in depressions and drainageways
- The moderately well drained Champion soils in areas that have slopes of less than 18 percent

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of the slope, special care is needed in designing logging roads and in operating logging equipment. Logging roads should be designed so that they conform with the topography, and the grade should be kept as low as possible.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of the content of cobbles, stones, and boulders, machine planting is not practical on this soil.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

114B—Vanriper very cobbly silt loam, 1 to 6 percent slopes, very bouldery

Setting
Landform: Gently undulating areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 90 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches-brown very cobbly silt loam
Subsoil:
3 to 20 inches—dark brown and dark yellowish brown very cobbly very fine sandy loam
Substratum:
20 to 80 inches—olive brown very cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep

Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Vanriper soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils in landscape positions similar to those of the Vanriper soil
- The poorly drained Witbeck soils in depressions and drainageways
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Large stones and boulders on the surface can hinder harvesting operations and damage equipment.
- Because of the content of cobbles, stones, and boulders, machine planting is not practical on this soil.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Large stones
Management considerations:

- Because of the content of cobbles, stones, and boulders, excavation is difficult and cutbanks are unstable. Trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability, large stones
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Because of the content of cobbles, stones, and boulders, installing septic tank absorption fields may be difficult.

114D-Vanriper very cobbly silt loam, 6 to 18 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 500 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches-brown very cobbly silt loam
Subsoil:
3 to 20 inches-dark brown and dark yellowish brown very cobbly very fine sandy loam
Substratum:
20 to 80 inches—olive brown very cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Vanriper soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils in landscape positions similar to those of the Vanriper soil
- The poorly drained Witbeck soils in depressions and drainageways
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of the content of cobbles, stones, and boulders, machine planting is not practical on this soil.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Large stones and boulders on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Large stones, slope
Management considerations:

- Because of the content of cobbles, stones, and boulders, excavation is difficult and cutbanks are unstable. Trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, large stones, slope Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Because of the content of cobbles, stones, and boulders, installing septic tank absorption fields may be difficult.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

114F-Vanriper very cobbly silt loam, 18 to 45 percent slopes, very bouldery

Setting

Landform: Very hilly areas on disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 20 to 300 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 3 inches-brown very cobbly silt loam
Subsoil:
3 to 20 inches-dark brown and dark yellowish brown very cobbly very fine sandy loam
Substratum:
20 to 80 inches—olive brown very cobbly fine sandy loam
Soil Properties and Qualities
Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Rapid
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate
Map Unit Composition
Vanriper soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils in areas that have slopes of less than 18 percent
- The poorly drained Witbeck soils in depressions and drainageways
- The very poorly drained Greenwood soils in depressions

Similar components:

- Soils that have a substratum of stratified sand and gravel

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

117B-Fence very fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 60 acres

Typical Profile

Surface layer:
0 to 3 inches-very dark gray very fine sandy loam
Subsurface layer:
3 to 7 inches-reddish gray very fine sandy loam
Subsoil:
7 to 16 inches-dark reddish brown and reddish brown very fine sandy loam
16 to 19 inches-yellowish brown loamy very fine sand
19 to 42 inches-reddish brown and red, mottled silt loam and reddish brown very fine sandy loam
Substratum:
42 to 57 inches—stratified, reddish brown, mottled silt loam and very fine sandy loam and red silty clay loam
57 to 80 inches-stratified, reddish brown, mottled silt loam, brown very fine sand, and light brown fine sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Moderate in the surface layer and subsurface layer and the upper part of
the subsoil and moderately slow in the lower part of the subsoil and in the substratum
Available water capacity: High
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Fence soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Sporley and Voelker soils in the slightly higher positions on the landscape
- Poorly drained, loamy soils in depressions and drainageways

Similar components:

- Soils that have a substratum of sandy loam

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Surface compaction, seasonal wetness Management considerations:

- Proper stocking rates, pasture rotation, timely deferment of grazing, and restricted use during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving and seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Restricted permeability, seasonal wetness Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Filling or mounding with suitable material helps to raise the absorption field above the water table.

118A-Croswell-Deford complex, 0 to 3 percent slopes

Setting

Landform: Croswell—nearly level areas on beach ridges; Deford—in the intervening swales
Shape of areas: Irregular or elongated
Size of areas: 10 to 350 acres

Typical Profile

Croswell

Surface layer:

0 to 3 inches-very dark brown sand
Subsurface layer:
3 to 7 inches-pinkish gray sand
Subsoil:
7 to 22 inches—reddish brown and yellowish red sand
22 to 34 inches-strong brown, mottled sand
Substratum:
34 to 80 inches-light brown, mottled sand

Deford

Surface layer:
0 to 6 inches—black muck
Substratum:
6 to 30 inches-grayish brown and brown, mottled sand
30 to 80 inches-dark gray sand

Soil Properties and Qualities

[^2]
Map Unit Composition

Croswell soil and similar soils: 45 to 60 percent
Deford soil and similar soils: 25 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Deer Park soils in the higher positions on ridges
- The somewhat poorly drained Au Gres soils in landscape positions similar to those of the major soils
- The very poorly drained Dawson and Tawas soils in depressions, drainageways, and swales

Similar components:

- Soils that have a substratum of gravelly sand
- Croswell soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seasonal wetness, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- In areas of the Croswell soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- In areas of the Croswell soil, planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Deford soil.
- In areas of the Deford soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- Special harvest methods may be needed to control undesirable plants.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development
Major management concerns: Cutbanks caving, seasonal wetness, ponding Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Croswell soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
- Because of ponding, the Deford soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, ponding Management considerations:

- The poor filtering capacity of the Croswell soil can result in the pollution of ground water.
- In areas of the Croswell soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Because of ponding, the Deford soil is generally unsuited to use as a site for septic tank absorption fields.

119B-Yalmer-Kalkaska complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains
Shape of areas: Irregular
Size of areas: 20 to 150 acres

Typical Profile

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 80 inches-dark reddish gray, mottled, very firm loamy fine sand and reddish brown fine sandy loam

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Kalkaska—rapid
Available water capacity: Low
Drainage class: Yalmer—moderately well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Yalmer soil and similar soils: 45 to 60 percent
Kalkaska soil and similar soils: 25 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Tokiahok soils in the higher positions on the landscape
- The somewhat poorly drained Au Gres soils in the lower depressions and drainageways
Similar components:
- Kalkaska soils that are fine sand throughout
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, seedling mortality, plant competition
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- In areas of the Yalmer soil, equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
Building site development
Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Yalmer soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, restricted permeability
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas of the Yalmer soil, filling or mounding with suitable material helps to raise the absorption field above the water table. Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

119D—Yalmer-Kalkaska complex, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on till-floored lake plains
Shape of areas: Irregular
Size of areas: 25 to 150 acres

Typical Profile

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches—reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 80 inches-dark reddish gray, mottled, very firm loamy fine sand and reddish brown fine sandy loam

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Kalkaska—rapid
Available water capacity: Low
Drainage class: Yalmer—moderately well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Severe

Map Unit Composition

Yalmer soil and similar soils: 45 to 60 percent
Kalkaska soil and similar soils: 25 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Tokiahok soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres soils in depressions and drainageways

Similar components:

- Kalkaska soils that are fine sand
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, seedling mortality, plant competition

Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Yalmer soil, equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope, cutbanks caving, seasonal wetness Management considerations:

- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Yalmer soil, wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, restricted permeability, slope
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas of the Yalmer soil, filling or mounding with suitable material helps to raise the absorption field above the water table. Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

121B—Onota gravelly sandy loam, 1 to 6 percent slopes

Setting

Landform: Nearly level and gently undulating areas on bedrock benches
Shape of areas: Irregular
Size of areas: 7 to 40 acres

Typical Profile

Organic mat:
0 to 1 inch—undecomposed hardwood forest litter

Surface layer:

1 to 2 inches—black gravelly sandy loam
Subsurface layer:
2 to 7 inches—reddish gray gravelly sandy loam

Subsoil:
7 to 10 inches-dark reddish brown gravelly sandy loam
10 to 22 inches-dark reddish brown, firm gravelly sandy loam

Bedrock:

22 inches-dark reddish brown sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Permeability: Moderate
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Onota soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Carlshend and Chocolay soils in landscape positions similar to those of the Onota soil
- The somewhat poorly drained Zeba and poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils in areas where the surface stones are 25 to 75 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, cutbanks caving Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Depth to bedrock
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing
through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

122-Pleine very cobbly muck, very stony

Setting

Landform: Depressions and drainageways on bedrock-controlled moraines
Shape of areas: Elongated or oval
Size of areas: 5 to 90 acres

Typical Profile

Surface layer:
0 to 9 inches—black very cobbly muck
Subsoil:
9 to 20 inches-pinkish gray, mottled, firm very fine sandy loam
20 to 33 inches-reddish brown, mottled fine sandy loam
Substratum:
33 to 80 inches-reddish brown gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate
Available water capacity: Moderate
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Pleine soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Gogebic and somewhat poorly drained Tula soils in the higher positions on the landscape
- The very poorly drained Cathro soils in the slightly lower positions on the landscape

Similar components:

- Soils that are very cobbly or very gravelly in the subsoil and substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on this soil.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

123A-Tula cobbly very fine sandy loam, 0 to 3 percent slopes, very stony

Setting
Landform: Nearly level areas on bedrock-controlled moraines
Shape of areas: Elongated or irregular
Size of areas: 5 to 100 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter

Surface layer:

1 to 5 inches—dark reddish gray cobbly very fine sandy loam
Subsurface layer:
5 to 8 inches-light gray cobbly very fine sandy loam
Subsoil:
8 to 20 inches—reddish brown, mottled cobbly very fine sandy loam
20 to 28 inches-dark reddish brown gravelly sandy loam
28 to 37 inches-light reddish brown and reddish brown, mottled, very firm gravelly sandy loam
37 to 62 inches-dark reddish brown, very firm gravelly loam and reddish brown, very firm gravelly sandy loam

Substratum:

62 to 80 inches—reddish brown gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep

Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Moderate
Drainage class: Somewhat poorly drained

Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Tula soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Gogebic soils in the higher positions on the landscape
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Soils that contain less than 15 percent rock fragments throughout
- Soils that have sandy textures in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, seedling mortality, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or winter, when the soil has an adequate snow cover.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Trees that can withstand seasonal wetness should be selected for planting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Seasonal wetness, cutbanks caving
Management considerations:

- Wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Restricted permeability, seasonal wetness Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Filling or mounding with suitable material helps to raise the absorption field above the water table.

124B—Gogebic-Dishno cobbly silt loams, 1 to 6 percent slopes, rocky, very stony

Setting

Landform: Gently undulating areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular or elongated
Size of areas: 5 to 100 acres

Typical Profile

Gogebic

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black cobbly silt loam
Subsurface layer:
3 to 5 inches-reddish gray cobbly silt loam
Subsoil:
5 to 13 inches—dark reddish brown cobbly fine sandy loam
13 to 18 inches-reddish brown, firm cobbly sandy loam
18 to 62 inches-reddish brown, very firm very gravelly sandy loam and very gravelly loamy sand
Substratum:
62 to 80 inches-reddish brown very gravelly sandy loam

Dishno

Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter
Surface layer:
1 to 3 inches—dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches—reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Soil Properties and Qualities

Depth class: Gogebic—very deep; Dishno—deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Gogebic-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the middle and lower parts of the subsoil, and moderate in the substratum; Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained

Surface runoff class: Slow
Flooding: None
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Gogebic soil and similar soils: 50 to 70 percent
Dishno soil and similar soils: 20 to 35 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska and well drained Schweitzer soils in landscape positions similar to or slightly higher than those of the major soils
- The somewhat poorly drained Tula and poorly drained Pleine soils in depressions and drainageways

Similar components:

- Soils in areas where the surface stones are 1 to 3 feet apart
- Soils that have bedrock at a depth of less than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has adequate snow cover.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.

Septic tank absorption fields

Major management concerns: Restricted permeability, depth to bedrock, seasonal wetness
Management considerations:

- In areas of the Gogebic soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas of the Dishno soil, mounding or adding suitable fill material helps to raise the absorption field above the bedrock and the water table.

124D—Gogebic-Dishno cobbly silt loams, 6 to 18 percent slopes, rocky, very stony

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 5 to 300 acres

Typical Profile

Gogebic

Organic mat:
0 to 1 inch—black, partially decomposed forest litter

Surface layer:

1 to 3 inches—black cobbly silt loam
Subsurface layer:
3 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 13 inches—dark reddish brown cobbly fine sandy loam
13 to 18 inches-reddish brown, firm cobbly sandy loam
18 to 62 inches-reddish brown, very firm very gravelly sandy loam and very gravelly loamy sand
Substratum:
62 to 80 inches-reddish brown very gravelly sandy loam

Dishno

Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter

Surface layer:

1 to 3 inches-dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches—reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Soil Properties and Qualities

Depth class: Gogebic—very deep; Dishno—deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Gogebic-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the middle and lower parts of the subsoil, and moderate in the substratum; Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum

Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Gogebic soil and similar soils: 50 to 70 percent
Dishno soil and similar soils: 20 to 35 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska and well drained Schweitzer soils in landscape positions similar to those of the major soils
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Soils in areas where the surface stones are 1 to 3 feet apart
- Soils that have bedrock at a depth of less than 40 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, seasonal wetness, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and bedrock.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Restricted permeability, depth to bedrock, seasonal wetness, slope
Management considerations:

- In areas of the Gogebic soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas of the Dishno soil, mounding or adding suitable fill material helps to raise the absorption field above the bedrock and water table.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

125D—Keweenaw-Kalkaska-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 10 to 200 acres

Typical Profile

Keweenaw

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray cobbly loamy sand
Subsoil:
4 to 12 inches-reddish brown cobbly loamy sand
12 to 23 inches-light brown cobbly sand and yellowish red cobbly loamy sand
23 to 37 inches-brown loamy sand
37 to 80 inches-brown sand and dark brown loamy sand
Kalkaska
Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained Surface runoff class: Slow
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Keweenaw-moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 45 to 65 percent
Kalkaska soil and similar soils: 15 to 30 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming soils and the well drained Michigamme and Alcona soils in landscape positions similar to those of the major soils
- The poorly drained Witbeck and very poorly drained Tawas soils in depressions and drainageways

Similar components:

- Kalkaska soils that have a surface layer of sandy loam
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields
 Major management concerns: Poor filtering capacity, slope
 Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

125F-Keweenaw-Kalkaska-Rock outcrop complex, 25 to 70 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 15 to 300 acres

Typical Profile

Keweenaw

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-pinkish gray cobbly loamy sand
Subsoil:
4 to 12 inches-reddish brown cobbly loamy sand
12 to 23 inches-light brown cobbly sand and yellowish red cobbly loamy sand
23 to 37 inches-brown loamy sand
37 to 80 inches-brown sand and dark brown loamy sand
Kalkaska
Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keweenaw—moderately rapid; Kalkaska—rapid
Available water capacity: Low
Drainage class: Keweenaw—well drained; Kalkaska—somewhat excessively drained Surface runoff class: Medium
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Severe
Hazard of soil blowing: Keweenaw—moderate; Kalkaska—severe

Map Unit Composition

Keweenaw soil and similar soils: 45 to 65 percent
Kalkaska soil and similar soils: 15 to 30 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming soils and the well drained Peshekee and Schweitzer soils in landscape positions similar to those of the major soils
- The poorly drained Witbeck and very poorly drained Tawas soils in depressions and drainageways

Similar components:

- Kalkaska soils that have a surface layer of sandy loam
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

126B—Sundog silt loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash terraces and outwash plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 1,200 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chabeneau soils in the slightly lower positions on the landscape
- The poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, seasonal droughtiness, tilth, content of organic matter
Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Overgrazing, surface compaction
Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

126D—Sundog silt loam, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces and outwash plains Shape of areas: Irregular or elongated
Size of areas: 5 to 250 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam

Subsurface layer:

1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Water erosion, soil blowing, nutrient loss, seasonal droughtiness, tilth, content of organic matter

Management considerations:

- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Conservation tillage, windbreaks, vegetative barriers, cover crops, stripcropping, and cropping systems that include close-growing crops help to control soil blowing.
- Increasing the content of organic matter in the root zone may increase the ability of the soil to hold water, nutrients, and pesticides and reduce the hazard of groundwater pollution.
- Leaving crop residue on the surface and adding other organic material conserve moisture.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Including green manure crops in the cropping sequence, using a system of no-till planting, and applying crop residue management techniques can increase the content of organic matter.

Pasture

Major management concerns: Overgrazing, surface compaction, erosion Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, slope

Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

126E—Sundog silt loam, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash terraces, eskers, and kames
Shape of areas: Irregular or elongated
Size of areas: 5 to 75 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields
 Major management concerns: Slope
 Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

127B—Sundog silt loam, 1 to 6 percent slopes, bouldery Setting

Landform: Gently undulating areas on outwash terraces and disintegration moraines Shape of areas: Irregular or elongated
Size of areas: 5 to 85 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chabeneau soils in areas that have slopes of less than 4 percent
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are 9 to 60 feet apart
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

127D—Sundog silt loam, 6 to 18 percent slopes, bouldery

Setting

Landform: Gently rolling and rolling areas on outwash terraces and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 150 acres

Typical Profile

Surface layer:
0 to 1 inch-very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None

Content of organic matter: Low

Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Vanriper soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are 9 to 60 feet apart
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

127F—Sundog silt loam, 18 to 45 percent slopes, bouldery

Setting

Landform: Very hilly areas on outwash terraces and disintegration moraines
Shape of areas: Irregular or elongated
Size of areas: 5 to 70 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches—brown silt loam
Subsoil:
2 to 17 inches—brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches—dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Vanriper soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of gravelly loamy sand
- Soils in areas where the surface boulders are 9 to 60 feet apart
- Soils that contain more than 15 percent rock fragments in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition

Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

128B—Kalkaska-Waiska complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on outwash terraces and outwash plains
Shape of areas: Irregular
Size of areas: 15 to 200 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Waiska

Surface layer:

0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand

Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand

Substratum:

36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Waiska—very rapid
Available water capacity: Kalkaska—low; Waiska—very low
Drainage class: Kalkaska—somewhat excessively drained; Waiska-excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Kalkaska-severe; Waiska—moderate

Map Unit Composition

Kalkaska soil and similar soils: 40 to 65 percent
Waiska soil and similar soils: 25 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Yalmer soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Waiska soils that have a lower content of gravel and cobbles
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.

128D—Kalkaska-Waiska complex, 6 to 18 percent slopes

Setting

Landform: Gently rolling and rolling areas on outwash terraces and outwash plains
Shape of areas: Irregular
Size of areas: 10 to 250 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand
Waiska
Surface layer:
0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Waiska—very rapid
Available water capacity: Kalkaska-low; Waiska—very low
Drainage class: Kalkaska-somewhat excessively drained; Waiska-excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Kalkaska-severe; Waiska—moderate

Map Unit Composition

Kalkaska soil and similar soils: 40 to 65 percent
Waiska soil and similar soils: 25 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Yalmer soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Waiska soils that have a lower content of gravel and cobbles
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

128E—Kalkaska-Waiska complex, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on outwash terraces and outwash plains
Shape of areas: Irregular
Size of areas: 5 to 70 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Waiska

Surface layer:
0 to 1 inch—black cobbly loamy sand

Subsurface layer:

1 to 4 inches-reddish gray cobbly loamy sand

Subsoil:

4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand 14 to 36 inches-yellowish red very cobbly sand

Substratum:

36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Waiska—very rapid
Available water capacity: Kalkaska—low; Waiska—very low
Drainage class: Kalkaska—somewhat excessively drained; Waiska—excessively drained
Surface runoff class: Kalkaska—slow; Waiska—medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Kalkaska—severe; Waiska—moderate

Map Unit Composition

Kalkaska soil and similar soils: 40 to 65 percent
Waiska soil and similar soils: 25 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Tokiahok soils, which have a very firm layer in the lower part of the subsoil; in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Waiska soils that have a lower content of gravel and cobbles
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality

Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Because loose sand and the slope can hinder the traction of wheeled equipment, skid roads should be built on the contour or on the gentler slopes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development
 Major management concerns: Slope
 Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

129C—Kalkaska-Munising complex, 1 to 12 percent slopes, dissected

Setting

Landform: Nearly level to moderately sloping, dissected areas on till-floored lake plains Distinctive landscape features: Dissected uplands with mainly parallel ravines that are 50 to 300 feet apart. The ravines are 5 to 15 feet deep and 15 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 10 to 125 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 18 inches-dark reddish brown and yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Munising—moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum

Available water capacity: Low
Drainage class: Kalkaska—somewhat excessively drained; Munising—moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Kalkaska—severe; Munising—moderate

Map Unit Composition

Kalkaska soil and similar soils: 45 to 65 percent
Munising soil and similar soils: 25 to 45 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Skanee soils in areas that have slopes of less than 3 percent
Similar components:
- Kalkaska soils that have more gravel in the substratum
- Munising soils that are sand in the surface layer and the upper part of the subsoil
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- The seasonal high water table in areas of the Munising soil restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is adequate snow cover.
- In areas of the Kalkaska soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- In areas of the Munising soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Munising soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, restricted permeability
Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas of the Munising soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Land shaping or pressurizing the absorption field or installing alternating drain fields helps to overcome the slope and helps to compensate for the restricted permeability in areas of the Munising soil.

130A—Chabeneau silt loam, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on outwash terraces and outwash plains
Shape of areas: Elongated or irregular
Size of areas: 5 to 250 acres

Typical Profile

Organic mat:
0 to 1 inch—partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark grayish brown silt loam
Subsurface layer:
2 to 5 inches-reddish gray silt loam
Subsoil:
5 to 22 inches—dark reddish brown and brown silt loam
22 to 30 inches-brown gravelly loamy coarse sand

Substratum:

30 to 48 inches—brown, mottled, stratified very gravelly coarse sand and coarse sand
48 to 121 inches-brown, mottled, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Chabeneau soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Sundog soils in the slightly higher positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a sandy surface layer
- Soils that have stones and boulders on the surface

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Landing sites generally can be used only during the driest time of the year.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of this soil can result in the pollution of ground water.

131—Witbeck-Cathro complex, very bouldery

Setting

Landform: Depressions and drainageways on bedrock-controlled moraines
Shape of areas: Elongated or oval
Size of areas: 5 to 125 acres

Typical Profile

Witbeck

Surface layer:
0 to 8 inches—black very stony muck
Subsoil:
8 to 12 inches-gray very stony fine sandy loam
12 to 15 inches-greenish gray, mottled very stony very fine sandy loam
15 to 22 inches-dark olive gray, mottled very stony fine sandy loam
22 to 24 inches-olive gray, mottled gravelly fine sandy loam

Substratum:
24 to 80 inches—dark gray, mottled gravelly sandy loam

Cathro

Surface tier:
0 to 6 inches-black muck
Subsurface tier:
6 to 31 inches-black muck
Substratum:
31 to 80 inches-dark grayish brown fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Witbeck—moderate; Cathro—moderately slow to moderately rapid in the surface and subsurface tiers and moderately slow in the substratum
Available water capacity: Witbeck-moderate; Cathro-very high
Drainage class: Witbeck-poorly drained; Cathro-very poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Witbeck soil and similar soils: 45 to 60 percent
Cathro soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keewaydin soils on knolls and ridges
- The somewhat poorly drained Net soils in the slightly higher positions on the landscape
Similar components:
- Soils in areas where the surface boulders are 3 to 10 feet apart
- Witbeck soils that have a substratum of stratified sand and gravelly sand

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Boulders and stones on the surface can hinder harvesting operations and damage equipment.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of low strength, suitable surfacing material is needed on year-round logging roads and landings.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on these soils.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, these soils are generally unsuited to use as sites for septic tank absorption fields.

132-Slickens

Setting

Landform: Mine tailings basins
Shape of areas: Oval or irregular
Size of areas: 5 to 1,700 acres

Map Unit Composition

This map unit consists of mine tailings from the iron ore pelletizing process. Slickens are accumulations of material separated in ore-mill operations. They consist of finely ground rock that has undergone chemical treatment during the milling process. The material is impounded in basins that are supported by containment dikes constructed from mine overburden.

About 70 percent of this map unit consists of areas of open water, where the concentration of tailings, in solution, is low. Included are small areas of semisolid, highly concentrated solutions, which are red or gray. These areas do not support vegetation.

About 15 percent of the map unit consists of containment dikes. These are stabilized areas that are vegetated on the side away from the basins. They are composed of cobble- and stone-sized broken rock, transported soil material, and solid mine spoil. Some areas are reinforced with concrete. The sides are steep or very steep. Access roads follow the crest.

About 10 percent of the map unit consists of solid mining waste, which has been moved around by heavy equipment. Most of this material is finely crushed, but areas of rock fragments are included. Some areas are beginning to support vegetation naturally, and other areas are being revegetated.

The remaining 5 percent of the map unit consists of small areas of rock outcrop that have been incorporated into the containment dikes, bermed roadways, and small narrow causeways that connect land masses.

Use and Management

Land use: Active tailings basins are generally covered with water. Inactive tailings basins are in various stages of revegetation. Older areas support grasses, brush, or small trees.
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

133B—Keewaydin-Dishno complex, 1 to 6 percent slopes, rocky, bouldery

Setting
Landform: Gently undulating areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 20 to 45 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand

Dishno

Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter
Surface layer:
1 to 3 inches—dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches-reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Soil Properties and Qualities

Depth class: Keewaydin—very deep; Dishno—deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the
subsoil and moderately rapid or rapid in the lower part of the subsoil and in the
substratum; Dishno-moderate in the surface layer and the upper part of the
subsoil and moderately rapid in the lower part of the subsoil and in the substratum
Available water capacity:Keewaydin—moderate; Dishno-low
Drainage class: Keewaydin-well drained; Dishno—moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 45 to 60 percent Dishno soil and similar soils: 20 to 40 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils in landscape positions similar to those of the major soils
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
Building site development
Major management concerns: Cutbanks caving, seasonal wetness, depth to bedrock Management considerations:
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Dishno soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.

Septic tank absorption fields

Major management concerns: Seasonal wetness, depth to bedrock
Management considerations:

- In areas of the Dishno soil, filling or mounding with suitable material helps to raise the absorption field above the water table and the bedrock.

133D—Keewaydin-Dishno complex, 6 to 18 percent slopes, rocky, bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 5 to 700 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand
Dishno
Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter
Surface layer:
1 to 3 inches—dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches—reddish gray cobbly silt loam
Subsoil:
9 to 18 inches—dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly fine sandy loam
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Soil Properties and Qualities

Depth class: Keewaydin—very deep; Dishno—deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart Permeability: Keewaydin—moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum; Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum
Available water capacity: Keewaydin—moderate; Dishno—low
Drainage class: Keewaydin—well drained; Dishno—moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Keewaydin soil and similar soils: 45 to 60 percent
Dishno soil and similar soils: 20 to 40 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion soils in landscape positions similar to those of the major soils
- The poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, seasonal wetness, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Dishno soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope, seasonal wetness, depth to bedrock Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- In areas of the Dishno soil, filling or mounding with suitable material helps to raise the absorption field above the water table.

134B—Keewaydin cobbly fine sandy loam, 1 to 6 percent slopes, bouldery

Setting
Landform: Gently undulating areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 5 to 250 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter

Surface layer:
2 to 4 inches-reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion and Dishno soils in landscape positions similar to those of the Keewaydin soil
- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: None

134D—Keewaydin cobbly fine sandy loam, 6 to 18 percent slopes, bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 5 to 900 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand

Substratum:

31 to 80 inches—brown very cobbly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderate in the surface layer and the upper part of the subsoil and
moderately rapid or rapid in the lower part of the subsoil and in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion and Dishno soils in landscape positions similar to those of the Keewaydin soil
- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

134F-Keewaydin cobbly fine sandy loam, 18 to 45 percent slopes, bouldery

Setting

Landform: Very hilly areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 5 to 50 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart Permeability: Moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Keewaydin soil
- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

135A-Witbeck-Net complex, 0 to 3 percent slopes, extremely bouldery

[^3]
Typical Profile

Witbeck

Surface layer:
0 to 8 inches-black very stony muck
Subsoil:
8 to 12 inches-gray very stony fine sandy loam
12 to 15 inches-greenish gray, mottled very stony very fine sandy loam
15 to 22 inches-dark olive gray, mottled very stony fine sandy loam
22 to 24 inches-olive gray, mottled gravelly fine sandy loam
Substratum:
24 to 80 inches-dark gray, mottled gravelly sandy loam
Net
Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 5 inches-pinkish gray cobbly very fine sandy loam
Subsoil:
5 to 18 inches-dark brown and reddish brown, mottled cobbly very fine sandy loam
18 to 45 inches—brown, mottled, very firm gravelly fine sandy loam
Substratum:
45 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 3 to 10 feet apart
Permeability: Witbeck—moderate; Net—moderate in the surface layer and subsurface
layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Witbeck—moderate; Net—low
Drainage class: Witbeck—poorly drained; Net—somewhat poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: Witbeck—high; Net—medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Witbeck soil and similar soils: 45 to 70 percent
Net soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Champion and Dishno soils in the higher positions on the landscape
- The very poorly drained Cathro and Carbondale soils in depressions and drainageways
- Areas of rock outcrop

Similar components:

- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are spaced 10 to 65 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Witbeck soil.
- Trees that can withstand seasonal wetness should be selected for planting on the Net soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Cutbanks caving, ponding, seasonal wetness Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Because of ponding, the Witbeck soil is generally unsuited to building site development.
- In areas of the Net soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Ponding, seasonal wetness, restricted permeability Management considerations:

- Because of ponding, the Witbeck soil is generally unsuited to use as a site for septic tank absorption fields.
- Mounding or adding suitable fill material helps to raise the absorption field above the water table in areas of the Net soil.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Net soil.

136A-Minocqua-Channing complex, 0 to 3 percent slopes

Setting

Landform: Depressions and drainageways on outwash terraces and outwash plains Shape of areas: Elongated or irregular
 Size of areas: 5 to 200 acres

Typical Profile

Minocqua

Organic mat:
0 to 2 inches—dark brown, undecomposed sphagnum moss

Surface layer:
2 to 5 inches-black muck
Subsurface layer:
5 to 7 inches-very dark gray mucky fine sandy loam
Subsoil:
7 to 11 inches-dark grayish brown, mottled fine sandy loam
11 to 18 inches-grayish brown, mottled very fine sandy loam
18 to 23 inches-mottled, dark grayish brown fine sandy loam
Substratum:
23 to 80 inches-dark grayish brown gravelly coarse sand

Channing

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 5 inches-dark reddish brown fine sandy loam
Subsurface layer:
5 to 9 inches-reddish gray, mottled very fine sandy loam
Subsoil:
9 to 18 inches-brown, mottled very fine sandy loam
18 to 22 inches-brown, mottled fine sandy loam
22 to 28 inches-strong brown, mottled gravelly sand
Substratum:
28 to 80 inches-brown gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Minocqua-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum; Channing-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Minocqua-poorly drained; Channing-somewhat poorly drained
Surface runoff class: Minocqua-very slow or ponded; Channing-very slow
Flooding: None
Content of organic matter: Minocqua—high; Channing—low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Minocqua soil and similar soils: 45 to 70 percent
Channing soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Pence and moderately well drained Chabeneau soils in the higher positions on the landscape
- The poorly drained Kinross soils in landscape positions similar to those of the major soils

Similar components:

- Soils that have a loamy substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Minocqua soil.
- Trees that can withstand seasonal wetness should be selected for planting on the Channing soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Cutbanks caving, ponding, seasonal wetness Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Because of ponding, the Minocqua soil is generally unsuited to building site development.
- In areas of the Channing soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Ponding, seasonal wetness, poor filtering capacity
Management considerations:

- Because of ponding, the Minocqua soil is generally unsuited to use as a site for septic tank absorption fields.
- Mounding or adding suitable fill material helps to raise the absorption field above the water table in areas of the Channing soil.
- The poor filtering capacity of these soils can result in the pollution of ground water.

137D—Keewaydin-Sundog complex, 6 to 18 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 10 to 1,300 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-reddish brown cobbly fine sandy loam

Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand

Substratum:

31 to 80 inches-brown very cobbly loamy sand

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 40 to 60 percent
Sundog soil and similar soils: 30 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chabeneau soils in the slightly lower positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a surface layer of sandy loam
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Slope, poor filtering capacity
Management considerations:

- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.

137F-Keewaydin-Sundog complex, 18 to 45 percent slopes, very bouldery

Setting

Landform: Very hilly areas on disintegration moraines
Shape of areas: Irregular
Size of areas: 25 to 200 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches—reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand

Substratum:

31 to 80 inches-brown very cobbly loamy sand

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches—brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the subsoil and moderately rapid or rapid in the lower part of the subsoil and in the substratum; Sundog-moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 40 to 60 percent
Sundog soil and similar soils: 30 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chabeneau soils in the lower positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a surface layer of sandy loam
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
 Major management concerns: Slope
 Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

138D—Sundog-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops (fig. 14)
Shape of areas: Irregular
Size of areas: 10 to 800 acres

Typical Profile

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Sundog

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Moderate
Map Unit Composition
Sundog soil and similar soils: 45 to 75 percent
Rock outcrop: 10 to 40 percent
Dissimilar components: 5 to 15 percent

Figure 14.—Rock outcrop in an area of Sundog-Rock outcrop complex, 6 to 25 percent slopes, very bouldery. Rock outcrop is common in the survey area.

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of very cobbly loamy sand
- Soils that are sandy loam in the surface layer and subsoil
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Sundog soil can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

138F-Sundog-Rock outcrop complex, 25 to 70 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 150 acres

Typical Profile

Sundog

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam
Subsoil:
2 to 17 inches-brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Sundog

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 45 to 75 percent
Rock outcrop: 10 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of very cobbly loamy sand
- Soils that are sandy loam in the surface layer and subsoil
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

139B—Sundog silt loam, 1 to 6 percent slopes, rocky, very bouldery

Setting
Landform: Gently undulating areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 100 acres

Typical Profile

Surface layer:
0 to 1 inch—very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches—brown silt loam
Subsoil:
2 to 17 inches—brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam
Substratum:
22 to 38 inches—dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very
rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Rock outcrop: 1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways
Similar components:
- Soils that have a substratum of very cobbly loamy sand
- Soils that are sandy loam in the surface layer and subsoil
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
Building site development
Major management concerns: Cutbanks caving
Management considerations:
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

139D—Sundog silt loam, 6 to 18 percent slopes, rocky, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 15 to 80 acres

Typical Profile

Surface layer:
0 to 1 inch-very dark grayish brown silt loam
Subsurface layer:
1 to 2 inches-brown silt loam

Subsoil:
2 to 17 inches—brown and strong brown silt loam
17 to 22 inches-brown fine sandy loam

Substratum:

22 to 38 inches-dark yellowish brown gravelly sand
38 to 80 inches-yellowish brown, stratified sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Moderate in the surface layer, subsurface layer, and subsoil and very rapid in the substratum
Available water capacity: Moderate
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sundog soil and similar soils: 85 to 95 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Sundog soil
- The somewhat poorly drained Channing soils and the poorly drained Minocqua and Witbeck soils in depressions and drainageways

Similar components:

- Soils that have a substratum of very cobbly loamy sand
- Soils that are sandy loam in the surface layer and subsoil
- Soils that are sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development
Major management concerns: Cutbanks caving, slope

Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land.

Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping and installing the distribution lines across the slope help to ensure that the absorption field functions properly.

140B—Champion-Dishno complex, 1 to 6 percent slopes, rocky, very stony

Setting

Landform: Gently undulating areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 10 to 15 acres

Typical Profile

Champion

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-very dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 26 inches-dark reddish brown and reddish brown cobbly fine sandy loam
26 to 36 inches-reddish brown, mottled, very firm gravelly sandy loam
36 to 43 inches-brown, mottled, very firm gravelly loamy sand
Substratum:
43 to 80 inches-brown gravelly loamy sand

Dishno

Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter
Surface layer:
1 to 3 inches—dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches-reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Soil Properties and Qualities

Depth class: Champion—very deep; Dishno—deep
Rock fragments on the surface: Stones spaced approximately 3 to 26 feet apart

Permeability: Champion-moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Champion soil and similar soils: 50 to 75 percent
Dishno soil and similar soils: 20 to 35 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keewaydin soils in the higher landscape positions
- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of 20 to 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, depth to bedrock Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and bedrock.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, depth to bedrock

Management considerations:

- Mounding or adding suitable fill material helps to raise the absorption field above the water table and bedrock.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

140D—Champion-Dishno complex, 6 to 18 percent slopes, rocky, very stony

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 5 to 175 acres

Typical Profile

Champion

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-very dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 26 inches-dark reddish brown and reddish brown cobbly fine sandy loam
26 to 36 inches-reddish brown, mottled, very firm gravelly sandy loam
36 to 43 inches-brown, mottled, very firm gravelly loamy sand
Substratum:
43 to 80 inches-brown gravelly loamy sand

Dishno

Organic mat:
0 to 1 inch—reddish brown, partially decomposed forest litter

Surface layer:

1 to 3 inches-dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches-reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-unweathered gneiss

Soil Properties and Qualities

Depth class: Champion-very deep; Dishno-deep
Rock fragments on the surface: Stones spaced approximately 3 to 26 feet apart
Permeability: Champion-moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained

Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Champion soil and similar soils: 50 to 75 percent
Dishno soil and similar soils: 20 to 35 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keewaydin soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Net and poorly drained Witbeck soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of 20 to 40 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, slope Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields
 Major management concerns: Seasonal wetness, restricted permeability, slope
 Management considerations:

- Mounding or adding suitable fill material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

141D—Pelissier-Rock outcrop complex, 6 to 25 percent slopes

Setting
Landform: Gently rolling and rolling outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 20 to 50 acres

Typical Profile

Pelissier

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 10 inches-dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 36 inches-strong brown very gravelly coarse sand
36 to 80 inches-reddish yellow very gravelly coarse sand

Soil Properties and Qualities

Pelissier

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Moderate
Map Unit Composition
Pelissier soil and similar soils: 45 to 75 percent
Rock outcrop: 10 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Pelissier soil
- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways
- Soils that have slopes of 25 to 60 percent

Similar components:

- Soils that have a lower content of gravel and cobbles in the subsoil and substratum
- Soils in areas where the surface boulders are 60 to 120 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of the Pelissier soil can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

142B—Pelissier gravelly sandy loam, 1 to 6 percent slopes, rocky

Setting
Landform: Gently undulating outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops

Shape of areas: Irregular
Size of areas: 5 to 125 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 10 inches-dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 36 inches-strong brown very gravelly coarse sand
36 to 80 inches-reddish yellow very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Pelissier soil and similar soils: 80 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Farquar soils in the slightly lower positions on the landscape
- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a lower content of gravel and cobbles in the subsoil and substratum
- Soils in areas where the surface boulders are 60 to 120 feet apart or where stones are 10 to 75 feet apart

Use and Management

Woodland

Major management concerns: Seedling mortality, erosion hazard Management considerations:

- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development
Major management concerns: Cutbanks caving

Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

142D—Pelissier gravelly sandy loam, 6 to 18 percent slopes, rocky

Setting

Landform: Gently rolling and rolling outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 12 to 45 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 10 inches-dark reddish brown gravelly sandy loam
10 to 21 inches-yellowish red very gravelly loamy coarse sand
Substratum:
21 to 36 inches-strong brown very gravelly coarse sand
36 to 80 inches-reddish yellow very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil
and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Pelissier soil and similar soils: 80 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Farquar soils in the slightly lower positions on the landscape
- The poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a lower content of gravel and cobbles in the subsoil and substratum
- Soils in areas where the surface boulders are 60 to 120 feet apart or where stones are 10 to 75 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, seedling mortality Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

144B—Farquar gravelly sandy loam, 0 to 4 percent slopes Setting

Landform: Nearly level and gently undulating areas on outwash terraces and outwash plains
Shape of areas: Irregular
Size of areas: 5 to 100 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-black gravelly sandy loam
Subsurface layer:
4 to 6 inches-brown gravelly sandy loam
Subsoil:
6 to 9 inches-dark reddish brown very gravelly loamy sand
9 to 20 inches-reddish brown very gravelly coarse sand
20 to 36 inches-strong brown, mottled very gravelly coarse sand
Substratum:
36 to 80 inches-light brown, mottled, stratified very gravelly coarse sand and sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately rapid in the surface layer and subsurface layer and very rapid
in the subsoil and substratum
Available water capacity: Very low
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Farquar soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Pelissier soils in the slightly higher positions on the landscape
- The poorly drained Deford and Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a lower content of gravel and cobbles in the subsoil and substratum
- Soils that are sand in the surface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Filling or mounding with suitable material helps to raise the absorption field above the water table.

145C—Munising-Yalmer complex, 1 to 12 percent slopes, dissected, very stony

Setting

Landform: Nearly level to moderately sloping dissected areas on till-floored lake plains Distinctive landscape features: Dissected uplands with mainly parallel ravines that are

50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide.
Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 300 acres

Typical Profile

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm loamy fine sand and fine sandy loam
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 80 inches-dark reddish gray, mottled, very firm loamy fine sand and reddish brown fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 26 feet apart
Permeability: Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum; Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Munising-moderate; Yalmer-severe

Map Unit Composition

Munising soil and similar soils: 50 to 65 percent
Yalmer soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska and well drained Onota soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils that are gravelly in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special management, such as creating areas of bare soil or limiting the size of openings, may be necessary to prepare the site in advance and to control undesirable species.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Wetness can be reduced by installing a drainage system around structures with basements and crawl spaces.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

146B—Munising-Skanee complex, 0 to 6 percent slopes, stony

Setting

Landform: Munising—gently undulating areas on knolls and low ridges on till-floored lake plains and ground moraines; Skanee—nearly level areas in depressions and drainageways on till-floored lake plains and ground moraines
Shape of areas: Irregular or elongated
Size of areas: 10 to 500 acres

Typical Profile

Munising

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 15 inches-dark reddish brown fine sandy loam
15 to 18 inches-yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm loamy fine sand and fine sandy loam
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Skanee

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-very dark gray cobbly fine sandy loam
Subsurface layer;
4 to 7 inches-grayish brown cobbly fine sandy loam
Subsoil:
7 to 12 inches-brown sandy loam
12 to 14 inches-reddish brown, mottled, very firm loamy sand and sandy loam
14 to 30 inches-reddish brown, mottled, very firm sandy clay loam and fine sandy loam
Substratum:
30 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Skanee-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Low
Drainage class: Munising-moderately well drained; Skanee-somewhat poorly drained
Surface runoff class: Munising-slow; Skanee-very slow
Flooding: None
Content of organic matter: Munising-low; Skanee—medium
Hazard of water erosion: Off-road-slight; on roads and trails-moderate in areas of the Munising soil and slight in areas of the Skanee soil
Hazard of soil blowing: Moderate

Map Unit Composition

Munising soil and similar soils: 45 to 70 percent
Skanee soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Gay and Deford soils in depressions and drainageways

Similar components:

- Munising soils that are gravelly in the surface layer and subsoil
- Soils that are sand in the surface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Munising soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- The seasonal high water table restricts the use of equipment to midsummer, when the soils are dry, or midwinter, when there is an adequate snow cover.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

147A—Skanee-Gay complex, 0 to 3 percent slopes, very stony

Setting
Landform: Skanee-nearly level areas on upland plains; Gay-depressions and drainageways on till-floored lake plains and ground moraines
Shape of areas: Elongated or irregular
Size of areas: 15 to 1,000 acres

Typical Profile

Skanee

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 4 inches-very dark gray cobbly fine sandy loam
Subsurface layer;
4 to 7 inches-grayish brown cobbly fine sandy loam
Subsoil:
7 to 12 inches—brown sandy loam
12 to 14 inches-reddish brown, mottled, very firm loamy sand and sandy loam
14 to 30 inches-reddish brown, mottled, very firm sandy clay loam and fine sandy loam
Substratum:
30 to 80 inches-reddish brown sandy loam

Gay

Surface layer:
0 to 2 inches—black muck
Subsurface layer:
2 to 5 inches-very dark gray brown fine sandy loam
Subsoil:
5 to 18 inches-brown, mottled loamy sand
18 to 31 inches-reddish brown, mottled sandy loam
Substratum:
31 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 26 feet apart
Permeability: Skanee-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Gay-moderate
Available water capacity: Skanee—low; Gay—moderate
Drainage class: Skanee—somewhat poorly drained; Gay—poorly drained
Surface runoff class: Skanee—very slow; Gay—very slow or ponded
Flooding: None
Content of organic matter: Skanee—medium; Gay—high
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Skanee soil and similar soils: 45 to 65 percent
Gay soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Munising and Yalmer soils in the higher positions on the landscape
- The very poorly drained Cathro soils in depressions and drainageways

Similar components:

- Soils that have a substratum of stratified sand and gravelly sand
- Soils that have sandstone bedrock at a depth of 20 to 60 inches
- Soils that are sand in the surface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Trees that can withstand seasonal wetness should be selected for planting on the Skanee soil.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Gay soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, ponding Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Skanee soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because of ponding, the Gay soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, ponding Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table in areas of the Skanee soil.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Skanee soil.
- Because of ponding, the Gay soil is generally unsuited to use as a site for septic tank absorption fields.

148B—Shoepac-Ensley complex, 0 to 6 percent slopes

Setting

Landform: Shoepac—undulating areas on knolls and low ridges on fluted ground moraines; Ensley—nearly level areas in depressions and drainageways on fluted ground moraines
Shape of areas: Elongated or irregular
Size of areas: 10 to 1,000 acres

Typical Profile

Shoepac

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish brown silt loam
Subsoil:
6 to 12 inches-brown fine sandy loam
12 to 23 inches-strong brown loamy sand
23 to 33 inches-reddish brown, mottled, firm loamy sand and fine sandy loam
33 to 53 inches-reddish brown, firm fine sandy loam
Substratum:
53 to 80 inches-reddish brown gravelly fine sandy loam

Ensley

Surface layer:
0 to 5 inches-black muck
5 to 7 inches-black mucky loam
Subsoil:
7 to 19 inches-brown, mottled fine sandy loam
Substratum:
19 to 80 inches-brown gravelly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Shoepac-moderate in the surface layer and subsoil and moderately slow in the substratum; Ensley-moderate
Available water capacity: Moderate
Drainage class: Shoepac—moderately well drained; Ensley—poorly drained
Surface runoff class: Shoepac-slow; Ensley—very slow or ponded
Flooding: None
Content of organic matter: Shoepac-low; Ensley-medium
Hazard of water erosion: Off-road-slight; on roads and trails-moderate in areas of the Shoepac soil and slight in areas of the Ensley soil
Hazard of soil blowing: Moderate

Map Unit Composition

Shoepac soil and similar soils: 65 to 75 percent
Ensley soil and similar soils: 15 to 25 percent
Dissimilar components: 5 to 10 percent

Components of Minor Extent

Dissimilar components:

- The well drained Trenary soils in the slightly higher positions on the landscape
- The somewhat poorly drained Charlevoix soils in positions between those of the Shoepac and Ensley soils
- The very poorly drained Cathro soils in positions similar to those of the Ensley soil

Similar components:

- Soils that have bedrock at a depth of 40 to 80 inches
- Shoepac soils that are sand or loamy sand in the surface layer and the upper part of the subsoil
- Shoepac soils that have a very firm subsoil and are very slowly permeable
- Ensley soils that have a sandy subsoil or substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Shoepac soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can be used only when the soils are relatively dry or during periods in winter when the snow cover is adequate.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Ensley soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted on the Shoepac soil, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, ponding Management considerations:

- Because cutbanks in areas of the Shoepac soil are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Shoepac soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because of ponding, the Ensley soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Seasonal wetness, ponding
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table in areas of the Shoepac soil.
- Because of ponding, the Ensley soil is generally unsuited to use as a site for septic tank absorption fields.

149-Evart-Cathro complex

Setting

Landform: Nearly level areas on flood plains
Shape of areas: Elongated
Size of areas: 10 to 200 acres

Typical Profile

Evart

Surface layer:

0 to 10 inches-very dark brown, mottled silt loam
Subsurface layer:
10 to 18 inches-black, mottled loamy fine sand

Substratum:
18 to 80 inches-grayish brown sand with few thin bands of very dark brown organic material

Cathro

Surface tier:
0 to 6 inches—black muck
Subsurface tier:
6 to 31 inches-black muck
Substratum:
31 to 80 inches-dark grayish brown fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Evart—rapid; Cathro—moderately slow to moderately rapid in the surface and subsurface tiers and moderately slow in the substratum
Available water capacity: Evart-low; Cathro-very high
Drainage class: Evart—poorly drained; Cathro—very poorly drained
Surface runoff class: Very slow or ponded
Frequency of flooding: Frequent
Content of organic matter: Evart—moderate; Cathro—high
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Evart soil and similar soils: 40 to 60 percent
Cathro soil and similar soils: 35 to 55 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Pelkie soils on knolls and low ridges
- The somewhat poorly drained Sturgeon soils in the slightly higher positions on the landscape
Similar components:
- Cathro soils in which the muck is more than 51 inches thick

Use and Management

Land use: Dominant use-woodland; other use—wildlife habitat

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of flooding, wetness, and ponding, these soils are generally unsuited to woodland harvesting.

Building site development

Major management concerns: Flooding, ponding, excess humus
Management considerations:

- Because of flooding, ponding, and excess humus, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Flooding, ponding

Management considerations:

- Because of flooding and ponding, these soils are generally unsuited to use as sites for septic tank absorption fields.

150-Shag muck

Setting

Landform: Depressions and drainageways on lake plains
Shape of areas: Elongated or irregular
Size of areas: 5 to 50 acres

Typical Profile

Surface layer:
0 to 2 inches-black muck
2 to 5 inches-black silt loam
Subsurface layer:
5 to 11 inches-very dark gray, mottled silt loam
Subsoil:
11 to 25 inches-brown, mottled silt loam
Substratum:
25 to 80 inches-brown, mottled silt loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Slow
Available water capacity: High
Drainage class: Poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: Medium
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Shag soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Fence and somewhat poorly drained Spear soils in the higher positions on the landscape
- The very poorly drained Cathro soils in landscape positions similar to those of the Shag soil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness and low strength, equipment can be used only during periods in winter when the snow cover is adequate or when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, windthrow hazard, and plant competition, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.

Building site development

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding
Management considerations:

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

151A—Spear very fine sandy loam, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on lake plains
Shape of areas: Elongated
Size of areas: 10 to 30 acres

Typical Profile

Surface layer:
0 to 2 inches-dark brown very fine sandy loam

Subsurface layer:

2 to 6 inches-yellowish brown, mottled very fine sandy loam
Subsoil:
6 to 31 inches-mottled, reddish brown silt loam and yellowish brown very fine sandy loam
Substratum:
31 to 80 inches-stratified, mottled, brown silt loam, silty clay loam, loamy very fine sand, and very fine sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately slow
Available water capacity: High
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Moderate
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Spear soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Fence soils in the slightly higher positions on the landscape
- The poorly drained Shag soils in depressions and drainageways

Similar components:

- Soils that are fine sandy loam in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed. Trees that can withstand seasonal wetness should be selected for planting.

Building site development

Major management concerns: Seasonal wetness
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

153D—Ishpeming-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines, outwash terraces, and outwash plains
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 5 to 100 acres

Typical Profile

Ishpeming

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-brown sand
Subsoil:
6 to 24 inches-dark brown, brown, and strong brown sand

Substratum:
24 to 38 inches-brown loamy fine sand
Bedrock:
38 inches-granite

Soil Properties and Qualities

Ishpeming

Depth class: Moderately deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Rapid
Available water capacity: Very low
Drainage class: Somewhat excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Severe
Map Unit Composition
Ishpeming soil and similar soils: 35 to 60 percent
Rock outcrop: 25 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils and the well drained Rousseau and Michigamme soils in landscape positions similar to those of the Ishpeming soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Special care is needed in laying out logging roads and operating logging equipment in the steeper areas. The grade should be kept as low as possible.
- Rock outcrops and the depth to bedrock should be considered when locations for roads and landing sites are planned.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development
Major management concerns: Depth to bedrock, cutbanks caving, slope

Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Depth to bedrock, poor filtering capacity, slope Management considerations:

- The Ishpeming soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock, the poor filtering capacity, and the slope. Inadequately treated sewage effluent flowing through crevices in the bedrock and the poor filtering capacity of this soil can result in the pollution of ground water.

153F-Ishpeming-Rock outcrop complex, 25 to 70 percent slopes, very bouldery

Setting

Landform: Very hilly areas on bedrock-controlled moraines, outwash terraces, and outwash plains
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 150 acres

Typical Profile

Ishpeming

Organic mat:
0 to 2 inches—black, partially decomposed forest litter
Surface layer:
2 to 6 inches—brown sand
Subsoil:
6 to 24 inches-dark brown, brown, and strong brown sand
Substratum:
24 to 38 inches-brown loamy fine sand
Bedrock:
38 inches-granite

Soil Properties and Qualities

Ishpeming

Depth class: Moderately deep
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart Permeability: Rapid
Available water capacity: Very low
Drainage class: Somewhat excessively drained
Surface runoff class: Medium

Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Severe

Map Unit Composition

Ishpeming soil and similar soils: 35 to 60 percent
Rock outcrop: 25 to 50 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils and the well drained Rousseau and Michigamme soils in landscape positions similar to those of the Ishpeming soil
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Rock outcrops and the depth to bedrock should be considered when locations for roads and landing sites are planned.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

154B—Rubicon-Sayner complex, 1 to 6 percent slopes, rocky

Abstract

Setting Landform: Gently undulating outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular Size of areas: 10 to 150 acres

Typical Profile

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand

Substratum:

38 to 80 inches-light brown sand

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches—dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand

Substratum:

27 to 80 inches-stratified, light yellowish brown sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Rubicon—low; Sayner—very low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Rubicon—severe; Sayner—moderate

Map Unit Composition

Rubicon soil and similar soils: 30 to 60 percent
Sayner soil and similar soils: 25 to 55 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming and excessively drained Pelissier soils in landscape positions similar to those of the major soils
- The moderately well drained Croswell soils in areas that have slopes of less than 3 percent

Similar components:

- Soils that have a surface layer of sandy loam

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality
Management considerations:

- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development
 Major management concerns: Cutbanks caving
 Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.

154D—Rubicon-Sayner complex, 6 to 18 percent slopes, rocky

Setting

Landform: Gently rolling and rolling outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 10 to 40 acres

Typical Profile

Rubicon

Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches-pinkish gray sand
Subsoil:
7 to 38 inches-brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Sayner

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 2 inches-dark reddish gray loamy sand
Subsoil:
2 to 14 inches-dark reddish brown and strong brown loamy sand
14 to 27 inches-strong brown sand
Substratum:
27 to 80 inches-stratified, light yellowish brown sand and gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Rubicon-low; Sayner—very low
Drainage class: Excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Rubicon—severe; Sayner—moderate
Map Unit Composition
Rubicon soil and similar soils: 30 to 60 percent
Sayner soil and similar soils: 25 to 55 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Ishpeming and excessively drained Pelissier soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Soils that have a surface layer of sandy loam

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because loose sand can hinder the traction of wheeled equipment, logging roads should be stabilized.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

155A-Zeba-Jacobsville complex, 0 to 3 percent slopes, very stony

Setting

Landform: Zeba—nearly level areas on low knolls on sandstone benches; Jacobsville—nearly level areas in depressions and drainageways on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 10 to 1,000 acres

Typical Profile

Zeba

Organic mat:
0 to 4 inches—black, well decomposed forest litter
Surface layer:
4 to 10 inches-reddish gray cobbly fine sandy loam
Subsoil:
10 to 14 inches—reddish brown, mottled cobbly fine sandy loam
14 to 31 inches-mottled, brown loamy sand and reddish brown sandy loam Bedrock:

31 inches-very dusky red sandstone

Jacobsville

Surface layer:

0 to 4 inches—black muck
Subsurface layer:
4 to 9 inches—dark gray, mottled loam
Subsoil:
9 to 16 inches-reddish brown, mottled sandy loam

Substratum:

16 to 28 inches—reddish brown, mottled sandy loam
Bedrock:
28 inches—reddish brown sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Zeba—somewhat poorly drained; Jacobsville—poorly drained
Surface runoff class: Zeba—very slow; Jacobsville—very slow or ponded
Flooding: None
Content of organic matter: Zeba—moderate; Jacobsville—high
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Zeba soil and similar soils: 50 to 70 percent
Jacobsville soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chocolay, Munising, and Sauxhead soils in the slightly higher positions on the landscape
- The very poorly drained Skandia soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches
- Soils that have a higher content of rock fragments throughout
- Soils that are sand to very gravelly sand throughout
- Soils in areas where the surface stones are 1 to 3 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Landing sites generally can be used only during the driest time of the year.
- Trees that can withstand seasonal wetness should be selected for planting on the Zeba soil.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Jacobsville soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Depth to bedrock, cutbanks caving, seasonal wetness, ponding
Management considerations:

- In areas of the Zeba soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Because of ponding, the Jacobsville soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness, ponding Management considerations:

- Because of the depth to bedrock, seasonal wetness, and ponding, these soils are generally unsuited to use as sites for septic tank absorption fields.

156B—Duel loamy sand, 1 to 6 percent slopes, very stony

Setting

Landform: Gently undulating areas on bedrock benches
Shape of areas: Irregular
Size of areas: 5 to 250 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Subsoil:
1 to 22 inches-dark reddish brown loamy sand Substratum:

22 to 32 inches-dark brown and pale brown, soft and weathered dolomitic sandstone
Bedrock:
32 inches-pale brown dolomitic sandstone
Soil Properties and Qualities
Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Rapid
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Duel soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Reade soils in the slightly lower positions on the landscape
- The somewhat poorly drained Sundell and poorly drained Nahma soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches
- Soils that are sandy loam in the upper 10 inches of the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard Management considerations:

- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Depth to bedrock, poor filtering capacity
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the poor filtering capacity and the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby groundwater supplies. Mounding with a suitable filtering material helps to overcome this limitation.

157B—Reade-Nahma complex, 0 to 6 percent slopes, stony

Setting

Landform: Reade—gently undulating areas on ground moraines; Nahma—nearly level areas in depressions and drainageways on ground moraines
Shape of areas: Irregular
Size of areas: 15 to 800 acres

Typical Profile

Reade
Organic mat:
0 to 4 inches-black, well decomposed forest litter

Surface layer:

4 to 7 inches-brown silt loam
Subsoil:
7 to 12 inches-dark brown loam and fine sandy loam
12 to 15 inches-firm, brown fine sandy loam
15 to 20 inches-reddish brown, mottled gravelly fine sandy loam and loamy fine sand
20 to 28 inches-reddish brown, mottled gravelly fine sandy loam
Bedrock:
28 inches-pale brown dolomitic sandstone

Nahma

Surface layer:
0 to 11 inches-black muck
Subsurface layer:
11 to 14 inches-very dark grayish brown mucky loam
Subsoil:
14 to 17 inches-dark gray, mottled loam
17 to 19 inches-brown, mottled loam
Substratum:
19 to 24 inches-brown, mottled gravelly fine sandy loam
Bedrock:
24 inches-dolomitic sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Reade—moderately well drained; Nahma—poorly drained
Surface runoff class: Reade-slow; Nahma-very slow or ponded
Flooding: None
Content of organic matter: Reade—low; Nahma-high
Hazard of water erosion: Off-road-slight; on roads and trails—moderate in areas of the Reade soil and slight in areas of the Nahma soil
Hazard of soil blowing: Moderate

Map Unit Composition

Reade soil and similar soils: 30 to 60 percent
Nahma soil and similar soils: 25 to 55 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Trenary soils in the higher positions on the landscape
- The moderately well drained Shoepac soils in landscape positions similar to those of the Reade soil
- The somewhat poorly drained Sundell soils in landscape positions slightly lower than those of the Reade soil

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Reade soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- The seasonal high water table restricts the use of equipment to midsummer, when the soils are dry, or midwinter, when there is an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Nahma soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted on the Reade soil, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, seasonal wetness, ponding Management considerations:

- Because of the depth to bedrock, seasonal wetness, and ponding, the Nahma soil is generally unsuited to building site development.
- In areas of the Reade soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness, ponding Management considerations:

- Because of the depth to bedrock, seasonal wetness, and ponding, these soils are generally unsuited to use as sites for septic tank absorption fields.

158C—Munising-Onota-Yalmer complex, 1 to 12 percent slopes, dissected, stony

Setting

Landform: Nearly level to moderately sloping, dissected sandstone benches
Distinctive landscape features: Dissected uplands with mainly parallel ravines that are 50 to 300 feet apart. The ravines are 5 to 15 feet deep and 10 to 50 feet wide and have moderately sloping side slopes. The ravine bottoms are 10 to 20 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 400 acres

Typical Profile

Munising

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray fine sandy loam
Subsoil:
6 to 18 inches-dark reddish brown and yellowish red fine sandy loam
18 to 50 inches-reddish brown, mottled, very firm fine sandy loam and loamy fine sand
50 to 59 inches-reddish brown sandy loam
Substratum:
59 to 80 inches-reddish brown sandy loam

Onota

Organic mat:
0 to 1 inch—undecomposed hardwood forest litter
Surface layer:
1 to 2 inches-black gravelly sandy loam
Subsurface layer:
2 to 7 inches-reddish gray gravelly sandy loam
Subsoil:
7 to 10 inches-dark reddish brown gravelly sandy loam
10 to 22 inches-dark reddish brown, firm gravelly sandy loam
Bedrock:
22 inches-dark reddish brown sandstone

Yalmer

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches-reddish gray fine sand

Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-dark reddish gray, very firm loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-reddish brown and dark reddish gray, very firm fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Munising and Yalmer-very deep; Onota-moderately deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Munising-moderate in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum; Onota-moderate; Yalmer-rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the substratum
Available water capacity: Low
Drainage class: Munising and Yalmer—moderately well drained; Onota—well drained
Surface runoff class: Munising and Onota-slow; Yalmer-very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Munising and Onota-moderate; Yalmer-severe

Map Unit Composition

Munising soil and similar soils: 30 to 60 percent
Onota soil and similar soils: 20 to 40 percent
Yalmer soil and similar soils: 15 to 25 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Zeba soils in areas that have slopes of less than 3 percent
- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines

Similar components:

- Soils in areas where the surface stones are 3 to 25 feet apart
- Onota soils that have a seasonal high water table at a depth of 2.0 to 3.5 feet from October through May
- Munising and Yalmer soils that have bedrock at a depth of 40 to 60 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- The seasonal high water table in areas of the Munising and Yalmer soils restricts the use of equipment to midsummer, when the soils are dry, or midwinter, when there is adequate snow cover.
- In areas of the Munising soil, skidders should not be used during wet periods, when ruts form easily.
- In areas of the Yalmer soil, planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, depth to bedrock Management considerations:

- In areas of the Munising and Yalmer soils, cutbanks are unstable and are subject to caving. Trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table or bedrock.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, depth to bedrock
Management considerations:

- In areas of the Munising and Yalmer soils, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Munising and Yalmer soils.
- The Onota soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

159A—Jeske sand, 0 to 3 percent slopes

Setting

Landform: Nearly level areas on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 15 to 80 acres

Typical Profile

Organic mat:
0 to 1 inch—very dark gray, partially decomposed forest litter
1 to 3 inches-black, well decomposed forest litter
Surface layer:
3 to 11 inches—light brownish gray sand
Substratum:
11 to 21 inches-very pale brown sand
21 to 31 inches-dark reddish brown, very firm, weathered sandstone

Bedrock:

31 inches-light gray and strong brown sandstone

Soil Properties and Qualities

Depth class: Shallow
Permeability: Rapid
Available water capacity: Low
Drainage class: Somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Moderate
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
Map Unit Composition
Jeske soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Carlshend soils in the slightly higher positions on the landscape
- The poorly drained Burt soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, cutbanks caving, seasonal wetness Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock and the water table.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness, poor filtering capacity
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock, seasonal wetness, and the poor filtering capacity. Inadequately treated sewage effluent flowing through crevices in the bedrock can
pollute nearby ground-water supplies. Filling and mounding with a suitable filtering material helps to overcome these limitations.

160B—Paquin-Finch sands, 0 to 5 percent slopes

Setting

Landform: Paquin—gently undulating areas on low knolls on outwash plains, till-floored lake plains, and ground moraines; Finch-nearly level areas in depressions and drainageways on outwash plains, till-floored lake plains, and ground moraines
Shape of areas: Irregular or elongated
Size of areas: 50 to 250 acres

Typical Profile

Paquin

Organic mat:
0 to 4 inches—black, well decomposed forest litter
Surface layer:
4 to 11 inches-reddish gray sand
Subsoil:
11 to 12 inches-dark reddish brown sand
12 to 14 inches-dark reddish brown, strongly cemented sand
14 to 27 inches-brown sand
27 to 36 inches-strong brown, mottled sand
Substratum:
36 to 80 inches-brown sand
Finch
Organic mat:
0 to 3 inches-black, well decomposed forest litter
Surface layer:
3 to 10 inches-brown, mottled sand
Subsoil:
10 to 20 inches-dark brown and reddish gray, mottled, strongly cemented sand 20 to 29 inches-brown, mottled sand
Substratum:
29 to 80 inches-brown, mottled sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid in the surface layer, moderate or moderately rapid in the upper part of the subsoil, and rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Paquin-moderately well drained; Finch—somewhat poorly drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
Map Unit Composition
Paquin soil and similar soils: 45 to 55 percent
Finch soil and similar soils: 30 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Garlic soils on knolls and ridges
- The poorly drained Deford soils in depressions and drainageways

Similar components:

- Finch soils that are fine sand throughout
- Soils that have a loamy substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because loose sand can interfere with the traction of wheeled equipment, logging roads should be stabilized.
- Trees that can withstand seasonal wetness should be selected for planting.
- In areas of the Finch soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
Building site development
Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, poor filtering capacity Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- The poor filtering capacity of these soils can result in the pollution of ground water.

161B—Yellowdog very channery sand, 0 to 6 percent slopes, stony

Setting
Landform: Nearly level and undulating areas on sandstone benches
Shape of areas: Irregular
Size of areas: 5 to 500 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter

Subsoil:
2 to 32 inches-reddish brown very channery sand
Bedrock:
32 inches—dusky red sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability:Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe

Map Unit Composition

Yellowdog soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Sauxhead and somewhat poorly drained Zeba soils in the lower positions on the landscape
- The poorly drained Burt soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches

Use and Management

Woodland

Major management concerns: Seedling mortality, windthrow hazard
Management considerations:

- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, depth to bedrock
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock and the poor filtering capacity. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-
water supplies. Mounding with a suitable filtering material helps to overcome these limitations.

162B—Buckroe very channery loamy sand, 0 to 6 percent slopes, stony

Setting

Landform: Nearly level and undulating areas on sandstone benches
Shape of areas: Irregular
Size of areas: 5 to 300 acres

Typical Profile

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Subsoil:
2 to 4 inches-reddish brown very channery loamy sand
4 to 15 inches-reddish brown very channery sand
Bedrock:
15 inches—dusky red sandstone

Soil Properties and Qualities

Depth class: Shallow
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Buckroe soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Sauxhead soils in the slightly lower positions on the landscape
- The poorly drained Burt soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of 20 to 60 inches

Use and Management

Woodland

Major management concerns: Seedling mortality, windthrow hazard
Management considerations:

- Because of the depth to bedrock, planting is not practical in areas of this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.

Building site development

Major management concerns: Depth to bedrock
Management considerations:

- Excavation is hampered by the limited depth to bedrock.

Septic tank absorption fields

Major management concerns: Depth to bedrock, poor filtering capacity
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock and the poor filtering capacity. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby groundwater supplies. Mounding with a suitable filtering material helps to overcome these limitations.

165B—Chocolay-Waiska complex, 1 to 6 percent slopes, stony

Setting
Landform: Gently undulating areas on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 10 to 200 acres

Typical Profile

Chocolay

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 3 inches-black very cobbly fine sandy loam
Subsurface layer:
3 to 8 inches-reddish brown very cobbly fine sandy loam
Subsoil:
8 to 14 inches-dark reddish brown very cobbly fine sandy loam
14 to 27 inches-reddish brown, mottled very gravelly sandy loam
Bedrock:
27 inches—reddish brown sandstone

Waiska

Surface layer:
0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Chocolay—moderately deep; Waiska—very deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Chocolay—moderate; Waiska-very rapid
Available water capacity: Chocolay-low; Waiska—very low
Drainage class: Chocolay—moderately well drained; Waiska—excessively drained

Surface runoff class: Chocolay—slow; Waiska—very slow
 Flooding: None
 Content of organic matter: Low
 Hazard of water erosion: Slight
 Hazard of soil blowing: Moderate

Map Unit Composition

Chocolay soil and similar soils: 50 to 70 percent
Waiska soil and similar soils: 20 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Paavola soils in landscape positions similar to those of the major soils
- The moderately well drained Chabeneau soils in areas that have slopes of less than 4 percent
- The somewhat poorly drained Skanee, poorly drained Jacobsville, and very poorly drained Skandia soils in depressions and drainageways

Similar components:

- Chocolay soils that have bedrock at a depth of more than 40 inches
- Soils in areas where the surface stones are spaced 3 to 25 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition
Management considerations:

- In areas of the Chocolay soil, skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- In areas of the Chocolay soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, cutbanks caving, seasonal wetness Management considerations:

- In areas of the Chocolay soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock and the water table.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness, poor filtering capacity
Management considerations:

- The Chocolay soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock and the seasonal high water table. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome these limitations.
- The poor filtering capacity of the Waiska soil can result in the pollution of ground water.

166-Skandia mucky peat

Setting

Landform: Depressions and drainageways on sandstone benches
Shape of areas: Elongated or oval
Size of areas: 10 to 60 acres

Typical Profile

Surface tier:
0 to 4 inches-dark grayish brown mucky peat
Subsurface tier:
4 to 26 inches-black muck

Substratum:

26 to 31 inches-dark reddish brown, weathered sandstone Bedrock:

31 inches—dusky red sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Permeability: Moderately slow to moderately rapid in the organic layers and
moderately slow in the weathered sandstone
Available water capacity: Moderate
Drainage class: Very poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Skandia soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Zeba and poorly drained Jacobsville soils in the slightly higher positions on the landscape
- The moderately well drained Chocolay and Sauxhead soils on knolls

Similar components:

- Soils that have bedrock at a depth of more than 51 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, windthrow hazard, and plant competition, trees are generally not planted on this soil.

Building site development
Major management concerns: Ponding, excess humus, low strength
Management considerations:

- Because of ponding and the instability of the organic material, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of ponding and the depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

167-Skandia-Jacobsville complex, stony

Setting

Landform: Depressions and drainageways on sandstone benches
Shape of areas: Elongated or oval
Size of areas: 5 to 200 acres

Typical Profile

Skandia

Surface tier:
0 to 4 inches—dark grayish brown mucky peat
Subsurface tier:
4 to 26 inches-black muck
Bedrock:
26 to 31 inches-dark reddish brown, weathered sandstone
31 inches-dusky red sandstone
Jacobsville
Surface layer:
0 to 4 inches—black muck
Subsurface layer:
4 to 9 inches—dark gray, mottled loam
Subsoil:
9 to 16 inches—reddish brown, mottled sandy loam
Substratum:
16 to 28 inches—reddish brown, mottled sandy loam
Bedrock:
28 inches—reddish brown sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Skandia—moderately slow to moderately rapid in the organic layers;
Jacobsville—moderate
Available water capacity: Skandia—moderate; Jacobsville—low
Drainage class: Skandia—very poorly drained; Jacobsville—poorly drained
Surface runoff class: Very slow or ponded
Flooding: None
Content of organic matter: High

Hazard of water erosion: Slight
 Hazard of soil blowing: Moderate

Map Unit Composition

Skandia soil and similar soils: 45 to 65 percent Jacobsville soil and similar soils: 20 to 40 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Chocolay and Sauxhead soils on knolls
- The somewhat poorly drained Zeba soils in the slightly higher positions on the landscape

Similar components:

- Skandia soils that have bedrock at a depth of more than 51 inches
- Jacobsville soils that are sandy throughout

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- Because of wetness, seedling mortality, windthrow hazard, and plant competition, trees are generally not planted on these soils.

Building site development

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of ponding and the depth to bedrock, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Ponding, depth to bedrock
Management considerations:

- Because of ponding and the depth to bedrock, these soils are generally unsuited to use as sites for septic tank absorption fields.

168B—Yellowdog-Burt complex, 0 to 6 percent slopes

Setting

Landform:Yellowdog—gently undulating areas on upland plains; Burt—nearly level areas in depressions and drainageways on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 5 to 550 acres

Typical Profile

Yellowdog

Organic mat:
0 to 2 inches-black, well decomposed leaf litter
Subsoil:
2 to 32 inches-reddish brown very channery sand

Bedrock:
32 inches—dusky red sandstone
Burt
Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 5 inches-black muck
Subsurface layer:
5 to 7 inches-black mucky loamy sand
7 to 8 inches-reddish gray, mottled gravelly sand
Subsoil:
8 to 18 inches-dark reddish brown, mottled gravelly sand
Bedrock:
18 inches-dark reddish brown sandstone

Soil Properties and Qualities

Depth class:Yellowdog—moderately deep; Burt—shallow
Permeability:Yellowdog—very rapid; Burt—rapid
Available water capacity: Very low
Drainage class:Yellowdog-excessively drained; Burt—poorly drained
Surface runoff class:Yellowdog-very slow; Burt-very slow or ponded
Flooding: None
Content of organic matter:Yellowdog—low; Burt—high
Hazard of water erosion: Slight
Hazard of soil blowing:Yellowdog-severe; Burt-moderate

Map Unit Composition

Yellowdog soil and similar soils: 55 to 75 percent
Burt soil and similar soils: 15 to 30 percent
Dissimilar components: 5 to 10 percent
Components of Minor Extent
Dissimilar components:

- The somewhat poorly drained Zeba soils in landscape positions lower than those of the Yellowdog soil and higher than those of the Burt soil
- The moderately well drained Sauxhead soils in landscape positions similar to those of the Yellowdog soil

Similar components:

- Soils in areas where the surface stones are 10 to 65 feet apart
- Burt soils that have a subsoil of sandy loam
- Yellowdog soils that have bedrock at a depth of more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table in areas of the Burt soil restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- In areas of the Yellowdog soil, planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Burt soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.

Building site development

Major management concerns: Ponding, cutbanks caving, depth to bedrock Management considerations:

- Because of ponding and the depth to bedrock, the Burt soil is generally unsuited to building site development.
- Because cutbanks in areas of the Yellowdog soil are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Yellowdog soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Ponding, poor filtering capacity, depth to bedrock
Management considerations:

- Because of ponding, the poor filtering capacity, and the depth to bedrock, these soils are generally unsuited to use as sites for septic tank absorption fields.

170B—Chocolay very cobbly fine sandy loam, 1 to 6 percent slopes, very stony

Setting

Landform: Gently undulating areas on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 5 to 60 acres

Typical Profile

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 3 inches-black very cobbly fine sandy loam
Subsurface layer:
3 to 8 inches-reddish brown very cobbly fine sandy loam
Subsoil:
8 to 14 inches—dark reddish brown very cobbly fine sandy loam
14 to 27 inches-reddish brown, mottled very gravelly sandy loam
Bedrock:
27 inches—reddish brown sandstone

Soil Properties and Qualities

Depth class: Moderately deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Chocolay soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Onota soils in the slightly higher positions on the landscape
- The somewhat poorly drained Zeba and poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils that have a lower content of gravel, cobbles, and stones
- Soils that have bedrock at a depth of more than 40 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, windthrow hazard, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- The seasonal high water table restricts the use of equipment to summer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, seasonal wetness, cutbanks caving Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and bedrock.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness
Management considerations:

- This soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock and the seasonal high water table. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome these limitations.

171B—Paavola very gravelly loamy sand, 1 to 6 percent slopes, stony

Setting
Landform: Gently undulating outwash terraces on ground moraines
Shape of areas: Irregular
Size of areas: 20 to 100 acres

Typical Profile

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 8 inches-dark reddish gray very gravelly loamy sand
Subsoil:
8 to 25 inches-dark reddish brown extremely gravelly sand
25 to 33 inches-dark reddish brown extremely cobbly sand
33 to 80 inches-reddish brown, mottled, very firm very cobbly fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Rapid in the surface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Paavola soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska soils on knolls and ridges
- The moderately well drained Chocolay soils in positions on the landscape similar to those of the Paavola soil
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils that have a lower content of gravel and cobbles in the upper part
- Soils in areas where the surface stones are 3 to 25 feet apart

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when there is an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

172D—Buckroe-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting
Landform: Gently rolling and rolling areas on sandstone benches
Distinctive landscape features: Outcrops of Jacobsville sandstone
Shape of areas: Irregular
Size of areas: 20 to 400 acres

Typical Profile

Buckroe

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Subsoil:
2 to 4 inches—reddish brown very channery loamy sand
4 to 15 inches-reddish brown very channery sand
Bedrock:
15 inches—dusky red sandstone

Soil Properties and Qualities

Buckroe

Depth class: Shallow
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability:Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Buckroe soil and similar soils: 55 to 80 percent

Rock outcrop: 10 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska and well drained Tokiahok soils in landscape positions similar to those of the Buckroe soil
- The poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The rock outcrop should be considered when locations for roads and landing sites are planned.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the depth to bedrock, planting is not practical on the Buckroe soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.

Building site development

Major management concerns: Depth to bedrock, slope Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Depth to bedrock, slope
Management considerations:

- The Buckroe soil is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

172F—Buckroe-Rock outcrop complex, 25 to 70 percent slopes, very bouldery

Setting

Landform: Very hilly areas on sandstone benches
Distinctive landscape features: Outcrops of Jacobsville sandstone
Shape of areas: Elongated
Size of areas: 5 to 270 acres

Typical Profile

Buckroe

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Subsoil:
2 to 4 inches-reddish brown very channery loamy sand
4 to 15 inches-reddish brown very channery sand

Bedrock:

15 inches—dusky red sandstone

Soil Properties and Qualities

Buckroe

Depth class: Shallow
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Very rapid
Available water capacity: Very low
Drainage class: Excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Buckroe soil and similar soils: 55 to 80 percent
Rock outcrop: 10 to 30 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska and well drained Tokiahok soils in landscape positions similar to those of the Buckroe soil
- The poorly drained Jacobsville soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of more than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on
the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- The rock outcrop should be considered when locations for roads and landing sites are planned.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the depth to bedrock, planting is not practical on the Buckroe soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

173B—Pence fine sandy loam, 1 to 6 percent slopes, rocky, bouldery

Setting
Landform: Gently undulating outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular
Size of areas: 5 to 250 acres

Typical Profile

Organic mat:
0 to 2 inches-black, partially decomposed forest litter
Surface layer:
2 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-dark brown and brown fine sandy loam
13 to 16 inches-strong brown loamy coarse sand
16 to 31 inches-dark yellowish brown coarse sand
Substratum:
31 to 80 inches-dark yellowish brown and yellowish brown, stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid or very rapid in the lower part of the subsoil and in the substratum

Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Pence soil and similar soils: 75 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Pence soil
- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways
Similar components:
- Soils that have more than 35 percent gravel in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

173D—Pence fine sandy loam, 6 to 18 percent slopes, rocky, bouldery

Setting

Landform: Gently rolling and rolling outwash terraces on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular Size of areas: 5 to 180 acres

Typical Profile

Organic mat:
0 to 2 inches—black, partially decomposed forest litter

Surface layer:
2 to 6 inches-brown fine sandy loam
Subsoil:
6 to 13 inches-dark brown and brown fine sandy loam
13 to 16 inches-strong brown loamy coarse sand
16 to 31 inches-dark yellowish brown coarse sand
Substratum:
31 to 80 inches-dark yellowish brown and yellowish brown, stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Boulders spaced approximately 65 to 120 feet apart
Permeability: Moderately rapid in the surface layer and the upper part of the subsoil and rapid or very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails-severe
Hazard of soil blowing: Moderate

Map Unit Composition

Pence soil and similar soils: 75 to 90 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Michigamme soils in landscape positions similar to those of the Pence soil
- The somewhat poorly drained Channing and poorly drained Minocqua soils in depressions and drainageways

Similar components:

- Soils that have more than 35 percent gravel in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.

174D—Yalmer-Rubicon-Urban land complex, 4 to 18 percent slopes

Setting
Landform: Gently rolling and rolling areas on till-floored lake plains
Shape of areas: Irregular
Size of areas: 10 to 310 acres
\section*{Typical Profile}
\section*{Yalmer}
Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 10 inches—reddish gray fine sand
Subsoil:
10 to 30 inches-dark reddish brown and reddish brown fine sand
30 to 36 inches-mottled, very firm dark reddish gray loamy fine sand and reddish brown fine sandy loam
36 to 80 inches-mottled, very firm reddish brown fine sandy loam and dark reddish gray loamy fine sand
\section*{Rubicon}
Surface layer:
0 to 1 inch—black sand
Subsurface layer:
1 to 7 inches—pinkish gray sand
Subsoil:
7 to 38 inches—brown and strong brown sand
Substratum:
38 to 80 inches-light brown sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Yalmer-rapid in the surface layer and the upper part of the subsoil and
very slow in the lower part of the subsoil; Rubicon—rapid
Available water capacity: Low
Drainage class:Yalmer—moderately well drained; Rubicon—excessively drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Severe
Map Unit Composition
Yalmer soil and similar soils: 30 to 45 percent

Rubicon soil and similar soils: 25 to 40 percent
Urban land: 15 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Frohling and Tokiahok soils in landscape positions similar to those of the major soils
- The poorly drained Deford soils in depressions and drainageways
- Areas of igneous and metamorphic rock outcrops

Similar components:

- Yalmer soils that are fine sandy loam in the surface layer and the upper part of the subsoil
- Rubicon soils that are stratified very fine sandy loam and loamy very fine sand in the substratum

Use and Management

Land use:Yalmer and Rubicon—residential, commercial, and industrial sites; Urban land-streets, parking lots, buildings, and other manmade structures

Gardens, lawns, and environmental plantings

Major management concerns: Droughtiness, soil blowing
Management considerations:

- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- A good plant cover and mulch can help to control soil blowing.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas of the Yalmer soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- In urban areas, onsite investigation is necessary to determine the suitability for building site development.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability, poor filtering capacity, slope
Management considerations:

- In areas of the Yalmer soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Yalmer soil.
- The poor filtering capacity of the Rubicon soil can result in the pollution of ground water.
- Land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Where possible, sanitary facilities should be connected to public sewers and sewage treatment facilities.

175E—Kalkaska-Waiska complex, 8 to 35 percent slopes, dissected

Abstract

Setting Landform: Moderately sloping to steep areas on dissected moraines Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams. Shape of areas: Irregular Size of areas: 10 to 70 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand

Substratum:

32 to 80 inches-brown sand

Waiska

Surface layer:

0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches-dark reddish brown and reddish brown very cobbly loamy sand
14 to 36 inches-yellowish red very cobbly sand

Substratum:

36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Waiska—very rapid
Available water capacity: Kalkaska—low; Waiska—very low
Drainage class: Kalkaska—somewhat excessively drained; Waiska-excessively drained
Surface runoff class: Kalkaska—slow; Waiska—medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Kalkaska-severe; Waiska—moderate

Map Unit Composition

Kalkaska soil and similar soils: 50 to 70 percent
Waiska soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Alcona, Garlic, and Voelker soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils on the bottom of ravines

Similar components:

- Kalkaska soils that have bands of loamy sand in the lower part of the subsoil
- Soils in areas where the surface stones are spaced approximately 65 to 120 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- In areas of the Kalkaska soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized and built on the contour.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, slope
Management considerations:

- The poor filtering capacity of these soils can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

175F—Kalkaska-Waiska complex, 15 to 70 percent slopes, dissected

Setting
Landform: Moderately steep to very steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel,

are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 20 to 400 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Waiska

Surface layer:
0 to 1 inch—black cobbly loamy sand
Subsurface layer:
1 to 4 inches-reddish gray cobbly loamy sand
Subsoil:
4 to 14 inches—dark reddish brown and reddish brown very cobbly loamy sand 14 to 36 inches-yellowish red very cobbly sand
Substratum:
36 to 80 inches-brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Waiska—very rapid
Available water capacity: Kalkaska—low; Waiska—very low
Drainage class: Kalkaska—somewhat excessively drained; Waiska—excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Kalkaska—severe; Waiska—moderate

Map Unit Composition

Kalkaska soil and similar soils: 50 to 70 percent
Waiska soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Alcona, Garlic, and Voelker soils in landscape positions similar to those of the major soils
- The somewhat poorly drained Au Gres and poorly drained Deford soils on the bottom of ravines

Similar components:

- Kalkaska soils that have bands of loamy sand in the lower part of the subsoil
- Soils in areas where the surface stones are spaced approximately 65 to 120 feet apart

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Seeding logging roads, skid roads, and landings after the trees are logged also helps to prevent excessive soil loss.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines.
- Cable yarding systems are generally safer than other logging methods and result in less surface disturbance.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.

Building site development

Major management concerns: Slope
Management considerations:

- These soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

176B—Greenwood-Croswell complex, 0 to 6 percent slopes

Setting

Landform: Greenwood-nearly level areas in bogs on outwash plains and till-floored lake plains; Croswell-gently undulating areas on knolls and ridges on outwash plains and till-floored lake plains
Shape of areas: Elongated or irregular
Size of areas: 20 to 1,000 acres

Typical Profile

Greenwood

Surface tier:

0 to 8 inches-dark brown peat
Subsurface tier:
8 to 11 inches-black muck

Bottom tier:

11 to 65 inches-very dark brown mucky peat
65 to 80 inches-dark brown mucky peat

Croswell

Surface layer:
0 to 3 inches-very dark brown sand
Subsurface layer:
3 to 7 inches-pinkish gray sand
Subsoil:
7 to 22 inches-reddish brown and yellowish red sand
22 to 34 inches-strong brown, mottled sand
Substratum:
34 to 70 inches-light brown, mottled sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Greenwood—moderate or moderately rapid; Croswell—rapid
Available water capacity: Greenwood-very high; Croswell-low
Drainage class: Greenwood—very poorly drained; Croswell—moderately well drained
Surface runoff class: Greenwood-very slow or ponded; Croswell-very slow
Flooding: None
Content of organic matter: Greenwood—high; Croswell—low
Hazard of water erosion: Slight
Hazard of soil blowing: Greenwood—moderate; Croswell—severe

Map Unit Composition

Greenwood soil and similar soils: 50 to 70 percent
Croswell soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Au Gres soils in areas between the Greenwood and Croswell soils
- The excessively drained Rubicon soils on knolls and ridges
- The poorly drained Kinross soils in depressions

Similar components:

- Greenwood soils in which the organic layers are less than 51 inches thick
- Croswell soils that have gravelly textures in the subsoil and substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength in areas of the Greenwood soil, special harvesting equipment is needed. The equipment can be used only during periods in winter when skid roads and access roads are frozen.
- In areas of the Croswell soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Greenwood soil.
- Planting seedlings that can withstand droughty conditions can lower the seedling mortality rate in areas of the Croswell soil. Replanting is needed in some areas.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- If trees are planted on the Croswell soil, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Ponding, excess humus, seasonal wetness, cutbanks caving
Management considerations:

- Because of ponding and the instability of the organic material, the Greenwood soil is generally unsuited to building site development.
- In areas of the Croswell soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Ponding, excess humus, poor filtering capacity, seasonal wetness
Management considerations:

- Because of ponding and the instability of the organic material, the Greenwood soil is generally unsuited to use as a site for septic tank absorption fields.
- The poor filtering capacity of the Croswell soil can result in the pollution of ground water.
- Mounding or adding suitable fill material helps to raise the absorption field above the water table in areas of the Croswell soil.

177E—Frohling fine sandy loam, 8 to 35 percent slopes, dissected

Setting

Landform: Moderately sloping to steep areas on till-floored lake plains and dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 80 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam
Subsoil:
7 to 9 inches-dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsurface layer and the upper part of
the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska and well drained Keweenaw soils in landscape positions similar to those of the Frohling soil
- Somewhat poorly drained and poorly drained, loamy soils on the bottom of ravines

Similar components:

- Soils in areas where the surface stones are spaced approximately 65 to 120 feet apart
- Soils that have a substratum of sand
- Soils that are sand in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

177F-Frohling fine sandy loam, 15 to 70 percent slopes, dissected

Abstract

Landform: Moderately steep to very steep areas on till-floored lake plains and dissected moraines Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams. Shape of areas: Elongated or irregular

Setting

Size of areas: 20 to 200 acres

Typical Profile

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam
Subsoil:
7 to 9 inches-dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low

Hazard of water erosion: Severe
 Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Kalkaska and well drained Keweenaw soils in landscape positions similar to those of the Frohling soil
- Somewhat poorly drained and poorly drained, loamy soils on the bottom of ravines

Similar components:

- Soils in areas where the surface stones are spaced 65 to 120 feet apart
- Soils that have a substratum of sand
- Soils that are sand in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Seeding logging roads, skid roads, and landings after the trees are logged also helps to prevent excessive soil loss.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this soil is generally unsuited to use as a site for septic tank absorption fields.

178D—Schweitzer-Kalkaska-Rock outcrop complex, 6 to 25 percent slopes, very stony

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops Shape of areas: Irregular or elongated
Size of areas: 10 to 150 acres

Typical Profile

Schweitzer

Surface layer:
0 to 1 inch—black cobbly very fine sandy loam
Subsurface layer:
1 to 5 inches-reddish gray cobbly silt loam
Subsoil:
5 to 21 inches—dark reddish brown and brown cobbly very fine sandy loam
21 to 43 inches-reddish brown, very firm very cobbly sandy loam and very cobbly loamy sand
43 to 61 inches—reddish brown, firm very cobbly sandy loam and very cobbly loamy sand
Substratum:
61 to 80 inches-reddish brown very cobbly loamy sand

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Schweitzer—moderate in the surface layer and subsurface layer and the
upper part of the subsoil, very slow in the lower part of the subsoil, and moderate
in the substratum; Kalkaska—rapid
Available water capacity: Low
Drainage class: Schweitzer-well drained; Kalkaska-somewhat excessively drained
Surface runoff class: Schweitzer—medium; Kalkaska—slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Schweitzer—moderate; Kalkaska—severe
Map Unit Composition
Schweitzer soil and similar soils: 45 to 60 percent
Kalkaska soil and similar soils: 15 to 35 percent

Rock outcrop: 10 to 25 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska soils in landscape positions similar to those of the major soils
- The well drained Michigamme soils near the rock outcrops
- The moderately well drained Gogebic soils in landscape positions slightly lower than those of the Schweitzer soil
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Schweitzer soils that are sand in the surface layer and subsurface layer and the upper part of the subsoil
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- In areas of the Kalkaska soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes.
- Skidders should not be used on the Schweitzer soil during wet periods, when ruts form easily. Culverts are needed to maintain the natural drainage system. Year-round logging roads require roadfill and gravel.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- The rock outcrop should be considered when locations for roads and landing sites are planned.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Caving of cutbanks is a concern affecting shallow excavations in areas of the Kalkaska soil. Trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope, restricted permeability, poor filtering capacity Management considerations:

- In areas of the Schweitzer soil, enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

178F—Schweitzer-Kalkaska-Rock outcrop complex, 25 to 70 percent slopes, very stony

Setting

Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 10 to 200 acres

Typical Profile

Schweitzer

Surface layer:
0 to 1 inch—black cobbly very fine sandy loam
Subsurface layer:
1 to 5 inches-reddish gray cobbly silt loam
Subsoil:
5 to 21 inches-dark reddish brown and brown cobbly very fine sandy loam
21 to 43 inches-reddish brown, very firm very cobbly sandy loam and very cobbly loamy sand
43 to 61 inches-reddish brown, firm very cobbly sandy loam and very cobbly loamy sand
Substratum:
61 to 80 inches-reddish brown very cobbly loamy sand

Kalkaska

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches-dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Schweitzer—moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Kalkaska—rapid
Available water capacity: Low
Drainage class: Schweitzer—well drained; Kalkaska—somewhat excessively drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Schweitzer—moderate; Kalkaska—severe

Map Unit Composition

Schweitzer soil and similar soils: 45 to 60 percent
Kalkaska soil and similar soils: 15 to 35 percent
Rock outcrop: 10 to 25 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Waiska soils in landscape positions similar to those of the major soils
- The well drained Michigamme soils near the rock outcrops
- The moderately well drained Gogebic soils in areas that have slopes of less than 18 percent
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Schweitzer soils that are sand in the surface layer and subsurface layer and the upper part of the subsoil
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- In areas of the Kalkaska soil, loose sand and the slope can hinder the traction of wheeled equipment. Skid roads should be built on the contour or on the gentler slopes.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely because of the slope. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- The rock outcrop should be considered when locations for roads and landing sites are planned.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, this map unit is generally unsuited to use as a site for septic tank absorption fields.

179E—Schweitzer-Michigamme complex, 18 to 35 percent slopes, rocky, very stony

Setting
Landform: Very hilly areas on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular or elongated
Size of areas: 10 to 100 acres

Typical Profile

Schweitzer

Surface layer:

0 to 1 inch—black cobbly very fine sandy loam

Subsurface layer:

1 to 5 inches-reddish gray cobbly silt loam
Subsoil:
5 to 21 inches-dark reddish brown and brown cobbly very fine sandy loam
21 to 43 inches—reddish brown, very firm very cobbly sandy loam and very cobbly loamy sand
43 to 61 inches-reddish brown, firm very cobbly sandy loam and very cobbly loamy sand
Substratum:
61 to 80 inches-reddish brown very cobbly loamy sand

Michigamme

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Schweitzer—very deep; Michigamme—moderately deep to igneous or metamorphic bedrock
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Schweitzer-moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum; Michigamme-moderate
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Hazard of water erosion: Off-road—moderate; on roads and trails-severe Hazard of soil blowing: Moderate

Map Unit Composition

Schweitzer soil and similar soils: 50 to 70 percent
Michigamme soil and similar soils: 20 to 35 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Tula and poorly drained Pleine soils in depressions and drainageways
- The moderately well drained Gogebic soils in areas that have slopes of less than 18 percent

Similar components:

- Schweitzer soils that are sand in the surface layer, subsurface layer, and subsoil
- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope, depth to bedrock
Management considerations:

- Because of the slope and the depth to bedrock, these soils are poorly suited to building site development.

Septic tank absorption fields

Major management concerns: Slope, restricted permeability, depth to bedrock Management considerations:

- Because of the slope, the restricted permeability, and the depth to bedrock, these soils are poorly suited to use as sites for septic tank absorption fields.

180E—Kalkaska-Frohling complex, 8 to 35 percent slopes, dissected

Setting

Landform: Moderately sloping to steep areas on till-floored lake plains and dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 125 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches-brown sand

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter

Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam

Subsoil:

7 to 9 inches-dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Frohling—moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Kalkaska-somewhat excessively drained; Frohling-well drained
Surface runoff class: Kalkaska-slow; Frohling-medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails-severe
Hazard of soil blowing: Kalkaska-severe; Frohling-moderate

Map Unit Composition

Kalkaska soil and similar soils: 45 to 60 percent
Frohling soil and similar soils: 25 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well Munising soils in areas that have slopes of less than 18 percent
- The excessively drained Waiska soils in landscape positions similar to those of the major soils
- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines
Similar components:
- Frohling soils that are sand in the surface layer, subsurface layer, and the upper part of the subsoil
- Kalkaska soils that have more than 50 percent ortstein in the subsoil
- Kalkaska soils that have bands of loamy sand in the lower part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- In areas of the Kalkaska soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- In areas of the Frohling soil, skidders should not be used during wet periods, when ruts form easily. Culverts are needed to maintain the natural drainage system. Yearround logging roads require roadfill and gravel.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- In areas of the Kalkaska soil, planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- In areas of the Frohling soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, restricted permeability, slope Management considerations:

- The poor filtering capacity of the Kalkaska soil can result in the pollution of ground water.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Frohling soil.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

180F—Kalkaska-Frohling complex, 15 to 70 percent slopes, dissected

Setting

Landform: Moderately steep to very steep areas on till-floored lake plains and dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 15 to 225 acres

Typical Profile

Kalkaska

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish gray sand
Subsoil:
6 to 17 inches—dark reddish brown and reddish brown sand
17 to 32 inches-strong brown sand
Substratum:
32 to 80 inches—brown sand

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches—reddish gray fine sandy loam
Subsoil:
7 to 9 inches—dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches—reddish brown, very firm fine sandy loam and loamy fine sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Kalkaska—rapid; Frohling—moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil
Available water capacity: Low
Drainage class: Kalkaska—somewhat excessively drained; Frohling-well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Kalkaska—severe; Frohling—moderate

Map Unit Composition

Kalkaska soil and similar soils: 45 to 60 percent
Frohling soil and similar soils: 25 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keweenaw and excessively drained Waiska soils in landscape positions similar to those of the major soils
- The moderately well drained Munising soils in areas that have slopes of less than 18 percent
- Somewhat poorly drained and poorly drained, loamy and sandy soils on the bottom of ravines

Similar components:

- Frohling soils that are sand in the surface layer, subsurface layer, and the upper part of the subsoil
- Kalkaska soils that have more than 50 percent ortstein in the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- In areas of the Kalkaska soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- In areas of the Frohling soil, skidders should not be used during wet periods, when ruts form easily. Culverts are needed to maintain the natural drainage system. Yearround logging roads require roadfill and gravel.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- In areas of the Kalkaska soil, planting seedlings that can withstand droughty conditions can lower the seedling mortality rate. Replanting is needed in some areas.
- In areas of the Frohling soil, windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

181E—Frohling-Tokiahok complex, 8 to 35 percent slopes, dissected, very stony

[^4]Shape of areas: Irregular or elongated
Size of areas: 15 to 300 acres

Typical Profile

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam
Subsoil:
7 to 9 inches—dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Tokiahok

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 11 inches—reddish gray loamy fine sand
Subsoil:
11 to 24 inches-dark reddish brown and brown loamy fine sand
24 to 30 inches-strong brown, very firm fine sandy loam
30 to 49 inches-reddish brown, very firm loamy sand and sandy loam
49 to 59 inches-dark reddish brown, very firm sandy loam
59 to 66 inches—reddish brown sandy loam
Substratum:
66 to 80 inches—reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep

Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart Permeability: Frohling-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Tokiahokrapid in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 50 to 65 percent
Tokiahok soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Onota and Keweenaw soils and the somewhat excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines

Similar components:

- Soils that have gravelly textures in the surface layer and subsurface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope, restricted permeability
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

181F—Frohling-Tokiahok complex, 15 to 70 percent slopes, dissected, very stony

Setting

Landform: Moderately steep to very steep areas on till-floored lake plains and dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately steep or steep and are 15 to 100 feet wide. The ravines are dominantly parallel, are 15 to 50 feet deep and 40 to 150 feet wide, and have steep or very steep side slopes. The ravine bottoms are 15 to 50 feet wide. Some have seasonal streams.
Shape of areas: Irregular or elongated
Size of areas: 10 to 280 acres

Typical Profile

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam
Subsoil:
7 to 9 inches-dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Tokiahok

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 11 inches-reddish gray loamy fine sand
Subsoil:
11 to 24 inches-dark reddish brown and brown loamy fine sand
24 to 30 inches-strong brown, very firm fine sandy loam
30 to 49 inches-reddish brown, very firm loamy sand and sandy loam
49 to 59 inches-dark reddish brown, very firm sandy loam
59 to 66 inches-reddish brown sandy loam
Substratum:
66 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Frohling-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Tokiahokrapid in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None

Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 50 to 65 percent
Tokiahok soil and similar soils: 20 to 40 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Onota and Keweenaw soils and the somewhat excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- Somewhat poorly drained and poorly drained, sandy and loamy soils on the bottom of ravines

Similar components:

- Soils that have gravelly textures in the surface layer and subsurface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Ordinary crawler tractors and rubber-tired skidders cannot be operated safely on the very steep side slopes of the ravines. As a result, special logging methods, such as yarding the logs with a cable, may be needed.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Seedling survival rates can be increased by carefully planting vigorous nursery stock.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Slope

Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

184C—Dishno-Witbeck-Rock outcrop complex, 0 to 12 percent slopes, very bouldery

Setting

Landform: Dishno—gently sloping areas on knolls and low ridges on bedrockcontrolled moraines; Witbeck-nearly level areas in depressions and drainageways on bedrock-controlled moraines
Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 300 acres

Typical Profile

Dishno

Organic mat:
0 to 1 inch—dark reddish brown, partially decomposed forest litter
Surface layer:
1 to 3 inches-dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches-reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand

Substratum:

29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss
Witbeck
Surface layer:
0 to 8 inches-black very stony muck
Subsurface layer:
8 to 12 inches-gray very stony fine sandy loam
Subsoil:
12 to 15 inches-greenish gray, mottled very stony very fine sandy loam
15 to 22 inches-dark olive gray, mottled very stony fine sandy loam
22 to 24 inches-olive gray, mottled gravelly fine sandy loam

Substratum:

24 to 80 inches-dark gray gravelly sandy loam

Soil Properties and Qualities

Depth class: Dishno-deep to igneous or metamorphic bedrock; Witbeck-very deep Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart Permeability: Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum; Witbeck-moderate
Available water capacity: Dishno—low; Witbeck—moderate
Drainage class: Dishno—moderately well drained; Witbeck—poorly drained

Surface runoff class: Dishno—slow; Witbeck—very slow or ponded
Flooding: None
Content of organic matter: Dishno—low; Witbeck—moderate
Hazard of water erosion: Off-road—slight; on roads and trails—moderate in areas of the Dishno soil and slight in areas of the Witbeck soil
Hazard of soil blowing: Moderate

Map Unit Composition

Dishno soil and similar soils: 40 to 70 percent
Witbeck soil and similar soils: 15 to 35 percent
Rock outcrop: 10 to 20 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Net and Channing soils in areas between the Dishno and Witbeck soils
- The well drained Keewaydin soils in landscape positions similar to those of the Dishno soil
- The very poorly drained Cathro soils in landscape positions similar to those of the Witbeck soil

Similar components:

- Witbeck soils that have a substratum of sand or gravelly sand
- Soils that have bedrock at a depth of less than 40 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- In areas of the Dishno soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of wetness and low strength in areas of the Witbeck soil, equipment should be used only during periods in winter when the snow cover is adequate.
- The rock outcrop and large stones and boulders may interfere with the use of harvesting equipment and the placement of haul roads.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Witbeck soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, depth to bedrock, ponding
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Dishno soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.
- Because of ponding, the Witbeck soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Seasonal wetness, depth to bedrock, ponding, restricted permeability
Management considerations:

- In areas of the Dishno soil, filling or mounding with suitable material helps to raise the absorption field above the water table and the bedrock.
- Because of ponding and the large amount of stones and boulders, the Witbeck soil is generally unsuited to use as a site for septic tank absorption fields.

185B—Northland loamy fine sand, 0 to 4 percent slopes

Setting

Landform: Nearly level and gently undulating outwash terraces on drumlinized ground moraines
Shape of areas: Oval or irregular
Size of areas: 5 to 65 acres

Typical Profile

Organic mat:
0 to 3 inches-black, partially decomposed forest litter
Surface layer:
3 to 5 inches-pinkish gray loamy fine sand
Subsoil:
5 to 8 inches-strong brown fine sandy loam
8 to 18 inches-brown sandy loam
18 to 22 inches-reddish brown very gravelly loamy coarse sand
22 to 38 inches-brown, mottled very gravelly sand
Substratum:
38 to 80 inches-brown, mottled very gravelly sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderate in the surface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate
Map Unit Composition
Northland soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Nadeau, Emmet, and Onaway soils in the higher positions on the landscape
- The poorly drained Ensley and Minocqua soils in depressions and drainageways

Similar components:

- Soils that have a surface layer of sand
- Soils that have less than 35 percent rock fragments in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, plant competition Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving and seasonal wetness
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns:
Management considerations: Poor filtering capacity, seasonal wetness

- The poor filtering capacity of this soil can result in the pollution of ground water.
- Filling or mounding with suitable material helps to raise the absorption field above the water table.

187B—Reade silt loam, 0 to 4 percent slopes

Setting

Landform: Nearly level and gently undulating areas on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 100 acres

Typical Profile

Organic mat:
0 to 4 inches-black, well decomposed forest litter
Surface layer:
4 to 7 inches-brown silt loam
Subsoil:
7 to 12 inches-dark brown loam and fine sandy loam
12 to 15 inches-brown, mottled fine sandy loam
15 to 20 inches-reddish brown, mottled fine sandy loam and loamy fine sand
20 to 28 inches-reddish brown, mottled gravelly fine sandy loam

Bedrock:
28 inches-grayish brown dolomitic sandstone

Soil Properties and Qualities

Depth class: Moderately deep to dolomitic sandstone, dolomite, and limestone
Permeability: Moderate
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Reade soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent
Components of Minor Extent
Dissimilar components:

- The moderately well drained Shoepac soils in landscape positions similar to those of the Reade soil
- The well drained Trenary soils in the slightly higher positions on the landscape
- The somewhat poorly drained Sundell and poorly drained Nahma soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock, seasonal wetness
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock and the water table.

Septic tank absorption fields

Major management concerns: Depth to bedrock, seasonal wetness, restricted permeability
Management considerations:

- This soil is poorly suited to use as a site for septic tank absorption fields because of the depth to bedrock, seasonal wetness, and the restricted permeability.

Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding or adding suitable filtering material helps to raise the absorption field above the water table and bedrock. Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

190B-Emmet-Cunard fine sandy loams, 1 to 6 percent slopes, stony

Setting

Landform: Gently undulating areas on ground moraines
Shape of areas: Irregular
Size of areas: 15 to 400 acres

Typical Profile

Emmet

Surface layer:
0 to 3 inches-black fine sandy loam
Subsurface layer:
3 to 5 inches-dark grayish brown fine sandy loam
Subsoil:
5 to 21 inches-brown fine sandy loam
21 to 28 inches-yellowish red fine sandy loam
Substratum:
28 to 80 inches-brown gravelly fine sandy loam

Cunard

Surface layer:
0 to 4 inches-black fine sandy loam
Subsurface layer:
4 to 6 inches-brown fine sandy loam
Subsoil:
6 to 10 inches-brown fine sandy loam
10 to 19 inches-dark brown loam
Substratum:
19 to 27 inches-brown gravelly fine sandy loam
Bedrock:
27 inches-dolomitic sandstone

Soil Properties and Qualities

Depth class: Emmet-very deep; Cunard—moderately deep to dolomitic sandstone and dolomite
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Emmet-moderate in the surface layer, subsurface layer, and subsoil and moderately slow in the substratum; Cunard-moderate
Available water capacity: Emmet-moderate; Cunard-low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Emmet soil and similar soils: 45 to 60 percent Cunard soil and similar soils: 25 to 45 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Sundell soils and the poorly drained Nahma and Ensley soils in depressions and drainageways
- The moderately well drained Reade soils in the slightly lower positions on the landscape

Similar components:

- Cunard soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Depth to bedrock
Management considerations:

- In areas of the Cunard soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Restricted permeability, depth to bedrock Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Emmet soil.
- The Cunard soil is poorly suited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.

191B—Nahma-Sundell complex, 0 to 4 percent slopes

Setting

Landform: Nearly level and gently undulating areas on ground moraines
Shape of areas: Irregular
Size of areas: 10 to 250 acres

Typical Profile

Nahma

Surface layer:
0 to 11 inches-black muck
Subsurface layer:
11 to 14 inches-very dark grayish brown mucky loam
Subsoil:
14 to 17 inches-dark gray, mottled loam
17 to 19 inches-brown, mottled loam
Substratum:
19 to 24 inches-brown, mottled gravelly fine sandy loam
Bedrock:
24 inches-dolomitic sandstone

Sundell

Organic mat:
0 to 1 inch-well decomposed forest litter
Surface layer:
1 to 8 inches-black, mottled loam
Subsurface layer:
8 to 11 inches-brown and black, mottled fine sandy loam
Subsoil:
11 to 17 inches-brown, mottled fine sandy loam
Substratum:
17 to 22 inches-light brown, mottled gravelly fine sandy loam
Bedrock:
22 inches-pale brown dolomite
Soil Properties and Qualities
Depth class: Moderately deep to dolomite and dolomitic sandstone
Permeability: Moderate
Available water capacity: Low
Drainage class: Nahma-poorly drained; Sundell—somewhat poorly drained
Surface runoff class: Nahma-very slow or ponded; Sundell-very slow
Flooding: None
Content of organic matter: Nahma—moderate; Sundell—low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Nahma soil and similar soils: 50 to 70 percent
Sundell soil and similar soils: 20 to 40 percent
Dissimilar components: 10 to 15 percent
Components of Minor Extent
Dissimilar components:

- The well drained Cunard soils on low ridges and knolls
- The moderately well drained Mashek and Reade soils in the slightly higher positions on the landscape

Similar components:

- Soils that have bedrock at a depth of less than 20 inches or more than 40 inches
- Nahma soils in which the organic layers are more than 15 inches thick

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of wetness and low strength, special harvesting equipment is needed in areas of the Nahma soil. Equipment can be used only during periods in winter when skid roads and access roads are frozen.
- The seasonal high water table in areas of the Sundell soil restricts the use of equipment to midsummer, when the soil is dry, or midwinter, when the soil is frozen or has an adequate snow cover.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Nahma soil.
- Trees that can withstand seasonal wetness should be selected for planting on the Sundell soil.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Ponding, seasonal wetness, depth to bedrock Management considerations:

- Because of ponding, the Nahma soil is generally unsuited to building site development.
- In areas of the Sundell soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table and the bedrock.

Septic tank absorption fields

Major management concerns: Ponding, seasonal wetness, depth to bedrock Management considerations:

- Because of ponding, the Nahma soil is generally unsuited to use as a site for septic tank absorption fields.
- The Sundell soil is poorly suited to use as a site for septic tank absorption fields because of the depth to bedrock and the seasonal wetness. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby groundwater supplies. Mounding with a suitable filtering material raises the absorption field above the bedrock and the water table.

193E—Frohling-Tokiahok complex, 18 to 35 percent slopes

Setting

Landform: Very hilly areas on till-floored lake plains
Shape of areas: Irregular
Size of areas: 10 to 30 acres

Typical Profile

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches—reddish gray fine sandy loam
Subsoil:
7 to 9 inches—dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Tokiahok

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 11 inches—reddish gray loamy fine sand
Subsoil:
11 to 24 inches-dark reddish brown and brown loamy fine sand
24 to 30 inches-strong brown, very firm fine sandy loam
30 to 49 inches-reddish brown, very firm loamy sand and sandy loam
49 to 59 inches-dark reddish brown, very firm sandy loam
59 to 66 inches—reddish brown sandy loam
Substratum:
66 to 80 inches—reddish brown sandy loam

Soil Properties and Qualities

Depth class: Very deep
Permeability: Frohling-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Tokiahokrapid in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 40 to 60 percent
Tokiahok soil and similar soils: 25 to 45 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keweenaw and somewhat excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- The moderately well drained Munising and Yalmer soils in areas that have slopes of less than 18 percent
- The somewhat poorly drained Skanee and poorly drained Gay soils in depressions and drainageways

Similar components:

- Soils in areas where the surface stones are spaced 25 to 65 feet apart
- Soils that have gravelly and cobbly textures in the surface layer and subsurface layer and the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to use as sites for septic tank absorption fields.

194E—Sporley silt loam, 8 to 35 percent slopes, dissected Setting

Landform: Moderately sloping to steep areas on dissected moraines and till-floored lake plains
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.

Shape of areas: Irregular or elongated
Size of areas: 10 to 150 acres

Typical Profile

Organic mat:
0 to 2 inches-black, partially decomposed forest leaf litter
Surface layer:
2 to 6 inches-reddish brown silt loam
Subsoil:
6 to 16 inches-dark reddish brown and strong brown silt loam
16 to 45 inches-dark reddish gray very fine sandy loam and reddish brown silt loam
Substratum:
45 to 80 inches-stratified, reddish brown silt and silt loam and dark reddish brown silty clay

Soil Properties and Qualities

Depth class: Very deep
Permeability: Moderately slow
Available water capacity: High
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Sporley soil and similar soils: 85 to 95 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- Somewhat poorly drained and poorly drained, loamy soils on the bottom of ravines
- The well drained Garlic and Voelker soils in landscape positions similar to those of the Sporley soil
- The moderately well drained Fence soils on footslopes near the bottom of ravines

Similar components:

- Soils that have a subsoil of fine sandy loam

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Special harvest methods may be needed to control undesirable plants.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Restricted permeability, slope
Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

196E—Frohling-Onota-Tokiahok complex, 8 to 35 percent slopes, dissected, stony

Setting

Landform: Moderately sloping to steep areas on dissected moraines
Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.
Shape of areas: Irregular
Size of areas: 50 to 380 acres

Typical Profile

Frohling

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 2 inches-very dark gray fine sandy loam
Subsurface layer:
2 to 7 inches-reddish gray fine sandy loam
Subsoil:
7 to 9 inches—dark reddish brown fine sandy loam
9 to 16 inches-reddish brown fine sandy loam
16 to 80 inches-reddish brown, very firm fine sandy loam and loamy fine sand

Onota

Organic mat:
0 to 1 inch—undecomposed forest litter

Surface layer:
1 to 2 inches-black gravelly sandy loam
Subsurface layer:
2 to 7 inches-reddish gray gravelly sandy loam

Subsoil:

7 to 22 inches-dark reddish brown gravelly sandy loam
Bedrock:
22 inches-dark reddish brown sandstone

Tokiahok

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 11 inches-reddish gray loamy fine sand
Subsoil:
11 to 24 inches-dark reddish brown and brown loamy fine sand
24 to 30 inches-strong brown, very firm fine sandy loam
30 to 49 inches-reddish brown, very firm loamy sand and sandy loam
49 to 59 inches-dark reddish brown, very firm sandy loam
59 to 66 inches-reddish brown sandy loam

Substratum:

66 to 80 inches-reddish brown sandy loam

Soil Properties and Qualities

Depth class: Frohling and Tokiahok—very deep; Onota-moderately deep to sandstone bedrock
Rock fragments on the surface: Stones spaced approximately 26 to 65 feet apart
Permeability: Frohling-moderate in the surface layer and subsurface layer and the upper part of the subsoil and very slow in the lower part of the subsoil; Onotamoderate; Tokiahok-rapid in the surface layer and the upper part of the subsoil, very slow in the middle part of the subsoil, and moderate in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-moderate; on roads and trails—severe
Hazard of soil blowing: Moderate

Map Unit Composition

Frohling soil and similar soils: 35 to 55 percent Onota soil and similar soils: 20 to 35 percent Tokiahok soil and similar soils: 10 to 30 percent Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat excessively drained Yellowdog soils on ridges and side slopes near the Onota soil
- The moderately well drained Munising and Yalmer soils on footslopes near the bottom of ravines
- The poorly drained Jacobsville soils on the bottom of ravines and in drainageways
- Areas of rock outcrop on side slopes of ravines

Similar components:

- Frohling and Tokiahok soils that have gravelly textures in the surface layer and subsurface layer and the upper part of the subsoil
- Onota soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Locating logging roads and skid roads in the less sloping areas between the ravines or diagonally across the side slopes helps to control erosion and reduces the equipment limitation.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, depth to bedrock, slope
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Onota soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Restricted permeability, depth to bedrock, slope Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Frohling and Tokiahok soils.
- The Onota soil is poorly suited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.
- In areas where slopes are less than 15 percent, land shaping, pressurizing the absorption field, and installing the distribution lines on the contour help to overcome the slope.
- Areas that have slopes of more than 15 percent are poorly suited to use as sites for septic tank absorption fields.

197B—Shoepac-Trenary silt loams, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on fluted ground moraines
Shape of areas: Irregular
Size of areas: 10 to 700 acres

Typical Profile

Shoepac

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish brown silt loam
Subsoil:
6 to 12 inches-brown fine sandy loam
12 to 23 inches-strong brown loamy sand
23 to 33 inches-reddish brown, mottled, firm loamy sand and fine sandy loam
33 to 53 inches-reddish brown, firm fine sandy loam
Substratum:
53 to 80 inches-reddish brown gravelly fine sandy loam

Trenary

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-reddish gray silt loam
Subsoil:
5 to 15 inches-dark reddish brown silt loam and reddish brown fine sandy loam
15 to 21 inches-brown and reddish brown, very firm fine sandy loam
21 to 48 inches-reddish brown loamy fine sand and fine sandy loam

Substratum:

48 to 80 inches-reddish brown cobbly fine sandy loam

Soil Properties and Qualities

Depth class: Very deep

Permeability: Shoepac-moderate in the surface layer and subsoil and moderately slow in the substratum; Trenary-moderate
Available water capacity: Moderate
Drainage class: Shoepac—moderately well drained; Trenary—well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight; on roads and trails-moderate
Hazard of soil blowing: Moderate
Map Unit Composition
Shoepac soil and similar soils: 60 to 80 percent
Trenary soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The somewhat poorly drained Charlevoix and poorly drained Ensley soils in depressions and drainageways
- The well drained Traunik soils in landscape positions similar to those of the major soils

Similar components:

- Soils that have bedrock at a depth of 60 to 80 inches
- Soils that are sand in the surface layer and subsurface layer and the upper part of the subsoil
- Shoepac soils that have a very firm subsoil and are very slowly permeable

Use and Management

Land use: Dominant use-woodland; other uses-cropland, pasture, building site development

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- Equipment should be used only when the soils are relatively dry or have an adequate snow cover.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Cropland

Major management concerns: Seasonal wetness, water erosion, compaction, tilth, content of organic matter
Management considerations:

- Subsurface drains can reduce the wetness if a suitable outlet is available.
- Crop rotations that include close-growing crops, conservation tillage, grassed waterways, cover crops, and crop residue management help to prevent excessive soil loss.
- Minimizing tillage and tilling and harvesting at the proper soil moisture content help to prevent excessive compaction and maintain tilth.
- Keeping crop residue on the surface, regularly adding other organic material, and applying a system of no-till planting increase the content of organic matter.

Pasture

Major management concerns: Compaction, overgrazing, seasonal wetness Management considerations:

- Proper stocking rates, a planned grazing system, and deferred grazing during wet periods help to keep the pasture in good condition.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Shoepac soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Seasonal wetness, restricted permeability

Management considerations:

- In areas of the Shoepac soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.

198B—Shoepac-Reade silt loams, 1 to 4 percent slopes Setting

Landform: Nearly level and gently sloping areas on fluted ground moraines
Shape of areas: Irregular
Size of areas: 10 to 700 acres

Typical Profile

Shoepac

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 6 inches-reddish brown silt loam
Subsoil:
6 to 12 inches-brown fine sandy loam
12 to 23 inches-strong brown loamy sand
23 to 33 inches-reddish brown, mottled, firm loamy sand and fine sandy loam
33 to 53 inches-reddish brown, firm fine sandy loam
Substratum:
53 to 80 inches-reddish brown gravelly fine sandy loam
Reade
Organic mat:
0 to 4 inches—black, well decomposed forest litter
Surface layer:
4 to 7 inches—brown silt loam
Subsoil:
7 to 12 inches-dark brown loam and fine sandy loam
12 to 15 inches-brown, mottled fine sandy loam
15 to 20 inches-reddish brown, mottled fine sandy loam and loamy fine sand
20 to 28 inches-reddish brown, mottled gravelly fine sandy loam
Bedrock:
28 inches-grayish brown dolomitic sandstone

Soil Properties and Qualities

Depth class: Shoepac-very deep; Reade-moderately deep to dolomitic sandstone
Permeability: Shoepac-moderate in the surface layer and subsoil and moderately
slow in the substratum; Reade-moderate
Available water capacity: Shoepac—moderate; Reade—low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Shoepac soil and similar soils: 50 to 70 percent

Reade soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The poorly drained Ensley and Nahma soils in depressions and drainageways
- The well drained Trenary soils in the slightly higher landscape positions
- The somewhat poorly drained Charlevoix soils in the slightly lower landscape positions

Similar components:

- Reade soils that have bedrock at a depth of less than 20 inches
- Shoepac soils that are sand in the surface layer and subsurface layer and the upper part of the subsoil
- Shoepac soils that have a very firm subsoil and are very slowly permeable

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soils are relatively dry or have an adequate snow cover.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, depth to bedrock Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- In areas of the Reade soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock.

Septic tank absorption fields

Major management concerns: Seasonal wetness, depth to bedrock
Management considerations:

- In areas of the Shoepac soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Because of wetness and the depth to bedrock, the Reade soil is poorly suited to use as a site for septic tank absorption fields.

199—Udorthents, ash

Setting

Shape of areas: Irregular
Size of areas: 13 to 66 acres

Map Unit Composition

About 90 percent of this map unit consists of fly ash, which is a by-product of the two coal-burning electrical power plants in Marquette. These disposal sites have steep or very steep side slopes. Some areas of this map unit have been revegetated through reclamation efforts. Other areas are active disposal sites. About 10 percent of the map unit consists of made land surrounding the fly ash.

Use and Management

Land use: Fly ash disposal sites
Management considerations:

- Onsite investigation is needed to determine the suitability for specific uses.

200A-Charlevoix-Ensley complex, bedrock substratum, 0 to 3 percent slopes

Setting

Landform: Charlevoix—nearly level areas on upland plains; Ensley—depressions and drainageways on bedrock-controlled ground moraines
Shape of areas: Irregular
Size of areas: 5 to 600 acres

Typical Profile

Charlevoix

Organic mat:
0 to 2 inches—black, well decomposed forest litter
Surface layer:
2 to 3 inches-very dark gray silt loam
Subsurface layer:
3 to 8 inches-brown, mottled silt loam
Subsoil:
8 to 12 inches-brown, mottled silt loam
12 to 28 inches—reddish brown, mottled fine sandy loam
Substratum:
28 to 70 inches—reddish brown, mottled cobbly fine sandy loam
Bedrock:
70 inches-pale olive limestone

Ensley

Surface layer:
0 to 5 inches—black muck
Subsurface layer:
5 to 6 inches-black mucky fine sandy loam
6 to 10 inches-brown, mottled fine sandy loam
Subsoil:
10 to 19 inches-brown, mottled fine sandy loam
Substratum:
19 to 70 inches-reddish brown gravelly fine sandy loam
Bedrock:
70 inches-pale olive limestone

Soil Properties and Qualities

Depth class: Very deep to limestone bedrock
Permeability: Moderate

Available water capacity: Moderate
Drainage class: Charlevoix—somewhat poorly drained; Ensley—poorly drained
Surface runoff class: Charlevoix—very slow; Ensley—very slow or ponded
Flooding: None
Content of organic matter: Charlevoix—low; Ensley—moderate
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Charlevoix soil and similar soils: 50 to 70 percent
Ensley soil and similar soils: 20 to 40 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The very poorly drained Cathro soils in landscape positions similar to those of the Ensley soil
- The somewhat poorly drained Sundell soils in landscape positions similar to those of the Charlevoix soil
- The moderately well drained Reade and Shoepac soils in the slightly higher landscape positions

Similar components:

- Charlevoix soils that have a substratum of stratified sand and gravel
- Charlevoix soils that are sand in the surface layer and subsurface layer and in the upper part of the subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- The seasonal high water table restricts the use of equipment to midsummer, when the soils are dry, or midwinter, when there is an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Trees that can withstand seasonal wetness should be selected for planting on the Charlevoix soil.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Ensley soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, ponding Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Charlevoix soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because of ponding, the Ensley soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Seasonal wetness, ponding
Management considerations:

- Filling or mounding with suitable material helps to raise the absorption field above the water table in areas of the Charlevoix soil.
- Because of ponding, the Ensley soil is generally unsuited to use as a site for septic tank absorption fields.

201B—Sauxhead-Jacobsville complex, 0 to 6 percent slopes, very stony

Setting

Landform: Sauxhead—undulating areas on sandstone benches; Jacobsville—nearly level areas in depressions and drainageways on sandstone benches
Shape of areas: Irregular
Size of areas: 20 to 300 acres

Typical Profile

Sauxhead

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-dark reddish gray sandy loam
Subsoil:
4 to 14 inches-reddish brown very channery loamy sand
Bedrock:
14 to 17 inches-dark reddish brown, highly weathered and fractured sandstone
17 inches-reddish brown, mottled sandstone

Jacobsville

Surface layer:
0 to 4 inches-black muck
Subsurface layer:
4 to 9 inches-dark gray, mottled loam
Subsoil:
9 to 16 inches-reddish brown, mottled sandy loam
Substratum:
16 to 28 inches-reddish brown, mottled sandy loam
Bedrock:
28 inches—reddish brown sandstone

Soil Properties and Qualities

Depth class: Sauxhead—shallow to sandstone; Jacobsville—moderately deep to sandstone
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Sauxhead—very rapid; Jacobsville-moderate
Available water capacity: Low
Drainage class: Sauxhead—moderately well drained; Jacobsville—poorly drained
Surface runoff class: Sauxhead-slow; Jacobsville-very slow or ponded
Flooding: None
Content of organic matter: Sauxhead—low; Jacobsville—moderate
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Sauxhead soil and similar soils: 60 to 80 percent Jacobsville soil and similar soils: 15 to 30 percent Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Buckroe soils in the slightly higher positions within areas of the Sauxhead soil
- The somewhat poorly drained Zeba soils in areas between the Sauxhead and Jacobsville soils
- The very poorly drained Skandia soils in landscape positions similar to those of the Jacobsville soil
- Small areas of rock outcrop

Similar components:

- Sauxhead soils that have bedrock at a depth of less than 10 inches or more than 20 inches
- Jacobsville soils that have sandy and gravelly layers in the subsoil
- Sauxhead soils that are very cobbly fine sandy loam in the surface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Equipment can be used only during dry summer months and during periods in winter when the snow cover is adequate.
- Because of the content of channers and the shallow rooting depth, trees are generally not planted on the Sauxhead soil.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Jacobsville soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Seasonal wetness, ponding, depth to bedrock Management considerations:

- Because of the depth to bedrock, seasonal wetness, and ponding, these soils are poorly suited to building site development.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, depth to bedrock, seasonal wetness, ponding
Management considerations:

- These soils are generally unsuited to use as sites for septic tank absorption fields. Installation is difficult, failure of the system is possible, and ground-water contamination is a concern.

202B—Sauxhead sandy loam, 1 to 6 percent slopes, very stony

Setting
Landform: Gently undulating areas on sandstone benches
Shape of areas: Irregular or elongated
Size of areas: 20 to 180 acres

Typical Profile

Sauxhead

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-dark reddish gray sandy loam
Subsoil:
4 to 14 inches-reddish brown very channery loamy sand
Bedrock:
14 to 17 inches—dark reddish brown, highly weathered and fractured sandstone 17 inches—reddish brown, mottled sandstone

Soil Properties and Qualities

Depth class: Shallow to sandstone
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Very rapid
Available water capacity: Low
Drainage class: Moderately well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Sauxhead soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Yellowdog soils in the slightly higher positions on the landscape
- The somewhat poorly drained Zeba and poorly drained Jacobsville soils in the slightly lower positions on the landscape
- Small areas of rock outcrop

Similar components:

- Soils that have bedrock at a depth of more than 20 inches or less than 10 inches
- Soils that are very cobbly fine sandy loam in the surface layer and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition

Management considerations:

- Equipment should be used only when the soil is relatively dry or has an adequate snow cover.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Because of the depth to bedrock and the content of channers, trees are generally not planted on this soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.
Building site development
Major management concerns: Seasonal wetness, depth to bedrock
Management considerations:
- Because of seasonal wetness and the depth to bedrock, this soil is poorly suited to building site development.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, depth to bedrock
Management considerations:

- Because of the poor filtering capacity, seasonal wetness, and the depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

203A—Au Gres-Deford complex, 0 to 3 percent slopes

Setting

Landform: Au Gres—nearly level areas on broad plains; Deford—depressions and drainageways on outwash plains
Shape of areas: Elongated or irregular
Size of areas: 10 to 115 acres

Typical Profile

Au Gres

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 8 inches-dark reddish gray sand
Subsoil:
8 to 13 inches-dark reddish brown, mottled sand 13 to 27 inches-yellowish red, mottled sand

Substratum:

27 to 80 inches-brown, mottled sand

Deford

Surface layer:
0 to 6 inches-black muck
Subsurface layer:
6 to 30 inches-grayish brown and brown, mottled sand
Substratum:
30 to 80 inches-very dark gray sand

Soil Properties and Qualities

Depth class: Very deep
Permeability: Rapid
Available water capacity: Low
Drainage class: Au Gres—somewhat poorly drained; Deford—poorly drained
Surface runoff class: Au Gres—very slow; Deford-very slow or ponded
Flooding: None
Content of organic matter: Au Gres—low; Deford—high
Hazard of water erosion: Slight
Hazard of soil blowing: Au Gres—severe; Deford—moderate
Map Unit Composition
Au Gres soil and similar soils: 50 to 70 percent
Deford soil and similar soils: 15 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The excessively drained Rubicon soils on knolls and low ridges
- The very poorly drained Tawas soils in landscape positions similar to those of the Deford soil
- The moderately well drained Croswell soils in the slightly higher positions on the landscape

Similar components:

- Au Gres soils that have a strongly cemented subsoil
- Deford soils that have a darker substratum
- Au Gres soils that have a loamy substratum

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Equipment can only be used in the dry summer months and during periods in winter when snow cover is adequate.
- Seedling survival rates can be increased in areas of the Au Gres soil by carefully planting vigorous nursery stock.
- Because of wetness, seedling mortality, and plant competition, trees are generally not planted on the Deford soil.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting and strip cutting.
- Carefully managed reforestation helps to control undesirable understory plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness, ponding Management considerations:

- In areas of the Au Gres soil, cutbanks are not stable and are subject to caving. Trench walls should be reinforced.
- In areas of the Au Gres soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because of ponding, the Deford soil is generally unsuited to building site development.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, ponding Management considerations:

- The poor filtering capacity of the Au Gres soil can result in the pollution of ground water.
- In areas of the Au Gres soil, filling or mounding with suitable material helps to raise the absorption field above the water table.
- Because of ponding, the Deford soil is generally unsuited to use as a site for septic tank absorption fields.

204B—Gogebic-Tula complex, 1 to 6 percent slopes, very stony

Setting
Landform: Gogebic—gently undulating areas on knolls on bedrock-controlled
moraines; Tula—nearly level areas in depressions on bedrock-controlled moraines Shape of areas: Irregular
Size of areas: 30 to 200 acres

Typical Profile

Gogebic

Organic mat:
0 to 1 inch—black, partially decomposed forest litter
Surface layer:
1 to 3 inches—black cobbly silt loam
Subsurface layer:
3 to 5 inches—reddish gray cobbly silt loam
Subsoil:
5 to 13 inches—dark reddish brown cobbly fine sandy loam
13 to 18 inches-reddish brown cobbly sandy loam
18 to 62 inches-reddish brown, very firm very gravelly sandy loam and very gravelly loamy sand
Substratum:
62 to 80 inches-reddish brown very gravelly sandy loam

Tula

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 5 inches-dark reddish gray cobbly very fine sandy loam

Subsurface layer:

5 to 8 inches-gray, mottled cobbly very fine sandy loam
Subsoil:
8 to 20 inches—reddish brown, mottled cobbly very fine sandy loam
20 to 28 inches-dark reddish brown gravelly sandy loam
28 to 37 inches-light reddish brown and reddish brown, mottled, very firm gravelly sandy loam
37 to 62 inches-dark reddish brown and reddish brown, very firm gravelly sandy loam and gravelly loam
Substratum:
62 to 80 inches-reddish brown gravelly sandy loam

Soil Properties and Qualities

Depth class: Very deep
Rock fragments on the surface: Stones spaced approximately 3 to 25 feet apart
Permeability: Moderate in the surface layer and subsurface layer and the upper part of the subsoil, very slow in the lower part of the subsoil, and moderate in the substratum
Available water capacity: Gogebic—low; Tula—moderate
Drainage class: Gogebic—moderately well drained; Tula—somewhat poorly drained
Surface runoff class: Gogebic—slow; Tula—very slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Slight
Hazard of soil blowing: Moderate

Map Unit Composition

Gogebic soil and similar soils: 60 to 80 percent
Tula soil and similar soils: 15 to 35 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Schweitzer soils in the higher positions on the landscape
- The poorly drained Pleine soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of 40 to 80 inches
- Soils that have a substratum of sand or gravelly sand
- Tula soils that are sand in the surface layer, subsurface layer, and subsoil

Use and Management

Woodland

Major management concerns: Equipment limitations, seedling mortality, windthrow hazard, plant competition
Management considerations:

- Skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base. Culverts are needed to maintain the natural drainage system.
- Equipment should be used only when the soils are relatively dry or have an adequate snow cover.
- Large stones on the surface can hinder harvesting operations and damage equipment.
- Trees that can withstand seasonal wetness should be selected for planting.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced and by such harvest methods as selective cutting.
- If trees are planted, site preparation by mechanical or chemical means is needed to control competing vegetation. Subsequent control of the invasion and growth of hardwoods may be needed.

Building site development

Major management concerns: Seasonal wetness, cutbanks caving
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.
- Because cutbanks are unstable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields
 Major management concerns: Restricted permeability, seasonal wetness
 Management considerations:

- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability.
- Filling or mounding with suitable material helps to raise the absorption field above the water table.

206B—Traunik gravelly fine sandy loam, 1 to 6 percent slopes

Setting

Landform: Gently undulating outwash terraces on ground moraines
Shape of areas: Irregular
Size of areas: 5 to 55 acres

Typical Profile

Organic mat:
0 to 1 inch—black, well decomposed forest litter
Surface layer:
1 to 4 inches-brown gravelly fine sandy loam
Subsoil:
4 to 11 inches-dark brown gravelly fine sandy loam
11 to 24 inches-brown very gravelly sand
24 to 31 inches-dark yellowish brown very gravelly sand
Substratum:
31 to 80 inches-pale brown very gravelly sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Moderate in the surface layer and the upper part of the subsoil and very rapid in the lower part of the subsoil and in the substratum
Available water capacity: Low
Drainage class: Well drained
Surface runoff class: Slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road—slight; on roads and trails—moderate
Hazard of soil blowing: Moderate

Map Unit Composition

Traunik soil and similar soils: 85 to 90 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Trenary soils in landscape positions similar to those of the Traunik soil
- The moderately well drained Northland soils in areas that have slopes of less than 4 percent
- The somewhat poorly drained Charlevoix soils and the poorly drained Ensley and Minocqua soils in depressions and drainageways

Similar components:

- Soils that have loamy textures in the substratum
- Soils that have less gravel throughout

Use and Management

Woodland

Major management concerns: Erosion hazard
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.

Building site development

Major management concerns: Cutbanks caving
Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.

Septic tank absorption fields

Major management concerns: Poor filtering capacity
Management considerations:

- The poor filtering capacity of this soil can result in the pollution of ground water.

207D—Dishno-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very bouldery

Setting

Landform: Gently rolling and rolling areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 10 to 500 acres

Typical Profile

Dishno

Organic mat:
0 to 1 inch—dark reddish gray, partially decomposed forest litter
Surface layer:
1 to 3 inches-dark reddish brown cobbly silt loam
Subsurface layer:
3 to 9 inches-reddish gray cobbly silt loam
Subsoil:
9 to 18 inches-dark brown cobbly loam and cobbly fine sandy loam
18 to 22 inches-brown, firm cobbly loamy sand
22 to 29 inches-brown, mottled very stony loamy sand
Substratum:
29 to 46 inches-brown, mottled very stony loamy sand
Bedrock:
46 inches-gneiss

Michigamme

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches—dark reddish gray cobbly fine sandy loam

Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Dishno—deep to igneous or metamorphic bedrock; Michigammemoderately deep to igneous or metamorphic bedrock
Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Dishno-moderate in the surface layer and the upper part of the subsoil and moderately rapid in the lower part of the subsoil and in the substratum; Michigamme-moderate
Available water capacity: Low
Drainage class: Dishno-moderately well drained; Michigamme-well drained
Surface runoff class: Dishno-slow; Michigamme-medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Off-road-slight in areas of the Dishno soil and moderate in areas of the Michigamme soil; on roads and trails-moderate in areas of the Dishno soil and severe in areas of the Michigamme soil
Hazard of soil blowing: Moderate
Map Unit Composition
Dishno soil and similar soils: 25 to 40 percent
Michigamme soil and similar soils: 20 to 40 percent
Rock outcrop: 10 to 35 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keewaydin and Schweitzer soils in landscape positions similar to those of the major soils
- The excessively drained Kalkaska soils in landscape positions similar to those of the major soils
- The poorly drained Witbeck and very poorly drained Tawas soils in depressions and drainageways

Similar components:

- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, windthrow hazard, plant competition
Management considerations:

- The hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- Skidders should not be used during wet periods, when ruts form easily.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- The rock outcrop may interfere with the use of harvesting equipment and the placement of haul roads.
- Windthrow can be minimized by harvest methods that do not leave the remaining trees widely spaced.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope, depth to bedrock, seasonal wetness
Management considerations:

- Buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the bedrock and the water table.
- In areas where slopes are less than 15 percent, buildings should be designed so that they conform to the natural slope of the land. Land shaping is necessary in some areas.
- Areas that have slopes of more than 15 percent are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Depth to bedrock, slope, seasonal wetness
Management considerations:

- This map unit is generally unsuited to use as a site for septic tank absorption fields because of the depth to bedrock. Inadequately treated sewage effluent flowing through crevices in the bedrock can pollute nearby ground-water supplies. Mounding with a suitable filtering material helps to overcome this limitation.
- In areas of the Dishno soil, filling or mounding with suitable material helps to raise the absorption field above the water table.

208F-Keewaydin-Michigamme cobbly fine sandy loams, 18 to 45 percent slopes, rocky, very bouldery

Setting
Landform: Very hilly areas on bedrock-controlled moraines Distinctive landscape features: Igneous and metamorphic rock outcrops
Shape of areas: Irregular
Size of areas: 5 to 450 acres

Typical Profile

Keewaydin

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 4 inches-reddish brown cobbly fine sandy loam
Subsoil:
4 to 10 inches-dark reddish brown fine sandy loam
10 to 20 inches-strong brown cobbly fine sandy loam
20 to 31 inches-brown gravelly loamy sand
Substratum:
31 to 80 inches-brown very cobbly loamy sand

Michigamme

Organic mat:
0 to 2 inches-black, well decomposed forest litter
Surface layer:
2 to 5 inches-dark reddish gray cobbly fine sandy loam
Subsoil:
5 to 24 inches-dark reddish brown cobbly fine sandy loam
24 to 29 inches-reddish brown cobbly fine sandy loam
Bedrock:
29 inches-gneiss

Soil Properties and Qualities

Depth class: Keewaydin—very deep; Michigamme—moderately deep Rock fragments on the surface: Boulders spaced approximately 10 to 65 feet apart
Permeability: Keewaydin-moderate in the surface layer and the upper part of the
subsoil and moderately rapid or rapid in the lower part of the subsoil and in the
substratum; Michigamme-moderate
Available water capacity: Keewaydin-moderate; Michigamme-low
Drainage class: Well drained
Surface runoff class: Medium
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Severe
Hazard of soil blowing: Moderate

Map Unit Composition

Keewaydin soil and similar soils: 45 to 60 percent Michigamme soil and similar soils: 25 to 40 percent
Rock outcrop: 0.1 to 10 percent
Dissimilar components: 10 to 15 percent

Components of Minor Extent

Dissimilar components:

- The well drained Keweenaw soils in landscape positions similar to those of the major soils
- The moderately well drained Champion soils in areas that have slopes of less than 18 percent
- The poorly drained Witbeck and very poorly drained Cathro soils in depressions and drainageways
Similar components:
- Soils that have a substratum of stratified sand and gravel
- Soils in areas where the surface boulders are 1 to 3 feet apart
- Soils that have bedrock at a depth of less than 20 inches

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, plant competition Management considerations:

- Because of the erosion hazard, water should be removed by water bars, out-sloping or in-sloping road surfaces, culverts, and drop structures. Building logging roads on the contour or on the gentler slopes and seeding logging roads, skid roads, and landings after the trees are logged also help to prevent excessive soil loss.
- Because of the slope, special care is needed in laying out logging roads and landings and in operating logging equipment. Logging roads should be designed so that they conform to the topography.
- Skidders should not be used during wet periods, when ruts form easily.
- Year-round logging roads require roadfill and gravel. Culverts are needed to maintain the natural drainage system.
- Because of stones and boulders on the surface, wheeled skidders with high clearance should be operated at a reduced speed over carefully chosen routes.
- Small areas of nearly level included soils, if any are available, or suitable nearly level adjacent areas should be selected as sites for landings.
- After cutting, competition from brush can delay or prevent natural regeneration of desired species.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are poorly suited to building site development unless extensive land shaping is applied.

Septic tank absorption fields

Major management concerns: Slope
Management considerations:

- Because of the slope, these soils are generally unsuited to use as sites for septic tank absorption fields.

209B—Garlic-Fence complex, 1 to 6 percent slopes

Setting

Landform: Gently undulating areas on till-floored lake plains
Shape of areas: Irregular or elongated
Size of areas: 5 to 200 acres

Typical Profile

Garlic

Organic mat:
0 to 1 inch—black, well decomposed leaf litter
Surface layer:
1 to 9 inches-reddish gray fine sand
Subsoil:
9 to 15 inches-dark reddish brown, moderately cemented fine sand
15 to 26 inches-dark reddish brown, strongly cemented fine sand
26 to 46 inches-brown fine sand

Substratum:

46 to 80 inches-brown fine sand
Fence
Surface layer:
0 to 3 inches-very dark gray very fine sandy loam
Subsurface layer:
3 to 7 inches-reddish gray very fine sandy loam
Subsoil:
7 to 16 inches-dark reddish brown and reddish brown very fine sandy loam
16 to 19 inches-yellowish brown loamy very fine sand

19 to 42 inches-reddish brown and red, mottled silt loam and reddish brown very fine sandy loam
Substratum:
42 to 57 inches-stratified, reddish brown, mottled silt loam and very fine sandy loam and red silty clay loam
57 to 80 inches-stratified, reddish brown, mottled silt loam and brown very fine sand

Soil Properties and Qualities

Depth class: Very deep

Permeability: Garlic—rapid; Fence—moderately slow
Available water capacity: Garlic-low; Fence-high
Drainage class: Garlic-well drained; Fence-moderately well drained
Surface runoff class: Garlic-very slow; Fence-slow
Flooding: None
Content of organic matter: Low
Hazard of water erosion: Garlic—slight; Fence—moderate
Hazard of soil blowing: Garlic-severe; Fence-moderate

Map Unit Composition

Garlic soil and similar soils: 60 to 80 percent
Fence soil and similar soils: 15 to 25 percent
Dissimilar components: 5 to 15 percent

Components of Minor Extent

Dissimilar components:

- The moderately well drained Paquin soils in areas that have slopes of less than 4 percent
- The somewhat poorly drained Au Gres and poorly drained Deford soils in depressions and drainageways

Similar components:

- Fence soils that are sand in the surface layer and subsurface layer and the upper part of the subsoil
- Garlic soils that are gravelly sand in the lower part of the subsoil and in the substratum

Use and Management

Woodland

Major management concerns: Erosion hazard, equipment limitations, seedling mortality, plant competition
Management considerations:

- In areas of the Fence soil, the hazard of erosion can be reduced by seeding logging roads, landings, and areas that have been cut and filled and by installing water bars and culverts.
- In areas of the Garlic soil, loose sand can interfere with the traction of wheeled equipment. Logging roads should be stabilized.
- In areas of the Fence soil, skidders should not be used during wet periods, when ruts form easily. Year-round logging roads require a gravel base.
- In areas of the Garlic soil, planting special nursery stock or containerized seedlings can reduce the seedling mortality rate.
- Special harvest methods may be needed to control undesirable plants.

Building site development

Major management concerns: Cutbanks caving, seasonal wetness

Management considerations:

- Because cutbanks are not stable and are subject to caving, trench walls should be reinforced.
- In areas of the Fence soil, buildings can be constructed on well compacted fill material, which raises the site a sufficient distance above the water table.

Septic tank absorption fields

Major management concerns: Poor filtering capacity, seasonal wetness, restricted permeability
Management considerations:

- The poor filtering capacity of the Garlic soil can result in the pollution of ground water.
- In areas of the Fence soil, mounding or adding suitable fill material helps to raise the absorption field above the water table.
- Enlarging or pressurizing the absorption field or installing alternating drain fields helps to overcome the restricted permeability in areas of the Fence soil.

M-W—Miscellaneous water

General Definition

- This map unit consists of manmade areas that are used for industrial, sanitary, or mining applications and that contain water most of the year.

W-Water

General Definition

- This map unit consists of naturally occurring bodies of water, such as rivers, streams, lakes, reservoirs, and ponds.

Use and Management of the Soils

This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture; as woodland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; and for wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Crops and Pasture

General management concerns affecting crops and pasture are described in this section. The crops and pasture plants commonly grown in the survey area, including some that are not commonly grown but that are suitable for cultivation, are identified. The estimated yields of the main crops and hay and pasture plants are listed, the system of land capability classification used by the Natural Resources Conservation Service is explained, and prime farmland is described.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under the heading "Detailed Soil Map Units." Specific information can be obtained from the local office of the Natural Resources Conservation Service or the Cooperative Extension Service.

In 1988, approximately 24,484 acres in the survey area was used for crops and pasture. About 4,679 acres was used for forage crops, 120 acres for corn, and 750 acres for small grain crops. The rest of the acreage was used for specialty crops or pasture (Michigan Department of Agriculture, 1988).

Field crops commonly grown in the county include alfalfa, barley, oats, potatoes (fig. 15), corn, birdsfoot trefoil, red clover, alfalfa, bromegrass, and timothy. Small acreages of cabbage and other such crops are grown for wildlife feed.

Figure 15.—Potatoes in an area of Emmet fine sandy loam, 1 to 6 percent slopes. Removing stones or cobbles can facilitate the harvesting of this crop.

The annual number of frost-free days ranges from about 140 along Lake Superior to 70 at the higher elevations away from Lake Superior (Michigan State University, 1965). The crops selected should be those that are adapted to a short, cool growing season and strongly acidic soils, which are typical in Marquette County. Crops that have potential for local and specialized markets include cabbage, broccoli, peas, spinach, cranberries, raspberries, blackberries, and blueberries.

Crop production can be enhanced by carefully selecting crop varieties and by choosing growing sites that take advantage of soil conditions, such as water-holding capacity, drainage, maximum sun exposure, southern aspect, and cold air drainage.

The general soil map is useful for locating certain types of soils the county. Soil type is one of the most important factors in determining the productivity for any given crop. The general soil map can provide an understanding of the composition and relationships of soils and landforms in the county.

Crop production in the county could be increased by utilizing the best technology and conservation practices on suitable soils in the county. This soil survey can help to facilitate these efforts.

Some of the major management concerns affecting crop production in the county are acid soils, low fertility levels, the hazard of erosion, soil wetness, droughtiness, rock fragments, frost hazard, tilth, and the short, cool growing season.

Many soils in Marquette County are acidic and low in natural fertility. Applications of lime in conjunction with a well managed fertilizer program can help to overcome these problems. On all soils, the amount of lime and fertilizer to be applied should be based on the results of laboratory soils tests. The Cooperative Extension Service can help to
determine the amounts of fertilizer and lime needed by different crops for the desired yields (Michigan State University, 1985).

Soil erosion by water or wind results when the soil surface is left unprotected. Vegetation and crop residue protect the soil from erosion by intercepting the force of wind and rain, which can detach small soil particles and convey them away.

Erosion is damaging for several reasons. Topsoil lost by erosion is generally the most fertile part of the soil. As the soil erodes, productivity decreases, plants become stunted, and seedling mortality increases. Also, the soil commonly becomes less resistant to further erosion. Sediment from erosion clogs culverts and drainage ditches and can destroy fish habitat by silting in stream spawning grounds. Sediments from cropland entering creeks and lakes can contain fertilizer and pesticides, which can further reduce water quality and alter the aquatic habitat.

The erodibility of a soil is dependent upon the texture of the surface layer, the length of the slope, and the slope gradient. Generally, as the slope increases, the hazard of erosion by water also increases. Soils that have clayey, silty, or loamy textures are more prone to water erosion than sandy soils. In Marquette County the soils most susceptible to water erosion are Fence silt loam, Frohling fine sandy loam, Munising fine sandy loam, Onaway fine sandy loam, Emmet fine sandy loam, and Shoepac silt loam.

Conservation practices for erosion control provide a protective surface cover, reduce the runoff rate, and increase the rate of water infiltration and thus reduce the amount of sediment that enters and clogs waterways. Some examples of erosioncontrol conservation practices that are commonly used are briefly described in the following paragraphs.

Conservation tillage or minimum tillage systems apply minimal cultivation so that a sufficient cover of crop residue is left on the soil surface to prevent wind erosion. Such tillage systems include a crop rotation schedule that promotes an ideal amount of topsoil.

Crop residue management programs maintain and enhance topsoil by selecting species, varieties, and fertilizers that produce a certain amount of crop residue. For example, grasses and grains produce more residue than legumes.

Green manure crops are grown explicitly for the purpose of enhancing topsoil fertility and organic matter content. They are incorporated into the soil while they are still green. Rye grass and red clover are commonly used as green manure crops. Any crop that is easily established, grows rapidly, and is easily eradicated may be used as green manure. Planting legumes in conjunction with the green manure crop can add nitrogen to the soil, thus reducing the need for nitrogen fertilizer.

Cover crops are seeded during final cultivation of a crop. When the main crop is harvested, the cover crop then serves as winter cover for erosion control, and it retains nutrients that otherwise might be leached downward into the soil. The growth period of the proposed cover crop should be long enough for the cover crop to reach maturity after the cash crop is removed.

Applications of animal manure can enhance topsoil, organic matter content, and fertility. It is important to prevent the contamination of surface water, which can result from applying excessive amounts of agricultural waste on land that slopes towards streams. Excessive application rates can also cause ground-water contamination.

Contour stripcropping is a technique whereby strips of row crops are alternated with strips of grass-legume hay or small grain crops on the contour or perpendicular to the prevailing winds.

Grassed waterways are used to prevent the formation of gullies in areas where water is transported down a slope in a concentrated flow. Subsurface drainage tile can be installed beneath the waterway to remove excess water. This internal drainage enhances vegetative growth in the waterway and provides drier conditions for crossing
with equipment during field operations. Rocked crossings can also be built across waterways to provide safe access to various fields.

Soil blowing, or wind erosion, can be a hazard on all unprotected soils. It is especially a concern in areas of soils that have a sandy surface layer, such as Au Gres, Croswell, Finch, Kalkaska, Liminga, Paquin, Rubicon, and Yalmer soils. Drained and unprotected organic soils are likewise highly susceptible to wind erosion. Maintaining a vegetative cover or surface mulch can reduce the hazard of wind erosion. Also, field windbreaks of adapted trees and shrubs planted at right angles to the prevailing winds can provide protection from wind erosion.

Soil drainage is a management concern in areas that are excessively wet. The wetness can result from a high water table caused by snowmelt or rain; shallow depth to bedrock; floodwater; or position on the landscape. These wet soils are generally in low-lying areas and depressions. Equipment operations, seed germination, and plant growth can be adversely affected unless the excess water is removed. Soils that have a high water table are also subject to low soil temperature and frost hazard, which can also hinder production.

Very poorly drained and poorly drained soils have a water table near or above the surface for most of the year. Crop production is typically not feasible in areas of these soils. Very poorly drained soils in Marquette County include Carbondale, Cathro, Dawson, Greenwood, Jacobsville, Skandia, and Tawas soils. These soils have thick accumulations of organic material and in undrained areas exhibit obvious wetland characteristics. Poorly drained soils include Burt, Ensley, Evart, Gay, Kinross, Minocqua, Nahma, Pleine, Deford, Shag, and Witbeck soils.

Somewhat poorly drained soils have a water table within a depth of 6 inches during excessively wet periods. Au Gres, Channing, Charlevoix, Net, Skanee, and Solona soils are examples.

Moderately well drained soils have a water table within a depth of 24 inches during excessively wet periods. These include Champion, Croswell, Fence, Gogebic, Munising, and Yalmer soils. Many of these soils have a restrictive layer with restricted permeability at a depth of about 24 inches. Small areas of wetter soils are commonly included with these soils in mapping.

The design of surface and subsurface drainage systems varies with the kind of soil. Because of the frost hazard in areas of poorly drained and very poorly drained soils, most drainage improvements have been implemented in somewhat poorly drained and moderately well drained areas. Surface drainage systems are commonly the most cost effective. Improving natural waterways, removing drainage obstructions, and establishing diversions that redirect surface runoff can help to overcome drainage problems. Deeper drainage ditches may be useful if an adequate outlet exists. Subsurface tile drainage systems can also be used for lowering a water table; however, many local soils have a fragipan, which may interfere with the functioning of tile drainage. Information about the design of drainage systems is available in local offices of the Natural Resources Conservation Service and Conservation Districts.

Soil droughtiness is a management concern affecting crop production. Sandy soils have a low available water capacity, and crops may wither during the summer unless they are irrigated or are drought resistant. Examples of droughty soils in Marquette County are Croswell, Kalkaska, Mancelona, Rubicon, Sayner, Waiska, and Yalmer soils. The soil moisture-holding capacity can be improved in areas of these soils by increasing the content of organic matter or by adding finer textured soil material or humus.

Rock fragments are a management concern because they interfere with the use of tillage, planting, and harvesting equipment. Removing the rock fragments can reduce equipment wear and may increase yields. In many areas in Marquette County, however, the soils contain such large amounts of rock fragments that growing crops is impractical. Gogebic, Keewaydin, Schweitzer, and Vanriper soils are examples.

Frost can injure sensitive crops. Spring, fall, and occasional summer frosts occur as freezing air from higher altitudes falls because it is heavier than the lower warm air. The coldest air travels downslope to the lowest areas and accumulates, causing frost in lowlands and creek beds and on flood plains.

The short, cool growing season in the survey area limits the growth and maturation of crops. Cold soils inhibit seed germination. The direction that the land slopes, called slope aspect, has an important effect on soil temperature and on crop growth. Areas with a southern aspect warm up considerably faster in the spring than other areas. Crops germinate and grow faster because of increased sunlight and soil temperatures. On the other hand, south-facing slopes also lose soil moisture and become droughty earlier than other areas during the drier years. The effects of early germination and growth can be deleterious to frost-sensitive plants.

Soil tilth is an important factor affecting the germination and subsequent growth of seeds, the hazard of erosion, the runoff rate, the rate of water infiltration, and the amount of water available to crops. Soils with good tilth are granular and porous. In areas where the soils have poor tilth, a crust can form on the surface after intense rainfall. Soils that have a loamy surface layer can have poor tilth if organic matter is not continually added. No-till pasture and hayland seeding can maintain good soil tilth and conserve existing soil moisture.

Soil compaction occurs when machinery is used in areas of wet, loamy soils or if heavy animals are allowed to graze in these areas. Productivity is reduced in areas of compacted soils because the increased soil density inhibits root penetration. Also, the reduction of soil pore space in the root zone restricts the air and water available to roots.

Pasture management includes proper fertilization and liming according to laboratory tests. Strategic pasture rotation, deferred grazing, adequate water supplies for livestock, and the maintenance of the key forage species also are factors in pasture management. Key forage species include birdsfoot trefoil and bromegrass on medium textured, moderately well drained soils; alfalfa, red clover, bromegrass, and orchardgrass on medium textured, well drained soils; and birdsfoot trefoil and reed canarygrass on wet soils. Alfalfa grows best in soils that are near neutral, such as Onaway and Emmet soils. For legumes in all pasture mixes, the proper type and quantity of inoculant should be applied at planting so that the nitrogen-forming bacteria can form root nodules.

Yields per Acre

The average yields per acre that can be expected of the principal crops under a high level of management are shown in table 5. In any given year, yields may be higher or lower than those indicated in the table because of variations in rainfall and other climatic factors. The land capability classification of map units in the survey area also is shown in the table.

The yields are based mainly on the experience and records of farmers, conservationists, and extension agents. Available yield data from nearby counties and results of field trials and demonstrations also are considered.

The management needed to obtain the indicated yields of the various crops depends on the kind of soil and the crop. Management can include drainage, erosion control, and protection from flooding; the proper planting and seeding rates; suitable high-yielding crop varieties; appropriate and timely tillage; control of weeds, plant diseases, and harmful insects; favorable soil reaction and optimum levels of nitrogen, phosphorus, potassium, and trace elements for each crop; effective use of crop residue, barnyard manure, and green manure crops; and harvesting that ensures the smallest possible loss.

The estimated yields reflect the productive capacity of each soil for each of the principal crops. Yields are likely to increase as new production technology is developed. The productivity of a given soil compared with that of other soils, however, is not likely to change.

Crops other than those shown in table 5 are grown in the survey area, but estimated yields are not listed because the acreage of such crops is small. The local office of the Natural Resources Conservation Service or the Cooperative Extension Service can provide information about the management and productivity of the soils for those crops.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive landforming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for woodland or for engineering purposes.

In the capability system, soils are generally grouped at three levels-capability class, subclass, and unit (USDA, 1961). Only class and subclass are used in this survey.

Capability classes, the broadest groups, are designated by the numbers 1 through
8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

Class 1 soils have slight limitations that restrict their use.
Class 2 soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.

Class 3 soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.

Class 4 soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.

Class 5 soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, rangeland, woodland, or wildlife habitat.

Class 6 soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, rangeland, woodland, or wildlife habitat.

Class 7 soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, woodland, or wildlife habitat.

Class 8 soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, rangeland, woodland, or wildlife habitat.

The acreage of soils in each capability class and subclass is shown in table 6. The capability classification of map units in this survey area is given in the yields table. It is also given under the heading "Interpretive Groups."

Also under the heading "Interpretive Groups," the Michigan soil management group is listed. The soils in each map unit are assigned to a group according to the dominant texture, the drainage class, and the major management concerns (Mokma and others, 1978). More detailed information about these groups is available from the local office of the Michigan State University Cooperative Extension Service.

Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

About 66,525 acres in the survey area, or nearly 6 percent of the total acreage, meets the soil requirements for prime farmland. Most of the prime farmland is in the southern part of the county and is used as woodland.

The map units in the survey area that are considered prime farmland are listed in table 7. This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4. The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading "Detailed Soil Map Units."

Woodland Management and Productivity

This section describes the major concerns associated with the use and management of woodland. It also provides information about the major forest habitat types and their relationship to the different kinds of soils in the survey area.

Woodland makes up about 967,000 acres in the survey area, or about 83 percent of the total acreage. Federal and State agencies control about 235,000 acres. Forest industry companies and other corporations own and manage about 433,500 acres of privately owned woodland in the county. Private, nonindustrial woodland accounts for about 257,200 acres.

Woodland is the dominant land use on most of the soils in the county. Upland soils dominantly support northern hardwoods, consisting of sugar maple, red maple, basswood, yellow birch, and hemlock. Black cherry, balsam fir, and white spruce also are in some stands. Young, even-aged stands are mostly aspen-birch. Large areas support aspen or mixed northern hardwoods and aspen. Stands on the wetter soils are predominantly red maple, quaking aspen, black ash, paper birch, and balsam fir. Jack pine, red pine, and white pine are common on sandy soils. Large areas of recently cut and/or burned woodland support aspen, aspen-birch, mixed northern hardwoods and aspen, or jack pine on sandy soils. Stands on the wetter upland soils are dominantly red maple, quaking aspen, paper birch, white spruce, and balsam fir.

Wooded swamps support mostly balsam fir, black spruce, northern whitecedar, and tamarack. Red maple, quaking aspen, paper birch, and black ash are in some stands.

Composition of woodland by forest type in 1980 was 8 percent pine, 25 percent spruce-fir and other conifers, 4 percent elm-ash and other lowland hardwoods, 44 percent maple-basswood-birch and other upland hardwoods, 18 percent aspen-birch, and 0.5 percent nonstocked areas. Composition of woodland by stand size in 1980 was 38 percent sawtimber, 45 percent poletimber, 17 percent sapling and seedling stands, and 0.5 percent nonstocked areas.

The total area of standing commercial forest is about 66 percent hardwoods and 33 percent softwoods. The net volume of growing stock on commercial forest land is about 63 percent hardwoods and 37 percent softwoods. About 22 percent of the volume of growing stock in an eight-county area of the western Upper Peninsula is in Marquette County.

In 1980, growing stock had a volume of 1,264,465,000 cubic feet, an annual growth of $43,818,000$ cubic feet, and an annual removal of $16,525,000$ cubic feet. Sawtimber had a volume of $3,406,308,000$ board feet, an annual growth of 151,347,000 board feet, and an annual removal of $50,123,000$ board feet.

The forest products industry is an important employer in Marquette County. The harvest, transportation, and processing of wood are important parts of the economy. Productive soils, a good transportation system, proximity to wood-processing industries, and a large volume of growing stock ensure the future economic potential for the forest products industry in Marquette County.

Pulpwood and sawlogs used for lumber are the major wood products in the county (fig. 16). Some logs for veneer also are harvested. The majority of the wood harvested is transported outside the county for processing at paper mills, sawmills, veneer plants, and furniture factories. There are several small sawmills in the county that process sawlogs for lumber. Portable sawmills are occasionally used to process logs into lumber at the logging site. A few local small businesses manufacture furniture from higher grade lumber. Other important woodland products are firewood, poles and posts, and maple syrup. Minor woodland products produced in the county include Christmas trees, pallets, stakes, signs, and wood paneling.

Soil erosion can occur as a result of site preparation and cutting if the soil is exposed along logging roads. Burned areas also are susceptible to erosion. Soil erosion is generally a hazard on woodland if the slope is 15 percent or more. About 285,000 acres of woodland soils in the survey area are susceptible to erosion, including some of the Onaway, Frohling, and Schweitzer soils. Building logging roads and skid roads on the contour can help to control erosion.

Soil wetness is the result of a high water table, flooding, or ponding. Soil wetness causes seedling mortality, limits the use of equipment, increases the extent of

Figure 16.-Wood harvesting for pulpwood is the major land use in Marquette County.
undesirable plants following harvest, and increases the windthrow hazard by restricting the rooting depth of some trees.

Soils that have a perched water table make up approximately 92,000 acres in the survey area, or about 8 percent of the total acreage. They include the moderately well drained Munising, Paavola, and Gogebic soils and the somewhat poorly drained Skanee and Net soils. Ruts form easily if wheeled skidders are used when these soils are wet (fig. 17). Deep ruts tend to restrict lateral drainage, damage tree roots, and alter soil structure. Deep rutting can result in a change in species composition and can reduce yields. Soil wetness also is a problem on about 229,000 acres of poorly drained or very poorly drained soils in forested areas. Examples are Gay, Ensley, and Carbondale soils. In areas where wetness is a concern, equipment should be used only during dry periods or when the ground is frozen or has adequate snow cover.

Soil droughtiness can cause seedling mortality. Steep south- and west-facing slopes may be especially droughty because of high temperatures and evaporation. Droughtiness is a problem on about 125,000 acres of forested soils, such as Grayling, Kalkaska, and Rubicon soils. Slopes are steep on about 6 percent of this acreage. Planting when the soils are moist can help to minimize seedling mortality. Seedling survival during dry seasons can be improved by planting large, vigorous nursery stock if natural regeneration is undesirable or insufficient. Special site preparation, such as furrowing to conserve moisture, may also be needed. It may be necessary to use containerized planting stock on very dry sites.

Slope, stoniness, and rock outcrops can limit the use of forestry equipment. About 250,000 acres in the survey area has slopes of 15 percent or more. The slope limits

Figure 17.-Wetness and stones and boulders on the surface are characteristic of many of the soils in the survey area.
the use of equipment in logging areas and on skid roads and logging roads. Building logging roads and skid roads on the contour can help to overcome this limitation. On very steep slopes, track type harvesting equipment cannot be operated safely. Special systems are needed. The slope also affects the selection of sites for landings and loghandling areas. Level to undulating areas are the best sites. Stones, rock outcrops, and a shallow depth to bedrock not only restrict the use of equipment but also hinder the construction of logging roads. Stoniness is a problem on about 306,000 acres of forest land in the survey area, and rock outcrop is a problem on about 150,000 acres. Soils that have bedrock within a depth of 20 inches make up about 25,000 acres. Careful planning of proposed logging roads is needed to overcome these limitations.

Soil productivity is high on a large majority of the woodland in the survey area. The soils with a high moisture content may have an abundance of undesirable plants when openings are made in the tree canopy. The resulting competition from undesirable plants may suppress or prevent natural or planted regeneration of the more desirable species. Competing vegetation can be controlled by application of suitable herbicides, by mechanical removal, or by use of a proper harvesting method.

Table 8 can help woodland owners or forest managers plan the use of soils for wood crops. Only those soils suitable for wood crops are listed. The table lists the ordination symbol for each soil. Soils assigned the same ordination symbol require the same general management and have about the same potential productivity.

The first part of the ordination symbol, a number, indicates the potential productivity of the soils for an indicator tree species. The number indicates the volume, in cubic
meters per hectare per year, which the indicator species can produce in a pure stand under natural conditions. The number 1 indicates low potential productivity; 2 or 3, moderate; 4 or 5, moderately high; 6 to 8, high; 9 to 11, very high; and 12 to 39, extremely high. The second part of the symbol, a letter, indicates the major kind of soil limitation. The letter R indicates steep slopes; X, stoniness or rockiness; W, excess water in or on the soil; T, toxic substances in the soil; D, restricted rooting depth; C, clay in the upper part of the soil; S, sandy texture; F, a high content of rock fragments in the soil; L, low strength in the spring thaw period and during periods of high rainfall; and N, snowpack. The letter A indicates that limitations or restrictions are insignificant. If a soil has more than one limitation, the priority is as follows: $R, X, W, T, D, C, S, F, L$, and N .

In table 8, slight, moderate, and severe indicate the degree of the major soil limitations to be considered in management.

Erosion hazard is the probability that damage will occur as a result of site preparation and cutting where the soil is exposed along roads, skid trails, and fire lanes and in log-handling areas. Forests that have been burned or overgrazed also are subject to erosion. Ratings of the erosion hazard are based on the percent of the slope. A rating of slight indicates that no particular prevention measures are needed under ordinary conditions. A rating of moderate indicates that erosion-control measures are needed in certain silvicultural activities. A rating of severe indicates that special precautions are needed to control erosion in most silvicultural activities.

Equipment limitation reflects the characteristics and conditions of the soil that restrict use of the equipment generally needed in woodland management or harvesting. The chief characteristics and conditions considered in the ratings are slope, stones on the surface, rock outcrops, soil wetness, and texture of the surface layer. A rating of slight indicates that under normal conditions the kind of equipment and season of use are not significantly restricted by soil factors. Soil wetness can restrict equipment use, but the wet period does not exceed 1 month. A rating of moderate indicates that equipment use is moderately restricted because of one or more soil factors. If the soil is wet, the wetness restricts equipment use for a period of 1 to 3 months. A rating of severe indicates that equipment use is severely restricted either as to the kind of equipment that can be used or the season of use. If the soil is wet, the wetness restricts equipment use for more than 3 months.

Seedling mortality refers to the death of naturally occurring or planted tree seedlings, as influenced by the kinds of soil, soil wetness, or topographic conditions. The factors used in rating the soils for seedling mortality are texture of the surface layer, depth to a seasonal high water table and the length of the period when the water table is high, rock fragments in the surface layer, effective rooting depth, and slope aspect. A rating of slight indicates that seedling mortality is not likely to be a problem under normal conditions. Expected mortality is less than 25 percent. A rating of moderate indicates that some problems from seedling mortality can be expected. Extra precautions are advisable. Expected mortality is 25 to 50 percent. A rating of severe indicates that seedling mortality is a serious problem. Extra precautions are important. Replanting may be necessary. Expected mortality is more than 50 percent.

Windthrow hazard is the likelihood that trees will be uprooted by the wind because the soil is not deep enough for adequate root anchorage. The main restrictions that affect rooting are a seasonal high water table and the depth to bedrock, a fragipan, or other limiting layers (fig. 18). A rating of slight indicates that under normal conditions no trees are blown down by the wind. Strong winds may damage trees, but they do not uproot them. A rating of moderate indicates that some trees can be blown down during periods when the soil is wet and winds are moderate or strong. A rating of severe indicates that many trees can be blown down during these periods.

Plant competition ratings indicate the degree to which undesirable species are expected to invade and grow when openings are made in the tree canopy. The main

Figure 18.-Wetness and a restricted depth to bedrock can contribute to the windthrow hazard. Pictured is an area of Sundell loam, 0 to 3 percent slopes.
factors that affect plant competition are depth to the water table and the available water capacity. A rating of slight indicates that competition from undesirable plants is not likely to prevent natural regeneration or suppress the more desirable species. Planted seedlings can become established without undue competition. A rating of moderate indicates that competition may delay the establishment of desirable species. Competition may hamper stand development, but it will not prevent the eventual development of fully stocked stands. A rating of severe indicates that competition can be expected to prevent regeneration unless precautionary measures are applied.

The potential productivity of merchantable or common trees on a soil is expressed as a site index and as a volume number. The site index is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that woodland managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability.

The volume, a number, is the yield likely to be produced by the most important trees. This number, expressed as cubic feet per acre per year, indicates the amount of fiber produced in a fully stocked, even-aged, unmanaged stand. The volume was determined using standard yield tables (USDA/NRCS, National Forestry Manual).

The species that is followed by an asterisk under common trees is the indicator species for that soil. It generally is the most common species on the soil and is the one that determines the ordination class.

Trees to manage are those that are suitable for commercial wood production. Table 9 can be used by woodland owners or forest managers in planning the use of soils for wood crops. This table provides information about operating harvesting or thinning equipment in logging areas and on skid roads, log landings, and haul roads. Limitations are given for the most limiting season and for the preferred operating season. The most limiting season in this survey area generally is spring or late fall. In some areas, however, it is during dry periods in summer, when loose sand can limit trafficability on deep, well drained, sandy soils. The preferred operating season is the period when harvesting or thinning causes the least amount of soil damage. This period generally is when the soil is not too wet or when the ground is frozen or partly frozen or has adequate snow cover.

In the table, a rating of slight indicates that the use of conventional logging equipment is not restricted if normal logging methods are used. A rating of moderate indicates that the use of equipment is restricted because of one or more soil factors. If wetness is a limitation, high flotation equipment or special procedures may be needed to prevent the formation of ruts. A rating of severe indicates that the kind of equipment that can be used is seriously restricted.

Logging areas and skid roads include areas where some or all of the trees are being cut. Generally, equipment traffic is least intensive in the logging areas. Skid roads, which generally are within the logging area, are roads or trails over which the logs are dragged or hauled from the stump to a log landing.

Log landings are areas where logs are assembled for transportation. Wheeled equipment may be used more frequently in these areas than in any other areas affected by logging.

Haul roads are access roads leading from primary or surfaced roads to the logging areas. The roads serve as transportation routes for wheeled logging equipment and logging trucks. Generally, they are unpaved roads. Some are graveled.

Forest Habitat Types

The information in this section is derived from a field guide developed for the Upper Peninsula of Michigan and for northeast Wisconsin (Coffman and others, 1980). The system of habitat classification used in the guide is based on the concept that plants occur in predictable patterns or communities and that these communities reflect differences in site characteristics.

Besides identifying the various habitat types by means of vegetative keys, the guide also provides information about the different possible successional stages for most of the habitat types. The successional stages depend largely on how the forest has been disturbed. They include the succession after logging in the original climax stands, the succession after logging in second-growth stands, and the succession in stands that have been both logged and burned.

The guide gives the suggested forest management for each of the successional stages. This management includes methods of thinning and harvest, site preparation, and measures that improve regeneration of the stands. The potential productivity in terms of a site index and mean annual volume, in cubic feet per acre per year, is given for most of the habitat types. The development of the descriptive or interpretive information for some of the habitat types, however, is based on limited data and thus should be used with caution.

Habitat types have been determined for each map unit in the survey area, with the exception of miscellaneous areas, such as borrow pits. The primary habitat type is the one that is most common on the map unit. The secondary habitat type is less common. Habitat types are listed in table 10 and in the "Interpretive Groups" section.

The following paragraphs describe the habitat types in the survey area. They provide information about the potential climax species, some of the common understory species, and, if known, the potential productivity of the habitat type.

AOC-Acer-Osmorhiza-Caulophyllum habitat type. This habitat type has a potential climax overstory dominated by sugar maple. Other species include eastern hemlock and American basswood. American elm, white ash, and hophornbeam are in some areas. The dominant ground flora include spinulose shield fern, blue cohosh, sweet cicely, lady fern, smooth yellow violet, Canada white violet, and downy yellow violet. The potential productivity for northern hardwoods is high.

AQVac-Acer-Quercus-Vaccinium habitat type. This habitat type has a potential climax overstory dominated by red maple and northern red oak. Other species include eastern hemlock, eastern white pine, balsam fir, and white spruce. The dominant ground flora includes lowbush blueberry, Canada blueberry, bracken fern, wintergreen, bigleaf aster, and beaked hazelnut. The potential productivity is moderately low for northern hardwoods, moderate for aspen, and moderately high for red pine and jack pine.

ATD—Acer-Tsuga-Dryopteris habitat type. This habitat type has a potential climax overstory dominated by sugar maple. Other species include eastern hemlock and American basswood. Yellow birch, red maple, and American elm are in some areas. The dominant ground flora includes spinulose shield fern, rosy twistedstalk, hairy Solomon's seal, red elderberry, and wild lily-of-the-valley. The potential productivity is moderately high for northern hardwoods and high for aspen. The potential productivity for red pine plantations is high if plant competition is controlled.

ATD-CI—Acer-Tsuga-Dryopteris habitat type, Circaea-Impatiens phase. This habitat type has a potential climax overstory dominated by sugar maple. Other species include eastern hemlock and American basswood. Yellow birch, red maple, and American elm are in some areas. The dominant ground flora includes spinulose shield fern, rosy twistedstalk, hairy Solomon's seal, red elderberry, wild lily-of-the-valley, jewelweed, and dwarf enchanter's nightshade. The potential productivity is moderately high for northern hardwoods and high for aspen. The potential productivity for red pine plantations is high if plant competition is controlled.

ATD-D—Acer-Tsuga-Dryopteris habitat type, Dryopteris phase. This habitat type has a potential climax overstory dominated by sugar maple. Other species include eastern hemlock and American basswood. Yellow birch, red maple, and American elm are in some areas. The dominant ground flora includes spinulose shield fern, rosy twistedstalk, hairy Solomon's seal, red elderberry, and wild lily-of-the-valley. The potential productivity is moderately high for northern hardwoods and high for aspen. The potential productivity for red pine plantations is high if plant competition is controlled.

AVO-Acer-Viola-Osmorhiza habitat type. This habitat type has a potential climax overstory dominated by sugar maple. Other species include American basswood, white ash, yellow birch, hophornbeam, eastern hemlock, and American elm. The dominant ground flora includes Canada white violet, downy yellow violet, smooth yellow violet, sweet cicely, spinulose shield fern, lady fern, hairy Solomon's seal, and rosy twistedstalk. The potential productivity is high for northern hardwoods and aspen. It also is high for red pine plantations if plant competition is controlled.

AVO-A-Acer-Viola-Osmorhiza habitat type, Adiantum phase. This habitat type has a potential climax overstory dominated by sugar maple. Other species include American basswood, white ash, yellow birch, hophornbeam, eastern hemlock, and American elm. The dominant ground flora includes Canada white violet, downy yellow violet, smooth yellow violet, sweet cicely, spinulose shield fern, wild leek, maidenhair fern, lady fern, Solomon's seal, and rosy twistedstalk. The potential productivity is high for northern hardwoods and aspen. It also is high for red pine plantations if plant competition is controlled.

AVO-CI—Acer-Viola-Osmorhiza habitat type, Circaea-Impatiens phase. This habitat type has a potential climax overstory dominated by sugar maple. Other species include American basswood, white ash, yellow birch, hophornbeam, eastern hemlock, and American elm. The dominant ground flora includes Canada white violet, downy yellow violet, smooth yellow violet, sweet cicely, spinulose shield fern, lady fern, hairy Solomon's seal, rosy twistedstalk, jewelweed, and dwarf enchanter's nightshade. The potential productivity is high for northern hardwoods and aspen. It also is high for red pine plantations if plant competition is controlled.

FI-Fraxinus-Impatiens habitat type. This habitat type has a potential climax overstory dominated by white ash and red maple. Other species include sugar maple, black ash, and balsam fir. The dominant ground flora includes jewelweed, sedges, dwarf enchanter's nightshade, spinulose shield fern, lady fern, red elderberry, and field mint. The potential productivity for northern hardwoods is moderate.

FMC-Fraxinus-Mentha-Carex habitat type. This habitat type has a potential climax overstory dominated by black ash and American elm. Other species include red maple and balsam fir. The dominant ground flora includes sedges, field mint, speckled alder, and jewelweed.

FMC-C-Fraxinus-Mentha-Carex habitat type, Carex phase. This habitat type has a potential climax overstory dominated by black ash and American elm. Other species include balsam fir and red maple. The dominant ground flora includes sedges, field mint, speckled alder, and jewelweed. This phase is mostly limited to active flood plains where trees generally do not grow.

PCS—Picea-Chamaedaphne-Sphagnum habitat type. This habitat type has a potential climax overstory dominated by black spruce. Other species include tamarack and northern whitecedar. The dominant ground flora includes leatherleaf, bog rosemary, pale laurel, sphagnum mosses, Labrador tea, sedges, and Canada blueberry.

PO-Picea-Osmunda habitat type. This habitat type has a potential climax overstory dominated by black spruce and northern whitecedar. Other species include eastern hemlock and white pine. The dominant ground flora includes cinnamon fern, sphagnum mosses, sedges, marsh marigold, and goldthread.

PVC-Pinus-Vaccinium-Carex habitat type. This habitat type has a potential climax overstory dominated by jack pine. Other species include red pine, black spruce, and white pine. The dominant ground flora includes sedges, low sweet blueberry, sweetfern, mountain juneberry, wild lily-of-the-valley, and spinulose shield fern. Potential productivity is moderate for jack pine.

PVD—Pinus-Vaccinium-Deschampsia habitat type. This habitat type has a potential climax overstory dominated by jack pine. Other species include red pine and white pine. The dominant ground flora includes hairgrass, sedges, reindeer moss, blue cladonia, sweetfern, low sweet blueberry, bracken fern, and trailing arbutus. The potential productivity is moderately low for red pine and moderate for jack pine.

QAE-Quercus-Acer-Epigaea habitat type. This habitat type has a potential climax overstory dominated by red oak and red maple. Other species are white spruce and eastern white pine. The dominant ground flora includes bracken fern, trailing arbutus, wintergreen, lowbush blueberry, mosses, and Canada blueberry. The potential productivity is moderately low for aspen and moderate for red pine and jack pine.

TM-Tsuga-Maianthemum habitat type. This habitat type has a potential climax overstory dominated by eastern hemlock, sugar maple, and red maple. Other species include yellow birch, white spruce, balsam fir, eastern white pine, northern red oak, northern whitecedar, and American basswood. The dominant ground flora includes wild lily-of-the-valley, bracken fern, sedges, American starflower, and wild sarsaparilla. The potential productivity is moderate for northern hardwoods, moderately high for aspen, and high for red pine and jack pine.

TMC-Tsuga-Maianthemum-Coptis habitat type. This habitat type has a potential climax overstory dominated by eastern hemlock and red maple. Sugar maple and yellow birch are common. Other species include balsam fir, white spruce, and northern whitecedar. The dominant ground flora includes wild lily-of-the-valley, goldthread, yellow beadlily, bunchberry, American starflower, and spinulose shield fern. The potential productivity is moderate for northern hardwoods and aspen.

TMC-D-Tsuga-Maianthemum-Coptis habitat type, Dryopteris phase. This habitat type has a potential climax overstory dominated by eastern hemlock and red maple. Sugar maple and yellow birch are common. Other species include balsam fir, white spruce, and northern whitecedar. The dominant ground flora includes wild lily-of-the-valley, goldthread, yellow beadlily, bunchberry, American starflower, spinulose shield fern, longbeech fern, oak fern, and hairy Solomon's seal. The potential productivity is moderate for northern hardwoods and aspen.

TMC-V-Tsuga-Maianthemum-Coptis habitat type, Vaccinium phase. This habitat type has a potential climax overstory dominated by eastern hemlock and red maple. Sugar maple and yellow birch are common. Other species include balsam fir, white spruce, and northern whitecedar. The dominant ground flora includes wild lily-of-the-valley, goldthread, yellow beadlily, bunchberry, American starflower, Canada blueberry, lowbush blueberry, and spinulose shield fern. The potential productivity is moderate for northern hardwoods and aspen.

TMV-Tsuga-Maianthemum-Vaccinium habitat type. This habitat type has a potential climax overstory dominated by eastern hemlock and red maple. Other species include sugar maple, eastern white pine, balsam fir, white spruce, and northern red oak. The dominant ground flora includes Canada blueberry, wild sarsaparilla, bracken fern, wild lily-of-the-valley, lowbush blueberry, yellow beadlily, and wood betony. The potential productivity is moderate for northern hardwoods, moderately high for aspen, and high for red pine and jack pine.

TTM-Tsuga-Thuja-Mitella habitat type. This habitat type has a potential climax overstory dominated by northern whitecedar. Other species include balsam fir and red maple. The dominant ground flora includes naked miterwort, sedges, wild lily-of-thevalley, American starflower, twinflower, and bunchberry.

TTP—Tsuga-Thuja-Petasites habitat type. This habitat type has a potential climax overstory dominated by eastern hemlock and northern whitecedar. Other species include balsam fir, red maple, and sugar maple. The dominant ground flora includes sweet coltsfoot, bigleaf aster, sedges, barren strawberry, northern dewberry, bunchberry, wild sarsaparilla, and black snakeroot. The potential productivity is moderately low for aspen.

TTS—Tsuga-Thuja-Sphagnum habitat type. This habitat type has a potential climax overstory dominated by eastern hemlock and northern whitecedar. Other species include balsam fir, black spruce, and red maple. The dominant ground flora includes sphagnum mosses, goldthread, bunchberry, sedges, wild lily-of-the-valley, American starflower, and wood sorrel.

Recreation

The soils of the survey area are rated in table 11 according to limitations that affect their suitability for recreation. The ratings are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the
season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

In table 11, the degree of soil limitation is expressed as slight, moderate, or severe. Slight means that soil properties are generally favorable and that limitations are minor and easily overcome. Moderate means that limitations can be overcome or alleviated by planning, design, or special maintenance. Severe means that soil properties are unfavorable and that limitations can be offset only by costly soil reclamation, special design, intensive maintenance, limited use, or a combination of these.

The information in table 11 can be supplemented by other information in this survey, for example, interpretations for septic tank absorption fields, dwellings without basements, and local roads and streets.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The best soils have mild slopes and are not wet or subject to flooding during the period of use. The surface has few or no stones or boulders, absorbs rainfall readily but remains firm, and is not dusty when dry. Strong slopes and stones or boulders can greatly increase the cost of constructing campsites.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The best soils for picnic areas are firm when wet, are not dusty when dry, are not subject to flooding during the period of use, and do not have slopes or stones or boulders that increase the cost of shaping sites or of building access roads and parking areas.

Playgrounds require soils that can withstand intensive foot traffic. The best soils are almost level and are not wet or subject to flooding during the season of use. The surface is free of stones and boulders, is firm after rains, and is not dusty when dry. If grading is needed, the depth of the soil over bedrock or a hardpan should be considered.

Paths and trails for hiking and horseback riding should require little or no cutting and filling. The best soils are not wet, are firm after rains, are not dusty when dry, and are not subject to flooding more than once a year during the period of use. They have moderate slopes and few or no stones or boulders on the surface.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. The best soils for use as golf fairways are firm when wet, are not dusty when dry, and are not subject to prolonged flooding during the period of use. They have moderate slopes and no stones or boulders on the surface. The suitability of the soil for tees or greens is not considered in rating the soils.

Wildlife Habitat

This section was prepared by Lynn Sampson, biologist, Natural Resources Conservation Service.
Wildlife is a product of the land and depends upon the complex relationships of soil, water, and vegetation for its needs. Wildlife populations are in balance with essential habitat containing food, cover, and water. The habitat for wildlife in Marquette County is diverse and ranges from heavily wooded areas to open farmland. Marquette County has many streams, inland lakes, and diverse wetlands, all of which support many species of fish and other wildlife.

Before permanent settlement, such wildlife species as black bear, elk, moose, timber wolf, bobcat, lynx, fisher, pine marten, and mountain lion inhabited the survey area.

After logging and agricultural development occurred in the late 1800s, the species in the area were those adapted to second-growth forest, brushy edges, and agricultural areas. Populations of white-tailed deer, red fox, snowshoe hare, and raccoons increased.

The wooded areas in the county provide important habitat for white-tailed deer, ruffed grouse, and snowshoe hare. These areas also provide food and cover for black bear, raccoons, skunks, tree squirrels, thrushes, woodpeckers, and mice. Young stands of jack pine provide important nesting areas and brooding habitat for the Kirtland's warbler.

Woodchucks, white-tailed deer, red fox, gray fox, coyote, hawks, owls, and numerous songbirds inhabit the farmed areas and associated idle areas of grass and brush.

The wooded streams and diverse wetlands provide habitat for birds and mammals, such as blue herons, sandhill cranes, the common loon, Canadian geese, bald eagles, belted kingfishers, woodcock, marsh hawks, muskrats, otter, weasel, beaver, and mink. Various reptiles and amphibians also occur, including the snapping turtle, painted turtle, common toad, leopard frog, spring peeper, and spotted salamander. The streams and lakes support good populations of brook trout, sunfish, perch, largemouth bass, smallmouth bass, walleye, and northern pike. The rivers and streams are popular among fishermen for trout, salmon, smelt, and steelhead.

The plant and animal communities of Marquette County include many species recognized as rare, threatened, or endangered by the State of Michigan. Included are the common loon, bald eagle, peregrine falcon, Caspian tern, Kirtland's warbler, dwarf bilberry, small blue-eyed Mary, calypso, northern oak fern, narrow-leafed gentian, lake cress, round-leaved orchis, pearlwort, pine-drops, fragile prickly pear, northern reedgrass, Canada rice-grass, moor rush, big-leaf sandwort, black sedge, green spleenwort, Lake Huron tansy, blunt-lobed woodsia, northern woodsia, and Farwell's watermilfoil.

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments. The kind and abundance of wildlife depend largely on the amount and distribution of food, cover, and water. Wildlife habitat can be created or improved by planting appropriate vegetation, by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants.

In table 12, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning parks, wildlife refuges, nature study areas, and other developments for wildlife; in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.

The potential of the soil is rated good, fair, poor, or very poor. A rating of good indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of fair indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of poor indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of very poor indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.
Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the root zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of grain and seed crops are corn, wheat, oats, rye, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flooding, and slope. Soil temperature and soil moisture also are considerations. Examples of grasses and legumes are fescue, bromegrass, clover, and alfalfa.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of wild herbaceous plants are bunchberry, jewelweed, sedges, asters, and goldthread.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the root zone, available water capacity, and wetness. Examples of these plants are oak, aspen, cherry, apple, dogwood, blackberry, and blueberry. Examples of fruit-producing shrubs that are suitable for planting on soils rated good are Siberian crabapple, American cranberrybush, and silky dogwood.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the root zone, available water capacity, and wetness. Examples of coniferous plants are pine, spruce, fir, and cedar.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweed, wild millet, wildrice, cattails, arrowhead, rushes, sedges, and reeds.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability. Examples of shallow water areas are marshes, waterfowl feeding areas, and ponds.

The habitat for various kinds of wildlife is described in the following paragraphs.
Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, shrubs, and vines. These areas produce grain and seed crops, grasses and legumes, and wild herbaceous plants. Wildlife attracted to these areas include woodchuck, bluebirds, coyote, field sparrow, and red fox.

Habitat for woodland wildlife consists of areas of deciduous and/or coniferous plants and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas include hawks, ruffed grouse, woodcock, thrushes, woodpeckers, squirrels, gray fox, raccoon, deer, and bear.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are ducks, geese, herons, shore birds, muskrat, mink, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the estimated data and test data in the "Soil Properties" section.

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil within a depth of 5 or 6 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about grain-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 or 6 feet of the surface, soil wetness, depth to a seasonal high water table, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.

Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Building Site Development

Table 13 shows the degree and kind of soil limitations that affect shallow excavations, dwellings with and without basements, small commercial buildings, local roads and streets, and lawns and landscaping. The limitations are considered slight if soil properties and site features are generally favorable for the indicated use and limitations are minor and easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increases in construction costs, and possibly increased maintenance are required. Special feasibility studies may be required where the soil limitations are severe.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for basements, graves, utility lines, open ditches, or other purposes. The ratings are based on soil properties, site features, and observed performance of the soils. The ease of digging, filling, and compacting is affected by the depth to bedrock, a
cemented pan, or a very firm dense layer; stone content; soil texture; and slope. The time of the year that excavations can be made is affected by the depth to a seasonal high water table and the susceptibility of the soil to flooding. The resistance of the excavation walls or banks to sloughing or caving is affected by soil texture and depth to the water table.

Dwellings and small commercial buildings are structures built on shallow foundations on undisturbed soil. The load limit is the same as that for single-family dwellings no higher than three stories. Ratings are made for small commercial buildings without basements, for dwellings with basements, and for dwellings without basements. The ratings are based on soil properties, site features, and observed performance of the soils. A high water table, flooding, shrinking and swelling, and organic layers can cause the movement of footings. A high water table, depth to bedrock or to a cemented pan, large stones, slope, and flooding affect the ease of excavation and construction. Landscaping and grading that require cuts and fills of more than 5 or 6 feet are not considered.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or stabilized soil material; and a flexible or rigid surface. Cuts and fills are generally limited to less than 6 feet. The ratings are based on soil properties, site features, and observed performance of the soils. Depth to bedrock or to a cemented pan, a high water table, flooding, large stones, and slope affect the ease of excavating and grading. Soil strength (as inferred from the engineering classification of the soil), shrink-swell potential, frost action potential, and depth to a high water table affect the traffic-supporting capacity.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. The ratings are based on soil properties, site features, and observed performance of the soils. Soil reaction, a high water table, depth to bedrock or to a cemented pan, the available water capacity in the upper 40 inches, and the content of salts, sodium, and sulfidic materials affect plant growth. Flooding, wetness, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer affect trafficability after vegetation is established.

Sanitary Facilities

Table 14 shows the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, and sanitary landfills. The limitations are considered slight if soil properties and site features are generally favorable for the indicated use and limitations are minor and easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increases in construction costs, and possibly increased maintenance are required.

The table also shows the suitability of the soils for use as daily cover for landfill. A rating of good indicates that soil properties and site features are favorable for the use and good performance and low maintenance can be expected; fair indicates that soil properties and site features are moderately favorable for the use and one or more soil properties or site features make the soil less desirable than the soils rated good; and poor indicates that one or more soil properties or site features are unfavorable for the use and overcoming the unfavorable properties requires special design, extra maintenance, or costly alteration.

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 72 inches is evaluated. The ratings are based on soil
properties, site features, and observed performance of the soils. Permeability, a high water table, depth to bedrock or to a cemented pan, and flooding affect absorption of the effluent. Large stones and bedrock or a cemented pan interfere with installation.

Unsatisfactory performance of septic tank absorption fields, including excessively slow absorption of effluent, surfacing of effluent, and hillside seepage, can affect public health. Ground water can be polluted if highly permeable sand and gravel or fractured bedrock is less than 4 feet below the base of the absorption field, if slope is excessive, or if the water table is near the surface. There must be unsaturated soil material beneath the absorption field to filter the effluent effectively. Many local ordinances require that this material be of a certain thickness.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Lagoons generally are designed to hold the sewage within a depth of 2 to 5 feet. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water.

The table gives ratings for the natural soil that makes up the lagoon floor. The surface layer and, generally, 1 or 2 feet of soil material below the surface layer are excavated to provide material for the embankments. The ratings are based on soil properties, site features, and observed performance of the soils. Considered in the ratings are slope, permeability, a high water table, depth to bedrock or to a cemented pan, flooding, large stones, and content of organic matter.

Excessive seepage resulting from rapid permeability in the soil or a water table that is high enough to raise the level of sewage in the lagoon causes a lagoon to function unsatisfactorily. Pollution results if seepage is excessive or if floodwater overtops the lagoon. A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor.

Sanitary landfills are areas where solid waste is disposed of by burying it in soil. There are two types of landfill-trench and area. In a trench landfill, the waste is placed in a trench. It is spread, compacted, and covered daily with a thin layer of soil excavated at the site. In an area landfill, the waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site.

Both types of landfill must be able to bear heavy vehicular traffic. Both types involve a risk of ground-water pollution. Ease of excavation and revegetation should be considered.

The ratings in the table are based on soil properties, site features, and observed performance of the soils. Permeability, depth to bedrock or to a cemented pan, a high water table, slope, and flooding affect both types of landfill. Texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium affect trench landfills. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, a limitation rated slight or moderate may not be valid. Onsite investigation is needed.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste.

Soil texture, wetness, rock fragments, and slope affect the ease of removing and spreading the material during wet and dry periods. Loamy or silty soils that are free of large stones or excess gravel are the best cover for a landfill. Clayey soils are sticky or cloddy and are difficult to spread; sandy soils are subject to wind erosion.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit
revegetation. The soil material used as the final cover for a landfill should be suitable for plants. The surface layer generally has the best workability, more organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

Construction Materials

Table 15 gives information about the soils as a source of roadfill, sand, gravel, and topsoil. The soils are rated good, fair, or poor as a source of roadfill and topsoil. They are rated as a probable or improbable source of sand and gravel. The ratings are based on soil properties and site features that affect the removal of the soil and its use as construction material. Normal compaction, minor processing, and other standard construction practices are assumed. Each soil is evaluated to a depth of 5 or 6 feet.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the soil material below the surface layer to a depth of 5 or 6 feet. It is assumed that soil layers will be mixed during excavation and spreading. Many soils have layers of contrasting suitability within their profile. The table showing engineering index properties provides detailed information about each soil layer. This information can help to determine the suitability of each layer for use as roadfill. The performance of soil after it is stabilized with lime or cement is not considered in the ratings.

The ratings are based on soil properties, site features, and observed performance of the soils. The thickness of suitable material is a major consideration. The ease of excavation is affected by large stones, a high water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its strength (as inferred from the engineering classification of the soil) and shrink-swell potential.

Soils rated good contain significant amounts of sand or gravel or both. They have at least 5 feet of suitable material, a low shrink-swell potential, few cobbles and stones, and slopes of 15 percent or less. Depth to the water table is more than 3 feet. Soils rated fair are more than 35 percent silt- and clay-sized particles and have a plasticity index of less than 10. They have a moderate shrink-swell potential, slopes of 15 to 25 percent, or many stones or have a water table at a depth of 1 to 3 feet. Soils rated poor have a plasticity index of more than 10, a high shrink-swell potential, many stones, or slopes of more than 25 percent; are wet; or have a water table at a depth of less than 1 foot. They may have layers of suitable material, but the material is less than 3 feet thick.

Sand and gravel are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 15, only the probability of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material.

The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the engineering classification of the soil), the thickness of suitable material, and the content of rock fragments. Kinds of rock, acidity, and stratification are given in the soil series descriptions. Gradation of grain sizes is given in the table on engineering index properties.

A soil rated as a probable source has a layer of clean sand or gravel or a layer of sand or gravel that is up to 12 percent silty fines. This material must be at least 3 feet thick and less than 50 percent, by weight, large stones. All other soils are rated as an
improbable source. Coarse fragments of soft bedrock, such as shale and siltstone, are not considered to be sand and gravel.

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area.

Plant growth is affected by toxic material and by such properties as soil reaction, available water capacity, and fertility. The ease of excavating, loading, and spreading is affected by rock fragments, slope, a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, a water table, rock fragments, bedrock, and toxic material.

Soils rated good have friable, loamy material to a depth of at least 40 inches. They are free of stones and cobbles, have little or no gravel, and have slopes of less than 8 percent. They are low in content of soluble salts, are naturally fertile or respond well to fertilizer, and are not so wet that excavation is difficult.

Soils rated fair are sandy soils, loamy soils that have a relatively high content of clay, soils that have only 20 to 40 inches of suitable material, soils that have an appreciable amount of gravel, stones, or soluble salts, or soils that have slopes of 8 to 15 percent. The soils are not so wet that excavation is difficult.

Soils rated poor are very sandy or clayey, have less than 20 inches of suitable material, have a large amount of gravel, stones, or soluble salts, have slopes of more than 15 percent, or have a seasonal high water table at or near the surface.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Water Management

Table 16 gives information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; and aquifer-fed excavated ponds. The limitations are considered slight if soil properties and site features are generally favorable for the indicated use and limitations are minor and are easily overcome; moderate if soil properties or site features are not favorable for the indicated use and special planning, design, or maintenance is needed to overcome or minimize the limitations; and severe if soil properties or site features are so unfavorable or so difficult to overcome that special design, significant increase in construction costs, and possibly increased maintenance are required.

This table also gives for each soil the restrictive features that affect drainage, irrigation, terraces and diversions, and grassed waterways.

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches. The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Drainage is the removal of excess surface and subsurface water from the soil. How easily and effectively the soil is drained depends on the depth to bedrock, to a cemented pan, or to other layers that affect the rate of water movement; permeability; depth to a high water table or depth of standing water if the soil is subject to ponding; slope; susceptibility to flooding; subsidence of organic layers; and the potential for frost action. Excavating and grading and the stability of ditchbanks are affected by depth to bedrock or to a cemented pan, large stones, slope, and the hazard of cutbanks caving. The productivity of the soil after drainage is adversely affected by extreme acidity or by toxic substances in the root zone, such as salts, sodium, and sulfur. Availability of drainage outlets is not considered in the ratings.

Irrigation is the controlled application of water to supplement rainfall and support plant growth. The design and management of an irrigation system are affected by depth to the water table, the need for drainage, flooding, available water capacity, intake rate, permeability, erosion hazard, and slope. The construction of a system is affected by large stones and depth to bedrock or to a cemented pan. The performance of a system is affected by the depth of the root zone, the amount of salts or sodium, and soil reaction.

Terraces and diversions are embankments or a combination of channels and ridges constructed across a slope to control erosion and conserve moisture by intercepting runoff. Slope, wetness, large stones, and depth to bedrock or to a cemented pan affect the construction of terraces and diversions. A restricted rooting depth, a severe hazard of wind erosion or water erosion, an excessively coarse texture, and restricted permeability adversely affect maintenance.

Grassed waterways are natural or constructed channels, generally broad and shallow, that conduct surface water to outlets at a nonerosive velocity. Large stones, wetness, slope, and depth to bedrock or to a cemented pan affect the construction of grassed waterways. A hazard of wind erosion, low available water capacity, restricted rooting depth, toxic substances such as salts and sodium, and restricted permeability adversely affect the growth and maintenance of the grass after construction.

Soil Properties

Data relating to soil properties are collected during the course of the soil survey. The data and the estimates of soil and water features, listed in tables, are explained on the following pages.

Soil properties are determined by field examination of the soils and by laboratory index testing of some benchmark soils. Established standard procedures are followed. During the survey, many shallow borings are made and examined to identify and classify the soils and to delineate them on the soil maps. Samples are taken from some typical profiles and tested in the laboratory to determine grain-size distribution, plasticity, and compaction characteristics.

Estimates of soil properties are based on field examinations, on laboratory tests of samples from the survey area, and on laboratory tests of samples of similar soils in nearby areas. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

The estimates of soil properties shown in the tables include the range of grain-size distribution and Atterberg limits, the engineering classification, and the physical and chemical properties of the major layers of each soil. Pertinent soil and water features also are given.

Engineering Index Properties

Table 17 gives estimates of the engineering classification and of the range of index properties for the major layers of each soil in the survey area. Most soils have layers of contrasting properties within the upper 5 or 6 feet.

Depth to the upper and lower boundaries of each layer is indicated. The range in depth and information on other properties of each layer are given for each soil series under the heading "Soil Series and Their Morphology."

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is as much as about 15 percent, an appropriate modifier is added, for example, "gravelly." Textural terms are defined in the Glossary.

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to grain-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1
through A-7 on the basis of grain-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420 , and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of grain-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is omitted in the table.

Physical Properties

Table 18 shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 18, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at $1 / 3$ - or ${ }^{1 / 10}$-bar (33 kPa or 10 kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability (Ksat) refers to the ability of a soil to transmit water or air. The term "permeability," as used in soil surveys, indicates saturated hydraulic conductivity (Ksat). The estimates in the table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. Volume change is influenced by the amount and type of clay minerals in the soil.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3 , shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 18, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in table 18 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of several factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kfindicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook" (USDA/ NRCS, National Soil Survey Handbook).

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Chemical Properties

Table 19 shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.
Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Effective cation-exchange capacity refers to the sum of extractable bases plus aluminum expressed in terms of milliequivalents per 100 grams of soil. It is determined for soils that have pH of less than 5.5.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Water Features

Soil moisture status is an estimate of the fluctuating water content in a soil. It greatly influences vegetation type and plant growth; physical properties of soils, such as permeability, workability, strength, linear extensibility, and frost action; and chemical interactions and transport. Many other properties, qualities, and interpretations also are affected. Soil moisture status is important in the classification of soils, wetland, and habitat.

Table 20 gives estimates of soil moisture for each component of a map unit at various depths for every month of the year. The depths displayed are representative values that are indicative of conditions that occur most commonly. These representative values of dry, moist, and wet can vary greatly from month to month and from year to year. Dry indicates a moisture condition under which most plants (especially crops) cannot extract water for growth. Moist indicates a moisture condition under which soil water is most readily available for plant growth. Wet indicates a condition under which water will stand in an unlined hole or at least a condition under which the soil is too wet for the growth of most agricultural species. A moisture status of 4.0-6.7 (wet) indicates that most of the time the component is saturated at some depth between 4.0 feet and 6.7 feet during the month designated. In some years the soil may be saturated at a depth of less than 4.0 feet or more than 6.7 feet; however, field observations indicate that the soil will be saturated between these depths in most years. In the summer, the soil may show the effects of drying plus intermittent rains that result in a moist or wet layer over a dry layer that gets moist or wet again.

In table 20, hydrologic soil groups are groups of soils that, when saturated, have the same runoff potential under similar storm and ground cover conditions. The soil properties that affect the runoff potential are those that influence the minimum rate of infiltration in a bare soil after prolonged wetting and when the soil is not frozen. These properties include the depth to a zone in which the soil moisture status is wet, the infiltration rate, permeability after prolonged wetting, and the depth to a very slowly permeable horizon or horizons. The influences of ground cover and slope are treated independently and are not taken into account in hydrologic soil groups.

In the definitions of the hydrologic soil groups, the infiltration rate is the rate at which water enters the soil at the surface and is controlled by surface conditions. The transmission rate is the rate at which water moves through the soil and is controlled by properties of the soil horizons.

The four hydrologic soil groups are:
Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist chiefly of very deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have a moderately fine to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a horizon or horizons that impede the downward movement of water or soils that have a moderately fine or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clayey soils that have a high linear extensibility; soils that have a zone, high in the profile, in which the soil moisture status is wet on a permanent basis; soils that have a claypan or clay horizon or horizons at or near the surface; and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group ($A / D, B / D$, or C / D), the first letter is for drained areas and the second is for undrained areas.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation.

Table 21 gives estimates of the frequency, duration, and depth of ponding for every month of the year. The depths displayed are representative values that are indicative of conditions that occur most of the time.

Ponding frequency is the number of times ponding occurs over a period of time. None indicates no reasonable possibility of ponding (the chance of ponding is nearly 0 percent in any year). Rare indicates that ponding is unlikely but possible under unusual weather conditions (the chance of ponding ranges from nearly 0 percent to 5 percent in any year, or ponding is likely 0 to 5 times in 100 years). Occasional indicates that ponding is expected infrequently under usual weather conditions (the chance of ponding ranges from 5 to 50 percent in any one year, or ponding is likely 5 to 50 times in 100 years). Frequent indicates that ponding is likely to occur under usual weather conditions (the chance of ponding is more than 50 percent in any year, or ponding is likely more than 50 times in 100 years).

Ponding duration is the average length of time of the ponding occurrence. It is expressed as very brief (less than 2 days), brief (2 to 7 days), long (7 to 30 days), and very long (more than 30 days).

Flooding, the temporary covering of the soil surface by flowing water, is caused by overflow from streams or by runoff from adjacent slopes. Shallow water standing or flowing for short periods after rainfall or snowmelt is not considered flooding. Standing water in marshes and swamps or in closed depressions is considered to be ponding.

Table 22 gives estimates of the frequency and duration of flooding for every month of the year. Flooding frequency is the annual probability of a flood event expressed as a class. None indicates no reasonable possibility of flooding (the chance of flooding is nearly 0 percent in any year, or flooding is likely less than once in 500 years). Very rare indicates that flooding is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year, or flooding is likely less than once in 100 years but more than once in 500 years). Rare indicates that flooding is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year, or flooding is likely 1 to 5 times in 100 years). Occasional indicates that flooding occurs infrequently under usual weather conditions (the chance of flooding is 5 to 50 percent in any year, or flooding is likely 5 to 50 times in 100 years). Frequent indicates that flooding is likely to occur often under usual weather conditions (the chance of flooding is more than 50 percent in any year, or flooding is likely more than 50 times in 100 years; but the chance of flooding is less than 50 percent in all months in any year). Very frequent indicates that flooding is likely to occur very often under usual weather conditions (the chance of flooding is more than 50 percent in all months of any year).

Flooding duration is the average duration of inundation per flood occurrence expressed as a class. Extremely brief is 0.1 hour to 4.0 hours; very brief is 4 to 48 hours; brief is 2 to 7 days; long is 7 to 30 days; and very long is more than 30 days. About two-thirds to three-fourths of all flooding occurs during the stated period.

The information on flooding is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and level of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 23 gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. Depth to top is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of
uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.

Classification of the Soils

The system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1996 and 1999). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 24 shows the classification of the soils in the survey area. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Spodosol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Orthod (Orth, meaning the common ones, plus od, from Spodosol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Haplorthods (Hapl, meaning minimal horizonation, plus orthod, the suborder of the Spodosols that has a horizon characterized by an accumulation of aluminum, iron, and organic carbon in which no one of the elements dominates).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the great group. An example is Alfic Haplorthods.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is coarse-loamy, mixed, semiactive, frigid Alfic Haplorthods.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile.

Soil Series and Their Morphology

In this section, each soil series recognized in the survey area is described. Characteristics of the soil and the material in which it formed are identified for each
series. A pedon, a small three-dimensional area of soil, that is typical of the series in the survey area is described. The detailed description of each soil horizon follows standards in the "Soil Survey Manual" (Soil Survey Division Staff, 1993). Many of the technical terms used in the descriptions are defined in "Soil Taxonomy" (Soil Survey Staff, 1999) and in "Keys to Soil Taxonomy" (Soil Survey Staff, 1996). Unless otherwise indicated, colors in the descriptions are for moist soil. Following the pedon description is the range of important characteristics of the soils in the series.

Alcona Series

The Alcona series consists of very deep, well drained, moderately permeable soils on dissected moraines, ground moraines, and till-floored lake plains. These soils formed in stratified loamy and sandy glaciolacustrine deposits. Slopes range from 1 to 70 percent.

Typical pedon of Alcona loamy very fine sand, in an area of Garlic-Alcona-Voelker complex, 8 to 35 percent slopes, dissected; 360 feet west and 350 feet south of the northeast corner of sec. 8, T. 46 N., R. 24 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 24 minutes 13 seconds N . and long. 87 degrees 19 minutes 33 seconds W.

Oe—0 to 3 inches; black (7.5YR 2.5/1), partially decomposed forest litter; moderately acid; abrupt smooth boundary.
E-3 to 9 inches; brown (7.5YR 5/2) loamy very fine sand, pinkish gray (7.5YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; strongly acid; clear smooth boundary.
Bhs-9 to 13 inches; dark brown (7.5YR 3/2) very fine sandy loam; moderate fine subangular blocky structure; friable; many fine to coarse roots; strongly acid; clear smooth boundary.
Bs1-13 to 18 inches; dark brown (7.5YR 3/4) very fine sandy loam; moderate fine subangular blocky structure; friable; common fine to coarse roots; moderately acid; gradual smooth boundary.
Bs2—18 to 26 inches; brown (7.5YR 4/4) fine sandy loam; moderate medium subangular blocky structure; friable; common fine to coarse roots; about 2 percent gravel; moderately acid; gradual wavy boundary.
B/E-26 to 49 inches; about 60 percent reddish brown (5YR 4/4) fine sandy loam (Bt); few distinct clay films on faces of peds; surrounded by brown (7.5YR 5/2) loamy fine sand, pinkish gray (7.5YR 7/2) dry (E); moderate medium subangular blocky structure; firm; few fine roots; about 2 percent gravel; moderately acid; clear smooth boundary.
2C1—49 to 63 inches; stratified reddish brown (5YR 5/3) loamy sand, reddish brown (5YR 4/4) fine sandy loam, and reddish gray (5YR 5/2) very fine sandy loam; massive with weakly expressed thin plates inherited from the parent material; friable; about 2 percent gravel; moderately acid; clear smooth boundary.
2C2-63 to 80 inches; stratified reddish brown (5YR 5/3) very fine sand and reddish brown (2.5YR 4/4) loamy very fine sand; massive with weakly expressed thin plates inherited from the parent material; friable; slightly acid.
The content of gravel ranges from 0 to 5 percent throughout, and the content of cobbles ranges from 0 to 2 percent throughout.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 . It is dominantly loamy very fine sand, but the range includes fine sandy loam, very fine sandy loam, and loamy fine sand. Some pedons have an A horizon.

The Bhs horizon has hue of 5YR or 7.5YR, value of 3, and chroma of 2 or 3 . It is very fine sandy loam, loamy very fine sand, fine sandy loam, or loamy fine sand.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is very fine sandy loam, loamy very fine sand, fine sandy loam, or loamy fine sand.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is very fine sandy loam, loamy very fine sand, fine sandy loam, or loamy fine sand.

The B part of the B/E horizon has hue of 2.5YR to 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sandy loam, fine sandy loam, loamy very fine sand, very fine sandy loam, or silt loam. The E part has hue of 5YR to 10YR, value of 4 or 5 , and chroma of 2 to 4 . It is loamy sand, fine sandy loam, or loamy fine sand. Some pedons have a Bt or E / B horizon.

The 2C horizon has hue of 2.5 YR to 10YR, value of 4 to 6 , and chroma of 3 or 4 . It is stratified loamy fine sand, fine sandy loam, very fine sand, loamy very fine sand, very fine sandy loam, or silt loam.

Amasa Series

The Amasa series consists of very deep, well drained soils on outwash terraces, disintegration moraines, and outwash plains. These soils formed in a loamy mantle over sandy and gravelly outwash. Permeability is moderate in the loamy mantle and rapid or very rapid in the lower part. Slopes range from 1 to 35 percent.

Typical pedon of Amasa very fine sandy loam, 1 to 6 percent slopes; 150 feet south and 800 feet west of the northeast corner of sec. 35, T. 45 N., R. 26 W.; USGS Cataract Basin topographic quadrangle; lat. 46 degrees 15 minutes 38 seconds N. and long. 87 degrees 30 minutes 50 seconds W .

A-0 to 2 inches; black (7.5YR 2.5/1) very fine sandy loam, dark gray (7.5YR 4/1) dry; moderate granular structure; very friable; many very fine to coarse roots; about 2 percent gravel, 2 percent cobbles, and 1 percent stones; very strongly acid; abrupt smooth boundary.
E-2 to 5 inches; brown (7.5YR 5/2) very fine sandy loam, pinkish gray (7.5YR 7/2) dry; moderate medium subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel, 2 percent cobbles, and 1 percent stones; strongly acid; clear smooth boundary.
Bhs-5 to 8 inches; dark brown (7.5YR $3 / 3$) very fine sandy loam; moderate medium subangular blocky structure; very friable; many very fine to coarse roots; about 3 percent gravel, 2 percent cobbles, and 1 percent stones; strongly acid; clear wavy boundary.
Bs-8 to 16 inches; dark brown (7.5YR 3/4) very fine sandy loam; moderate medium subangular blocky structure; very friable; many very fine to coarse roots; about 10 percent gravel, 3 percent cobbles, and 1 percent stones; moderately acid; clear wavy boundary.
2C1-16 to 33 inches; brown (7.5YR 4/4) very gravelly sand; single grain; loose; common fine and medium roots; about 45 percent gravel, 7 percent cobbles, and 3 percent stones; moderately acid; gradual wavy boundary.
2C2-33 to 80 inches; brown (7.5YR 4/3) very gravelly sand; single grain; loose; few very fine and fine roots; about 45 percent gravel, 7 percent cobbles, and 3 percent stones; slightly acid.
The thickness of the loamy mantle ranges from 15 to 30 inches. The content of gravel ranges from 0 to 20 percent in the solum and from 0 to 50 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum. The content of stones ranges from 0 to 2 percent in the solum and from 0 to 5 percent in the substratum.

The A horizon has hue of 5 YR or 7.5 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly very fine sandy loam, but the range includes fine sandy loam, gravelly fine sandy loam, and gravelly very fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 1 or 2 . It is very fine sandy loam or fine sandy loam or the gravelly analogs of these textures.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is very fine sandy loam or fine sandy loam or the gravelly analogs of these textures.

The Bs horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is very fine sandy loam, fine sandy loam, or sandy loam or the gravelly analogs of these textures.

The 2 C horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 3 to 6 . It is very gravelly sand, gravelly sand, or sand.

Au Gres Series

The Au Gres series consists of very deep, somewhat poorly drained, rapidly permeable soils on outwash plains, till-floored lake plains, and outwash terraces. These soils formed in sandy glaciofluvial and glaciolacustrine deposits. Slopes range from 0 to 3 percent.

Typical pedon of Au Gres sand, 0 to 3 percent slopes; 2,550 feet north and 2,450 feet east of the southwest corner of sec. 30, T. 45 N., R. 24 W.; USGS Republic SW topographic quadrangle; lat. 46 degrees 16 minutes 51 seconds N. and long. 87 degrees 53 minutes 29 seconds W.

Oa—0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate very fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 8 inches; dark reddish gray (5YR 4/2) sand, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 1 percent gravel; very strongly acid; abrupt wavy boundary.
Bhs-8 to 11 inches; dark reddish brown (5YR 2.5/2) sand; strong fine subangular blocky structure; friable; many very fine to coarse roots; vertical tongues of dark reddish brown (5YR 3/2) and reddish brown (5YR 4/4), strongly cemented ortstein occupy 25 percent (10 of 40 inches) of the horizon; tongues are 2 to 4 inches wide and 5 to 16 inches apart and extend into the Bs1 horizon; common medium distinct yellowish red (5YR 5/6) masses of iron accumulation; about 1 percent gravel; strongly acid; clear irregular boundary.
Bs1-11 to 13 inches; dark reddish brown (5YR 3/4) sand; moderate fine subangular blocky structure; friable; many very fine to coarse roots; vertical tongues of dark reddish brown (5YR 3/2) and reddish brown (5YR 4/4), strongly cemented ortstein extend into the horizon from the Bhs horizon and occupy 30 percent (12 of 40 inches) of the horizon; tongues are 3 to 4 inches wide and 5 to 12 inches apart and extend into the Bs2 horizon to a depth of 24 inches; common fine distinct red (2.5YR 4/6) masses of iron accumulation; about 1 percent gravel; strongly acid; clear wavy boundary.
Bs2-13 to 27 inches; yellowish red (5YR 5/6) sand; weak medium subangular blocky structure; very friable; common very fine to medium roots; vertical tongues of reddish brown (5YR 4/4) and yellowish red (5YR 4/6), strongly cemented ortstein extend into the horizon from the Bs1 horizon and occupy 40 percent (16 of 40 inches) of the horizon; tongues are 4 to 6 inches wide and 3 to 4 inches apart; common medium faint yellowish red (5YR 5/8) masses of iron accumulation; about 1 percent gravel; strongly acid; gradual wavy boundary.
2C—27 to 80 inches; brown (7.5YR 5/4) sand; single grain; loose; few very fine to medium roots; common fine faint strong brown (7.5YR 5/6) masses of iron accumulation; about 1 percent gravel; strongly acid.

The content of gravel ranges from 0 to 2 percent throughout the profile.
The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 or 2 . It is dominantly sand, but the range includes loamy sand. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3 . It is sand or loamy sand. Some pedons do not have a Bhs horizon.

The Bs1 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 . It is sand or loamy sand.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand or loamy sand. Some pedons have a BC horizon.

The C horizon has hue of 5 YR or 7.5 YR and value and chroma of 4 to 6 . It is sand or coarse sand.

Buckroe Series

The Buckroe series consists of excessively drained, very rapidly permeable soils that are shallow to bedrock. These soils are on sandstone benches. They formed in sandy and gravelly beach deposits overlying sandstone bedrock. Slopes range from 0 to 70 percent.

Typical pedon of Buckroe very channery loamy sand, 0 to 6 percent slopes, stony; 600 feet north and 2,300 feet east of the southwest corner of sec. 20, T. 52 N., R. 28 W.; USGS Howe Lake topographic quadrangle; lat. 46 degrees 52 minutes 56 seconds N . and long. 87 degrees 54 minutes 13 seconds W .
Oa-0 to 2 inches; black (10YR 2/1), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
Bw1-2 to 4 inches; reddish brown (5YR 4/3) very channery loamy sand, yellowish red (5 YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 40 percent channers and 3 percent flagstones; extremely acid; clear wavy boundary.
Bw2-4 to 15 inches; reddish brown (5YR 4/4) very channery sand; single grain; loose; many very fine to coarse roots; about 45 percent channers and 10 percent flagstones; very strongly acid; abrupt wavy boundary.
2R-15 inches; dusky red (2.5YR 3/2) sandstone bedrock.
Depth to bedrock ranges from 10 to 20 inches. The content of channers ranges from 35 to 60 percent throughout, the content of flagstones ranges from 0 to 10 percent throughout, and the content of stones ranges from 0 to 3 percent throughout.

Some pedons have an A horizon. This horizon is very channery sand or very channery loamy sand. It has hue of 10YR, value of 2 , and chroma of 1 .

The Bw horizon has hue of 2.5 YR or 5 YR and value and chroma of 3 or 4 . It is very channery loamy sand or very channery sand. Some pedons have a thin E horizon.

The underlying bedrock is sandstone.

Burt Series

The Burt series consists of poorly drained, rapidly permeable soils that are shallow to bedrock. These soils are in depressions and drainageways on sandstone benches. They formed in sandy glaciolacustrine deposits overlying sandstone bedrock. Slopes are 0 to 1 percent.

Typical pedon of Burt muck, 1,900 feet north and 210 feet east of the center of sec. 20, T. 51 N., R. 26 W.; USGS Big Bay topographic quadrangle; lat. 46 degrees 48 minutes 23 seconds N . and long. 87 degrees 37 minutes 56 seconds W .

Oe-0 to 2 inches; black (10YR 2/1), partially decomposed forest litter; very strongly acid; clear smooth boundary.
Oa-2 to 5 inches; black (10YR 2/1) muck; weak fine granular structure; very friable; many very fine to coarse roots; very strongly acid; clear wavy boundary.
A-5 to 7 inches; black (10YR 2/1) mucky loamy sand, gray (10YR 5/1) dry; weak fine granular structure; very friable; few very fine to coarse roots; about 3 percent gravel; very strongly acid; abrupt broken boundary.
Eg-7 to 8 inches; reddish gray (5YR 5/2) gravelly sand, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; very friable; common fine prominent yellowish red (5YR 5/8) masses of iron accumulation; about 18 percent gravel and 4 percent cobbles; strongly acid; gradual smooth boundary.
Bw-8 to 18 inches; dark reddish brown (2.5YR 3/4) gravelly sand; weak fine subangular blocky structure; very friable; common fine prominent yellowish red (5YR 5/8) masses of iron accumulation; about 18 percent gravel and 4 percent cobbles; strongly acid; abrupt smooth boundary.
2R-18 inches; dark reddish brown (5YR 3/3) sandstone bedrock.
Depth to bedrock ranges from 10 to 20 inches. The content of gravel ranges from 0 to 20 percent throughout, and the content of cobbles ranges from 0 to 5 percent throughout.

The Oa horizon has hue of 5 YR to 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 .

The A horizon has hue of 7.5 YR or 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is mucky loamy sand, loamy sand, or sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is gravelly sand or sand.

The Bw horizon has hue of 2.5 YR or 5 YR and value and chroma of 3 or 4 . It is gravelly sand or sand. Some pedons have a 2 Cr horizon.

The underlying bedrock is sandstone.

Carbondale Series

The Carbondale series consists of very deep, very poorly drained soils in depressions on ground moraines, outwash plains, till-floored lake plains, and disintegration moraines. These soils formed in organic deposits. Permeability is moderately slow to moderately rapid. Slopes are 0 to 1 percent.

Typical pedon of Carbondale muck, in an area of Carbondale and Tawas soils; 2,900 feet south and 800 feet west of the northeast corner of sec. 9, T. 43 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 08 minutes 10 seconds N . and long. 87 degrees 33 minutes 25 seconds W.

Oa1-0 to 6 inches; muck, black (10YR 2/1) broken face and rubbed; about 10 percent fiber, 2 percent rubbed; weak fine granular structure; many very fine to coarse roots; slightly acid; clear wavy boundary.
Oa2-6 to 23 inches; muck, black ($\mathrm{N} 2.5 / 0$) broken face and rubbed; about 10 percent fiber, 2 percent rubbed; weak medium subangular blocky structure; slightly acid; clear smooth boundary.
Oa3-23 to 38 inches; muck, black (N 2.5/0) broken face and rubbed; about 35 percent fiber, 10 percent rubbed; weak medium subangular blocky structure; slightly acid; clear smooth boundary.
Oe1-38 to 68 inches; mucky peat, black (10YR 2/1) broken face and rubbed; about 90 percent fiber, 33 percent rubbed; massive; neutral; clear smooth boundary.
Oe2-68 to 80 inches; mucky peat, black (10YR 2/1) broken face and rubbed; about 90 percent fiber, 20 percent rubbed; massive; neutral.

The organic layers are more than 51 inches thick. The content of wood fragments ranges to 15 percent in the form of twigs, branches, logs, or stumps throughout the profile.

The surface and subsurface tiers have hue of 5YR to 10YR or are neutral in hue. They have value of 2 or 3 and chroma of 0 to 2 . They are dominantly sapric. Some pedons have a fibric surface layer, which is 1 to 4 inches thick and is predominantly derived from sphagnum moss.

The bottom tier has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 to 4 . It is dominantly hemic, but some pedons may have thin fibric layers.

Carlshend Series

The Carlshend series consists of moderately well drained, moderately permeable soils that are shallow to bedrock. These soils are on sandstone benches. They formed in loamy till overlying sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Carlshend fine sandy loam, 1 to 6 percent slopes, stony; 900 feet north and 2,300 feet east of the southwest corner of sec. 20, T. 46 N., R. 23 W.; USGS Carlshend topographic quadrangle; lat. 46 degrees 22 minutes 03 seconds N . and long. 87 degrees 12 minutes 36 seconds W .
Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-1 to 3 inches; dark reddish gray (5YR 4/2) fine sandy loam, light gray (5YR 7/1) dry; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; abrupt wavy boundary.
Bhs-3 to 6 inches; dark reddish brown (5YR 3/2) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; clear wavy boundary.
Bs-6 to 14 inches; dark reddish brown (5YR 3/4) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; abrupt wavy boundary.
$2 \mathrm{Cr}-14$ to 25 inches; yellowish brown (10YR 5/4), weathered sandstone; massive; very firm; few very fine to medium roots; common medium prominent strong brown (7.5YR 5/6) and common medium faint pale brown (10YR 6/3) masses of iron accumulation; few very fine to medium roots; moderately acid; abrupt smooth boundary.
2R-25 inches; light gray (10YR 7/2) and pale brown (10YR 6/3) sandstone bedrock.
Depth to the 2 Cr horizon ranges from 10 to 20 inches. The content of gravel and cobbles ranges from 0 to 10 percent in the solum.

Some pedons have an A horizon. This horizon has hue of 7.5YR or 10YR, value of 2 or 3 , and chroma of 1 or 2.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is dominantly fine sandy loam, but the range includes sandy loam.

The Bhs horizon has hue of 5YR or 7.5YR and value and chroma of 2 or 3 . It is fine sandy loam or sandy loam.

The Bs horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

The 2 Cr horizon has hue of 7.5 YR or 10 YR and value and chroma of 4 to 6 . It is weathered sandstone.

The underlying bedrock is sandstone.

Cathro Series

The Cathro series consists of very deep, very poorly drained soils in depressions and drainageways on moraines and flood plains. These soils formed in organic deposits over loamy till. Permeability is moderately slow to moderately rapid in the organic part of the profile and moderately slow in the loamy part. Slopes are 0 to 1 percent.

Typical pedon of Cathro muck, in an area of Cathro-Ensley mucks; 1,270 feet south and 1,320 feet west of the northeast corner of sec. 25, T. 42 N., R. 26 W.; USGS Arnold topographic quadrangle; lat. 46 degrees 00 minutes 07 seconds N. and long. 87 degrees 29 minutes 50 seconds W .

Oa1-0 to 6 inches; muck, black (N 2.5/0) broken face and black (5YR 2.5/1) rubbed; weak thick platy structure; many very fine to medium roots; about 50 percent fiber, 15 percent rubbed; neutral; abrupt smooth boundary.
Oa2—6 to 18 inches; muck, black (10YR 2/1) broken face and black (5YR 2.5/1) rubbed; moderate very thick platy structure; few fine roots; about 40 percent fiber, 10 percent rubbed; slightly acid; abrupt smooth boundary.
Oa3-18 to 31 inches; muck, black (5YR 2.5/1) broken face and rubbed; massive; about 20 percent fiber, 5 percent rubbed; slightly acid; abrupt smooth boundary.
Cg-31 to 80 inches; dark grayish brown (10YR 4/2) fine sandy loam; massive; about 9 percent gravel and 5 percent cobbles; slightly effervescent; slightly alkaline.

Thickness of the organic layers and the depth to the loamy mineral horizon range from 16 to 51 inches. The content of wood fragments ranges to 15 percent in the form of twigs, branches, or logs in the organic part of the profile. In the mineral substratum, the content of gravel ranges from 0 to 20 percent and the content of cobbles ranges from 0 to 5 percent.

The surface and subsurface tiers have hue of 5 YR to 10 YR or are neutral in hue. They have value of 2 or 3 and chroma of 0 to 2 . They are dominantly sapric. Some pedons have a fibric surface layer, which is 1 to 3 inches thick and is predominantly derived from sphagnum moss.

The Cg horizon has hue of 5 YR to 5 GY , value of 4 or 5 , and chroma of 1 or 2 . It is fine sandy loam, sandy loam, or loam or the gravelly analogs of these textures. Some pedons have strata of sand less than 3 inches thick.

Chabeneau Series

The Chabeneau series consists of very deep, moderately well drained soils on outwash plains and outwash terraces. These soils formed in silty or loamy eolian deposits over sandy and gravelly outwash. Permeability is moderate in the upper part of the profile and very rapid in the lower part. Slopes range from 0 to 3 percent.

Typical pedon of Chabeneau silt loam, 0 to 3 percent slopes; 200 feet south and 730 feet east of the northwest corner of sec. 31, T. 47 N., R. 29 W.; USGS Republic topographic quadrangle; lat. 46 degrees 26 minutes 04 seconds N. and long. 87 degrees 59 minutes 18 seconds W .

Oe-0 to 1 inch; partially decomposed forest litter.
A-1 to 2 inches; very dark grayish brown (10YR 3/2) silt loam, grayish brown (10YR $5 / 2$) dry; weak fine granular structure; friable; many fine to coarse roots; about 3 percent gravel; extremely acid; abrupt wavy boundary.
E-2 to 5 inches; reddish gray (5YR 5/2) silt loam, light gray (5YR 7/1) dry; weak fine subangular blocky structure; friable; many fine to coarse roots; about 3 percent gravel; extremely acid; abrupt irregular boundary.

Bs1-5 to 10 inches; dark reddish brown (5YR 3/4) silt loam; weak fine subangular blocky structure; friable; many fine to coarse roots; about 8 percent gravel; strongly acid; clear wavy boundary.
Bs2-10 to 22 inches; brown (7.5YR 4/4) silt loam; weak fine subangular blocky structure; friable; common fine and medium roots; about 8 percent gravel; strongly acid; gradual wavy boundary.
2BC-22 to 30 inches; brown (7.5YR 4/4) gravelly loamy coarse sand; weak medium subangular blocky structure; very friable; common fine roots; about 31 percent gravel; strongly acid; clear wavy boundary.
2C1-30 to 48 inches; brown (10YR 5/3), stratified very gravelly coarse sand and coarse sand; single grain; loose; few fine roots; common coarse prominent strong brown (7.5YR 5/8) masses of iron accumulation beginning at a depth of 33 inches; about 40 percent gravel and 10 percent cobbles; strongly acid; diffuse wavy boundary.
2C2-48 to 121 inches; brown (10YR 5/3), stratified sand and gravelly sand; single grain; loose; few fine roots in the upper 12 inches of the horizon; common coarse prominent strong brown (7.5YR 5/8) masses of iron accumulation; about 24 percent gravel and 5 percent cobbles; strongly acid.
The thickness of the silty or loamy mantle ranges from 15 to 30 inches. The content of gravel ranges from 0 to 15 percent in the loamy upper part and from 0 to 60 percent in the sandy lower part. The content of cobbles ranges from 0 to 5 percent in the loamy upper part and from 0 to 10 percent in the sandy lower part.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly silt loam, but the range includes very fine sandy loam or fine sandy loam or the gravelly analogs of these textures.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 1 or 2 . It is silt loam, very fine sandy loam, or fine sandy loam or the gravelly analogs of these textures.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is silt loam, very fine sandy loam, or fine sandy loam or the gravelly analogs of these textures.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 3 to 5 , and chroma of 4 to 6 . It is silt loam, very fine sandy loam, or fine sandy loam or the gravelly analogs of these textures.

The 2 BC horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is coarse sand, sand, or loamy coarse sand or the gravelly or very gravelly analogs of these textures.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 3 to 6 . It is sand or coarse sand or the gravelly, very gravelly, or cobbly analogs of these textures. Stratification is common.

Champion Series

The Champion series consists of very deep, moderately well drained soils on ground moraines and bedrock-controlled moraines. These soils are shallow or moderately deep to a fragipan. They formed in a silty or loamy mantle over loamy or sandy till. Permeability is moderate in the upper part of the profile, very slow in the fragipan, and moderately rapid in the substratum. Slopes range from 1 to 18 percent.

Typical pedon of Champion cobbly fine sandy loam, 6 to 18 percent slopes, very stony; 400 feet west and 1,000 feet north of the southeast corner of sec. 21, T. 50 N., R. 29 W.; USGS Bulldog Lake topographic quadrangle; lat. 46 degrees 42 minutes 39 seconds N . and long. 87 degrees 55 minutes 47 seconds W .

Oa-0 to 2 inches; black (5YR 2.5/1), well decomposed forest litter; moderate fine granular structure; very friable; many very fine to coarse roots; abrupt smooth boundary.
E-2 to 5 inches; dark reddish gray (5YR 4/2) cobbly fine sandy loam, pinkish gray (5 YR 6/2) dry; moderate very fine subangular blocky structure; friable; many very fine to coarse roots; about 13 percent cobbles and 4 percent gravel; very strongly acid; abrupt wavy boundary.
Bhs-5 to 9 inches; dark reddish brown (5YR 3/3) cobbly fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 13 percent cobbles and 4 percent gravel; strongly acid; clear wavy boundary.
Bs-9 to 26 inches; reddish brown (5YR 4/4) cobbly fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 13 percent cobbles and 4 percent gravel; strongly acid; abrupt wavy boundary.
2Bx1-26 to 36 inches; reddish brown (5YR 4/3) gravelly sandy loam; weak thick platy structure; very firm; common very fine and fine roots; roots are 12 to 20 inches apart; common very fine and fine vesicular pores; few fine prominent strong brown (7.5YR 5/6) masses of iron accumulation; about 16 percent gravel and 4 percent cobbles; moderately acid; gradual wavy boundary.
2Bx2-36 to 43 inches; brown (7.5YR 4/4) gravelly loamy sand; weak thick platy structure; very firm; few very fine and fine roots; roots are 12 to 20 inches apart; common very fine and fine vesicular pores; fine faint strong brown (7.5YR 5/6) masses of iron accumulation; about 16 percent gravel and 8 percent cobbles; moderately acid; abrupt wavy boundary.
2C-43 to 80 inches; brown (10YR 4/3) gravelly loamy sand; massive; very friable; few very fine and fine roots; about 16 percent gravel and 8 percent cobbles; strongly acid.

Depth to the fragipan ranges from 18 to 24 inches. The content of gravel ranges from 2 to 10 percent above the fragipan and from 10 to 25 percent in the fragipan and the substratum. The content of cobbles ranges from 0 to 15 percent throughout the profile, and the content of stones ranges from 0 to 5 percent throughout the profile. The content of rock fragments averages less than 35 percent in the control section.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 1 or 2 . It is dominantly cobbly fine sandy loam, but the range includes cobbly very fine sandy loam. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR, value of 3 , and chroma of 2 or 3 . It is fine sandy loam or very fine sandy loam or the cobbly analogs of these textures.

The Bs horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam or very fine sandy loam or the cobbly analogs of these textures.

The 2 Bx 1 horizon has hue of 5 YR to 10 YR , value of 4 , and chroma of 2 to 4 . It is gravelly sandy loam, gravelly fine sandy loam, or gravelly loamy sand.

The 2 Bx 2 horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 2 to 4 . It is gravelly loamy sand, gravelly sandy loam, or gravelly fine sandy loam.

The 2 C horizon has hue of 10 YR to 2.5 Y , value of 4 to 6 , and chroma of 2 to 4 . It is gravelly loamy sand, gravelly sandy loam, or gravelly fine sandy loam. It has pockets of gravelly sand in some pedons.

Channing Series

The Channing series consists of very deep, somewhat poorly drained soils on outwash terraces and outwash plains. These soils formed in a loamy mantle over sandy outwash. Permeability is moderate in the loamy upper part of the profile and very rapid in the sandy lower part. Slopes range from 0 to 3 percent.

Typical pedon of Channing fine sandy loam, 0 to 3 percent slopes; 1,270 feet south of the northwest corner of sec. 4, T. 47 N., R. 28 W.; USGS Diorite topographic quadrangle; lat. 46 degrees 30 minutes 12 seconds N. and long. 87 degrees 49 minutes 26 seconds W.
Oe-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter; very strongly acid; abrupt smooth boundary.
A-1 to 5 inches; dark reddish brown (5YR 3/2) fine sandy loam, dark gray (5YR 4/1) dry; moderate medium granular structure; friable; many fine to coarse roots; about 5 percent gravel; very strongly acid; clear wavy boundary.
E-5 to 9 inches; reddish gray (5 YR $5 / 2$) very fine sandy loam, pinkish gray (7.5 YR 7/2) dry; moderate medium platy structure; friable; many fine to coarse roots; many medium distinct brown (7.5YR 4/2) and common medium faint dark gray (5YR 4/1) iron depletions; about 5 percent gravel; strongly acid; clear wavy boundary.
Bs1-9 to 18 inches; brown (7.5YR 4/4) very fine sandy loam; moderate medium subangular blocky structure; friable; many fine to coarse roots; common medium distinct brown (7.5YR 4/2) iron depletions; common medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 5 percent gravel; strongly acid; gradual wavy boundary.
Bs2-18 to 22 inches; brown (7.5YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; common medium and fine roots; common medium distinct brown (7.5YR 4/2) iron depletions; common medium distinct strong brown (7.5YR 4/6) masses of iron accumulation; about 5 percent gravel; strongly acid; clear smooth boundary.
2BC-22 to 28 inches; strong brown (7.5YR 4/6) gravelly sand; single grain; loose; few fine roots; common medium distinct dark yellowish brown (10YR 3/6) masses of iron accumulation; about 10 percent gravel and 5 percent cobbles; moderately acid; clear smooth boundary.
2C-28 to 80 inches; brown (10YR 4/3), stratified gravelly sand, sand, and very gravelly sand; single grain; loose; about 20 percent gravel and 10 percent cobbles; moderately acid.
The content of gravel ranges from 0 to 50 percent in the solum and from 15 to 50 percent in the substratum. The content of cobbles ranges from 0 to 10 percent throughout the profile.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly fine sandy loam, but the range includes very fine sandy loam.

The E horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 2 or 3 . It is fine sandy loam or very fine sandy loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is very fine sandy loam or fine sandy loam. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 4 to 6 . It is fine sandy loam or very fine sandy loam.

The 2BC horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 3 to 6 . It is sand or gravelly sand.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 3 to 6 . It is stratified sand, gravelly sand, and very gravelly sand.

Charlevoix Series

The Charlevoix series consists of very deep, somewhat poorly drained, moderately permeable soils on fluted ground moraines. These soils formed in loamy till. Slopes range from 0 to 3 percent.

Typical pedon of Charlevoix silt loam, in an area of Charlevoix-Ensley complex, bedrock substratum, 0 to 3 percent slopes; 2,300 feet north and 1,850 feet east of the
southwest corner of sec. 34, T. 44 N., R. 23 W.; lat. 46 degrees 09 minutes 52.68 seconds N . and long. 87 degrees 10 minutes 13.01 seconds W.

Oa-0 to 2 inches; black (7.5YR 2.5/1), well decomposed forest litter; many very fine to coarse roots; about 4 percent cobbles; strongly acid; abrupt smooth boundary.
A-2 to 3 inches; very dark gray (7.5YR 3/1) silt loam, gray (7.5YR 6/1) dry; moderate fine granular structure; very friable; many very fine to coarse roots; about 5 percent gravel and 4 percent cobbles; extremely acid; clear wavy boundary.
E-3 to 8 inches; brown (7.5YR 5/3) silt loam, white (7.5YR 8/1) dry; weak medium platy structure; friable; common very fine to coarse roots; common medium faint brown (7.5YR $5 / 2$) iron depletions; common fine faint brown (7.5 YR $5 / 4$) masses of iron accumulation; about 6 percent gravel and 4 percent cobbles; extremely acid; clear wavy boundary.
Bs-8 to 12 inches; brown (7.5YR 4/4) silt loam; weak medium platy structure parting to weak very fine subangular blocky; friable; few fine roots; many medium distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 6 percent gravel and 4 percent cobbles; strongly acid; gradual broken boundary.
E/B-12 to 16 inches; about 60 percent reddish brown (5YR 5/3) fine sandy loam, white (7.5YR 8/1) dry (E); occurs as tongues extending into or completely surrounding isolated remnants of reddish brown (5YR 4/4) fine sandy loam (Bt); common distinct brown (10YR 4/3) clay films on faces of peds; weak medium platy structure parting to weak very fine subangular blocky; firm; common very fine vesicular pores; common medium prominent strong brown (7.5YR $5 / 8$) masses of iron accumulation; about 5 percent gravel and 4 percent cobbles; slightly acid; clear wavy boundary.
B/E—16 to 28 inches; about 60 percent reddish brown (5YR 4/4) fine sandy loam (Bt); many distinct brown (10YR 4/3) clay films on faces of peds; penetrated by tongues of reddish brown (5YR 5/3) fine sandy loam, white (5YR 8/1) dry (E); weak medium subangular blocky structure; friable; common very fine vesicular pores; common medium distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 5 percent gravel and 4 percent cobbles; neutral; gradual wavy boundary.
C-28 to 70 inches; reddish brown (5YR 5/4) cobbly fine sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; common medium prominent strong brown ($7.5 \mathrm{YR} 5 / 8$) masses of iron accumulation; about 8 percent gravel and 8 percent cobbles; slightly effervescent; moderately alkaline; abrupt smooth boundary.
2R-70 inches; unweathered limestone bedrock.
The content of gravel ranges from 0 to 10 percent in the solum and from 5 to 20 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum.

Some pedons have bedrock at a depth of more than 80 inches.
The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 . It is dominantly silt loam, but the range includes very fine sandy loam and fine sandy loam.

The E horizon has hue of 7.5 YR or 10 YR , value of 5 or 6 , and chroma of 2 or 3 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is silt loam, very fine sandy loam, or fine sandy loam. Some pedons have a Bhs horizon.

The E part of the E / B and B / E horizons has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 to 4 . It is fine sandy loam, loamy fine sand, or loamy sand. The Bt part of the E / B and B / E horizons has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 4. It is fine sandy loam, sandy loam, or sandy clay loam.

The C horizon has hue of 5 YR , value of 5 , and chroma of 3 or 4 . It is cobbly fine sandy loam or gravelly fine sandy loam.

The underlying bedrock is limestone or dolomitic sandstone.

Chippeny Series

The Chippeny series consists of very poorly drained soils that are moderately deep to bedrock. These soils are in depressions and drainageways on ground moraines. They formed in organic deposits over loamy till overlying limestone, dolomite, or dolomitic sandstone bedrock. Permeability is moderately slow to moderately rapid in the organic part of the profile and moderate or moderately slow in the loamy part. Slopes are 0 to 1 percent.

Typical pedon of Chippeny muck, in an area of Chippeny and Nahma mucks; 1,280 feet west and 2,530 feet south of the northeast corner of sec. 31, T. 44 N., R. 23 W.; USGS McFarland topographic quadrangle; lat. 46 degrees 10 minutes 45 seconds N . and long. 87 degrees 08 minutes 45 seconds W.

Oa1-0 to 6 inches; muck, black (10YR 2/1) broken face and rubbed; about 15 percent fiber, 2 percent rubbed; weak fine granular structure; very friable; many very fine to coarse roots; neutral; clear smooth boundary.
Oa2-6 to 29 inches; muck, black (10YR 2/1) broken face, very dark brown (10YR 2/2) rubbed; about 40 percent fiber, 5 percent rubbed; massive; very friable; slightly acid; gradual smooth boundary.
Cg1-29 to 33 inches; very dark gray (10YR 3/1) silt loam; massive; friable; neutral; clear wavy boundary.
Cg2-33 to 38 inches; gray (5 Y 5/1) silt loam; massive; friable; neutral; abrupt smooth boundary.
2R-38 inches; gray (7.5YR 5/1) limestone bedrock.
Thickness of the organic layers and depth to the loamy material range from 16 to 50 inches. Depth to bedrock ranges from 20 to 51 inches. The content of wood fragments ranges to 15 percent in the form of twigs, branches, or logs in the organic part of the profile. In the C horizon, the content of gravel ranges from 0 to 15 percent and the content of cobbles, channers, and flagstones ranges from 0 to 10 percent.

The surface and subsurface tiers have hue of 5YR to 10YR or are neutral in hue. They have value of 2 or 3 and chroma of 0 to 2 . They are dominantly sapric.

The Cg horizon has hue of 10 YR to 2.5 Y , value of 3 to 6 , and chroma of 1 to 4 . It is silt loam, fine sandy loam, or gravelly fine sandy loam.

The underlying bedrock is limestone, dolomite, or dolomitic sandstone.

Chocolay Series

The Chocolay series consists of moderately well drained soils that are moderately deep to bedrock. These soils are on sandstone benches. They formed in loamy till overlying sandstone. Permeability is moderate. Slopes range from 1 to 6 percent.

Typical pedon of Chocolay very cobbly fine sandy loam, 1 to 6 percent slopes, very stony; 100 feet south and 1,200 feet east of the northwest corner of sec. 34, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 25 minutes 51 seconds N . and long. 87 degrees 10 minutes 10 seconds W.
Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate very fine granular structure; very friable; many very fine to coarse roots; about 15 percent stones; very strongly acid; abrupt smooth boundary.
A-2 to 3 inches; black (10YR 2/1) very cobbly fine sandy loam, gray (5YR $5 / 1$) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 25 percent cobbles, 18 percent gravel, and 15 percent stones; very strongly acid; abrupt smooth boundary.
E-3 to 8 inches; reddish brown (5YR 4/3) very cobbly fine sandy loam, pinkish gray (5YR 6/2) dry; moderate fine subangular blocky structure; friable; many very fine to
coarse roots; about 25 percent cobbles, 18 percent gravel, and 15 percent stones; very strongly acid; abrupt wavy boundary.
Bhs-8 to 14 inches; dark reddish brown (5YR 3/3) very cobbly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 25 percent cobbles, 18 percent gravel, and 15 percent stones; strongly acid; clear irregular boundary.
Bs-14 to 27 inches; reddish brown (5YR 4/4) very gravelly sandy loam; weak fine subangular blocky structure; friable; common very fine to medium roots; few medium distinct strong brown (7.5YR 4/6) masses of iron accumulation; about 30 percent gravel, 15 percent cobbles, and 10 percent stones; strongly acid; abrupt wavy boundary.
2R-27 inches; reddish brown (2.5YR 4/3) sandstone bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 15 to 40 percent throughout the profile, the content of cobbles ranges from 15 to 40 percent throughout the profile, and the content of stones ranges from 5 to 20 percent throughout the profile. The content of rock fragments averages more than 35 percent in the control section. The rock fragments are dominantly sandstone.

The A horizon has hue of 10 YR , value of 2 , and chroma of 1 . It is dominantly very cobbly fine sandy loam, but the range includes very cobbly sandy loam, very gravelly sandy loam, and very gravelly fine sandy loam.

The E horizon has hue of 2.5 YR or 5YR, value of 4 or 5 , and chroma of 1 to 3 . It is the very cobbly or very gravelly analogs of fine sandy loam or sandy loam.

The Bhs horizon has hue of 5 YR, value of 3 , and chroma of 2 or 3 . It is very cobbly fine sandy loam or very gravelly fine sandy loam.

The Bs horizon has hue of 5YR and value and chroma of 3 or 4 . It is the very cobbly or very gravelly analogs of fine sandy loam or sandy loam. Some pedons contain thin layers of very gravelly coarse sand above the sandstone bedrock. Some pedons have a Cr horizon.

The underlying bedrock is sandstone.

Croswell Series

The Croswell series consists of very deep, moderately well drained, rapidly permeable soils on beach ridges, outwash plains, outwash terraces, and till-floored lake plains. These soils formed in sandy glaciolacustrine deposits and outwash. Slopes range from 0 to 6 percent.

Typical pedon of Croswell sand, 0 to 3 percent slopes; 600 feet north and 1,650 feet west of the southeast corner of sec. 23, T. 45 N., R. 29 W.; USGS Republic SW topographic quadrangle; lat. 46 degrees 17 minutes 09 seconds N. and long. 87 degrees 53 minutes 37 seconds W .
A-0 to 3 inches; very dark brown (10YR 2/2) sand, dark grayish brown (10YR 4/2) dry; weak very fine granular structure; very friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; abrupt smooth boundary.
E-3 to 7 inches; pinkish gray (5YR 6/2) sand, pinkish gray (7.5YR 6/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; abrupt smooth boundary.
Bs1-7 to 14 inches; reddish brown (5YR 4/4) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; clear wavy boundary.
Bs2-14 to 22 inches; yellowish red (5YR 4/6) sand; weak fine subangular blocky structure; very friable; few very fine to medium roots; tongues of dark reddish brown (5YR 3/4), moderately cemented ortstein occupy 13 percent (5 of 40
inches) of the horizon; tongues are 2 to 3 inches wide and 8 to 29 inches apart and extend into the Bs3 horizon; about 2 percent gravel; moderately acid; gradual wavy boundary.
Bs3-22 to 34 inches; strong brown (7.5YR 5/6) sand; single grain; loose; few very fine to medium roots; tongues of reddish brown (5YR 4/4), moderately cemented ortstein extend into the horizon from the Bs2 horizon and occupy 15 percent (6 of 40 inches) of the horizon; tongues are 2 to 3 inches wide and 8 to 29 inches apart and extend into the C horizon to a depth of 38 inches; common fine distinct strong brown (7.5YR $5 / 8$) masses of iron accumulation beginning at a depth of about 26 inches; about 2 percent gravel; moderately acid; gradual wavy boundary.
C-34 to 80 inches; light brown (7.5YR 6/4) sand; single grain; loose; few very fine to fine roots; common fine distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 2 percent gravel; moderately acid.

The content of gravel ranges from 0 to 5 percent throughout. The profile is sand throughout.

The A horizon has hue of 10YR, value of 2 , and chroma of 1 or 2 .
The E horizon has hue of 5 YR to 10 YR , value of 5 or 6 , and chroma of 2 .
The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 .
The Bs2 and Bs3 horizons have hue of 5YR to 10YR, value of 4 or 5 , and chroma of 4 to 6 . Some pedons have a $B C$ horizon.

The C horizon has hue of 5 YR to 10 YR , value of 5 or 6 , and chroma of 3 to 6 .

Cunard Series

The Cunard series consists of well drained, moderately permeable soils that are moderately deep to bedrock. These soils are on ground moraines. They formed in loamy till overlying dolomite, limestone, or dolomitic sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Cunard fine sandy loam, 1 to 6 percent slopes; 450 feet east and 2,200 feet north of the southwest corner of sec. 31, T. 43 N., R. 25 W.; USGS Arnold topographic quadrangle; lat. 46 degrees 04 minutes 42 seconds N. and long. 87 degrees 29 minutes 26 seconds W .
A-0 to 4 inches; black (10YR 2/1) fine sandy loam, dark gray (10YR 4/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 7 percent cobbles, 4 percent gravel, and 1 percent stones; neutral; clear broken boundary.
E/B-4 to 6 inches; about 60 percent brown (7.5YR 4/2) fine sandy loam, pinkish gray (7.5YR 6/2) dry (E); occurs as tongues extending into or completely surrounding isolated remnants of brown (7.5YR 4/4) fine sandy loam (B); moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 7 percent cobbles, 4 percent gravel, and 1 percent stones; neutral; clear wavy boundary.
Bw-6 to 10 inches; brown (7.5YR 4/4) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 7 percent cobbles, 4 percent gravel, and 1 percent stones; neutral; clear wavy boundary.
Bt-10 to 19 inches; dark brown (7.5YR 3/4) loam; moderate medium subangular blocky structure; friable; many very fine to coarse roots; common distinct discontinuous dark brown (7.5YR 3/4) clay films on faces of peds; about 7 percent cobbles, 4 percent gravel, and 2 percent stones; slightly alkaline; clear wavy boundary.
2C-19 to 27 inches; brown (7.5YR 5/4) gravelly fine sandy loam; massive; friable; common very fine to medium roots; about 18 percent gravel, 10 percent cobbles,
and 2 percent stones; slightly effervescent; slightly alkaline; abrupt smooth boundary.
3R-27 inches; pale brown (10YR 6/3) dolomitic sandstone bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 10 percent in the solum and from 10 to 25 percent in the substratum. The content of cobbles and flagstones ranges from 0 to 10 percent throughout the profile. The content of stones ranges from 0 to 2 percent throughout the profile. The content of rock fragments averages less than 35 percent in the control section.

The A horizon has hue of 5 YR to 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is dominantly fine sandy loam, but the range includes loam. Some pedons have an E horizon.

The E part of the E/B horizon has hue of $5 Y R$ to $10 Y R$, value of 4 or 5 , and chroma of 2 or 3 . The B part of the E/B horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 3 or 4 . The E / B horizon is fine sandy loam or sandy loam. Some pedons have a B/E horizon.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 3 to 6 . It is fine sandy loam or sandy loam.

The Bt horizon has hue of 5YR or 7.5 YR and value and chroma of 3 or 4 . It is loam, fine sandy loam, or sandy loam.

The 2 C horizon has hue of 7.5 YR or 10 YR , value of 4 to 6 , and chroma of 3 or 4 . It is gravelly fine sandy loam or cobbly fine sandy loam.

The underlying bedrock is dolomite, dolomitic sandstone, or limestone.

Dawson Series

The Dawson series consists of very deep, very poorly drained soils in depressions on outwash plains, till-floored lake plains, and moraines. These soils formed in organic deposits overlying sandy outwash. Permeability is moderately rapid to moderately slow in the organic part of the profile and rapid in the sandy part. Slopes are 0 to 1 percent.

Typical pedon of Dawson peat, in an area of Greenwood and Dawson soils; in the Sand River area; 900 feet west and 400 feet south of the northeast corner of sec. 9, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 29 minutes 30 seconds N. and long. 87 degrees 11 minutes 02 seconds W.

Oi-0 to 6 inches; peat, dark brown (10YR $3 / 3$) broken face, brown (10YR 4/3) rubbed; about 100 percent fiber, 90 percent rubbed; massive; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
Oa1-6 to 11 inches; muck, black (10YR 2/1) broken face and rubbed; about 40 percent fiber, 15 percent rubbed; massive; few very fine to medium roots; extremely acid; clear smooth boundary.
Oa2-11 to 34 inches; muck, very dark brown (10YR 2/2) broken face and rubbed; about 30 percent fiber, 5 percent rubbed; massive; extremely acid; clear wavy boundary.
A—34 to 36 inches; black (10YR 2/1) sand; massive; very friable; extremely acid; clear smooth boundary.
C-36 to 80 inches; dark grayish brown (10YR 4/2) sand; single grain; loose; very strongly acid.

The thickness of the organic layers and the depth to the sandy mineral horizon range from 16 to 51 inches. The organic material is primarily herbaceous.

The surface tier has hue of 5 YR to $10 Y R$, value of 2 or 3 , and chroma of 1 to 3 . It is dominantly fibric material derived from sphagnum moss.

The subsurface and bottom tiers have hue of 5 YR to 10 YR or are neutral in hue. They have value of 2 or 3 and chroma of 0 to 2 . They are dominantly sapric.

The A horizon has hue of 10 YR or 2.5 Y , value of 2 to 4 , and chroma of 1 to 3 . It is sand, fine sand, mucky sand, or mucky fine sand.

The C horizon has hue of 10 YR or 2.5 Y , value of 4 to 6 , and chroma of 2 to 6 . It is sand, fine sand, loamy fine sand, or loamy sand.

Deer Park Series

The Deer Park series consists of very deep, excessively drained, rapidly permeable soils on beach ridges and dunes. These soils formed in sandy beach deposits. Slopes range from 1 to 18 percent.

Typical pedon of Deer Park sand, 1 to 10 percent slopes; 900 feet west and 800 feet south of the northeast corner of sec. 24, T. 51 N., R. 27 W.; in the Lake Independence area; USGS Big Bay topographic quadrangle; lat. 46 degrees 48 minutes 26 seconds N . and long. 87 degrees 40 minutes 06 seconds W.

Oe-0 to 1 inch; black (10YR 2/1), partially decomposed forest litter; very strongly acid; clear wavy boundary.
A-1 to 3 inches; very dark gray (10YR 3/1) sand, grayish brown (10YR 5/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; very strongly acid; clear wavy boundary.
E-3 to 11 inches; pale brown (10YR 6/3) sand, pinkish gray (7.5YR 6/2) dry; single grain; loose; many very fine to coarse roots; very strongly acid; clear wavy boundary.
Bs1-11 to 20 inches; strong brown (7.5YR 5/6) sand; single grain; loose; many very fine to coarse roots; very strongly acid; gradual wavy boundary.
Bs2-20 to 28 inches; brown (7.5YR 5/4) sand; single grain; loose; common very fine to medium roots; discontinuous vertical tongues of brown (7.5YR 4/4), moderately cemented ortstein occupy 25 percent (10 of 40 inches) of the horizon and extend into the C horizon to a depth of 32 inches; tongues are 3 to 6 inches wide and 5 to 20 inches apart; strongly acid; gradual wavy boundary.
C-28 to 80 inches; pale brown (10YR 6/3) sand; single grain; loose; few very fine to medium roots; strongly acid.

The depth to ortstein ranges from 10 to 25 inches. The profile is sand throughout.
The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 .
The E horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 2 or 3 . The Bs1 horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 3 to 6 . The Bs2 horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 4 to 6 . Some pedons have a BC horizon.

The C horizon has hue of 7.5 YR or 10YR, value of 6 , and chroma of 3 or 4 .

Deford Series

The Deford series consists of very deep, poorly drained, rapidly permeable soils in depressions and drainageways on outwash plains, till-floored lake plains, beach ridges, and moraines. These soils formed in sandy outwash. Slopes range from 0 to 2 percent.

Typical pedon of Deford muck, 1,300 feet north and 1,150 feet west of the southeast corner of sec. 20, T. 44 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 12 minutes 38 seconds N. and long. 87 degrees 36 minutes 35 seconds W.

Oa-0 to 6 inches; black ($\mathrm{N} 2.5 / 0$) muck; moderate very fine granular structure; very friable; many very fine to coarse roots; moderately acid; abrupt wavy boundary.
Cg1-6 to 18 inches; grayish brown (10YR 5/2) sand; single grain; loose; few very fine to medium roots; few fine distinct yellowish brown (10YR 5/6) and common
medium distinct dark yellowish brown (10YR 4/4) masses of iron accumulation; about 1 percent gravel; moderately acid; gradual wavy boundary.
Cg2-18 to 30 inches; brown (10YR 5/3) sand; single grain; loose; common medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; few medium prominent dark gray (10YR 4/1) iron depletions; about 1 percent gravel; moderately acid; gradual wavy boundary.
Cg3-30 to 80 inches; very dark gray ($2.5 \mathrm{Y} 3 / 1$) sand; single grain; loose; about 2 percent gravel; moderately acid.
The thickness of the organic layer ranges from 2 to 8 inches. The content of gravel ranges from 0 to 8 percent in the mineral horizons.

The Oa horizon has hue of 5YR to 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 or 1 .

The C horizons have hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 2 to 4 . They are sand, fine sand, loamy sand, or loamy fine sand.

Dishno Series

The Dishno series consists of moderately well drained soils that are deep to bedrock. These soils are on bedrock-controlled moraines. They formed in silty and loamy deposits over sandy and gravelly till overlying igneous or metamorphic bedrock. Permeability is moderate in the loamy material and moderately rapid in the sandy material. Slopes range from 1 to 18 percent.

Typical pedon of Dishno cobbly silt loam, in an area of Dishno-Witbeck-Rock outcrop complex, 0 to 12 percent slopes, very bouldery; 583 feet north and 1,832 feet east of the southwest corner of sec. 33, T. 49 N., R. 29 W.; USGS Champion topographic quadrangle; lat. 46 degrees 35 minutes 39.3 seconds N . and long. 87 degrees 56 minutes 16 seconds W.
Oe-0 to 1 inch; dark reddish brown (5YR 2.5/2), partially decomposed forest litter; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
A-1 to 3 inches; dark reddish brown (5YR 3/2) cobbly silt loam, reddish gray (5YR 5/2) dry; moderate very fine granular structure; friable; many very fine to coarse roots; few very fine vesicular pores; about 10 percent cobbles, 9 percent gravel, 5 percent stones, and 1 percent boulders; extremely acid; clear wavy boundary.
E-3 to 9 inches; reddish gray (5YR 5/2) cobbly silt loam, light gray (5YR 7/1) dry; weak medium platy structure parting to weak very fine subangular blocky; friable; many very fine to coarse roots; few very fine vesicular pores; about 10 percent cobbles, 9 percent gravel, 5 percent stones, and 1 percent boulders; extremely acid; abrupt wavy boundary.
Bhs- 9 to 10 inches; dark brown (7.5YR 3/2) cobbly loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; few very fine vesicular pores; about 10 percent cobbles, 7 percent gravel, 5 percent stones, and 1 percent boulders; very strongly acid; abrupt broken boundary.
Bs1-10 to 18 inches; dark brown (7.5YR 3/4) cobbly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; few very fine vesicular pores; about 10 percent cobbles, 7 percent gravel, 5 percent stones, and 1 percent boulders; very strongly acid; clear wavy boundary.
Bs2-18 to 22 inches; brown (7.5YR 4/4) cobbly loamy sand; weak medium platy structure; firm; common very fine to coarse roots; common very fine vesicular pores; about 10 percent cobbles, 7 percent gravel, 5 percent stones, and 1 percent boulders; strongly acid; abrupt broken boundary.
2BC-22 to 29 inches; brown (10YR 4/3) very stony loamy sand; massive; weak thick platiness inherent from deposition; dominantly friable but firm in places; few very fine to medium roots; few very fine vesicular pores; discontinuous silt coats on
rock fragments; common medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 13 percent gravel, 10 percent cobbles, 10 percent stones, and 5 percent boulders; strongly acid; gradual wavy boundary.
2 C -29 to 46 inches; light olive brown (2.5Y 5/3) very stony loamy sand; massive with weakly expressed thick platiness inherent from deposition; dominantly friable but firm in places; few very fine to medium roots; few very fine vesicular pores; discontinuous silt coats on rock fragments; few medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 13 percent gravel, 10 percent cobbles, 10 percent stones, and 5 percent boulders; moderately acid; abrupt smooth boundary.
3R-46 inches; brown (10YR 4/3), unweathered gneiss bedrock; discontinuous brown layer of (10YR 4/3) loamy coarse sand saprolite $1 / 8$ inch thick on surface of bedrock; many coarse prominent strong brown (7.5YR 5/8) masses of iron accumulation on surface of bedrock; strongly acid.

The thickness of the loamy eolian material ranges from 18 to 30 inches. Depth to bedrock ranges from 40 to 60 inches. The content of gravel ranges from 1 to 10 percent in the loamy material and from 10 to 25 percent in the sandy material. The content of cobbles ranges from 0 to 15 percent throughout the profile, the content of stones ranges from 0 to 10 percent throughout the profile, and the content of boulders ranges from 0 to 5 percent throughout the profile.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is silt loam, loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bhs horizon has hue of 5YR or 7.5YR, value of 3, and chroma of 2 or 3 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bs1 horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bs2 horizon has hue of 5 YR to 10YR, value of 4 , and chroma of 3 to 6 . It is silt loam, very fine sandy loam, fine sandy loam, or loamy sand or the cobbly analogs of these textures.

The $2 B C$ horizon has hue of 5 YR to 2.5 Y , value of 4 to 6 , and chroma of 3 or 4 . It is the very stony, gravelly, or cobbly analogs of loamy sand.

The 2C horizon has hue of 5 YR to 2.5 Y , value of 4 or 5 , and chroma of 3 or 4 . It is the very stony, gravelly, or cobbly analogs of loamy sand.

The underlying bedrock is igneous or metamorphic.

Duel Series

The Duel series consists of well drained, rapidly permeable soils that are moderately deep to bedrock. These soils are on bedrock benches. They formed in sandy outwash overlying dolomitic sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Duel loamy sand, 1 to 6 percent slopes, very stony; 900 feet south and 75 feet west of the northeast corner of sec. 15, T. 46 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 23 minutes 19.35 seconds N. and long. 87 degrees 09 minutes 31.18 seconds W .

Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed leaf litter; many very fine to coarse roots; moderately acid; clear wavy boundary.

Bs-1 to 22 inches; dark reddish brown (5YR 3/4) loamy sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; remnants of reddish brown (5YR 4/3) material from the E horizon mixed in the upper part of this horizon; about 8 percent channers, 3 percent gravel, and 1 percent stones; strongly acid; abrupt irregular boundary.
$2 \mathrm{Cr}-22$ to 32 inches; dark brown (7.5YR 3/4) and pale brown (10YR 6/3), soft and weathered dolomitic sandstone; common very fine to medium roots in cracks; slightly alkaline; gradual irregular boundary.
2R—32 inches; pale brown (10YR 6/3) dolomitic sandstone bedrock; few very fine and fine roots in fractures; slightly effervescent; slightly alkaline.

Depth to bedrock ranges from 20 to 40 inches. Throughout the profile, the content of gravel ranges from 0 to 5 percent, the content of cobbles ranges from 0 to 5 percent, the content of channers ranges from 0 to 10 percent, and the content of stones and boulders ranges from 0 to 5 percent. The total content of rock fragments is less than 15 percent.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is loamy sand or sand. Some pedons have an A horizon.

The Cr horizon has hue of 7.5 YR or 10YR, value of 3 to 6 , and chroma of 3 or 4 . It is soft and weathered bedrock. Some pedons have a C horizon.

The underlying bedrock is dolomitic sandstone or limestone.

Emmet Series

The Emmet series consists of very deep, well drained soils on drumlins and ground moraines. These soils formed in loamy till. Permeability is moderate in the solum and moderately slow in the substratum. Slopes range from 1 to 35 percent.

Typical pedon of Emmet fine sandy loam, 1 to 6 percent slopes; in the Gleason Creek area; 2,300 feet east and 1,250 feet north of the southwest corner of sec. 35, T. 44 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 09 minutes 15 seconds N. and long. 87 degrees 31 minutes 54 seconds W .
A—0 to 3 inches; black (10YR 2/1) fine sandy loam, dark gray (10YR 4/1) dry; moderate medium granular structure; friable; many very fine to coarse roots; about 3 percent gravel and 2 percent cobbles; neutral; abrupt wavy boundary.
E-3 to 5 inches; dark grayish brown (10YR 4/2) fine sandy loam, gray (10YR 6/1) dry; moderate medium subangular blocky structure; friable; common very fine to coarse roots; about 3 percent gravel and 2 percent cobbles; neutral; clear irregular boundary.
Bw-5 to 21 inches; brown (7.5YR 4/4) fine sandy loam; moderate medium subangular blocky structure; friable; common very fine to medium roots; about 3 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.
Bt-21 to 28 inches; yellowish red (5YR 4/6) fine sandy loam; moderate medium subangular blocky structure; friable; common very fine and few medium roots; common distinct reddish brown (5YR 4/4) clay films on faces of peds; about 3 percent gravel and 3 percent cobbles; slightly alkaline; gradual smooth boundary.
C—28 to 80 inches; brown (7.5YR 5/4) gravelly fine sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; few fine roots; about 14 percent gravel, 7 percent cobbles, and 3 percent stones; slightly effervescent; slightly alkaline.

The depth to carbonates ranges from 24 to 40 inches. The content of gravel ranges from 2 to 10 percent in the solum and from 10 to 25 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum. The content of stones ranges from 0 to 3 percent throughout the profile.

The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly fine sandy loam, but the range includes sandy loam.

The E horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 1 to 3 . It is fine sandy loam or sandy loam.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sandy loam or sandy loam.

The Bt horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 3 to 6 . It is sandy loam or fine sandy loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 3 or 4 . It is gravelly fine sandy loam.

Ensley Series

The Ensley series consists of very deep, poorly drained, moderately permeable soils in depressions and drainageways on ground moraines. These soils formed in loamy till. Slopes are 0 to 1 percent.

Typical pedon of Ensley muck, 120 feet west and 200 feet south of the northeast corner of sec. 9, T. 43 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 08 minutes 39 seconds N. and long. 87 degrees 33 minutes 16 seconds W.
Oa-0 to 5 inches; black (10YR 2/1) muck; moderate fine granular structure; very friable; many very fine to coarse roots; neutral; clear wavy boundary.
A-5 to 7 inches; black (10YR 2/1) mucky loam, very dark gray (10YR 3/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 3 percent gravel; neutral; clear smooth boundary.
Bw-7 to 19 inches; brown (7.5YR 5/4) fine sandy loam; weak medium subangular blocky structure; friable; common very fine to medium roots; common fine prominent light brownish gray (10YR 6/2) iron depletions; common medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 8 percent gravel; slightly effervescent; slightly alkaline; clear wavy boundary.
C-19 to 80 inches; brown (7.5YR 5/4) gravelly fine sandy loam; massive with weakly expressed thick platiness inherent from deposition; friable; few very fine and fine roots; about 20 percent gravel and 5 percent cobbles; slightly effervescent; slightly alkaline.

The depth to carbonates ranges from 15 to 30 inches. The content of gravel ranges from 1 to 10 percent in the solum and from 10 to 25 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum. The content of stones ranges from 0 to 2 percent throughout the profile.

The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly mucky loam, but the range includes mucky fine sandy loam and mucky sandy loam.

The Bw horizon has hue of 7.5 YR or 10YR, value of 3 to 5 , and chroma of 3 to 6 . It is sandy loam, fine sandy loam, or loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 3 or 4 . It is gravelly fine sandy loam.

Escanaba Series

The Escanaba series consists of very deep, well drained soils on drumlins and ground moraines. These soils formed in a sandy mantle over loamy till. Permeability is moderately rapid in the sandy part of the profile and moderate in the loamy lower part. Slopes range from 1 to 18 percent.

Typical pedon of Escanaba loamy fine sand, 1 to 6 percent slopes; 1,400 feet north and 2,300 feet east of the southwest corner of sec. 31, T. 45 N., R. 27 W.; USGS Green Hills topographic quadrangle; lat. 46 degrees 15 minutes 03 seconds N. and long. 87 degrees 43 minutes 59 seconds W .
Oe-0 to 1 inch; partially decomposed leaf litter.
A-1 to 3 inches; black (5YR 2.5/1) loamy fine sand, dark gray (5YR 4/1) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 3 percent gravel; moderately acid; abrupt wavy boundary.
E-3 to 6 inches; reddish gray (5 YR 5/2) loamy fine sand, pinkish gray (5 YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 3 percent gravel; moderately acid; abrupt wavy boundary.
Bs1-6 to 12 inches; dark reddish brown (5YR 3/4) loamy fine sand; weak fine subangular blocky structure; very friable; many very fine to medium roots; about 3 percent gravel; moderately acid; clear wavy boundary.
Bs2-12 to 26 inches; brown (7.5YR 4/4) loamy fine sand; weak fine subangular blocky structure; very friable; few fine and medium roots; moderately acid; clear wavy boundary.
2E/B-26 to 35 inches; about 60 percent reddish brown (5YR 5/3) loamy fine sand, pinkish gray (5YR 6/2) dry (E); occurs as tongues extending into or completely surrounding isolated remnants of dark reddish brown (5YR 3/4) fine sandy loam (Bt); few distinct discontinuous dark reddish brown (5YR 3/3) clay films on faces of peds; weak medium subangular blocky structure; friable; few fine and medium roots; common very fine vesicular pores; about 3 percent gravel and 2 percent cobbles; neutral; clear irregular boundary.
2Bt- 35 to 42 inches; dark reddish brown (5YR 3/4) fine sandy loam; weak medium subangular blocky structure; friable; few fine and medium roots; few distinct discontinuous dark reddish brown (5YR 3/3) clay films on faces of peds; common very fine vesicular pores; about 3 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.
2C-42 to 80 inches; reddish brown (5YR 5/4) gravelly fine sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; few fine and medium roots; about 14 percent gravel and 6 percent cobbles; slightly effervescent; slightly alkaline.
The thickness of the sandy mantle ranges from 20 to 35 inches. The content of gravel ranges from 0 to 10 percent in the sandy mantle and the lower part of the subsoil and from 5 to 20 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the sandy mantle and the lower part of the subsoil and from 0 to 10 percent in the substratum.

The A horizon has hue of 5YR to 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is dominantly loamy fine sand, but the range includes fine sand, sand, and loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is loamy fine sand, fine sand, or sand.

The Bs1 horizon has hue of 5YR or 7.5 YR and value and chroma of 3 or 4 . It is loamy fine sand, fine sand, loamy sand, or sand.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is loamy fine sand, fine sand, loamy sand, or sand.

The E part of the $2 \mathrm{E} / \mathrm{B}$ horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is loamy sand or loamy fine sand. The B part of the $2 E / B$ horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is sandy loam or fine sandy loam. Some pedons have a $2 \mathrm{~B} / \mathrm{E}$ horizon.

The 2Bt horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

The 2C horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 3 or 4 . It is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam.

Evart Series

The Evart series consists of very deep, poorly drained, rapidly permeable soils on flood plains and in old stream channels. These soils formed in silty and sandy alluvium. Slopes range from 0 to 2 percent.

Typical pedon of Evart silt loam, in an area of Evart-Pelkie-Sturgeon complex, 0 to 4 percent slopes; 1,750 feet east and 1,550 feet south of the northwest corner of sec.
28, T. 44 N., R. 26 W.; 35 feet south of the West Branch of the Escanaba River; USGS Northland NE topographic quadrangle; lat. 46 degrees 11 minutes 02 seconds N . and long. 87 degrees 34 minutes 33 seconds W .

A1-0 to 10 inches; very dark brown (10YR 2/2) silt loam, brown (10YR 4/3) dry; weak fine granular structure; friable; many very fine to coarse roots; common fine prominent red (2.5YR 5/8) masses of iron accumulation; neutral; clear wavy boundary.
A2-10 to 18 inches; black (10YR 2/1) loamy fine sand, very dark grayish brown (10YR 3/2) dry; weak medium subangular blocky structure; friable; few very fine to medium roots; few fine prominent red (2.5YR 5/8) masses of iron accumulation; slightly acid; clear wavy boundary.
Cg1-18 to 40 inches; grayish brown (10YR 5/2) sand; single grain; loose; few thin bands of very dark brown (10YR 2/2), well decomposed organic material; neutral; clear wavy boundary.
Cg2-40 to 80 inches; grayish brown (10YR 5/2) sand; single grain; loose; few thin bands of very dark brown (10YR 2/2), well decomposed organic material; about 6 percent gravel; slightly alkaline.

The thickness of the silty mantle ranges from 6 to 15 inches. The content of gravel ranges from 0 to 2 percent in the silty mantle and from 0 to 10 percent in the sandy lower part of the profile.

The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is silt loam.

The Cg horizon has hue of 10 YR to 5 Y , value of 4 to 6 , and chroma of 2 or 3 . It is sand, fine sand, or loamy sand. In some pedons it has thin strata of silt loam.

Farquar Series

The Farquar series consists of very deep, moderately well drained soils on outwash terraces and outwash plains. These soils formed in gravelly and sandy outwash. Permeability is moderately rapid in the loamy mantle and very rapid in the sandy and gravelly outwash. Slopes range from 0 to 4 percent.

Typical pedon of Farquar gravelly sandy loam, 0 to 4 percent slopes; 990 feet east and 1,650 feet south of the northwest corner of sec. 16, T. 45 N., R. 25 W.; north of Gwinn; USGS Gwinn topographic quadrangle; lat. 46 degrees 17 minutes 58 seconds N. and long. 87 degrees 26 minutes 46 seconds W.

Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed leaf litter; moderate very fine granular structure; very friable; many very fine to coarse roots; moderately acid; abrupt smooth boundary.
A-2 to 4 inches; black (10YR 2/1) gravelly sandy loam, dark grayish brown (10YR $4 / 2$) dry; moderate very fine granular structure; friable; many very fine to coarse roots; about 18 percent gravel and 1 percent cobbles; strongly acid; clear wavy boundary.

E-4 to 6 inches; brown (7.5YR 4/2) gravelly sandy loam, pinkish gray (7.5YR 6/2) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 18 percent gravel and 1 percent cobbles; moderately acid; abrupt broken boundary.
2Bs1-6 to 9 inches; dark reddish brown (5YR 3/4) very gravelly loamy sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 45 percent gravel and 3 percent cobbles; moderately acid; clear irregular boundary.
2Bs2—9 to 20 inches; reddish brown (5YR 4/4) very gravelly coarse sand; weak very fine subangular blocky structure; very friable; common very fine to coarse roots; about 45 percent gravel and 3 percent cobbles; moderately acid; gradual wavy boundary.
2BC—20 to 36 inches; strong brown (7.5YR 4/6) very gravelly coarse sand; single grain; loose; common medium faint strong brown (7.5YR 5/8) masses of iron accumulation; about 45 percent gravel and 3 percent cobbles; moderately acid; gradual smooth boundary.
2C-36 to 80 inches; light brown (7.5YR 6/4), stratified very gravelly coarse sand and sand; single grain; loose; common medium distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 40 percent gravel and 3 percent cobbles; slightly acid.

The thickness of the loamy mantle ranges from 0 to 10 inches. The content of gravel ranges from 5 to 35 percent in the loamy material and from 15 to 60 percent in the lower part of the solum and in the substratum. The content of cobbles ranges from 0 to 15 percent throughout the profile, and the content of stones ranges from 0 to 2 percent throughout the profile. The content of rock fragments averages more than 35 percent in the control section.

The A horizon has hue of 5 YR to 10 YR , value of 2 to 4 , and chroma of 1 or 2 . It is dominantly gravelly sandy loam, but the range includes fine sandy loam, loamy sand, gravelly fine sandy loam, and gravelly loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 to 3 . It is sandy loam, fine sandy loam, or loamy sand or the gravelly analogs of these textures.

The 2Bs1 horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is the very gravelly or extremely gravelly analogs of loamy sand, loamy coarse sand, coarse sand, or sand.

The 2 Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is the very gravelly or extremely gravelly analogs of coarse sand, sand, loamy coarse sand, or loamy sand.

The 2 BC horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is the very gravelly or extremely gravelly analogs of coarse sand or sand.

The 2C horizon has hue of 7.5 YR or 10 YR , value of 4 to 6 , and chroma of 3 or 4 . It is stratified sand or coarse sand or the gravelly or very gravelly analogs of these textures.

Fence Series

The Fence series consists of very deep, moderately well drained soils on till-floored lake plains. These soils formed in stratified loamy glaciolacustrine deposits. Permeability is moderate in the solum and moderately slow in the substratum. Slopes range from 1 to 12 percent.

Typical pedon of Fence very fine sandy loam, 1 to 12 percent slopes, dissected; 1,150 feet west and 500 feet south of the northeast corner of sec. 26, T. 46 N., R. 24
W.; USGS Little Lake topographic quadrangle; lat. 46 degrees 21 minutes 37 seconds N . and long. 87 degrees 16 minutes 01 second W .

A-0 to 3 inches; very dark gray (5YR 3/1) very fine sandy loam, gray (5YR 5/1) dry; weak medium subangular blocky structure; friable; many very fine to coarse roots; strongly acid; abrupt smooth boundary.
E-3 to 7 inches; reddish gray (5 YR 5/2) very fine sandy loam, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; very friable; common very fine to coarse roots; moderately acid; abrupt wavy boundary.
Bhs-7 to 11 inches; dark reddish brown (5YR 3/2) very fine sandy loam; moderate medium subangular blocky structure; friable; many very fine to medium roots; about 1 percent gravel; moderately acid; clear wavy boundary.
Bs-11 to 16 inches; reddish brown (5YR 4/4) very fine sandy loam; moderate medium subangular blocky structure; friable; common very fine to medium roots; about 1 percent gravel; moderately acid; clear wavy boundary.
Bw-16 to 19 inches; yellowish brown (10YR 5/4) loamy very fine sand; weak thick platy structure parting to weak fine subangular blocky; very friable; few very fine to medium roots; about 1 percent gravel; moderately acid; clear wavy boundary.
B/E—19 to 42 inches; reddish brown (2.5YR 4/4) and red (2.5YR 4/6) silt loam (Bt); common distinct reddish brown (2.5YR 4/4) clay films on faces of peds; occupies about 60 percent of the horizon; penetrated by tongues of reddish brown (5 YR $5 / 3$) very fine sandy loam, pinkish gray (5YR $7 / 2$) dry (E); moderate very thick platy structure parting to moderate medium subangular blocky; friable; few very fine to medium roots; common fine prominent strong brown (7.5YR $5 / 6$ and 4/6) masses of iron accumulation; about 1 percent gravel; moderately acid; clear irregular boundary.
C1-42 to 57 inches; stratified reddish brown (2.5YR 4/4) silt loam, reddish brown (5YR 5/4) very fine sandy loam, and red (2.5YR 4/6) silty clay loam; massive with strong thick platiness inherent from deposition; friable; few very fine to medium roots; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation; moderately acid; clear wavy boundary.
C2-57 to 80 inches; stratified reddish brown (5YR 5/4) silt loam and brown (7.5YR $5 / 3$) very fine sand; massive with weak very thick platiness inherent from deposition; friable; few fine distinct strong brown (7.5YR 5/6) and brown (7.5YR $5 / 4$) masses of iron accumulation; moderately acid.
The content of gravel ranges from 0 to 2 percent throughout the profile.
The A horizon has hue of 5 YR , value of 2.5 or 3 , and chroma of 1 or 2 . It is very fine sandy loam.

The E horizon has hue of 5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is very fine sandy loam or silt loam.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is very fine sandy loam or silt loam.

The Bs horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 . It is very fine sandy loam or silt loam.

The Bw horizon has hue of 10 YR and value and chroma of 4 to 6 . It is loamy very fine sand or very fine sandy loam.

The B part of the E / B and B / E horizons has hue of 2.5 YR or $5 Y R$, value of 4 , and chroma of 3 to 6 . It is silt loam. Some pedons have strata of silty clay loam. The E part has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is silt loam or very fine sandy loam.

The C horizon has hue of 2.5YR to 7.5 YR , value of 4 to 6 , and chroma of 3 to 6 . It is stratified very fine sandy loam, silt loam, silty clay loam, and very fine sand.

Finch Series

The Finch series consists of very deep, somewhat poorly drained soils on outwash plains and till-floored lake plains. These soils formed in sandy glaciolacustrine deposits and outwash. They have ortstein in the subsoil. Permeability is rapid in the upper part, moderate or moderately rapid in the ortstein, and rapid in the lower part. Slopes range from 0 to 5 percent.

Typical pedon of Finch sand, in an area of Paquin-Finch sands, 0 to 5 percent slopes; 2,063 feet south and 196 feet east of the northwest corner of sec. 1, T. 49 N., R. 27 W.; USGS Negaunee NW topographic quadrangle; lat. 46 degrees 40 minutes 24 seconds N . and long. 87 degrees 38 minutes 01 second W .

Oa-0 to 3 inches; black (N 2.5/0), well decomposed forest litter; many very fine to coarse roots; about 2 percent gravel; very strongly acid; abrupt smooth boundary.
E-3 to 10 inches; brown ($7.5 \mathrm{YR} 5 / 2$) sand, gray (7.5YR 6/1) dry; weak very fine subangular blocky structure; very friable; many medium distinct dark reddish gray (5YR 4/2) iron depletions; many very fine to coarse roots; about 2 percent gravel; very strongly acid; abrupt irregular boundary.
Bhsm-10 to 12 inches; dark brown (7.5YR 3/3) and dark reddish brown (5YR 3/2) sand; massive; very hard; few very fine and fine roots in cracks; strongly cemented ortstein occupies 90 percent (36 of 40 inches) of the horizon and extends into the Bsm horizon; ortstein exists as a nearly continuous layer; common medium distinct very dark gray (5YR 3/1) iron depletions; common medium distinct strong brown (7.5YR 4/6) masses of iron accumulation; about 2 percent gravel; very strongly acid; gradual irregular boundary.
Bsm-12 to 20 inches; dark brown (7.5YR 3/4) sand; massive; very hard; few very fine and fine roots in cracks; strongly cemented ortstein occupies 100 percent of the horizon; tongues of ortstein extend to a depth of 24 inches; many moderate distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 2 percent gravel; strongly acid; gradual wavy boundary.
BC-20 to 29 inches; brown (7.5YR 4/4) sand; massive; friable; few very fine and fine roots; common medium distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 2 percent gravel; moderately acid; gradual wavy boundary.
C-29 to 80 inches; brown (7.5YR 4/3) sand; single grain; loose; common coarse distinct strong brown (7.5YR 4/6) masses of iron accumulation; about 2 percent gravel; moderately acid.

The depth to ortstein ranges from 7 to 12 inches. The content of gravel ranges from 0 to 5 percent throughout the profile.

The A horizon, if it occurs, has hue of 5YR to 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is sand or loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 . It is sand or loamy sand.

The Bhsm horizon has hue of 2.5YR, 5YR, or 7.5 YR and value and chroma of 2 or 3 . It is sand.

The Bsm horizon, if it occurs, has hue of 2.5YR, 5 YR , or 7.5 YR , value of 3 or 4 , and chroma of 3 to 6 . Value and chroma of 3 do not occur together. This horizon is sand.

The Bs horizon, if it occurs, has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . Value and chroma of 3 do not occur together. This horizon is sand.

The BC horizon has hue of 7.5 YR , value of 4 , and chroma of 3 . It is sand.
The C horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 2 to 4 . It is sand.

Frohling Series

The Frohling series consists of very deep, well drained soils on till-floored lake plains, dissected moraines, and ground moraines. These soils are shallow or moderately deep to a fragipan. They formed in loamy till. Permeability is moderate in the upper part of the profile and very slow in the fragipan. Slopes range from 8 to 70 percent.

Typical pedon of Frohling fine sandy loam, in an area of Frohling-Tokiahok complex, 8 to 35 percent slopes, dissected, very stony; 600 feet north and 2,150 feet west of the southeast corner of sec. 12, T. 45 N., R. 24 W.; USGS Carlshend topographic quadrangle; lat. 46 degrees 18 minutes 28 seconds N . and long. 87 degrees 14 minutes 58 seconds W .

Oe-0 to 1 inch; black (10YR 2/1), partially decomposed forest litter.
A-1 to 2 inches; very dark gray (10YR 3/1) fine sandy loam, gray (10YR 5/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 5 percent cobbles and 3 percent gravel; strongly acid; abrupt smooth boundary.
E-2 to 7 inches; reddish gray (5YR 5/2) fine sandy loam, light gray (5YR 7/1) dry; weak thin platy structure parting to weak very fine subangular blocky; friable; many very fine to coarse roots; about 5 percent cobbles and 3 percent gravel; strongly acid; abrupt wavy boundary.
Bhs-7 to 9 inches; dark reddish brown (5YR $3 / 3$) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 5 percent cobbles and 3 percent gravel; strongly acid; abrupt broken boundary.
Bs-9 to 16 inches; reddish brown (5YR 4/4) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 5 percent cobbles and 3 percent gravel; strongly acid; clear wavy boundary.
(E/B)x-16 to 34 inches; about 70 percent reddish brown (5YR 5/3) loamy fine sand, light gray (5YR 7/1) dry (E); surrounding peds of reddish brown (5YR 4/4) fine sandy loam (Bt); common distinct red (2.5YR 4/6) clay films on faces of peds and in root channels; weak thin platy structure parting to weak very fine subangular blocky; very firm; few very fine to medium roots in cracks 12 to 24 inches apart; common very fine vesicular pores; about 5 percent cobbles and 3 percent gravel; moderately acid; gradual irregular boundary.
(B/E) $x-34$ to 80 inches; reddish brown (2.5YR 4/4) fine sandy loam (Bt); common distinct red (2.5YR 4/6) clay films on faces of peds and in root channels; occupies about 60 percent of the horizon; surrounding peds of reddish brown (2.5YR $5 / 3$) loamy fine sand, light gray (5YR 7/1) dry (E); weak medium platy structure parting to weak fine subangular blocky; very firm; few very fine to medium roots in cracks 12 to 24 inches apart; common very fine vesicular pores; about 5 percent cobbles and 3 percent gravel; strongly acid.

Depth to the fragipan ranges from 15 to 25 inches. The content of gravel ranges from 0 to 15 percent throughout the profile, and the content of cobbles ranges from 0 to 5 percent throughout the profile.

The A horizon has hue of 5 YR to 10 YR , value of 2 to 4 , and chroma of 1 or 2 . It is dominantly fine sandy loam, but the range includes sandy loam and loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 to 3 . It is fine sandy loam, sandy loam, loamy sand, or loamy fine sand.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is fine sandy loam or sandy loam.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 3 to 6 . It is fine sandy loam or sandy loam.

The E part of the (E/B)x and (B/E)x horizons has hue of 2.5YR or 5YR, value of 4 or 5 , and chroma of 2 to 4 . It is loamy sand, loamy fine sand, sandy loam, or fine sandy
loam. The Bt part of the (E/B)x and (B/E)x horizons has hue of 2.5YR or 5YR, value of 3 to 5 , and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

The C horizon, if it occurs, has hue of 2.5YR or 5YR, value of 4 or 5 , and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

Garlic Series

The Garlic series consists of very deep, well drained, rapidly permeable soils on tillfloored lake plains and dissected moraines. These soils formed in sandy glaciofluvial sediments. Slopes range from 1 to 70 percent.

Typical pedon of Garlic fine sand (fig. 19), in an area of Garlic-Alcona-Voelker complex, 15 to 70 percent slopes, dissected; 2,000 feet west and 1,350 feet north of the southeast corner of sec. 6, T. 46 N., R. 24 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 24 minutes 32.50 seconds N . and long. 87 degrees 21 minutes 13.18 seconds W.

Oa-0 to 1 inch; black (N 2.5/0), well decomposed leaf litter; moderate fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-1 to 9 inches; reddish gray (5YR 5/2) fine sand, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; very strongly acid; clear wavy boundary.
Bhs-9 to 15 inches; dark reddish brown (5YR 3/2) fine sand; weak medium subangular blocky structure; friable; many very fine to coarse roots; dark reddish brown (5YR 3/2), moderately cemented ortstein occupies 28 percent (11 of 40 inches) of the lower part of the horizon; the ortstein extends into the Bs horizon; very strongly acid; clear wavy boundary.
Bs-15 to 26 inches; dark reddish brown (5YR 3/4) fine sand; weak medium subangular blocky structure; friable; common very fine to coarse roots; dark reddish brown (5YR 3/3) and reddish brown (5YR 4/4), strongly cemented ortstein occupies 75 percent (30 of 40 inches) of the horizon; the ortstein extends from the Bhs horizon into this horizon to a depth of 47 inches and occurs as tongues 10 to 30 inches apart; moderately acid; clear wavy boundary.
BC-26 to 46 inches; brown (7.5YR 5/4) fine sand; weak fine subangular blocky structure; friable; few very fine to medium roots; few thin strata of reddish brown (5YR 4/4) loamy fine sand; moderate cementation in the upper part of the horizon; strongly acid; gradual wavy boundary.
C-46 to 80 inches; brown (7.5YR 5/4) fine sand; single grain; loose; slightly acid.
The content of gravel ranges from 0 to 5 percent throughout the profile.
The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 . It is dominantly fine sand, but the range includes loamy fine sand and sand.

The A horizon, if it occurs, has hue of 7.5YR or 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is sand, fine sand, or loamy fine sand.

The Bhs horizon has hue of 5YR or 7.5YR, value of 3, and chroma of 2 or 3 . It is fine sand or sand.

The Bs horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is fine sand or sand.

The BC horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sand or sand and has thin strata of loamy fine sand.

The C horizon has hue of 7.5YR or 10YR, value of 5 or 6 , and chroma of 4 to 6 . It is fine sand or sand and has thin strata of loamy fine sand.

Figure 19.-Typical profile of Garlic fine sand. Garlic soils support good stands of hardwood. Depth is marked in feet.

Gay Series

The Gay series consists of very deep, poorly drained, moderately permeable soils in depressions and drainageways on till-floored lake plains and ground moraines. These soils formed in loamy till. Slopes are 0 to 1 percent.

Typical pedon of Gay muck, stony; 2,300 feet west and 2,100 feet south of the northeast corner of sec. 33, T. 51 N., R. 26 W.; USGS Granite Point topographic quadrangle; lat. 46 degrees 46 minutes 28 seconds N. and long. 87 degrees 36 minutes 38 seconds W.

Oa-0 to 2 inches; black (10YR 2/1) muck; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
A-2 to 5 inches; very dark grayish brown (10YR 3/2) fine sandy loam, grayish brown (10YR 5/2) dry; moderate medium granular structure; friable; many very fine to coarse roots; about 5 percent gravel; very strongly acid; clear wavy boundary.
Eg-5 to 18 inches; brown (7.5YR 5/2) loamy sand, brown (10YR 5/3) dry; moderate coarse subangular blocky structure; friable; few very fine to medium roots; common medium prominent yellowish red (5 YR $4 / 6$ and $5 / 6$) masses of iron accumulation; about 5 percent gravel; strongly acid; clear wavy boundary.
Bw-18 to 31 inches; reddish brown (5YR 5/3 and 5/4) sandy loam; moderate thick platy structure; friable; very few fine roots; common medium distinct yellowish red (5YR 4/6 and $5 / 6$) masses of iron accumulation; about 8 percent gravel and 2 percent cobbles; strongly acid; gradual wavy boundary.
C-31 to 80 inches; reddish brown (2.5YR 4/4) sandy loam; massive with weakly expressed thick platiness inherent from deposition; friable; about 8 percent gravel and 2 percent cobbles; moderately acid.

The content of gravel ranges from 0 to 15 percent in the A and E horizons and from 0 to 10 percent in the rest of the profile. The content of cobbles ranges from 0 to 10 percent throughout the profile, and the content of stones ranges from 0 to 5 percent throughout the profile.

The Oa horizon has hue of 7.5 YR or 10YR or is neutral in hue. It has value of 2 or 2.5 and chroma of 0 or 1 .

The A horizon has hue of 5YR to 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is dominantly fine sandy loam, but the range includes sandy loam and loam or the gravelly or cobbly analogs of these textures.

The Eg horizon has hue of 5 YR to 10YR, value of 5 or 6, and chroma of 1 or 2 . It is loamy sand, fine sandy loam, or sandy loam or the gravelly or cobbly analogs of these textures.

The Bw horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

The C horizon has hue of 2.5 YR or 5 YR, value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam or fine sandy loam. Some pedons have a BC horizon.

Gogebic Series

The Gogebic series consists of very deep, moderately well drained soils on bedrock-controlled moraines. These soils are shallow or moderately deep to a fragipan. They formed in a silty or loamy mantle over loamy till. Permeability is moderate in the upper part of the profile, very slow in the fragipan, and moderate in the substratum. Slopes range from 1 to 18 percent.

Typical pedon of Gogebic cobbly silt loam, 1 to 6 percent slopes, very stony; 350 feet west and 2,500 feet north of the southeast corner of sec. 19, T. 47 N., R. 27 W.; USGS Ishpeming topographic quadrangle; lat. 46 degrees 27 minutes 24 seconds N . and long. 87 degrees 43 minutes 12 seconds W.
Oe-0 to 1 inch; black (7.5YR 2.5/1), partially decomposed forest litter; many very fine to coarse roots; about 9 percent cobbles, 5 percent stones, and 2 percent gravel; strongly acid; abrupt smooth boundary.
A—1 to 3 inches; black (5YR 2.5/1) cobbly silt loam, gray (5YR 6/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 9 percent cobbles, 6 percent gravel, and 5 percent stones; extremely acid; clear wavy boundary.
E-3 to 5 inches; reddish gray (5YR 5/2) cobbly silt loam, pinkish gray (7.5YR 6/2) dry; moderate fine subangular blocky structure; friable; many very fine to coarse roots;
about 9 percent cobbles, 6 percent gravel, and 5 percent stones; extremely acid; abrupt broken boundary.
Bs1- 5 to 13 inches; dark reddish brown (5YR 3/4) cobbly fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 9 percent cobbles, 6 percent gravel, and 5 percent stones; extremely acid; clear wavy boundary.
Bs2-13 to 18 inches; reddish brown (5YR 4/4) cobbly sandy loam; weak fine subangular blocky structure; firm; common very fine to coarse roots; about 9 percent cobbles, 6 percent gravel, and 5 percent stones; very strongly acid; clear smooth boundary.
2(E/B)x-18 to 34 inches; about 60 percent reddish brown (2.5YR $5 / 3$) very gravelly loamy sand, light reddish brown (5YR 6/3) dry (E); surrounding isolated remnants of reddish brown (2.5YR 4/4) very gravelly sandy loam (Bt); common distinct red (2.5YR 5/8) clay films on faces of peds; weak medium platy structure; very firm; few very fine to medium roots in cracks 10 to 20 inches apart; many very fine and fine vesicular pores; common medium distinct red ($2.5 \mathrm{YR} 5 / 8$) masses of iron accumulation; about 30 percent gravel, 15 percent cobbles, and 10 percent stones; strongly acid; gradual irregular boundary.
2(B/E)x-34 to 62 inches; reddish brown (2.5YR 4/4) very gravelly sandy loam (Bt); common distinct red (2.5YR 5/8) clay films on faces of peds; occupies about 70 percent of the horizon; surrounded by reddish brown (2.5YR $5 / 3$) very gravelly loamy sand, light reddish brown (5YR 6/3) dry (E); weak medium platy structure; very firm; few very fine and fine roots in cracks 10 to 20 inches apart; common very fine vesicular pores; about 30 percent gravel, 8 percent cobbles, and 5 percent stones; moderately acid; gradual irregular boundary.
2C-62 to 80 inches; reddish brown (2.5YR 4/4) very gravelly sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; about 30 percent gravel, 8 percent cobbles, and 5 percent stones; strongly acid.

Depth to the fragipan ranges from 15 to 30 inches. The content of gravel ranges from 5 to 15 percent above the fragipan and from 20 to 30 percent in the fragipan and in the substratum. The content of cobbles ranges from 1 to 15 percent above the fragipan and from 5 to 20 percent in the fragipan and in the substratum. The content of stones ranges from 0 to 10 percent throughout the profile.

The A horizon has hue of 5 YR or 7.5 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly cobbly silt loam, but the range includes cobbly very fine sandy loam, cobbly fine sandy loam, very fine sandy loam, and fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 , and chroma of 2 or 3 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bs1 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5YR or 7.5YR and value and chroma of 4. It is fine sandy loam, sandy loam, cobbly fine sandy loam, or cobbly sandy loam.

The B part of the $2(B / E) x$ and $2(E / B) x$ horizons has hue of 2.5 YR or 5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is very gravelly sandy loam or very cobbly sandy loam or the gravelly or cobbly analogs of these textures. The E part of the 2(B/E)x and 2(E/B)x horizons has hue of 2.5 YR or 5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is very gravelly loamy sand, very cobbly loamy sand, gravelly loamy sand, or cobbly loamy sand.

The 2C horizon has hue of 2.5 YR or 5 YR , value of 4 , and chroma of 4 to 6 . It is very gravelly sandy loam or gravelly sandy loam.

Goodman Series

The Goodman series consists of very deep, well drained soils on disintegration moraines. These soils formed in a silty mantle over sandy till. Permeability is moderate in the silty mantle and moderately rapid in the substratum. Slopes range from 1 to 45 percent.

Typical pedon of Goodman silt loam, in an area of Goodman-Sundog silt loams, 18 to 45 percent slopes, bouldery; 1,800 feet east and 650 feet south of the northwest corner of sec. 36, T. 45 N., R. 30 W.; USGS Witch Lake topographic quadrangle; lat. 46 degrees 15 minutes 34 seconds N. and long. 88 degrees 00 minutes 21 seconds W.

Oe—0 to 1 inch; black (7.5YR 2.5/1), partially decomposed forest litter; strongly acid; abrupt smooth boundary.
E-1 to 4 inches; pinkish gray (5YR 6/2) silt loam, pinkish gray (7.5YR 7/2) dry; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 1 percent gravel; strongly acid; abrupt smooth boundary.
Bs1-4 to 11 inches; brown (7.5YR 4/4) silt loam; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 1 percent gravel; moderately acid; clear wavy boundary.
Bs2—11 to 19 inches; strong brown (7.5YR 4/6) silt loam; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 1 percent gravel; moderately acid; clear wavy boundary.
E/B—19 to 30 inches; about 85 percent brown (7.5YR 5/3) silt loam, pinkish gray (7.5YR 6/2) dry (E); surrounding isolated remnants of reddish brown (5YR 4/4) silt loam (Bt); few distinct dark reddish brown (5YR 3/3) clay films on faces of peds; weak fine subangular blocky structure; friable; common very fine to medium roots; about 1 percent gravel; slightly acid; clear wavy boundary.
2B/E-30 to 51 inches; dark reddish brown (5YR 3/4) sandy loam (Bt); common distinct dark reddish brown (5YR 3/3) clay films on faces of peds; occupies about 75 percent of the horizon; penetrated by tongues of reddish brown (5YR 4/3) loamy sand, light reddish brown (5YR 6/3) dry (E); weak medium platy structure parting to weak very fine subangular blocky; friable; common very fine to medium roots; about 4 percent gravel and 2 percent cobbles; slightly acid; gradual irregular boundary.
2E/B—51 to 71 inches; about 85 percent reddish brown (5YR 4/3) loamy sand, light reddish brown (5YR 6/3) dry (E); surrounding isolated remnants of dark reddish brown (5YR 3/4) sandy loam (Bt); few distinct dark reddish brown (5YR 3/3) clay films on faces of peds; weak medium platy structure parting to weak very fine subangular blocky; friable; few very fine and fine roots; about 4 percent gravel and 2 percent cobbles; slightly acid; gradual wavy boundary.
2C—71 to 80 inches; brown (7.5YR 4/4) loamy sand; massive with weakly expressed thick plates inherited from the parent material; friable; few very fine and fine roots; about 4 percent gravel and 2 percent cobbles; slightly acid.

The thickness of the silty mantle ranges from 12 to 36 inches. The content of gravel ranges from 3 to 5 percent in the silty mantle and from 3 to 20 percent in the underlying till. The content of cobbles ranges from 0 to 3 percent in the silty mantle and from 0 to 5 percent in the underlying till. The content of stones ranges from 0 to 3 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is dominantly silt loam, but the range includes very fine sandy loam. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is silt loam or very fine sandy loam.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is silt loam or very fine sandy loam.

The E part of the E/B horizon has hue of 5YR to 10YR, value of 4 or 5 , and chroma of 2 or 3 . It is very fine sandy loam or silt loam. The Bt part of the E / B horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is silt loam or very fine sandy loam.

The 2(B/E) and 2(E/B) horizons have colors similar to those of the E/B horizon. The E part is loamy sand, sandy loam, gravelly loamy sand, or gravelly sandy loam. The Bt part is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam.

The 2C horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is loamy sand, sandy loam, or fine sandy loam or the gravelly analogs of these textures.

Grayling Series

The Grayling series consists of very deep, excessively drained, rapidly permeable soils on outwash plains. These soils formed in sandy outwash. Slopes range from 0 to 35 percent.

Typical pedon of Grayling sand, 0 to 6 percent slopes; 1,000 feet north and 1,200 feet west of the southeast corner of sec. 31, T. 47 N., R. 25 W.; USGS Sands topographic quadrangle; lat. 46 degrees 25 minutes 22 seconds N. and long. 87 degrees 28 minutes 26 seconds W .
A-0 to 3 inches; very dark gray (10YR 3/1) sand, dark gray (10YR 4/1) dry; mixed with coated and uncoated sand grains; weak very fine granular structure; very friable; many very fine to coarse roots; about 2 percent gravel; very strongly acid; abrupt smooth boundary.
Bw1-3 to 11 inches; brown (7.5YR 4/4) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel; moderately acid; gradual wavy boundary.
Bw2-11 to 23 inches; strong brown (7.5YR 4/6) sand; weak fine subangular blocky structure; very friable; common very fine to medium roots; about 2 percent gravel; moderately acid; gradual wavy boundary.
C-23 to 80 inches; light brown (7.5YR 6/4) sand; single grain; loose; few very fine and fine roots; about 2 percent gravel; slightly acid.
The content of gravel ranges from 0 to 5 percent throughout the profile.
The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is sand. It is typically intermixed with E horizon material. Some pedons have a separate E horizon.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand. Some pedons have a BC horizon.

The C horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 3 or 4 . It is sand.

Greenwood Series

The Greenwood series consists of very deep, very poorly drained soils in depressions on outwash plains, till-floored lake plains, and moraines. These soils formed in deep organic deposits. Permeability is moderate or moderately rapid. Slopes are 0 to 1 percent.

Typical pedon of Greenwood peat, in an area of Greenwood and Dawson soils; in the Sand River area; 2,300 feet south and 1,900 feet east of the northwest corner of sec. 12, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 30 minutes 13 seconds N . and long. 87 degrees 08 minutes 16 seconds W .

Oi-0 to 8 inches; peat, dark brown (10YR 3/3) broken face and brown (10YR 4/3) rubbed; massive; many very fine to coarse roots; about 99 percent fiber, 95 percent rubbed; extremely acid; clear smooth boundary.
Oa-8 to 11 inches; muck, black (10YR 2/1) broken face and rubbed; massive; few very fine to medium roots; about 50 percent fiber, 10 percent rubbed; extremely acid; gradual smooth boundary.
Oe1-11 to 65 inches; mucky peat, very dark brown (10YR 2/2) broken face and rubbed; massive; few fine roots; about 80 percent fiber, 30 percent rubbed; extremely acid; gradual smooth boundary.
Oe2-65 to 80 inches; mucky peat, dark brown (7.5YR 3/3) broken face and rubbed; massive; few fine roots; about 95 percent fiber, 40 percent rubbed; extremely acid.

The organic layers are more than 51 inches thick. These soils are primarily herbaceous.

The surface tier has hue of 7.5 YR or 10YR, value of 3 to 6 , and chroma of 3 or 4 . It is dominantly fibric material derived from sphagnum moss.

The subsurface and bottom tiers have hue of 5 YR to 10 YR , value of 2 to 4 , and chroma of 1 to 4 . They are dominantly mucky peat, but some pedons have a layer of muck or peat less than 10 inches thick.

Ishpeming Series

The Ishpeming series consists of somewhat excessively drained, rapidly permeable soils that are moderately deep to bedrock. These soils are on bedrock-controlled moraines, outwash terraces, and outwash plains. They formed in sandy drift overlying igneous and metamorphic bedrock. Slopes range from 6 to 70 percent.

Typical pedon of Ishpeming sand, in an area of Ishpeming-Rock outcrop complex, 6 to 25 percent slopes, very bouldery; near Gwinn; 601 feet east and 1,802 feet south of the northwest corner of sec. 16, T. 45 N., R. 25 W.; USGS Gwinn topographic quadrangle; lat. 46 degrees 17 minutes 56 seconds N. and long. 87 degrees 26 minutes 51 seconds W.
Oe—0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter; very strongly acid; abrupt smooth boundary.
E-2 to 6 inches; brown (7.5YR 5/2) sand, pinkish gray (7.5YR 6/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 2 percent gravel; strongly acid; abrupt irregular boundary.
Bs1-6 to 7 inches; dark brown (7.5YR 3/4) sand; weak fine granular structure; very friable; common very fine to medium roots; discontinuous tongues of dark brown (7.5YR 3/4), moderately cemented ortstein occupy 40 percent (16 of 40 inches) of the horizon; tongues are 4 to 10 inches wide and 5 to 18 inches apart and extend to a depth of 16 inches; about 2 percent gravel; strongly acid; clear irregular boundary.
Bs2—7 to 13 inches; brown (7.5YR 4/4) sand; single grain; loose; common very fine to medium roots; discontinuous tongues of dark brown (7.5YR 3/4), moderately cemented ortstein extend into this horizon from the Bs1 horizon and occupy 10 percent (4 of 40 inches) of the horizon; strongly acid; about 2 percent gravel; gradual irregular boundary.
BC—13 to 24 inches; strong brown (7.5YR 4/6) sand; single grain; loose; common very fine to medium roots; about 2 percent gravel; moderately acid; clear smooth boundary.
C—24 to 38 inches; brown (7.5YR 4/4) loamy fine sand; moderate fine subangular blocky structure; friable; common fine roots; about 8 percent cobbles and 5 percent gravel; moderately acid; abrupt smooth boundary.
2R-38 inches; granite bedrock.

Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 15 percent throughout the profile, and the content of cobbles ranges from 0 to 10 percent throughout the profile. The total content of rock fragments is less than 15 percent in the solum.

The A horizon, if it occurs, has hue of 5YR, 7.5 YR , or 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is sand, fine sand, loamy sand, or loamy fine sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 2 or 3 . It is dominantly sand, but the range includes loamy sand, fine sand, and loamy fine sand.

The Bs1 horizon has hue of 2.5 YR to 7.5 YR , value of 3 or 4 , and chroma of 4 . It is sand, fine sand, loamy sand, or loamy fine sand.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand, fine sand, loamy sand, or loamy fine sand.

The BC horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand, fine sand, loamy sand, or loamy fine sand.

The C horizon has hue of 7.5 YR , value of 4 to 6 , and chroma of 3 or 4 . It is loamy sand or loamy fine sand or the gravelly or cobbly analogs of these textures.

The underlying bedrock is igneous or metamorphic.

Jacobsville Series

The Jacobsville series consists of poorly drained, moderately permeable soils that are moderately deep to bedrock. These soils are in depressions on sandstone benches. They formed in loamy till overlying acidic sandstone bedrock. Slopes are 0 to 1 percent.

Typical pedon of Jacobsville muck, very stony, 700 feet west and 2,950 feet north of the southeast corner of sec. 32, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 25 minutes 42.87 seconds N . and long. 87 degrees 12 minutes 12.43 seconds W.

Oa-0 to 4 inches; black ($\mathrm{N} 2.5 / 0$) muck; moderate very fine granular structure; very friable; many very fine to coarse roots; strongly acid; clear wavy boundary.
Eg-4 to 9 inches; dark gray (10YR 4/1) loam, gray (10YR 5/1) dry; weak medium subangular blocky structure; friable; few very fine to medium roots; common distinct black (10YR 2/1) coatings of mucky loam along root channels; common brownish yellow (10YR 6/8) fragments of weathered sandstone; common medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 8 percent cobbles and 4 percent gravel; strongly acid; clear broken boundary.
Bw-9 to 16 inches; reddish brown (2.5YR 4/3) sandy loam; weak medium subangular blocky structure; friable; few very fine to medium roots; common brownish yellow (10YR 6/8) fragments of weathered sandstone; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation; about 4 percent cobbles and 4 percent gravel; slightly acid; gradual wavy boundary.
C-16 to 25 inches; reddish brown (2.5YR 4/3) sandy loam; massive with weak thick plates inherent from deposition; friable; common brownish yellow (10YR 6/8) fragments of weathered sandstone; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation; about 4 percent gravel; moderately acid; abrupt broken boundary.
2 Cr - 25 to 28 inches; reddish brown (2.5YR 4/3), soft and weathered sandstone; moderately acid; abrupt smooth boundary.
2R-28 inches; reddish brown (2.5YR 4/3) sandstone bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 2 to 15 percent throughout the profile, the content of cobbles ranges from 0 to 10 percent throughout the profile, and the content of stones ranges from 0 to 5 throughout the profile.

The Oa horizon has hue of 5 YR or 7.5 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2.

The Eg horizon has hue of 5YR to 10YR, value of 4 or 5 , and chroma of 1 or 2 . It is loam, sandy loam, or fine sandy loam or the gravelly analogs of these textures. Some pedons have an A horizon.

The Bw horizon has hue of 2.5 YR or 5 YR , value of 3 to 5 , and chroma of 3 or 4 . It is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam.

The C horizon has hue of 2.5 YR or 5 YR , value of 4 , and chroma of 3 or 4 . It is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam.

The 2 Cr horizon has hue of 2.5 YR , value of 4 , and chroma of 3 or 4 .
The underlying bedrock is sandstone.

Jeske Series

The Jeske series consists of somewhat poorly drained, rapidly permeable soils that are shallow to bedrock. These soils are on sandstone benches. They formed in sandy deposits weathered from sandstone bedrock. Slopes range from 0 to 3 percent.

Typical pedon of Jeske sand, 0 to 3 percent slopes; 300 feet north and 200 feet east of the southwest corner of sec. 20, T. 46 N., R. 23 W.; USGS Carlshend topographic quadrangle; lat. 46 degrees 21 minutes 55 seconds N . and long. 87 degrees 12 minutes 28 seconds W .
Oe-0 to 1 inch; very dark gray (5YR 3/1), partially decomposed forest litter; weak thin platy structure; very friable; many very fine to coarse roots; very strongly acid; clear smooth boundary.
Oa-1 to 3 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
C1-3 to 11 inches; light brownish gray (10YR 6/2) sand; single grain; loose; few very fine to medium roots; strongly acid; clear smooth boundary.
C2—11 to 21 inches; very pale brown (10YR 8/2) sand; single grain; loose; moderately acid; abrupt smooth boundary.
$2 \mathrm{Cr}-21$ to 31 inches; dark reddish brown (5YR 3/2), weathered sandstone; massive; very firm; moderately acid; abrupt wavy boundary.
2R-31 inches; light gray (10YR 7/2) and strong brown (7.5YR 5/6) sandstone bedrock.

The depth to Cr material ranges from 10 to 20 inches, and the depth to bedrock ranges from 20 to 40 inches. Depths are from the mineral surface. The content of cobbles and gravel ranges from 0 to 5 percent throughout the profile.

The C horizon has hue of 7.5 YR or 10YR, value of 6 to 8 , and chroma of 2 or 3 . It is sand or loamy sand.

The 2 Cr horizon has hue of 5 YR to 10 YR , value of 3 to 6 , and chroma of 2 to 4 . It is sand or loamy fine sand.

The underlying bedrock is sandstone.

Kalkaska Series

The Kalkaska series consists of very deep, somewhat excessively drained, rapidly permeable soils on outwash plains, till-floored lake plains, moraines, and outwash terraces. These soils formed in sandy outwash. Slopes range from 0 to 70 percent.

Typical pedon of Kalkaska sand, 0 to 6 percent slopes; 250 feet east and 1,000 feet north of the southwest corner of sec. 31, T. 47 N., R. 24 W.; USGS Harvey topographic
quadrangle; lat. 46 degrees 25 minutes 21 seconds N. and long. 87 degrees 21 minutes 51 seconds W.

Oa-0 to 2 inches; black (N 2.5/0), well decomposed forest litter; many very fine to coarse roots; abrupt smooth boundary.
E-2 to 6 inches; reddish gray (5YR 5/2) sand, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel; extremely acid; clear wavy boundary.
Bhs-6 to 8 inches; dark reddish brown (5YR 3/2) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; dark reddish brown (5YR $3 / 2$), moderately cemented ortstein occupies 15 percent (6 of 40 inches) of the horizon; the ortstein extends into the Bs horizon and occurs as discontinuous tongues; about 2 percent gravel; extremely acid; clear irregular boundary.
Bs-8 to 17 inches; reddish brown (5YR 4/4) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; dark reddish brown (5YR $3 / 3$) and reddish brown (5YR 4/4), strongly cemented ortstein occupies 38 percent (15 of 40 inches) of the horizon; the ortstein extends from the Bhs horizon into this horizon to a depth of 43 inches and occurs as tongues 7 to 23 inches apart and 5 to 11 inches wide; about 2 percent gravel; very strongly acid; gradual irregular boundary.
BC—17 to 32 inches; strong brown (7.5YR 5/6) sand; weak very fine subangular blocky structure; very friable; few very fine and fine roots; about 2 percent gravel; strongly acid; gradual irregular boundary.
C-32 to 80 inches; brown (7.5YR 5/3) sand; single grain; loose; about 2 percent gravel; strongly acid.

The depth to ortstein ranges from 5 to 15 inches. The content of gravel ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum. The profile is sand throughout.

The E horizon has hue of 5YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR and value and chroma of 2 or 3 . The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 4 to 6 .

The BC horizon has hue of 7.5 YR or 10YR and value and chroma of 4 to 6 .
The C horizon has hue of 7.5 YR or 10 YR , value of 5 to 7 , and chroma of 3 to 6 .

Karlin Series

The Karlin series consists of very deep, somewhat excessively drained soils on disintegration moraines, outwash plains, and outwash terraces. These soils formed in a loamy mantle over sandy outwash. Permeability is moderately rapid in the loamy upper part and rapid in the sandy lower part. Slopes range from 1 to 18 percent.

Typical pedon of Karlin sandy loam, 1 to 6 percent slopes; 30 feet west and 2,200 feet north of the southeast corner of sec. 10, T. 45 N., R. 26 W.; USGS Cataract Basin topographic quadrangle; lat. 46 degrees 17 minutes 46 seconds N. and long. 87 degrees 33 minutes 13 seconds W.

Oa-0 to 1 inch; black (7.5YR 2.5/0), well decomposed forest litter; many very fine to coarse roots; about 2 percent gravel and 2 percent cobbles; very strongly acid; abrupt smooth boundary.
E-1 to 4 inches; brown (7.5YR 5/2) sandy loam, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel and 2 percent cobbles; very strongly acid; clear wavy boundary.

Bs1—4 to 7 inches; dark brown (7.5YR 3/4) sandy loam; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel and 2 percent cobbles; strongly acid; clear wavy boundary.
Bs2-7 to 15 inches; brown (7.5YR 4/4) sandy loam; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 2 percent gravel and 2 percent cobbles; strongly acid; clear smooth boundary.
2BC—15 to 29 inches; brown (7.5YR 5/4) sand; single grain; loose; few fine roots; about 4 percent gravel and 2 percent cobbles; moderately acid; clear smooth boundary.
2C—29 to 80 inches; yellowish brown (10YR 5/4) sand; single grain; loose; about 4 percent gravel and 2 percent cobbles; moderately acid.

The thickness of the loamy mantle ranges from 10 to 20 inches. The content of gravel ranges from 0 to 10 percent throughout the profile, and the content of cobbles ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 . It is dominantly sandy loam, but the range includes fine sandy loam and loamy fine sand. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is sandy loam, fine sandy loam, or loamy fine sand.

The Bs2 horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sandy loam, fine sandy loam, or loamy fine sand.

The 2 BC horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand or loamy sand.

The 2C horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 3 to 6 . It is sand.

Keewaydin Series

The Keewaydin series consists of very deep, well drained soils on bedrockcontrolled moraines and disintegration moraines. These soils formed in loamy and silty eolian deposits overlying gravelly and sandy till. Permeability is moderate in the loamy upper part of the profile and moderately rapid or rapid in the lower part. Slopes range from 1 to 60 percent.

Typical pedon of Keewaydin cobbly fine sandy loam, in an area of Keewaydin-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very bouldery; 1,800 feet east and 2,200 feet south of the northwest corner of sec. 9, T. 48 N., R. 30 W.; 2.5 miles north of Lake Michigamme; USGS Michigamme topographic quadrangle; lat. 46 degrees 34 minutes 21 seconds N . and long. 88 degrees 04 minutes 03 seconds W .

Oa-0 to 2 inches; black (N 2.5/0), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
E-2 to 4 inches; reddish brown (5YR 5/3) cobbly fine sandy loam, pinkish gray (5YR 6/2) dry; weak fine granular structure; friable; many very fine to coarse roots; 17 percent cobbles, 15 percent gravel, and 2 percent stones; extremely acid; abrupt smooth boundary.
Bs1—4 to 10 inches; dark reddish brown (5YR 3/4) fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; 11 percent gravel and 3 percent stones; very strongly acid; clear wavy boundary.
Bs2-10 to 20 inches; strong brown (7.5YR 4/6) cobbly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; 14 percent cobbles, 11 percent gravel, and 3 percent stones; very strongly acid; gradual wavy boundary.

2BC-20 to 31 inches; brown (7.5YR 5/4) gravelly loamy sand; weak fine subangular blocky structure; friable; common very fine to medium roots; 23 percent gravel and 10 percent stones; strongly acid; gradual wavy boundary.
2C-31 to 80 inches; brown (10YR 5/3) very cobbly loamy sand; massive; friable; firm in places; few very fine and fine roots; discontinuous silt coatings on gravel and cobble surfaces; clean sand grains; 25 percent gravel, 16 percent cobbles, and 5 percent stones; strongly acid.
The thickness of the loamy mantle ranges from 15 to 30 inches. The content of gravel ranges from 0 to 15 percent in the loamy mantle and from 5 to 50 percent in the sandy lower part of the profile. The content of cobbles ranges from 0 to 30 percent throughout the profile, and the content of stones ranges from 0 to 10 percent throughout the profile.

The A horizon, if it occurs, has hue of 5YR to 10YR, value of 2 to 4 , and chroma of 1 or 2 . It is fine sandy loam or silt loam or the cobbly or bouldery analogs of these textures.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 to 3 . It is dominantly cobbly fine sandy loam, but the range includes fine sandy loam, silt loam, and cobbly silt loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam, silt loam, cobbly fine sandy loam, or cobbly silt loam.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sandy loam, silt loam, cobbly fine sandy loam, or cobbly silt loam.

The 2BC horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 2 to 6 . It is gravelly loamy sand, gravelly sand, cobbly loamy sand, or cobbly sand.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 2 to 6 . It is very cobbly loamy sand or very cobbly sand or the cobbly, gravelly, or very gravelly analogs of these textures. In some pedons it has thin lenses of fine sandy loam or sandy loam.

Keweenaw Series

The Keweenaw series consists of very deep, well drained, moderately rapidly permeable soils on bedrock-controlled moraines, dissected moraines, disintegration moraines, and till-floored lake plains. These soils formed in sandy till. Slopes range from 1 to 70 percent.

Typical pedon of Keweenaw loamy sand, 18 to 35 percent slopes; 2,400 feet west and 1,400 feet north of the southeast corner of sec. 19, T. 48 N., R. 26 W.; USGS Negaunee topographic quadrangle; lat. 46 degrees 32 minutes 20 seconds N. and long. 87 degrees 36 minutes 12 seconds W .
A-0 to 1 inch; black (10YR 2/1) loamy sand, dark gray (10YR 4/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 2 percent stones; strongly acid; abrupt wavy boundary.
E-1 to 3 inches; reddish brown (5YR 5/3) loamy sand, pinkish gray (5YR 6/2) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 5 percent gravel, 2 percent cobbles, and 2 percent stones; strongly acid; clear wavy boundary.
Bs1-3 to 9 inches; dark reddish brown (5YR 3/4) loamy sand; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 5 percent gravel, 2 percent cobbles, and 2 percent stones; strongly acid; gradual wavy boundary.
Bs2-9 to 25 inches; reddish brown (5YR 4/4) loamy sand; moderate coarse subangular blocky structure; friable; common very fine to coarse roots; about 5
percent gravel, 2 percent cobbles, and 2 percent stones; strongly acid; gradual wavy boundary.
E/B-25 to 36 inches; about 60 percent light reddish brown (5YR 6/3) sand, pinkish gray (5YR 7/2) dry (E); surrounding reddish brown (5YR 4/4) loamy sand (Bt); common distinct clay bridging between sand grains; weak coarse subangular blocky structure; friable; common very fine to coarse roots; about 5 percent gravel and 2 percent cobbles; moderately acid; gradual wavy boundary.
B/E-36 to 80 inches; reddish brown (2.5YR 4/4) loamy sand (Bt); common distinct clay bridging between sand grains; occupies about 70 percent of the horizon; surrounded by light reddish brown (5YR 6/3) sand, pinkish gray (5YR 7/2) dry (E); weak coarse subangular blocky structure; firm; few very fine to medium roots; about 5 percent gravel and 2 percent cobbles; moderately acid.

The content of gravel ranges from 0 to 15 percent in the solum and from 0 to 10 percent in the substratum. The content of cobbles ranges from 0 to 15 percent in the solum and from 0 to 5 percent in the substratum. The content of stones ranges from 0 to 2 percent throughout the profile.

The A horizon has hue of 5YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly loamy sand, but the range includes loamy fine sand and sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is loamy fine sand, loamy sand, or sandy loam or the gravelly or cobbly analogs of these textures.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is loamy sand or loamy fine sand or the gravelly or cobbly analogs of these textures. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value or 4 or 5 , and chroma of 4 to 6 . It is loamy sand, loamy fine sand, gravelly loamy sand, or gravelly loamy fine sand.

The Bt part of the E/B and B/E horizons has hue of 2.5 YR to 7.5 YR , value of 3 or 4 , and chroma of 3 to 6 . It is loamy sand, sandy loam, or fine sandy loam or the gravelly or cobbly analogs of these textures. The E part of the B/E horizon has hue of 5YR or 7.5YR, value of 5 or 6 , and chroma of 2 to 4 . It is sand, loamy sand, or loamy fine sand or the gravelly or cobbly analogs of these textures. In some pedons the B/E horizon has characteristics of a weak fragipan.

Some pedons have a C horizon. This horizon, if it occurs, has hue of 2.5YR to 7.5YR, value of 4 to 6 , and chroma of 3 to 6 . It is loamy sand or sand.

Kinross Series

The Kinross series consists of very deep, poorly drained, rapidly permeable soils in depressions on outwash plains, moraines, and till-floored lake plains. These soils formed in sandy outwash and glaciolacustrine deposits. Slopes are 0 to 1 percent.

Typical pedon of Kinross mucky peat, 60 feet west and 2,193 feet south of the northeast corner of sec. 36, T. 45 N., R. 25 W.; near Bass Lake; USGS Little Lake topographic quadrangle; lat. 46 degrees 15 minutes 12 seconds N. and long. 87 degrees 22 minutes 02 seconds W .
Oe—0 to 3 inches; black (7.5YR 2.5/1) mucky peat; weak medium granular structure; very friable; many very fine to medium roots; extremely acid; abrupt smooth boundary.
Oa-3 to 5 inches; very dark gray (7.5YR 3/1) muck; weak medium granular structure; very friable; many very fine to medium roots; extremely acid; abrupt smooth boundary.
E-5 to 10 inches; light brownish gray (10YR 6/2) sand, light gray (10YR 7/2) dry; weak medium subangular blocky structure; very friable; many very fine to medium roots; many medium and coarse distinct dark brown (10YR 3/3) and dark yellowish
brown (10YR 4/4) masses of iron accumulation; extremely acid; abrupt wavy boundary.
Bhs-10 to 15 inches; very dark brown (7.5YR 2.5/2) sand; weak fine and medium subangular blocky structure; friable; many very fine to medium roots; common medium prominent strong brown (7.5YR 4/6) and dark brown (7.5YR 3/4) masses of iron accumulation; discontinuous dark reddish brown (5YR 3/2, strongly cemented ortstein occupies about 30 percent of the horizon; about 3 percent gravel; extremely acid; clear wavy boundary.
Bs- 15 to 30 inches; dark brown (7.5YR 3/4) sand; weak fine subangular blocky structure; very friable; common very fine and fine roots; common medium distinct brown (7.5YR 4/3) masses of iron accumulation; about 3 percent gravel; very strongly acid; gradual wavy boundary.
$B C-30$ to 42 inches; dark yellowish brown (10YR 4/4) sand; single grain; loose; common medium and coarse distinct strong brown (7.5YR 4/6) masses of iron accumulation; very strongly acid; gradual wavy boundary.
C-42 to 80 inches; brown (10YR 5/3) sand; single grain; loose; very strongly acid.
The content of gravel ranges from 0 to 5 percent throughout the profile.
The Oe horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 .
The Oa horizon has hue of 5YR to 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2.

The E horizon has hue of 5 YR to $10 Y R$, value of 4 to 7 , and chroma of 1 to 3 . It is sand.

The Bhs horizon has hue of 5 YR or 7.5 YR and value and chroma of 2 or 3 . It is sand.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 3 to 6 . It is sand. Some pedons have a BC horizon.

The C horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 3 to 6 . It is sand.

Liminga Series

The Liminga series consists of very deep, well drained, rapidly permeable soils on till-floored lake plains and outwash plains. These soils formed in sandy glaciofluvial deposits. Slopes range from 1 to 18 percent.

Typical pedon of Liminga fine sand, 6 to 18 percent slopes; 115 feet east and 510 feet south of the northwest corner of sec. 26, T. 51 N., R. 27 W.; USGS Big Bay topographic quadrangle; lat. 46 degrees 47 minutes 19 seconds N. and long. 87 degrees 42 minutes 20 seconds W .

Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; many very fine to coarse roots; about 1 percent gravel; extremely acid; abrupt smooth boundary.
A-1 to 2 inches; black (10YR 2/1) fine sand, dark brown (7.5YR 3/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 1 percent gravel; extremely acid; clear smooth boundary.
E-2 to 4 inches; reddish gray (5YR 5/2) fine sand, pinkish gray (5 YR 6/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 1 percent gravel; extremely acid; abrupt wavy boundary.
Bhs-4 to 6 inches; dark reddish brown (5YR 3/2) fine sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 1 percent gravel; very strongly acid; clear wavy boundary.
Bs1-6 to 9 inches; dark reddish brown (5YR 3/4) fine sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 1 percent gravel; very strongly acid; clear wavy boundary.

Bs2—9 to 19 inches; reddish brown (5YR 4/4) fine sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; columns of very dusky red (2.5YR 2.5/2) and yellowish red (5YR 4/6), strongly to weakly cemented ortstein 5 to 12 inches wide extend to a depth of 43 inches; the ortstein columns are 2 to 26 inches apart and occupy 37 percent (15 of 40 inches) of the horizon; about 1 percent gravel; very strongly acid; gradual irregular boundary.
BC-19 to 30 inches; strong brown (7.5YR 4/6) fine sand; weak fine subangular blocky structure; very friable; few very fine and fine roots; about 1 percent gravel; very strongly acid; gradual wavy boundary.
C-30 to 80 inches; brown (7.5YR 5/4) fine sand; single grain; loose; few distinct dark reddish brown (2.5YR 3/4) color bands; about 1 percent gravel; strongly acid.

The content of ortstein in the spodic horizon ranges from 10 to 40 percent. The content of gravel ranges from 0 to 5 percent throughout the profile. The profile is fine sand throughout.

The A horizon has hue of 7.5 YR or 10YR, value of 2 or 3 , and chroma of 1 or 2 .
The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 .
The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 .
The Bs1 horizon has hue of 5YR or 7.5 YR and value and chroma of 3 or 4 . The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 , and chroma of 4 to 6 .

The BC horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 .
The C horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 4 to 6 .

Mancelona Series

The Mancelona series consists of very deep, somewhat excessively drained soils on outwash terraces. These soils formed in sandy and gravelly glaciofluvial deposits. Permeability is moderately rapid in the upper part of the profile and very rapid in the sandy and gravelly lower part. Slopes range from 1 to 18 percent.

Typical pedon of Mancelona sandy loam, in an area of Nadeau-Mancelona complex, 1 to 6 percent slopes; southwest of Anderson Lake; 2,200 feet east and 2,150 feet south of the northwest corner of sec. 14, T. 44 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 12 minutes 45 seconds N. and long. 87 degrees 31 minutes 27 seconds W.

A—0 to 3 inches; black (7.5YR 2.5/1) sandy loam, gray (7.5YR 5/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 1 percent gravel; strongly acid; abrupt smooth boundary.
E-3 to 10 inches; reddish gray (5YR 5/2) loamy sand, light gray (7.5YR 7/1) dry; moderate medium subangular blocky structure; friable; common very fine to medium roots; about 1 percent gravel; moderately acid; abrupt wavy boundary.
Bs1-10 to 12 inches; dark reddish brown (5YR 3/4) loamy fine sand; moderate fine subangular blocky structure; friable; common very fine to medium roots; about 5 percent gravel and 1 percent cobbles; moderately acid; clear wavy boundary.
Bs2-12 to 18 inches; brown (7.5YR 4/4) loamy fine sand; moderate medium subangular blocky structure; friable; common very fine to medium roots; about 5 percent gravel and 1 percent cobbles; moderately acid; clear irregular boundary.
Bw-18 to 33 inches; yellowish brown (10YR 5/4) sand; moderate medium subangular blocky structure; friable; few very fine and fine roots; about 3 percent gravel and 1 percent cobbles; slightly acid; clear wavy boundary.
2Bt-33 to 37 inches; brown (7.5YR 4/2) gravelly sandy loam; moderate medium subangular blocky structure; friable; common very fine and fine roots; few distinct brown (7.5YR 4/3) clay films on faces of peds; few distinct brown (7.5YR 4/3) clay bridges between sand grains; about 15 percent gravel and 1 percent cobbles; neutral; clear wavy boundary.

3C-37 to 80 inches; light yellowish brown (10YR 6/4) and dark yellowish brown (10YR 3/4), stratified very gravelly sand and sand; single grain; loose; about 25 percent gravel and 10 percent cobbles; slightly effervescent; slightly alkaline.

The content of gravel ranges from 1 to 20 percent in the solum and from 15 to 50 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum.

The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly sandy loam, but the range includes loamy sand, sand, gravelly loamy sand, and gravelly sand.

The E horizon has hue of 5 YR to $10 Y R$, value of 5 or 6 , and chroma of 1 to 3 . It is sand, loamy sand, gravelly sand, or gravelly loamy sand.

The Bs1 horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is sand, loamy sand, or loamy fine sand or the gravelly analogs of these textures.

The Bs2 horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand, loamy fine sand, or loamy sand or the gravelly analogs of these textures.

The 2Bt horizon has hue of 5YR or 7.5 YR and value and chroma of 3 or 4 . It is loamy sand, sandy loam, gravelly loamy sand, or gravelly sandy loam.

The 3C horizon has hue of 7.5 YR or 10YR and value and chroma of 4 to 6 . It is stratified sand, gravelly sand, very gravelly sand, and coarse sand.

Mashek Series

The Mashek series consists of very deep, moderately well drained soils on drumlins and ground moraines. These soils are moderately deep or deep to dense till. They formed in loamy till. Permeability is moderate in the upper part, moderately slow in the argillic horizon, and very slow in the dense till. Slopes range from 0 to 4 percent.

Typical pedon of Mashek fine sandy loam, 0 to 4 percent slopes; 1,600 feet north and 1,600 feet west of the southeast corner of sec. 34, T. 44 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 09 minutes 50 seconds N. and long. 87 degrees 32 minutes 21.5 seconds W .
A-0 to 3 inches; dark brown (7.5YR 3/2) fine sandy loam, brown (7.5YR 5/2) dry; moderate fine granular structure; friable; many fine to coarse roots; about 3 percent gravel and 2 percent cobbles; very strongly acid; clear wavy boundary.
Bs-3 to 17 inches; dark brown (7.5YR 3/4) fine sandy loam; weak fine subangular blocky structure; friable; many fine to coarse roots; about 3 percent gravel and 2 percent cobbles; strongly acid; clear wavy boundary.
E/B-17 to 27 inches; about 60 percent brown (7.5YR 5/4) loamy fine sand, light brown (7.5YR 6/4) dry (E); occurs as tongues extending into or completely surrounding isolated remnants of reddish brown (5YR 4/4) fine sandy loam (Bt); weak fine subangular blocky structure; friable; few distinct strong brown (7.5YR $5 / 6$) clay films on faces of peds and in root channels; many fine to coarse roots; about 3 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.
$2 B t-27$ to 38 inches; reddish brown (5YR 4/4) cobbly fine sandy loam; weak thick platy structure parting to weak medium subangular blocky; friable; common fine and medium roots; common distinct strong brown (7.5YR 5/6) clay films on faces of peds and in root channels; about 13 percent cobbles and 13 percent gravel; slightly effervescent; slightly alkaline; gradual wavy boundary.
2BC-38 to 43 inches; brown (7.5YR 4/4) cobbly fine sandy loam; weak thick platy structure parting to weak fine subangular blocky; friable; common fine and medium roots; few fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 13 percent cobbles and 21 percent gravel; slightly effervescent; moderately alkaline; gradual wavy boundary.

2Cd-43 to 80 inches; brown (7.5YR 5/4) cobbly fine sandy loam; massive with weakly expressed thick plates inherent from deposition; very firm; few fine distinct rounded dark reddish brown (5YR 3/3) iron concretions; about 17 percent gravel and 16 percent cobbles; strongly effervescent; moderately alkaline.

The depth to dense till ranges from 30 to 50 inches. The content of gravel ranges from 2 to 10 percent in the upper part of the solum and from 5 to 20 percent in the lower part of the solum and in the substratum. The content of cobbles ranges from 0 to 5 percent in the upper part of the solum and from 0 to 20 percent in the lower part of the solum and in the substratum. The content of stones ranges from 0 to 5 percent throughout the profile.

The A horizon has hue of 5YR or 7.5 YR , value of 2 or 3 , and chroma of 1 or 2 . It is fine sandy loam. Some pedons have an E horizon.

The Bs horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

The E part of the E/B horizon has hue of 5 YR or 7.5 YR , value of 5 , and chroma of 2 to 4. It is loamy fine sand, loamy sand, or sandy loam. The Bt part of the E/B horizon has hue of $5 Y R$ and value and chroma of 4 . It is fine sandy loam.

The 2Bt horizon has hue of $5 Y R$, value of 4 or 5 , and chroma of 4 . It is loam or fine sandy loam or the cobbly or gravelly analogs of these textures.

The 2 BC horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 . It is cobbly fine sandy loam or gravelly fine sandy loam.

The 2 Cd horizon has hue of 7.5 YR , value of 5 , and chroma of 4 . It is cobbly fine sandy loam or gravelly fine sandy loam.

Michigamme Series

The Michigamme series consists of well drained, moderately permeable soils that are moderately deep to bedrock. These soils are on bedrock-controlled moraines. They formed in a silty or loamy mantle over loamy till overlying igneous or metamorphic bedrock. Slopes range from 6 to 70 percent.

Typical pedon of Michigamme cobbly fine sandy loam, in an area of Dishno-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very bouldery; 500 feet west and 1,200 feet south of the northeast corner of sec. 9, T. 51 N., R. 29 W.; in the Cliff River area; USGS Mountain Lake topographic quadrangle; lat. 46 degrees 50 minutes 03 seconds N. and long. 87 degrees 58 minutes 57 seconds W.

Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 5 inches; dark reddish gray (5YR 4/2) cobbly fine sandy loam, gray (5YR 6/1) dry; moderate very fine subangular blocky structure; friable; many very fine to coarse roots; about 20 percent cobbles, 8 percent gravel, and 2 percent stones; strongly acid; abrupt wavy boundary.
Bhs-5 to 8 inches; dark reddish brown (5YR 3/3) cobbly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 20 percent cobbles, 8 percent gravel, and 2 percent stones; strongly acid; clear irregular boundary.
Bs-8 to 24 inches; dark reddish brown (5YR 3/4) cobbly fine sandy loam; weak very fine subangular blocky structure; friable; many very fine to coarse roots; about 20 percent cobbles, 8 percent gravel, and 2 percent stones; strongly acid; gradual broken boundary.
E/B-24 to 29 inches; about 60 percent reddish brown (5YR 5/3) cobbly fine sandy Ioam, pinkish gray (5YR 6/2) dry (E); surrounding peds of reddish brown (5YR 4/4) cobbly fine sandy loam (Bt); weak thick platy structure parting to weak fine subangular blocky; firm; common very fine to medium roots; about 20 percent
cobbles, 8 percent gravel, and 2 percent stones; moderately acid; abrupt irregular boundary.
2R-29 inches; gneiss bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 20 percent throughout the profile, the content of cobbles ranges from 0 to 20 percent throughout the profile, and the content of stones ranges from 0 to 5 percent throughout the profile. The content of rock fragments averages less than 35 percent in the control section.

The A horizon, if it occurs, has hue of 5YR to 10YR, value of 2 to 4 , and chroma of 1 or 2. It is silt loam, very fine sandy loam, or fine sandy loam or the gravelly or cobbly analogs of these textures.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is dominantly cobbly fine sandy loam, but the range includes silt loam, fine sandy loam, gravelly silt loam, and gravelly fine sandy loam.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is fine sandy loam or silt loam or the gravelly or cobbly analogs of these textures.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 3 to 6 . It is fine sandy loam or silt loam or the gravelly or cobbly analogs of these textures. Some pedons have a $B C$ horizon.

The E part of the E/B horizon has hue of 5YR or 7.5YR, value of 4 or 5 , and chroma of 2 or 3 . It is cobbly fine sandy loam or gravelly fine sandy loam. The Bt part of the E / B horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 3 or 4 . It is cobbly fine sandy loam or gravelly fine sandy loam. Some pedons have a C horizon.

The underlying bedrock is igneous or metamorphic.

Minocqua Series

The Minocqua series consists of very deep, poorly drained soils in depressions on outwash plains and outwash terraces. These soils formed in loamy deposits overlying stratified sandy and gravelly outwash. Permeability is moderate in the loamy upper part of the profile and very rapid in the sandy lower part. Slopes are 0 to 1 percent.

Typical pedon of Minocqua muck, 350 feet east and 1,400 feet south of the northwest corner of sec. 9, T. 45 N., R. 26 W.; USGS Cataract Basin topographic quadrangle; lat. 46 degrees 18 minutes 54 seconds N. and long. 87 degrees 34 minutes 25 seconds W .

Oi-0 to 2 inches; dark brown (7.5YR 3/2), undecomposed sphagnum moss; extremely acid; abrupt smooth boundary.
Oa-2 to 5 inches; black (7.5YR 2.5/1) muck; moderate medium granular structure; very friable; many very fine to coarse roots; very strongly acid; clear broken boundary.
A-5 to 7 inches; very dark gray (10YR 3/1) mucky fine sandy loam, gray (10YR 5/1) dry; moderate medium subangular blocky structure; friable; few very fine to coarse roots; about 2 percent gravel; very strongly acid; clear smooth boundary.
Eg1-7 to 11 inches; dark grayish brown (10YR 4/2) fine sandy loam, light brownish gray (10YR 6/2) dry; moderate subangular blocky structure; friable; few very fine and fine roots; common medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 2 percent gravel; strongly acid; gradual broken boundary.
Eg2-11 to 18 inches; grayish brown (2.5Y $5 / 2$) very fine sandy loam, light gray (10YR 7/2) dry; moderate medium subangular blocky structure; friable; few very fine and fine roots; many medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 2 percent gravel; strongly acid; clear broken boundary.
$\mathrm{Bg}-18$ to 23 inches; dark grayish brown (10YR 4/2) fine sandy loam; weak fine subangular blocky structure; very friable; thin lenses of loamy sand; few fine
prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 5 percent gravel; moderately acid; abrupt smooth boundary.
$2 \mathrm{Cg}-23$ to 80 inches; dark grayish brown (10YR 4/2) gravelly coarse sand; single grain; loose; about 25 percent gravel; moderately acid.
Depth to the sandy substratum ranges from 20 to 40 inches. The content of gravel ranges from 0 to 10 percent in the A, Eg, and Bg horizons and from 5 to 50 percent in the substratum.

The Oi horizon has hue of 7.5 YR or 10YR, value of 3 , and chroma of 1 or 2 .
The Oa horizon has hue of 7.5 YR or 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 .

The A horizon has hue of 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is fine sandy loam, sandy loam, or silt loam or the mucky analogs of these textures.

The Eg horizon has hue of 2.5 Y or 10YR, value of 4 to 6 , and chroma of 2 . It is fine sandy loam, very fine sandy loam, or sandy loam.

The Bg horizon has hue of 5 Y to 10 YR , value of 4 or 5 , and chroma of 1 or 2 . It is fine sandy loam, very fine sandy loam, or sandy loam. Some pedons have a Bw horizon.

The 2Cg horizon has hue of 10YR, value of 4, and chroma of 2. It is gravelly coarse sand, sand, or very gravelly sand.

Munising Series

The Munising series consists of very deep, moderately well drained soils on ground moraines, dissected sandstone benches, and till-floored lake plains. These soils are shallow or moderately deep to a fragipan. They formed in loamy till. Permeability is moderate in the upper part, very slow in the fragipan, and moderate in the lower part. Slopes range from 1 to 18 percent.

Typical pedon of Munising fine sandy loam (fig. 20), 1 to 6 percent slopes; 165 feet east and 990 feet south of the northwest corner of sec. 7, T. 51 N., R. 29 W.; USGS McComb Corner topographic quadrangle; lat. 46 degrees 49 minutes 53 seconds N. and long. 88 degrees 02 minutes 40 seconds W .
Oe-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter; many fine to coarse roots; abrupt smooth boundary.
E-2 to 6 inches; reddish gray (5 YR $5 / 2$) fine sandy loam, pinkish gray (5 YR $6 / 2$) dry; weak fine subangular blocky structure; very friable; many fine to coarse roots; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; very strongly acid; clear broken boundary.
Bhs-6 to 10 inches; dark reddish brown (5YR 3/3) fine sandy loam; weak fine subangular blocky structure; friable; many fine to coarse roots; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; strongly acid; gradual broken boundary.
Bs1-10 to 15 inches; dark reddish brown (5YR 3/4) fine sandy loam; weak fine subangular blocky structure; friable; many fine to coarse roots; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; strongly acid; gradual wavy boundary.
Bs2-15 to 18 inches; yellowish red (5YR 4/6) fine sandy loam; weak thin platy structure; friable; many fine to coarse roots; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; moderately acid; gradual wavy boundary.
(E/B)x-18 to 29 inches; about 60 percent reddish brown (5YR 5/3) loamy fine sand, pinkish gray (5YR 6/2) dry (E); surrounding isolated remnants of reddish brown (5YR 4/4) fine sandy loam (Bt); few distinct reddish brown (5YR 4/4) clay films in root channels; moderate thick platy structure; very firm; few fine roots in cracks 10 to 20 inches apart; many fine vesicular pores; few medium distinct yellowish red

Figure 20.-Typical profile of Munising fine sandy loam. The fragipan is at a depth of 18 inches.
(5YR 5/8) masses of iron accumulation; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; moderately acid; gradual wavy boundary.
(B/E)x-29 to 50 inches; reddish brown (5YR 4/4) fine sandy loam (Bt); common distinct reddish brown (5YR 4/4) clay films in root channels; occupies about 60 percent of the horizon; surrounded by reddish brown (5YR 5/3) loamy fine sand, pinkish gray (5YR 6/2) dry (E); moderate thick platy structure; firm; many fine
vesicular pores; common medium distinct yellowish red (5YR $5 / 8$) masses of iron accumulation; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; moderately acid; gradual wavy boundary.
BC-50 to 59 inches; reddish brown (5YR 4/4) sandy loam; weak medium subangular blocky structure; friable; about 5 percent gravel, 5 percent cobbles, and 2 percent stones; moderately acid; gradual wavy boundary.
C-59 to 80 inches; reddish brown (5YR 4/4) sandy loam; massive with weakly expressed thick platiness inherent from deposition; friable; about 7 percent gravel, 5 percent cobbles, and 2 percent stones; moderately acid.

Depth to the fragipan ranges from 15 to 24 inches. The content of gravel ranges from 1 to 10 percent throughout the profile, the content of cobbles ranges from 0 to 5 percent throughout the profile, and the content of stones ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is dominantly fine sandy loam, but the range includes sandy loam and loamy sand. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is fine sandy loam or sandy loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

The Bs2 horizon has hue of 5YR, value of 4, and chroma of 4 to 6 . It is fine sandy loam or sandy loam.

The E part of the (E/B)x and (B/E)x horizons has hue of 5YR, value of 5 or 6 , and chroma of 2 or 3 . It is loamy fine sand, sandy loam, or loamy sand. The Bt part of the (E/B)x and (B/E)x horizons has hue of 2.5YR or 5YR, value of 3 to 5 , and chroma of 3 or 4 . It is fine sandy loam or sandy loam. Some pedons have a Btx horizon.

The BC horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

The C horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

Nadeau Series

The Nadeau series consists of very deep, well drained soils on outwash terraces, outwash plains, eskers, drumlins, and ground moraines. These soils formed in a loamy mantle over gravelly and sandy outwash. Permeability is moderate in the loamy upper part of the profile and very rapid in the sandy lower part. Slopes range from 1 to 18 percent.

Typical pedon of Nadeau fine sandy loam, 1 to 6 percent slopes; south of the Escanaba River, $3^{11 / 2}$ miles east of Watson; 600 feet south and 750 feet east of the northwest corner of sec. 20, T. 42 N., R. 24 W.; USGS Swimming Hole Creek topographic quadrangle; lat. 46 degrees 01 minute 36 seconds N. and long. 87 degrees 20 minutes 37 seconds W .
Oe-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter; neutral; abrupt smooth boundary.
A-1 to 5 inches; black ($\mathrm{N} 2.5 / 0$) fine sandy loam, dark brown (7.5YR 3/2) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 5 percent gravel and 2 percent cobbles; neutral; clear wavy boundary.
E-5 to 7 inches; brown (7.5YR 4/2) fine sandy loam, pinkish gray (7.5YR 6/2) dry; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 6 percent gravel and 2 percent cobbles; neutral; clear wavy boundary.

Bw-7 to 10 inches; brown (7.5YR 5/4) gravelly fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 12 percent gravel and 8 percent cobbles; neutral; clear wavy boundary.
Bt1-10 to 17 inches; reddish brown (5YR 4/4) gravelly fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; common distinct reddish brown (5YR 4/3) clay films on faces of peds; about 15 percent gravel and 8 percent cobbles; slightly alkaline; clear wavy boundary.
2Bt2-17 to 23 inches; reddish brown (5YR 4/4) very gravelly sandy loam; weak fine subangular blocky structure; very friable; common fine to medium roots; common reddish brown (5YR 4/3) clay films on faces of peds; about 35 percent gravel and 15 percent cobbles; slightly effervescent; slightly alkaline; clear smooth boundary.
2BC-23 to 36 inches; brown (7.5YR 4/4) very gravelly sand; single grain; loose; common fine and medium roots; about 40 percent gravel and 20 percent cobbles; strongly effervescent; moderately alkaline; clear smooth boundary.
$2 \mathrm{C}-36$ to 80 inches; brown (7.5YR 5/4) very gravelly sand; single grain; loose; few fine roots; about 40 percent gravel and 20 percent cobbles; strongly effervescent; moderately alkaline.
The content of gravel ranges from 1 to 20 percent in the $\mathrm{A}, \mathrm{E}, \mathrm{Bw}$, and Bt 1 horizons and from 35 to 50 percent in the 2Bt2, 2BC, and 2 C horizons. The content of cobbles ranges from 0 to 10 percent in the loamy upper part of the solum and from 5 to 20 percent in the lower part of the solum and in the substratum.

The A horizon has hue of 7.5 YR or 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is dominantly fine sandy loam, but the range includes gravelly fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 3 to 6 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

The Bt1 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 3 to 6 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

The 2Bt2 horizon has hue of 5 YR or 7.5 YR , value of 3 to 5 , and chroma of 3 to 6 . It is very gravelly fine sandy loam, very gravelly sandy loam, or very gravelly loam.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 4 . It is very gravelly sand or very gravelly coarse sand.

Nahma Series

The Nahma series consists of poorly drained, moderately permeable soils that are moderately deep to bedrock. These soils are in depressions and drainageways on ground moraines. They formed in loamy till overlying limestone, dolomite, or dolomitic sandstone bedrock. Slopes are 0 to 1 percent.

Typical pedon of Nahma muck, in an area of Nahma-Sundell complex, 0 to 4 percent slopes; 600 feet north and 2,075 feet west of the southeast corner of sec. 35, T. 40 N., R. 25 W.; USGS La Branche topographic quadrangle; lat. 45 degrees 59 minutes 15 seconds N. and long. 87 degrees 23 minutes 46 seconds W.
Oa1-0 to 7 inches; black ($\mathrm{N} 2.5 / 0$) muck; weak very fine granular structure; very friable; many very fine to coarse roots; about 1 percent gravel and 1 percent cobbles; neutral; clear smooth boundary.
Oa2-7 to 11 inches; black ($\mathrm{N} 2.5 / 0$) muck; moderate medium granular structure; very friable; many very fine to coarse roots; about 1 percent gravel and 1 percent cobbles; neutral; abrupt smooth boundary.
A-11 to 14 inches; very dark grayish brown (10YR 2/1) mucky loam, dark gray (10YR 4/1) dry; moderate medium granular structure; very friable; few very fine to
medium roots; about 1 percent gravel and 2 percent cobbles; slightly alkaline; abrupt wavy boundary.
$\mathrm{Bg}-14$ to 17 inches; dark gray (10YR 4/1) loam; moderate medium platy structure; friable; few very fine to medium roots; common medium distinct brown (10YR 4/3) masses of iron accumulation; about 5 percent gravel and 2 percent cobbles; slightly alkaline; clear wavy boundary.
Bw-17 to 19 inches; brown (10YR 4/3) loam; moderate medium platy structure; friable; few very fine to medium roots; few medium distinct dark grayish brown (10YR 4/2) iron depletions; few medium distinct yellowish brown (10YR 5/6) masses of iron accumulation; about 5 percent gravel and 2 percent cobbles; slightly alkaline; clear wavy boundary.
2C-19 to 24 inches; brown (7.5YR 5/4) gravelly fine sandy loam; massive with weakly expressed medium platiness inherent from deposition; friable; few very fine to medium roots; common fine distinct dark grayish brown (10YR 4/2) iron depletions; many fine distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 14 percent gravel and 3 percent cobbles; slightly effervescent; moderately alkaline; abrupt smooth boundary.
3R-24 inches; dolomitic sandstone bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 10 percent in the solum and from 10 to 15 percent in the substratum. The content of cobbles and flagstones ranges from 0 to 5 percent in the solum and from 2 to 10 percent in the substratum.

The Oa horizon has hue of 7.5 YR or 10 YR or is neutral in hue. It has value of 2 or 2.5 and chroma of 0 or 1 .

The A horizon has hue of 10 YR , value of 2 , and chroma of 1 or 2 . It is mucky loam or loam.

The Bg horizon has hue of 10 YR to 5 Y , value of 4 or 5 , and chroma of 1 or 2 . It is loam, fine sandy loam, or sandy loam.

The Bw horizon has hue of 10 YR , value of 4 or 5 , and chroma of 3 or 4 . It is loam, fine sandy loam, or sandy loam.

The 2C horizon has hue of 5YR, 7.5YR, 10YR, or 2.5 Y , value of 4 or 5 , and chroma of 4 to 6 . It is gravelly fine sandy loam or gravelly sandy loam. Some pedons have a Cr horizon.

The underlying bedrock is limestone, dolomite, or dolomitic sandstone.

Net Series

The Net series consists of very deep, somewhat poorly drained soils on bedrockcontrolled moraines and disintegration moraines. These soils are shallow or moderately deep to a fragipan. They formed in a silty or loamy mantle over loamy or sandy till. Permeability is moderate in the upper part of the profile, very slow in the fragipan, and moderate in the substratum. Slopes range from 0 to 3 percent.

Typical pedon of Net cobbly very fine sandy loam, in an area of Witbeck-Net complex, 0 to 3 percent slopes, extremely bouldery; near Grant Lake; 1,700 feet east and 700 feet south of the northwest corner of sec. 35, T. 46 N., R. 30 W.; USGS Witch Lake topographic quadrangle; lat. 46 degrees 20 minutes 45 seconds N. and long. 88 degrees 02 minutes 07 seconds W.

Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak fine granular structure; friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-2 to 5 inches; pinkish gray (5YR 6/2) cobbly very fine sandy loam, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; friable; many very fine to
coarse roots; about 20 percent cobbles, 8 percent stones, and 5 percent gravel; strongly acid; abrupt wavy boundary.
Bs1-5 to 8 inches; dark brown (7.5YR 3/4) cobbly very fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; common medium distinct reddish brown (5YR 5/4) masses of iron accumulation; about 20 percent cobbles, 8 percent stones, and 5 percent gravel; strongly acid; clear wavy boundary.
Bs2-8 to 18 inches; reddish brown (5YR 4/4) cobbly very fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; common medium distinct yellowish red (5 YR $5 / 8$) and dark reddish brown (2.5 YR 3/4) masses of iron accumulation; about 20 percent cobbles, 8 percent stones, and 5 percent gravel; strongly acid; gradual wavy boundary.
$2 \mathrm{Bx}-18$ to 45 inches; brown (7.5YR 4/4) gravelly fine sandy loam; moderate thin platy structure; very firm; very few fine roots in cracks 10 to 20 inches apart; common fine vesicular pores; common fine prominent yellowish red (5 YR 5/8) masses of iron accumulation; about 13 percent gravel, 5 percent stones, and 4 percent cobbles; moderately acid; gradual wavy boundary.
2C-45 to 80 inches; brown (7.5YR 4/4) gravelly fine sandy loam; massive with moderately expressed thick platiness inherent from deposition; friable; about 13 percent gravel, 5 percent stones, and 4 percent cobbles; moderately acid.
Depth to the fragipan ranges from 15 to 25 inches. The content of gravel ranges from 5 to 10 percent above the fragipan and from 10 to 25 percent in the rest of the profile. The content of cobbles ranges from 0 to 20 percent above the fragipan and from 0 to 10 percent in the rest of the profile. The content of stones ranges from 0 to 10 percent throughout the profile.

The A horizon, if it occurs, has hue of 5YR, 7.5YR, or 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is very fine sandy loam, silt loam, or fine sandy loam or the gravelly or cobbly analogs of these textures.

The E horizon has hue of 5YR, 7.5YR, or 10YR, value of 4 to 6 , and chroma of 2 or 3. It is very fine sandy loam, silt loam, or fine sandy loam or the gravelly or cobbly analogs of these textures.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is very fine sandy loam, silt loam, or fine sandy loam or the gravelly or cobbly analogs of these textures. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is very fine sandy loam, silt loam, or fine sandy loam or the gravelly or cobbly analogs of these textures.

The 2Bx horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 2 to 4 . It is gravelly fine sandy loam or gravelly sandy loam.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 2 to 4 . It is gravelly fine sandy loam, gravelly sandy loam, or gravelly loamy sand.

Northland Series

The Northland series consists of very deep, moderately well drained soils on outwash terraces on drumlinized ground moraines. These soils formed in a loamy mantle overlying sandy and gravelly outwash. Permeability is moderate in the loamy upper part of the profile and very rapid in the sandy and gravelly lower part. Slopes range from 0 to 4 percent.

Typical pedon of Northland loamy fine sand, 0 to 4 percent slopes, 900 feet east and 250 feet north of the southwest corner of sec. 22, T. 42 N., R. 26 W.; USGS Northland topographic quadrangle; lat. 46 degrees 00 minutes 56.5 seconds N . and long. 87 degrees 33 minutes 06.3 seconds W .

Oa-0 to 3 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed organic matter; moderate very fine granular structure; very friable; many very fine to coarse roots; strongly acid; abrupt wavy boundary.
E-3 to 5 inches; pinkish gray (7.5YR 6/2) loamy fine sand, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; friable; common very fine to coarse roots; about 4 percent gravel; strongly acid; clear irregular boundary.
Bw-5 to 8 inches; strong brown (7.5YR 4/6) fine sandy loam; weak fine subangular blocky structure; friable; common very fine to coarse roots; about 4 percent gravel; moderately acid; clear broken boundary.
Bt1—8 to 18 inches; brown (7.5YR 4/4) sandy loam; moderate medium subangular blocky structure; friable; common very fine to medium roots; common distinct dark brown (7.5YR 3/4) clay films on faces of peds and in root channels; about 6 percent gravel; slightly alkaline; clear irregular boundary.
2Bt2-18 to 22 inches; reddish brown (5YR 4/4) very gravelly loamy coarse sand; single grain; loose; common very fine to medium roots; common faint clay bridging between sand grains; about 50 percent gravel; slightly effervescent; slightly alkaline; clear irregular boundary.
2BC—22 to 38 inches; brown (7.5YR 5/4) very gravelly sand; single grain; loose; few very fine to fine roots; few medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 50 percent gravel; slightly effervescent; moderately alkaline; clear irregular boundary.
2C-38 to 80 inches; brown (10YR 5/3) very gravelly sand; single grain; loose; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation; about 50 percent gravel and 10 percent cobbles; strongly effervescent; moderately alkaline.

The thickness of the loamy mantle and the depth to the gravelly outwash range from 15 to 30 inches. The content of gravel ranges from 1 to 15 percent in the A, E, and Bw horizons, from 1 to 20 percent in the Bt horizon, and from 35 to 60 percent in the BC and C horizons. The content of cobbles ranges from 0 to 5 percent in the loamy mantle and from 0 to 25 percent in the underlying sandy outwash.

The A horizon, if it occurs, has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is fine sandy loam. Some pedons have an Oa horizon.

The E horizon has hue of 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is fine sandy loam or loamy fine sand.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sandy loam.

The Bt1 horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is loam, fine sandy loam, or sandy loam or the gravelly analogs of these textures.

The 2Bt2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is very gravelly loamy coarse sand or very gravelly sand.

The C horizon has hue of 7.5 YR or 10 YR , value of 5 or 6 , and chroma of 3 to 6 . It is very gravelly sand or very gravelly coarse sand. In some pedons it has thin strata of sand or gravelly sand.

Ocqueoc Series

The Ocqueoc series consists of very deep, well drained soils on till-floored lake plains. These soils formed in sandy glaciofluvial deposits overlying stratified loamy glaciolacustrine deposits. Permeability is rapid in the sandy upper part of the profile and moderately slow in the loamy lower part. Slopes range from 0 to 35 percent.

Typical pedon of Ocqueoc fine sand, in an area of Rousseau-Ocqueoc fine sands, 6 to 18 percent slopes; 3,600 feet south and 1,350 feet west of the northeast corner of
sec. 1, T. 47 N., R. 25 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 29 minutes 43 seconds N . and long. 87 degrees 22 minutes 06 seconds W .

Oe-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), partially decomposed organic matter; common very fine to coarse roots; strongly acid; abrupt smooth boundary.
A-1 to 2 inches; very dark gray (10YR 3/1) fine sand, gray (10YR 5/1) dry; weak very fine granular structure; very friable; many very fine to coarse roots; strongly acid; abrupt wavy boundary.
E-2 to 7 inches; pinkish gray (7.5YR 6/2) fine sand, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; strongly acid; abrupt broken boundary.
Bs1-7 to 12 inches; reddish brown (5YR 4/4) fine sand; weak fine subangular blocky structure; friable; many very fine to coarse roots; dark reddish brown (5YR 3/2) and reddish brown (5YR 4/4), moderately cemented ortstein occupies 27 percent (11 of 40 inches) of the horizon and occurs as tongues 4 to 7 inches wide and 5 to 16 inches apart; the tongues extend into the Bs2 horizon to a depth of 22 inches; moderately acid; clear wavy boundary.
Bs2-12 to 22 inches; yellowish red (5YR 4/6) fine sand; weak fine subangular blocky structure; friable; common very fine to coarse roots; tongues of ortstein extending from the Bs1 horizon occupy 20 percent (8 of 40 inches) of this horizon; moderately acid; clear wavy boundary.
BC-22 to 27 inches; reddish brown (5YR 5/4) fine sand; weak fine subangular blocky structure; friable; few very fine and fine roots; moderately acid; abrupt wavy boundary.
C1-27 to 33 inches; brown (7.5YR 5/3) loamy fine sand; massive; friable; few very fine and fine roots; moderately acid; clear wavy boundary.
2C2-33 to 80 inches; stratified reddish brown (5YR 5/4) very fine sandy loam and light reddish brown (5YR 6/3) loamy very fine sand; massive with weakly expressed thick platiness inherent from deposition; firm; few very fine and fine roots; common fine vesicular pores; moderately acid.

Thickness of the sandy mantle and depth to the loamy substratum range from 20 to 40 inches. The content of gravel ranges from 0 to 5 percent in the solum.

The A horizon has hue of 5 YR to $10 Y R$, value of 2 or 3 , and chroma of 1 or 2 . It is dominantly fine sand, but the range includes sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 or 2 . It is fine sand or sand.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sand or sand.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is fine sand or sand.

The BC horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sand or sand.

The C1 horizon has hue of 5YR to 10YR, value of 4 to 6 , and chroma of 3 or 4 . It is loamy fine sand or fine sand.

The 2C2 horizon has hue of 5YR to 10YR, value of 4 to 6 , and chroma of 3 to 6 . It is stratified loamy very fine sand, very fine sandy loam, fine sand, very fine sand, or silt loam.

Onaway Series

The Onaway series consists of very deep, well drained soils on drumlins and ground moraines. These soils formed in loamy till. Permeability is moderate in the upper part of the solum and moderately slow in and below the argillic horizon. Slopes range from 1 to 35 percent.

Typical pedon of Onaway fine sandy loam, 1 to 6 percent slopes; near the Menominee County line; 165 feet south and 1,485 feet west of the northeast corner of sec. 36, T. 42 N., R. 26 W.; USGS Arnold topographic quadrangle; lat. 46 degrees 00 minutes 05 seconds N . and long. 87 degrees 29 minutes 55 seconds W .
Oe-0 to 3 inches; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter; many very fine to coarse roots; strongly acid; abrupt smooth boundary.
E-3 to 6 inches; brown (7.5YR 5/2) fine sandy loam, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 4 percent gravel and 2 percent cobbles; slightly acid; clear broken boundary.
Bs-6 to 13 inches; brown (7.5YR 4/4) fine sandy loam; weak fine subangular blocky structure; friable; common very fine to medium roots; about 4 percent gravel and 2 percent cobbles; neutral; clear smooth boundary.
Bt-13 to 18 inches; dark brown (7.5YR 3/4) sandy clay loam; moderate medium subangular blocky structure; friable; common very fine to medium roots; many distinct discontinuous dark brown (7.5YR 3/4) clay films in root channels and on faces of peds; about 8 percent gravel and 4 percent cobbles; neutral; gradual wavy boundary.
BC—18 to 25 inches; brown (7.5YR 5/4) gravelly fine sandy loam; weak thin platy structure parting to weak very fine subangular blocky; friable; few very fine and fine roots; few distinct brown (7.5YR 4/4) clay films in root channels; about 15 percent gravel, 8 percent cobbles, and 2 percent stones; slightly alkaline; gradual wavy boundary.
C-25 to 80 inches; light brown (7.5YR 6/4) gravelly fine sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; about 15 percent gravel, 8 percent cobbles, and 2 percent stones; slightly effervescent; moderately alkaline.

The depth to carbonates ranges from 15 to 30 inches. The content of gravel ranges from 2 to 10 percent in the $A, E, B s$, and $B t$ horizons and from 10 to 20 percent in the $B C$ and C horizons. The content of cobbles ranges from 0 to 5 percent in the $A, E, B s$, and $B t$ horizons and from 2 to 10 percent in the $B C$ and C horizons. The content of stones ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is dominantly fine sandy loam, but the range includes sandy loam. Some pedons have an A horizon.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sandy loam or sandy loam.

The Bt horizon has hue of 5YR or 7.5 YR and value and chroma of 3 or 4 . It is loam or sandy clay loam.

The BC horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 . It is fine sandy loam or gravelly fine sandy loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 4 . It is gravelly fine sandy loam.

Onota Series

The Onota series consists of well drained, moderately permeable soils that are moderately deep to bedrock. These soils are on sandstone benches and dissected moraines. They formed in loamy till overlying sandstone bedrock. Slopes range from 0 to 35 percent.

Typical pedon of Onota gravelly sandy loam, 1 to 6 percent slopes; 1,100 feet east and 1,800 feet north of the southwest corner of sec. 34, T. 51 N., R. 26 W.; USGS Granite Point topographic quadrangle; lat. 46 degrees 46 minutes 18 seconds N. and long. 87 degrees 35 minutes 48 seconds W.

Oi-0 to 1 inch; undecomposed hardwood forest litter.
A-1 to 2 inches; black (5YR 2.5/1) gravelly sandy loam, dark gray (10YR 4/1) dry; moderate medium granular structure; friable; many very fine to coarse roots; about 15 percent gravel and 5 percent cobbles; very strongly acid; abrupt smooth boundary.
E-2 to 7 inches; reddish gray (5YR 5/2) gravelly sandy loam, pinkish gray (5YR 6/2) dry; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 15 percent gravel and 5 percent cobbles; very strongly acid; clear wavy boundary.
Bhs-7 to 10 inches; dark reddish brown (5YR $3 / 2$) gravelly sandy loam; moderate medium subangular blocky structure; friable; many very fine to coarse roots; about 20 percent gravel and 10 percent cobbles; strongly acid; clear wavy boundary.
Bs-10 to 22 inches; dark reddish brown (5YR 3/4) gravelly sandy loam; weak thick platy structure; firm; few very fine and fine roots; about 20 percent gravel and 10 percent cobbles; strongly acid; abrupt wavy boundary.
2R-22 inches; dark reddish brown (2.5YR 4/4) sandstone bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 20 percent throughout the profile, and the content of cobbles and channers ranges from 0 to 10 percent throughout the profile.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 . It is dominantly gravelly sandy loam, but the range includes sandy loam and loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 1 to 3 . It is sandy loam, loamy sand, gravelly sandy loam, or gravelly loamy sand.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is sandy loam or gravelly sandy loam.

The Bs horizon has hue of 5YR, value of 3 or 4, and chroma of 4 . It is sandy loam, loamy sand, gravelly sandy loam, or gravelly loamy sand.

The underlying bedrock is sandstone.

Paavola Series

The Paavola series consists of very deep, moderately well drained soils on outwash terraces on bedrock-controlled moraines. These soils are moderately deep to a fragipan. They formed in sandy and gravelly glaciofluvial deposits over loamy till. Permeability is very rapid in the sandy upper part of the profile and very slow in the lower part. Slopes range from 1 to 6 percent.

Typical pedon of Paavola very gravelly loamy sand, 1 to 6 percent slopes, stony; 1,600 feet east and 2,000 feet north of the southwest corner of sec. 23, T. 47 N., R. 23 W.; near the intersection of Camp 4 Road and Magnum Road; USGS Skandia topographic quadrangle; lat. 46 degrees 26 minutes 12 seconds N. and long. 87 degrees 09 minutes 06 seconds W .
Oe-0 to 3 inches; black (10YR 2/1), partially decomposed forest litter; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-3 to 8 inches; dark reddish gray (5YR 4/2) very gravelly loamy sand, gray (5YR 6/1) dry; weak very fine subangular blocky structure; very friable; many very fine to coarse roots; about 25 percent gravel, 12 percent cobbles, and 6 percent stones; extremely acid; clear broken boundary.
Bhs1-8 to 25 inches; dark reddish brown (5YR 3/2) extremely gravelly sand; weak very fine subangular blocky structure; friable; many very fine to coarse roots; about 40 percent gravel, 15 percent cobbles, and 6 percent stones; strongly acid; gradual wavy boundary.

Bhs2—25 to 33 inches; dark reddish brown (5YR 3/3) extremely cobbly sand; single grain; loose; common very fine to coarse roots; about 35 percent gravel, 25 percent cobbles, and 10 percent stones; strongly acid; clear wavy boundary. 2(B/E)x-33 to 80 inches; reddish brown (5YR 4/4) very cobbly fine sandy loam (Bt); few distinct reddish brown (2.5YR 4/4) clay films on faces of peds; occupies about 55 percent of the horizon; surrounded by reddish brown (5YR 5/3) very cobbly loamy fine sand, pinkish gray (5YR 6/2) dry (E); massive; very firm; few very fine and fine roots in cracks 10 to 20 inches apart; common very fine vesicular pores; common fine prominent yellowish red (5YR $5 / 8$) masses of iron accumulation; about 17 percent cobbles, 10 percent gravel, and 10 percent stones; moderately acid.

Depth to the fragipan ranges from 20 to 38 inches. The content of gravel ranges from 15 to 35 percent in the A and E horizons, from 35 to 60 percent in the Bhs and Bs horizons, and from 5 to 40 percent in the rest of the profile. The content of cobbles and stones ranges from 5 to 20 percent in the A and E horizons and from 5 to 35 percent in the rest of the profile. The control section averages more than 35 percent rock fragments by volume.

The A horizon, if it occurs, has hue of 5YR or 7.5YR, value of 2 or 3, and chroma of 1 or 2 . It is the very gravelly or very cobbly analogs of loamy sand, sand, or sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 or 2 . It is dominantly very gravelly loamy sand, but the range includes very cobbly loamy sand.

The Bhs horizon has hue of 5 YR or 7.5 YR and value and chroma of 2 or 3 . It is the extremely gravelly or extremely cobbly analogs of coarse sand, sand, or loamy sand.

The Bs horizon, if it occurs, has hue of 5YR or 7.5 YR , value of 3 to 5 , and chroma of 3 or 4 . Value and chroma of 3 do not occur together. The horizon is the extremely gravelly or extremely cobbly analogs of coarse sand, sand, or loamy sand.

The E part of the 2(B/E)x horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is gravelly loamy sand, gravelly loamy fine sand, very cobbly loamy sand, or very cobbly loamy fine sand. The B part of this horizon has hue of 5YR or 7.5YR, value of 4 or 5 , and chroma of 4 to 6 . It is gravelly sandy loam, gravelly fine sandy loam, very cobbly sandy loam, or very cobbly fine sandy loam.

Paquin Series

The Paquin series consists of very deep, moderately well drained soils on outwash plains, till-floored lake plains, and ground moraines. These soils are shallow to ortstein. They formed in sandy glaciofluvial and glaciolacustrine deposits. Permeability is rapid in the upper part, moderate or moderately rapid in the ortstein, and rapid in the lower part. Slopes range from 0 to 5 percent.

Typical pedon of Paquin sand, 0 to 3 percent slopes; 1,800 feet west and 2,400 feet south of the northeast corner of sec. 14, T. 46 N., R. 24 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 23 minutes 05 seconds N. and long. 87 degrees 16 minutes 09 seconds W.

Oa-0 to 4 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed leaf litter; many very fine to coarse roots; abrupt smooth boundary.
E-4 to 11 inches; reddish gray (5YR 5/2) sand, light gray (5YR 7/1) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; very strongly acid; abrupt irregular boundary.
Bhs-11 to 12 inches; dark reddish brown (5YR 2.5/2) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; extremely acid; abrupt irregular boundary.

Bhsm-12 to 14 inches; dark reddish brown (5YR 3/3) sand; strong medium subangular blocky structure; very hard; few very fine to medium roots; reddish brown (5YR 4/4), strongly cemented ortstein occupies about 93 percent (37 of 40 inches) of the horizon; the ortstein occurs as a nearly continuous layer with tongues extending into the Bs horizon; very strongly acid; gradual irregular boundary.
Bs-14 to 27 inches; brown (7.5YR 4/4) sand; weak fine subangular blocky structure; very friable; few very fine to medium roots; tongues of reddish brown (5YR 4/4), strongly cemented ortstein occupy 40 percent (16 of 40 inches) of the horizon and extend down from the Bhsm horizon; the tongues are 3 to 6 inches wide and 4 to 10 inches apart and extend to a depth of 22 inches; strongly acid; gradual irregular boundary.
BC-27 to 36 inches; strong brown (7.5YR 4/6) sand; moderate medium subangular blocky structure; friable; many medium distinct strong brown (7.5YR 5/8) masses of iron accumulation and common medium distinct reddish gray (5YR 5/2) iron depletions; strongly acid; clear wavy boundary.
C-36 to 80 inches; brown (7.5YR 5/4) sand; single grain; loose; moderately acid.
The depth to ortstein ranges from 10 to 16 inches. The content of gravel ranges from 0 to 5 percent throughout the profile. The profile is sand or fine sand throughout.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 2 .
The Bhs and Bhsm horizons have hue of 5YR or 7.5 YR and value and chroma of 2
or 3 . The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 .
The BC horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6 .
The C horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 4 .

Pelissier Series

The Pelissier series consists of very deep, excessively drained soils on outwash plains, outwash terraces, eskers, kames, and moraines. These soils formed in gravelly and sandy outwash deposits. Permeability is moderately rapid in the loamy mantle and very rapid in the sandy and gravelly outwash. Slopes range from 1 to 35 percent.

Typical pedon of Pelissier gravelly sandy loam(fig. 21), 6 to 18 percent slopes; 1,800 feet west and 600 feet south of the northeast corner of sec. 4, T. 48 N., R. 27 W.; on the south shore of Dead Stream Storage Basin; USGS Negaunee SW topographic quadrangle; lat. 46 degrees 35 minutes 27 seconds N. and long. 87 degrees 41 minutes 09 seconds W.

Oa-0 to 2 inches; black (10YR 2/1), well decomposed leaf litter; moderate fine granular structure; very friable; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
E-2 to 6 inches; brown (7.5YR 5/2) gravelly sandy loam, pinkish gray (7.5YR 6/2) dry; weak fine subangular blocky structure; friable; common very fine to coarse roots; about 20 percent gravel and 5 percent cobbles; extremely acid; clear wavy boundary.
Bs1-6 to 10 inches; dark reddish brown (5YR 3/4) gravelly sandy loam; weak medium subangular blocky structure; friable; many very fine to coarse roots; about 20 percent gravel and 5 percent cobbles; very strongly acid; gradual irregular boundary.
Bs2-10 to 21 inches; yellowish red (5YR 4/6) very gravelly loamy coarse sand; weak fine subangular blocky structure; very friable; common very fine to medium roots; about 35 percent gravel and 5 percent cobbles; strongly acid; gradual wavy boundary.

Figure 21.-Typical profile of Pelissier gravelly sandy loam. This soil is a probable source of gravel. Depth is marked in feet.

C1—21 to 36 inches; strong brown (7.5YR 5/6) very gravelly coarse sand; single grain; loose; common very fine to medium roots; about 50 percent gravel and 5 percent cobbles; strongly acid; gradual wavy boundary.
C2—36 to 80 inches; reddish yellow (7.5YR 6/6) very gravelly coarse sand; single grain; loose; few very fine and fine roots; about 50 percent gravel and 10 percent cobbles; strongly acid.

The content of gravel ranges from 15 to 35 percent in the A, E, and Bs1 horizons and from 15 to 60 percent in the rest of the profile. The content of cobbles ranges from 0 to 15 percent throughout the profile, and the content of stones ranges from 0 to 2 percent throughout the profile. The content of rock fragments averages more than 35 percent in the control section.

The A horizon, if it occurs, has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is gravelly sandy loam, gravelly loamy sand, gravelly sand, cobbly sandy loam, cobbly loamy sand, or cobbly sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 to 3 . It is dominantly gravelly sandy loam, but the range includes gravelly loamy sand, gravelly sand, cobbly loamy sand, and cobbly sand.

The Bs1 horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is gravelly sandy loam, gravelly loamy sand, gravelly sand, cobbly sandy loam, cobbly loamy sand, or cobbly sand.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is very gravelly loamy coarse sand, gravelly coarse sand, gravelly loamy coarse sand, very gravelly coarse sand, cobbly loamy coarse sand, or cobbly coarse sand.

Some pedons have a BC horizon. This horizon has colors similar to those of the Bs2 horizon. It is very gravelly loamy coarse sand, very gravelly coarse sand, or gravelly coarse sand.

The C horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 3 to 6 . It is very gravelly coarse sand, extremely gravelly coarse sand, or very gravelly sand.

Pelkie Series

The Pelkie series consists of very deep, moderately well drained, rapidly permeable soils on flood plains. These soils formed in sandy alluvium. Slopes range from 0 to 4 percent.

Typical pedon of Pelkie loamy fine sand, in an area of Evart-Pelkie-Sturgeon complex, 0 to 4 percent slopes; near Highway M-28 along the Chocolay River; 2,200 feet east and 1,150 feet north of the southwest corner of sec. 9, T. 47 N., R. 23 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 28 minutes 53 seconds N. and long. 87 degrees 19 minutes 04 seconds W .
A-0 to 7 inches; very dark brown (10YR $2 / 2$) loamy fine sand, dark grayish brown (10YR 4/2) dry; moderate very fine subangular blocky structure; friable; many very fine to coarse roots; moderately acid; clear broken boundary.
C1—7 to 19 inches; strong brown (7.5YR 4/6) loamy fine sand; moderate very fine subangular blocky structure; friable; many very fine to coarse roots; slightly acid; clear wavy boundary.
C2-19 to 30 inches; strong brown (7.5YR 5/6) fine sand; weak very fine subangular blocky structure; very friable; neutral; clear wavy boundary.
C3-30 to 80 inches; brown (7.5YR 5/4) sand; single grain; loose; common medium faint brown (7.5YR 4/4) masses of iron accumulation; neutral.
The thickness of the surface layer ranges from 1 to 7 inches.
The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly loamy fine sand, but the range includes fine sand.

The C horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 3 or 4 . It is sand, fine sand, or loamy fine sand.

Pence Series

The Pence series consists of very deep, somewhat excessively drained soils on outwash terraces and outwash plains. These soils formed in a loamy mantle over sandy outwash. Permeability is moderately rapid in the loamy upper part of the profile and rapid or very rapid in the lower part. Slopes range from 0 to 35 percent.

Typical pedon of Pence fine sandy loam, 0 to 6 percent slopes; 100 feet north and 2,300 feet east of the southwest corner of sec. 1, T. 47 N., R. 28 W.; USGS Greenwood topographic quadrangle; lat. 46 degrees 29 minutes 40 seconds N. and long. 87 degrees 45 minutes 04 seconds W .

Oe-0 to 2 inches; black (10YR 2/1), partially decomposed forest litter; very strongly acid; abrupt smooth boundary.
E-2 to 6 inches; brown (7.5YR 4/2) fine sandy loam, pinkish gray (7.5YR 6/2) dry; weak medium subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; very strongly acid; abrupt wavy boundary.
Bs1-6 to 9 inches; dark brown (7.5YR 3/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine to coarse roots; about 5 percent gravel; strongly acid; clear broken boundary.
Bs2-9 to 13 inches; brown (7.5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common fine roots; about 5 percent gravel; strongly acid; clear wavy boundary.
2Bs3-13 to 16 inches; strong brown (7.5YR 4/6) loamy coarse sand; weak fine subangular blocky structure; very friable; common fine roots; about 5 percent gravel; strongly acid; clear wavy boundary.
$2 B C-16$ to 31 inches; dark yellowish brown (10YR 4/6) coarse sand; single grain; loose; few fine roots; about 6 percent gravel; strongly acid; clear smooth boundary.
2C-31 to 80 inches; dark yellowish brown (10YR 4/4) and yellowish brown (10YR 5/4), stratified coarse sand, sand, very gravelly sand, and very gravelly coarse sand; single grain; loose; about 30 percent gravel; moderately acid.
The thickness of the loamy mantle ranges from 10 to 20 inches. The content of gravel ranges from 2 to 25 percent in the loamy mantle and from 5 to 35 percent in the sandy horizons. The content of cobbles ranges from 0 to 5 percent throughout the profile. The content of rock fragments averages less than 35 percent in the control section.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 2 or 3 . It is dominantly fine sandy loam, but the range includes sandy loam. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

The Bs2 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 to 6 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

The 2Bs3 horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is loamy coarse sand, loamy sand, gravelly loamy coarse sand, or gravelly loamy sand.

The 2BC horizon has hue of 5 YR to 10YR, value of 4 to 6 , and chroma of 5 or 6 . It is coarse sand, sand, loamy sand, or loamy coarse sand or the gravelly analogs of these textures.

The 2C horizon has hue of 5YR to 10 YR and value and chroma of 4 to 6 . It is stratified sand, coarse sand, very gravelly coarse sand, and very gravelly sand.

Peshekee Series

The Peshekee series consists of well drained, moderately permeable soils that are shallow to bedrock. These soils are on bedrock-controlled moraines. They formed in a silty or loamy mantle over loamy till overlying igneous or metamorphic bedrock. Slopes range from 6 to 70 percent.

Typical pedon of Peshekee cobbly very fine sandy loam, in an area of PeshekeeRock outcrop complex, 35 to 70 percent slopes, very bouldery; 2,063 feet east and 908 feet south of the northwest corner of sec. 32, T. 49 N., R. 25 W.; Sugarloaf Mountain; USGS Marquette topographic quadrangle; lat. 46 degrees 36 minutes 10 seconds N . and long. 87 degrees 27 minutes 35 seconds W.

Oa-0 to 1 inch; black (10YR 2/1), well decomposed forest litter; about 15 percent cobbles, 10 percent gravel, 8 percent stones, and 2 percent boulders; very strongly acid; abrupt smooth boundary.
A-1 to 3 inches; dark brown ($7.5 \mathrm{YR} 3 / 2$) cobbly very fine sandy loam, brown (7.5YR $5 / 2$) dry; moderate fine granular structure; friable; about 15 percent cobbles, 10 percent gravel, 8 percent stones, and 2 percent boulders; strongly acid; abrupt wavy boundary.
E-3 to 5 inches; reddish gray (5 YR $5 / 2$) cobbly very fine sandy loam, light gray (7.5YR 7/1) dry; moderate fine subangular blocky structure; friable; about 15 percent cobbles, 10 percent gravel, 8 percent stones, and 2 percent boulders; strongly acid; abrupt broken boundary.
Bhs- 5 to 8 inches; dark reddish brown (5 YR $3 / 3$) cobbly very fine sandy loam; moderate fine subangular blocky structure; friable; about 15 percent cobbles, 10 percent gravel, 8 percent stones, and 2 percent boulders; strongly acid; abrupt broken boundary.
Bs-8 to 14 inches; dark reddish brown (5YR 3/4) cobbly very fine sandy loam; moderate fine and medium subangular blocky structure; friable; about 15 percent cobbles, 10 percent gravel, 8 percent stones, and 2 percent boulders; strongly acid; clear wavy boundary.
2R-14 inches; granite bedrock.
Depth to bedrock ranges from 10 to 20 inches. The content of gravel ranges from 0 to 15 percent throughout the profile, the content of cobbles ranges from 0 to 20 percent throughout the profile, and the content of stones and boulders ranges from 0 to 10 throughout the profile. The content of rock fragments averages less than 35 percent in the control section.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly cobbly very fine sandy loam, but the range includes fine sandy loam and very fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 or 2 . It is very fine sandy loam, fine sandy loam, or sandy loam or the cobbly analogs of these textures.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is very fine sandy loam, fine sandy loam, or sandy loam or the cobbly analogs of these textures.

The Bs horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is very fine sandy loam, fine sandy loam, or sandy loam or the cobbly analogs of these textures.

The underlying bedrock is igneous or metamorphic.

Pleine Series

The Pleine series consists of very deep, poorly drained, moderately permeable soils in depressions and drainageways on bedrock-controlled moraines. These soils formed in loamy till. Slopes are 0 to 1 percent.

Typical pedon of Pleine very cobbly muck, very stony; about 2 miles southwest of the village of National Mine; 2,370 feet south and 2,565 feet west of the northeast corner of sec. 29, T. 47 N., R. 27 W.; USGS Ishpeming topographic quadrangle; lat. 46 degrees 26 minutes 36 seconds N. and long. 87 degrees 42 minutes 27 seconds W.

Oa-0 to 9 inches; black ($\mathrm{N} 2.5 / 0$) very cobbly muck; moderate fine granular structure; very friable; many very fine to coarse roots; about 35 percent cobbles and 15 percent stones; slightly acid; abrupt wavy boundary.
Bg-9 to 20 inches; pinkish gray (7.5YR 6/2) very fine sandy loam; weak medium subangular blocky structure; firm; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 10 percent cobbles and 2 percent gravel; slightly acid; clear wavy boundary.
Bw-20 to 33 inches; reddish brown (5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; common medium prominent pinkish gray (7.5YR 6/2) iron depletions; common medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 8 percent gravel and 4 percent cobbles; slightly acid; clear wavy boundary.
C—33 to 80 inches; reddish brown (2.5YR 4/4) gravelly sandy loam; massive; friable; about 18 percent gravel, 6 percent cobbles, and 2 percent stones; slightly acid.

The content of gravel ranges from 0 to 15 percent in the Oa, Bg, and Bw horizons and from 15 to 30 percent in the C horizon. The content of cobbles ranges from 5 to 35 percent in the Oa horizon and from 5 to 15 percent in the Bg , Bw , and C horizons. The content of stones ranges from 1 to 15 percent in the Oa horizon and from 1 to 5 percent in the E, B, and C horizons. The content of rock fragments averages less than 35 percent in the control section.

The Oa horizon has hue of 7.5 YR or 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 or 1 . It is dominantly very cobbly muck, but the range includes muck.

Some pedons have an A horizon. This horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is loam, silt loam, sandy loam, or very fine sandy loam or the cobbly analogs of these textures.

The Bg horizon has hue of 5 YR to 10 YR , value of 5 or 6 , and chroma of 1 or 2 . It is loam, very fine sandy loam, fine sandy loam, or sandy loam or the cobbly analogs of these textures.

The Bw horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is loam, fine sandy loam, or sandy loam or the cobbly analogs of these textures.

The C horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam.

Reade Series

The Reade series consists of moderately well drained, moderately permeable soils that are moderately deep to bedrock (fig. 22) These soils are on ground moraines. They formed in loamy till overlying limestone, dolomite, or dolomitic sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Reade silt loam, in an area of Shoepac-Reade silt loams, 1 to 4 percent slopes; about 4 miles southwest of McFarland; 85 feet north and 1,013 feet west of the southeast corner of sec. 9, T. 43 N., R. 24 W.; USGS Helena topographic quadrangle; lat. 46 degrees 07 minutes 48.33 seconds N. and long. 87 degrees 18 minutes 29.94 seconds W.

Figure 22.-Typical profile of a Reade soil. Dolomitic sandstone bedrock is at a depth of 28 inches.

Oa-0 to 4 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
E—4 to 7 inches; brown (7.5YR 5/2) silt loam, light gray (7.5YR 7/1) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 5 percent cobbles and 1 percent gravel; extremely acid; clear wavy boundary.

Bhs-7 to 9 inches; dark brown (7.5YR 3/3) loam; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 5 percent cobbles and 3 percent gravel; very strongly acid; clear broken boundary.
Bs1-9 to 12 inches; dark brown (7.5YR 3/4) fine sandy loam; weak fine subangular blocky structure; very friable; common fine and few medium roots; about 5 percent cobbles and 7 percent gravel; very strongly acid; gradual wavy boundary.
Bs2-12 to 15 inches; brown (7.5YR 4/4) fine sandy loam; moderate fine and coarse subangular blocky structure; firm; few very fine and fine roots in cracks 10 to 20 inches apart; common fine vesicular pores; common fine and medium faint dark brown (7.5YR 3/3) masses of iron accumulation; about 5 percent cobbles and 1 percent gravel; strongly acid; clear broken boundary.
B/E-15 to 20 inches; reddish brown (5YR 4/4) fine sandy loam (Bt); few faint dark reddish brown (5YR 3/3) clay films in root channels; occupies about 60 percent of the horizon; surrounded by reddish brown (5YR 5/3) loamy fine sand (E), pinkish gray (7.5YR 7/2) dry; moderate fine and medium subangular blocky structure; friable; few very fine and fine roots; common fine and medium prominent strong brown (7.5YR 4/6) masses of iron accumulation; about 5 percent cobbles and 9 percent gravel; slightly alkaline; gradual wavy boundary.
BC—20 to 28 inches; reddish brown (5YR 4/4) gravelly fine sandy loam; moderate fine and medium subangular blocky structure; friable; few very fine and fine roots; common fine and medium distinct yellowish red (5YR 4/6) masses of iron accumulation; about 5 percent cobbles and 12 percent gravel; moderately alkaline; abrupt smooth boundary.
2R-28 inches; grayish brown (2.5Y 5/2), dolomitic sandstone; few very fine and fine roots in a mat on top and in the upper 6 inches of crevices in the bedrock; many medium and coarse yellowish red (5YR 4/6) masses of iron accumulation on the surface of the bedrock.

Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 0 to 15 percent throughout the profile, and the content of cobbles and stones ranges from 0 to 10 percent throughout the profile.

Some pedons have an A horizon. This horizon has hue of 7.5YR or 10YR, value of 2 to 4 , and chroma of 1 or 2 . It is silt loam, very fine sandy loam, or fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 . It is dominantly silt loam, but the range includes very fine sandy loam and fine sandy loam.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is silt loam, loam, very fine sandy loam, or fine sandy loam.

The Bs1 horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs2 horizon has hue of 7.5 YR , value of 4 , and chroma of 3 or 4 . It is fine sandy loam or sandy loam.

The Bt part of the B/E horizon has hue of $5 Y R$, value of 4 , and chroma of 3 or 4 . It is fine sandy loam. The E part of the B / E horizon has hue of $5 Y R$, value of 5 or 6 , and chroma of 3 . It is loamy fine sand. Some pedons have an E/B horizon.

The BC horizon has hue of 5 YR , value of 4 or 5 , and chroma of 4 . It is gravelly fine sandy loam. Some pedons have a Cr horizon.

The underlying bedrock is dolomitic sandstone, dolomite, or limestone.

Rousseau Series

The Rousseau series consists of very deep, well drained, rapidly permeable soils on till-floored lake plains and outwash plains. These soils formed in sandy glaciofluvial and glaciolacustrine deposits. Slopes range from 0 to 35 percent.

Typical pedon of Rousseau fine sand, 0 to 6 percent slopes; 500 feet west and 2,400 feet south of the northeast corner of sec. 23, T. 47 N., R. 25 W.; USGS Sands topographic quadrangle; lat. 46 degrees 27 minutes 23 seconds N. and long. 87 degrees 23 minutes 14 seconds W.
A-0 to 3 inches; black (10YR 2/1) fine sand, dark gray (10YR 4/1) dry; weak fine subangular blocky structure; very friable; many uncoated sand grains; common very fine to medium roots; strongly acid; abrupt wavy boundary.
E-3 to 6 inches; brown (7.5YR 5/2) fine sand, pinkish gray (7.5YR 6/2) dry; weak fine subangular blocky structure; very friable; few fine to medium roots; strongly acid; abrupt wavy boundary.
Bs1-6 to 14 inches; dark brown (7.5YR 3/4) fine sand; weak medium subangular blocky structure; very friable; few very fine and fine roots; moderately acid; abrupt broken boundary.
Bs2-14 to 27 inches; strong brown (7.5YR 4/6) fine sand; single grain; loose; very few fine roots; vertical tongues of reddish brown (5YR 4/4), moderately cemented ortstein occupy 17 percent (7 of 40 inches) of the horizon and extend to a depth of 25 inches; moderately acid; gradual wavy boundary.
C-27 to 80 inches; brown (7.5YR 5/4) fine sand; single grain; loose; few thin reddish brown ($7.5 \mathrm{YR} 5 / 4$) depositional strata of loamy fine sand; very few fine roots; moderately acid.
The depth to ortstein ranges from 10 to 25 inches.
The A horizon has hue of 7.5 YR or 10YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 or 1 . It is fine sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 1 or 2 . It is fine sand.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sand.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is fine sand. Some pedons have a BC horizon.

The C horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 3 or 4 . It is dominantly fine sand, but in some pedons it has few thin strata of loamy fine sand.

Rubicon Series

The Rubicon series consists of very deep, excessively drained, rapidly permeable soils on outwash plains, disintegration moraines, till-floored lake plains, beach ridges, dissected moraines, and outwash terraces. These soils formed in sandy outwash. Slopes range from 0 to 70 percent.

Typical pedon of Rubicon sand, 0 to 6 percent slopes; 2,000 feet east and 550 feet north of the southwest corner of sec. 26, T. 47 N., R. 25 W.; USGS Sands topographic quadrangle; lat. 46 degrees 26 minutes 09 seconds N . and long. 87 degrees 23 minutes 26 seconds W.
A-0 to 1 inch; black (10YR 2/1) sand, very dark gray (10YR 3/1) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 3 percent gravel; very strongly acid; abrupt smooth boundary.
E-1 to 7 inches; pinkish gray (7.5YR 6/2) sand, pinkish gray (7.5YR 7/2) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 3 percent gravel; strongly acid; abrupt smooth boundary.
Bs1-7 to 11 inches; brown (7.5YR 4/4) sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; discontinuous vertical tongues of dark reddish brown (5YR 3/2), moderately cemented ortstein occupy 20 percent (8 of 40 inches) of the horizon and extend into the Bs2 horizon to a depth of 16 inches;
tongues are 2 to 5 inches wide and 6 to 30 inches apart; about 3 percent gravel; strongly acid; clear wavy boundary.
Bs2-11 to 18 inches; strong brown (7.5YR 4/6) sand; weak fine subangular blocky structure; very friable; common very fine to coarse roots; discontinuous tongues of dark reddish brown (5YR 3/2), moderately cemented ortstein extend into this horizon from the Bs1 horizon and occupy 12 percent (5 of 40 inches) of the horizon; tongues are 2 to 3 inches wide and 10 to 30 inches apart; about 3 percent gravel; moderately acid; gradual irregular boundary.
BC-18 to 38 inches; strong brown (7.5YR 5/6) sand; single grain; loose; few very fine and fine roots; about 3 percent gravel; moderately acid; clear irregular boundary.
C-38 to 80 inches; light brown (7.5YR 6/4) sand; single grain; loose; few very fine and fine roots; about 3 percent gravel; moderately acid.

The depth to ortstein ranges from 10 to 25 inches. The content of gravel ranges from 0 to 5 percent throughout the profile. The profile is sand throughout.

The A horizon has hue of 7.5 YR or 10YR, value of 2 or 3 , and chroma of 1 or 2 . The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 1 or 2 .

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 .

The BC horizon has hue of 7.5 YR or 10 YR , value of 5 or 6 , and chroma of 4 to 6 .
The C horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 3 to 6 .

Sagola Series

The Sagola series consists of very deep, well drained, moderately permeable soils on ground moraines and disintegration moraines. These soils formed in loamy till. Slopes range from 1 to 18 percent.

Typical pedon of Sagola fine sandy loam, in an area of Sagola-Rubicon complex, 6 to 18 percent slopes, bouldery; 1,000 feet west and 100 feet north of the southeast corner of sec. 32, T. 45 N., R. 29 W.; USGS Ralph NW topographic quadrangle; lat. 46 degrees 14 minutes 19 seconds N . and long. 87 degrees 57 minutes 26 seconds W .
Oe-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), partially decomposed forest litter.
E-2 to 5 inches; brown (7.5YR 5/2) fine sandy loam, pinkish gray (7.5YR 7/2) dry; weak very fine subangular blocky structure; very friable; many very fine to coarse roots; about 3 percent cobbles and 2 percent gravel; strongly acid; abrupt wavy boundary.
Bs-5 to 20 inches; brown (7.5YR 4/4) fine sandy loam; weak very fine subangular blocky structure; friable; many very fine to coarse roots; about 3 percent cobbles and 2 percent gravel; strongly acid; gradual wavy boundary.
E/B-20 to 35 inches; about 60 percent brown (7.5YR 5/4) loamy sand, pinkish gray (7.5YR 6/2) dry (E); occurring as tongues extending into or completely surrounding isolated remnants of reddish brown (5YR 4/4) sandy loam (Bt); common distinct reddish brown (5YR 4/3) clay films on faces of peds; moderate medium subangular blocky structure; friable; few very fine to coarse roots; common very fine vesicular pores; about 3 percent cobbles and 2 percent gravel; neutral; gradual irregular boundary.
$B / E-35$ to 56 inches; reddish brown (5YR 4/4) sandy loam (Bt); common distinct reddish brown (5YR 4/3) clay films on faces of peds; occupies about 70 percent of the horizon; penetrated by tongues of brown (7.5YR 5/4) loamy sand, pinkish gray (7.5YR 6/2) dry (E); moderate medium subangular blocky structure; friable; few very fine to coarse roots; few fine vesicular pores; about 3 percent cobbles and 2 percent gravel; neutral; gradual wavy boundary.

C-56 to 80 inches; strong brown (7.5YR 5/6) sandy loam; massive; friable; few very fine and fine roots; about 3 percent cobbles and 2 percent gravel; few thin strata of fine sand and sand; slightly effervescent; slightly alkaline.

The depth to carbonates ranges from 50 to 60 inches. The content of gravel ranges from 0 to 10 percent throughout the profile, the content of cobbles ranges from 0 to 5 percent throughout the profile, and the content of stones ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is dominantly fine sandy loam, but the range includes loamy fine sand. Some pedons have an A horizon.

The Bs horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is fine sandy loam or loamy fine sand.

The E part of the E / B and B / E horizons has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 2 to 4 . It is loamy sand or loamy fine sand. The Bt part of the E/B and B / E horizons has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

The C horizon has hue of 7.5 YR , value of 5 or 6 , and chroma of 4 to 6 . It is sandy loam or loamy sand.

Sauxhead Series

The Sauxhead series consists of moderately well drained, very rapidly permeable soils that are shallow to bedrock. These soils are on bedrock benches. They formed in sandy and channery glaciofluvial deposits overlying sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Sauxhead sandy loam, in an area of Sauxhead-Jacobsville complex, 0 to 6 percent slopes, very stony; 1,200 feet west and 1,400 feet south of the northeast corner of sec. 10, T. 49 N., R. 26 W.; USGS Buckroe topographic quadrangle; lat. 46 degrees 39 minutes 52 seconds N . and long. 87 degrees 39 minutes 05 seconds W .
Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-1 to 4 inches; dark reddish gray (5YR 4/2) sandy loam, pinkish gray (5YR 6/2) dry; weak medium subangular blocky structure; friable; many very fine to coarse roots; about 3 percent gravel and 3 percent channers; strongly acid; clear wavy boundary.
2Bw-4 to 14 inches; reddish brown (2.5YR 4/4) very channery loamy sand; weak medium subangular blocky structure; very friable; many very fine to coarse roots; strongly acid; about 50 percent sandstone channers and 5 percent gravel; clear wavy boundary.
$3 \mathrm{Cr}-14$ to 17 inches; dark reddish brown (2.5YR 3/4), highly weathered and fractured sandstone; reddish brown (2.5YR 4/4) loamy sand in root channels and cracks; few very fine and fine roots in cracks and crevices; very strongly acid; abrupt wavy boundary.
3R-17 inches; reddish brown (2.5YR 4/4) sandstone bedrock; common medium prominent light brownish gray (10YR 6/2) iron depletions on the surface of the bedrock; common medium prominent reddish yellow (7.5YR 6/8) masses of iron accumulation on the surface of the bedrock.

Depth to bedrock ranges from 10 to 20 inches. The content of channers and gravel ranges from 0 to 20 percent in the A and E horizons and from 35 to 60 percent in the 2Bw horizon. The content of flagstones and cobbles ranges from 0 to 10 percent
throughout the profile. The content of rock fragments averages 35 to 60 percent in the control section.

Some pedons have an A horizon. This horizon has hue of 7.5 YR or 10YR, value of 2 or 3, and chroma of 1 . It is sandy loam or loamy sand or the channery or gravelly analogs of these textures.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is dominantly sandy loam, but the range includes loamy sand, channery loamy sand, and gravelly loamy sand.

The 2 Bw horizon has hue of 2.5 YR or 5 YR, value of 4 , and chroma of 3 or 4 . It is very channery loamy sand or very channery sand.

The 3 Cr horizon has hue of 2.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is soft and weathered sandstone.

The underlying bedrock is sandstone.

Sayner Series

The Sayner series consists of very deep, excessively drained, rapidly permeable soils on outwash plains, outwash terraces, and dissected moraines. These soils formed in sandy and gravelly outwash. Slopes range from 1 to 45 percent.

Typical pedon of Sayner loamy sand, in an area of Sayner-Rubicon complex, 1 to 6 percent slopes; 2,200 feet east and 1,250 feet south of the northwest corner of sec.
14, T. 48 N., R. 26 W.; Dead River Basin; USGS Negaunee topographic quadrangle; lat.
46 degrees 33 minutes 07 seconds N . and long. 87 degrees 31 minutes 20 seconds W .
Oa-0 to 1 inch; black (N 2.5/0), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
E-1 to 2 inches; dark reddish gray (5YR 4/2) loamy sand, brown (7.5YR 5/3) dry; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 5 percent gravel and 2 percent cobbles; strongly acid; abrupt broken boundary.
Bs1-2 to 8 inches; dark reddish brown (5YR 3/4) loamy sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 5 percent cobbles; moderately acid; clear wavy boundary.
Bs2-8 to 14 inches; strong brown (7.5YR 4/6) loamy sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 5 percent cobbles; moderately acid; gradual wavy boundary.
BC-14 to 27 inches; strong brown (7.5YR 5/6) sand; weak medium subangular blocky structure parting to weak fine granular; very friable; few very fine to medium roots; about 2 percent cobbles and 1 percent gravel; moderately acid; abrupt smooth boundary.
C—27 to 80 inches; light yellowish brown (10YR 6/4), stratified sand and gravelly sand; single grain; loose; few very fine to medium roots; about 8 percent gravel and 5 percent cobbles; moderately acid.
The content of gravel ranges from 0 to 10 percent in the solum and from 15 to 30 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 10 percent in the substratum. The content of rock fragments averages less than 35 percent in the control section.

The E horizon has hue of 5 YR to 10 YR , value of 4 to 6 , and chroma of 2 or 3 . It is loamy sand. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 . It is loamy sand or sand.

The Bs2 horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is loamy sand or sand.

The BC horizon has hue of 7.5 YR or 10YR, value of 5 or 6 , and chroma of 4 to 6 . It is sand, coarse sand, or loamy sand.

The C horizon has hue of 10YR, value of 5 or 6 , and chroma of 4 to 6 . It is stratified sand, gravelly sand, and gravelly coarse sand.

Schweitzer Series

The Schweitzer series consists of very deep, well drained soils on bedrockcontrolled moraines. These soils are shallow or moderately deep to a fragipan. They formed in silty and loamy eolian deposits over loamy and sandy till. Permeability is moderate in the upper part, very slow in the fragipan, and moderate in the lower part. Slopes range from 6 to 70 percent.

Typical pedon of Schweitzer cobbly very fine sandy loam (fig. 23) in an area of Schweitzer-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very stony; 2,450 feet west and 2,200 feet north of the southeast corner of sec. 12, T. 47 N., R. 27 W.; USGS Palmer topographic quadrangle; lat. 46 degrees 29 minutes 02 seconds N . and long. 87 degrees 37 minutes 19 seconds W.
A—0 to 1 inch; black (5YR 2.5/1) cobbly very fine sandy loam, dark gray (5YR 4/1) dry; weak fine granular structure; very friable; many fine to coarse roots; 17 percent cobbles, 3 percent stones, and 3 percent boulders; extremely acid; abrupt smooth boundary.
E-1 to 5 inches; reddish gray (5YR 5/2) cobbly silt loam, pinkish gray (5 YR 6/2) dry; moderate medium subangular blocky structure; friable; many fine to coarse roots; 17 percent cobbles, 3 percent stones, 3 percent boulders, and 2 percent gravel; extremely acid; clear wavy boundary.
Bhs-5 to 8 inches; dark reddish brown (5YR 3/3) cobbly very fine sandy loam; moderate fine and medium subangular blocky structure; friable; many fine to coarse roots; 17 percent cobbles, 3 percent stones, 3 percent boulders, and 1 percent gravel; very strongly acid; clear wavy boundary.
Bs1-8 to 15 inches; dark reddish brown (5YR 3/4) cobbly very fine sandy loam; moderate fine and medium subangular blocky structure; friable; many fine to coarse roots; common fine vesicular pores; 17 percent cobbles, 7 percent gravel, 3 percent stones, and 3 percent boulders; very strongly acid; clear smooth boundary.
Bs2-15 to 21 inches; brown (7.5YR 4/4) cobbly very fine sandy loam; moderate medium platy structure; friable; common fine to medium roots; common very fine and fine vesicular pores; 17 percent cobbles, 3 percent stones, 3 percent boulders, and 1 percent gravel; strongly acid; clear smooth boundary.
2(E/B)x-21 to 27 inches; about 70 percent reddish brown (5YR 4/3) very cobbly loamy sand, light reddish brown (5YR 6/3) dry (E); surrounding isolated remnants of reddish brown (2.5YR 4/4) very cobbly sandy loam (Bt); common distinct reddish brown (2.5YR 4/4) clay films on faces of peds and in pores; weak very coarse prismatic structure parting to moderate thick platy; very firm; many fine vesicular pores; 24 percent cobbles, 22 percent gravel, 3 percent stones, and 3 percent boulders; strongly acid; clear smooth boundary.
$2(B / E) x-27$ to 43 inches; reddish brown (2.5YR 4/4) very cobbly sandy loam (Bt); many distinct reddish brown (2.5YR 4/4) clay films on faces of peds and in pores; occupies about 80 percent of the horizon; surrounded by reddish brown (5YR 4/3) very cobbly loamy sand, light reddish brown (5YR 6/3) dry (E); weak very coarse prismatic structure parting to moderate thick platy; very firm; many fine vesicular pores; 32 percent cobbles, 18 percent gravel, 3 percent stones, and 3 percent boulders; strongly acid; clear smooth boundary.

Figure 23.-Typical profile of Schweitzer cobbly very fine sandy loam. The fragipan starts below a depth of 50 centimeters.

2(B/E)—43 to 61 inches; reddish brown (2.5YR 4/4) very cobbly sandy loam (Bt); many distinct reddish brown (2.5YR 4/4) clay films on faces of peds and in pores; occupies about 80 percent of the horizon; surrounded by or penetrated by tongues of reddish brown (5YR 4/3) very cobbly loamy sand, light reddish brown (5YR 6/3) dry (E); moderate thick platy structure; firm; many fine vesicular pores; 24 percent cobbles, 20 percent gravel, 3 percent stones, and 3 percent boulders; strongly acid; clear smooth boundary.

2C-61 to 80 inches; reddish brown (2.5YR 4/4) very cobbly loamy sand; massive with weakly expressed thin plates inherent from the parent material; friable; few fine vesicular pores; 24 percent cobbles, 22 percent gravel, 3 percent stones, and 3 percent boulders; moderately acid.
The thickness of the loamy mantle and the depth to the fragipan range from 15 to 30 inches. The content of gravel ranges from 0 to 20 percent in the loamy mantle and from 10 to 40 percent in the fragipan and in the substratum. The content of cobbles ranges from 2 to 20 percent in the loamy mantle and from 4 to 25 percent in the fragipan and in the substratum. The content of stones and boulders ranges from 1 to 10 percent throughout the profile.

Some pedons have an O horizon, which is as much as 2 inches thick. This horizon has hue of 5 YR or 7.5 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2.

The A horizon has hue of 5YR or 7.5 YR , value of 2 to 4 , and chroma of 1 or 2 . It is dominantly cobbly very fine sandy loam, but the range includes silt loam, fine sandy loam, very fine sandy loam, cobbly silt loam, and cobbly fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 to 3 . It is very fine sandy loam, fine sandy loam, or silt loam or the cobbly analogs of these textures.

The Bhs horizon has hue of 5YR or 7.5YR, value of 3, and chroma of 2 or 3 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bs1 horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is silt loam, very fine sandy loam, or fine sandy loam or the cobbly analogs of these textures.

Some pedons have a 2Ex horizon. The 2Ex horizon and the E part of the 2(E/B)x and $2(\mathrm{~B} / \mathrm{E}) \mathrm{x}$ horizons have hue of 2.5 YR or 5 YR , value of 4 to 6 , and chroma of 2 to 4 . Some pedons have a $2 B x$ horizon. The $2 B x$ horizon and the B part of the $2(E / B) x$ and $2(B / E) \times$ horizons have hue of 2.5 YR or $5 Y R$, value of 3 to 5 , and chroma of 4 to 6 . The 2(E/B)x and 2(B/E)x horizons are the cobbly, very cobbly, gravelly, or very gravelly analogs of loamy sand, loamy fine sand, or sandy loam.

Some pedons have a $2 B$ t horizon. The $2 B t$ horizon and the B part of the $2(B / E)$ horizon have hue of 2.5 YR or 5 YR , value of 3 to 5 , and chroma of 4 to 6 . The E part of the $2(B / E)$ horizon has hue of 2.5 YR or 5 YR, value of 4 to 6 , and chroma of 2 to 4 . The 2(B/E) horizon is the cobbly, very cobbly, gravelly, or very gravelly analogs of fine sandy loam or sandy loam.

The 2 C horizon has hue of 2.5 YR or 5YR, value of 3 to 5 , and chroma of 4 to 6 . It is the cobbly, very cobbly, gravelly, or very gravelly analogs of sandy loam, fine sandy loam, or loamy sand.

Shag Series

The Shag series consists of very deep, poorly drained, moderately slowly permeable soils on lake plains. These soils formed in silty glaciolacustrine deposits. Slopes are 0 to 1 percent.

Typical pedon of Shag muck; 470 feet west and 90 feet north of the southeast corner of sec. 21, T. 45 N., R. 27 W.; USGS Green Hills topographic quadrangle; lat. 46 degrees 16 minutes 40.02 seconds N . and long. 87 degrees 41 minutes 08.66 seconds W.

Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$) muck; moderate fine granular structure; very friable; many very fine to coarse roots; neutral; clear wavy boundary.
A1-2 to 5 inches; black (10YR 2/1) silt loam, very dark gray (10YR 3/1) dry; moderate medium granular structure; friable; many very fine to coarse roots; about 5 percent gravel; neutral; clear wavy boundary.
A2—5 to 11 inches; very dark gray (10YR 3/1) silt loam, grayish brown (10YR 5/2) dry; moderate medium subangular blocky structure; friable; many very fine to coarse roots; few fine vesicular pores; common fine distinct strong brown (7.5YR 5/8) masses of iron accumulation; about 5 percent gravel; neutral; clear wavy boundary.
Bw1-11 to 17 inches; brown (7.5YR 4/4) silt loam; weak thin platy structure; friable; common very fine and fine and few medium roots; common fine vesicular pores; common distinct silt coatings on faces of peds; few fine prominent gray (5Y 5/1) iron depletions along root channels; many medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 2 percent gravel; moderately alkaline; gradual wavy boundary.
Bw2—17 to 25 inches; brown (7.5YR 4/4) silt loam; weak medium platy structure; friable; few very fine and fine roots; common fine vesicular pores; common distinct silt coatings on faces of peds; few fine prominent gray ($5 \mathrm{Y} 5 / 1$) iron depletions along root channels; many medium distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 2 percent gravel; moderately alkaline; gradual wavy boundary.
C-25 to 80 inches; brown (7.5YR 5/3) silt loam; massive with weak very thin platiness inherent from deposition; friable; few very fine roots; common fine vesicular pores; many medium faint strong brown (7.5YR 5/6) masses of iron accumulation; about 2 percent gravel; moderately alkaline.

The content of gravel ranges from 0 to 5 percent throughout the profile, and the content of cobbles ranges from 0 to 2 percent throughout the profile.

The A1 horizon has hue of 7.5 YR or 10YR, value of 2 , and chroma of 1 . It is dominantly silt loam, but the range includes loam.

The A2 horizon has hue of 10YR, value of 3, and chroma of 1 . It is silt loam or loam.
The Bw horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 . It is silt loam or very fine sandy loam.

The C horizon has hue of 7.5 YR or 10YR, value of 5 , and chroma of 3 or 4 . It is stratified loamy very fine sand, silt loam, and silty clay loam.

Shoepac Series

The Shoepac series consists of very deep, moderately well drained soils on fluted ground moraines. These soils formed in loamy till. Permeability is moderate in the solum and moderately slow in the substratum. Slopes range from 1 to 6 percent.

Typical pedon of Shoepac silt loam, in an area of Shoepac-Trenary silt loams, 1 to 6 percent slopes; 4 miles east of McFarland; 2,300 feet north and 2,100 feet east of the southwest corner of sec. 24, T. 44 N., R. 23 W.; USGS McFarland topographic quadrangle; lat. 46 degrees 11 minutes 39 seconds N . and long. 87 degrees 07 minutes 46 seconds W .
Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; very friable; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
E-2 to 6 inches; reddish brown (5YR 5/3) silt loam, pinkish gray (7.5YR 7/2) dry; moderate fine subangular blocky structure; friable; many very fine to coarse roots; 2 percent cobbles and 1 percent gravel; very strongly acid; clear broken boundary.
Bs1-6 to 12 inches; brown (7.5YR 4/4) fine sandy loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; 2 percent cobbles and 1 percent gravel; strongly acid; gradual wavy boundary.

Bs2-12 to 23 inches; strong brown (7.5YR 4/6) loamy sand; weak thick platy structure parting to weak fine subangular blocky; friable; many very fine to coarse roots; 12 percent gravel and 2 percent cobbles; strongly acid; gradual wavy boundary.
E/B-23 to 33 inches; about 75 percent reddish brown (5YR 5/3) loamy sand, pinkish gray (5YR 6/2) dry (E); occurring as tongues extending into or completely surrounding isolated remnants of reddish brown (2.5YR 4/4) fine sandy loam (Bt); weak medium subangular blocky structure; firm; few very fine to medium roots; common medium distinct yellowish red (5YR 5/6) masses of iron accumulation; 3 percent gravel and 2 percent cobbles; strongly acid; gradual irregular boundary.
Bt-33 to 53 inches; reddish brown (2.5YR 4/4) fine sandy loam; weak coarse subangular blocky structure parting to weak medium subangular blocky; firm; few very fine and fine roots; common distinct reddish brown (2.5YR 4/3) clay films on faces of peds and in root channels; 7 percent gravel and 2 percent cobbles; moderately acid; gradual wavy boundary.
C-53 to 80 inches; reddish brown (2.5YR 4/4) gravelly fine sandy loam; massive with weakly expressed thin plates inherited from the parent material; friable; few very fine and fine roots; 22 percent gravel and 4 percent cobbles; slightly effervescent; slightly alkaline.
The depth to carbonates ranges from 35 to 60 inches. The content of gravel ranges from 0 to 15 percent in the solum and from 5 to 25 percent in the substratum. The content of cobbles ranges from 0 to 10 percent throughout the profile. The content of stones ranges from 0 to 2 percent throughout the profile. The total content of rock fragments does not exceed 15 percent in the solum.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is dominantly silt loam, but the range includes very fine sandy loam and fine sandy loam. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is very fine sandy loam or fine sandy loam. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is fine sandy loam, sandy loam, or loamy sand.

The E part of the E/B horizon has hue of 5YR or 7.5YR, value of 5 or 6 , and chroma of 2 or 3 . It is loamy fine sand, loamy sand, or sandy loam. The Bt part of the E/B horizon has hue of 2.5 YR or 5 YR , value of 4 , and chroma of 3 or 4 . It is fine sandy loam or sandy loam. Some pedons have a B / E horizon.

The Bt horizon has hue of 2.5 YR or 5YR, value of 4 , and chroma of 3 or 4 . It is fine sandy loam, sandy loam, or sandy clay loam.

The C horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is fine sandy loam, sandy loam, gravelly fine sandy loam, or gravelly sandy loam.

Skandia Series

The Skandia series consists of very poorly drained soils that are moderately deep to bedrock. These soils are in depressions and drainageways on sandstone benches. They formed in organic deposits overlying sandstone bedrock. Permeability is moderately slow to moderately rapid. Slopes are 0 to 1 percent.

Typical pedon of Skandia mucky peat, 330 feet south and 2,475 feet east of the northwest corner of sec. 20, T. 51 N., R. 26 W.; USGS Big Bay topographic quadrangle; lat. 46 degrees 48 minutes 18 seconds N. and long. 87 degrees 37 minutes 53 seconds W.

Oe-0 to 4 inches; mucky peat, dark grayish brown (10YR 4/2) broken face and pressed, very dark grayish brown (10YR 3/2) rubbed; about 80 percent fiber, 40
percent rubbed; weak medium platy structure; primarily sphagnum moss fibers; many very fine to coarse roots; extremely acid; clear smooth boundary.
Oa-4 to 26 inches; muck, black (10YR 2/1) broken face, rubbed, and pressed; about 10 percent fiber, 2 percent rubbed; weak medium subangular blocky structure; primarily herbaceous fibers; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
$2 \mathrm{Cr}-26$ to 31 inches; dark reddish brown (2.5YR 3/4), weathered sandstone bedrock; massive; firm; extremely acid; clear wavy boundary.
2R—31 inches; dusky red (2.5YR 3/2) sandstone bedrock.
The thickness of the organic layers and the depth to bedrock range from 16 to 51 inches. The organic material is primarily herbaceous. The content of wood fragments ranges up to 15 percent in the form of twigs, branches, or logs in the organic part of the profile.

The surface and subsurface tiers have hue (broken face) of 5 YR to 10 YR or are neutral in hue. They have value of 2 to 4 and chroma of 0 to 2 . The surface tier is dominantly mucky peat, but the range includes muck. The subsurface tier is dominantly muck, but the range includes thin layers of mucky peat.

The 2 Cr horizon has hue of 2.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is soft and weathered sandstone.

The underlying bedrock is sandstone.

Skanee Series

The Skanee series consists of very deep, somewhat poorly drained soils on ground moraines and till-floored lake plains. These soils are shallow to a fragipan. They formed in loamy till. Permeability is moderate in the upper part, very slow in the fragipan, and moderate in the lower part. Slopes range from 0 to 3 percent.

Typical pedon of Skanee cobbly fine sandy loam, 0 to 3 percent slopes, stony; 400 feet east and 100 feet north of the southwest corner of sec. 16, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 27 minutes 51.53 seconds N . and long. 87 degrees 11 minutes 37.11 seconds W.
Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
A-2 to 4 inches; very dark gray (7.5YR 3/1) cobbly fine sandy loam, brown (7.5YR $5 / 2$) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 15 percent cobbles and 10 percent gravel; extremely acid; abrupt broken boundary.
E-4 to 7 inches; grayish brown (10YR 5/2) cobbly fine sandy loam, light gray (10YR 7/2) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; few fine prominent strong brown (7.5YR 5/6) masses of iron accumulation; about 15 percent cobbles and 10 percent gravel; extremely acid; clear broken boundary.
Bs-7 to 12 inches; brown (7.5YR 4/3) sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 7 percent gravel and 4 percent cobbles; extremely acid; clear wavy boundary.
(E/B)x-12 to 14 inches; about 65 percent reddish brown (5YR 5/3) loamy sand, pink (7.5YR 7/3) dry (E); surrounding reddish brown (5YR 4/3) sandy loam (Bt); weak thin platy structure; very firm; few very fine to medium roots 9 to 15 inches apart; common fine vesicular pores; common medium distinct yellowish red (5YR 5/8) masses of iron accumulation; about 6 percent gravel and 2 percent cobbles; extremely acid; gradual wavy boundary.
(B/E)x—14 to 30 inches; reddish brown (5YR 4/3) sandy clay loam (Bt); common distinct reddish brown (2.5YR 4/4) clay films along faces of peds; occupies about

70 percent of the horizon; surrounded by reddish brown (5YR 5/3) fine sandy loam, pink (7.5YR 7/3) dry (E); weak medium platy structure; very firm; few very fine to medium roots in cracks 10 to 20 inches apart; common fine vesicular pores; few distinct sand lenses coating ped faces; common fine distinct yellowish red (5YR 5/8) masses of iron accumulation; about 6 percent gravel and 2 percent cobbles; very strongly acid; abrupt wavy boundary.
C-30 to 80 inches; reddish brown (2.5YR 4/4) sandy loam; massive with weak thin platiness inherent from deposition; friable; about 8 percent gravel, 4 percent cobbles, and 1 percent stones; moderately acid.

Depth to the fragipan ranges from 12 to 20 inches. The content of gravel ranges from 1 to 10 percent throughout the profile. The content of cobbles ranges from 1 to 15 percent above the fragipan and from 0 to 5 percent in the fragipan and in the substratum. The content of stones ranges from 0 to 2 percent throughout the profile.

The A horizon has hue of 5 YR or 7.5 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly cobbly fine sandy loam, but the range includes sandy loam and fine sandy loam.

The E horizon has hue of 5 YR to 10 YR , value of 5 or 6 , and chroma of 1 or 2 . It is cobbly fine sandy loam, sandy loam, or loamy sand.

The Bs horizon has hue of 5YR and value and chroma of 3 or 4 . It is sandy loam, fine sandy loam, cobbly sandy loam, or cobbly fine sandy loam. Some pedons have a Bhs horizon.

The E part of the $(E / B) x$ and $(B / E) x$ horizons has hue of $5 Y R$, value of 5 or 6 , and chroma of 2 to 4 . It is sandy loam or loamy sand. The Bt part of the $(E / B) x$ and $(B / E) x$ horizons has hue of 2.5YR or 5YR and value and chroma of 3 or 4 . It is sandy loam, fine sandy loam, or sandy clay loam. Some pedons have a Bx horizon.

The C horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam or fine sandy loam.

Solona Series

The Solona series consists of very deep, somewhat poorly drained, moderately permeable soils on ground moraines. These soils formed in loamy till. Slopes range from 0 to 3 percent.

Typical pedon of Solona fine sandy loam, 0 to 3 percent slopes; 250 feet south and 1,200 feet west of the northeast corner of sec. 9, T. 43 N., R. 26 W.; USGS Northland NE topographic quadrangle; lat. 46 degrees 08 minutes 37 seconds N . and long. 87 degrees 33 minutes 28 seconds W.

A—0 to 6 inches; black (10YR 2/1) fine sandy loam, dark gray (10YR 4/1) dry; moderate fine granular structure; friable; many very fine to coarse roots; about 4 percent gravel; neutral; clear wavy boundary.
E-6 to 18 inches; brown (7.5YR 5/4) fine sandy loam, pink (7.5YR 7/4) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; common fine prominent light gray (10YR 7/2) iron depletions; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 8 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.
Bt-18 to 25 inches; brown (7.5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; few very fine and fine roots; common distinct reddish brown (5YR 4/4) clay films on faces of peds; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 8 percent gravel and 2 percent cobbles; slightly alkaline; clear wavy boundary.
C-25 to 80 inches; brown (7.5YR 5/4) gravelly fine sandy loam; massive with weakly expressed thick platiness inherent from deposition; friable; few very fine and fine roots; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation;
about 15 percent gravel and 4 percent cobbles; slightly effervescent; slightly alkaline.

The depth to carbonates ranges from 20 to 30 inches. The content of gravel ranges from 2 to 10 percent in the solum and from 10 to 25 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 2 to 8 percent in the substratum.

The A horizon has hue of 7.5 YR or 10YR and value and chroma of 2 or 3 . It is fine sandy loam.

The E horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 2 to 4 . It is fine sandy loam or loam.

The Bt horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is sandy loam, fine sandy loam, or loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 3 or 4 . It is gravelly fine sandy loam.

Spear Series

The Spear series consists of very deep, somewhat poorly drained, moderately slowly permeable soils on lake plains. These soils formed in silty glaciolacustrine deposits. Slopes range from 0 to 3 percent.

Typical pedon of Spear very fine sandy loam, 0 to 3 percent slopes; 560 feet west and 170 feet north of the southeast corner of sec. 21, T. 45 N., R. 27 W.; USGS Green Hills topographic quadrangle; lat. 46 degrees 16 minutes 40.59 seconds N . and long. 87 degrees 41 minutes 14.03 seconds W.

A-0 to 2 inches; dark brown (10YR 3/3) very fine sandy loam, light brownish gray (10YR 6/2) dry; moderate medium granular structure; friable; many very fine to coarse roots; about 2 percent cobbles and 2 percent gravel; strongly acid; abrupt smooth boundary.
E-2 to 6 inches; yellowish brown (10YR 5/4) very fine sandy loam, very pale brown (10YR 7/3) dry; moderate fine subangular blocky structure; friable; common very fine to medium roots; common fine vesicular pores; common medium distinct dark brown (10YR 3/3) earthworm casts; common fine distinct dark reddish gray (5YR $4 / 2$) iron depletions; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 2 percent cobbles and 2 percent gravel; strongly acid; clear wavy boundary.
B/E-6 to 31 inches; about 60 percent reddish brown (5YR 4/4) silt loam (Bt); surrounded by yellowish brown (10YR 5/4) very fine sandy loam, very pale brown (10YR 7/3) dry (E); moderate medium platy structure; firm; few very fine to medium roots; common fine vesicular pores; common distinct reddish brown (2.5YR 4/4) clay films on faces of peds and in root channels; common fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; slightly acid; gradual wavy boundary.
C-31 to 80 inches; brown (7.5YR 4/4), stratified silt loam, silty clay loam, loamy very fine sand, and very fine sandy loam; massive with moderate very thick platiness inherent from deposition; friable; few very fine roots; few fine vesicular pores; common fine distinct grayish brown (10YR 5/2) iron depletions; many medium distinct strong brown (7.5YR $5 / 6$) masses of iron accumulation; slightly acid.

Depth to the argillic horizon ranges from 5 to 25 inches. The content of gravel and the content of cobbles range from 0 to 5 percent throughout the profile.

The A horizon has hue of 7.5 YR or 10 YR , value of 2 or 3 , and chroma of 1 to 3 . It is dominantly very fine sandy loam, but the range includes silt loam and loam.

The E horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 2 to 4 . It is silt loam or very fine sandy loam.

The Bt part of the B / E horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is very fine sandy loam or silt loam. The E part of the B / E horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 3 or 4 . It is very fine sandy loam or silt loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 to 4 . It is stratified silt loam, loamy very fine sand, very fine sandy loam, and silty clay loam.

Sporley Series

The Sporley series consists of very deep, well drained, moderately slowly permeable soils on dissected moraines and till-floored lake plains. These soils formed in stratified silty glaciolacustrine deposits. Slopes range from 8 to 35 percent.

Typical pedon of Sporley silt loam, 8 to 35 percent slopes, dissected; 1,900 feet west and 2,600 feet north of the southeast corner of sec. 8, T. 46 N., R. 24 W.; USGS Harvey topographic quadrangle; lat. 46 degrees 24 minutes 03 seconds N. and long. 87 degrees 19 minutes 21 seconds W .
Oe-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), partially decomposed leaf litter; common fine and medium roots; moderately acid; abrupt smooth boundary.
E-2 to 6 inches; reddish brown (5YR 5/3) silt loam, pinkish gray (5YR 7/2) dry; weak fine subangular blocky structure; friable; common very fine to coarse roots; moderately acid; abrupt wavy boundary.
Bs1-6 to 10 inches; dark reddish brown (5YR 3/4) silt loam; weak medium subangular blocky structure; friable; common fine and medium roots; moderately acid; clear wavy boundary.
Bs2-10 to 16 inches; strong brown (7.5YR 4/6) silt loam; weak medium subangular blocky structure; friable; common fine and medium roots; moderately acid; clear wavy boundary.
E/B-16 to 33 inches; about 60 percent dark reddish gray (5 YR 4/2) very fine sandy loam, pinkish gray (5YR 6/2) dry (E); surrounding isolated remnants of reddish brown (5YR 4/4) silt loam (Bt); common distinct dark reddish brown (2.5YR 3/4) clay films on faces of peds and in root channels; moderate medium subangular blocky structure; firm; few fine and medium roots; many very fine vesicular pores; slightly acid; gradual wavy boundary.
B/E-33 to 45 inches; reddish brown (5YR 4/4) silt loam (Bt); common distinct dark reddish brown ($2.5 \mathrm{YR} 3 / 4$) clay films on faces of peds and in root channels; occupies about 60 percent of the horizon; surrounded by dark reddish gray (5YR $4 / 2$) very fine sandy loam, pinkish gray (5YR 6/2) dry (E); moderate medium subangular blocky structure; firm; few fine roots; many very fine vesicular pores; slightly acid; clear smooth boundary.
C-45 to 80 inches; stratified reddish brown (5YR 5/3) silt, reddish brown (5YR 5/4) silt loam, and dark reddish brown (2.5YR 3/4) silty clay; massive with weak thin platiness inherent from deposition; firm; few very fine vesicular pores; strong effervescence; moderately alkaline.
Depth to the base of the argillic horizon ranges from 30 to 50 inches. The content of gravel ranges from 0 to 2 percent throughout the profile.

The A horizon, if it occurs, has hue of 7.5 YR or 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is silt loam or very fine sandy loam.

The E horizon has hue of 5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is dominantly silt loam, but the range includes very fine sandy loam.

The Bs1 horizon has hue of 5 YR or 7.5 YR and value and chroma of 3 or 4 . It is silt loam or very fine sandy loam. Some pedons have a Bhs horizon.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is silt loam or very fine sandy loam.

The E part of the E / B and B / E horizons has hue of $5 Y R$, value of 4 or 5 , and chroma of 2 or 3 . It is very fine sandy loam. The Bt part of the E / B and B / E horizons has hue of 2.5 YR or 5 YR , value of 4 , and chroma of 3 or 4 . It is silt loam.

The C horizon has hue of 2.5 YR or 5 YR , value of 3 to 5 , and chroma of 3 to 6 . It is stratified silt, silt loam, very fine sandy loam, loamy very fine sand, silty clay, or silty clay loam. Thin strata of loamy fine sand or fine sand are common in some pedons.

Sturgeon Series

The Sturgeon series consists of very deep, somewhat poorly drained soils on low terraces. These soils formed in a silty or loamy mantle over sandy alluvium. Permeability is moderate in the loamy upper part of the profile and rapid in the sandy lower part. Slopes are 0 to 1 percent.

Typical pedon of Sturgeon very fine sandy loam, in an area of Evart-PelkieSturgeon complex, 0 to 4 percent slopes; 1,400 feet east and 50 feet north of the southwest corner of sec. 31, T. 51 N., R. 26 W.; USGS Big Bay topographic quadrangle; lat. 46 degrees 45 minutes 59 seconds N. and long. 87 degrees 39 minutes 32 seconds W.

A—0 to 6 inches; dark brown (10YR 3/3) very fine sandy loam, brown (7.5YR 5/2) dry; moderate medium granular structure; friable; many very fine to coarse roots; moderately acid; abrupt smooth boundary.
C1-6 to 24 inches; dark brown (10YR 3/3) and yellowish brown (10YR 5/4) very fine sandy loam; massive with weak thin platiness inherent from deposition; friable; few very fine to coarse roots; thin strata of loamy very fine sand; common medium distinct dark grayish brown (10YR 4/2) iron depletions; common medium prominent yellowish red (5YR 5/8) and strong brown (7.5YR 5/6) masses of iron accumulation; moderately acid; clear smooth boundary.
C2-24 to 35 inches; dark grayish brown (10YR 4/2) very fine sandy loam; massive; friable; few very fine to medium roots; few medium prominent yellowish red (5YR $5 / 6$) and red (2.5YR 4/8) masses of iron accumulation; moderately acid; abrupt smooth boundary.
2C3-35 to 80 inches; brown (10YR 4/3) sand; single grain; loose; moderately acid.
The thickness of the loamy mantle ranges from 18 to 30 inches.
The A horizon has hue of 7.5 YR or 10YR, value of 3 , and chroma of 2 or 3 . It is dominantly very fine sandy loam, but the range includes silt loam.

The C horizon has hue of 7.5YR or 10YR and value and chroma of 3 or 4 . It is stratified very fine sandy loam, silt loam, or loamy very fine sand. It has thin organic strata in some pedons.

The 2 C horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 2 or 3 . It is sand or fine sand. It has thin organic strata in some pedons.

Summerville Series

The Summerville series consists of well drained, moderately permeable soils that are shallow to bedrock. These soils are on ground moraines. They formed in loamy till overlying limestone, dolomite, or dolomitic sandstone bedrock. Slopes range from 1 to 6 percent.

Typical pedon of Summerville fine sandy loam, 1 to 6 percent slopes; 1,300 feet north and 1,200 feet west of the southeast corner of sec. 29, T. 43 N., R. 25 W.; USGS

Arnold topographic quadrangle; lat. 46 degrees 05 minutes 27 seconds N . and long. 87 degrees 27 minutes 19 seconds W.

A-0 to 5 inches; very dark grayish brown (10YR 3/2) fine sandy loam, dark gray (10YR 4/1) dry; moderate medium granular structure; friable; many very fine to coarse roots; moderately acid; abrupt wavy boundary.
Bw-5 to 13 inches; dark brown (7.5YR 3/4) fine sandy loam; moderate medium subangular blocky structure; friable; common very fine to coarse roots; about 5 percent gravel; slightly alkaline; abrupt irregular boundary.
2R-13 inches; pale brown (10YR 6/3) dolomitic sandstone bedrock.
Depth to bedrock ranges from 10 to 20 inches. The content of gravel ranges from 0 to 5 percent throughout the profile, the content of cobbles ranges from 0 to 5 percent throughout the profile, and the content of channers and flagstones ranges from 0 to 15 percent throughout the profile.

The A horizon has hue of 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is fine sandy loam. Some pedons have an E horizon.

The Bw horizon has hue of 5YR or 7.5YR, value of 3 or 4 , and chroma of 4 to 6 . It is fine sandy loam or channery fine sandy loam.

The underlying bedrock is dolomitic sandstone, dolomite, or limestone.

Sundell Series

The Sundell series consists of somewhat poorly drained, moderately permeable soils that are moderately deep to bedrock. These soils are on ground moraines. They formed in loamy till overlying limestone, dolomite, or dolomitic sandstone bedrock. Slopes range from 0 to 3 percent.

Typical pedon of Sundell loam, 0 to 3 percent slopes, 1,550 feet east and 1,550 feet north of the southwest corner of sec. 28, T. 42 N., R. 25 W.; USGS Arnold topographic quadrangle; lat. 46 degrees 00 minutes 24 seconds N . and long. 87 degrees 26 minutes 25 seconds W .
Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak very fine granular structure; very friable; many very fine to coarse roots; moderately acid; abrupt smooth boundary.
A-1 to 8 inches; black (10YR 2/1) loam, dark gray (10YR 4/1) dry; strong fine granular structure; friable; many very fine to coarse roots; few medium distinct grayish brown (10YR $5 / 2$) iron depletions; about 5 percent gravel and 3 percent cobbles; slightly acid; clear wavy boundary.
B/A-8 to 11 inches; about 60 percent brown (7.5YR 5/4) fine sandy loam (B); surrounding peds of black (10YR 2/1) fine sandy loam, dark gray (10YR 4/1) dry (A); moderate fine subangular blocky structure; friable; many very fine to coarse roots; few fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 5 percent gravel and 3 percent cobbles; common very dark gray (10YR 3/1) wormcasts; neutral; clear wavy boundary.
Bw-11 to 17 inches; brown (7.5YR 4/4) fine sandy loam; weak thin platy structure parting to weak very fine subangular blocky; friable; common very fine to coarse roots; few fine distinct strong brown (7.5YR 5/6) masses of iron accumulation; about 5 percent gravel and 3 percent cobbles; few very dark gray (10YR 3/1) wormcasts; neutral; clear wavy boundary.
2C-17 to 22 inches; light brown (7.5YR 6/4) gravelly fine sandy loam; massive with weakly expressed thin platiness inherent from deposition; friable; few very fine and fine roots; many fine distinct strong brown (7.5YR 5/6) masses of iron
accumulation; about 16 percent gravel and 8 percent cobbles; moderately alkaline; strong effervescence; abrupt smooth boundary.
2R-22 inches; pale brown (10YR 6/3) dolomite bedrock.
Depth to bedrock ranges from 20 to 40 inches. The content of gravel ranges from 2 to 10 percent in the solum and from 5 to 20 percent in the substratum. The content of cobbles and flagstones ranges from 0 to 5 percent in the solum and from 2 to 10 percent in the substratum.

The A horizon has hue of 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 . It is dominantly loam, but the range includes fine sandy loam. Some pedons have an E horizon.

The B part of the B/A horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 3 or 4 . The A part of the B/A horizon has hue of 10 YR , value of 2 or 3 , and chroma of 1 or 2 . This horizon is loam or fine sandy loam.

The Bw horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is loam or fine sandy loam.

The C horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 3 or 4 . It is fine sandy loam or gravelly fine sandy loam. Some pedons have a Cr horizon.

The underlying bedrock is limestone, dolomite, or dolomitic sandstone.

Sundog Series

The Sundog series consists of very deep, well drained soils on outwash terraces, disintegration moraines, outwash plains, and bedrock-controlled moraines. These soils formed in a silty or loamy mantle over sandy and gravelly outwash. Permeability is moderate in the loamy upper part of the profile and very rapid in the sandy lower part. Slopes range from 1 to 70 percent.

Typical pedon of Sundog silt loam, 18 to 35 percent slopes; 1,400 feet south and 1,200 feet west of the northeast corner of sec. 20, T. 45 N., R. 30 W.; USGS Witch Lake topographic quadrangle; lat. 46 degrees 17 minutes 09 seconds N. and long. 88 degrees 05 minutes 32 seconds W .
A-0 to 1 inch; very dark grayish brown (10YR 3/2) silt loam, gray (10YR 5/1) dry; weak very fine granular structure; friable; many very fine to coarse roots; about 3 percent gravel; very strongly acid; abrupt smooth boundary.
E-1 to 2 inches; brown (7.5YR 5/2) silt loam, pinkish gray (7.5YR 7/2) dry; weak fine very granular structure; friable; many very fine to coarse roots; about 3 percent gravel; strongly acid; abrupt smooth boundary.
Bs1—2 to 8 inches; brown (7.5YR 4/4) silt loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 3 percent gravel; strongly acid; clear wavy boundary.
Bs2—8 to 17 inches; strong brown (7.5YR 4/6) silt loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 3 percent gravel; moderately acid; clear wavy boundary.
Bs3-17 to 22 inches; brown (7.5YR 5/4) fine sandy loam; weak fine subangular blocky structure; friable; common very fine to coarse roots; about 7 percent gravel; moderately acid; gradual wavy boundary.
2C1-22 to 38 inches; dark yellowish brown (10YR 4/4) gravelly sand; single grain; loose; few very fine and fine roots; about 13 percent gravel and 5 percent cobbles; slightly acid; gradual wavy boundary.
2C2—38 to 80 inches; yellowish brown (10YR 5/4), stratified sand and gravelly sand; single grain; loose; few very fine and fine roots; about 13 percent gravel and 5 percent cobbles; slightly acid.

The thickness of the loamy or silty mantle ranges from 18 to 30 inches. The content of gravel ranges from 0 to 15 percent in the A, E, and Bs horizons and from 10 to 50 percent in the C horizons. The content of cobbles ranges from 0 to 10 percent in the A , E , and Bs horizons and from 0 to 15 percent in the C horizons. The content of stones ranges from 0 to 5 percent throughout the profile.

The A horizon has hue of 5 YR to $10 Y R$, value of 2 or 3 , and chroma of 1 or 2 . It is dominantly silt loam, but the range includes very fine sandy loam and fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 1 or 2 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs2 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs3 horizon has hue of 5YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is very fine sandy loam or fine sandy loam.

The 2C horizon has hue of 7.5 YR or 10YR, value of 4 or 5 , and chroma of 3 to 6 . It is stratified sand or coarse sand or the gravelly or very gravelly analogs of these textures.

Tawas Series

The Tawas series consists of very deep, very poorly drained soils in depressions and drainageways on outwash plains, till-floored lake plains, ground moraines, disintegration moraines, and bedrock-controlled moraines. These soils formed in organic deposits overlying sandy outwash. Permeability is moderately rapid to moderately slow in the organic part of the profile and rapid in the sandy part. Slopes are 0 to 1 percent.

Typical pedon of Tawas muck, in an area of Carbondale and Tawas soils; 1,650 feet south and 1,950 feet west of the northeast corner of sec. 7, T. 47 N., R. 25 W.; lat. 46 degrees 29 minutes 15.41 seconds N . and long. 87 degrees 28 minutes 38.46 seconds W .

Oa1-0 to 6 inches; muck, black ($\mathrm{N} 2.5 / 0$) broken face and rubbed; about 5 percent fiber, less than 1 percent rubbed; moderate fine granular structure; many very fine to coarse roots; moderately acid; gradual smooth boundary.
Oa2-6 to 15 inches; muck, black (10YR 2/1) broken face and rubbed; about 25 percent fiber, 5 percent rubbed; weak thin platy structure; moderately acid; clear smooth boundary.
Oa3-15 to 25 inches; muck, black (10YR 2/1) broken face and rubbed; about 90 percent fiber, 15 percent rubbed; weak medium platy structure; moderately acid; abrupt smooth boundary.
Cg-25 to 80 inches; grayish brown (10YR 5/2) sand; single grain; loose; neutral.
The thickness of the organic layers and the depth to the sandy mineral horizon range from 16 to 51 inches. The content of gravel ranges from 0 to 10 percent in the Cg horizon. The organic material is primarily woody. The content of wood fragments ranges up to 15 percent in the form of twigs, branches, or logs in the organic part of the profile.

The surface and subsurface tiers have hue of 5YR to 10YR or are neutral in hue. They have value of 2 or 3 and chroma of 0 to 2 . They are dominantly sapric. Some pedons have a fibric surface layer. This layer is 1 to 3 inches thick and is predominantly derived from sphagnum moss.

The Cg horizon has hue of 7.5 YR or 10YR, value of 4 to 6 , and chroma of 1 to 3 . It is coarse sand, sand, loamy sand, or fine sand.

Tokiahok Series

The Tokiahok series consists of very deep, well drained soils that are moderately deep to a fragipan. These soils are on ground moraines, till-floored lake plains, and end moraines. They formed in sandy outwash over loamy till. Permeability is rapid in the upper part, very slow in the fragipan, and moderate in the lower part. Slopes range from 8 to 70 percent.

Typical pedon of Tokiahok loamy fine sand, in an area of Frohling-Tokiahok complex, 8 to 35 percent slopes, dissected, very stony; 250 feet south and 2,112 feet east of the northwest corner of sec. 31, T. 52 N., R. 29 W.; USGS McComb Corner topographic quadrangle; lat. 46 degrees 51 minutes 27 seconds N. and long. 88 degrees 22 minutes 22 seconds W .

Oa-0 to 2 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak fine granular structure; very friable; many fine and common medium roots; very strongly acid; abrupt smooth boundary.
E-2 to 11 inches; reddish gray (5YR 5/2) loamy fine sand, pinkish gray (5YR 7/2) dry; weak fine subangular blocky structure; very friable; many fine and common medium roots; about 5 percent gravel; very strongly acid; clear wavy boundary.
Bhs-11 to 15 inches; dark reddish brown (5YR 3/3) loamy fine sand; weak fine subangular blocky structure; friable; many fine and common medium roots; discontinuous tongues of dark reddish brown (5YR 3/3) and reddish brown (5YR $4 / 4$), moderately cemented ortstein occupy 20 percent (8 of 40 inches) of the horizon; tongues are 2 to 4 inches wide and 8 to 22 inches apart and extend into the Bs horizon; about 5 percent gravel and 1 percent cobbles; strongly acid; clear irregular boundary.
Bs-15 to 24 inches; brown (7.5YR 4/4) loamy fine sand; weak fine subangular blocky structure; very friable; few fine and medium roots; ortstein occupies 10 percent (4 of 40 inches) of the horizon and extends to a depth of 24 inches; about 5 percent gravel and 1 percent cobbles; strongly acid; gradual wavy boundary.
$2 B x-24$ to 30 inches; strong brown (7.5YR 4/6) fine sandy loam; moderate medium subangular blocky structure; very firm; very few fine and medium roots in cracks 10 to 20 inches apart; common very fine and fine vesicular pores; about 10 percent gravel and 2 percent cobbles; moderately acid; clear wavy boundary.
2(E/B)x-30 to 41 inches; about 80 percent reddish brown (5YR 5/3) loamy sand, pinkish gray (5YR 7/2) dry (E); surrounding isolated remnants of reddish brown (2.5YR 4/4) sandy loam (Bt); weak medium platy structure parting to weak very fine subangular blocky; very firm; very few fine roots in cracks 10 to 20 inches apart; common very fine and fine vesicular pores; about 5 percent gravel and 2 percent cobbles; moderately acid; gradual wavy boundary.
2(B/E)x-41 to 49 inches; reddish brown (2.5YR 4/4) sandy loam (Bt); few distinct dusky red (2.5YR 3/2) clay films on faces of peds; occupies about 80 percent of the horizon; surrounding peds of reddish brown (5YR 5/3) loamy sand, pinkish gray (5YR 7/2) dry (E); weak medium platy structure parting to weak very fine subangular blocky; very firm; very few fine roots in cracks 10 to 20 inches apart; common very fine and fine vesicular pores; about 5 percent gravel and 2 percent cobbles; slightly acid; clear smooth boundary.
2Btx-49 to 59 inches; dark reddish brown (2.5YR 3/4) sandy loam; weak medium platy structure parting to weak very fine subangular blocky; very firm; common very fine and fine vesicular pores; common distinct dusky red (2.5YR 3/2) clay films on faces of peds; about 5 percent gravel and 2 percent cobbles; slightly acid; gradual wavy boundary.
2BC—59 to 66 inches; reddish brown (2.5YR 4/4) sandy loam; weak fine subangular blocky structure; friable; about 5 percent gravel and 2 percent cobbles; slightly acid; gradual wavy boundary.

2C-66 to 80 inches; reddish brown (2.5YR 4/4) sandy loam; massive; friable; about 10 percent gravel and 2 percent cobbles; slightly acid.

Depth to the fragipan ranges from 20 to 40 inches. The content of gravel ranges from 1 to 15 percent throughout the profile, and the content of cobbles and stones ranges from 0 to 5 percent.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 2 or 3 . It is dominantly loamy fine sand, but the range includes loamy sand, sand, and fine sand. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is loamy sand, loamy fine sand, sand, or fine sand.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is loamy sand, loamy fine sand, sand, or fine sand.

The 2 Bx horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is loamy sand, loamy fine sand, sandy loam, or fine sandy loam.

The E part of the 2(E/B)x and 2(B/E)x horizons has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 2 or 3 . It is loamy sand or loamy fine sand. The Bt part of the $2(E / B) x$ and $2(B / E) x$ horizons and the 2Btx horizon have hue of 2.5YR or 5 YR and value and chroma of 3 or 4 . They are sandy loam or fine sandy loam.

The $2 B C$ and 2 C horizons have hue of 2.5 YR or 5YR and value and chroma of 3 or 4. They are sandy loam or fine sandy loam.

Traunik Series

The Traunik series consists of very deep, well drained soils on outwash terraces. These soils formed in a loamy mantle over gravelly and sandy outwash deposits. Permeability is moderate in the loamy mantle and very rapid in the sandy lower part of the profile. Slopes range from 1 to 6 percent.

Typical pedon of Traunik gravelly fine sandy loam (fig. 24), 1 to 6 percent slopes; 850 feet north and 2,400 feet west of the southeast corner of sec. 24, T. 45 N., R. 23 W.; $1 / 2$ mile west of the Alger County line and $1 / 2$ mile north of Huber Creek; USGS Ladoga topographic quadrangle; lat. 46 degrees 16 minutes 38.98 seconds N . and long. 87 degrees 07 minutes 38.27 seconds W .
Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; strongly acid; abrupt smooth boundary.
E-1 to 4 inches; brown (7.5YR 4/2) gravelly fine sandy loam, pinkish gray (7.5YR 6/2) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 15 percent gravel and 10 percent cobbles; strongly acid; clear wavy boundary.
Bs1-4 to 11 inches; dark brown (7.5YR 3/4) gravelly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 15 percent gravel and 10 percent cobbles; strongly acid; gradual wavy boundary.
2Bs2-11 to 24 inches; brown (7.5YR 4/4) very gravelly sand; weak very fine subangular blocky structure; loose; common very fine to coarse roots; 41 percent gravel and 16 percent cobbles; moderately acid; gradual wavy boundary.
$2 B C-24$ to 31 inches; dark yellowish brown (10YR 4/4) very gravelly sand; single grain; loose; common very fine to coarse roots; 45 percent gravel and 13 percent cobbles; slightly acid; gradual wavy boundary.
2C-31 to 80 inches; pale brown (10YR 6/3) very gravelly sand; single grain; loose; few very fine to medium roots; 45 percent gravel and 13 percent cobbles; slightly effervescent; slightly alkaline.

The thickness of the loamy mantle ranges from 5 to 15 inches. The content of gravel ranges from 5 to 20 percent in the loamy mantle and from 5 to 50 percent in the sandy

Figure 24.-Typical profile of Traunik gravelly fine sandy loam. This soil is a probable source of gravel. Depth is marked in inches.
lower part of the profile. The content of cobbles ranges from 0 to 15 percent in the loamy upper part of the profile and from 0 to 20 percent in the sandy lower part. The content of stones ranges from 0 to 5 percent throughout the profile. The content of rock fragments averages between 35 and 60 percent in the particle-size control section.

The E horizon has hue of 7.5 YR , value of 4 or 5 , and chroma of 1 or 2 . It is dominantly gravelly fine sandy loam, but the range includes cobbly fine sandy loam and fine sandy loam.

The Bs1 horizon has hue of 7.5 YR , value of 3 or 4 , and chroma of 4 . It is gravelly fine sandy loam, gravelly sandy loam, cobbly fine sandy loam, or cobbly sandy loam.

The 2Bs2 horizon has hue of 7.5YR and value and chroma of 4 . It is very gravelly sand or very gravelly loamy sand or the gravelly, cobbly, or very cobbly analogs of sand or loamy sand.

The 2 BC horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 4 to 6 . It is very gravelly sand, gravelly sand, very cobbly sand, or cobbly sand. In some pedons it has thin layers of sand.

The 2C horizon has hue of 10YR, value of 4 to 6 , and chroma of 3 or 4 . It is very gravelly sand, gravelly sand, cobbly sand, or very cobbly sand. In some pedons it has thin layers of sand.

Trenary Series

The Trenary series consists of very deep, well drained, moderately permeable soils on ground moraines. These soils formed in loamy till. Slopes range from 1 to 18 percent.

Typical pedon of Trenary silt loam, 6 to 18 percent slopes; 3,400 feet north and 450 feet east of the southwest corner of sec. 35, T. 44 N., R. 23 W.; USGS McFarland topographic quadrangle; lat. 46 degrees 10 minutes 06.07 seconds N. and long. 87 degrees 09 minutes 22.01 seconds W .

Oa-0 to 1 inch; black (10YR 2/1), well decomposed forest litter; many very fine to coarse roots; about 2 percent gravel; abrupt smooth boundary.
E-1 to 5 inches; reddish gray (5YR 5/2) silt loam, light gray (7.5YR 7/1) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; extremely acid; abrupt smooth boundary.
Bhs-5 to 7 inches; dark reddish brown (5 YR $3 / 3$) silt loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 2 percent gravel; extremely acid; clear broken boundary.
Bs-7 to 15 inches; reddish brown (5YR 4/4) fine sandy loam; weak medium subangular blocky structure; friable; many very fine to coarse roots; about 4 percent gravel and 2 percent cobbles; very strongly acid; clear wavy boundary.
2(E/B)x-15 to 21 inches; about 60 percent brown (7.5YR 5/4) fine sandy loam, pinkish gray (7.5YR 7/2) dry (E); surrounding isolated remnants of reddish brown (5YR 4/4) fine sandy loam (Bt); weak thin platy structure parting to weak very fine subangular blocky; very firm; common very fine to medium roots; common fine vesicular pores; about 8 percent gravel and 2 percent cobbles; strongly acid; gradual wavy boundary.
2(E/B) -21 to 34 inches; about 60 percent reddish brown (2.5YR 5/3) loamy fine sand, white (7.5YR 8/1) dry (E); surrounding isolated remnants of reddish brown (2.5YR 4/4) fine sandy loam (Bt); common distinct red (2.5YR 4/6) clay films on faces of peds; weak thin platy structure parting to weak very fine subangular blocky; friable; common very fine to medium roots; few fine vesicular pores; about 10 percent gravel and 2 percent cobbles; strongly acid; gradual irregular boundary.
2(B/E)-34 to 48 inches; reddish brown (2.5YR 4/4) fine sandy loam (Bt); common distinct red (2.5YR 4/6) clay films on faces of peds; occupies about 60 percent of the horizon; surrounded by reddish brown (2.5YR $5 / 3$) loamy fine sand, white (7.5YR 8/1) dry (E); weak thin platy structure parting to weak very fine subangular blocky; friable; few very fine and fine roots; few fine vesicular pores; about 10 percent gravel and 2 percent cobbles; neutral; gradual wavy boundary.

2C—48 to 80 inches; reddish brown (2.5YR 5/4) cobbly fine sandy loam; massive; friable; about 15 percent gravel, 12 percent cobbles, and 2 percent stones; slightly effervescent; moderately alkaline.

The depth to carbonates ranges from 30 to 50 inches. The content of gravel ranges from 1 to 10 percent in the solum and from 5 to 20 percent in the substratum. The content of cobbles ranges from 0 to 5 percent in the solum and from 0 to 15 percent in the substratum. The content of stones ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 . It is dominantly silt loam, but the range includes very fine sandy loam and fine sandy loam. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is silt loam, very fine sandy loam, or fine sandy loam.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is very fine sandy loam or fine sandy loam.

The E part of the 2(E/B)x, 2(E/B), and 2(B/E) horizons has hue of 2.5YR to 7.5YR, value of 4 or 5 , and chroma of 3 or 4 . It is loamy fine sand, fine sandy loam, loamy sand, or sandy loam. The Bt part of the $2(E / B) x, 2(E / B)$, and $2(B / E)$ horizons has hue of 2.5YR or 5YR, value of 3 or 4 , and chroma of 3 to 6 . It is fine sandy loam or sandy clay loam. Some pedons have a Bt horizon.

The 2 C horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 4 . It is fine sandy loam, gravelly fine sandy loam, or cobbly fine sandy loam.

Tula Series

The Tula series consists of very deep, somewhat poorly drained soils on bedrockcontrolled moraines. These soils formed in a silty or loamy mantle over loamy till. They are shallow or moderately deep to a fragipan. Permeability is moderate in the upper part, very slow in the fragipan, and moderate in the lower part. Slopes range from 0 to 3 percent.

Typical pedon of Tula cobbly very fine sandy loam, 0 to 3 percent slopes, very stony; near National Mine; 2,340 feet west and 2,525 feet south of the northeast corner of sec. 29, T. 47 N., R. 27 W.; USGS Ishpeming topographic quadrangle; lat. 46 degrees 26 minutes 34 seconds N. and long. 87 degrees 42 minutes 24 seconds W.

Oa—0 to 1 inch; black (5YR 2.5/1), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; about 2 percent stones; strongly acid; abrupt wavy boundary.
A-1 to 5 inches; dark reddish gray (5YR 4/2) cobbly very fine sandy loam, light brownish gray (10YR 6/2) dry; weak medium platy structure; friable; common very fine to coarse roots; about 20 percent cobbles and 10 percent gravel; strongly acid; clear wavy boundary.
E-5 to 8 inches; light gray (5YR 7/1) cobbly very fine sandy loam, white (5YR 8/1) dry; moderate medium platy structure; friable; common very fine to coarse roots; common medium distinct gray (5YR 5/1) iron depletions; common medium distinct light reddish brown (5YR 6/4) masses of iron accumulation; about 20 percent cobbles and 10 percent gravel; moderately acid; gradual irregular boundary.
Bs1—8 to 20 inches; reddish brown (5YR 4/4) cobbly very fine sandy loam; moderate thin platy structure; friable; common very fine to coarse roots; few fine distinct yellowish red (5YR 5/8) masses of iron accumulation; about 20 percent cobbles and 10 percent gravel; moderately acid; clear irregular boundary.
2Bs2—20 to 28 inches; dark reddish brown (5YR 3/4) gravelly sandy loam; weak medium subangular blocky structure; friable; common very fine to medium roots;
about 12 percent gravel, 6 percent cobbles, and 5 percent stones; moderately acid; clear wavy boundary.
2(E/B)x—28 to 37 inches; about 60 percent light reddish brown (5YR 6/3) gravelly sandy loam, pinkish gray (5YR 7/2) dry (E); surrounding isolated remnants of reddish brown (5YR 4/3) gravelly sandy loam (Bt); few distinct clay films on faces of peds; weak very coarse prismatic structure parting to weak thin platy; very firm; few very fine and fine roots in cracks 10 to 20 inches apart; common fine vesicular pores; few fine distinct yellowish red (5YR 5/8) masses of iron accumulation; about 12 percent gravel, 6 percent cobbles, and 5 percent stones; moderately acid; gradual wavy boundary.
2(B/E)x-37 to 62 inches; dark reddish brown (2.5YR 3/4) gravelly loam (Bt); common distinct dark reddish brown (2.5YR 3/3) clay films on faces of peds; occupies about 60 percent of the horizon; surrounded by reddish brown (5YR 5/4) gravelly sandy loam, pink (7.5YR 7/3) dry (E); weak very coarse prismatic structure parting to weak thin platy; very firm; common fine vesicular pores; few fine distinct yellowish red (5YR 5/8) masses of iron accumulation; about 12 percent gravel, 6 percent cobbles, and 5 percent stones; moderately acid; gradual wavy boundary.
2C-62 to 80 inches; reddish brown (2.5YR 4/4) gravelly sandy loam; massive; friable; about 22 percent gravel, 8 percent cobbles, and 3 percent stones; moderately acid.

Depth to the fragipan ranges from 15 to 30 inches. The content of gravel ranges from 1 to 15 percent above the fragipan and from 10 to 25 percent in the fragipan and in the substratum. The content of cobbles ranges from 5 to 20 percent above the fragipan and from 5 to 16 percent in the fragipan and in the substratum. The content of stones ranges from 0 to 5 percent throughout the profile.

The A horizon has hue of 5 YR or 7.5 YR , value of 2 to 4 , and chroma of 1 or 2 . It is dominantly cobbly very fine sandy loam, but the range includes cobbly fine sandy loam.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 1 or 2 . It is cobbly very fine sandy loam or cobbly fine sandy loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is cobbly very fine sandy loam or cobbly fine sandy loam.

The 2Bs2 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is gravelly sandy loam or gravelly fine sandy loam.

The E part of the $2(E / B) x$ and $2(B / E) x$ horizons has hue of $2.5 Y R$ or 5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is gravelly loamy sand or gravelly sandy loam. The Bt part of the $2(E / B) x$ and $2(B / E) x$ horizons has hue of 2.5 YR or 5 YR and value and chroma of 3 or 4 . It is gravelly sandy loam or gravelly loam.

The 2 C horizon has hue of 2.5 YR or 5 YR and value and chroma of 3 or 4 . It is gravelly sandy loam.

Vanriper Series

The Vanriper series consists of very deep, well drained, moderately permeable soils on disintegration moraines and bedrock-controlled moraines. These soils formed in a silty or loamy eolian mantle over very cobbly loamy till. Slopes range from 1 to 45 percent.

Typical pedon of Vanriper very cobbly silt loam, 18 to 45 percent slopes, very bouldery; south of Lake Michigamme; 2,600 feet north and 1,800 feet west of the southeast corner of sec. 6, T. 47 N., R. 30 W.; USGS Witch Lake NE topographic quadrangle; lat. 46 degrees 29 minutes 59 seconds N . and long. 88 degrees 06 minutes 09 seconds W.

Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; weak fine granular structure; very friable; many very fine to coarse roots; abrupt smooth boundary.
E-1 to 3 inches; brown (7.5YR 4/2) very cobbly silt loam, pinkish gray (7.5YR 6/2) dry; weak medium granular structure; friable; many very fine to coarse roots; about 19 percent cobbles, 10 percent gravel, 10 percent stones, and 6 percent boulders; extremely acid; abrupt smooth boundary.
Bs1-3 to 11 inches; dark brown (7.5YR 3/4) very cobbly very fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 19 percent cobbles, 10 percent stones, 10 percent gravel, and 6 percent boulders; very strongly acid; clear wavy boundary.
Bs2—11 to 20 inches; dark yellowish brown (10YR 4/4) very cobbly very fine sandy loam; weak fine subangular blocky structure; friable; common very fine to coarse roots; about 19 percent cobbles, 18 percent gravel, 10 percent stones, and 6 percent boulders; very strongly acid; gradual wavy boundary.
C-20 to 80 inches; olive brown (2.5Y 4/3) very cobbly fine sandy loam; massive; friable; few very fine and fine roots; about 19 percent cobbles, 18 percent gravel, 10 percent stones, and 6 percent boulders; strongly acid.

The content of gravel ranges from 5 to 40 percent throughout the profile, the content of cobbles ranges from 5 to 30 percent throughout the profile, and the content of stones and boulders ranges from 1 to 30 percent throughout the profile. The content of rock fragments averages more than 35 percent in the control section.

Some pedons have an A horizon. This horizon has hue of 7.5 YR or 10YR, value of 2 or 3 , and chroma of 1 or 2 . It is the cobbly, very cobbly, or very stony analogs of silt loam, very fine sandy loam, or fine sandy loam.

The E horizon has hue of 5 YR to 10 YR , value of 4 or 5 , and chroma of 1 to 3 . It is dominantly very cobbly silt loam, but the range includes the cobbly, very cobbly, and very stony analogs of very fine sandy loam and fine sandy loam.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is the very cobbly, very stony, or cobbly analogs of silt loam, very fine sandy loam, or fine sandy loam.

The Bs2 horizon has hue of 5 YR to 10YR, value of 3 or 4 , and chroma of 4 to 6 . It is very cobbly very fine sandy loam, very cobbly silt loam, very cobbly fine sandy loam, or the cobbly, stony, or very stony analogs of very fine sandy loam, silt loam, or fine sandy loam.

The C horizon has hue of 10 YR or 2.5 Y , value of 4 or 5 , and chroma of 1 to 3 . It is the very cobbly, very gravelly, or very stony analogs of fine sandy loam or sandy loam.

Voelker Series

The Voelker series consists of very deep, well drained soils on dissected moraines and till-floored lake plains. These soils are shallow to ortstein. They formed in sandy outwash and in the underlying loamy glaciolacustrine deposits. Permeability is rapid in the upper part, moderate or moderately rapid in the ortstein, and moderately slow in the loamy lower part. Slopes range from 1 to 70 percent.

Typical pedon of Voelker fine sand, in an area of Garlic-Alcona-Voelker complex, 8 to 35 percent slopes, dissected; 330 feet west and 1,166 feet south of the northeast corner of sec. 31, T. 50 N., R. 26 W.; USGS Buckroe topographic quadrangle; lat. 46 degrees 41 minutes 24 seconds N. and long. 87 degrees 35 minutes 40 seconds W.

Oa-0 to 1 inch; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate fine granular structure; very friable; abrupt smooth boundary.
A-1 to 5 inches; dark gray (7.5YR 4/1) fine sand, gray (7.5YR 6/1) dry; weak very fine granular structure; very friable; many very fine to coarse roots; very strongly acid;
clear wavy boundary.

E-5 to 11 inches; reddish gray (5YR 5/2) fine sand, pinkish gray (5YR 7/2) dry; weak very fine subangular blocky structure; very friable; many very fine to coarse roots; very strongly acid; abrupt irregular boundary.
Bhs-11 to 15 inches; dark reddish brown (5YR 3/2) fine sand; massive; very hard; strongly cemented ortstein occupies 70 percent of the horizon and occurs as tongues extending to a depth of 25 inches; many very fine to coarse roots; very strongly acid; clear irregular boundary.
Bsm1-15 to 23 inches; dark reddish brown (5YR 3/4) and reddish brown (5YR 4/4) fine sand; massive; very hard; ortstein occupies 100 percent of the horizon and is strongly cemented; ortstein occurs as a nearly continuous layer; few very fine and fine roots in cracks; strongly acid; clear wavy boundary.
Bsm2-23 to 31 inches; brown (7.5YR 5/4) fine sand; massive; very hard; ortstein occupies 90 percent of the horizon and is moderately cemented; few very fine and fine roots; strongly acid; gradual wavy boundary.
2E/B-31 to 39 inches; 80 percent brown (7.5YR 5/3) loamy very fine sand, gray (7.5YR 6/2) dry (E); surrounding peds of reddish brown (5YR 4/4) very fine sandy loam (Bt); weak thin platy structure; firm; few very fine and fine roots; strongly acid; gradual wavy boundary.
2C1-39 to 54 inches; stratified reddish brown (5YR 5/4) loamy very fine sand and reddish brown (5YR 4/4) very fine sandy loam and silt loam; massive with weakly expressed thin platiness inherent from the parent material; firm; common fine vesicular pores; few very fine and fine roots; strongly acid; gradual wavy boundary.
2C2—54 to 80 inches; brown (7.5YR 5/3), stratified sand, very fine sand, and silt loam; massive; friable to loose; few very fine and fine roots; strongly acid.

The depth to ortstein ranges from 6 to 12 inches. The depth to the loamy substratum ranges from 24 to 40 inches. The content of gravel ranges from 0 to 2 percent throughout the profile.

The A horizon has hue of 7.5 YR or 10YR, value of 2 to 4 , and chroma of 1 . It is dominantly fine sand, but the range includes sand, loamy sand, and loamy fine sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 1 or 2 . It is sand, fine sand, loamy sand, or loamy fine sand.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 2.5 or 3 , and chroma of 2 or 3 . It is sand, fine sand, loamy sand, or loamy fine sand.

The Bsm1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is sand, fine sand, loamy sand, or loamy fine sand.

The Bsm2 horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 4 to 6 . It is sand, fine sand, loamy sand, or loamy fine sand.

The E part of the 2E/B horizon has hue of 7.5 YR , value of 5 or 6 , and chroma of 3 or 4 . It is loamy fine sand or loamy very fine sand. The Bt part of the $2 \mathrm{E} / \mathrm{B}$ horizon has hue of 5YR, value of 4 or 5 , and chroma of 4 to 6 . It is loamy very fine sand, fine sandy loam, or very fine sandy loam.

The 2C horizon has hue of 5 YR or 7.5 YR , value of 4 or 5 , and chroma of 3 or 4 . It is stratified silt loam, very fine sandy loam, loamy very fine sand, very fine sand, and fine sand.

Wabeno Series

The Wabeno series consists of very deep, moderately well drained soils on disintegration moraines. These soils are moderately deep to a fragipan. They formed in a silty or loamy mantle over loamy till. Permeability is moderate in the silty upper part of the profile, slow in the fragipan, and moderate in the substratum. Slopes range from 1 to 18 percent.

Typical pedon of Wabeno silt loam, in an area of Goodman-Sundog-Wabeno silt loams, 1 to 6 percent slopes, bouldery; 2,150 feet south and 1,000 feet east of the northwest corner of sec. 28, T. 46 N., R. 30 W.; near Grant Lake; USGS Witch Lake topographic quadrangle; lat. 46 degrees 21 minutes 23 seconds N. and long. 88 degrees 04 minutes 16 seconds W .

Oe—0 to 1 inch; black (5YR 2.5/1), partially decomposed forest litter; very strongly acid; abrupt smooth boundary.
E-1 to 3 inches; pinkish gray (5YR 6/2) silt loam, light gray (5YR 7/1) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 3 percent gravel and 1 percent cobbles; very strongly acid; abrupt smooth boundary.
Bs1-3 to 13 inches; reddish brown (5YR 4/4) silt loam; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 3 percent gravel and 1 percent cobbles; strongly acid; gradual wavy boundary.
Bs2-13 to 23 inches; yellowish red (5YR 4/6) silt loam; moderate fine subangular blocky structure; friable; common very fine to medium roots; about 3 percent gravel and 1 percent cobbles; moderately acid; gradual wavy boundary.
E/B-23 to 29 inches; about 75 percent brown (10YR 5/3) silt loam, very pale brown (10YR 7/3) dry (E); occurs as tongues extending into or completely surrounding isolated remnants of brown (7.5YR 4/4) silt loam (B); moderate medium subangular blocky structure; friable; common very fine to medium roots; common fine vesicular pores; many medium prominent yellowish red (5YR $5 / 8$) masses of iron accumulation; about 5 percent gravel and 1 percent cobbles; moderately acid; gradual wavy boundary.
2(B/E)x—29 to 57 inches; dark brown (7.5YR 3/4) sandy loam (Bt); common distinct dark reddish brown (5YR 3/4) clay films on faces of peds; occupies about 55 percent of the horizon; surrounded by brown (7.5YR 5/4) loamy sand, pinkish gray (7.5YR 6/2) dry (E); weak thin platy structure; very firm; common fine vesicular pores; common medium distinct yellowish red (5YR 5/8) masses of iron accumulation; about 6 percent gravel and 3 percent cobbles; slightly acid; gradual wavy boundary.
2C—57 to 80 inches; brown (7.5YR 4/4) sandy loam; massive; friable; about 6 percent gravel and 3 percent cobbles; slightly acid.
The thickness of the silty mantle and the depth to the fragipan range from 20 to 32 inches. The content of gravel ranges from 1 to 5 percent above the fragipan and from 5 to 15 percent in the fragipan and in the substratum. The content of cobbles ranges from 0 to 5 percent above the fragipan and from 0 to 8 percent in the fragipan and in the substratum. The content of stones ranges from 0 to 2 percent throughout the profile.

The E horizon has hue of 5 YR, value of 5 or 6 , and chroma of 2 or 3 . It is silt loam. Some pedons have an A horizon.

The Bs1 horizon has hue of 5YR, value of 3 or 4 , and chroma of 4 . It is silt loam.
The Bs2 horizon has hue of 5YR, value of 4, and chroma of 4 to 6 . It is silt loam.
The E part of the E/B horizon has hue of 7.5 YR or 10 YR , value of 5 or 6 , and chroma of 1 or 2 . The B part of the E / B horizon has hue of $7.5 Y R$, value of 3 or 4 , and chroma of 4. The E / B horizon is silt loam.

The Bt part of the 2(B/E)x horizon has hue of 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is sandy loam, fine sandy loam, gravelly sandy loam, or gravelly fine sandy loam. The E part of the $2(B / E) x$ horizon has hue of 7.5 YR or 10 YR , value of 4 or 5 , and chroma of 2 or 3 . It is loamy sand, sandy loam, or fine sandy loam or the gravelly analogs of these textures. Some pedons have a BC horizon.

The 2C horizon has hue of 7.5 YR , value of 3 or 4 , and chroma of 4 . It is sandy loam or gravelly sandy loam.

Waiska Series

The Waiska series consists of very deep, excessively drained, very rapidly permeable soils on outwash plains, outwash terraces, bedrock benches, and dissected moraines. These soils formed in gravelly and sandy outwash. Slopes range from 0 to 70 percent.

Typical pedon of Waiska cobbly loamy sand, in an area of Kalkaska-Waiska complex, 1 to 6 percent slopes; 1,000 feet west and 3,300 feet north of the southeast corner of sec. 8, T. 47 N., R. 25 W.; near gravel pits on County Road 480; USGS Sands topographic quadrangle; lat. 46 degrees 29 minutes 12 seconds N . and long. 87 degrees 27 minutes 08 seconds W .

A-0 to 1 inch; black (10YR 2/1) cobbly loamy sand, dark gray (10YR 4/1) dry; moderate fine granular structure; very friable; many very fine to coarse roots; about 15 percent cobbles and 10 percent gravel; moderately acid; abrupt smooth boundary.
E-1 to 4 inches; reddish gray (5YR 5/2) cobbly loamy sand, gray (5YR 6/1) dry; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 15 percent cobbles and 10 percent gravel; strongly acid; abrupt smooth boundary.
Bhs-4 to 8 inches; dark reddish brown (5YR 3/3) very cobbly loamy sand; weak fine subangular blocky structure; friable; many very fine to coarse roots; about 20 percent cobbles and 20 percent gravel; moderately acid; clear wavy boundary.
Bs1-8 to 14 inches; reddish brown (5YR 4/4) very cobbly loamy sand; weak fine subangular blocky structure; very friable; many very fine to coarse roots; about 30 percent gravel and 20 percent cobbles; moderately acid; gradual wavy boundary.
Bs2-14 to 36 inches; yellowish red (5YR 4/6) very cobbly sand; single grain; loose; common very fine to medium roots; about 30 percent gravel and 20 percent cobbles; moderately acid; gradual wavy boundary.
C-36 to 80 inches; brown (7.5YR 5/4) very gravelly sand; single grain; loose; few very fine and fine roots; about 50 percent gravel and 10 percent cobbles; slightly acid.
The content of gravel ranges from 5 to 40 percent in the A, E, Bhs, and Bs1 horizons and from 35 to 50 percent in the Bs2 and C horizons. The content of cobbles ranges from 0 to 20 percent throughout the profile. The content of rock fragments averages more than 35 percent in the control section.

The A horizon has hue of 5 YR to 10 YR , value of 2 or 3 , and chroma of 1 or 2 . It is dominantly cobbly loamy sand, but the range includes gravelly sandy loam and gravelly loamy sand.

The E horizon has hue of 5 YR or 7.5 YR , value of 4 to 6 , and chroma of 1 or 2 . It is the cobbly or gravelly analogs of loamy sand or sandy loam.

The Bhs horizon has hue of 5 YR and value and chroma of 2 or 3 . It is the gravelly, cobbly, or very cobbly analogs of loamy sand, coarse sand, or sand.

The Bs1 horizon has hue of 5YR or 7.5YR and value and chroma of 3 or 4 . It is the gravelly, cobbly, or very cobbly analogs of loamy sand, coarse sand, or sand.

The Bs2 horizon has hue of 5 YR or 7.5 YR , value of 4 , and chroma of 4 to 6 . It is the very cobbly or very gravelly analogs of sand or coarse sand.

The C horizon has hue of 5YR to 10YR, value of 4 or 5 , and chroma of 4 to 6 . It is very gravelly sand or very gravelly coarse sand.

Witbeck Series

The Witbeck series consists of very deep, poorly drained soils in depressions and drainageways on bedrock-controlled moraines and disintegration moraines. These soils formed in loamy till. Permeability is moderate. Slopes range from 0 to 2 percent.

Typical pedon of Witbeck very stony muck, in an area of Witbeck-Cathro complex, very bouldery; 690 feet south and 1,627 feet east of the northwest corner of sec. 9, T. 49 N., R. 29 W.; west of Wildcat Canyon, near the South Branch of the Dead River; USGS Bulldog Lake topographic quadrangle; lat. 46 degrees 39 minutes 48 seconds N . and long. 87 degrees 56 minutes 34 seconds W.
Oa-0 to 8 inches; black ($\mathrm{N} 2.5 / 0$) very stony muck; weak fine granular structure; very friable; many very fine to coarse roots; about 15 percent stones, 10 percent cobbles, and 10 percent gravel; strongly acid; abrupt smooth boundary.
Eg1-8 to 12 inches; gray (5Y 5/1) very stony fine sandy loam, gray (5Y 6/1) dry; moderate medium subangular blocky structure; friable; common very fine to coarse roots; about 15 percent stones, 10 percent cobbles, and 12 percent gravel; strongly acid; clear smooth boundary.
Eg2—12 to 15 inches; greenish gray (5GY 5/1) very stony very fine sandy loam, light gray (10YR 7/2) dry; moderate medium platy structure; friable; few fine and medium roots; common medium faint dark greenish gray (5GY 4/1) iron depletions and few fine prominent brown (10YR 4/3) masses of iron accumulation; about 15 percent stones, 12 percent gravel, and 10 percent cobbles; strongly acid; clear wavy boundary.
$\mathrm{Bg}-15$ to 22 inches; dark olive gray (5Y 3/2) very stony fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; few medium distinct dark greenish gray (5GY 4/1) and few medium prominent greenish gray (5BG 5/1) iron depletions; few fine prominent yellowish brown (10YR 5/6) masses of iron accumulation; about 15 percent stones, 10 percent gravel, and 12 percent cobbles; strongly acid; clear wavy boundary.
BCg-22 to 24 inches; olive gray (5Y 4/2) gravelly fine sandy loam; weak medium subangular blocky structure; friable; few fine roots; common medium distinct dark greenish gray (5GY 4/1) and common medium prominent greenish gray (5BG 5/1) iron depletions; few fine prominent brown (10YR 4/3) masses of iron accumulation; about 18 percent gravel, 5 percent cobbles, and 5 percent stones; moderately acid; clear smooth boundary.
Cg-24 to 80 inches; dark gray (5Y 4/1) gravelly sandy loam; massive; friable; few fine distinct olive ($5 \mathrm{Y} 4 / 3$) masses of iron accumulation; about 18 percent gravel, 5 percent cobbles, and 5 percent stones; moderately acid.
The content of gravel ranges from 0 to 10 percent in the O, Eg, and Bg horizons and from 15 to 25 percent in the BCg and Cg horizons. The content of cobbles ranges from 5 to 15 percent in the O, Eg, and Bg horizons and from 0 to 10 percent in the BCg and Cg horizons. The content of stones and boulders ranges from 10 to 15 percent in the O, Eg, and Bg horizons and from 0 to 5 percent in the BCg and Cg horizons. The content of rock fragments averages less than 35 percent in the control section.

The Oa horizon has hue of 5YR to 10 YR or is neutral in hue. It has value of 2 or 3 and chroma of 0 to 2 .

The Eg horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}, 5 \mathrm{Y}$, or 5 GY , value of 4 to 6 , and chroma of 1 or 2 . It is dominantly very stony fine sandy loam, but the range includes very stony very fine sandy loam and very stony sandy loam. Some pedons have an A horizon.

The Bg horizon has hue of 10 YR to 5 Y , value of 4 or 5 , and chroma of 1 or 2 . It is very stony fine sandy loam, stony very fine sandy loam, or stony sandy loam.

The BCg horizon has hue of 10YR, 2.5 Y , or 5 Y , value of 4 to 6 , and chroma of 1 or 2. It is gravelly fine sandy loam or gravelly sandy loam.

The Cg horizon has hue of $10 \mathrm{YR}, 2.5 \mathrm{Y}$, or 5 Y , value of 4 or 5 , and chroma of 1 or 2 . It is gravelly sandy loam or gravelly loamy sand.

Yalmer Series

The Yalmer series consists of very deep, moderately well drained soils on ground moraines, dissected bedrock benches, and till-floored lake plains. These soils are moderately deep to a fragipan. They formed in a sandy mantle over loamy till. Permeability is rapid in the upper part of the profile and very slow in the fragipan. Slopes range from 1 to 18 percent.

Typical pedon of Yalmer fine sand, 6 to 18 percent slopes; 1,300 feet south and 700 feet west of the northeast corner of sec. 4, T. 48 N., R. 27 W.; in the Dead River Basin area; USGS Negaunee SW topographic quadrangle; lat. 46 degrees 35 minutes 20 seconds N . and long. 87 degrees 41 minutes 45 seconds W .

Oe-0 to 1 inch; black (10YR 2/1), partially decomposed forest litter; moderately acid; abrupt smooth boundary.
E-1 to 10 inches; reddish gray (5YR 5/2) fine sand, pinkish gray (5YR 7/2) dry; weak fine granular structure; very friable; many very fine to coarse roots; about 1 percent gravel; very strongly acid; abrupt smooth boundary.
Bhs-10 to 16 inches; dark reddish brown (5YR 3/3) fine sand; moderate medium subangular blocky structure; very friable; many very fine to coarse roots; about 1 percent gravel; strongly acid; gradual wavy boundary.
Bs-16 to 30 inches; reddish brown (5YR 4/4) fine sand; weak fine subangular blocky structure; very friable; few fine and very fine roots; about 1 percent gravel; very strongly acid; abrupt smooth boundary.
2(E/B)x-30 to 36 inches; about 70 percent dark reddish gray (5YR 4/2) loamy fine sand, white (5YR 8/1) dry (E); surrounding isolated remnants of reddish brown (5YR 4/3) fine sandy loam (Bt); weak thick platy structure; very firm; few very fine and fine roots; roots are in cracks 10 to 20 inches apart; common fine vesicular pores; few fine distinct yellowish red (5YR 5/6) masses of iron accumulation; about 7 percent gravel and 4 percent cobbles; very strongly acid; gradual wavy boundary.
2(B/E)x-36 to 80 inches; reddish brown (5YR 4/3) fine sandy loam (Bt); common distinct dark reddish brown (5YR 3/2) clay films on faces of peds; occupies about 60 percent of the horizon; surrounded by dark reddish gray (5YR 4/2) loamy fine sand, white (5YR 8/1) dry (E); weak thick platy structure; very firm; common fine vesicular pores; few fine distinct yellowish red (5YR $5 / 6$) masses of iron accumulation; about 7 percent gravel and 4 percent cobbles; very strongly acid.

Depth to the fragipan ranges from 20 to 40 inches. The content of gravel ranges from 0 to 15 percent throughout the profile, and the content of cobbles ranges from 0 to 4 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 to 7 , and chroma of 2 or 3 . It is dominantly fine sand, but the range includes sand and loamy sand. Some pedons have an A horizon.

The Bhs horizon has hue of 5 YR or 7.5 YR , value of 3 , and chroma of 2 or 3 . It is fine sand, sand, or loamy sand.

The Bs horizon has hue of 5 YR or 7.5 YR , value of 3 or 4 , and chroma of 4 to 6 . It is sand, fine sand, or loamy sand. Some pedons have 20 to 40 inches of moderately cemented ortstein.

The E part of the 2(E/B)x and $2(B / E) x$ horizons has hue of 2.5 YR or 5 YR , value of 4 to 6 , and chroma of 2 or 3 . It is loamy fine sand, sandy loam, or fine sandy loam. The Bt part of the 2(E/B)x and 2(B/E)x horizons has hue of 2.5YR or 5YR and value and chroma of 3 or 4 . It is sandy loam or fine sandy loam. Some pedons have a C horizon.

Yellowdog Series

The Yellowdog series consists of excessively drained, very rapidly permeable soils that are moderately deep to bedrock. These soils are on sandstone benches. They formed in sandy and channery beach deposits overlying sandstone bedrock. Slopes range from 0 to 6 percent.

Typical pedon of Yellowdog very channery sand, 0 to 6 percent slopes, stony; 1,740 feet south and 2,040 feet west of the northeast corner of sec. 20, T. 51 N., R. 26 W.; USGS Big Bay topographic quadrangle; lat. 46 degrees 48 minutes 13 seconds N. and long. 87 degrees 37 minutes 50 seconds W.

Oa-0 to 2 inches; black (10YR 2/1), well decomposed leaf litter; moderate very fine granular structure; very friable; many very fine to coarse roots; very strongly acid; abrupt smooth boundary.
Bw1-2 to 22 inches; reddish brown (5YR 4/4) very channery sand; weak very fine subangular blocky structure; very friable; many very fine to coarse roots; about 55 percent sandstone channers; very strongly acid; gradual wavy boundary.
Bw2-22 to 32 inches; reddish brown (5YR 5/4) very channery sand; weak very fine subangular blocky structure; very friable; common very fine to medium roots; about 55 percent sandstone channers; moderately acid; abrupt wavy boundary.
$2 R-32$ inches; dusky red (2.5YR 3/2) sandstone bedrock; hard bedrock with fractures 2 to 10 millimeters thick and 1 to 5 feet apart; common very fine roots in crevices of bedrock.

Depth to bedrock ranges from 20 to 40 inches. The content of channers ranges from 35 to 75 percent.

Some pedons have an A horizon. This horizon has hue of 10YR, value of 2 or 3, and chroma of 1 . It is very channery sand or very channery loamy sand.

The Bw horizon has hue of 2.5 YR or 5 YR , value of 4 or 5 , and chroma of 4 . It is very channery sand or extremely channery sand.

The underlying bedrock is sandstone.

Zeba Series

The Zeba series consists of somewhat poorly drained soils that are moderately deep to bedrock. These soils are on sandstone benches. They formed in loamy till overlying sandstone bedrock. Permeability is moderate. Slopes range from 0 to 3 percent.

Typical pedon of Zeba cobbly fine sandy loam, 0 to 3 percent slopes, very stony; 152 feet west and 253 feet north of the southeast corner of sec. 16, T. 47 N., R. 23 W.; USGS Skandia topographic quadrangle; lat. 46 degrees 27 minutes 54.66 seconds N . and long. 87 degrees 10 minutes 45.14 seconds W.

Oa-0 to 4 inches; black ($\mathrm{N} 2.5 / 0$), well decomposed forest litter; moderate fine granular structure; very friable; many very fine to coarse roots; extremely acid; abrupt smooth boundary.
E-4 to 10 inches; reddish gray (5YR 5/2) cobbly fine sandy loam, pinkish gray (5YR 6/2) dry; moderate fine subangular blocky structure; friable; many very fine to coarse roots; about 20 percent cobbles and 10 percent gravel; very strongly acid; clear broken boundary.
Bs-10 to 14 inches; reddish brown (5YR 4/3) cobbly fine sandy loam; weak fine subangular blocky structure; friable; many very fine to coarse roots; few fine distinct yellowish red (5YR 5/6) masses of iron accumulation; about 15 percent cobbles and 5 percent gravel; very strongly acid; clear broken boundary.

E/B—14 to 19 inches; about 70 percent brown (7.5YR 5/3) loamy sand, light brown (7.5YR 6/3) dry (E); surrounding reddish brown (2.5YR 4/4) sandy loam (Bt); weak thin platy structure; firm; common fine vesicular pores; common black (N 2.5/0) organic stains between plates; common medium distinct yellowish red (5YR 5/8) masses of iron accumulation; about 8 percent gravel and 2 percent cobbles; very strongly acid; gradual wavy boundary.
B/E-19 to 31 inches; reddish brown (2.5YR 4/4) sandy loam (Bt); few distinct dark reddish brown (2.5YR $3 / 4$) clay films on faces of peds; occupies 60 percent of the horizon; surrounding brown (7.5YR 5/3) loamy sand, light brown (7.5YR 6/3) dry (E); weak medium platy structure; firm; common fine vesicular pores; common black ($\mathrm{N} 2.5 / 0$) organic stains between plates; few distinct strong brown (7.5YR $5 / 8$) sand lenses; common medium prominent yellowish red (5YR 5/8) masses of iron accumulation; about 8 percent gravel and 2 percent cobbles; very strongly acid; gradual smooth boundary.
2R-31 inches; very dusky red (2.5YR 2.5/2) and pinkish gray (5YR 6/2) sandstone bedrock.

Depth to bedrock ranges from 20 to 40 inches. The content of cobbles ranges from 0 to 20 percent in the E and Bs horizons and from 0 to 10 percent in the E / B and B / E horizons. The content of gravel ranges from 0 to 15 percent throughout the profile.

The E horizon has hue of 5 YR or 7.5 YR , value of 5 or 6 , and chroma of 2 or 3 . It is dominantly cobbly fine sandy loam, but the range includes loamy sand, sandy loam, cobbly loamy sand, and cobbly sandy loam. Some pedons have an A horizon.

The Bs horizon has hue of 5YR or 7.5 YR , value of 3 or 4 , and chroma of 4 . It is sandy loam, fine sandy loam, cobbly sandy loam, or cobbly fine sandy loam.

The E part of the E/B and B/E horizons has hue of 5 YR or 7.5 YR , value of 5 , and chroma of 2 or 3 . It is loamy sand or sandy loam. The Bt part of the E / B and B / E horizons has hue of 2.5 YR or 5 YR and value and chroma of 4 to 6 . It is sandy loam or fine sandy loam. Some pedons have a C horizon.

The underlying bedrock is sandstone.

Formation of the Soils

This section relates the major factors of soil formation to the soils in the survey area. It also describes the processes of soil formation.

Factors of Soil Formation

Soil forms through the interaction of five major factors: the physical, chemical, and mineralogical composition of the parent material; the climate under which the soil material has accumulated and existed since accumulation; the plant and animal life on and in the soil; the relief, or lay of the land; and the length of time that the processes of soil formation have acted on the parent material (Jenny, 1941).

Climate and plant and animal life are the active forces of soil formation. They slowly change the parent material into a natural body of soil that has genetically related layers, called horizons. The effects of climate and plant and animal life are conditioned by relief. The nature of the parent material affects the kind of soil profile that forms and, in extreme cases, determines it almost entirely. Finally, time is needed for the differentiation of soil horizons.

The factors of soil formation are so closely interrelated in their effects on the soils that few generalizations can be made regarding the effect of any one factor unless conditions are specified for the others.

Parent Material

Parent material is the unconsolidated mass in which a soil forms. It affects the limits of the chemical and mineralogical composition of the soil. In this survey area, nearly all of the parent materials were deposited by glaciers or glacial meltwater. The subsequent actions of water and wind reworked and redeposited the materials. Although most of the parent materials are of common glacial origin, their properties vary greatly, sometimes within small areas, depending on how the materials were deposited.

The dominant parent materials in the survey area were deposited as till, drift, glacial outwash, lacustrine material, eolian material, alluvium, and organic material. The soil mantle ranges from several inches to more than 450 feet in thickness. Bedrock commonly is exposed or at a shallow depth throughout the survey area.

Till was deposited directly by glaciers with minimal water action. It is a mixture of particles of different sizes. The small pebbles in till have sharp corners, indicating that they have not been worn by water. Munising, Schweitzer, and Emmet soils are examples of soils that formed in till on till plains and moraines.

Drift is pulverized rock material transported and deposited by glacial ice. It also is the sorted and unsorted material that was deposited by streams flowing from the glaciers. Keweenaw, Sundog, and Ishpeming soils are examples of soils that formed in drift.

Outwash material was deposited by running water from melting glaciers. The size of the particles depends on the speed of the stream that carried the material. The water deposited the coarser particles as it slowed down. Slowly moving water carried the finer particles, such as very fine sand, silt, and clay. Outwash deposits generally occur
as layers of particles of similar size, such as sand, gravel, or other coarse particles. Rubicon, Grayling, and Waiska soils are examples of soils that formed in deposits of outwash material.

Lacustrine material was deposited from still, or ponded, glacial meltwater. It consists of fine soil particles, such as very fine sand, silt, and clay, that settled out in the still water. Soils that formed in lacustrine deposits are typically medium to fine textured. Fence and Alcona soils are examples of soils that formed in lacustrine material.

Eolian material has been transported and deposited by the wind. It consists primarily of fine sand, very fine sand, and silt. It typically occurs as a surface mantle overlying glacial deposits. Goodman and Wabeno soils are examples of soils that formed in this material.

Alluvium is material recently deposited by floodwater from streams. This material varies in texture, depending on the speed of the water from which it was deposited. Evart and Pelkie soils are examples of soils that formed in alluvium.

Organic material occurs as deposits of plant residue. After the glaciers withdrew from the area, water remained standing in depressions on outwash plains, flood plains, moraines, and till plains. Grasses and sedges grew around the edges of these lakes. When these plants died, their residue did not decompose because the areas were wet. Later, water-tolerant trees grew in the areas. After these trees died, their residue became part of the organic accumulation. Eventually, the lakes were filled with organic material and developed into areas of muck. Carbondale and Greenwood soils are examples of soils that formed in organic material.

Plant and Animal Life

Plants, animals, insects, bacteria, and fungi are important in the formation of soils. Additions of organic matter and nitrogen in the soil, gains or losses in plant nutrients, and alterations in soil structure and porosity are among the changes caused by living organisms. In this survey area, vegetation, dominantly hardwood and coniferous trees, has affected soil formation more than the other living organisms.

Climate

Climate determines the kind of plant and animal life on and in the soil and the amount of water available for the weathering of minerals and the translocation of soil material. Through its influence on soil temperature, climate also determines the rate of chemical reaction in the soil.

The climate in Marquette County is cool and humid. Presumably, it is similar to that under which the soils formed. The soils in Marquette County differ from soils that formed under a dry, warm climate and from those that formed under a moist, hot climate. The climate generally is uniform in all areas, except for those within a few miles of Lake Superior. Only minor differences among the soils in the county are the result of differences in climate.

Relief

Relief affects soil formation through its effect on drainage, runoff, erosion, plant cover, and soil temperature. The topography in Marquette County varies greatly. It includes both depressions and steep hills. In the hilly areas, local relief is as much as 400 to 700 feet and the slope is as much as 70 percent. In some areas near Gwinn, the slope is less than 2 percent. Many small, nearly level areas are interspersed throughout the undulating and hilly areas. The nearly level areas receive runoff from the more sloping areas. The water table is at or near the surface in depressional areas.

Through its effect on soil aeration, drainage determines the color of the soil. Water and air move freely through well drained soils and slowly through very poorly drained soils. In well aerated soils, the iron and aluminum compounds that give most soils their color are brightly colored and oxidized. Poorly aerated soils are dull gray and mottled. The sequence of excessively drained Rubicon, moderately well drained Croswell, somewhat poorly drained Au Gres, and poorly drained Deford soils is an example of a catena. All of these soils formed in sandy material, but they have different colors because of variations in relief and drainage.

Time

Generally, a long time is needed for the development of distinct horizons. The degree of profile development commonly reflects the length of time that the parent material has been in place. Some soils form rapidly; others form slowly.

The soils in Marquette County range from young to mature. Most of the soils that formed in glacial deposits have been exposed to the soil-forming factors long enough for the development of distinct horizons. Kalkaska soils are examples. The soils that formed in recent alluvial material have not been in place long enough for distinct horizons to develop. Pelkie soils are examples.

Processes of Soil Formation

The processes responsible for the development of the soil horizons in the unconsolidated parent material are referred to as soil genesis. Several processes were involved in the development of horizons in the soils of Marquette County. These are the accumulation of organic matter, the leaching of lime (calcium carbonate) and other bases, the reduction and transfer of iron, and the formation and translocation of silicate clay minerals. More than one of these processes have helped to differentiate horizons in most of the soils.

As organic material accumulates at the surface, an A horizon forms. The A and E horizons are mixed into a plow layer, or Ap horizon, if the soil is plowed. The surface layer of the soils in Marquette County ranges from high to low in organic matter content. The content is high, for example, in Ensley soils and low in Rubicon soils.

Carbonates and other bases have been leached from most of the soils. The leaching of bases generally precedes the translocation of silicate clay minerals. Many of the soils are moderately leached or strongly leached. Sagola soils, for example, are leached of carbonates to a depth of about 50 inches. Northland soils, however, have carbonates within about 18 inches of the surface.

Gleying, or the reduction and transfer of iron, is evident in somewhat poorly drained, poorly drained, and very poorly drained soils. Witbeck soils are examples of soils in which this process has occurred. A grayish subsoil indicates the reduction and loss of iron. Some horizons have mottles, indicating the segregation of iron. This process has taken place in Net soils.

The translocation of clay minerals has contributed to horizon development in some soils. An eluviated, or leached, E horizon typically is lower in content of clay and lighter in color than the illuviated B horizon. The B horizon typically has an accumulation of clay, or clay films, in pores and on the faces of peds. These soils were probably leached of carbonates and soluble salts to a considerable extent before the translocation of silicate clay minerals. Nadeau soils are examples of soils in which translocated silicate clay minerals in the form of clay films have accumulated in the B horizon.

In some of the soils in Marquette County, iron, aluminum, and humus have been transferred from the surface layer to the B horizon. Kalkaska and Yalmer soils are examples.

The soils of Marquette County formed in specific landform and climatic regimes that along with the soil parent material were the result of the bedrock and glacial geological history of the site. These soils were capable of supporting a unique vegetational succession, which in turn influenced further formation and development of the soil. A history of catastrophic events, such as fire, affected some species on certain soils and landforms that subsequently altered the characteristics of the soil. Human influences have had a profound impact on vegetation and landscape. Humans have the power to enhance and maintain the soil resources or to degrade and destroy them. Therefore, an understanding of the relationship between vegetation, physiography, soils, and human activities is important.

In Marquette County, human activities, such as agriculture, logging, urban development, road building, and mining, have influenced soil formation. When the land is cleared for agriculture or reforestation, the soil microclimate is changed and new soil flora and fauna develop, leading to the establishment of new species of vegetation that can in turn alter further soil development. The construction of roads and buildings obscures the natural soils in some areas. The collapse of underground mines has resulted in areas of caving ground and in some cases has created lakes. Mine pits, rock piles, and tailings basins are new parent materials that could, after reclamation and the establishment of vegetation, become new soils in the future.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Black, R.F. 1969. Valderan glaciation in western Upper Michigan. Proceedings of the 12th Conference on Great Lakes Research, pages 116-123.

Coffman, M.S., and others. 1980 (Reprinted in 1986). Field guide habitat classification system for Upper Peninsula of Michigan and northwest Wisconsin. Michigan Technological University.

Dorr, J.A., and D.F. Eschman. 1970. Geology of Michigan. University of Michigan Press.

Farrand, W.R., and C.W. Drexler. 1985. Late Wisconsinan and Holocene history of the Lake Superior region. Geology Association of Canada Special Paper 30.

Jenny, Hans. 1941. Factors of soil formation.
Kelley, R.W. 1968. Bedrock of Michigan. Michigan Department of Natural Resources, Geological Survey Division. Small scale map 2.

Martin, H.M. 1936. Geological map of the northern peninsula of Michigan. Michigan Geological Survey Division Publication 39, series 33.

Michigan Department of Agriculture. 1988. Food and agricultural development statistics for Marquette County, Michigan.

Michigan State University. 1965. Michigan freeze bulletin. Resource Report 26.
Michigan State University. 1985. Fertilizer recommendations for vegetables and field crops in Michigan. Extension Bulletin E-550.

Mokma, D.L., E.P. Whiteside, and I.F. Schneider. 1978. Soil management units and land use planning. Michigan State University, Extension Bulletin E-1262.

Simpson, T.B., P.E. Stuart, and B.V. Barnes. 1990. Landscape ecosystems and cover types of the reserve area and adjacent lands of the Huron Mountain Club. Huron Mountain Wildlife Foundation.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov

Soil Survey Staff. 1996. Keys to soil taxonomy. 7th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

Glossary

Many of the terms relating to landforms, geology, and geomorphology are defined in more detail in the "National Soil Survey Handbook" (available in local offices of the Natural Resources Conservation Service or on the Internet).

ABC soil. A soil having an A, a B, and a C horizon.
Ablation till. Loose, relatively permeable earthy material deposited during the downwasting of nearly static glacial ice, either contained within or accumulated on the surface of the glacier.
Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.
Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.
Alluvium. Unconsolidated material, such as gravel, sand, silt, clay, and various mixtures of these, deposited on land by running water.
Alpha,alpha-dipyridyl. A compound that when dissolved in ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction implies reducing conditions and the likely presence of redoximorphic features.
Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.
Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.
Aspect. The direction toward which a slope faces. Also called slope aspect.
Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.
Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60 -inch profile or to a limiting layer is expressed as:

Very low ...	
Low .. 3 to 6	
Moderate .. 6 to 9	
High	9 to 12
	than 12

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.
Basal area. The area of a cross section of a tree, generally referring to the section at breast height and measured outside the bark. It is a measure of stand density, commonly expressed in square feet.

Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}$, and K), expressed as a percentage of the total cation-exchange capacity.
Base slope (geomorphology). A geomorphic component of hills consisting of the concave to linear (perpendicular to the contour) slope that, regardless of the lateral shape, forms an apron or wedge at the bottom of a hillside dominated by colluvium and slope-wash sediments (for example, slope alluvium).
Bedding plane. A planar or nearly planar bedding surface that visibly separates each successive layer of stratified sediment or rock (of the same or different lithology) from the preceding or following layer; a plane of deposition. It commonly marks a change in the circumstances of deposition and may show a parting, a color difference, a change in particle size, or various combinations of these. The term is commonly applied to any bedding surface, even one that is conspicuously bent or deformed by folding.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.
Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.
Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.
Blowout. A saucer-, cup-, or trough-shaped depression formed by wind erosion on a preexisting dune or other sand deposit, especially in an area of shifting sand or loose soil or where protective vegetation is disturbed or destroyed; the adjoining accumulation of sand derived from the depression, where recognizable, is commonly included. Blowouts are commonly small.
Bottom land. An informal term loosely applied to various portions of a flood plain.
Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.
Breast height. An average height of 4.5 feet above the ground surface; the point on a tree where diameter measurements are ordinarily taken.
Cable yarding. A method of moving felled trees to a nearby central area for transport to a processing facility. Most cable yarding systems involve use of a drum, a pole, and wire cables in an arrangement similar to that of a rod and reel used for fishing. To reduce friction and soil disturbance, felled trees generally are reeled in while one end is lifted or the entire log is suspended.
Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.
Canopy. The leafy crown of trees or shrubs. (See Crown.)
Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.
Catena. A sequence, or "chain," of soils on a landscape that formed in similar kinds of parent material and under similar climatic conditions but that have different characteristics as a result of differences in relief and drainage.
Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.
Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.
Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.

Chemical treatment. Control of unwanted vegetation through the use of chemicals.
Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.
Clay depletions. See Redoximorphic features.
Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.
Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.
Coarse textured soil. Sand or loamy sand.
Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.
Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.
COLE (coefficient of linear extensibility). See Linear extensibility.
Colluvium. Unconsolidated, unsorted earth material being transported or deposited on side slopes and/or at the base of slopes by mass movement (e.g., direct gravitational action) and by local, unconcentrated runoff.
Complex slope. Irregular or variable slope. Planning or establishing terraces, diversions, and other water-control structures on a complex slope is difficult.
Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. See Redoximorphic features.
Conglomerate. A coarse grained, clastic sedimentary rock composed of rounded or subangular rock fragments more than 2 millimeters in diameter. It commonly has a matrix of sand and finer textured material. Conglomerate is the consolidated equivalent of gravel.
Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soilimproving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soilimproving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.
Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.
Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."
Contour stripcropping. Growing crops in strips that follow the contour. Strips of grass or close-growing crops are alternated with strips of clean-tilled crops or summer fallow.
Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.

Coprogenous earth (sedimentary peat). A type of limnic layer composed predominantly of fecal material derived from aquatic animals.
Corrosion (geomorphology). A process of erosion whereby rocks and soil are removed or worn away by natural chemical processes, especially by the solvent action of running water, but also by other reactions, such as hydrolysis, hydration, carbonation, and oxidation.
Corrosion (soil survey interpretations). Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.
Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.
Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.
Cropping system. Growing crops according to a planned system of rotation and management practices.
Crown. The upper part of a tree or shrub, including the living branches and their foliage.
Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.
Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.
Delta. A body of alluvium having a surface that is fan shaped and nearly flat; deposited at or near the mouth of a river or stream where it enters a body of relatively quiet water, generally a sea or lake.
Dense layer (in tables). A very firm, massive layer that has a bulk density of more than 1.8 grams per cubic centimeter. Such a layer affects the ease of digging and can affect filling and compacting.
Depth, soil. Generally, the thickness of the soil over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.
Depth to rock (in tables). Bedrock is too near the surface for the specified use.
Diatomaceous earth. A geologic deposit of fine, grayish siliceous material composed chiefly or entirely of the remains of diatoms.
Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.
Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil. Seven classes of natural soil drainage are recognized-excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the "Soil Survey Manual."
Drainage, surface. Runoff, or surface flow of water, from an area.
Drainageway. A general term for a course or channel along which water moves in draining an area. A term restricted to relatively small, linear depressions that at some time move concentrated water and either do not have a defined channel or have only a small defined channel.
Drift. A general term applied to all mineral material (clay, silt, sand, gravel, and boulders) transported by a glacier and deposited directly by or from the ice or transported by running water emanating from a glacier. Drift includes unstratified material (till) that forms moraines and stratified deposits that form outwash plains, eskers, kames, varves, and glaciofluvial sediments. The term is generally applied to Pleistocene glacial deposits in areas that no longer contain glaciers.

Drumlin. A low, smooth, elongated oval hill, mound, or ridge of compact till that has a core of bedrock or drift. It commonly has a blunt nose facing the direction from which the ice approached and a gentler slope tapering in the other direction. The longer axis is parallel to the general direction of glacier flow. Drumlins are products of streamline (laminar) flow of glaciers, which molded the subglacial floor through a combination of erosion and deposition.
Dune. A low mound, ridge, bank, or hill of loose, windblown granular material (generally sand), either barren and capable of movement from place to place or covered and stabilized with vegetation but retaining its characteristic shape.
Earthy fill. See Mine spoil.
Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.
Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.
Eolian deposit. Sand-, silt-, or clay-sized clastic material transported and deposited primarily by wind, commonly in the form of a dune or a sheet of sand or loess.
Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.
Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep. Erosion (geologic). Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.
Erosion (accelerated). Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.
Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Most commonly applied to cliffs produced by differential erosion. Synonym: scarp.
Esker. A long, narrow, sinuous, steep-sided ridge of stratified sand and gravel deposited as the bed of a stream flowing in an ice tunnel within or below the ice (subglacial) or between ice walls on top of the ice of a wasting glacier and left behind as high ground when the ice melted. Eskers range in length from less than a kilometer to more than 160 kilometers and in height from 3 to 30 meters.
Excess fines (in tables). Excess silt and clay in the soil. The soil does not provide a source of gravel or sand for construction purposes.
Fast intake (in tables). The rapid movement of water into the soil.
Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.
Fibric soil material (peat). The least decomposed of all organic soil material. Peat contains a large amount of well preserved fiber that is readily identifiable according to botanical origin. Peat has the lowest bulk density and the highest water content at saturation of all organic soil material.
Fine textured soil. Sandy clay, silty clay, or clay.
Flaggy soil material. Material that has, by volume, 15 to 35 percent flagstones. Very flaggy soil material has 35 to 60 percent flagstones, and extremely flaggy soil material has more than 60 percent flagstones.
Flagstone. A thin fragment of sandstone, limestone, slate, shale, or (rarely) schist 6 to 15 inches (15 to 38 centimeters) long.

Flood plain. The nearly level plain that borders a stream and is subject to flooding unless protected artificially.
Fluvial. Of or pertaining to rivers or streams; produced by stream or river action.
Footslope. The concave surface at the base of a hillslope. A footslope is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).
Forb. Any herbaceous plant not a grass or a sedge.
Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.
Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.
Frost action (in tables). Freezing and thawing of soil moisture. Frost action can damage roads, buildings and other structures, and plant roots.
Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.
Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur in the form of outwash plains, valley trains, deltas, kames, eskers, and kame terraces.
Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are bedded or laminated.
Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.
Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.
Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.
Green manure crop (agronomy). A soil-improving crop grown to be plowed under in an early stage of maturity or soon after maturity.
Ground water. Water filling all the unblocked pores of the material below the water table.
Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.
Head slope (geomorphology). A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.
Hemic soil material (mucky peat). Organic soil material intermediate in degree of decomposition between the less decomposed fibric material and the more decomposed sapric material.
High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.

Hill. A generic term for an elevated area of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline. Slopes are generally more than 15 percent. The distinction between a hill and a mountain is arbitrary and may depend on local usage.
Hillslope. A generic term for the steeper part of a hill between its summit and the drainage line, valley flat, or depression floor at the base of a hill.
Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the "Soil Survey Manual." The major horizons of mineral soil are as follows:
O horizon.-An organic layer of fresh and decaying plant residue. L horizon.-A layer of organic and mineral limnic materials, including coprogenous earth (sedimentary peat), diatomaceous earth, and marl.
A horizon.-The mineral horizon at or near the surface in which an accumulation of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.
E horizon.-The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.
B horizon.-The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these. C horizon.-The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2 , precedes the letter C .
Cr horizon.-Soft, consolidated bedrock beneath the soil. R layer.-Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.
Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.
Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.
Igneous rock. Rock that was formed by cooling and solidification of magma and that has not been changed appreciably by weathering since its formation. Major varieties include plutonic and volcanic rock (e.g., andesite, basalt, and granite).
Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.
Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.
Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.

Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.
Interfluve. A landform composed of the relatively undissected upland or ridge between two adjacent valleys containing streams flowing in the same general direction. An elevated area between two drainageways that sheds water to those drainageways.
Interfluve (geomorphology). A geomorphic component of hills consisting of the uppermost, comparatively level or gently sloping area of a hill; shoulders of backwearing hillslopes can narrow the upland or can merge, resulting in a strongly convex shape.
Intermittent stream. A stream, or reach of a stream, that does not flow year-round but that is commonly dry for 3 or more months out of 12 and whose channel is generally below the local water table. It flows only during wet periods or when it receives ground-water discharge or long, continued contributions from melting snow or other surface and shallow subsurface sources.
Iron depletions. See Redoximorphic features.
Kame. A low mound, knob, hummock, or short irregular ridge composed of stratified sand and gravel deposited by a subglacial stream as a fan or delta at the margin of a melting glacier; by a supraglacial stream in a low place or hole on the surface of the glacier; or as a ponded deposit on the surface or at the margin of stagnant ice.
Kame terrace. A terrace-like ridge consisting of stratified sand and gravel (a) deposited by a meltwater stream flowing between a melting glacier and a higher valley wall or lateral moraine, and (b) left standing after the disappearance of the ice. It is commonly pitted with "kettles" and has an irregular ice-contact slope.
Karst (topography). A kind of topography that formed in limestone, gypsum, or other soluble rocks by dissolution and that is characterized by closed depressions, sinkholes, caves, and underground drainage.
Knoll. A small, low, rounded hill rising above adjacent landforms.
Ksat. Saturated hydraulic conductivity. (See Permeability.)
Lacustrine deposit. Material deposited in lake water and exposed when the water level is lowered or the elevation of the land is raised.
Lake plain. A nearly level surface marking the floor of an extinct lake filled by well sorted, generally fine textured, stratified deposits, commonly containing varves.
Lake terrace. A narrow shelf, partly cut and partly built, produced along a lakeshore in front of a scarp line of low cliffs and later exposed when the water level falls.
Landform. Any physical, recognizable form or feature on the earth's surface, having a characteristic shape and range in composition and produced by natural causes; it includes a wide range in size. Landforms provide an empirical description of similar portions of the earth's surface.
Landscape. A collection of related, natural landforms; typically, the land surface that the eye can comprehend in a single view.
Landslide. A general, encompassing term for most types of mass movement landforms and processes involving the downslope transport and outward deposition of soil and rock materials caused by gravitational forces; the movement may or may not involve saturated materials. The speed and distance of movement, as well as the amount of soil and rock material, vary greatly.
Large stones (in tables). Rock fragments 3 inches (7.6 centimeters) or more across. Large stones adversely affect the specified use of the soil.
Leaching. The removal of soluble material from soil or other material by percolating water.
Linear extensibility. Refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. Linear extensibility is used to
determine the shrink-swell potential of soils. It is an expression of the volume change between the water content of the clod at $1 / 3$ - or $1 / 10$-bar tension (33 kPa or 10 kPa tension) and oven dryness. Volume change is influenced by the amount and type of clay minerals in the soil. The volume change is the percent change for the whole soil. If it is expressed as a fraction, the resulting value is COLE, coefficient of linear extensibility.
Liquid limit. The moisture content at which the soil passes from a plastic to a liquid state.
Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt particles, and less than 52 percent sand particles.
Loess. Material transported and deposited by wind and consisting dominantly of siltsized particles.
Low strength. The soil is not strong enough to support loads.
Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes. Residue from these crops is not adequate to control erosion until the next crop in the rotation is established. These crops return little organic matter to the soil.
Marsh. Periodically wet or continually flooded areas; the surface is not deeply submerged. Covered dominantly with sedges, cattails, rushes, or other hydrophytic plants.
Mass movement. A generic term for the dislodgment and downslope transport of soil and rock material as a unit under direct gravitational stress.
Masses. See Redoximorphic features.
Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.
Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.
Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement at depth in the earth's crust. Nearly all such rocks are crystalline.
Mine spoil. An accumulation of displaced earthy material, rock, or other waste material removed during mining or excavation. Also called earthy fill.
Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.
Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.
Miscellaneous area. A kind of map unit that has little or no natural soil and supports little or no vegetation.
Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.
Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.
Moraine. In terms of glacial geology, a mound, ridge, or other topographically distinct accumulation of unsorted, unstratified drift, predominantly till, deposited primarily by the direct action of glacial ice in a variety of landforms. Also, a general term for a landform composed mainly of till (except for kame moraines, which are composed mainly of stratified outwash) that has been deposited by a glacier. Some types of moraines are disintegration, end, ground, kame, lateral, recessional, and terminal.
Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.
Mountain. A generic term for an elevated area of the land surface, rising more than 1,000 feet (300 meters) above surrounding lowlands, commonly of restricted summit area (relative to a plateau) and generally having steep sides. A mountain can occur as a single, isolated mass or in a group forming a chain or range.

Mountains are formed primarily by tectonic activity and/or volcanic action but can also be formed by differential erosion.
Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)
Mucky peat. Unconsolidated soil material consisting primarily of organic matter that is in an intermediate stage of decomposition such that a significant part of the original material can be recognized and a significant part cannot be recognized.
Munsell notation. A designation of color by degrees of three simple variables-hue, value, and chroma. For example, a notation of 10 YR $6 / 4$ is a color with hue of 10 YR , value of 6 , and chroma of 4.
Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)
Nodules. See Redoximorphic features.
Nose slope (geomorphology). A geomorphic component of hills consisting of the projecting end (laterally convex area) of a hillside. The overland waterflow is predominantly divergent. Nose slopes consist dominantly of colluvium and slopewash sediments (for example, slope alluvium).
Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.
Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

derately low .. 2.0 perce 4.0 percent

Outwash. Stratified and sorted sediments (chiefly sand and gravel) removed or "washed out" from a glacier by meltwater streams and deposited in front of or beyond the end moraine or the margin of a glacier. The coarser material is deposited nearer to the ice.
Outwash plain. An extensive lowland area of coarse textured glaciofluvial material. An outwash plain is commonly smooth; where pitted, it generally is low in relief.
Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.
Parent material. The unconsolidated organic and mineral material in which soil forms.
Peat. Unconsolidated material, largely undecomposed organic matter, that has accumulated under excess moisture. (See Fibric soil material.)
Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.
Pedon. The smallest volume that can be called "a soil." A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.
Percolation. The movement of water through the soil.
Percs slowly (in tables). The slow movement of water through the soil, adversely affecting the specified use.
Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted
as a measure of this quality. In soil physics, the rate is referred to as "saturated hydraulic conductivity," which is defined in the "Soil Survey Manual." In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as "permeability." Terms describing permeability, measured in inches per hour, are as follows:

Impermeable	
Very slow	0.0015 to 0.06 inch
Slow 0.06 to 0.2 inch
Moderately slow	.. 0.2 to 0.6 inch
Moderate	0.6 inch to 2.0 inches
Moderately rapid 2.0 to 6.0 inches
Rapid	6.0 to 20 inches
Very rapid	an 20 i

pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)
Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.
Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.
Pitted outwash. Outwash with pits or kettles, produced by the partial or complete burial of glacial ice by outwash and the subsequent thaw of the ice and collapse of the surficial materials.
Plastic limit. The moisture content at which a soil changes from semisolid to plastic.
Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.
Plowpan. A compacted layer formed in the soil directly below the plowed layer.
Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.
Poor filter (in tables). Because of rapid or very rapid permeability, the soil may not adequately filter effluent from a waste disposal system.
Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.
Pore linings. See Redoximorphic features.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.
Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.
Proglacial lake. A type of glacial lake that formed just beyond the margin of an advancing or retreating glacier; generally in direct contact with the ice.
Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.
Ravine. A small stream channel that is narrow, steep-sided, and commonly V-shaped in cross section and is larger than a gully.
Reaction, soil. A measure of acidity or alkalinity of a soil, expressed as pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is
neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

Ultra acid	less than 3.5
Extremely acid	... 3.5 to 4.4
Very strongly acid	... 4.5 to 5.0
Strongly acid	... 5.1 to 5.5
Moderately acid 5.6 to 6.0
Slightly acid	.. 6.1 to 6.5
Neutral	.. 6.6 to 7.3
Slightly alkaline 7.4 to 7.8
Moderately alkaline	... 7.9 to 8.4
Strongly alkaline. 8.5 to 9.0
Very strongly alkaline	9.1 and higher

Redoximorphic concentrations. See Redoximorphic features.
Redoximorphic depletions. See Redoximorphic features.
Redoximorphic features. Redoximorphic features are associated with wetness and result from alternating periods of reduction and oxidation of iron and manganese compounds in the soil. Reduction occurs during saturation with water, and oxidation occurs when the soil is not saturated. Characteristic color patterns are created by these processes. The reduced iron and manganese ions may be removed from a soil if vertical or lateral fluxes of water occur, in which case there is no iron or manganese precipitation in that soil. Wherever the iron and manganese are oxidized and precipitated, they form either soft masses or hard concretions or nodules. Movement of iron and manganese as a result of redoximorphic processes in a soil may result in redoximorphic features that are defined as follows:

1. Redoximorphic concentrations.-These are zones of apparent accumulation of iron-manganese oxides, including:
A. Nodules and concretions, which are cemented bodies that can be removed from the soil intact. Concretions are distinguished from nodules on the basis of internal organization. A concretion typically has concentric layers that are visible to the naked eye. Nodules do not have visible organized internal structure; and
B. Masses, which are noncemented concentrations of substances within the soil matrix; and
C. Pore linings, i.e., zones of accumulation along pores that may be either coatings on pore surfaces or impregnations from the matrix adjacent to the pores.
2. Redoximorphic depletions.-These are zones of low chroma (chromas less than those in the matrix) where either iron-manganese oxides alone or both iron-manganese oxides and clay have been stripped out, including:
A. Iron depletions, i.e., zones that contain low amounts of iron and manganese oxides but have a clay content similar to that of the adjacent matrix; and
B. Clay depletions, i.e., zones that contain low amounts of iron, manganese, and clay (often referred to as silt coatings or skeletans).
3. Reduced matrix.-This is a soil matrix that has low chroma in situ but undergoes a change in hue or chroma within 30 minutes after the soil material has been exposed to air.

Reduced matrix. See Redoximorphic features.

Regolith. All unconsolidated earth materials above the solid bedrock. It includes material weathered in place from all kinds of bedrock and alluvial, glacial, eolian, lacustrine, and pyroclastic deposits.
Relief. The relative difference in elevation between the upland summits and the lowlands or valleys of a given region.
Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as bedrock disintegrated in place.
Rill. A very small, steep-sided channel resulting from erosion and cut in unconsolidated materials by concentrated but intermittent flow of water. A rill generally is not an obstacle to wheeled vehicles and is shallow enough to be smoothed over by ordinary tillage.
Riser. The vertical or steep side slope (e.g., escarpment) of terraces, flood-plain steps, or other stepped landforms; commonly a recurring part of a series of natural, steplike landforms, such as successive stream terraces.
Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.
Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.
Root zone. The part of the soil that can be penetrated by plant roots.
Rooting depth (in tables). Shallow root zone. The soil is shallow over a layer that greatly restricts roots.
Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface runoff. Water that enters the soil before reaching surface streams is called groundwater runoff or seepage flow from ground water.
Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.
Sandstone. Sedimentary rock containing dominantly sand-sized particles.
Sapric soil material (muck). The most highly decomposed of all organic soil material. Muck has the least amount of plant fiber, the highest bulk density, and the lowest water content at saturation of all organic soil material.
Saturated hydraulic conductivity (Ksat). See Permeability.
Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.
Sedimentary rock. A consolidated deposit of clastic particles, chemical precipitates, or organic remains accumulated at or near the surface of the earth under normal low temperature and pressure conditions. Sedimentary rocks include consolidated equivalents of alluvium, colluvium, drift, and eolian, lacustrine, and marine deposits. Examples are sandstone, siltstone, mudstone, claystone, shale, conglomerate, limestone, dolomite, and coal.
Seepage (in tables). The movement of water through the soil. Seepage adversely affects the specified use.
Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)
Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.
Shale. Sedimentary rock that formed by the hardening of a deposit of clay, silty clay, or silty clay loam and that has a tendency to split into thin layers.
Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.

Shoulder. The convex, erosional surface near the top of a hillslope. A shoulder is a transition from summit to backslope.
Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.
Side slope (geomorphology). A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel. Side slopes are dominantly colluvium and slope-wash sediments.
Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.
Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.
Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75.
Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. In this survey, classes for simple slopes are as follows:
Nearly level .. 0 to 3 percent
Nearly level and gently sloping 1 to 6 percent
Nearly level to moderately sloping 1 to 12 percent
Moderately sloping and strongly
sloping 6 to 18 percent
Moderately sloping to steep 8 to 35 percent
Steep .. 18 to 35 percent
Moderately steep to very steep 15 to 70 percent

Classes for complex slopes are as follows:
Nearly level .. 0 to 3 percent
Nearly level and gently undulating 0 to 4 percent
Nearly level and undulating 0 to 6 percent
Gently undulating 1 to 6 percent
Nearly level to gently sloping 0 to 12 percent
Gently rolling and rolling 6 to 25 percent
Very hilly 18 to 45 percent
Hilly to very steep 15 to 70 percent
Very hilly 25 to 70 percent
Very steep 35 to 70 percent

Slope (in tables). Slope is great enough that special practices are required to ensure satisfactory performance of the soil for a specific use.
Slope alluvium. Sediment gradually transported down the slopes of mountains or hills primarily by nonchannel alluvial processes (i.e., slope-wash processes) and characterized by particle sorting. Lateral particle sorting is evident on long slopes. In a profile sequence, sediments may be distinguished by differences in size and/or specific gravity of rock fragments and may be separated by stone lines. Burnished peds and sorting of rounded or subrounded pebbles or cobbles distinguish these materials from unsorted colluvial deposits.
Slow intake (in tables). The slow movement of water into the soil.

Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.
Small stones (in tables). Rock fragments less than 3 inches (7.6 centimeters) in diameter. Small stones adversely affect the specified use of the soil.
Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.
Soil. A natural, three-dimensional body at the earth's surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief and by the passage of time.
Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

$\text { } 1.0 \text { to } 0.5$	
Medium sand 0.5 to 0.25	
Fine sand .. 0.25 to 0.10	
Very fine sand 0.10 to 0.05	
Silt .. 0.05 to 0.002	

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.
Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.
Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.
Stream terrace. One of a series of platforms in a stream valley, flanking and more or less parallel to the stream channel, originally formed near the level of the stream; represents the remnants of an abandoned flood plain, stream bed, or valley floor produced during a former state of fluvial erosion or deposition.
Stripcropping. Growing crops in a systematic arrangement of strips or bands that provide vegetative barriers to wind erosion and water erosion.
Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are-platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grain (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).
Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.
Substratum. The part of the soil below the solum.
Subsurface layer. Technically, the E horizon. Generally refers to a leached horizon lighter in color and lower in content of organic matter than the overlying surface layer.
Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.
Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the "plow layer," or the "Ap horizon."
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.

Talus. Rock fragments of any size or shape (commonly coarse and angular) derived from and lying at the base of a cliff or very steep rock slope. The accumulated mass of such loose broken rock formed chiefly by falling, rolling, or sliding.
Terminal moraine. An end moraine that marks the farthest advance of a glacier. It typically has the form of a massive arcuate or concentric ridge, or complex of ridges, and is underlain by till and other types of drift.
Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying "coarse," "fine," or "very fine."
Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.
Till. Dominantly unsorted and nonstratified drift, generally unconsolidated and deposited directly by a glacier without subsequent reworking by meltwater, and consisting of a heterogeneous mixture of clay, silt, sand, gravel, stones, and boulders; rock fragments of various lithologies are embedded within a finer matrix that can range from clay to sandy loam.
Till plain. An extensive area of level to gently undulating soils underlain predominantly by till and bounded at the distal end by subordinate recessional or end moraines.
Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.
Toeslope. The gently inclined surface at the base of a hillslope. Toeslopes in profile are commonly gentle and linear and are constructional surfaces forming the lower part of a hillslope continuum that grades to valley or closed-depression floors.
Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.
Trace elements. Chemical elements, for example, zinc, cobalt, manganese, copper, and iron, in soils in extremely small amounts. They are essential to plant growth.
Tread. The flat to gently sloping, topmost, laterally extensive slope of terraces, floodplain steps, or other stepped landforms; commonly a recurring part of a series of natural steplike landforms, such as successive stream terraces.
Tuff. A generic term for any consolidated or cemented deposit that is 50 percent or more volcanic ash.
Upland. An informal, general term for the higher ground of a region, in contrast with a low-lying adjacent area, such as a valley or plain, or for land at a higher elevation than the flood plain or low stream terrace; land above the footslope zone of the hillslope continuum.
Varve. A sedimentary layer or a lamina or sequence of laminae deposited in a body of still water within a year. Specifically, a thin pair of graded glaciolacustrine layers seasonally deposited, usually by meltwater streams, in a glacial lake or other body of still water in front of a glacier.
Water bars. Smooth, shallow ditches or depressional areas that are excavated at an angle across a sloping road. They are used to reduce the downward velocity of water and divert it off and away from the road surface. Water bars can easily be driven over if constructed properly.
Weathering. All physical disintegration, chemical decomposition, and biologically induced changes in rocks or other deposits at or near the earth's surface by atmospheric or biologic agents or by circulating surface waters but involving essentially no transport of the altered material.
Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily
increased in density and bearing properties by compaction. Contrasts with poorly graded soil.
Wilting point (or permanent wilting point). The moisture content of soil, on an ovendry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.
Windthrow. The uprooting and tipping over of trees by the wind.

Tables

Table 1.--Temperature and Precipitation
(Recorded in the period 1971-2000 at Van Riper State Park and Marquette, Michigan)

* A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2 , and subtracting the temperature below which growth is minimal for the principal crops in the area (40 degrees F).

Table 2.--Freeze Dates in Spring and Fall
(Recorded in the period 1971-2000 at Van Riper State Park and Marquette, Michigan)

Probability	Temperature		
	$\begin{gathered} 24 \circ_{F} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 28{ }^{\circ} \mathrm{F} \\ \text { or lower } \end{gathered}$	$\begin{gathered} 32{ }^{\circ} \mathrm{F} \\ \text { or lower } \end{gathered}$
VAN RIPER STATE PARK:			
Last freezing temperature in spring:			
1 year in 10 later than--	June 9	June 26	July 20
2 years in 10 later than--	June 4	June 19	July 12
5 years in 10 later than--	May 24	June 7	June 25
First freezing temperature in fall:			
1 year in 10 earlier than--	Sept. 14	Aug. 27	Aug. 8
2 years in 10 earlier than--	Sept. 19	Sept. 1	Aug. 15
5 years in 10 earlier than--	Oct. 1	Sept. 12	Aug. 27
MARQUETTE:			
Last freezing temperature in spring:			
1 year in 10 later than--	Apr. 28	May 13	May 25
2 years in 10 later than--	Apr. 22	May 8	May 20
5 years in 10 later than--	Apr. 12	Apr. 28	May 10
First freezing temperature in fall:			
1 year in 10 earlier than--	Oct. 27	Oct. 10	Sept. 26
2 years in 10 earlier than--	Oct. 31	Oct. 16	Oct. 2
5 years in 10 earlier than--	Nov. 8	Oct. 29	Oct. 12

Table 3.--Growing Season
(Recorded in the period 1971-2000 at Van Riper State Park and Marquette, Michigan)

| | Daily minimum temperature |
| :--- | :---: | :---: | :---: |
| during growing season | |

Table 4.--Acreage and Proportionate Extent of the Soils

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

$\begin{aligned} & \text { Map } \\ & \text { symbol } \end{aligned}$	Soil name	Acres	\| Percent	
50A	\|Sundell loam, 0 to 3 percent slopes---------------------------------------	2,465	0.2	
51	\| Nahma muck--	3,856	0.3	
52B	\|Summerville fine sandy loam, 1 to 6 percent slopes----------------------		510	*
55F	\|Michigamme-Rock outcrop complex, 25 to 70 percent slopes, very bouldery--		40,480	3.4
56D	\|Peshekee-Rock outcrop complex, 6 to 18 percent slopes, very bouldery-----		1,456	0.1
56E	\|Peshekee-Rock outcrop complex, 18 to 35 percent slopes, very bouldery----		3,136	0.3
56F	\|Peshekee-Rock outcrop complex, 35 to 70 percent slopes, very bouldery----		12,441	1.0
57	\|Carbondale and Tawas soils--		131,204	10.9
58	\|Greenwood and Dawson soils--	22,875	1.9	
59	\| Chippeny and Nahma mucks--		1,722	0.1
60	\|Histosols and Aquents, ponded--	23,413	2.0	
61	\|Pits, borrow---	3,069	0.3	
62B	\|Udorthents and Udipsamments, nearly level and gently sloping-------------		2,453	0.2
64	\|Pits and Dumps, mine--		8,901	0.7
65B	\|Udorthents-Urban land complex, nearly level and gently sloping----------		1,371	0.1
66B	\|Udipsamments-Urban land complex, nearly level and gently sloping--------		7,304	0.6
67B	\|Urban land-Rubicon complex, 0 to 6 percent slopes-----------------------	728	*	
68	\|Pits, quarries---	124	*	
69B	\|Escanaba loamy fine sand, 1 to 6 percent slopes--------------------------		2,196	0.2
69D	\|Escanaba loamy fine sand, 6 to 18 percent slopes------------------------		630	*
70B	\|Nadeau fine sandy loam, 1 to 6 percent slopes---------------------------		1,424	0.1
70D	\|Nadeau fine sandy loam, 6 to 18 percent slopes--------------------------		413	*
71B	\|Evart-Pelkie-Sturgeon complex, 0 to 4 percent slopes---------------------		12,910	1.1
72B	\|Emmet fine sandy loam, 1 to 6 percent slopes----------------------------		14,092	1.2
72D	\|Emmet fine sandy loam, 6 to 18 percent slopes----------------------------		4,179	0.3
72E	\|Emmet fine sandy loam, 18 to 35 percent slopes---------------------------		651	*
73B	\|Gogebic cobbly silt loam, 1 to 6 percent slopes, very stony--------------		2,963	0.2
73D	\|Gogebic cobbly silt loam, 6 to 18 percent slopes, very stony------------		833	*
74D	\| Schweitzer-Michigamme-Rock outcrop complex, 6 to 25 percent slopes, very	3,270	0.3	
74F	\| Schweitzer-Michigamme-Rock outcrop complex, 25 to 60 percent slopes, very	4,306	0.4	
76 C	\|Garlic-Alcona-Voelker complex, 1 to 12 percent slopes, dissected--------		6,472	0.5
76 E	\|Garlic-Alcona-Voelker complex, 8 to 35 percent slopes, dissected---------		8,944	0.7
76 F	\|Garlic-Alcona-Voelker complex, 15 to 70 percent slopes, dissected--------		12,132	1.0
77D	\|Garlic-Alcona-Voelker complex, 6 to 18 percent slopes-------------------		4,552	0.4
77E	\|Garlic-Alcona-Voelker complex, 18 to 35 percent slopes-------------------		386	*
78 C	\|Keweenaw-Kalkaska complex, 1 to 12 percent slopes, dissected-------------		3,292	0.3
78 E	\|Keweenaw-Kalkaska complex, 8 to 35 percent slopes, dissected-------------		6,471	0.5
78 F	\|Keweenaw-Kalkaska complex, 15 to 60 percent slopes, dissected------------		8,934	0.7
79B	\|Keweenaw-Munising complex, 1 to 6 percent slopes-------------------------		1,051	*
80B	\|Sayner-Rubicon complex, 1 to 6 percent slopes----------------------------		17,475	1.5
80D	\|Sayner-Rubicon complex, 6 to 18 percent slopes---------------------------		7,925	0.7
80E	\|Sayner-Rubicon complex, 18 to 35 percent slopes--------------------------		2,152	0.2
81B	\|Pelissier gravelly sandy loam, 1 to 6 percent slopes-------------------		2,881	0.2
81D	\|Pelissier gravelly sandy loam, 6 to 18 percent slopes--------------------		1,182	*
81E	\|Pelissier gravelly sandy loam, 18 to 35 percent slopes-----------------		422	*
84D	\|Rubicon-Ishpeming-Rock outcrop complex, 6 to 25 percent slopes-----------		5,201	0.4
84F	\|Rubicon-Ishpeming-Rock outcrop complex, 25 to 60 percent slopes----------		3,819	0.3
85A	\|Solona fine sandy loam, 0 to 3 percent slopes---------------------------		1,609	0.1
86B	\|Mashek fine sandy loam, 0 to 4 percent slopes----------------------------	3,386	0.3	
87B	\|Cunard fine sandy loam, 1 to 6 percent slopes---------------------------		1,221	0.1
88	\|Cathro-Ensley mucks---	21,210	1.8	
89B	\|Emmet-Solona fine sandy loams, 0 to 6 percent slopes--------------------		4,564	0.4
90B	\|Emmet-Escanaba complex, 1 to 6 percent slopes----------------------------		7,013	0.6
90 D	\|Emmet-Escanaba complex, 6 to 18 percent slopes--------------------------		2,191	0.2
91B	\|Onaway-Nadeau fine sandy loams, 1 to 6 percent slopes-------------------		428	*
92A	\|Ensley-Solona complex, 0 to 3 percent slopes-----------------------------	4,642	0.4	
93	\| Tawas-Deford mucks--		13,479	1.1
94B	\|Keweenaw-Kalkaska complex, 1 to 6 percent slopes------------------------		2,016	0.2
94D	\|Keweenaw-Kalkaska complex, 6 to 18 percent slopes-----------------------		4,661	0.4
94E	\|Keweenaw-Kalkaska complex, 18 to 35 percent slopes----------------------		691	*

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

Table 4.--Acreage and Proportionate Extent of the Soils--Continued

* Less than 0.1 percent.

Table 5.--Land Capability and Yields per Acre of Crops
(Yields are those that can be expected under a high level of management. They are for nonirrigated areas. Absence of a yield indicates that the soil is not suited to the crop or the crop generally is not grown on the soil)

Map symbol and soil name	$\begin{array}{\|c\|} \hline \text { Land } \\ \mid \text { capability } \\ \hline \end{array}$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \mid \text { Grass-legume } \\ \text { hay } \end{array}$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$
		Tons	Tons	Tons	Bu	Cwt
10B:						
Grayling-------	6 s	---	---	---	---	---
10D, 10E:						
Grayling-------	7s	---	---	---	---	---
11C, 11D:						
Deer Park--------	7s	---	---	---	---	---
12B:						
Rubicon------	6s	---	---	---	---	---
12D, 12E, 12F:						
Rubicon----	7s	---	---	---	---	---
13B:						
Kalkaska-	4 s	---	---	---	---	---
13D:						
Kalkaska--	6 s	--	---	---	---	---
13E, 13F:						
Kalkaska----	7 s	---	---	---	---	---
14B:						
Rousseau-------	3 s	---	---	---	---	---
14D:						
Rousseau-------	4 e	---	---	---	---	---
15A:						
Croswell--------	4 s	---	---	---	---	---
16A:						
Paquin----------	6 s	--	---	---	---	---
17A:						
Au Gres---------	4w	---	---	---	---	---
18:						
Kinross---------	6w	---	---	---	---	---
19:						
20B----------------- \|		2.8	10	2.3	50	---
Rousseau--------	- 3s					
Ocqueoc------------\| 3s						
	\|			1		
20D---------------- \|		2.5	8	---	35	---
Rousseau------------\| 4e				\|		
Ocqueoc------------\| 4e						
				,		
20E----------------- \|		---	---	\| ---	---	---
Rousseau-$7 e$				\|		
Ocqueoc-----------\| ${ }^{\text {\| }}$ \|e				I		

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \text { Land } \\ \mid \text { capability } \end{array}$	$\begin{gathered} \text { Alfalfa } \\ \text { hay } \end{gathered}$	Corn silage	$\begin{array}{\|c\|} \hline \text { Grass-legume } \\ \text { hay } \end{array}$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$	
		Tons	Tons	Tons	Bu	Cwt	
Alcona----------	2 e	3.5	13	--- \|	75	---	
				1			
24B:							
Munising-------	2 e	3.5	13	2.6	70	350	
				\|			
24D:							
Munising-------	4 e	3.0	---	2.3	55	---	
				\|			
25B--------------		3.0	12	2.3	65	300	
Munising-------	2 e			\|			
Yalmer-------------\| 3s							
				\mid \|			
25D-----------------\|		2.5	---	1.9	50	---	
Munising-------	4 e			1 \|			
Yalmer----------	4 e			1			
				\|			
26A:							
Skanee---------	2w	---	---	3.4	75	---	
				\|			
27:							
Gay-----------	6 s	---	---	---	---	---	
				\|			
28B:							
Keweenaw-------	3 e	3.0	10	2.3	60	250	
				\|			
28D:							
Keweenaw-------	4 e	2.4	---	---	---	---	
28E:							
Keweenaw-------	7 e	---	---	---	---	---	
29B:							
Yalmer---------	3 s	3.0	11	2.3	60	30	
				\|			
29D:							
Yalmer---------	4 e	2.5	---	1.9	45	---	
				\|			
31D:							
Trenary---------	4 e	3.8	---	2.9	60	---	
				\|			
$32 \mathrm{~A}:$							
Charlevoix------	2w	---	---	4.0	80	---	
$33:$							
Ensley---------	5w	---	---	2.6	---	---	
				1			
34B:							
Onaway--	2 e	4.0	16	3.0	80	350	
				1			
34D:							
Onaway----------	4 e	3.8	---	2.9	60	---	
				1			
34E:							
Onaway----------	6 e	3.5	---	---	---	---	
				\mid \|			
35B:							
Champion--------	5s	---	---	\| ---		---	---
				1			
35D:							
Champion--------	6 s	---	---	--- \|	---	---	

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered} \text { Land } \\ \mid \text { capability } \end{gathered}\right.$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Grass-legume } \\ \text { hay } \end{gathered}\right.$	Oats	Irish potatoes	
	\|	Tons	Tons	Tons	Bu	Cwt	
36A:							
Net--	7 s	---	---	---	---	---	
				\|			
37:							
Witbeck--------	7 s	---	---	---	---	---	
				\|			
38B:							
Pence---------	3 e	---	---	---	---	---	
				\|			
38D:							
Pence----------	6 e	---	-- -	-- -	-- -	---	
				\|			
38E:							
Pence	7 e	---	---	---	---	---	
				\|			
39B:							
Amasa----------	2 e	---	---	---	---	---	
39D:							
Amasa----------	4 e	---	---	---	---	---	
				\|			
39E:							
Amasa---------	7 e	---	---	---	---	---	
40B, 40D:							
Waiska---------	$6 s$	---	---	---	---	---	
				\|			
41A:							
Channing-------	3w	---	---	---	---	---	
				\|			
42:							
Minocqua--------	6w	---	---	---	---	---	
43B :							
Karlin---------	3 s	---	---	---	---	-- -	
				\|			
43D:							
Karlin---------	4 e	---	---	---	---	---	
	\mid \|			\|			
44B :							
Carlshend------	3 s	---	---	\| ---	---	---	
				,			
45A:							
Zeba------------	5s	---	---	---	---	---	
				\|			
46 :							
				\|			
48:							
				\|			
50A:							
				\|			
51:							
				1			
52B:							
Summerville-------- ${ }^{\text {- }}$ - ${ }^{\text {s }}$		---	---	--- \|	---	---	

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \hline \text { Land } \mid \\ \mid \text { capability } \\ \hline \end{array}$	$\begin{gathered} \text { Alfalfa } \\ \text { hay } \end{gathered}$	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \| Grass-l egume } \\ \left\lvert\, \begin{array}{c} \text { hay } \end{array}\right. \\ \hline \end{array}$	Oats	$\begin{aligned} & \text { Irish } \\ & \text { potatoes } \end{aligned}$	
		Tons	Tons	Tons	Bu	Cwt	
55F--				\|			
Michigamme---------	7s	-	-	\|		---	-
Rock outcrop-------	8			\|			
				\|			
56D, 56E, 56F--------		---	---	---	---	---	
Peshekee-----------	7s			1 \|			
Rock outcrop-------	8			1			
Rock				1 \|			
57------------------		---	---	--	---	---	
Carbondale---------	6w			$\|\quad\|$			
Tawas--------------	6w			I			
				\|			
58------------------		--	---	\| ---		-	---
Greenwood----------	7w			\mid \|			
Dawson--------------	7w			\|			
				1			
59------------------	1	---	---	---	---	---	
Chippeny-----------	7w			\mid \|			
Nahma--------------	5w			1			
				1			
		---	---	\| ---	---	---	
Histosols---------	6w			\mid \|			
Aquents-------------	6w			1			
				I			
$61 .$	\|			,			
Pits, borrow	\|			\|			
	\|			\|			
62B.	\|			,			
Udorthents and	\|			\|			
Udipsamments	\|			\|			
	\|				I		
	\|			\|			
Pits and Dumps	\|			\|			
	\|			1			
Udorthents-Urban	\|			\|			
land	-			,			
	\|				1		
66B.	\|			\|			
Udipsamments-Urban				,			
land	\|			I			
				\mid			
67B-----------------	\mid	---	---	---	---	---	
Urban land.	1			\|			
Rubicon------------	6 s			,			
				,			
68.	\|			\|			
Pits, quarries	\|			I			
				\|			
69B:				\|			
Escanaba----------	3s	3.5	12	2.6	70	300	
				,			
69D:				\|			
Escanaba----------	4 e	3.5	---	12.3	55	---	
				\|			
70B:				\|			
Nadeau-------------	3 s	3.0	10	\| ---	60	250	
				\|			
70D:	\|			\|			
Nadeau-------------	4e \|	2.6	---	12.0	45	---	
				1			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \hline \text { Land } \mid \\ \mid \text { capability } \mid \\ \hline \end{array}$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\left.\begin{array}{\|c\|} \mid \text { Grass-legume } \\ \text { hay } \end{array} \right\rvert\,$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$	
		Tons	Tons	Tons	Bu	Cwt	
71B-------------		---	---	---	---	---	
Evart----------	7w						
Pelkie---------	4s			\|			
Sturgeon-------	3w						
72B:							
Emmet-----------	2 e	3.8	13	2.9	75	350	
72D:							
Emmet--	4 e	3.3	---	2.5	60	--	
72E:							
Emmet--	$7 e$	--	---	---	---	---	
73B, 73D:				\|			
Gogebic--	6 s	-	---	-	---	---	
74D-------------		---	---	---	---	---	
Schweitzer-----	6 s						
Michigamme-	6 s			\|			
Rock outcrop----	8						
74F------------		---	---	\| ---	---	---	
Schweitzer------	7s						
Michigamme-----	6 s			\|			
Rock outcrop----	8			1			
				\|			
76C--------------		---	---	\|	---	---	
Garlic----------	6 s						
Alcona---------	3 e			\|			
Voelker---------	6 s						
76E-------------		---	---	\| ---	---	---	
Garlic--------	7 s			\|			
Alcona----------	6 e			\|			
Voelker---------	7 s						
76F--------------	\|	--	---	\| ---	---	---	
Garlic---------	7 s						
Alcona---------	7 e			\|			
Voelker--------	7 s						
				\|			
77D------------		---	---	\| ---	---	---	
Garlic---------	6 s						
Alcona----------	4 e			\|			
Voelker---------	6 s			\|			
77E--------------		---	---	\| ---	---	---	
Garlic----------	7s						
Alcona	7 e			\|			
Voelker---------	7 s			\|			
				\|			
78C--------------		2.8	9	\| ---	50	---	
Keweenaw	3 e			\|			
Kalkaska--------	6 s						
				\|			
78E--------------	1	---	---	\| ---	---	---	
Keweenaw--------	6 e			\|			
Kalkaska--------	7s						
				\|			
78F--------------		---	---	\| ---		---	---
Keweenaw--------	7 e			\|			
Kalkaska--------	7s			\|			
				\|			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	Land \mid capability$\|$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Grass-legume } \\ \text { hay } \end{array}$	Oats	Irish potatoes	
		Tons	Tons	Tons	Bu	Cwt	
				-			
79B-------------		2.8	10	2.2	60	275	
Keweenaw-------	3 e			1 \|			
Munising--------	2 e			\|			
				1 \|			
80B--------------		---	---	--- \|	---	---	
Sayner----------	4 s			\|			
Rubicon---------	6 s			1			
				1 \|			
80D, 80E----------		---	---	--- \|	---	---	
Sayner----------	7 s			\|			
Rubicon---------	7s			\|			
				1			
81B, 81D:				1			
Pelissier------	6 s	---	---	--- \|	---	---	
				1			
81E:				1			
Pelissier-------	7s	---	---	--- \|	---	---	
				\mid \|			
84D-------------		---	---	---	---	---	
Rubicon--------	7s			\|			
Ishpeming------	6 s			1			
Rock outcrop----	8			\|			
				,			
84F--------------		---	---	--- \|	---	---	
Rubicon--------	7 s			\|			
Ishpeming--	7 s			\|			
Rock outcrop----	8			1			
				I			
85A:				1			
Solona---	2w	---	---	3.5 \|	70	---	
				1			
				\|			
Mashek--	2 e	3.8	15	2.9 \|	75	---	
				2.			
87B:				\|			
Cunard	2 e	3.0	11	--- \|	70	275	
				1			
88--------------		---	---	---	---	---	
Cathro							
Ensley---------	5w			1			
89B-------------		3.8	13	2.7 \|	75	---	
Emmet	2 e						
Solona	2w			1 \|			
90в-------------		3.6	15	--- \|	75	---	
Emmet	2 e			\|			
Escanaba--------	3 s			1			
				1			
90D--------------		3.0	---	\| ---		---	---
Emmet	4 e			1			
Escanaba--------	4 e			1			
				1			
		3.5	12	\| 2.6		70	325
Onaway	2 e			1 \|			
Nadeau----------	3 s			1			
				1			
92A--------------		---	---	\| ---		---	---
Ensley----------	5w			1			
Solona----------	2w			1			
				1			
93---------------		---	---	\| ---		---	---
Tawas----------	6w			\|			
Deford----------	5w \|			\|			
				1			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \hline \text { Land } \mid \\ \mid \text { capability } \end{array}$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Grass-legume } \\ \text { hay } \end{array}$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$	
		Tons	Tons	Tons	Bu	Cwt	
94B--------------	\|	2.5	9	1.9	45	250	
Keweenaw--------	3 e						
Kalkaska--------	4 s						
94D--------------	\|	2.1	---	1.6	35	---	
Keweenaw--------	4 e						
Kalkaska--------	6 s						
94E--------------	,	---	---	--	---	---	
Keweenaw-------	7 e						
Kalkaska--------	7s						
	\|						
95B:	\|						
Liminga---------	3 s	2.5	10	1.9	40	-	
95D:	\|						
Liminga---------	3 e	2.1	---	1.6	35	---	
100E-------------	\|	---	4	---	25	---	
Sayner---------	7 s						
Rubicon---------	7s						
	\|						
100F------------	I	---	---	---	---	---	
Sayner---------	7s						
Rubicon---------	7s \|						
	,						
103D-------------	\|	---	---	-	---	---	
Rubicon--------	7s						
Ocqueoc------	7 e						
Rock outcrop----	8						
	\|						
104C:	\|						
Fence----------	3 e	4.0	15	3.0	80	350	
	\|						
105C:	\|						
Munising-------	3 e	3.5	10	2.6	65	300	
	\|						
106B-------------	\|	---	---	---	---	---	
Sagola----------	6 s						
Rubicon---------	6 s						
	\|						
106D------------	\|	---	---	---	---	---	
Sagola---------	6 s						
Rubicon---------	7s						
	\|						
107B-------------	\|	3.5	13	2.6	70	350	
Goodman---------	6s \|						
Sundog----------	6 s						
	\|						
107D-------------	,	3.2	---	2.4	55	---	
Goodman---------	6 s						
Sundog----------	7 s						
107F-------------	\|	---	---	---	---	---	
Goodman---------	7s \|						
Sundog----------	7s \|						
108B------------	\|	3.5	13	2.6	70	---	
Goodman---------	6 s						
Sundog----------	6s \|			\|			
Wabeno----------	6s			\|			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	Land \mid capability	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \end{gathered}$	\mid Grass-legume hay	Oats	Irish potatoes
		Tons	Tons	Tons	Bu	Cwt
108D------------		3.2	10	2.4	55	---
Goodman---------	6 s					
Sundog----------	7 s					
Wabeno-----------	6 s					
109B, 109D, 109F--		---	---	\| --	---	-
Rubicon---------	7 s					
Keweenaw--------	7s					
110в-------------		3.0	10	2.3	60	275
Nadeau	3 s					
Mancelona	3 s					
				\|		
110D------------		2.6	---	2.0	45	--
Nadeau	4 e			1		
Mancelona	4 e					
				\|		
Grayling--	6 s	-	---	,	---	---
112D, 112F-------		---	---	\| ---	---	--
Keewaydin------	7 s			\|		
Michigamme----	7 s			\|		
Rock outcrop---	8			\|		
				\|		
113B, 113D, 113F:				\|		
Vanriper	7 s	---	---	\| ---	---	---
				I		
				\|		
Vanriper	7 s	-	---	\| ---	---	---
				\|		
Fence	2 e	---	14	\| ---	75	---
				\|		
118A-----------		---	---	\| ---	---	---
Croswell-------	4 s			\|		
Deford--------	5w			\|		
				\|		
119в------------		---	---	\| ---	---	---
Yalmer	3 s			\|		
Kalkaska--------	4 s			\|		
				\|		
119D-----------		---	---	\| ---	---	---
Yalmer	4 e			\|		
Kalkaska------	6 s			\|		
				\|		
121B:				\|		
Onota----------	3 e	---	---	\| ---	---	---
				\|		
122:				\|		
Pleine----------	7 s	---	---	\| ---	---	---
				\|		
123A:				\|		
Tula------------	7 s	---	---	\| ---	---	---
				\|		
124B, 124D--------	\|	---	---	\| ---	---	---
Gogebic	6 s			\|		
Dishno----------	6 s			\|		
				\|		
125D, 125F-------	1	---	---	\| ---	---	---
Keweenaw--------	7 s					
Kalkaska--------	7s			,		
Rock outcrop----	8			,		

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Table 5.--Land Capability and Yields per Acre of Crops--Continued

| Map symbol and soil name | \|capability| hay | | $\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \mid \text { Grass-legume } \\ \left\lvert\, \begin{array}{c} \text { hay } \end{array}\right. \\ \hline \end{array}$ | Oats | $\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Tons | Tons | Tons | Bu | Cwt |
| | | | | | | |
| 138D, 138F------- | | --- | --- | --- | --- | --- |
| Sundog---------- | 7 s | | | \| | | |
| Rock outcrop---- | 8 | | | 1 \| | | |
| | | | | 1 | | |
| 139B, 139D: | | | | | | |
| Sundog--------- | 7s | --- | --- | --- | --- | -- |
| | | | | \mid \| | | |
| 140B---------------- \| | | --- | --- | --- | --- | --- |
| Champion------- | 5s | | | \| | | |
| Dishno---------- | \| 6s | | | 1 | | |
| | | | | | | |
| | 140D---------------- \| | --- | --- | \| --- | | --- | --- |
| Champion
 Dishno | 6s | | | \mid \| | | |
| | \| 6s | | | 1 | | |
| | | | | - | | |
| 141D---------------- \| | | --- | --- | \| --- | | --- | --- |
| Pelissier-------
 Rock outcrop----- | 7 s | | | 1 \| | | |
| | 8 | | | \| | | |
| | | | | \| | | |
| 142B, 142D: | | | | - | | |
| Pelissier- | 6 s | --- | --- | --- \| | --- | --- |
| | | | | | | |
| 144B: | | | | | | |
| Farquar---------- | | 6 s | --- | --- | --- \| | --- | --- |
| | | | | | | |
| 145C---------------- \| | | 3.0 | --- | $\mid 2.3$ \| | 65 | 300 |
| Munising
 Yalmer | - 6s | | | 1 | | |
| | \| 6s | | | 1 | | |
| | | | | | | |
| 146B---------------- \| | | --- | --- | \| 2.6 | | 70 | --- |
| Munising
 Skanee | \| 2 e | | | 1 | | |
| | \| 2w | | | \| | | |
| | | | | | | |
| 147A---------------- \| | | --- | --- | \| --- | | --- | --- |
| Skanee
 Gay | - 5s | | | 1 | | |
| | 6 s | | | \| | | |
| | | | | 1 | | |
| 148B---------------- | | --- | --- | $\mid---1$ | --- | --- |
| Shoepac
 Ensley | 3 s | | | 1 | | |
| | 5w | | | 1 | | |
| | | | | | | |
| 149--------------- \| | | --- | --- | \| --- | | --- | --- |
| Evart----------- | 7w | | | 1 | | |
| Cathro----------150: | 6w | | | , | | |
| | | | | 1 | | |
| | 150: | | | 1 | | |
| Shag--------------- | 5w | --- | --- | \| --- | | --- | --- |
| | | | | | | |
| 151: | | | | | | |
| Spear-------------- | 2w | --- | --- | \| --- | | --- | --- |
| | | | | 1 | | |
| 153D, 153F-----------\| | | --- | --- | \| --- | | --- | --- |
| Ishpeming------- | 7 s | | | 1 | | |
| Rock outcrop------- | 8 | | | 1 | | |
| | | | | 1 | | |
| 154B-------------- \| | | --- | --- | \| --- | | --- | --- |
| Rubicon--------- | 6 s | | | 1 | | |
| Sayner------------ | 4 s | | | 1 | | |
| | | | | 1 | | |
| 154D---------------- | | --- | --- | $\mid---1$ | --- | --- |
| Rubicon--------- | 7s | | | , | | |
| Sayner--------------\| 7s | | | | 1 | | |
| | | | | | | |

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \hline \text { Land } \mid \\ \mid \text { capability } \mid \\ \hline \end{array}$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { \| Grass-legume } \\ \left\lvert\, \begin{array}{c} \text { hay } \end{array}\right. \\ \hline \end{array}$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$	
		Tons	Tons	Tons	Bu	Cwt	
155A-------------		---	---	--	---	---	
Zeba----------	5s \|			\|			
Jacobsville-----	6 s			\|			
	\|			\|			
156B:							
Duel-	6 s	---	---	---	---	---	
				\|			
157B------------		---	---	---	---	---	
Reade-	3 s			\mid			
Nahma-----------	5w			1			
				1 \|			
158C------------		---	---	---	---	---	
Munising-------	3 e			\|			
Onota-----------	4 e			1			
Yalmer----------	3 e			1			
				1			
159A:				1 \|			
Jeske----------	7w	---	---	---	---	---	
				1			
160B------------		---	---	---	---	---	
Paquin---------	6 s			\|			
Finch-----------	4w			\|			
				\|			
161B:				1			
Yellowdog------	7s	---	---	--	---	---	
				1			
162B:				\|			
Buckroe----------	7s	---	---	---	---	---	
				1			
165B		---	---	---	---	---	
Chocolay-------	7 s			\|			
Waiska----------	6 s			\|			
				\|			
166:				1 \|			
Skandia---------	7w	---	---	---	---	---	
				,			
$167-$		---	---	\| ---	---	---	
Skandia---------	7w \|			\|			
Jacobsville-----	5w \|			,			
				,			
168B-------------		---	---	---	---	---	
Yellowdog------	7s \|			\|			
Burt-----------	7w \|			\|			
	,			,			
170B:				\|			
Chocolay---------	7s \|	---	---	---	---	---	
				,			
171B:				,			
Paavola---------	6 s	---	---	---	---	---	
				\|			
172D, 172F-		---	---	\| ---	---	---	
Buckroe	7s			,			
Rock outcrop----	8 \|			,			
	I			\|			
173B:				\|			
Pence-----------	6 s	---	---	\| ---	---	---	
				\|			
173D:	\|			\|			
Pence-----------	7 s	---	---	\| ---	---	---	
				\|			
174D-------------	\|	---	---	\| ---	---	---	
Yalmer----------	3 e \|			\mid \|			
Rubicon---------	6 s			1			
Urban land.				1			
				1			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\left\lvert\, \begin{gathered}\text { Land } \\ \mid \text { capability }\end{gathered}\right.$	Alfalfa hay	Corn silage	$\text { \|Grass-legume } \mid \text { hay }$	Oats	Irish potatoes	
		Tons	Tons	Tons	Bu	Cwt	
175E, 175F-------		---	---	---	---	---	
Kalkaska-------	7s \|			\|			
Waiska----------	6s \|			\|			
				\|			
176B------------	\|	-	---	---	---	---	
Greenwood-------	7w \|			\|			
Croswell--------	4s \|			\|			
				\|			
177E:				\|			
Frohling--	6e \|	---	- -	\| ---		---	-
	\|			\|			
177F:				\mid \|			
Frohling--	$7 e$	---	---	---	--	---	
				\|			
178D-----------	\|		-	--	--	--	---
Schweitzer----	7 s			\|			
Kalkaska-------	6 s \|			,			
Rock outcrop----	8			\|			
				\|			
178F-----------	\|	---	---	---	---	---	
Schweitzer-----	7 s			\|			
Kalkaska-------	7s \|			\|			
Rock outcrop----	8			\|			
				$\|\quad\|$			
179E-----------	\|	---	-- -	---	---	---	
Schweitzer-----	7s			\|			
Michigamme-----	7 s			\|			
				1			
180E-----------	\|	-	---	---	---	-- -	
Kalkaska-------	7s \|			\|			
Frohling--------	6 e			\|			
180F-----------	-	---	---	-- -	---	---	
Kalkaska-------	7s \|			\|			
Frohling--------	7 e \|			\|			
181E, 181F------	I	-	---	---	---	---	
Frohling------	7s \|			\|			
Tokiahok-------	7s \|			1			
184C-----------	\|	---	-- -	-- -	---	---	
Dishno---------	6s \|			\|			
Witbeck---------	7s \|			1			
Rock outcrop----	8 \|						
	\|			1			
185B :	\|			1			
Northland-------	3s \|	3.0	11	---	60	---	
187B:	I			1			
Reade----------	3s \|	---	---	--- \|	---	---	
	\|			1			
190B------------	\|	3.4	13	2.6 \|	70	300	
Emmet----------	2e \|			\|			
Cunard----------	23 \|			,			
	\|			1			
191B-----------	\|	---	---	\| ---		---	---
Nahma----------	5w \|			\|			
Sundell---------	3w \|			\|			
	\|			,			
193E-----------	\|	---	---	--- \|	---	---	
Frohling-------	7 e			\|			
Tokiahok-------	7e \|			1			

Table 5.--Land Capability and Yields per Acre of Crops--Continued

Map symbol and soil name	$\begin{array}{\|c\|} \text { Land } \mid \\ \mid \text { capability } \mid \end{array}$	Alfalfa hay	$\begin{gathered} \text { Corn } \\ \text { silage } \\ \hline \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Grass-legume } \\ \text { hay } \end{array}$	Oats	$\begin{gathered} \text { Irish } \\ \text { potatoes } \end{gathered}$	
		Tons	Tons	\| Tons	Bu	Cwt	
194E:							
Sporley-----------	$6 \mathrm{e} \quad \mid$	---	---	\| ---	---	---	
				\|			
196E----------------		---	---	\| ---	---	---	
Frohling-----------	7e \|			\|			
Onota--------------	7 e			\|			
Tokiahok-----------	7e \|			\|			
				\|			
197B----------------		4.0	14	\| 3.0	75	350	
Shoepac------------	3s \|			\|			
Trenary------------	2e \|			\|			
				\|			
198B----------------	\|	---	---	\| ---	---	---	
Shoepac-----------	3s \|			\|			
Reade--------------	3s \|			\|			
				\|			
199.							
Udorthents, ash							
200A---------------- \|		---	---	\| ---	---	---	
Charlevoix---------	2w \|			\|			
Ensley------------	\| 5w				\|		
				\|			
201B---------------- \|		---	---	\| ---	---	---	
Sauxhead----------	7s \|			\|			
Jacobsville--------	6s \|			\|			
				\|			
202B:							
Sauxhead------------	7s	---	---	\| ---	---	---	
				\|			
203A----------------		---	---	\| ---	---	---	
Au Gres------------	4w \|			\|			
Deford------------	5w \|			\|			
				\|			
204B---------------- \|		---	---	\| ---	---	---	
Gogebic-----------	6s \|			\|			
Tula--------------	7s \|			\|			
206B:							
Traunik-----------	6s \|	---	---	\| ---	---	---	
				\|			
207D----------------		---	---	\| ---	---	---	
Dishno--------------------	6s \|			\|			
	7s \|			\|			
Rock outcrop--------	8 \|			\|			
				\|			
208F-------------------------Keewaydin----	\|	---	---	\| ---	---	---	
	7s \|			\|			
Michigamme---------	7s \|			\|			
				\|			
209B----------------		---	---	\| ---	---	---	
Garlic-----------------------	4s \|			\|			
	2e			\|			
				\|			
M-W.				\|			
Miscellaneous water				\|			
				\|			
W.				\|			
Water	,			\|			

Table 6.--Capability Classes and Subclasses
(Miscellaneous areas are excluded. Absence of an entry indicates no acreage)

Table 7.--Prime Farmland
(Only the soils considered prime farmland are listed. Urban or built-up areas of the soils listed are not considered prime farmland. If a soil is prime farmland only under certain conditions, the conditions are specified in parentheses after the soil name)

$\begin{gathered} \text { Map } \\ \text { symbol } \end{gathered}$	Soil name
22B	Alcona loamy very fine sand, 1 to 6 percent slopes
32A	Charlevoix silt loam, 0 to 3 percent slopes (where drained)
33	Ensley muck (where drained)
34B	Onaway fine sandy loam, 1 to 6 percent slopes
39B	Amasa very fine sandy loam, 1 to 6 percent slopes
42	Minocqua muck (where drained)
72B	Emmet fine sandy loam, 1 to 6 percent slopes
85A	Solona fine sandy loam, 0 to 3 percent slopes (where drained)
86B	Mashek fine sandy loam, 0 to 4 percent slopes
89B	Emmet-Solona fine sandy loams, 0 to 6 percent slopes (where drained)
90 B	Emmet-Escanaba complex, 1 to 6 percent slopes
92A	Ensley-Solona complex, 0 to 3 percent slopes (where drained)
117B	Fence very fine sandy loam, 1 to 6 percent slopes
126B	Sundog silt loam, 1 to 6 percent slopes
130A	Chabeneau silt loam, 0 to 3 percent slopes
136A	Minocqua-Channing complex, 0 to 3 percent slopes (where drained)
151A	Spear very fine sandy loam, 0 to 3 percent slopes (where drained)
187B	Reade silt loam, 0 to 4 percent slopes (where drained)
197B	Shoepac-Trenary silt loams, 1 to 6 percent slopes
198B	Shoepac-Reade silt loams, 1 to 4 percent slopes (where drained)
200A	Charlevoix-Ensley complex, bedrock substratum, 0 to 3 percent slopes (where drained)

Table 8.--Woodland Management and Productivity
(An asterisk indicates the indicator species. See text for an explanation of terms used in this table)

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | \|Ordi|nation |symbol | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | \| Erosion | hazard | $\begin{array}{\|c} \mid \text { Equip- } \\ \text { ment } \\ \mid \text { limita- } \\ \text { tion } \end{array}$ | \|Seedling |mortality | Windthrow hazard | | Common trees | $\begin{aligned} & \mid \text { Site } \mid \\ & \mid \text { index\| } \end{aligned}$ | Volume of wood fiber | |
| 12B: | 4 S | \| Slight | \| Moderate | Moderate | Slight | \| Slight | \| Bigtooth aspen------| | 66 | cu ft/ac\| | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| Rubicon- | | | | | | | | | -- | \|Eastern white pine, |
| | | | | | | | \|Eastern white pine-- | 45 | --- | jack pine, red |
| | | | | | | | \| Jack pine---------- | 53 | --- | pine |
| | | | | | | | \| Northern red oak---- | --- | --- | |
| | | | | | | | \| Paper birch-------- | --- | --- | |
| | | | | | | | \|Quaking aspen*------ | 60 | --- | |
| | | | | | | | \| Red maple---------- | 57 | --- | |
| | | | | | | | \|Red pine----------- | 53 | - | |
| | | | | | | | | | | |
| 12D: | | | | | | \mid \| | | | | |
| Rubicon- | 4 S | \|Slight | \|Moderate | \|Moderate | | \|Slight | \|Slight | \| Bigtooth aspen------ | 66 | 72 | \|Eastern white pine, |
| | | | | | | \mid \| | \|Eastern white pine-- | 45 | 72 | jack pine, red |
| | | | | | | 1 \| | \| Jack pine----------- | 53 | 86 | pine |
| | | | | | | \mid \| | \| Northern red oak---- | --- | --- | |
| | | | | | | \mid \| | \| Paper birch-------- | --- | --- | |
| | | | | | | \mid \| | \| Quaking aspen*------ | 60 | 57 | |
| | | | | | | 1 \| | \|Red maple---------- | 57 | 29 | |
| | | | | | | \mid \| | \|Red pine----------- | 53 | 72 | |
| | | | | | | \| | | | | | |
| 12E: | | | | | | \mid \| | | | | |
| Rubicon- | 4 R | \| Moderate | \| Moderate | \|Moderate | | Slight | \| Slight | \| Bigtooth aspen------ | | | |
| | | | | | | | \|Eastern white pine-- | 45 | 72 | jack pine, red |
| | | | | | | \mid \| | \| Jack pine---------- | 53 | 86 | pine |
| | | | | | | \mid \| | \| Northern red oak---- | --- | --- | |
| | | | | | | 1 \| | \| Paper birch--------- | -- | - | |
| | | | | | | 1 \| | \|Quaking aspen*------ | 60 | 57 | |
| | | | | | | \mid \| | \|Red maple---------- | 57 | 29 | |
| | | | | | | 1 \| | \|Red pine----------- | 53 | 72 | |
| | | | | | | \| | | | | | |
| 12F: | | | | | | | | | | |
| Rubicon-- | 4 R | \| Severe | \| Severe | \| Moderate | | Slight | \|slight | \| Bigtooth aspen------ | 66 | 72 | \|Eastern white pine, |
| | | | | | | | \|Eastern white pine-- | 45 | 72 | jack pine, red |
| | | | | | | 1 | \| Jack pine----------- | 53 | 72 | pine |
| | | | | | | \mid \| | \| Northern red oak---- | - | --- | |
| | | | | | | 1 \| | \| Paper birch--------- | --- | --- | |
| | \| | | | | | 1 \| | \| Quaking aspen*------ | 60 | 57 | |
| | | | | | | 1 \| | \| Red maple---------- | 57 | 29 | |
| | \| | | | | | \| | | \|Red pine----------- | 53 | 86 | |
| | | | | | | \| | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	\|Ordi nation symbol	Management concerns					Potential productivity			Trees to manage		
			Equip- ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \end{array}$	Windthrow hazard	$\begin{array}{\|l} \text { Plant } \\ \text { \|competi- } \\ \mid \text { tion } \\ \hline \end{array}$	Common trees	\|Site index	volume of wood fiber			
13B:	3 S	\|Slight	Moderate	Moderate	Slight	Slight	\| Bigtooth aspen------	80	cu ft/ac\|			
Kalkaska									100	\|Eastern white pine,		
							\|Eastern white pine--	\| ---	--- \|	red pine		
							\| Northern red oak----	\| ---	--- \|			
							\| Paper birch--------	-	\| ---			
							\|Quaking aspen-------	---	---			
							\| Red maple----------	63	43			
							\|Red pine-----------	---	---			
							\| Sugar maple*--------	64	43			
13D:						\mid \|						
Kalkaska-	3 S	\| Slight	\| Moderate		\| Moderate		Slight	\| Slight	\| Bigtooth aspen------	80	100	\|Eastern white pine,
							\| Eastern white pine--	---	--	red pine		
							\| Northern red oak----	---	---			
						$\|\quad\|$	\| Paper birch--------	---	---			
						1 \|	\|Quaking aspen-------	---	---			
						\mid \|	\| Red maple----------	63	43			
						\mid \|	\| Red pine-----------	---	---			
						\mid \|	\| Sugar maple*--------	64	43			
						1						
13E:						\mid \|						
Kalkaska-	3 R	\| Moderate	\| Moderate		\| Moderate		Slight	\| Slight		80	100	
							\|Eastern white pine--	---	--	red pine		
						\mid \|	\| Northern red oak----	---	\| ---			
						1 \|	\| Paper birch--------	---	\| ---			
						1 \|	\| Quaking aspen-------	---	---			
						\mid \|	\| Red maple----------	63	43			
						\mid \|	\|Red pine-----------	---	---			
						\mid \|	\|Sugar maple*--------	64	43			
						\|						
13F:	\|						1 \|					
Kalkaska--	3R	\| Severe	\| Severe	\| Moderate		\|slight	\|Slight	\| Bigtooth aspen------	80	100	\|Eastern white pine,	
							\|Eastern white pine--	\| ---		---	red pine	
						\|		\| Northern red oak----	---	--		
						\mid \|	\| Paper birch---------	\| ---		\| ---		
						1 \|	\| Quaking aspen-------	---	---			
						\mid \|	\| Red maple----------	63	43			
	\|					1 \|	\| Red pine-----------	---	---			
	1 \|	,	1			1 \|	\| Sugar maple*--------	64	43			
						\|						

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage	
		\|Erosion \| hazard	\mid Equip- \mid ment \mid limita- \mid tion$\|$	$\begin{array}{\|l\|} \mid \text { Seedling } \\ \mid \text { mortal- } \\ \mid \text { ity } \end{array}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \mid \text { competi- } \\ \text { \| tion } \\ \hline \end{array}$	Common trees	$\begin{aligned} & \text { \|Site } \\ & \text { \|index } \end{aligned}$	\| Volume of wood fiber		
	5 s	Slight	\|	Moderate	Slight	\| Slight	\|	$\begin{array}{r\|r} -\mid & -- \\ -\mid & 66 \end{array}$	\|cu ft/ac		
							\|				
Rousseau-							\|Balsam fir------- Bigtooth aspen---		72	\|Eastern white pine, red pine	
							\|Eastern hemlock--	\| ---	---		
							\|Jack pine--------	62	86		
							\| Northern red oak-	---	---		
							\| Paper birch-----	65	72		
							\|Quaking aspen*---	65	72		
							\|Red maple------	60	43		
							\|Red pine---------	---	---		
							\| Yellow birch----	---	---		
14D:		\|									
Rousseau-	5S \|	\|slight	\| Moderate	\| Moderate		Slight	\|slight	\|Balsam fir----	--	---	\|Eastern white pine,
		\|					\|Bigtooth aspen--	66	72	\| red pine	
		,					\|Eastern hemlock-	---	---		
		\|	1 \|				\| Jack pine-------	62	86		
		\|	1 \|				\| Northern red oak-	---	---		
		\|	1 \|				\| Paper birch----	\| 65	72		
		\|	\|					\|Quaking aspen*---	65	72	
		\|					\|Red maple-------	\| 60	43		
		\|	\|					\|Red pine---------	---	---	
		\|					\|Yellow birch-----	\| ---	---		
			\|								
15A:											
Croswell	5s \|	\|slight	\| Moderate	\| Moderate		Moderate	Moderate		69	86	
							\|Black cherry-----	-	---	red pine, white	
							\mid Eastern white pin	---	---	\| spruce	
		\|					\|Jack pine--------	\| 53	72		
		\|					\| Northern red oak-	---	---		
		,	1 \|				\| Paper birch----	54	57		
		\|	1 \|				\|Quaking aspen*--	68	72		
		,	1				\|Red maple-------	---	--		
		\|	\|					\|Red pine---------	\| 55	86	
16A:											
Paquin-	3 S	\|Slight	\| Moderate	\| Moderate		Slight	\| Slight	\| Black cherry----	---	---	\|Eastern white pine,
							\|Eastern hemlock-	---	--	white spruce	
		\|					\|Eastern white pin	---	---		
		,	1 \|				\| Quaking aspen----		---		
		\|	1 \|				\|Red maple-	64	43		
		\|					\|Red pine--------	\| 67	114		
		\|	,				\| Sugar maple*-----	\| 58	43		
						I	\|Yellow birch-----	---	---		

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage		
		\| Erosion	$\begin{aligned} & \mid \text { Equip- } \\ & \mid \text { ment } \\ & \mid \text { limita- } \\ & \mid \text { tion } \end{aligned}$	$\begin{aligned} & \text { \| Seedling } \\ & \mid \text { mortal- } \\ & \mid \quad \text { ity } \\ & \hline \end{aligned}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \text { \| competi- } \\ \text { \| tion } \\ \hline \end{array}$	Common trees	$\begin{aligned} & \mid \text { Site } \\ & \mid \text { index } \end{aligned}$	\| Volume of wood fiber			
20B:	3 S	\| Slight	\| Moderate	Moderate	Slight	\|Slight		\|ll\|cu ft/ac 1				
Ocqueoc-							\| Balsam fir-		\| ---	\|Eastern white pine,		
							\|Eastern hemlock-	---	---	red pine, white		
							\|Eastern white pin	---	---	spruce		
							\| Jack pine--------	---	---			
							\| Northern red oak-	---	---			
							\| Paper birch------	---	---			
							\| Quaking aspen*---	65	71			
							\|Red maple--------	---	---			
							\|Red pine---------	---	-			
20D:												
Rousseau-	5 S	\|slight	\| Moderate	\| Moderate		Slight	\|slight	\| Balsam fir-------				
							\|Bigtooth aspen-	66	72	red pine		
			1 \|			\|	\|Eastern hemlock--	---	---			
	1					\|	\|Jack pine--------	62	86			
			1 \|				\| Northern red oak-	---	---			
			1 \|				\| Paper birch------	65	72			
			1 \|				\| Quaking aspen*---	65	72			
	\|			1			\|	\|Red maple--------	60	43		
			1 \|			\|	\|Red pine---------	---	\| ---			
						\|	\| Yellow birch-----	---	---			
Ocqueoc-	3 S	\|slight	\| Moderate		\|Moderate		Slight	\| Slight	\|Balsam fir-----	---	---	\|Eastern white pine,
							\|Eastern hemlock--		---	red pine, white		
						\|	\|Eastern white pin	---	---	spruce		
	\|			1 \|			\|	\|Jack pine--------	---	\| ---		
	1					\|	\| Northern red oak-	---	\| ---			
	\|			1			\|	\| Paper birch------	\| ---	---		
	1 \|					\|	\| Quaking aspen*---	\| 65	71			
	\|			1			\|	\|Red maple--------	---	---		
	1 \|		I			\|	\|Red pine---------	\| ---	---			

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination\|	symbol		Management concerns					Potential productivity			Trees to manage	
		\|	Equip-								\|Site ${ }^{\text {\| }}$		
		Erosion	\| ment	\|Seedling		Wind-	Plant	Common trees		Volume of wood fiber			
		\| hazard	\|limita-	\|mortal-	throw	\| competi-			Site index				
			tion	ity	hazard	\| tion							
									\|cu ft/ac				
				\|			\|		\|				
20E:													
Rousseau----------	- 5R	\| Moderate	\| Moderate		\|Moderate	Slight	\| Slight	\| Balsam fir--------	---	---	\|Eastern white pine,		
							\|Bigtooth aspen-----	66	72	red pine			
							\|Eastern hemlock-----	---	---				
							\| Jack pine----------	62	86				
							\| Northern red oak----	---	---				
							\| Paper birch--------	65	72				
							\| Quaking aspen*------	65	72				
							\| Red maple----------	60	43				
							\|Red pine-----------	---	---				
							\|Yellow birch--------	---	---				
Ocqueoc------------	3R	\| Moderate	\| Moderate		\|Moderate	Slight	\|Slight	\| Balsam fir---------	--	---			
							Eastern hemlock	--	---	red pine, white			
							\|Eastern white pine--	--- \|	\| ---	spruce			
							\| Jack pine----------	---	-				
							\| Northern red oak----	--- \|	---				
							\| Paper birch--------	---	---				
							\|Quaking aspen*------	65	5				
							\|Red maple----------	---	---				
							\|Red pine-----------	---	---				
22B:													
Alcona------------	\| 3	\| Slight	\|Moderate		Slight	Slight	\| Moderate		-	---			
							\|Eastern white pine-	---	---	red pine, white			
							\| Northern red oak----	--- \|	\| ---	spruce			
							\| Red maple----------	---	--				
							\|Red pine-----------	---	---				
							\|Sugar maple*--------	61	43				
	\|							\| Yellow birch--------	---	---			
24B:													
Munising----------	3W	\| Slight	\| Severe	\|slight	Moderate	\| Moderate	\|Balsam fir	---	---				
							\| Eastern hemlock----	--	---	eastern white			
							\| Paper birch--------	--- \|	\| ---	pine, red pine,			
							\| Quaking aspen-------	---	---	white spruce			
							\| Red maple----------	---	---				
							\| Sugar maple*--------	63	43				
	\| 1		1				\| White spruce--------	---	---				
							\|Yellow birch--------	---	---				

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage	
		Erosion hazard	$\begin{aligned} & \mid \text { Equip- } \\ & \mid \text { ment } \\ & \mid \text { limita- } \\ & \mid \text { tion } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \| Seedling } \\ & \text { \|mortal- } \\ & \text { \| ity } \\ & \hline \end{aligned}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \mid \text { competi- } \\ \text { tion } \\ \hline \end{array}$	Common trees	Site index	\| Volume of wood fiber		
31D:	3L	\|Slight	\| Moderate	Slight	\| Slight	\| Moderate	\|American basswood---	65	\|cu ft/ac		
									57	$\begin{aligned} & \text { \| Eastern white pine, } \\ & \mid \text { red pine, white } \\ & \text { \| spruce } \end{aligned}$	
Trenary											
							\| American beech-----	\| ---	--		
							\| Balsam fir---------	\| ---	--- \|		
							\|Eastern hemlock---	---	--- \|		
							\|Quaking aspen-----	---	---		
							\|Sugar maple*------	\| 61	43		
							\|Yellow birch-------	\| 61	43		
32A:											
Charlevoix-	3W	\| Slight	\| Severe	\|Slight	\|Moderate	\| Severe	\|Balsam fir	---	--- \|	\| Norway spruce,	
							\| Black ash----------	---	---	eastern white	
							\|Eastern hemlock----	\| ---	--- \|	\| pine, white spruce	
							\| Paper birch-------	---	--		
							\| Quaking aspen------	---	---		
							\|Red maple*---------	65	43		
							\|White spruce-------	---	---		
$33:$											
Ensley-	3w	\|slight	\| Severe	\| Severe	\| Severe	\| Severe	\|Balsam fir-	60	114	\|Eastern arborvitae,	
							\|Black ash----------	---	---	tamarack, white	
							\|Eastern arborvitae--	---	---	spruce	
							\|Red maple*-------	62	43		
							\|White ash---------	---	---		
							\|White spruce------	-	---		
							\|Yellow birch-------	---	---		
34B:											
Onaway-	3L	\| Slight	\| Moderate	\|Slight	\|slight	\| Severe	\| American basswood---	65	43	\| Norway spruce,	
							\|Balsam fir-------	---	\| ---		\| eastern white
							\|Quaking aspen----	---	\mid--- \|	pine, northern red	
							\| Sugar maple*------	65	57	oak, red pine,	
							\| White ash--------	-	\| ---		white spruce
							\|Yellow birch-------	-	---		
34D:											
Onaway---	3 L	\|slight	\|Moderate	\|Slight	\|slight	\| Severe	\| American basswood--	\| 65	57		
							\|Balsam fir--------	---		eastern white	
							\| Quaking aspen-----	---	--	\| pine, northern red	
							\|Sugar maple*------	65	43	oak, red pine,	
							\| White ash--------	---	---	white spruce	
							\|Yellow birch-------	\| ---	---		

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage		
		\|Erosion		\mid Equip- \mid ment \mid limita- \mid tion	\|Seedling	mortality	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \mid \text { competi- } \\ \text { tion } \\ \hline \end{array}$	Common trees		volume of wood fiber	
34E:Onaway	3R	\| Moderate	\|Moderate	Slight	Slight	Severe	\|American basswood---	65	\|cu ft/ac			
									43	\| Norway spruce,		
							\|Balsam fir--------	---	--	\| eastern white		
							\| Quaking aspen------	---	---	pine, northern red		
							\|Sugar maple*-------	65	57	oak, red pine,		
							\|White ash----------	---	---	white spruce		
							\|Yellow birch------	---	--			
35B:												
Champion-	3W	\|Slight	\| Severe	\| Slight	\| Moderate	\|Moderate	American basswood--	\| ---		---		
							\| Balsam fir--------	\| ---		---	white spruce	
	1 \|	1					\|Bigtooth aspen-----	---	---			
							\|Black cherry-------	---	---			
							\|Eastern hemlock----	---	---			
							\| Quaking aspen------	---	---			
	1 \|						\|Red maple--------	--	---			
	1	,					\| Sugar maple*------	60	43			
							\|White spruce-------	---	--			
	1	\|					\|Yellow birch-------	60	43			
	\|											
35D:												
Champion-	3W	\|slight	\| Severe	\|slight	\| Moderate	\| Moderate	\|American basswood--	---	---	\|Eastern white pine,		
							\| Balsam fir-------	---	---	white spruce		
	\|							\|Bigtooth aspen-----	---	---		
							\| Black cherry-------	---	\| ---			
	1 \|	1					\|Eastern hemlock----	---	\| ---			
							\|Quaking aspen-----	---	---			
	\|							\|Red maple----------	---	---		
							\| Sugar maple*-------	60	43			
							\| White spruce-------	---	---			
	\|		,					\| Yellow birch-------	60	43		
	1 \|											
36A:	$\|\quad\|$	\mid \|										
Net-	3 x	\|Slight	\| Severe	\| Moderate	Severe	\| Severe	\|Balsam fir--------	58	114			
							\| Bigtooth aspen----	---	\| ---			
							\|Eastern hemlock----	---	\| ---			
	1						\| Paper birch--------	53	57			
	$\mid 1$						\| Quaking aspen------	---	---			
							\|Red maple*---------	60	43			
	\|		\|					\| White spruce-------	49	100		
							\|Yellow birch-------	---	---			

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage	
		$\begin{aligned} & \text { Erosion } \\ & \text { hazard } \end{aligned}$	Equip- \mid ment \mid limita- \mid tion	$\begin{aligned} & \mid \text { Seedling } \\ & \mid \text { mortal- } \\ & \mid \quad \text { ity } \end{aligned}$	Wind- throw hazard	$\begin{aligned} & \text { Plant } \\ & \text { \|competi- } \\ & \text { \| tion } \end{aligned}$	Common trees	$\begin{aligned} & \mid \text { Site } \mid \\ & \mid \text { index } \mid \end{aligned}$	Volume of wood fiber		
	3A	\|Slight	\| Slight	\| Slight	Slight	\| Slight	American basswood Balsam fir-		\|cu ft/ac		
Waiska-								\| ---	---	\|Eastern white pine,	
								\| ---	---	\| red pine	
							\|Eastern hemlock-----	---	\| ---		
							\| Paper birch--------	---	---		
							\| Quaking aspen-------	71	86		
							\| Sugar maple*--------	61	43		
							\|Yellow birch-------	---	---		
41A:											
Channing-	\| 2 W	\|slight	\| Severe	\|Moderate		\| Severe	\| Severe	\| Balsam fir---	-	-	\| Eastern white pine,
							\| Black spruce------	--- \|	\| ---	white spruce	
							\| Paper birch--------	---	--		
							\| Quaking aspen-------	---	---		
	\|						\|Red maple*---------	55	29		
	\|						\| White spruce-------	---	---		
							\|Yellow birch-------	---	---		
42 :											
Minocqua-	7w	\|slight	\| Severe	\| Severe	\| Severe	\| Severe	\| Balsam fir*---------	54	100		
							\|Black ash	---	--	spruce	
							\|Eastern arborvitae--	---	---		
							\| Quaking aspen-------	---	---		
							\|Red maple----------	55	29		
							\| Tamarack-----------	55	57		
43B:	\|										
Karlin-	3A	\|slight	\|Slight	\|Slight	\|slight	\| Moderate	\|Bigtooth aspen------	--- \|	\| ---	\|Eastern white pine,	
							\|Eastern white pine--	---	---	red pine	
							\| Northern red oak----	---	---		
							\| Paper birch--------	---	---		
	\|						\|Red pine*----------	65	114		
43D:	$\|\quad\|$										
Karlin-	\| 3A	\| Slight	\| Slight	\|Slight	\| Slight	\| Moderate	\|Bigtooth aspen------	--- \|	\| ---	\|Eastern white pine,	
							\|Eastern white pine--	---	---	red pine	
							\| Northern red oak----	---	---		
							\| Paper birch--------	---	---		
	\|			1 \|			\|Red pine*----------	65	114		

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | \|Ordi|nation symbol | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | \mid Erosion
 hazard | Equip- ment \mid limita- \mid tion | $\begin{array}{\|l\|} \mid \\ \mid \text { Seedling } \\ \mid \text { mortal- } \\ \text { ity } \end{array}$ | Windthrow hazard | $\begin{array}{\|c} \text { Plant } \\ \text { \|competi- } \end{array}$ tion | Common trees | Site \|index | \| Volume of wood fiber | |
| | | | | | | | | | \|cu ft/ac| | |
| | | | | | | | | | | |
| 44B: | | | | | | | | | | |
| Carlshend- | 3D | \|Slight | \| Moderate | Slight | \| Moderate | \|Moderate | \|Balsam fir-- | --- \| | \| --- | | \|Eastern white pine, |
| | | | | | | | \|Eastern hemlock- | --- | --- \| | white spruce |
| | | | | | | | \| Paper birch----- | -- | \| --- | | |
| | | | | | | | \|Quaking aspen-- | --- | - | |
| | | | | | | | \|Red maple------ | 65 | 43 | |
| | | | | | | | \| Sugar maple*----- | 62 | 43 | |
| | | | | | | | \| Yellow birch---- | --- | --- | |
| | | | | | | | | | | |
| 45A : | | | | | | | | | | |
| Zeba | 2W | \|slight | \| Severe | \| Moderate | \| Severe | \| Severe | \| Balsam fir----- | --- | --- | \|Eastern white pine, |
| | | | | | | | \mid Bigtooth aspen-- | --- | --- \| | \| white spruce |
| | | | | | | | \mid Eastern hemlock-- | --- | - | |
| | | | | | | | \| Paper birch------ | -- | -- | |
| | | | | | | | \| Quaking aspen--- | -- | \| --- | | |
| | | | | | | | \|Red maple*----- | 55 | 29 | |
| | | | | | | | \| Sugar maple---- | --- | --- | |
| | | | | | | | \| White spruce--- | - | - | |
| | | | | | | | \| Yellow birch----- | --- | --- | |
| | | | | | | | | | | |
| 46 : | | | | | | | | | | |
| Jacobsville- | 2W | \|slight | \| Severe | \| Severe | \| Severe | \| Severe | \| Balsam fir------- | --- | --- | |
| | | | | | | | \|Eastern arborvita | --- | --- \| | tamarack, white |
| | | | | | | | \|Eastern hemlock- | --- | - | spruce |
| | | | | | | | \| Quaking aspen-- | --- | --- | |
| | | | | | | | \|Red maple*----- | 55 | 29 | |
| | | | | | | | \|Yellow birch----- | --- | --- | |
| | | | | | | | | | | |
| $48:$ | | | | | | | | | | |
| Burt- | 2W | \| Slight | \| Severe | \| Severe | \| Severe | \| Severe | \|Balsam fir-- | --- \| | \| --- | | \|Eastern arborvitae, |
| | | | | | | | \| Black spruce---- | --- | --- | \| white spruce |
| | | | | | | | \|Eastern arborvita | --- | --- | |
| | | | | | | | \|Eastern hemlock-- | --- | --- | |
| | \| | | | | | | \| Quaking aspen*-- | 45 | 29 | |
| | | | | | | | \|Red maple-------- | \| --- | --- | |
| | | | | | | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordi\|nation	symbol	Management concerns					Potential productivity			Trees to manage	
		\| Erosion	\mid Equip- \mid ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling } \mid \\ \mid \text { mortal- } \mid \\ \mid \quad \text { ity } \\ \hline \end{array}$	Wind- throw hazard		Common trees	\|Site index	Volume of wood fiber			
50A:	2W	\|Slight	\| Severe	Moderate	Severe	\|	```Balsam fir--------- Balsam poplar-------```	\|cu ft/ac				
Sundell								\| ---	--- \|	\| Norway spruce,		
								\| ---	--- \|	\| white spruce		
							\|Eastern arborvitae--	-	--- \|			
							\| Paper birch--------		\| ---			
							\| Quaking aspen------	---	---			
							\|Red maple*---------	55	29			
51:												
Nahma -	4W	Slight	\|Severe	\| Severe	\| Severe	\| Severe	\|Balsam fir*--------	35	57			
							\| Balsam poplar-------	---	---	tamarack, white		
						\mid \|	\|Black ash----------	\| ---	--- \|	\| spruce		
						\|	\|Eastern arborvitae--	---	-			
						\|	\| Paper birch--------	--	--			
						1 \|	\| Quaking aspen------	\| ---		\| ---		
			1			\|	\|Red maple----------	\| ---		---		
							\|Yellow birch-------	---	---			
			1			1						
52B:						\mid \|						
Summerville-	3 D	Slight	\| Moderate	\|Moderate	Severe	\| Slight	\|Balsam fir----------	---	---			
							\|Basswood	---	---	white spruce		
							\|Eastern white pine--	48	86			
			1			\|	\| Paper birch--------	53	57			
							\|Quaking aspen------	---	---			
						1 \|	\|Sugar maple*-------	62	43			
						\|						
55F:	$\|\quad\|$		\|				\mid \|					
Michigamme-	3 R	Severe	\| Severe	\| Slight	\| Moderate	\| Moderate		\|Balsam fir---------	---	\| ---		\|Eastern white pine,
							\| Bigtooth aspen-----	---	-	white spruce		
							\|Black cherry-------	-	\| ---			
			1				\|Eastern hemlock----	--	---			
			1			1 \|	\|Eastern white pine--	---	---			
							\|Red maple----------	---	---			
			1			\mid \|	\|Sugar maple*-------	60	43			
			1				\|Yellow birch-------	\| 60	43			
Rock outcrop.	\|			1		1 \|	1					

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage		
	$\begin{aligned} & \text { \|ordi- \| } \\ & \text { \|nation\| } \\ & \text { \| symbol } \end{aligned}$	Erosion hazard	Equip- ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \\ \hline \end{array}$	Windthrow hazard	$\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \\ \mid \text { tion } \\ \hline \end{array}$	Common trees	$\begin{aligned} & \mid \text { Site } \mid \\ & \mid \text { index } \mid \end{aligned}$	\| Volume of wood fiber			
			\|		\|						\|cu ft/ac	
			I	\|								
61.			1 \|	\|			\|					
Pits, borrow			,	\|								
			\|	\|			\|					
62B.			I	\|								
Udorthents and Udipsamments			\|		\|							
			1 \|	\|								
			\|		\|							
64.			,	\|								
Pits and Dumps				\|								
			I	\|								
65B.	1 \|		\|		\|							
Udorthents-Urban land			,	\|								
			I	\|								
66B.			1 \|	1 \|								
Udipsamments-Urban land			1 \|	\|								
			1 \|	\|								
67B:			,	\|								
Urban land.			\|		\|							
Rubicon----------------	4 S	Slight	\| Moderate	\| Moderate		Slight	\| Slight	\| Bigtooth aspen------	66	72	\|Eastern white pine, red pine	
							\|Eastern white pine--	45	72			
							\|Jack pine----------	53	72			
			,	1 \|			\| Northern red oak----	---	---			
							\| Paper birch--------	---	---			
			1				Quaking aspen*------	60	57			
							\|Red maple----------	57	29			
			1 \|				\|Red pine-----------	53	86			
			\|	1								
68.			1 \|	\|								
				\|								
69B:												
Escanaba---------------	3 S	Slight	\| Moderate ${ }^{\text {\| }}$	\| Moderate		Slight	\| Moderate	\| Basswood--------------	---	---	Red pine, white spruce	
							\|Eastern white pine--	75	172			
							Quaking aspen------	---	\| ---			
			\|	,			\|Red maple----------	---	---			
						1 \|	Sugar maple*--------	60	43			

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | \|Ordi|nation| |symbol| | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | \| Erosion | \| Equip-
 \| ment
 \mid limita-
 \| tion | $\begin{array}{\|c\|} \mid \\ \mid \text { Seedling } \\ \mid \text { mortal- } \mid \\ \mid \quad \text { ity } \end{array}$ | Windthrow hazard | \qquad | Common trees | Site
 index | Volume of wood fiber | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| | | | | | | | | | cu ft/ac | |
| | | | | | | | | | | |
| 69D:Escanaba | | | | | | | | | | |
| | 3 S | \|slight | \| Moderate | \|Moderate | Slight | \| Moderate | \| Basswood- | \| --- | | \| --- | \|Red pine, white |
| | | | | | | | \|Bigtooth aspen------ | --- | --- | spruce |
| | | | | | | | \|Eastern white pine-- | 75 | 172 | |
| | | | | | | | Quaking aspen------- | --- | --- | |
| | | | | | | | \|Red maple---------- | --- | --- | |
| | | | | | | | \|Sugar maple*-------- | 60 | 43 | |
| | | | | | | | | | | |
| 70B: | | | | | | | | | | |
| Nadeau------------- | \| 3L | \|slight | \|Moderate | | Slight | Slight | \| Moderate | \|Balsam fir---------- | --- | | |
| | | | | | | | \|Bigtooth aspen------ | 63 | 72 | \| red pine |
| | | | | | | | \|Eastern white pine-- | --- | --- | |
| | | | | | | | \| Paper birch-------- | 65 | 72 | |
| | | | | | | | Quaking aspen------- | --- | --- | |
| | | | | | | | \|Sugar maple*-------- | 55 | 29 | |
| | | | | | | | | | | |
| 70D: | | | | | | | | | | |
| Nadeau------------- | 3L | \| Slight | \|Moderate | Slight | Slight | \| Moderate | Balsam fir- | --- | - | \|Eastern white pine, |
| | | | | | | | \|Bigtooth aspen----- | 63 | 72 | \| red pine |
| | | | | | | | \|Eastern white pine-- | --- | --- | |
| | | | | | | | \| Paper birch-------- | 65 | 72 | |
| | | | | | | | \|Quaking aspen------- | --- | --- | |
| | | | | | | | \|Sugar maple*-------- | 55 | 29 | |
| | | | | | | | | | | |
| 71B: | | | | | | | | | | |
| Evart------------- | 2w | \|slight | \| Severe | \| Severe | Severe | \| Severe | \| Balsam fir--------- | 40 | | |
| | | | | | | | \|Eastern arborvitae-- | 15 | 29 | spruce |
| | | | | | | | \|Eastern hemlock----- | --- | --- | |
| | | | | | | | Quaking aspen*----- | 45 | 29 | |
| | | | | | | | \|Red maple---------- | 40 | 14 | |
| | | | | | | | \| Tamarack----------- | 35 | 29 | |
| | | | | | | | | | | |
| Pelkie------------ | - 3A | \| Slight | \|Slight | \| Slight | Slight | \| Moderate | Balsam fir | --- | | |
| | | | | | | | \|Eastern hemlock----- | | --- | pine, white spruce |
| | | | | | | | \|Red maple---------- | --- | -- | |
| | | | | | | | \|Sugar maple*-------- | 65 | 43 | |
| | | | | | | | \|White spruce-------- | --- | --- | |
| | | | \| | | | | | \| Yellow birch-------- | --- | --- | |
| | | | | | | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage	
			Equip- ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling\| } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \\ \hline \end{array}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \text { \|competi- } \\ \text { \| tion } \\ \hline \end{array}$	Common trees	$\begin{aligned} & \mid \text { Site \| } \\ & \mid \text { index } \end{aligned}$	volume of wood fiber		
	3R	\| Severe	\| Severe	\| Slight	Slight	\|Moderate	American basswood--Eastern white pine--	--	\|cu ft/ac		
76F:											
Alcona-									---	\| Eastern white pine,	
										red pine, white	
							\| Northern red oak---	---	---	spruce	
							\|Red maple---------	---	\| ---		
							\|Red pine----------	---	---		
							\| Sugar maple*------	61	43		
							\|Yellow birch------	---	---		
Voelker-	\| 3R	\| Severe	\| Severe	\|Moderate	Slight	\|Moderate	\| Black cherry------	---	---	\|Eastern white pine,	
							\|Eastern hemlock---	---	---	\| red pine, white	
							\| Paper birch-------	---	---	spruce	
							\| Quaking aspen------	---	---		
							\|Red maple--------	---	---		
	\|						\| Sugar maple*------	61	43		
							\|Yellow birch------	---	---		
77D:											
Garlic	3S	\| Moderate	Moderate	\|Moderate	Slight	\|Moderate	\|Eastern hemlock----	--	---		
							\| Paper birch-----	-	---	red pine	
							\| Quaking aspen------	---	---		
							\|Red maple--------	---	---		
	\|						\| Sugar maple*------	62	43		
	\|						\|Yellow birch------	---	---		
Alcona-	\| 3L	\|Slight	\| Moderate	\|Slight	\| Slight	\| Moderate		--	\| ---		
							Eastern white pine-	-	\| ---	red pine, white	
							\| Northern red oak---	---	---	spruce	
							\|Red maple--------	---	---		
							\|Red pine---------	---	---		
	\|						\| Sugar maple*------	61	43		
	\|						\|Yellow birch------	---	---		
	\|										
Voelker	\| 3S	\| Slight	\| Moderate	\|Slight	\| Slight	\|Moderate	\|Black cherry---	---	---	\|Eastern white pine,	
	\|						\|Eastern hemlock---	---	---	red pine, white	
							\| Paper birch------	--- \|	\| ---		spruce
							\| Quaking aspen-----	---	---		
	\|						\|Red maple--	---	---		
							\| Sugar maple*------	61	43		
		1					\|Yellow birch------	---	---		
	1 \|										

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage	
	$\begin{aligned} & \mid \text { Ordi- } \\ & \mid \text { nation } \mid \\ & \mid \text { symbol } \mid \end{aligned}$	$\begin{gathered} \mid \text { Erosion } \\ \mid \text { hazard } \end{gathered}$	Equip- ment \mid limita- tion	Seedling \|mortality	Windthrow hazard	\| Plant tion	Common trees	$\begin{aligned} & \mid \text { Site \| } \\ & \text { \|index } \mid \end{aligned}$	Volume of wood fiber		
									\|cu ft/ac		
	\|						\|				
80D:											
Sayner------------	7A	\|Moderate	Slight	\| Moderate	Slight	\| Slight	\|Eastern white pine*	57	114	\|Eastern white pine, jack pine, red pine	
							\| Jack pine----------	---	---		
							\| Northern red oak-	--- \|	---		
							\| Paper birch------	---	\| ---		
							\| Quaking aspen------	---	---		
							\|Red maple----------	---	---		
							\|Red pine-----------	59	100		
Rubicon-	4 S	\| Slight	\|Moderate	Moderate	Slight	\|slight	\| Bigtooth aspen-----	66	72	```\|Eastern white pine, jack pine, red pine```	
							\|Eastern white pine--	45	72		
							\|Jack pine--------	53	72		
							\| Northern red oak---	---	---		
							\| Paper birch-------	---	---		
							\| Quaking aspen*-----	60	57		
							\|Red maple--------	57	29		
							\|Red pine----------	53	86		
80E:											
Sayner	7R	\| Moderate		Moderate	\|Moderate	Slight	\| Slight	\|Eastern white pine*	57	114	$\begin{aligned} & \text { \|Eastern white pine, } \\ & \text { \| jack pine, red } \\ & \text { \| pine } \end{aligned}$
							\|Jack pine----------	--	-		
							\| Northern red oak---	---	---		
							\| Paper birch--------	---	-		
							\| Quaking aspen------	---	---		
							\|Red maple-------	---	---		
							\|Red pine-----------	59	100		
Rubicon-----------	\|lla	\| Moderate	\|Moderate	\|Moderate	Slight	\| Slight	\| Bigtooth aspen-----	66	72	\|Eastern white pine, jack pine, red pine	
							\|Eastern white pine--	45	72		
							\|Jack pine------	53	72		
							\| Northern red oak---	---	---		
							\| Paper birch-------	---	---		
							\| Quaking aspen*-----	60	57		
							\|Red maple----------	57	29		
							\|Red pine-----------	53	86		

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage		
		$\begin{aligned} & \mid \text { Erosion } \\ & \mid \text { hazard } \end{aligned}$	$\begin{aligned} & \mid \text { Equip- } \\ & \mid \text { ment } \\ & \mid \text { limita- } \\ & \mid \text { tion } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \text { \|Seedling\| } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \end{array}$	Windthrow hazard	$\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \\ \mid \text { tion } \\ \hline \end{array}$	\| Common trees	$\begin{aligned} & \mid \text { Site } \mid \\ & \mid \text { index\| } \end{aligned}$	Volume of wood fiber			
86B:	3D	Slight	\|Moderate	Slight	Slight	\|Moderate	American basswood---	\|cu ft/ac			\|Eastern white pine, red pine, white spruce	
Mashek								\| ---	--- \|			
							\| Balsam fir---------	---	--- \|			
							\|Eastern hophornbeam-	---	--- \|			
							\|Eastern white pine--	---	--- \|			
							\| Paper birch--------	--	\| ---			
							\| Quaking aspen-------	--	--			
							\|Sugar maple*--------	63	43			
87B:												
Cunard-	3 D	\| Slight	\|Moderate		\|Slight	Moderate	\| Moderate		American basswood---		-	\|Eastern white pine,
							\| Balsam fir---------	---	--- \|	red pine, white		
							\|Bigtooth aspen------	---	--- \|	spruce		
			1				\|Eastern hophornbeam-	---	---			
			\|					\| Quaking aspen-------	---	---		
							\|Sugar maple*--------	60	43			
			1									
88:												
Cathro-	5W	\|Slight	\| Severe	\| Severe	Severe	\| Severe	\| Balsam fir*---------	40				
							\|Black spruce	15	29	tamarack, white		
							\|Eastern arborvitae--	15	29	spruce		
							\|Eastern hemlock-----	---	---			
							\| Paper birch---------	---	--			
							\|Red maple----------	40	29			
							\| Tamarack-----------	35	29			
			\|					\| White spruce--------	---	---		
							\|					
Ensley--	3W	\|Slight	\| Severe	\| Severe	Severe	\| Severe	\|Balsam fir----------	60	114			
							\|Black ash	---		tamarack, white		
							\|Eastern arborvitae--	---	\| ---		spruce	
			1				\|Eastern hemlock-----	---	---			
							\|Red maple*----------	62	43			
			1				\|White spruce--------	---	---			
							\|Yellow birch--------	---	---			

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | Ordination \|symbol| | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Erosion hazard | \mid Equip- \mid ment \mid limita- \mid tion | $\begin{aligned} & \mid \\ & \mid \text { Seedling } \\ & \mid \text { mortal- } \\ & \mid \text { ity } \end{aligned}$ | Wind-
 throw
 hazard | $\begin{aligned} & \text { Plant } \\ & \text { \|competi- } \\ & \text { \| tion } \end{aligned}$ | Common trees | $\begin{aligned} & \mid \text { Site } \mid \\ & \mid \text { index } \mid \end{aligned}$ | volume of wood fiber | |
| | | | 1 \| | | | | | | \|cu ft/ac| | |
| | | | | | | 1 | | | | |
| 108B: | | | | | | | | | | |
| Wabeno- | 3W | Slight | \| Severe | Slight | \|Moderate | \|Moderate | American basswood--- | 74 | 72 | \|Eastern white pine, |
| | | | | | | | \| Sugar maple*-------- | 67 | 43 | red pine, white |
| | | | 1 | | | | \|White ash | 78 | 72 | spruce |
| | | | | | | | \|Yellow birch------- | 72 | 43 | |
| | | | | | | | | | | |
| 108D: | | | | | | | | | | |
| Goodman- | 3 L | Slight | \| Moderate | \|Slight | \|slight | \| Severe | \|American basswood--- | 68 | 57 | |
| | | | | | | | \|Bigtooth aspen------ | --- | -- | red pine, white |
| | | | | | | | \| Paper birch--------- | \| --- | --- | spruce |
| | | | | | | 1 | \|Quaking aspen------- | --- | -- | |
| | | | | | | | \| Sugar maple*-------- | 69 | 43 | |
| | | | | | | | \| Yellow birch-------- | --- | --- | |
| | | | | | | | | | | |
| Sundog- | 3L | Slight | \| Moderate | \|Slight | \|slight | \| Moderate | \| Balsam fir--------- | \| --- | | -- | |
| | | | | | | | \|Eastern hemlock----- | \| --- | | red pine, white |
| | | | | | | | \|Eastern white pine-- | --- | --- | spruce |
| | | | | | | \mid \| | \|Quaking aspen------- | 65 | 72 | |
| | | | 1 | | | | \| Red maple----------- | 53 | 29 | |
| | | | 1 | 1 \| | | 1 \| | \|Red pine----------- | 75 | 143 | |
| | | | | | | | \| Sugar maple*-------- | 62 | 43 | |
| | | | 1 | \| | | 1 | \| White spruce-------- | 55 | 100 | |
| | | | | | | | | | | |
| Wabeno-- | 3W | Slight | \| Severe | \|Slight | \| Moderate | \|Moderate | | | 72 | |
| | | | | | | | \| Sugar maple*-------- | 67 | 43 | red pine, white |
| | | | 1 | | | | \| White ash----------- | 78 | 72 | \| spruce |
| | $\mid 1$ | | 1 | 1 | | 1 | \| Yellow birch-------- | 72 | 43 | |
| | | | 1 | | | | | | | |
| 109B: | | | 1 | 1 | | \mid \| | | | | |
| Rubicon- | 4 S | Slight | \| Moderate | \|Moderate | | Slight | \| Slight | \| Bigtooth aspen------ | 66 | 72 | \mid Eastern white pine, |
| | | | | | | | \|Eastern white pine-- | 45 | 72 | jack pine, red |
| | | | | | | | \| Jack pine---------- | 53 | 72 | pine |
| | | | | | | | \| Northern red oak---- | --- | --- | |
| | 1 | | 1 | 1 | | 1 | \| Paper birch--------- | --- | --- | |
| | | | | | | | \| Quaking aspen*------ | 60 | 57 | |
| | | | 1 | 1 | | 1 \| | \| Red maple---------- | 57 | 29 | |
| | | | | | | | \|Red pine----------- | \| 53 | 86 | |
| | | | | | | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination \|symbol	Management concerns					Potential productivity			Trees to manage		
			Equip- \mid ment \mid limita- \mid tion	$\left.\begin{array}{\|c\|} \text { \|Seedling } \mid \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \end{array} \right\rvert\,$	Windthrow hazard	$\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \mid \\ \mid \text { tion } \\ \hline \end{array}$	Common trees	Site index	\| Volume of wood fiber			
109F:	2R	\|Moderate	\|	\|Slight	Slight	\| Moderate		\|	cu ft/ac			
Keweenaw-							\| Balsam fir--------	---	---	\|Eastern white pine,		
							\|Black cherry-------	---	---	\| red pine		
							\|Eastern hemlock-----	---	---			
							\|Eastern white pine--	---	---			
							Northern red oak----	64	57			
							\| Paper birch--------	60	57			
							Quaking aspen------	---	---			
							\|Red maple*---------	50	29			
110B:												
Nadeau-	3 L	\|slight		\| Moderate	\|Slight	Slight	\| Moderate	Balsam fir--	---	---	\|Eastern white pine,	
							\|Bigtooth aspen------	63	72	\| red pine		
							\|Eastern white pine--	---	---			
		1 \|	\|					\| Paper birch--------	65	72		
							Quaking aspen-------	---	---			
							\|Sugar maple*-------	55	29			
Mancelona-	3A	\|Slight		\|Slight	\|Slight	Slight	\| Moderate	Balsam fir-	---	---	\mid Eastern white pine,	
							\|Eastern white pine--	---				
							Jack pine----------	---	---	pine		
							Quaking aspen-------	---	---			
							\|Red pine----------	---	---			
							\|Sugar maple*------	58	43			
		1 \|					\| Yellow birch--------	---	---			
110D:		\mid \|	\mid \|									
Nadeau-	3L	\|slight		\| Moderate	\|Slight	Slight	\| Moderate	Balsam fir--------				
							Bigtooth aspen	63	72	\| red pine		
							\|Eastern white pine--		---			
		1	1 \|				\| Paper birch--------	65	72			
		1					Quaking aspen-------	---	---			
							\|Sugar maple*--------	55	29			
Mancelona-	3A \|	\|slight		\| Slight	\| Slight	Slight	\| Moderate		\|Balsam fir--------	---	---	\|Eastern white pine,
							\|Eastern white pine--	---	---	\| jack pine, red		
							\|Jack pine----------			pine		
		,	\|					\|Red pine-----------	---	---		
	\|	1	1 \|	1 \|			\|Sugar maple*--------	58	43			
							\|Yellow birch------	---	---			

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage	
			Equip- ment \mid limita- tion	$\begin{aligned} & \text { \|Seedling } \\ & \text { \|mortal- } \\ & \mid \quad \text { ity } \\ & \hline \end{aligned}$	Wind- throw hazard	$\begin{array}{\|c\|} \mid \text { Plant } \mid \\ \mid \text { competi- } \mid \\ \mid \text { tion } \end{array}$	Common trees	Site index	volume of wood fiber		
111B:Grayling	4 S	Slight	\| Moderate	\|Moderate	Slight	\| Slight		\| 48	\|cu ft/ac		
							\|Jack pine*-------		57	\|Jack pine, red pine	
							\| Northern red oak-		\| ---		
							\|Red pine-------	---	---		
112D:											
Keewaydin-	\| 3x	\| Moderate	Moderate	Slight	\| Slight	\|Moderate	\|Eastern hemlock-	--- \|	\| ---	\|Eastern white pine,	
							\mid Eastern white pin	\| ---		---	white spruce
							\|Red maple------	---	\| ---		
							\| Sugar maple*-----	61	43		
							\|Yellow birch-----	---	---		
Michigamme-	\| 3x	\| Moderate	Moderate	\|slight	Moderate	\|Moderate	\|Balsam fir-	---	\| ---	\|Eastern white pine,	
							\| Bigtooth aspen--	---	\| ---	\| white spruce	
							\|Black cherry-----	---	---		
							\|Eastern hemlock--	---	---		
							\|Red maple------	---	---		
							\| Sugar maple*---	60	43		
	\|						\|White spruce----	---	---		
							\| Yellow birch-----	\| 60	43		
Rock outcrop.	\|										
	\|										
112F:	\|										
Keewaydin-	\| 3R	\| Severe	\| Severe	\|slight	\|slight	\|Moderate		---	---		
							\|Eastern white pin	---	---	white spruce	
							\| Red maple------	---	---		
	\|						\| Sugar maple*----	61	43		
							\| Yellow birch-----	\| ---	---		
Michigamme--	\| 3R	\| Severe	\| Severe	\|Slight	Moderate	\|Moderate	\|Balsam fir-----	---	\| ---	Eastern white pine,	
							\|Bigtooth aspen-	--	\| ---		white spruce
							\| Black cherry-----	---	---		
							\|Eastern hemlock--		\| ---		
	\|						\|Red maple-----	---	---		
							\|Sugar maple*---	60	43		
							\|White spruce----	---	---		
							\| Yellow birch-----	\| 60	43		
	\|										
Rock outcrop.	\|	\|	\|	\|							

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage	
		\mid Erosion hazard	$\begin{array}{\|c} \mid \text { Equip- } \\ \text { ment } \\ \mid \text { limita- } \\ \text { tion } \end{array}$	$\begin{array}{\|l\|} \text { \|Seedling\| } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \\ \hline \end{array}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \mid \text { competi- } \\ \mid \quad \text { tion } \\ \hline \end{array}$	Common trees	Site index	volume of wood fiber		
	7 7 7w	\|Slight	Severe	\|	Severe	\| Severe	\|Balsam fir*--------	\|cu ft/ac			
136A:Minocqua-											
								\| 54	100	$\begin{aligned} & \text { \|Eastern arborvitae, } \\ & \text { \| tamarack, white } \\ & \text { spruce } \end{aligned}$	
							\|Black ash------	--	\| ---		
							\|Eastern arborvita	---	--		
							\| Quaking aspen----	---	---		
							\| Red maple------	55	29		
							\| Tamarack-------	55	57		
Channing-	2W	\|Slight	\| Severe	\|Moderate	Severe	\| Severe	\|Balsam fir-----	\| ---		\| ---	\|Eastern white pine,
							\|Eastern hemlock-		\| ---	\| white spruce	
							\| Paper birch------	---	---		
							\| Quaking aspen--	---	---		
							\|Red maple*-----	55	29		
	\|						\|White spruce---	---	---		
							\|Yellow birch---	---	---		
	\|										
137D:											
Keewaydin-	\| 3L	\| Moderate	\| Moderate	\|Slight	\|Slight	\| Moderate		---	---		
							\|Eastern hemlock--	--		\| white spruce	
							\mid Eastern white pin	---	---		
							\| Red maple-------	---	---		
							\| Sugar maple*---	61	43		
	\|						\|Yellow birch----	---	---		
Sundog-	\| 3L	\|Moderate	\| Moderate	\|Slight	\|Slight	\|Moderate		---	---		
							\|Eastern hemlock--	--	---	\| red pine, white	
							\|Eastern white pin	---	---	spruce	
							\| Quaking aspen----	65	72		
							\|Red maple------	\| 53	29		
	\|						\|Red pine---	75	143		
							\| Sugar maple*-----	\| 62	43		
	\|	1 \|					\|White spruce-----	\| 55	100		
	\|										
137F:	\|										
Keewaydin-	\| 3R	\| Moderate	\| Severe	\| Slight	\|slight	\| Moderate	\|Balsam fir	\| ---		\| ---	Eastern white pine,
							\|Eastern hemlock-	---	---	white spruce	
	\|						\|Eastern white pin	---	--		
							\|Red maple--------	\| ---	---		
	\|	\|						\| Sugar maple*---	61	43	
							\|Yellow birch-----	\| ---	---		

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination\| symbol	Management concerns					Potential productivity			Trees to manage			
		\mid \| Equip-				Windthrow hazard		Common trees	\|Site \|index	Volume of wood fiber			
			$\begin{gathered} \text { ment } \\ \mid \text { limita- } \\ \mid \text { tion } \\ \hline \end{gathered}$	$\begin{aligned} & \text { \|Seedling\| } \\ & \mid \text { mortal- } \mid \\ & \mid \quad \text { ity } \end{aligned}$									
						$\|\quad\|$			\|cu ft/ac				
						1 \|							
137F: Sundog						1 \|							
	3R	\| Moderate	Severe	Slight	\| Slight	\| Moderate	Balsam fir		--- \|	\|Eastern white pine,			
							\| Balsam fir---------	---	---	red pine, white			
						1 \|	\|Eastern hemlock-----	---	--- \|	spruce			
							\| Quaking aspen-------	65	72				
						\mid \|	\|Red maple----------	53	29				
						\mid \|	\|Red pine-----------	75	143				
						\mid \|	\| Sugar maple*--------	62	43				
							\|White spruce--------	55	100				
						1							
138D:						\mid \|							
Sundog	2x	\| Moderate	Severe	Slight	\|slight	\| Moderate	\|Balsam fir---------						
							\|Eastern hemlock-----	--		red pine, white			
						\|		\|Eastern white pine--	\| ---		\| ---		spruce
						\mid \|	\| Quaking aspen-------	65	72				
						\mid \|	\|Red maple*---------	53	29				
						\mid \|	\|Red pine-----------	75	143				
						1 \|	\| Sugar maple--------	---	---				
						1	\|White spruce--------	55	100				
						1							
Rock outcrop.						\|							
						1							
138F:						\mid \|							
Sundog-	2 R	Severe	Severe	Slight	\|slight	\| Moderate		---	---				
							Eastern hemlock-----	-	--	red pine, white			
						\mid \|	\|Eastern white pine--	---	--	spruce			
						1	\| Quaking aspen-------	65	72				
							\|Red maple*----------	53	29				
						\mid \|	\|Red pine-----------	75	143				
						1 \|	\| Sugar maple---------	---	---				
						1 \|	\|White spruce--------	55	100				
						1							
Rock outcrop.						\|							
						\|							
139B:													
Sundog	2 x	\|Slight	\| Moderate	Slight	\| Slight	\| Moderate	\|Balsam fir---------	\| ---		\| ---		\mid Eastern white pine,	
							\|Eastern hemlock-----	---	---	red pine, white			
						\|		\|Eastern white pine--	75	143	spruce		
						\mid \|	\| Quaking aspen-------	65	72				
						1 \|	\|Red maple*---------	53	29				
						1 \|	\| Sugar maple---------	---	---				
						1	\|White spruce--------	55	100				

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	$\mid$$\mid$ Ordi- $\mid$$\mid$ nation\mid symbol \mid	Management concerns					Potential productivity			Trees to manage			
		Erosion hazard	Equip- ment \mid limita- tion		Wind- throw hazard	$\left\|\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \\ \mid \text { tion } \end{array}\right\|$	Common trees	Site index	Volume of wood fiber				
	\|		\|							\|cu ft/ac			
	\|		\|		\|			\|					
$\begin{aligned} & \text { 140D: } \\ & \text { Dishn } \end{aligned}$		\|											
	3W \|	\|Slight	\|Moderate	\|Slight	Moderate	\| Moderate		Balsam fir-	---	---	Eastern white pine,		
		,					\|Eastern hemlock-	---	---	white spruce			
		\|		\|				\mid Eastern white pin	---	---			
		\|					\| Quaking aspen----	---	---				
		\|					\|Red maple--------	---	---				
		\|					\| Sugar maple*-----	60	43				
		\|					\|Yellow birch----	---	---				
		\|											
141D:	-												
Pelissier---------	8F	\|Moderate		Severe	\| Moderate	Slight	\| Slight	\| Balsam fir------	-	--	Eastern white pine,		
							\mid Eastern white pin	---	---	jack pine, red			
		\|					\| Northern red oak-	-	---	pine			
		\|					\| Paper birch-----	---	---				
	\|		\|					\|Quaking aspen----	---	---			
	\|	\|					\|Red maple-------	---	---				
	\|		\|					\|Red pine*--------	66	114			
	\|		\|					\|White spruce----	\| ---	---			
	\|		\|		\|								
Rock outcrop.	\|	\|		\|					\|				
		\|											
142B:	$\|\quad\|$	\|											
Pelissier----------	\| 8 F		\| Slight	\| Slight	\|slight	Slight	\| Slight	\|Balsam fir------	---	---	Eastern white pine,		
	\mid \|	\|					\|Eastern white pin	---	---	jack pine, red			
							\| Northern red oak-	---	---	pine			
	\|		\|					\| Paper birch-----	---	---			
	1 \|	\|					\| Quaking aspen---	---	\| ---				
	\|		\|					\|Red maple-------	---	---			
	1	\|					\|Red pine*-------	66	114				
	\|		\|					\|White spruce----	\| ---	---			
	1	\|		\|									
142D:													
Pelissier---------	8F	\|slight	Slight	\|Slight	Slight	\| Slight							
							\|Eastern white pin	---	---	jack pine, red			
	1 \|	\|					\| Northern red oak-	---	---	pine			
	\|		\|					\mid Paper birch----	---	---			
	\|		\|					\| Quaking aspen---	---	---			
	\|		\|		\|				\|Red maple------	\| ---	---		
	1 \|	\|					\|Red pine*-------	\| 66	114				
	1 \|	\|		\|				\|White spruce-----	\| ---	---			
		\|											

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | \|Ordi|nation symbol | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | \|Erosion
 hazard | Equip-
 ment
 \mid limita-
 tion | \|Seedling |mortality | Windthrow hazard | $\left.\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \\ \mid \quad \text { tion } \end{array} \right\rvert\,$ | Common trees | \|Site
 \|index | \| Volume of wood fiber | |
| 146B: | 3W | \|Slight | \| Severe | \| Moderate | Severe | \| Severe | \| Balsam fir--------- | \|cu ft/ac| | | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| Skanee | | | | | | | | \| | --- | \|Eastern white pine, |
| | | | | | | | \|Eastern hemlock-- | \| --- | --- | white spruce |
| | | | | | | | \| Paper birch----- | --- | \| --- | | |
| | | | | | | | Quaking aspen---- | --- | -- | |
| | | | | | | | \|Red maple*------ | 60 | 43 | |
| | | | | | | | \|Sugar maple------- | 60 | 43 | |
| | | | | | | | \| Yellow birch---- | --- | --- | |
| | | | | | | | | | | |
| 147A: | | | | | | | | | | |
| Skanee- | 3W | \|slight | \| Severe | \| Moderate | \| Severe | \| Severe | \| Balsam fir------- | --- | --- | \|Eastern white pine, |
| | | | | | | | \|Eastern hemlock- | --- | --- \| | white spruce |
| | | | | | | | \| Paper birch------ | --- | -- | |
| | | | | | | | Quaking aspen----- | --- | --- | |
| | | | | | | | \|Red maple*-------- | 60 | 43 | |
| | | | | | | | \| Sugar maple------- | 60 | 43 | |
| | | | | | | | \| Yellow birch----- | --- | --- | |
| | | | | | | | | | | |
| Gay- | 3W | \|slight | \| Severe | \| Severe | \| Severe | \| Severe | \| Balsam fir------ | 53 | 100 | |
| | | | | | | | \|Black spruce | --- | --- | tamarack, white |
| | | | | | | | \|Eastern arborvitae | --- | -- | spruce |
| | | | | | | | \|Eastern hemlock--- | --- | - | |
| | | | | | | | \| Paper birch----- | --- | --- | |
| | | | | | | | \|Quaking aspen--- | --- | --- | |
| | | | | | | | \|Red maple*------ | 62 | 43 | |
| | | | | | | | \| White spruce------ | --- | --- | |
| | | | | | | | \| Yellow birch---- | --- | --- | |
| | | | | | | | | | | |
| 148B: | | | | | | | | | | |
| Shoepac- | 3W | \|slight | \| Moderate | \| Moderate | \| Moderate | \| Moderate | | American basswood | --- | --- | |
| | | | | | | | \|American beech--- | --- | -- | eastern white |
| | | | | | | | \| Balsam fir-------- | --- | --- | \| pine, red pine, |
| | | | | | | | Eastern hemlock- | --- \| | --- | white spruce |
| | | | | | | | Quaking aspen--- | --- | --- | |
| | | | | | | | \|Sugar maple*------ | \| 65 | 43 | |
| | | | | | | | \| Yellow birch----- | \| --- | --- | |
| | | | | | | | | | | |
| Ensley-- | 3W | \|Slight | \| Severe | \| Severe | \| Severe | \| Severe | \| Balsam fir------- | 60 | 114 | |
| | | | | | | | Black ash | --- | \| --- | | tamarack, white |
| | | | | | | | \|Eastern arborvitae | --- | -- | \| spruce |
| | | | | | | | \|Red maple*- | \| 62 | 43 | |
| | | | | | | | \| White spruce------ | --- | --- | |
| | \| | \| | | | | | \| Yellow birch------ | \| --- | --- | |
| | | | | | | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage		
	\|Ordi	nation	symbol	Erosion \| hazard	$\begin{array}{\|l} \mid \text { Equip- } \\ \mid \text { ment } \\ \mid \text { limita- } \\ \text { tion } \end{array}$	$\begin{array}{\|c\|} \mid \text { Seedling } \mid \\ \mid \text { mortal- } \\ \left\lvert\, \begin{array}{c} \text { ity } \end{array}\right. \\ \hline \end{array}$	Windthrow hazard	$\begin{aligned} & \text { Plant } \\ & \text { \|competi- } \end{aligned}$ tion	Common trees	$\begin{aligned} & \mid \text { Site \| } \\ & \text { \|index } \end{aligned}$	\| Volume of wood fiber	
		\|							\|cu ft/ac			
		\|	\|									
149:												
Evart-------------	\| 2W	\|slight	\| Severe	\| Severe	Severe	\| Severe	\|Balsam fir--------	40	72	$\begin{aligned} & \text { \|Eastern arborvitae, } \\ & \mid \text { tamarack, white } \\ & \mid \text { spruce } \end{aligned}$		
							\|Black ash----------	---	---			
							\|Eastern arborvitae*	15	29			
							\|Red maple----------	40	14			
							\| Tamarack----------	35	29			
Cathro------------	5W	\|Slight	\| Severe	\| Severe	Severe	\| Severe	\|Balsam fir*-----	40	72	\|Eastern arborvitae, tamarack, white spruce		
							\|Eastern arborvitae-	15	29			
							\mid Paper birch	---	---			
							\|Red maple----------	40	29			
							\| Tamarack-----------	35	29			
							\| White spruce-------	---	---			
150:												
	5W \|	\| Slight	\| Severe	\| Severe	Severe	\| Severe	\|Balsam fir----	---	---	\|Tamarack, white spruce		
							\|Black ash--	-	---			
							\| Black spruce-------	--	--			
							\|Eastern arborvitae--	---	---			
							\| Quaking aspen*----	61	72			
							\|Red maple----------	---	---			
							\| White spruce-------	---	---			
151A:												
Spear	3W \|	\| Slight	\| Severe	\|Slight	Moderate	\| Severe				\|Eastern white pine, white spruce		
							\|Quaking aspen	---	---			
							\|Red maple*-------	61	43			
							\| Tamarack---------	---	--			
							\| White spruce-------	-	---			
153D:												
Ishpeming-		5x	\| Slight	\| Severe	\|Moderate		\| Slight	\|Slight				\|Eastern white pine
					\|Bigtooth aspen----			68	72			
					\|Eastern hemlock-----			-	---			
					\|Eastern white pine--			---	---			
					\| Northern red oak---			---	---			
			\|		\| Paper birch--------			60	57			
					\| Quaking aspen*------			63	72			
			\|		\|Red maple----------			---	---			
			\|									
Rock outcrop.	\|			I								

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | Ordination\| symbol| | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | \mid Equip- \mid ment \mid limita- \mid tion | $\begin{array}{\|c\|} \mid \text { Seedling } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \end{array}$ | Windthrow hazard | $\begin{array}{\|c\|} \text { Plant } \\ \text { \|competi- } \\ \text { \| tion } \end{array}$ | Common trees | $\begin{aligned} & \text { \|Site \| } \\ & \text { \|index\| } \end{aligned}$ | \| Volume of wood fiber | |
| | 3D | \| Slight | \| | \|Moderate | Severe | \| Slight | \| Eastern hemlock----- | \| | \|cu ft/ac| | |
| | | | | | | | | | | |
| 162B: | | | | | | | | | | |
| Buckroe | | | | | | | | \| --- | --- | Eastern white pine, |
| | | | | | | | | - | --- | white spruce |
| | | | | | | | \| Sugar maple*------ | 61 | 43 | |
| | | | | | | | \|Yellow birch------ | -- | --- | |
| | | | | | | | | | | |
| 165B: | | | | | | | | | | |
| Chocolay- | 3 F | \|Slight | \|Moderate | \|Slight | \| Moderate | \|Moderate | \|American basswood-- | --- | --- | |
| | | | | | | | \|Balsam fir--------- | \| --- | --- | \| white spruce |
| | | | 1 \| | | | | \|Eastern hemlock---- | --- | --- | |
| | | | 1 \| | | | | \|Red maple---------- | -- | --- | |
| | | | | | | | \| Sugar maple*------- | 61 | 43 | |
| | | | | | | | \| Yellow birch------- | --- | --- | |
| | | | | | | | | | | |
| Waiska- | 3A | \| Slight | \|Slight | \|Slight | \| Slight | \|Slight | \|American basswood-- | - | --- | \|Eastern white pine, |
| | | | | | | | \|Balsam fir--------- | \| --- | --- | \| white spruce |
| | | | \| | | | | | \|Eastern hemlock---- | --- | --- | |
| | | | | | | | \| Paper birch-------- | --- | --- | |
| | 1 \| | | 1 \| | | | | \|Quaking aspen------ | 71 | 86 | |
| | | | 1 \| | | | | \| Sugar maple*------- | 61 | 43 | |
| | | | | | | | \|Yellow birch------- | --- | --- | |
| | | | | | | | | | | |
| 166: | \| | | | | | | | | | | |
| Skandia- | 3W | \|Slight | \| Severe | \| Severe | \| Severe | \| Severe | \|Balsam fir--------- | --- | | |
| | | | | | | | \|Black ash | | | \| tamarack, white |
| | | | | | | | \|Eastern arborvitae* | 30 | 43 | spruce |
| | | | | | | | \|Eastern hemlock---- | | --- | |
| | | | | | | | \| Tamarack----------- | --- | --- | |
| | | | | | | | | | | |
| $167 \text { : }$ | | | | | | | | | | |
| Skandia- | 3W | \|Slight | \| Severe | \| Severe | \| Severe | \| Severe | \|Balsam fir | --- | -- | |
| | | | | | | | \|Black ash | | - | \| tamarack, white |
| | | | | | | | \|Eastern arborvitae* | 30 | 43 | \| spruce |
| | | | | | | | \|Eastern hemlock---- | --- | --- | |
| | \| | | | 1 \| | | | | \|Eastern white pine-- | --- | - | |
| | | | | | | | \| Tamarack----------- | --- | - | |
| | | | | | | | | | | |
| Jacobsville- | 2W | \|slight | \| Severe | \| Severe | \| Severe | \| Severe | \| Balsam fir- | --- | --- | \|Eastern arborvitae, |
| | | | | | | | \|Eastern hemlock---- | - | --- | \| tamarack, white |
| | | | | | | | \|Eastern white pine-- | --- | -- | spruce |
| | | | | | | | \| Quaking aspen------ | --- | --- | |
| | \| | | | | | | | \|Red maple*--------- | 55 | 29 | |
| | | | | | | | \|Yellow birch------- | --- | --- | |
| | | | | | | | | | | |

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	ordination symbol	Management concerns					Potential productivity			Trees to manage			
		Erosion hazard	$\begin{aligned} & \mid \text { Equip- } \\ & \text { ment } \\ & \mid \text { limita- } \\ & \mid \text { tion } \end{aligned}$	$\begin{aligned} & \mid \text { Seedling } \\ & \mid \text { mortal- } \\ & \mid \quad \text { ity } \end{aligned}$	Windthrow hazard		Common trees	\|Site	index	\| Volume of wood fiber			
172F:	3R	\| Severe	Severe	\| Severe	\| Severe	\|Slight	Eastern hemlock---- Eastern white pine--	---	\|cu ft/ac				
Buckroe-									---	\|Eastern white pine,			
								---	---	\| white spruce			
							\| Quaking aspen------	--	---				
							\| Sugar maple*--------	61	43				
							\| Yellow birch-------	---	---				
Rock outcrop.				\|			\|						
				\|			\|						
173B:													
Pence	3A	Slight	\|Slight	\|Slight	\| Slight	\|Slight	\| Balsam fir--------	---	---	\|Eastern white pine,			
							\|Eastern white pine--	57	114	jack pine, red			
							\| Northern red oak----	--	---	pine			
						\mid \|	\| Paper birch--------	---	---				
							\| Quaking aspen-------	---	---				
						\mid \|	\| Red maple----------	---	---				
							\|Red pine*----------	59	100				
	\|				\|			\|					
173D:	\mid \|												
Pence-	3R	Moderate	\|Slight	\| Slight	\|slight	\|slight							
							\|Eastern white pine--	57	114	jack pine, red			
							\| Northern red oak----	---	---	pine			
						\mid \|	\| Paper birch--------	---	\| ---				
							\| Quaking aspen-------	--	\| ---				
							\| Red maple----------	---	---				
	\|							\|Red pine*----------	59	100			
	1 \|					\|		\| Yellow birch--------	---	---			
						,							
174D:													
Yalmer-	3D	Slight	\| Severe	\|Moderate		Moderate	\| Moderate						
							\|Eastern hemlock----	-	---	red pine			
							\| Paper birch--------	---	--				
							\| Quaking aspen-------	---	-				
							\| Red maple----------	61	43				
	\|			\|			1 \|	\|Sugar maple*--------	61	43			
							\| Yellow birch-------	---	---				

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name		Management concerns					Potential productivity			Trees to manage			
		\| Erosion	Equip- \mid ment \mid limita- \mid tion	\|Seedling	mortality	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \text { \|competi- } \end{array}$ tion	Common trees	\|Site index	\| Volume of wood fiber			
	\| 3D	\|Slight	\| Moderate	\| Moderate	Moderate	\|Moderate		American basswood--- \|Balsam fir--------		\|cu ft/ac			
178D:													
Schweitzer--------								\|	\| ---		\|Eastern white pine,	red pine	
								-	--- \|				
							\|Eastern hemlock----	\| ---		\| ---			
							\| Northern red oak----	---	---				
							\| Quaking aspen------	---	\| ---				
							\|Red maple----------	---	---				
							\| Sugar maple*-------	64	43				
Kalkaska--	3 S	\| Slight	\| Moderate	\| Moderate	Slight	\| Slight	\| Bigtooth aspen-----	---	--	\|Eastern white pine,			
							\|Eastern white pine--	---	--- \|	red pine			
							\| Northern red oak----	--	\| ---				
							\| Paper birch--------	--	\| ---				
							\| Quaking aspen-------	---	---				
							\|Red maple----------	63	43				
							\|Red pine-----------	---	---				
							\| Sugar maple*-------	64	43				
Rock outcrop.													
178F:													
Schweitzer-	3R	\| Severe	\| Severe	\| Moderate	Moderate	\| Moderate	\| American basswood--	--	---	\|Eastern white pine, red pine			
							\|Eastern hemlock-----	---	\| ---				
							\| Northern red oak----	--- \|	---				
							\| Quaking aspen------	--	\| ---				
							\|Red maple----------	---	---				
							\| Sugar maple*-------	64	43				
Kalkaska------	3R	\| Severe	\| Severe	\| Moderate	Slight	\|slight	\|Bigtooth aspen-----	---	--	\|Eastern white pine,			
							\|Eastern white pine--	---	\| ---		red pine		
							\| Northern red oak----	---	---				
	\|							\| Paper birch--------	\| ---		\| ---		
							\|Quaking aspen-------	\| ---		--			
							\|Red maple----------	63	43				
							\|Red pine-----------	---	---				
	\|						\| Sugar maple*-------	\| 64	43				
Rock outcrop.													

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage		
		$\begin{aligned} & \mid \text { Erosion } \\ & \mid \text { hazard } \end{aligned}$	$\begin{aligned} & \text { \| Equip- } \\ & \text { ment } \\ & \text { \| limita- } \\ & \text { tion } \end{aligned}$	$\begin{array}{\|c\|} \hline \mid \text { Seedling } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \\ \hline \end{array}$	Windthrow hazard	$\left\lvert\, \begin{gathered} \text { Plant } \\ \mid \text { competi-\| } \end{gathered}\right.$ tion	Common trees	Site index	Volume of wood fiber			
181F:	3R	\| Severe	\| Severe	\| Moderate	Moderate	\|Moderate ${ }^{\text {\| }}$	Balsam fir-------- Eastern hemlock----	\|cu ft/ac		\|Eastern white pine, red pine		
Tokiahok								-	---			
								-	--- \|			
							\| Paper birch------	---	\| ---			
							\| Quaking aspen---	--	--			
							\|Red maple*------	61	43			
							\| Sugar maple-----	61	43			
							\|Yellow birch----	---	---			
184C:												
Dishno-	3 x	\| Slight	\| Moderate	\|slight	\| Moderate	\| Moderate		\|Balsam fir-	---	--- \|	\|Eastern white pine,	
							\|Eastern hemlock--	---	--	\| white spruce		
							\mid Eastern white pin	---	---			
							\| Quaking aspen----	\| ---	---			
							\|Red maple--------	---	---			
							\| Sugar maple*-----	60	43			
							\|Yellow birch----	---	---			
Witbeck---	3x	\|Slight	\| Severe	\| Severe	\| Severe	\| Severe	\| Balsam fir-----	48	86			
							\|Black ash------	---	---	tamarack, white		
							\| Black spruce*----	48	43	spruce		
							\|Eastern arborvita	---	\| ---			
							\| Quaking aspen---	- --- \|	---			
			\|				\|Red maple------	---	---			
							\| Tamarack-------	- 40	29			
			\|				\|White spruce-----	- 41	72			
			1 \|				\| Yellow birch-----	- ---	---			
			1 \|									
Rock outcrop.			1									
185B:												
Northland-	\| 5L	\| Slight	\|Moderate		\|slight	\| Moderate	\| Moderate		Quaking aspen*	65	72	
							\| Balsam fir----	- ---	---	red pine		
							\| Paper birch----	- ---	\| ---			
	\|			1 \|				\| Sugar maple----	- ---	---		
	\|			1				\|Eastern hemlock-	- ---	---		
							\|Red maple--------	\| ---	---			
							-					

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	\|Ordination symbol	Management concerns					Potential productivity			Trees to manage	
		\|Erosion hazard	\mid Equip- ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling\| } \\ \mid \text { mortal- } \\ \mid \quad \text { ity } \\ \hline \end{array}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \text { competi- } \\ \text { tion } \end{array}$	Common trees	Site index	\| Volume of wood fiber		
	3R	\| Moderate	\| Moderate	\| Moderate		Moderate	\|Moderate		$\|\quad\|$	\|cu ft/ac	
196E:											
Tokiahok-							\|Balsam fir-	--- \|	\| ---	\|Eastern white pine,	
							\mid Eastern hemlock----	---	---	red pine	
							\| Paper birch--------	---	\| ---		
							\| Quaking aspen-------	---	---		
							\|Red maple*---------	61	43		
							\| Sugar maple--------	61	43		
							\| Yellow birch-------	---	---		
197B:											
Shoepac-	3W	\|slight	\|Moderate		\|Moderate	\| Moderate	\|Moderate	American basswood---	--- \|	\| ---	\|Eastern white pine,
							\| American beech-----	---	---	\| red pine, white	
							\|Balsam fir---------	---	---	spruce	
							\|Eastern hemlock----	--	\| ---		
							\| Quaking aspen-------	\| ---		\| ---	
							\|Sugar maple*-------	65	43		
							\| Yellow birch-------	---	---		
Trenary-	3L	\|slight	\|Moderate	\|Slight	\|slight	\| Moderate	American basswood---	65	57	\mid Eastern white pine,	
							\| American beech-----	---	---	red pine, white	
							\|Balsam fir---------	--	---	spruce	
							\|Eastern hemlock----	\| ---		\| ---	
							\| Quaking aspen-------	---	---		
							\| Sugar maple*-------	61	43		
							\| Yellow birch-------	61	43		
198B:											
Shoepac-	3W	\|Slight	\|Moderate		\|Moderate	\| Severe	\|Moderate	American basswood---	---	---	\|Eastern white pine,
							\| American beech-----	-	-	\| red pine, white	
							\| Balsam fir---------	--- \|	\| ---	spruce	
							\|Eastern hemlock----	\| ---		\| ---	
							\| Quaking aspen-------	---	---		
							\| Sugar maple*-------	65	43		
							\| Yellow birch-------	---	---		
Reade-	3D	\|slight	\|Moderate		\|Slight	\| Moderate	\| Moderate	American basswood---	---	---	
							\|Balsam fir---------	---	-	white spruce	
							\| Paper birch--------	--- \|	\| ---		
							\| Quaking aspen------	---	---		
							\|Red maple----------	-	---		
							\| Sugar maple*-------	60	43		
							\| White spruce-------	\| ---		\| ---	
							\| Yellow birch-------	---	---		

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

Map symbol and soil name	Ordination symbol	Management concerns					Potential productivity			Trees to manage		
			Equip- ment \mid limita- \mid tion	$\begin{array}{\|l\|} \text { \|Seedling\| } \\ \mid \text { mortal- } \\ \text { \| ity } \end{array}$	Windthrow hazard	$\begin{array}{\|c} \text { Plant } \\ \mid \text { competi- } \\ \text { tion } \\ \hline \end{array}$	Common trees	$\begin{aligned} & \mid \text { Site \| } \\ & \text { \|index } \end{aligned}$	Volume of wood fiber			
	3D	\|Slight	Severe	\|Moderate	Severe	\| Moderate		\|	cu ft/ac			
202B:												
Sauxhead-							\|Balsam fir--------	---	-	\|Eastern white pine,		
							\|Eastern hemlock-----	---	---	\| white spruce		
							\| Quaking aspen-------	---	\| ---			
							\|Red maple----------	---	---			
							\| Sugar maple*-------	60	43			
							\| Yellow birch-------	---	---			
203A:												
Au Gres-	\| 6w	\|Slight	\| Severe	\|Moderate	Severe	\| Severe	\|Balsam fir--------	--- \|	\| ---	\|Eastern white pine,		
							\|Bigtooth aspen------	---	---	\| white spruce		
							\|Eastern arborvitae--	---	---			
							\|Eastern hemlock-----	---	--			
	\|						\|Eastern white pine--	---	---			
							\|Jack pine----------	51	72			
	\|						\| Paper birch--------	---	---			
	\|						\| Quaking aspen*-----	70	86			
	\|						\|Red maple----------	65	43			
							\| Yellow birch-------	---	---			
	\|											
Deford-	- 4W	\|Slight	\| Severe	\| Severe	\| Severe	\| Severe	\| Balsam fir--------	--- \|	\| ---		\|Eastern white pine,	
							\|Black ash----------	--- \|	\| ---	\| tamarack, white		
	\|						\|Eastern arborvitae--	--	---	spruce		
	\|						\|Quaking aspen*-----	60	57			
	\|						\|Red maple----------	64	43			
	\|						\|White spruce-------	--	---			
	\|											
204B:	\|											
Gogebic-	\| 3w	\|slight	\| Severe	\|Moderate	Severe	\| Moderate	\|American basswood---					
							\|Balsam fir---------	61	114	white spruce		
							\|Eastern hemlock-----	---	-			
	\|						\|Eastern white pine--	---	---			
	\|						\| Sugar maple*-------	61	43			
	\|						\| Yellow birch-------	62	43			
	\|											
Tula---	\| 3W	\|Slight	\| Severe	\| Moderate	Moderate	Severe	\| Balsam fir---------					
	\|						\|Eastern hemlock-----	---	-	white spruce		
							\|Eastern white pine--	---	--			
	\|						\| Quaking aspen-------	---	---			
							\|Red maple*---------	65	43			
	\|	\|					\| Sugar maple--------	---	---			

Table 8.--Woodland Management and Productivity--Continued

Table 8.--Woodland Management and Productivity--Continued

| Map symbol and soil name | \|Ordi|nation| symbol | Management concerns | | | | | Potential productivity | | | Trees to manage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Erosion hazard | Equip-
 ment
 \mid limita-
 \mid tion | $\begin{aligned} & \text { \|Seedling\| } \\ & \mid \text { mortal- } \\ & \mid \quad \text { ity } \end{aligned}$ | Wind-
 throw
 hazard | $\begin{array}{\|c\|} \text { Plant } \\ \mid \text { competi- } \\ \mid \text { tion } \end{array}$ | \| | | | | |
| | | | | | | | Common trees | \mid Site\|index | Volume of wood fiber | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| 208F: | | | | | | | | | \|cu ft/ac| | |
| | | | | | | | | | | |
| | | | | | | | | | | |
| Michigamme--------- | 3 R | \|Moderate | \| Severe | \|Slight | \| Moderate | \|Moderate | \| Balsam fir---------- | | --- \| | Eastern white pine, |
| | | | | | | | \|Eastern hemlock----- | --- | --- \| | white spruce |
| | | | | | | | \|Eastern white pine-- | --- | --- \| | |
| | | | | | | | \| Quaking aspen------- | --- | --- \| | |
| | | | | | | | \|Red maple---------- | --- | --- | |
| | | | | | | | \|Sugar maple*-------- | 60 | 43 | |
| | | | | | | | \|White spruce-------- | --- | --- | |
| | | | | | | | \|Yellow birch------- | 60 | 43 | |
| | | | | | | | | | | |
| 209B:Garlic | | | | | | | | | | |
| | 3 S | \|slight | \| Moderate | \| Moderate | | \|slight | \|Moderate | | | \| --- | | |
| | | | | | | | \| Paper birch--------- | --- | --- | red pine |
| | | | | | | | \| Quaking aspen------- | --- | --- | |
| | | | | | | | \|Red maple---------- | --- | --- | |
| | | | | | | | \| Sugar maple*-------- | 62 | 43 | |
| | | | | | | | \|Yellow birch-------- | --- | --- | |
| | | | | | | | | | | |
| Fence-------------- | \| 3L | \|Slight | \| Severe | \|slight | \| Moderate | \|Moderate | | --- | - | |
| | | | | | | \| | | \|Balsam fir--------- | --- | --- \| | red pine, white |
| | | | | | | | \|Bigtooth aspen------ | --- \| | \| --- | | spruce |
| | | | | | | | \|Eastern hemlock----- | --- | --- | |
| | | | | | | | \| Paper birch-------- | --- \| | \| --- | | |
| | | | | | | | \| Quaking aspen------- | --- | --- | |
| | \| | | | | | | | \|Red maple---------- | --- | --- | |
| | | | | | | | \| Sugar maple*-------- | 65 | 43 | |
| | | | | | | | \| Yellow birch-------- | --- | --- | |
| | | | | | | | | | | |
| M-W. | | | | | | | | | | |
| Miscellaneous water | | | | | | | | | | |
| | | | | | | | | | | |
| W. ${ }_{\text {Water }}$ | \| | | | | 1 | | \| | | | | |
| | 1 \| | | | | | | | | | |
| | | | | | | | | | | |

(Some terms that describe restrictive soil features are defined in the Glossary. See text for definitions of other terms used in this table. Absence of an entry indicates that the soil was not evaluated)

Map symbol and soil name	Ratings for most limiting season(s)			Preferred operating season(s)	Ratings for preferred operating season(s)				
	\| Logging areas	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads		\| Logging areas	and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads	
			\|						
10b------ Grayling	\| Moderate: \| too sandy.	\|Moderate: too sandy.	\| Moderate: \| too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\| Slight	Slight	Slight.		
$\begin{gathered} \text { 10D------ } \\ \text { Grayling } \end{gathered}$	Moderate: too sandy.	Moderate: slope, too sandy.	\| Moderate: \| too sandy.	Spring, fall, winter.	\|Slight---------	Moderate:	Slight.		
						slope.			
10 E	$\begin{aligned} & \text { \| Moderate: } \\ & \text { \| slope, } \\ & \text { \| too sandy. } \end{aligned}$	\| Severe:	\| Moderate:	Spring, fall, winter.	\mid Moderate:	Severe:	Moderate:		
Grayling		\| slope.	$\begin{aligned} & \text { \| slope, } \\ & \text { too sandy. } \end{aligned}$		\| slope.	slope	slope.		
$\begin{gathered} \text { 11c------- } \\ \text { Deer Park } \end{gathered}$	\| Moderate: too sandy.	Moderate: too sandy.	\| Moderate: \| too sandy.	```Spring, fall, winter.```	\|Slight---------	Slight	Slight.		
$\begin{aligned} & \text { 11D------ } \\ & \text { Deer Park } \end{aligned}$	Moderate: too sandy.	Moderate: slope, too sandy.	\|Moderate:	too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\|Slight---------	Moderate:	\|slight.	
						slope.			
$\begin{array}{r} \text { 12B----- } \\ \text { Rubicon } \end{array}$	\| Moderate: too sandy.	Moderate: too sandy.	\|Moderate: too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\|Slight---------	Slight	Slight.		
12D-----Rubicon	Moderate: too sandy.	Moderate: slope, too sandy.	$\begin{aligned} & \text { \|Moderate: } \\ & \mid \text { too sandy. } \end{aligned}$	$\begin{aligned} & \text { \|Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight---------	Moderate: slope.	\|slight.		
$\begin{gathered} \text { 12E----- } \\ \text { Rubicon } \end{gathered}$	$\begin{aligned} & \text { \| Moderate: } \\ & \mid \text { slope, } \\ & \text { \| too sandy. } \end{aligned}$	Severe: slope.	$\begin{aligned} & \text { \|Moderate: } \\ & \mid \text { slope, } \\ & \text { \| too sandy. } \end{aligned}$	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	$\begin{aligned} & \text { \| Moderate: } \\ & \text { \| slope. } \end{aligned}$	$\begin{aligned} & \text { \|Severe: } \\ & \text { \| slope. } \end{aligned}$	Moderate: slope.		
$\begin{array}{r} \text { 12F----- } \\ \text { Rubicon } \end{array}$	\| Severe:	Severe:	\| Severe:	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\| Severe: slope.	\| Severe:	\| Severe:		
		slope.	slope.			slope.	slope.		
$\begin{array}{r} \text { 13B------ } \\ \text { Kalkaska } \end{array}$	\|Moderate: \| too sandy.	\| Moderate: too sandy.	\|Moderate:	too sandy.		$\begin{aligned} & \text { \| Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight---------	Slight-	\|slight.
$\begin{array}{r} \text { 13D------ } \\ \text { Kalkaska } \end{array}$	Moderate: too sandy.	Moderate: slope, too sandy.	\| Moderate: \| too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\|Slight--------	\| Moderate:	Slight.		

Table 9.--Equipment Limitations on Woodland--Continued

Map symbol and soil name	Ratings for most limiting season(s)				Ratings for preferred operating season(s)				
	\| Logging areas	and skid roads	Log landings	Haul roads	Preferred operating season(s)	\| Logging areas	and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads
$\begin{array}{r} \text { 13E----- } \\ \text { Kalkaska } \end{array}$	\|Moderate: slope, too sandy.	$\begin{aligned} & \text { \|Severe: } \\ & \text { \| slope. } \end{aligned}$	\| Moderate: slope, too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	$\begin{aligned} & \text { \| Moderate: } \\ & \text { \| slope. } \end{aligned}$	$\begin{aligned} & \text { \|Severe: } \\ & \text { \| slope. } \end{aligned}$	$\begin{aligned} & \text { \| Moderate: } \\ & \text { \| slope. } \end{aligned}$		
13 F	\| Severe:	\| Severe:	\| Severe:	\|Spring, fall,	\|Severe:	\| Severe:	\| Severe:		
Kalkaska	slope.	slope.	slope.	winter.	slope.	slope.	slope.		
$14 B-$	Moderate:	\| Moderate:	\| Moderate:	\|Spring, fall,	Slight-	Slight	Slight.		
Rousseau	\| too sandy.	\| too sandy.	\| too sandy.	\| winter.					
14D----- Rousseau	Moderate: too sandy.	\|Moderate: slope, too sandy.	\|Moderate: \| too sandy.	$\begin{aligned} & \text { \|Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\|Slight	\|Moderate: slope.	Slight.		
$\begin{array}{r} \text { 15A------ } \\ \text { Croswell } \end{array}$	Moderate: too sandy.	\| Moderate: too sandy.	\| Moderate: \| too sandy.	$\begin{aligned} & \text { \|Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight-	\|Slight-----	slight.		
$\begin{array}{r} \text { 16A---- } \\ \text { Paquin } \end{array}$	\|Moderate: too sandy.	\| Moderate: too sandy.	\|Moderate:	too sandy.	$\begin{aligned} & \text { \|Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	\| Slight-	Slight	Slight.	
17A-----Au Gres	\| Severe:	\| Severe:	\| Severe:	\|Summer, winter	Slight-	Slight-	Slight.		
	wetness.	\| wetness.	\| wetness.						
Kinross	\| Severe:	\| Severe:	\| Severe:	\| Winter	Moderate:	\| Severe:	\|Moderate:		
	$\begin{aligned} & \text { wetness, } \\ & \text { low strength. } \end{aligned}$	$\begin{aligned} & \text { wetness, } \\ & \text { low strength. } \end{aligned}$	$\begin{aligned} & \text { wetness, } \\ & \text { low strength. } \end{aligned}$		low strength.	low strength.	low strength.		
19-		\| Severe:	\| Severe:	\| Winter---------	\| Moderate:	\| Severe:	Moderate:		
Deford	wetness,	wetness,	wetness,		\| low strength.	low strength.	low strength.		
	\| low strength.	\| low strength.	\| low strength.						
20B:									
Rousseau	\|Moderate: too sandy.	\| Moderate: too sandy.	\| Moderate: \| too sandy.	$\begin{aligned} & \text { \| Spring, fall, } \\ & \text { \| winter. } \end{aligned}$	\|Slight--------	\|Slight--------	Slight.		
Ocqueoc	\|Moderate: too sandy.	\| Moderate: too sandy.	\| Moderate:	too sandy.	$\begin{aligned} & \mid \text { Spring, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight-------	\|Slight-------	slight.	

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Map symbol and soil name	Ratings for most limiting season(s)			Preferred operating season(s)	Ratings for preferred operating season(s)				
	Logging areas \|and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads		Logging areas \|and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads		
35D------ Champion	\|Severe: wetness.	\|Severe: wetness.	\| Severe: wetness.	\|Summer, winter	\|Moderate: \| too stony.	$\begin{aligned} & \text { \| Moderate: } \\ & \text { \| too stony, } \\ & \text { \| slope. } \end{aligned}$	\| Moderate:	too stony. \qquad	
$\begin{aligned} & \text { 36A- } \\ & \text { Net } \end{aligned}$	\| Severe: wetness, low strength.	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { wetness, } \\ & \mid \text { low strength. } \end{aligned}$	$\begin{aligned} & \mid \text { Severe: } \\ & \mid \text { wetness, } \\ & \mid \text { low strength. } \end{aligned}$	\|Summer, winter	\|Moderate: \| too stony.	\|Moderate: too stony.	\|Moderate: too stony. \square		
$37-----8$ Witbeck	\|Severe: wetness, low strength.		```\| Severe:	wetness,	low strength.```	\| Winter	\|Moderate: \| low strength, \| too bouldery.	\| Severe: low strength.	\|Moderate: \| low strength, too bouldery.
38B--- Pence	Sli	Sli	Sli	Year roun	Slight	Slight	Slight.		
38D-	\|Slight	Moderate:	\|Slight-	Year round	Slight	\| Moderate:	Slight.		
Pence		slope.				slope.			
38E-	\|Moderate:	\| Severe:	\|Moderate:	\|Year round-----	\| Moderate:	\| Severe:			
Pence	slope.	slope.	\| slope.		\| slope.	slope.	slope.		
39B-	\|Moderate:	\|Moderate:	\mid Moderate:	\|Summer, fall,	Slight-	Slight	Slight.		
Amasa	low strength.	low strength.	\| low strength.	winter.					
39D---Amasa	\|Moderate:	\mid Moderate:	\|Moderate:	\|Summer, fall,	Slight	\| Moderate:	Slight.		
	low strength.	$\begin{array}{\|l} \text { slope, } \\ \text { low strength. } \end{array}$	\| low strength.	winter.		slope.			
39E---Amasa	\| Moderate:	\| Severe:	\| Moderate:	\|Summer, fall,	Moderate:	\| Severe:	\mid Moderate:		
	low strength, slope.	slope.	\mid low strength, \| slope.	\| winter.	slope.	slope.	slope.		
$\begin{aligned} & \text { 40B---- } \\ & \text { Waiska } \end{aligned}$	\|Slight	\|Slight	\|Slight	Year round-----	Slight	Slight	Slight.		
40D-	\|Slight--------	\| Moderate:	\|Slight--------	\| Year round-----	\|Slight--------	\| Moderate:	Slight.		
Waiska		slope.				slope.			
41A	\| Severe:	\| Severe:	\| Severe:	\|Summer, winter	Slight-	Slight	Slight.		
Channing	wetness,	\| wetness,	\| wetness,						
	low strength.	\| low strength.	\| low strength.						
42	\| Severe:	\| Severe:	\| Severe:	\|Winter---------	\| Moderate:	\| Severe:	\|Moderate:		
Minocqua	wetness, low strength.	$\begin{aligned} & \mid \text { wetness, } \\ & \mid \text { low strength. } \end{aligned}$	$\begin{aligned} & \mid \text { wetness, } \\ & \mid \text { low strength. } \end{aligned}$		\| low strength.	low strength.	low strength.		

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Map symbol and soil name	Ratings for most limiting season(s)			Preferred operating season(s)	Ratings for preferred operating season(s)			
	Logging areas \|and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads		\| Logging areas	and skid roads	$\begin{aligned} & \text { Log } \\ & \text { landings } \end{aligned}$	Haul roads
61. Pits, borrow	1		\|	i				
62B. Udorthents and Udipsamments	1		\|	1				
64. Pits and Dumps	\|			1				
```65B. Udorthents-Urban land```			+	1				
66B.   UdipsammentsUrban land				1				
67B.   Urban land-   Rubicon	$1$			1				
$\begin{aligned} & 68 \text {. } \\ & \text { Pits, quarries } \end{aligned}$				\|				
$\begin{aligned} & \text { 69B------------- } \\ & \text { Escanaba } \end{aligned}$	Moderate:   low strength.	Moderate:   low strength.	\| Moderate:   low strength.	\|Summer, fall, winter.	\|slight	slight--	Slight.	
69D   Escanaba	\| Moderate:   low strength.	Moderate:   slope,   low strength.	\| Moderate:   \| low strength.	$\begin{aligned} & \text { \|Summer, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight------	\| Moderate: slope.	Slight.	
$\begin{gathered} \text { 70B----- } \\ \text { Nadeau } \end{gathered}$	\|Moderate:   low strength.	Moderate: low strength.	\| Moderate:   \| low strength.	$\begin{aligned} & \text { \|Summer, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight------	Slight---	Slight.	
$\begin{aligned} & \text { 70D------------- } \\ & \text { Nadeau } \end{aligned}$	\|Moderate:   low strength.	Moderate: slope, low strength.	\|Moderate:   \| low strength.	$\begin{aligned} & \text { \|Summer, fall, } \\ & \mid \text { winter. } \end{aligned}$	\|Slight------	Moderate:   slope.	slight.	
71B:   Evart	Severe:   wetness.	Severe: wetness.	\|Severe:   wetness.	\| Winter--	\|Slight-----	Slight---	Slight.	

Table 9.--Equipment Limitations on Woodland--Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} \& \multicolumn{3}{|l|}{Ratings for most limiting season(s)} \& \& \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline \& Logging areas
and skid roads \& Log landings \& Haul roads \& Preferred operating season(s) \& | Logging areas |and skid roads \& \[
\begin{aligned}
\& \text { Log } \\
\& \text { landings }
\end{aligned}
\] \& \begin{tabular}{l}
Haul \\
roads
\end{tabular} \\
\hline \& \& \& \& \& \& \& \\
\hline \multicolumn{8}{|l|}{71B:} \\
\hline Pelkie \& |Slight-------- \& \begin{tabular}{l}
|Moderate: \\
flooding. \\
|
\end{tabular} \& \begin{tabular}{l}
|Moderate: \\
flooding.

\end{tabular} \& |Summer, winter \& |slight- \& Slight--- \& Slight. <br>

\hline Sturgeon \& $$
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { Severe: } \\
& \mid \text { wetness, } \\
& \text { low strength. }
\end{aligned}
$$
\] \& |Summer, winter \& |slight- \& |Slight--- \& |slight. <br>

\hline 72B- \& $\mid$ Moderate: \& $\mid$ Moderate: \& |Moderate: \& | Summer, fall, \& | Slight \& Slight \& |slight. <br>
\hline Emmet \& low strength. \& low strength. \& low strength. \& | winter. \& \& \& <br>
\hline 72D \& | Moderate: \& $\mid$ Moderate: \& $\mid$ Moderate: \& | Summer, fall, \& | Slight \& Moderate: \& |slight. <br>

\hline Emmet \& low strength. \& $$
\begin{aligned}
& \text { slope, } \\
& \text { low strength. }
\end{aligned}
$$ \& | low strength. \& | winter. \& \& slope. \& <br>

\hline \& \& \& \& \& \& \& <br>
\hline 72 E \& | Moderate: \& | Severe: \& $\mid$ Moderate: \& Summer, fall, \& $\mid$ Moderate: \& | Severe: \& | Moderate: <br>

\hline Emmet \& low strength, slope. \& slope. \& $$
\begin{aligned}
& \text { | low strength, } \\
& \text { | slope. }
\end{aligned}
$$ \& | winter. \& slope. \& slope. \& slope. <br>

\hline \& \& \& \& \& \& \& <br>
\hline 73B-----

Gogebic \& \begin{tabular}{l}
| Severe: <br>
wetness.

 \& 

| Severe: <br>
| wetness.

 \& 

| Severe: <br>
| wetness.

 \& |Summer, winter \& 

| Moderate: <br>
too stony.

 \& 

|Moderate: <br>
too stony.

 \& 

| Moderate: <br>
too stony.
\end{tabular} <br>

\hline \& \& \& \& \& \& \& <br>
\hline 73D-----

Gogebic \& \begin{tabular}{l}
|Severe: <br>
wetness.

 \& 

| Severe: <br>
wetness.

 \& 

| Severe: <br>
| wetness.

 \& |Summer, winter \& 

|Moderate: <br>
too stony.

 \& Moderate: slope, too stony. \& 

|Moderate: <br>
too cobbly, <br>
too stony.
\end{tabular} <br>

\hline \multicolumn{8}{|l|}{74D:} <br>
\hline Schweitzer \& $\mid$ Moderate: \& | Severe: \& $\mid$ Moderate: \& | Summer, fall, \& $\mid$ Moderate: \& | Severe: \& | Moderate: <br>
\hline \& | rock outcrop,
| slope,
$\mid$ low strength,
$\mid$ too stony. \& | slope. \& | rock outcrop,
| slope,
| too stony,
$\mid$ low strength. \& | winter. \&  \& slope. \& rock outcrop, slope, too stony. <br>
\hline \& \& \& \& \& \& \& <br>

\hline Michigamme----- \& | \|Moderate: |
| :--- |
| \| rock outcrop, |
| slope, |
| \| low strength, |
| \| too stony. | \& \[

$$
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope. }
\end{aligned}
$$
\] \& ```

|Moderate:
| rock outcrop,
| slope,
| too stony,
| low strength.

``` & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & | & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas |and skid roads & \begin{tabular}{l}
Log \\
landings
\end{tabular} & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline 77D: & , & & & & & & \\
\hline Garlic & | Moderate: too sandy. & |Moderate: slope, too sandy. & | Moderate: too sandy. & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight-------- & Moderate: slope. & |slight. \\
\hline Alcona & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope, \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { | winter. }
\end{aligned}
\] & |slight- & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & |Slight. \\
\hline Voelker & | Moderate: too sandy.
\(\square\) & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & |Slight. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
77E: \\
Garlic-
\end{tabular}} & & & & & & & \\
\hline & ```
Moderate:
 too sandy,
 slope.
``` & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} \\
\hline Alcona & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope, } \\
& \mid \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope, } \\
& \text { low strength. }
\end{aligned}
\] & Summer, fall, winter. & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} \\
\hline Voelker & | Moderate: too sandy, slope. & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} \\
\hline 78C: & & & & & & & \\
\hline Keweenaw- & |Slight & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & |slight--- & Year round---- & | Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & |slight. \\
\hline Kalkaska & \begin{tabular}{l}
| Moderate: \\
too sandy.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |slight & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & |Slight. \\
\hline 78E: & & & & & & & \\
\hline Keweenaw- & \begin{tabular}{l}
Moderate: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & | Year round---- & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} \\
\hline Kalkaska------ & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued


Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & Ratings for & r most limiting & season(s) & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & \[
\begin{aligned}
& \text { Logging areas } \\
& \text { |and skid roads }
\end{aligned}
\] & \begin{tabular}{l}
Log \\
landings
\end{tabular} & Haul roads & & | Logging areas
|and skid roads & \begin{tabular}{l}
Log \\
landings
\end{tabular} & Haul roads \\
\hline \multicolumn{8}{|l|}{84D:} \\
\hline Rubicon- & ```
Moderate:
| rock outcrop,
| too sandy,
| slope.
``` & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope, \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope.
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope.
\end{tabular} \\
\hline Ishpeming- & ```
Moderate:
| rock outcrop,
| too sandy,
| slope.
``` & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope, \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & ```
|Moderate:
| rock outcrop,
slope.
``` & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & ```
|Moderate:
 rock outcrop,
 slope.
``` \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & \\
\hline & & & & & & & \\
\hline 84F: & & & & & & & \\
\hline \multirow[t]{2}{*}{Rubico} & | Severe: & | Severe: & | Severe: & | Spring, fall, & | Severe: & | Severe: & | Severe: \\
\hline & | slope. & slope. & slope. & winter. & slope. & slope. & | slope. \\
\hline Ishpeming & \[
\begin{aligned}
-\mid \text { Severe: } \\
\mid \text { slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & |Spring, fall, winter. & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} \\
\hline Rock outcrop. & | & & & & & & \\
\hline \multirow[t]{2}{*}{85A----
Solona} & | Severe: & | Severe: & | Severe: & | Summer, winter & Slight & Slight- & Slight. \\
\hline & \[
\begin{aligned}
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
wetness, \\
low strength.
\end{tabular} & \begin{tabular}{l}
| wetness, \\
low strength.
\end{tabular} & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 86B----- } \\
\text { Mashek }
\end{gathered}
\]} & & | Moderate: & & | Summer, fall, & | Slight- & Slight- & Slight. \\
\hline & low strength. & low strength. & | low strength. & winter. & & & \\
\hline \multirow[t]{2}{*}{87B---Cunard} & | Moderate: & \(\mid\) Moderate: & \(\mid\) Moderate: & | Summer, fall, & Slight & | Moderate: & | Moderate: \\
\hline & | low strength. & | depth to rock, low strength. & \[
\begin{aligned}
& \text { | depth to rock, } \\
& \text { | low strength. }
\end{aligned}
\] & winter. & & depth to rock. & depth to rock. \\
\hline 88: & & & & & & & \\
\hline \multirow[t]{2}{*}{Cathro---------} & | Severe: & | Severe: & | Severe: & | Winter & | Moderate: & | Severe: & | Moderate: \\
\hline & \[
\begin{aligned}
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
wetness, \\
low strength.
\end{tabular} &  & & low strength. & low strength. & low strength. \\
\hline \multirow[t]{2}{*}{Ensley---------} & | Severe: & | Severe: & | Severe: & | Winter--------- & | Moderate: & | Severe: & | Moderate: \\
\hline & \[
\begin{aligned}
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
wetness, \\
low strength.
\end{tabular} & \begin{tabular}{l}
| wetness, \\
| low strength.
\end{tabular} & & low strength. & low strength. & low strength. \\
\hline \multirow[t]{2}{*}{89B:} & | & & & & & & \\
\hline & |Moderate:
| low strength. & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & Slight-- & Slight-------- & |slight. \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads & & | Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline Solona & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & ```
| Severe:
    wetness,
    low strength.
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Summer, winter & | Slight & |slight & Slight. \\
\hline \multicolumn{8}{|l|}{90B:} \\
\hline Emmet & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength. \\
|
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & Slight- & slight. \\
\hline Escanaba & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\(\square\)
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & | Slight- & Slight. \\
\hline \multicolumn{8}{|l|}{90D:} \\
\hline Emmet & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope, } \\
& \mid \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight & Moderate: slope. & Slight. \\
\hline & & & & & & & \\
\hline Escanaba & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & ```
Moderate:
 slope,
 low strength.
``` & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & Moderate: slope. & Slight. \\
\hline \multicolumn{8}{|l|}{91B :} \\
\hline Onaway & \begin{tabular}{l}
Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength. \\
|
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight & Slight & Slight. \\
\hline Nadeau- & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight & Slight & Slight. \\
\hline \multicolumn{8}{|l|}{92A:} \\
\hline Ensley & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | wetness, } \\
& \text { | low strength. }
\end{aligned}
\] & ```
| Severe:
    wetness,
    low strength.
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & |Winter & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} \\
\hline Solona- & | Severe: wetness, low strength. & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Summer, winter & |Slight-------- & Slight & Slight. \\
\hline \multicolumn{8}{|l|}{93 :} \\
\hline Tawas & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & ```
| Severe:
| wetness,
| low strength.
``` & |Winter-------- & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} \\
\hline Deford & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & ```
| Severe:
    wetness,
    low strength.
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Winter-------- & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline \multicolumn{8}{|l|}{} \\
\hline Rubicon- & ```
Moderate:
 rock outcrop,
 too sandy,
 slope.
``` & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
slope, \\
too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { | Spring, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & ```
Moderate:
| slope,
| rock outcrop.
``` & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
slope, \\
rock outcrop.
\end{tabular} \\
\hline Ocqueoc- & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
too sandy, \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & ```
Moderate:
| rock outcrop,
| slope,
| too sandy.
``` & \[
\begin{aligned}
& \text { | Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & ```
Moderate:
| slope,
| rock outcrop.
``` & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope, } \\
& \text { | rock outcrop. }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{Rock outcrop.} \\
\hline & & & & & & & \\
\hline 104 C & | Severe: & | Severe: & | Severe: & | Summer, fall, & Slight & Moderate: & Slight. \\
\hline Fence & | low strength. & | low strength. & | low strength. & | winter. & & slope. & \\
\hline 105C-----
Munising & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness.
\end{tabular} & |Summer, winter & Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline \multicolumn{8}{|l|}{106B:} \\
\hline Sagola & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & | Slight- & Slight. \\
\hline Rubicon & \begin{tabular}{l}
|Moderate: \\
too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { | Spring, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & slight-- & Slight. \\
\hline \multicolumn{8}{|l|}{106D:} \\
\hline Sagola & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \text { Moderate: } \\
& \mid \text { slope, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & |slight & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline Rubicon & \begin{tabular}{l}
|Moderate: \\
too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too sandy. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & |Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline \multicolumn{8}{|l|}{107B :} \\
\hline Goodman- & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & Slight- & Slight. \\
\hline Sundog- & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Slight- & Slight & Slight. \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas & Log landings & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & Logging areas
\(\mid\) and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline \multicolumn{8}{|l|}{107D:} \\
\hline Goodman & \begin{tabular}{l}
Moderate: \\
low strength.
\end{tabular} & Moderate: slope, low strength. & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope. }
\end{aligned}
\] & |Slight. \\
\hline Sundog- & \begin{tabular}{l}
Moderate: \\
low strength.
\end{tabular} & Moderate: slope, low strength. & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & | Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline \multicolumn{8}{|l|}{107F:} \\
\hline Goodman & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & Severe: slope. & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] \\
\hline Sundog & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & Severe: slope. & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & Severe: slope. \\
\hline \multicolumn{8}{|l|}{108B:} \\
\hline Goodman & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight & Slight- & Slight. \\
\hline Sundog & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & | Slight & Slight- & Slight. \\
\hline Wabeno- & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & Severe: wetness. & \begin{tabular}{l}
|Severe: \\
| wetness.
\end{tabular} & | Summer, winter & |Slight------ & | Slight-- & Slight. \\
\hline \multicolumn{8}{|l|}{108D:} \\
\hline Goodman & \begin{tabular}{l}
|Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
Moderate: \\
low strength, slope.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & | Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline Sundog & Moderate: & Moderate: & | Moderate: & |Summer, fall, & |Slight & Moderate : & Slight. \\
\hline & | low strength. & \begin{tabular}{l}
slope, \\
low strength.
\end{tabular} & | low strength. & | winter. & & | slope. & \\
\hline Wabeno & Severe: & Severe: & | Severe: & Summer, winter & Slight & Moderate : & Slight. \\
\hline & wetness. & wetness. & | wetness. & & & slope. & \\
\hline \multicolumn{8}{|l|}{109B:} \\
\hline Rubicon & \begin{tabular}{l}
Moderate: \\
too sandy, too bouldery.
\end{tabular} & \begin{tabular}{l}
Moderate: \\
too sandy, too bouldery.
\end{tabular} & ```
|Moderate:
 too sandy,
 too bouldery.
``` & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Moderate:
\(\mid\) too bouldery.
\(\mid\) & \begin{tabular}{l}
Moderate: \\
too bouldery.
\end{tabular} & | Moderate: too bouldery. \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued


Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads & Preferred operating season(s) & Logging areas
|and skid roads & Log landings & Haul roads \\
\hline \multicolumn{8}{|l|}{112B:} \\
\hline Michigamme & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
low strength, \\
too bouldery.
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope, \\
| low strength, \\
too bouldery.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & ```
|Moderate:
| rock outcrop,
| slope,
| too bouldery.
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too bouldery.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{Rock outcrop.} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{112F:} \\
\hline Keewaydin & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| slope.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} \\
\hline \multirow[b]{2}{*}{Michigamme} & & & & & & & \\
\hline & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
113B---- \\
Vanriper
\end{tabular}} & | Moderate: & Moderate: & \(\mid\) Moderate: & | Summer, fall, & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
| too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
too bouldery.
\end{tabular}} & Moderate: \\
\hline & low strength, too bouldery. & | too bouldery,
low strength. & \begin{tabular}{l}
\begin{tabular}{|l|}
too bouldery, \\
low strength.
\end{tabular} \\
low strength.
\end{tabular} & | winter. & & & too bouldery. \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 113D---- } \\
\text { Vanriper }
\end{gathered}
\]} & \(\mid\) Moderate: & | Moderate: & \multirow[t]{3}{*}{| Moderate: too bouldery, low strength.} & \multirow[t]{3}{*}{|Summer, fall, winter.} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
| too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope, } \\
& \text { | too bouldery. }
\end{aligned}
\]} & \multirow[t]{3}{*}{Moderate: too bouldery.} \\
\hline & low strength, too bouldery. & slope, too bouldery. & & & & & \\
\hline & & & & & & & \\
\hline 113F- & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope, } \\
& \text { | too bouldery. }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Severe:
slope.} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope. }
\end{aligned}
\]} & Severe: \\
\hline \multirow[t]{2}{*}{Vanriper} & & & | slope. & & & & slope. \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 114B----- } \\
\text { Vanriper }
\end{gathered}
\]} & \multirow[t]{3}{*}{```
Moderate:
 low strength,
 too bouldery.
```} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { too bouldery, } \\
& \text { | low strength. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { too bouldery, } \\
& \mid \text { low strength. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
| too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
| too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{|Moderate: too bouldery.} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 114D---- } \\
\text { Vanriper }
\end{gathered}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
low strength, too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{```
|Moderate:
    slope,
    too bouldery.
```} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \text { | too bouldery, } \\
& \text { | low strength. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
| too bouldery.
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too bouldery. }
\end{aligned}
\]} & \multirow[t]{3}{*}{|Moderate: too bouldery.} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{114F-----
Vanriper} & | Severe: & | Severe: & | Severe: & |Summer, fall, & | Severe: & | Severe: & | Severe: \\
\hline & slope. & slope. & slope. & winter. & | slope. & slope. & slope. \\
\hline & | Severe: & \multirow{3}{*}{|Severe:
| low strength.} & \multirow[t]{3}{*}{|Severe: \({ }^{\text {| }}\) low strength.} & \multirow{3}{*}{\[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\]} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{|slight} & \multirow[t]{3}{*}{Slight.} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
117B-- \\
Fence
\end{tabular}} & | low strength. & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & | Logging areas |and skid roads & \begin{tabular}{l}
Log \\
landings
\end{tabular} & Haul roads \\
\hline \multicolumn{8}{|l|}{118A:} \\
\hline Croswell & \begin{tabular}{l}
|Moderate: \\
too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
too sandy. \\
|
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
too sandy.
\end{tabular} & |Spring, fall, winter. & | Slight- & |Slight------- & Slight. \\
\hline Deford- & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Severe: wetness, low strength. & | Severe: wetness, low strength. & |Winter--------- & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{119B:} \\
\hline Yalmer & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & |Summer, winter & Slight & |Slight-------- & Slight. \\
\hline Kalkaska & \begin{tabular}{l}
|Moderate: \\
| too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { | Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight & Slight- & Slight. \\
\hline \multicolumn{8}{|l|}{119D:} \\
\hline Yalmer & \begin{tabular}{l}
Severe: \\
| wetness.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & |Summer, winter & Slight & \begin{tabular}{l}
|Moderate: \\
slope.
\end{tabular} & Slight. \\
\hline & & & & & & & \\
\hline Kalkaska & |Moderate: | too sandy. & \begin{tabular}{l}
| Moderate: \\
slope, too sandy.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| too sandy.
\end{tabular} & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight- & | Moderate: slope. & Slight. \\
\hline & & & & & & & \\
\hline 121B & |Moderate: & | Moderate: & \(\mid\) Moderate: & |Summer, fall, & |Slight & Moderate: & | Moderate: \\
\hline Onota & low strength. & \begin{tabular}{l}
| depth to rock, \\
low strength.
\end{tabular} & \begin{tabular}{l}
| depth to rock, \\
low strength.
\end{tabular} & winter. & & depth to rock. & depth to rock. \\
\hline & & & & & & & \\
\hline 122 & | Severe: & | Severe: & | Severe: & |Winter--------- & | Moderate: & | Severe: & | Moderate: \\
\hline Pleine & \[
\begin{aligned}
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & \begin{tabular}{l}
wetness, \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & & | low strength, | too stony. & low strength. & low strength, too stony. \\
\hline 123 - & |Severe: & | Severe: & | Severe: & |Summer, winter & |Moderate: & | Moderate: & |Moderate: \\
\hline Tula & | wetness, & | wetness, & | wetness, & & | too stony. & | too stony. & too stony. \\
\hline & low strength. & | low strength. & low strength. & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{124B:} \\
\hline Gogebic & \begin{tabular}{l}
Severe: \\
| wetness.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & |Summer, winter & \begin{tabular}{l}
Moderate: \\
| too stony.
\end{tabular} & Moderate: too stony. & \begin{tabular}{l}
| Moderate: \\
too stony.
\end{tabular} \\
\hline Dishno & ```
Moderate:
| too stony,
| low strength.
``` & ```
|Moderate:
    too stony,
    low strength.
``` & ```
|Moderate:
 too stony,
 low strength.
``` & | Summer, winter & \begin{tabular}{l}
| Moderate: \\
| too stony.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued



Table 9.--Equipment Limitations on Woodland--Continued


Table 9.--Equipment Limitations on Woodland--Continued


Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & | Logging areas
and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} \\
\hline \[
\begin{array}{r}
\text { 139B--- } \\
\text { Sundog }
\end{array}
\] & ```
|Moderate:
| low strength,
| too bouldery.
``` & \begin{tabular}{l}
|Moderate: \\
low strength, too bouldery.
\end{tabular} & & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
too bouldery.
\end{tabular} & |Moderate:
| too bouldery. & | Moderate: too bouldery. \\
\hline \[
\begin{array}{r}
\text { 139D--- } \\
\text { Sundog }
\end{array}
\] & ```
Moderate:
| low strength,
 too bouldery.
``` & \begin{tabular}{l}
| Moderate: \\
slope, \\
low strength, too bouldery.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { low strength, } \\
& \text { | too bouldery. }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
too bouldery.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too bouldery. }
\end{aligned}
\] & | Moderate: too bouldery. \\
\hline \multicolumn{8}{|l|}{140B:} \\
\hline Champion & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & | Severe: wetness. & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness. } \\
& \text { | }
\end{aligned}
\] & |Summer, winter & | Moderate: too stony. & | Moderate: too stony. & | Moderate: too stony. \\
\hline Dishno & ```
Moderate:
    low strength,
    too stony.
``` & \begin{tabular}{l}
Moderate: \\
low strength, too stony.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { low strength, } \\
& \text { | too stony. }
\end{aligned}
\] & |Summer, winter & \begin{tabular}{l}
| Moderate: \\
too stony.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} & Moderate: too stony. \\
\hline \multicolumn{8}{|l|}{140D:} \\
\hline Champion & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness. }
\end{aligned}
\] & |Summer, winter & \begin{tabular}{l}
| Moderate: \\
too stony.
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \text { slope, } \\
& \text { | too stony. }
\end{aligned}
\] & | Moderate: too stony. \\
\hline Dishno & ```
Moderate:
| low strength,
| too stony.
``` & \begin{tabular}{l}
|Moderate: \\
low strength, slope, too stony.
\end{tabular} & ```
|Moderate:
| low strength,
| too stony.
``` & | Summer, winter & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} & | Moderate: slope, too stony. & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{141D:} \\
\hline Pelissier & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | rock outcrop. }
\end{aligned}
\] & | Severe: rock outcrop, slope. & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | rock outcrop. }
\end{aligned}
\] & | Year round- & Severe: rock outcrop. & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { rock outcrop, } \\
& \mid \text { slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
rock outcrop.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{Rock outcrop.}} \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 142B------ } \\
\text { Pelissier }
\end{gathered}
\]} & |Slight & |Slight & Slight & | Year round----- & Slight & Slight & Slight. \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \[
\begin{array}{r}
\text { 142D------ } \\
\text { Pelissier }
\end{array}
\] & Slight & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & Slight- & | Year round----- & Slight & \begin{tabular}{l}
| Moderate: \\
slope.
\end{tabular} & |slight. \\
\hline \[
\begin{gathered}
\text { 144B---- } \\
\text { Farquar }
\end{gathered}
\] & & & & |Year round- & Slight & Slight- & Slight. \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{\begin{tabular}{l}
Preferred operating \\
season(s)
\end{tabular}} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas |and skid roads & Log landings & Haul roads & & | Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline \multicolumn{8}{|l|}{145C:} \\
\hline Munising- & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness.
\end{tabular} & |Summer, winter & \begin{tabular}{l}
|Moderate: \\
| too stony.
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too stony. }
\end{aligned}
\] & | Moderate: too stony.
\(\square\) \\
\hline Yalmer & \begin{tabular}{l}
|Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & | Severe: too sandy, wetness. & |Summer, winter & \begin{tabular}{l}
| Moderate: \\
| too stony.
\end{tabular} & | Moderate: slope, too stony. & | Moderate: too stony. \\
\hline \multicolumn{8}{|l|}{146B:} \\
\hline Munising & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness.
\end{tabular} & |Summer, winter & Slight---- & Slight- & Slight. \\
\hline & & & & & & & \\
\hline Skanee & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness, \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & |Summer, winter & Slight------ & | Slight- & Slight. \\
\hline \multicolumn{8}{|l|}{147A:} \\
\hline Skanee & | Severe: wetness, low strength. & ```
| Severe:
 wetness,
 low strength.
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { wetness, } \\
& \text { low strength. }
\end{aligned}
\] & | Summer, winter & \begin{tabular}{l}
|Moderate: \\
too stony.
\end{tabular} & | Moderate: too stony. & |Moderate: too stony. \\
\hline Gay- & | Severe: wetness, low strength. &  & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Winter-------- & ```
Moderate:
    low strength,
    too stony.
``` & \begin{tabular}{l}
| Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength, too stony.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{148B:} \\
\hline Shoepac & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} & |Summer, winter & Slight & Slight & Slight. \\
\hline Ensley & | Severe: wetness, low strength. & ```
| Severe:
 wetness,
 low strength.
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Winter & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{149:} \\
\hline Evart & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & | Winter & Slight------ & | Slight------- & Slight. \\
\hline Cathro- & | Severe: wetness, low strength. & ```
| Severe:
    wetness,
    low strength.
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Winter-------- & |Moderate:
| low strength.
| & \begin{tabular}{l}
|Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength.
\end{tabular} \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas
|and skid roads & \begin{tabular}{l}
Log \\
landings
\end{tabular} & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & | Logging areas & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} \\
\hline \multicolumn{8}{|l|}{176B:} \\
\hline Croswell & |Moderate: | too sandy.
\(\qquad\) & Moderate: too sandy. & | Moderate: too sandy. & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight---- & |Slight--- & | Slight. \\
\hline 177E- & | Moderate: & | Severe: & | Moderate: & |Summer, fall, & | Moderate: & | Severe: & | Moderate: \\
\hline Frohling & \[
\begin{aligned}
& \text { slope, } \\
& \text { low strength. }
\end{aligned}
\] & slope. & \[
\begin{aligned}
& \text { slope, } \\
& \text { low strength. }
\end{aligned}
\] & winter. & slope. & slope. & slope. \\
\hline & & & & & & & \\
\hline 177F- & | Severe: & | Severe: & | Severe: & |Summer, fall, & | Severe: & | Severe: & | Severe: \\
\hline Frohling & slope. & slope. & slope. & winter. & slope. & slope. & slope. \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{178D:} \\
\hline Schweitzer & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope, \\
| low strength, \\
| too stony.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & ```
|Moderate:
| rock outcrop,
| slope,
| too stony,
| low strength.
``` & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} \\
\hline & & & & & & & \\
\hline Kalkaska & \begin{tabular}{l}
|Moderate: \\
| rock outcrop, \\
| too sandy, \\
| slope, \\
| too stony.
\end{tabular} & | Severe: slope. & ```
|Moderate:
| rock outcrop,
| slope,
| too sandy,
| too stony.
``` & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} & |Severe: slope. & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
too stony.
\end{tabular} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{Rock outcrop.} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{178F:} \\
\hline \multirow[t]{2}{*}{Schweitzer------} & | Severe: & | Severe: & | Severe: & |Summer, fall, & | Severe: & | Severe: & | Severe: \\
\hline & slope. & slope. & | slope. & winter. & slope. & slope. & slope. \\
\hline \multirow[t]{2}{*}{Kalkaska} & | Severe: & | Severe: & | Severe: & |Spring, fall, & | Severe: & | Severe: & | Severe: \\
\hline & slope. & slope. & | slope. & | winter. & | slope. & slope. & slope. \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & \\
\hline & & & | & & & & \\
\hline 179E: & & & & & & & \\
\hline Schweitzer----- & ```
Moderate:
| slope,
| low strength,
| too stony.
``` & \begin{tabular}{l}
|Severe: \\
slope.
\end{tabular} & ```
Moderate:
| slope,
| too stony,
| low strength.
``` & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope, } \\
& \text { | too stony. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope, } \\
& \text { | too stony. }
\end{aligned}
\] & Moderate: slope, too stony. \\
\hline Michigamme & ```
Moderate:
| slope,
| low strength,
| too stony.
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & ```
|Moderate:
| slope,
| too stony,
| low strength.
``` & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & | Moderate: slope, too stony. & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
slope, too stony.
\end{tabular} \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads & Preferred operating season(s) & Logging areas
|and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline & & | & & & & & \\
\hline & & | & & & & & \\
\hline 196E: & & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok} & | Moderate: & | Severe: & | Moderate: & | Year round- & | Moderate: & | Severe: & Moderate: \\
\hline & slope. & slope. & slope. & & slope. & slope. & slope. \\
\hline & & & & & & & \\
\hline 197B: & & & & & & & \\
\hline \multirow[t]{3}{*}{Shoepac} & |Moderate: & & & | Summer, fall, & | Slight- & Slight- & |slight. \\
\hline & | low strength. & | low strength. & low strength. & | winter. & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{Trenary-} & \(\mid\) Moderate : & | Moderate: & | Moderate: & |Summer, fall, & | Slight & Slight & |slight. \\
\hline & | low strength. & | low strength. & | low strength. & | winter. & & & \\
\hline & & & & & & & \\
\hline 198B: & & & & & & & \\
\hline \multirow[t]{3}{*}{Shoepac} & |Moderate: & | Moderate: & | Moderate: & |Summer, fall, & | Slight- & Slight--------- & |slight. \\
\hline & | low strength. & | low strength. & | low strength. & | winter. & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{Reade} & |Moderate: & | Moderate: & | Moderate: & |Summer, fall, & |Slight & | Moderate: & | Moderate: \\
\hline & low strength. & \begin{tabular}{l}
| low strength, \\
| depth to rock.
\end{tabular} & low strength, depth to rock. & | winter. & & depth to rock. & depth to rock. \\
\hline & & & & & & & \\
\hline 199. & & | & & & & & \\
\hline \multirow[t]{2}{*}{Udorthents, ash} & & & & & & & \\
\hline & & & & & & & \\
\hline 200A: & & & & & & & \\
\hline \multirow[t]{4}{*}{Charlevoix} & & & & | Summer, winter & | Slight- & Slight-------- & Slight. \\
\hline & | wetness, & | wetness, & wetness, & & & 俉 & \\
\hline & low strength. & | low strength. & | low strength. & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & | Severe: & | Severe: & | Severe: & | Winter & \(\mid\) Moderate: & | Severe: & Moderate: \\
\hline & | wetness, & | wetness, & wetness, & & low strength. & low strength. & low strength. \\
\hline & | low strength. & | low strength. & low strength. & & & & \\
\hline 201B: & & & & & & & \\
\hline \multirow[t]{3}{*}{Sauxhead-} & & & & | Summer, winter & & & | Severe: \\
\hline & wetness. & | wetness, & wetness, depth to rock. & & too stony. & depth to rock. & depth to rock. \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{Jacobsville} & | Severe: & | Severe: & | Severe: & | Winter & | Moderate: & | Severe: & | Moderate: \\
\hline & | wetness, & wetness,
low strength. & wetness, low strength. & & low strength,
too stony. & low strength. & low strength, too stony. \\
\hline & low strength. & low strength. & low strength. & & too stony. & & too stony. \\
\hline \multirow[t]{4}{*}{\[
\begin{gathered}
\text { 202B----- } \\
\text { Sauxhead }
\end{gathered}
\]} & | Severe: & | Severe: & | Severe: & |Summer, winter & |Moderate: & | Severe: & | Severe: \\
\hline & | wetness. & | wetness, & | wetness, & & | too stony. & depth to rock. & depth to rock. \\
\hline & & | depth to rock. & | depth to rock.| & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & | Logging areas and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads & & | Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & Haul roads \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{203A:} \\
\hline Au Gres & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness.
\end{tabular} & | Summer, winter & Slight & Slight------ & Slight. \\
\hline Deford- & ```
|evere:
 wetness,
 low strength.
``` & \begin{tabular}{l}
|Severe: \\
wetness, low strength.
\end{tabular} &  & | Winter & \begin{tabular}{l}
|Moderate: \\
| low strength.
\end{tabular} & \begin{tabular}{l}
Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| low strength.
\end{tabular} \\
\hline \multicolumn{8}{|l|}{204B:} \\
\hline Gogebic & |Severe: wetness. & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness.
\end{tabular} & |Summer, winter & \begin{tabular}{l}
|Moderate: \\
| too stony.
\end{tabular} & |Moderate: too stony. &  \\
\hline Tula- & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness, \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { wetness, } \\
& \mid \text { low strength. }
\end{aligned}
\] & | Summer, winter & \begin{tabular}{l}
|Moderate: \\
| too stony.
\end{tabular} & Moderate: too stony. &  \\
\hline 206B- & Slight & |Slight & |Slight & | Year round- & Slight & Slight & Slight. \\
\hline Traunik & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{207D:} \\
\hline Dishno & \begin{tabular}{l}
| Moderate: \\
low strength, rock outcrop, too bouldery.
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
low strength, slope, too bouldery.
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
low strength, \\
| rock outcrop, \\
| too bouldery.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
| rock outcrop, \\
| too bouldery.
\end{tabular} & Moderate: too bouldery. & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { rock outcrop, } \\
& \text { | too bouldery. }
\end{aligned}
\] \\
\hline Michigamme & \begin{tabular}{l}
| Moderate: \\
rock outcrop, \\
slope, \\
low strength, \\
too bouldery.
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \begin{tabular}{l}
| Moderate: \\
| rock outcrop, \\
| slope, \\
| too bouldery, \\
| low strength.
\end{tabular} & \[
\begin{aligned}
& \mid \text { Summer, fall, } \\
& \mid \text { winter. }
\end{aligned}
\] & ```
Moderate:
| rock outcrop,
| slope,
| too bouldery.
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \(\mid\) Moderate:
\(\mid\) rock outcrop,
\(\mid\) slope,
\(\mid\)
too bouldery. \\
\hline \multicolumn{8}{|l|}{Rock outcrop.} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{208F:} \\
\hline Keewaydin- & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & | Severe: slope. & |Summer, fall, winter. & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope.
\end{tabular} \\
\hline Michigamme- & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { winter. } \\
& \text { | }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope. }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope. }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 9.--Equipment Limitations on Woodland--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|l|}{Ratings for most limiting season(s)} & \multirow[b]{2}{*}{Preferred operating season(s)} & \multicolumn{3}{|l|}{Ratings for preferred operating season(s)} \\
\hline & Logging areas |and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} & & | Logging areas and skid roads & \[
\begin{aligned}
& \text { Log } \\
& \text { landings }
\end{aligned}
\] & \begin{tabular}{l}
Haul \\
roads
\end{tabular} \\
\hline \multicolumn{8}{|l|}{} \\
\hline Garlic & |Moderate: too sandy.
\(\square\) & |Moderate: | too sandy. & |Moderate: too sandy. & \[
\begin{aligned}
& \text { |Spring, fall, } \\
& \text { | winter. }
\end{aligned}
\] & |Slight-------- & Slight- & |Slight. \\
\hline Fence- & \begin{tabular}{l}
|Severe: \\
low strength.
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| low strength.
\end{tabular} & \begin{tabular}{l}
|Severe: \\
low strength.
\end{tabular} & \[
\begin{aligned}
& \text { |Summer, fall, } \\
& \text { | winter. }
\end{aligned}
\] & | Slight & Slight & Slight. \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
M-w. \\
Miscellaneous water
\end{tabular}} & & & & & & & \\
\hline & & | & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{W. \({ }_{\text {Water }}\)} & & | & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types
(See text for explanations of terms used in this table. An asterisk denotes the indicator species for the primary habitat type, and two asterisks denote the indicator species for the secondary habitat type. Percentages in the "Extent" column refer to the average coverage in areas where the species occurs)

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{aligned}
& \text { | Secondary } \\
& \text { | habitat } \\
& \text { type }
\end{aligned}
\] & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & | & Pct & & \\
\hline & & & & & & \\
\hline \multirow[t]{16}{*}{\[
\begin{aligned}
& \text { 14B, 14D------- } \\
& \text { Rousseau }
\end{aligned}
\]} & \multirow[t]{16}{*}{AQVac} & \multirow[t]{16}{*}{TMV} & | Low sweet blueberry*----- & 5-15 & | Red maple-------- & 1 \\
\hline & & & |Bracken fern------------ & >25 & |Red pine--------- & 1 \\
\hline & & & | Canada blueberry- & 5-15 & |Jack pine-- & 2 \\
\hline & & & |Wintergreen------------ & 5-15 & |Quaking aspen--- & 2 \\
\hline & & & | Large-leaved aster------- & 5-15 & |Eastern white pine & 2 \\
\hline & & & | Beaked hazelnut*--------- & 5-15 & | Northern red oak--- & 2 \\
\hline & & & | Grasses---------------- & 15-25 & | Balsam fir------- & 3 \\
\hline & & & | Pin cherry-------------- & <5 & | White spruce- & 3 \\
\hline & & & |Wood anemone------------ & <5 & & \\
\hline & & & | Juneberry-------------- & <5 & & \\
\hline & & & | Barren strawberry**----- & 5-15 & & \\
\hline & & & | American starflower------- & <5 & & \\
\hline & & & | Cow wheat--------------- & <5 & & \\
\hline & & & |Wild sarsaparilla**------ & <5 & & \\
\hline & & & | Sweetfern--------------- & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{13}{*}{15A-----------
Croswell} & \multirow[t]{13}{*}{QAE} & \multirow[t]{13}{*}{TMC-V} & |Bracken fern** & >25 & |Red maple-------- & 1 \\
\hline & & & | Wintergreen- & 5-15 & | Northern red oak-- & 1 \\
\hline & & & | Low sweet blueberry------ & 15-25 & | Quaking aspen----- & 2 \\
\hline & & & |Trailing arbutus*-------- & <5 & |Red pine--------- & 2 \\
\hline & & & | Juneberry------- & <5 & |Eastern white pine- & 3 \\
\hline & & & | Grasses- & 15-25 & | Jack pine-------- & 3 \\
\hline & & & | Canada blueberry-------- & 5-15 & |White spruce----- & 3 \\
\hline & & & | Cow wheat-------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & | Sweetfern------ & 5-15 & & \\
\hline & & & | Sedges----------------- & <5 & & \\
\hline & & & | Blue cladonia----------- & <5 & & \\
\hline & & & |Wild lily-of-the-valley**- & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{9}{*}{Paquin} & \multirow[t]{9}{*}{ATD-D} & \multirow[t]{9}{*}{TMC} & & & & 1 \\
\hline & & & |Sugar maple seedlings & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk------- & <5 & | Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal----- & <5 & |Red maple-------- & 2 \\
\hline & & & | Sedges----------------- & 5-15 & | Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley-- & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry**--------- & <5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower----- & <5 & & \\
\hline & & & & & & \\
\hline 17A------------ | & \multirow[t]{12}{*}{TMC} & \multirow[t]{12}{*}{TMC-V} & | Goldthread*------------- & 5-15 & |Red maple-------- & 1 \\
\hline \multirow[t]{11}{*}{Au Gres |} & & & |Wild lily-of-the-valley**- & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & | Yellow beadlily--------- & <5 & |Red pine--------- & 2 \\
\hline & & & | Bunchberry*------------ & 5-15 & |Eastern white pine- & 2 \\
\hline & & & | American starflower------ & <5 & | Paper birch------ & 2 \\
\hline & & & | Sedges----------------- & 5-15 & | White spruce----- & 3 \\
\hline & & & | Bracken fern----------- & 15-25 & | Balsam fir------- & 3 \\
\hline & & & |Wild sarsaparilla------- & <5 & | Quaking aspen------ & 3 \\
\hline & & & |Shining clubmoss-------- & <5 & & \\
\hline & & & | Wintergreen------------- & <5 & & \\
\hline & & & | Wood sorrel*------------- & <5 & & \\
\hline & & & & & & \\
\hline \multirow{14}{*}{Kinross} & \multirow[t]{14}{*}{PCS} & \multirow[t]{14}{*}{TMC-V} & | Sphagnum moss**---------- & & | Black spruce------ & 1 \\
\hline & & & | Labrador tea------------ & 15-25 & |Tamarack & 1 \\
\hline & & & | Leatherleaf*------------ & 15-25 & |Eastern white pine- & 2 \\
\hline & & & |Sedges------------------- & >25 & & \\
\hline & & & | Canada blueberry---------- & 5-15 & & \\
\hline & & & | Creeping snowberry------- & <5 & & \\
\hline & & & |Small cranberry**--------- & 5-15 & & \\
\hline & & & | Bog rosemary*------------ & 5-15 & & \\
\hline & & & | Pale laurel*------------ & 5-15 & & \\
\hline & & & | Goldthread--------------- & <5 & & \\
\hline & & & | Pitcher plant**----------- & <5 & & \\
\hline & & & |Blueflag iris------------ & <5 & & \\
\hline & & & | Sundew**------------------ & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\left\lvert\, \begin{gathered}
\text { Secondary } \mid \\
\text { habitat } \\
\text { type }
\end{gathered}\right.
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{14}{*}{19------------
Deford} & \multirow[b]{14}{*}{TMC} & \multirow{14}{*}{TTS} & | & \multirow[t]{2}{*}{Pct} & | & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline & & & |Goldthread*------------------- & 5-15 & |Red maple-------- & 1 \\
\hline & & & |Wild lily-of-the-valley**----- & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & |Yellow beadlily--------------- & <5 & |Red pine--------- & 2 \\
\hline & & & | Bunchberry*------------------- & 5-15 & |Eastern white pine- & 2 \\
\hline & & & | American starflower----------- & <5 & | Paper birch-------- & 2 \\
\hline & & & | Sedges------------------------ & 5-15 & |White spruce------ & 3 \\
\hline & & & |Bracken fern------------------ & 15-25 & | Balsam fir------- & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & \multirow[t]{5}{*}{| Quaking aspen-----} & \multirow[t]{4}{*}{3} \\
\hline & & & |Shining clubmoss-------------- & <5 & & \\
\hline & & & |Wintergreen------------------- & <5 & & \\
\hline & & & |Wood sorrel* & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 20B, 20D, 20E--| & \multirow[t]{16}{*}{AQVac} & \multirow[t]{16}{*}{TMV} & | Low sweet blueberry*---------- & 5-15 & |Red maple------- & 1 \\
\hline Rousseau- & & & |Bracken fern------------------ & >25 & |Red pine-------- & 1 \\
\hline \multirow[t]{14}{*}{Ocqueoc} & & & | Canada blueberry-------------- & 5-15 & | Jack pine-------- & 2 \\
\hline & & & |Wintergreen------------------- & 5-15 & |Quaking aspen----- & 2 \\
\hline & & & | Large-leaved aster------------ | & 5-15 & |Eastern white pine- & 2 \\
\hline & & & |Beaked hazelnut*-------------- & 5-15 & | Northern red oak--- & 2 \\
\hline & & & | Grasses----------------------- & 15-25 & |Balsam fir-------- & 3 \\
\hline & & & | Pin cherry-------------------- & <5 & |White spruce----- & \multirow[t]{8}{*}{3} \\
\hline & & & |Wood anemone------------------ & <5 & & \\
\hline & & & | Juneberry--------------------- & <5 & & \\
\hline & & & | Barren strawberry**----------- | & 5-15 & & \\
\hline & & & | American starflower----------- & <5 & & \\
\hline & & & | Cow wheat-------------------- & < 5 & & \\
\hline & & & |Wild sarsaparilla**----------- & <5 & & \\
\hline & & & | Sweetfern--------------------- & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 22B-----------| & \multirow[t]{10}{*}{AtD} & \multirow[t]{10}{*}{TM} & | Spinulose shield fern*-------- & 5-15 & | Sugar maple------ & 1 \\
\hline \multirow[t]{9}{*}{Alcona} & & & | Sugar maple seedlings--------- & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk------------- & <5 & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal---------- & <5 & |Red maple------- & 2 \\
\hline & & & | Sedges------------------------ & 5-15 & | Black cherry------ & 2 \\
\hline & & & |Wild lily-of-the-valley------- & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & |Balsam fir------- & \multirow[t]{4}{*}{3} \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& \text { 24B, 24D------- } \\
& \text { Munising }
\end{aligned}
\]} & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{TM} & | Spinulose shield fern*-------- & 5-15 & | Sugar maple------ & 1 \\
\hline & & & | Sugar maple seedlings--------- & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk------------- & < & |Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal---------- & < 5 & |Red maple-------- & 2 \\
\hline & & & |Sedges------------------------ & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley------- & <5 & | White spruce----- & 3
3 \\
\hline & & & |Red elderberry**-------------- & <5 & \multirow[t]{4}{*}{|Balsam fir--------} & \multirow[t]{4}{*}{3} \\
\hline & & & | American starflower----------- & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline & \multirow[t]{10}{*}{AtD} & \multirow[t]{10}{*}{TM} & & 5-15 & & 1 \\
\hline Munising- | & & & | Sugar maple seedlings--------- & >25 & |Eastern hemlock---- & 2 \\
\hline \multirow[t]{8}{*}{Yalmer} & & & |Rosy twistedstalk------------- & <5 & |Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal---------- & <5 & |Red maple--------- & 2 \\
\hline & & & | Sedges---------------------- & 5-15 & | Black cherry------- & 2 \\
\hline & & & |Wild lily-of-the-valley------- & <5 & |White spruce------- & 3 \\
\hline & & & |Red elderberry**-------------- & < 5 & |Balsam fir-------- & \multirow[t]{4}{*}{3} \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & | & \\
\hline & & & & & | & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & \begin{tabular}{l}
Primary \\
habitat \\
type
\end{tabular} & |Secondary habitat type & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 26A----------- | & TMC-D & TMC & |Wild lily-of-the-valley*-------| & 5-15 & |Eastern hemlock-- & 1 \\
\hline Skanee & & & |Goldthread**------------------- | & 5-15 & | Red maple- & 1 \\
\hline & & & |Yellow beadlily---------------| & <5 & | Sugar maple----- & 2 \\
\hline & & & | Bunchberry*------------------- | & 5-15 & | Yellow birch--- & 2 \\
\hline & & & | American starflower-----------| & <5 & |Balsam fir--- & 3 \\
\hline & & & |Sedges------------------------ | & 5-15 & | White spruce---- & 3 \\
\hline & & & | Spinulose shield fern*--------| & 5-15 & & \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & |Rosy twistedstalk-------------| & <5 & & \\
\hline & & & |Shining clubmoss--------------| & <5 & & \\
\hline & & & |American fly honeysuckle------| & <5 & & \\
\hline & & & |Wintergreen------------------- | & <5 & & \\
\hline & & & |Wood sorrel*------------------- & <5 & & \\
\hline & & & | Oak fern*---------------------- | & <5 & & \\
\hline & & & |Hairy Solomon's seal*---------| & <5 & & \\
\hline & & & & & & \\
\hline & FI & TTS & |Jewelweed*--------------------- | & & | Black ash------- & 1 \\
\hline Gay & & & |Lady fern & 5-15 & | White ash------- & 1 \\
\hline & & & |Elderberry-------------------- | & 5-15 & | Red maple---- & 1 \\
\hline & & & | Sedges------------------------ | & 15-25 & | Balsam poplar---- & 2 \\
\hline & & 1 & | Grasses----------------------- | & 15-25 & |Balsam fir------- & 2 \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & |Mints------------------------- | & <5 & & \\
\hline & & & |Dewberry---------------------- | & <5 & & \\
\hline & & 1 & | Gooseberry-------------------- & <5 & & \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & & \\
\hline & & & |Raspberry--------------------- & <5 & & \\
\hline & & & | Stinging nettle---------------| & <5 & & \\
\hline & & & & & & \\
\hline 28B, 28D, 28E--| & ATD-D & TM & | Spinulose shield fern*-------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Keweenaw & & & | Sugar maple seedlings----------| & >25 & |Eastern hemlock---- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Yellow birch----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Red maple---- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- | & < 5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 29B, 29D-------| & ATD & TM & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------ & 1 \\
\hline Yalmer & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & | Yellow birch------- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Red maple----- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce----- & 3 \\
\hline & & | & |Red elderberry**--------------| & <5 & | Balsam fir-------- & 3 \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & | & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
|Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & | Tree species & Dominance \\
\hline \multirow{18}{*}{31D-----
Trenary} & \multirow{18}{*}{AVO} & \multirow[t]{18}{*}{AVO-A} & & \multirow[t]{2}{*}{Pct} & & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline & & & | Sweet cicely*----------------- | & 5-15 & | Sugar maple- & 1 \\
\hline & & & |Sedges------------------------ | & 5-15 & |American basswood- & 2 \\
\hline & & & | Spinulose shield fern---------| & 5-15 & | Ironwood------- & 2 \\
\hline & & & |Canadian, downy yellow violet* & <5 & |Yellow birch---- & 3 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Eastern hemlock- & 3 \\
\hline & & & |Rosy twistedstalk------------- | & < & & \\
\hline & & & | Bedstraw--------------------- | & <5 & & \\
\hline & & & |Lady fern-------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & & \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**----------| & <5 & & \\
\hline & & & |Trillium---------------------| & <5 & & \\
\hline & & & |Rattlesnake fern**------------| & < 5 & & \\
\hline & & & |Blue cohosh**----------------- | & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 32A-----------| & \multirow[t]{16}{*}{AVo-CI} & \multirow[t]{16}{*}{TMC-D} & |Sweet cicely**---------------- | & 5-15 & | Sugar maple------- & 1 \\
\hline \multirow[t]{15}{*}{Charlevoix} & & & |Sedges------------------------ | & 5-15 & |Eastern hemlock---- & 2 \\
\hline & & & |Canadian, downy yellow violet**| & <5 & | White ash-------- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & < & |Balsam fir-------- & 2 \\
\hline & & & | Bedstraw--------------------- | & <5 & |American basswood- & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & | Ironwood--------- & 3 \\
\hline & & & |Red elderberry---------------- | & <5 & | Yellow birch----- & 3 \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**----------- | & <5 & & \\
\hline & & & |Rattlesnake fern**------------- | & <5 & & \\
\hline & & & |Blue cohosh**----------------- | & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & |Wild lily-of-the-valley-------- | & < & & \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & |Jewelweed*-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{13}{*}{\[
\begin{gathered}
33----- \\
\text { Ensley }
\end{gathered}
\]} & \multirow[t]{13}{*}{FI} & \multirow[t]{13}{*}{TTM} & |Jewelweed*-------------------- | & 5-15 & | Black ash------- & 1 \\
\hline & & & |Lady fern--------------------- | & 5-15 & |White ash------- & 1 \\
\hline & & & |Elderberry-------------------- | & 5-15 & | Red maple-------- & 1 \\
\hline & & & | Sedges----------------------- | & 15-25 & | Balsam poplar---- & 2 \\
\hline & & & | Grasses----------------------- | & 15-25 & | Balsam fir------ & 2 \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & Mints & <5 & & \\
\hline & & & |Dewberry & < 5 & & \\
\hline & & & | Gooseberry------------------- | & <5 & & \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & & \\
\hline & & & |Raspberry-------------------- | & <5 & & \\
\hline & & & | Stinging nettle--------------- | & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{16}{*}{\[
\begin{aligned}
& 34 \mathrm{~B}, 34 \mathrm{D}, 34 \mathrm{E}--\mid \\
& \text { Onaway }
\end{aligned}
\]} & \multirow[t]{16}{*}{AVo} & \multirow[t]{16}{*}{AVO-A} & & 5-15 & & \\
\hline & & & |Sedges & 5-15 & |American basswood- & 2 \\
\hline & & & | Spinulose shield fern---------| & 5-15 & | Ironwood--------- & 2 \\
\hline & & & |Canadian, downy yellow violet* | & < 5 & | Yellow birch----- & 3 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Eastern hemlock--- & 3 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & & \\
\hline & & & | Bedstraw--------------------- | & <5 & & \\
\hline & & & |Lady fern-------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & & \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & < 5 & & \\
\hline & & & |Rattlesnake fern**-------------| & <5 & & \\
\hline & & & |Blue cohosh**----------------- | & <5 & & \\
\hline & & & |Bloodroot**-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{array}{|c|}
\mid \text { Secondary } \\
\text { habitat } \\
\text { type } \\
\hline
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& \text { 35B, 35D-------| } \\
& \text { Champion }
\end{aligned}
\]} & \multirow{12}{*}{ATD} & \multirow{12}{*}{---} & & \multirow[t]{2}{*}{Pct} & & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline & & & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------- & 1 \\
\hline & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Red maple-------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry------ & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry---------------| & <5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 36A-----------| & \multirow[t]{16}{*}{TMC-D} & \multirow[t]{16}{*}{---} & |Wild lily-of-the-valley*------| & 5-15 & | Eastern hemlock--- & 1 \\
\hline \multirow[t]{15}{*}{Net} & & & | Goldthread-------------------- | & 5-15 & |Red maple-------- & 1 \\
\hline & & & |Yellow beadlily---------------| & <5 & | Sugar maple------- & 2 \\
\hline & & & |Bunchberry*------------------- & 5-15 & |Yellow birch------ & 2 \\
\hline & & & |American starflower-----------| & <5 & | Balsam fir------- & 3 \\
\hline & & & |Sedges------------------------ | & 5-15 & \multirow[t]{11}{*}{White spruce-------} & \multirow[t]{11}{*}{3} \\
\hline & & & | Spinulose shield fern*--------| & 5-15 & & \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & |Rosy twistedstalk-------------| & <5 & & \\
\hline & & & | Shining clubmoss--------------| & <5 & & \\
\hline & & & |American fly honeysuckle------| & <5 & & \\
\hline & & & |Wintergreen-------------------| & <5 & & \\
\hline & & & |Wood sorrel*------------------- | & <5 & & \\
\hline & & & | Oak fern*--------------------- | & <5 & & \\
\hline & & & |Hairy Solomon's seal*---------| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline & \multirow[t]{14}{*}{TTS} & \multirow[t]{14}{*}{FI} & & <5 & | Balsam fir------- & 1 \\
\hline \multirow[t]{13}{*}{Witbeck} & & & |Bunchberry & <5 & | Northern whitecedar & 1 \\
\hline & & & |Wild lily-of-the-valley-------| & 5-15 & |Eastern hemlock---- & 2 \\
\hline & & & |American starflower-----------| & <5 & | Black spruce------ & 2 \\
\hline & & & | Sphagnum moss*----------------| & >25 & |Red maple-------- & \multirow[t]{10}{*}{3} \\
\hline & & & | Canada blueberry------------- | & <5 & & \\
\hline & & & |Wood sorrel**------------------ & <5 & & \\
\hline & & & | Creeping snowberry------------| & <5 & & \\
\hline & & & |Dewberry---------------------- & <5 & & \\
\hline & & & |Tag alder---------------------| & 15-25 & & \\
\hline & & & |Yellow beadlily---------------| & <5 & & \\
\hline & & & |Horsetail*------------------- | & & & \\
\hline & & & |Sedges------------------------ | & \multirow[t]{2}{*}{15-25} & & \\
\hline & & & & & & \\
\hline \multirow[t]{16}{*}{\[
\begin{aligned}
& \text { 38B, 38D, 38E-- } \\
& \text { Pence }
\end{aligned}
\]} & \multirow[t]{16}{*}{AQVac} & \multirow[t]{16}{*}{TMV} & |Low sweet blueberry*----------- & 5-15 & |Red maple------ & 1 \\
\hline & & & Bracken fern & >25 & |Red pine--------- & 1 \\
\hline & & & | Canada blueberry-------------- & 5-15 & | Jack pine--------- & 2 \\
\hline & & & |Wintergreen------------------- | & 5-15 & | Quaking aspen----- & 2 \\
\hline & & & | Large-leaved aster------------| & 5-15 & |Eastern white pine- & 2 \\
\hline & & & | Beaked hazelnut*--------------| & 5-15 & | Northern red oak--- & 3 \\
\hline & & & | Grasses----------------------- | & 15-25 & | Balsam fir-------- & 3 \\
\hline & & & | Pin cherry-------------------| & <5 & | White spruce------- & 3 \\
\hline & & & |Wood anemone & <5 & & \\
\hline & & & | Juneberry & <5 & & \\
\hline & & & | Barren strawberry**----------- | & 5-15 & & \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & Cow wheat & <5 & & \\
\hline & & & |Wild sarsaparilla**-----------| & <5 & & \\
\hline & & & |Sweetfern--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{array}{|c|}
\mid \text { Secondary } \mid \\
\mid \text { habitat } \mid \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{12}{*}{\[
\begin{aligned}
& \text { 39B, 39D, 39E-- } \\
& \text { Amasa }
\end{aligned}
\]} & \multirow{12}{*}{ATD} & \multirow{12}{*}{TM} & & \multirow[t]{2}{*}{Pct} & & \multirow[t]{2}{*}{} \\
\hline & & & & & & \\
\hline & & & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------- & 1 \\
\hline & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple---- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Black cherry- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & Canadan, downy yellow violet | & & & \\
\hline \multirow[t]{10}{*}{40B, 40D-------
Waiska} & \multirow[t]{10}{*}{AtD} & \multirow[t]{10}{*}{Avo} & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------- & 1 \\
\hline & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple-------- & 2 \\
\hline & & & |Sedges-------------------------| & 5-15 & |American basswood-- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | Black cherry------ & 3 \\
\hline & & & |Red elderberry**-------------- | & < 5 & |White spruce----- & 3 \\
\hline & & & |American starflower-----------| & <5 & |Balsam fir------- & 3 \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{13}{*}{} & \multirow[t]{13}{*}{TMC-V} & \multirow[t]{13}{*}{TMC} & |Goldthread**------------------ | & & |Red maple--------- & 1 \\
\hline & & & |Wild lily-of-the-valley**------| & 5-15 & | Balsam fir------- & 1 \\
\hline & & & |Yellow beadiily---------------| & <5 & |White spruce----- & 1 \\
\hline & & & | Bunchberry**----------------- | & 5-15 & |Quaking aspen---- & 2 \\
\hline & & & |American starflower-----------| & <5 & |Eastern hemlock---- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Red pine--------- & 3 \\
\hline & & & | Bracken fern------------------- & 15-25 & |Eastern white pine- & 3 \\
\hline & & & |Canada blueberry*------------- | & 5-15 & | Paper birch------ & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & |Shining clubmoss--------------| & <5 & & \\
\hline & & & |Wintergreen------------------- | & <5 & & \\
\hline & & & |Wood sorrel**------------------ | & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{14}{*}{\begin{tabular}{l}
42------ \\
Minocqua
\end{tabular}} & \multirow[t]{14}{*}{PCS} & \multirow[t]{14}{*}{TTS} & |Sphagnum moss**---------------- | & >25 & | Black spruce----- & 1 \\
\hline & & & |Labrador tea------------------- & 15-25 & | Tamarack--------- & 1 \\
\hline & & & |Leatherleaf*------------------- | & 15-25 & |Red maple------- & 2 \\
\hline & & & |Sedges------------------------ & >25 & |Quaking aspen----- & 2 \\
\hline & & & |Canada blueberry-------------- | & 5-15 & |Balsam fir------- & 2 \\
\hline & & & | Creeping snowberry------------| & <5 & |Eastern white pine- & 3 \\
\hline & & & |Small cranberry**-------------- & 5-15 & & \\
\hline & & & |Bog rosemary*----------------- | & 5-15 & & \\
\hline & & & | Pale laurel*------------------ | & 5-15 & & \\
\hline & & & | Goldthread-------------------- | & <5 & & \\
\hline & & & |Pitcher plant**----------------| & <5 & & \\
\hline & & & |Blueflag iris-----------------| & <5 & & \\
\hline & & & |Sundew**---------------------- | & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{12}{*}{\[
\begin{gathered}
\text { 43B, 43D } \\
\text { Karlin }
\end{gathered}
\]} & \multirow[t]{12}{*}{TM} & \multirow[t]{12}{*}{AQVac} & |Wild lily-of-the-valley*-------| & 5-15 & | Quaking aspen----- & 1 \\
\hline & & & |Grasses & 15-25 & |Red maple--------- & 1 \\
\hline & & & | Sedges------------------------ | & 5-15 & |Eastern hemlock---- & 1 \\
\hline & & & | Bracken fern------------------ | & >25 & | Sugar maple------- & 2 \\
\hline & & & | American starflower-----------| & <5 & | Yellow birch------ & 2 \\
\hline & & & |Bedstraw---------------------| & <5 & |White spruce------ & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & | Balsam fir-------- & 3 \\
\hline & & & | Beaked hazelnut--------------| & 15-25 & |Eastern white pine- & 3 \\
\hline & & & | Ground pine------------------- | & <5 & & \\
\hline & & & | Large-leaved aster------------| & 5-15 & & \\
\hline & & & |Juneberry--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
| Secondary \\
habitat type
\end{tabular} & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 44B----------- | & ATD & TM & |Spinulose shield fern*--------| & 5-15 & | Sugar maple------ & 1 \\
\hline Carlshend & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk--------------| & < & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple--- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce------ & 3 \\
\hline & & & |Red elderberry**--------------| & <5 & |Balsam fir------- & 3 \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 45A----------- & TMC & TMC-V & |Goldthread*------------------- | & 5-15 & |Red maple-------- & 1 \\
\hline Zeba & & & |Wild lily-of-the-valley**-----| & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & | Yellow beadiily---------------| & <5 & |Red pine--------- & 2 \\
\hline & & & | Bunchberry*-------------------| & 5-15 & |Eastern white pine- & 2 \\
\hline & & & | American starflower-----------| & <5 & | Paper birch------ & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | White spruce----- & 3 \\
\hline & & & |Bracken fern------------------ | & 15-25 & |Balsam fir--------- & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & |Quaking aspen----- & 3 \\
\hline & & & | Shining clubmoss---------------| & <5 & & \\
\hline & & & | Wintergreen------------------- | & <5 & & \\
\hline & & & |Wood sorrel*------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 46------------- | & TTS & | FMC & | Goldthread**------------------ | & <5 & | Northern whitecedar & 1 \\
\hline Jacobsville & & & | Bunchberry--------------------| & <5 & |Eastern hemlock---- & 1 \\
\hline & & & |Wild lily-of-the-valley-------| & 5-15 & | Balsam fir------- & 2 \\
\hline & & & | Sphagnum moss*----------------| & >25 & | Black spruce----- & 2 \\
\hline & & & |Wood sorrel**------------------ | & <5 & | Red maple-------- & 3 \\
\hline & & & |Dewberry----------------------| & <5 & & \\
\hline & & & |Tag alder---------------------| & <15-25 & & \\
\hline & & & |Horsetail*-------------------- | & <15-25 & & \\
\hline & & & |Sedges------------------------- | & 15-25 & & \\
\hline & & & & & & \\
\hline 48------------- | & TTS & FMC & |Goldthread**------------------ | & <5 & | Northern whitecedar & 1 \\
\hline Burt & & & | Bunchberry--------------------| & <5 & |Eastern hemlock-- & 1 \\
\hline & & & |Wild lily-of-the-valley-------| & 5-15 & | Balsam fir-------- & 2 \\
\hline & & & | Sphagnum moss*---------------- | & <25 & | Black spruce----- & 2 \\
\hline & & & |Wood sorrel**------------------ | & <5 & |Red maple--------- & 3 \\
\hline & & & | Dewberry & <5 & & \\
\hline & & & |Tag alder & <15-25 & & \\
\hline & & & |Horsetail*-------------------- | & <15-25 & & \\
\hline & & & |Sedges------------------------ | & 15-25 & & \\
\hline & & & & & & \\
\hline 50A------------ | & TTP & | TMC & | Grasses/sedges---------------- | & 15-25 & | Northern whitecedar & 1 \\
\hline Sundell & & & |Dewberry---------------------- | & 5-15 & | Balsam fir-------- & 1 \\
\hline & & & | Large-leaved aster-------------| & >25 & | Eastern hemlock--- & 2 \\
\hline & & & |Barren strawberry & 15-25 & | Red maple-------- & 3 \\
\hline & & & | Bunchberry-------------------- | & 5-15 & |Quaking aspen------ & 3 \\
\hline & & & |Horsetail-------------------- | & <5 & & \\
\hline & & & | Palmate-leaved sweet coltsfoot*| & \[
5-15
\] & & \\
\hline & & & |Wild sarsaparilla-------------| & 15-25 & & \\
\hline & & & |Bracken fern------------------| & 5-15 & & \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & & \\
\hline & & | & |Beaked hazelnut---------------| & 5-15 & & \\
\hline & & & |American fly honeysuckle------| & 5-15 & & \\
\hline & & & |Tag alder---------------------| & <5 & & \\
\hline & & | & |Black snakeroot*--------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{array}{|c}
\text { | Secondary } \\
\text { habitat } \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{16}{*}{51----
Nahma} & \multirow{16}{*}{TTM} & \multirow[t]{16}{*}{| FI} & & Pct & & \\
\hline & & & |Sedges----------------------- | & 15-25 & | Northern whitecedar & 1 \\
\hline & & & |Wild lily-of-the-valley-------- & <5 & | Balsam fir------- & 1 \\
\hline & & & | American starflower------------| & <5 & | Black ash-------- & 2 \\
\hline & & & | Naked miterwort*--------------- | & 5-15 & | Eastern hemlock--- & 2 \\
\hline & & & | Twinflower*------------------- | & <5 & | Red maple------ & 3 \\
\hline & & & |Bedstraw--------------------- | & <5 & | Quaking aspen---- & 3 \\
\hline & & & | Dewberry--------------------- | & 5-15 & | Balsam poplar---- & 3 \\
\hline & & & |Rattlesnake fern--------------- | & <5 & & \\
\hline & & & | Bunchberry-------------------- | & 5-15 & & \\
\hline & & & |Sphagnum moss**---------------- | & >25 & & \\
\hline & & & | Pyrola----------------------- | & < 5 & & \\
\hline & & & |American fly honeysuckle-------| & < 5 & & \\
\hline & & & |Fringed polygala*-------------- | & <5 & & \\
\hline & & & | Goldthread-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 52B----------- | & \multirow[t]{16}{*}{AVO} & \multirow[t]{16}{*}{AVO-A} & | Sweet cicely*------------------ | & 5-15 & | Sugar maple------ & 1 \\
\hline \multirow[t]{15}{*}{Summerville} & & & & 5-15 & |American basswood-- & \\
\hline & & & | Spinulose shield fern----------| & 5-15 & | Ironwood---------- & 2 \\
\hline & & & |Canadian, downy yellow violet* & <5 & | Yellow birch-- & 3 \\
\hline & & & | Hairy Solomon's seal----------- | & < 5 & \multirow[t]{12}{*}{Eastern hemlock----} & \multirow[t]{11}{*}{3} \\
\hline & & & |Rosy twistedstalk-------------- & < 5 & & \\
\hline & & & |Bedstraw--------------------- | & <5 & & \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- & <5 & & \\
\hline & & & |False Solomon's seal----------- & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & < 5 & & \\
\hline & & & |Rattlesnake fern**------------- | & < 5 & & \\
\hline & & & |Blue cohosh**------------------ & <5 & & \\
\hline & & & |Bloodroot**------------------- | & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 55F-----------| & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{TMV} & | Spinulose shield fern*--------- | & 5-15 & |Sugar maple------ & 1 \\
\hline \multirow[t]{9}{*}{MichigammeRock outcrop} & & & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk-------------- | & <5 & | Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal----------- | & < 5 & |Red maple-------- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & |Balsam fir-------- & \multirow[t]{4}{*}{3} \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& \text { 56D, 56E, 56F-- } \\
& \text { Peshekee-Rock } \\
& \text { outcrop }
\end{aligned}
\]} & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{AQVac} & & & | Sugar maple------- & \\
\hline & & & |Sugar maple seedlings & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk-------------- & <5 & |Red maple-------- & 2 \\
\hline & & & | Hairy Solomon's seal----------- | & <5 & | Northern red oak--- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Eastern white pine- & 3 \\
\hline & & & |Wild lily-of-the-valley-------- & <5 & & \\
\hline & & & |Red elderberry**-------------- & < 5 & & \\
\hline & & & | American starflower----------- | & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
| Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 57------------ | & TTS & TTM & | Goldthread**- & <5 & | Northern whitecedar & 1 \\
\hline Carbondale and| & & & | Bunchberry-- & <5 & | Balsam fir-------- & 1 \\
\hline Tawas & & & |Wild lily-of-the-valley- & 5-15 & | Black spruce------ & 2 \\
\hline & & & | Meadowsweet------- & <5 & |Red maple-------- & 2 \\
\hline & & & | Sphagnum moss* & >25 & | Quaking aspen----- & 3 \\
\hline & & & | Canada blueberry-------- & <5 & | Paper birch------- & 3 \\
\hline & & & | Wood sorrel**------ & <5 & |Balsam poplar----- & 3 \\
\hline & & & | Creeping snowberry- & <5 & & \\
\hline & & & | Dewberry----------- & <5 & & \\
\hline & & & |Tag alder--------------- & 15-25 & & \\
\hline & & & |Wild raisin & <5 & & \\
\hline & & & | Sweet gale- & <5 & & \\
\hline & & & | Horsetail*------------- & 5-15 & & \\
\hline & & & | Sedges--- & 15-25 & & \\
\hline & & & |Willow sp.------ & <5 & & \\
\hline & & & & & & \\
\hline & PCS & --- & | Sphagnum moss----------- & >25 & | Black spruce------ & \\
\hline Greenwood and | & & & |Labrador tea & 15-25 & | Tamarack & \[
1
\] \\
\hline Dawson & & & | Leatherleaf* & 15-25 & |Eastern white pine- & 2 \\
\hline & & & | Sedges----- & >25 & & \\
\hline & & & | Canada blueberry-------- & 5-15 & & \\
\hline & & & | Creeping snowberry------ & <5 & & \\
\hline & & & |Small cranberry---- & 5-15 & & \\
\hline & & & |Bog rosemary*--- & 5-15 & & \\
\hline & & & | Pale laurel*----------- & 5-15 & & \\
\hline & & & | Goldthread------------- & <5 & & \\
\hline & & & |Pitcher plant*- & <5 & & \\
\hline & & & | Blueflag iris------ & <5 & & \\
\hline & & & | Sundew------------------ & <5 & & \\
\hline & & & & & & \\
\hline & & & & >25 & & \\
\hline Chippeny------ & TTS & TTM & |Sedges & 15-25 & |Black ash-------- & 1 \\
\hline Nahma--------- | & TTM & FI & | Tag alder--- & 15-25 & | Balsam fir------- & 2 \\
\hline & & & | Dewberry----- & 5-15 & | Red maple-------- & 2 \\
\hline & & & | American starflower----- & <5 & |Quaking aspen----- & 3 \\
\hline & & & | Goldthread**------------ & <5 & | Paper birch------ & 3 \\
\hline & & & |Wood sorrel** & <5 & |Balsam poplar------ & 3 \\
\hline & & & |Bunchberry & 5-15 & & \\
\hline & & & |Wild lily-of-the-valley- & <5 & & \\
\hline & & & | Naked miterwort*-------- & 5-15 & & \\
\hline & & & |Twinflower*- & <5 & & \\
\hline & & & |Bedstraw--- & <5 & & \\
\hline & & & & & & \\
\hline 60. & & & & & & \\
\hline Histosols and & & & & & & \\
\hline Aquents & & & & & & \\
\hline & & & & & & \\
\hline 61. & & | & & & & \\
\hline Pits, borrow & & | & & & & \\
\hline & & & & & & \\
\hline 62 B . & & | & & & & \\
\hline Udorthents and| & & & & & & \\
\hline Udipsamments | & & & & & & \\
\hline & & & & & & \\
\hline 64. & & | & & & & \\
\hline Pits and Dumps & & 1 & & & & \\
\hline & & & & & & \\
\hline 65B. | & & | & & & & \\
\hline Udorthents- | & & I & | & & & \\
\hline Urban land | & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & & Common ground flora & Extent & Tree species & Dominance \\
\hline & & | & & Pct & & \\
\hline 66B. & & | & & & & \\
\hline Udipsamments- & & | & & & & \\
\hline Urban land & & | & & & & \\
\hline & & | & & & & \\
\hline 67B. & & | & & & & \\
\hline Urban land- & & | & & & & \\
\hline Rubicon & & & & & & \\
\hline & & | & & & & \\
\hline 68. & & | & & & & \\
\hline Pits, quarries & & | & & & & \\
\hline & & & & & & \\
\hline 69B, 69D-------| & Avo & | ATD & | Sweet cicely*----------------- | & 5-15 & |Sugar maple------ & 1 \\
\hline Escanaba & & | & |Sedges------------------------ | & 5-15 & |American basswood-- & 2 \\
\hline & & | & | Spinulose shield fern---------| & 5-15 & | Ironwood---------- & 2 \\
\hline & & | & |Canadian, downy yellow violet* | & <5 & | Yellow birch------ & 3 \\
\hline & & | & |Hairy Solomon's seal----------| & <5 & |Eastern hemlock---- & 3 \\
\hline & & , & |Rosy twistedstalk------------- | & <5 & |Black cherry------ & 3 \\
\hline & & | & | Bedstraw--------------------- | & <5 & & \\
\hline & & , & |Lady fern--------------------- | & 5-15 & & \\
\hline & & | & |Red elderberry---------------- | & <5 & & \\
\hline & & | & |False Solomon's seal----------| & <5 & & \\
\hline & & | & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & | & |Trillium---------------------| & < 5 & & \\
\hline & & | & |Rattlesnake fern**------------- & <5 & & \\
\hline & & | & |Blue cohosh**----------------- & < 5 & & \\
\hline & & | | & |Bloodroot**-------------------- | & <5 & & \\
\hline & & | & & & & \\
\hline 70B, 70D-------| & TM & | AVo & Wild lily-of-the-valley*------| & 5-15 & |Quaking aspen & 1 \\
\hline Nadeau & & | & |Grasses--------------------- | & 15-25 & |Red maple & 1 \\
\hline & & | & |Sedges------------------------ | & 5-15 & |Eastern hemlock---- & 1 \\
\hline & & | & | Bracken fern------------------ | & >25 & | Sugar maple------- & 2 \\
\hline & & | & |American starflower-----------| & <5 & | Yellow birch------ & 2 \\
\hline & & I & |Bedstraw---------------------- | & <5 & |White spruce------ & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & |Balsam fir------- & 3 \\
\hline & & & Beaked hazelnut & 15-25 & |Eastern white pine- & 3 \\
\hline & & 1 | & Ground pine & <5 & & \\
\hline & & 1 & | Large-leaved aster------------| & 5-15 & & \\
\hline & & I & |Juneberry-------------------- | & <5 & & \\
\hline & & | & & & & \\
\hline 71B----------- | & FMC & | AVo-CI & |Sedges*----------------------- | & >25 & | --- & --- \\
\hline Evart-Pelkie- & & | & |Mints*------------------------ | & 15-25 & & \\
\hline Sturgeon & & | & |Tag alder-------------------- | & >25 & & \\
\hline & & I & | Sensitive fern---------------- | & <5 & & \\
\hline & & | & |Dewberry--------------------- | & 5-15 & & \\
\hline & & | & |Jewelweed--------------------- | & <5 & & \\
\hline & & | & |Bedstraw---------------------- | & <5 & & \\
\hline & & & |Lady fern--------------------- | & <5 & & \\
\hline & & | & |Grasses----------------------- | & 15-25 & & \\
\hline & & | & |Raspberry--------------------- | & 5-15 & & \\
\hline & & | & |Redosier dogwood-------------- | & <5 & & \\
\hline & & & - & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 79B----------- | & ATD-D & TM & | Spinulose shield fern*--- & 5-15 & | Sugar maple----- & 1 \\
\hline Keweenaw- & & & | Sugar maple seedlings---- & >25 & |Eastern hemlock-- & 2 \\
\hline Munising & & & |Rosy twistedstalk------- & <5 & | Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal----- & <5 & |Red maple-------- & 2 \\
\hline & & & | Sedges--------- & 5-15 & |Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley- & <5 & |White spruce------ & 3 \\
\hline & & & |Red elderberry**-------- & <5 & | Paper birch------- & 3 \\
\hline & & & | American starflower------ & <5 & |Balsam fir------- & 3 \\
\hline & & & & & & \\
\hline 80B, 80D, 80E--| & AQVac & TMV & | Low sweet blueberry* & 5-15 & |Red maple------- & 1 \\
\hline Sayner-Rubicon| & & & |Bracken fern------------ & >25 & |Red pine--------- & 1 \\
\hline & & & |Canada blueberry & \[
5-15
\] & |Jack pine & \[
2
\] \\
\hline & & & | Wintergreen---- & 5-15 & |Quaking aspen---- & 2 \\
\hline & & & | Large-leaved aster------ & 5-15 & |Eastern white pine- & 2 \\
\hline & & & |Beaked hazelnut*-------- & 5-15 & | Northern red oak--- & 3 \\
\hline & & & | Grasses---- & 15-25 & | Balsam fir------- & 3 \\
\hline & & & \(\mid\) Pin cherry- & <5 & |White spruce---- & 3 \\
\hline & & & | Wood anemone------------ & <5 & & \\
\hline & & & | Juneberry--------------- & <5 & & \\
\hline & & & | Barren strawberry**----- & 5-15 & & \\
\hline & & & |American starflower----- & <5 & & \\
\hline & & & | Cow wheat--------------- & <5 & & \\
\hline & & & |Wild sarsaparilla**----- & <5 & & \\
\hline & & & | Sweetfern-------------- & <5 & & \\
\hline & & & & & & \\
\hline 81B, 81D, 81E--| & AQVac & TMV & |Low sweet blueberry* & 5-15 & |Red maple & 1 \\
\hline Pelissier & & & |Bracken fern- & >25 & |Red pine & 1 \\
\hline & & & | Canada blueberry-------- & 5-15 & |Jack pine------- & 2 \\
\hline & & & | Wintergreen------------- & 5-15 & |Quaking aspen---- & 2 \\
\hline & & & | Large-leaved aster------ & 5-15 & |Eastern white pine- & 2 \\
\hline & & & |Beaked hazelnut*--------- & 5-15 & | Northern red oak-- & 3 \\
\hline & & & Grasses & 15-25 & | Balsam fir------- & 3 \\
\hline & & & \(\mid\) Pin cherry & <5 & |White spruce----- & 3 \\
\hline & & & |Wood anemone------------ & <5 & & \\
\hline & & & | Juneberry--------------- & <5 & & \\
\hline & & & | Barren strawberry**------ & 5-15 & & \\
\hline & & & |American starflower----- & <5 & & \\
\hline & & & | Cow wheat-------------- & <5 & & \\
\hline & & & | Wild sarsaparilla**----- & <5 & & \\
\hline & & & | Sweetfern--------------- & <5 & & \\
\hline & & & & & & \\
\hline 84D, 84F-------| & AQVac & QAE & | Low sweet blueberry*---- & 5-15 & |Red maple-------- & 1 \\
\hline Rubicon- & & & |Bracken fern & >25 & |Northern red oak--- & 1 \\
\hline Ishpeming- & & & |Canada blueberry & 5-15 & | Red pine-------- & 2 \\
\hline Rock outcrop & & & | Wintergreen------------- & 5-15 & |Jack pine--------- & 2 \\
\hline & & & | Large-leaved aster------- & 5-15 & | Quaking aspen------ & 2 \\
\hline & & & |Beaked hazelnut*-------- & 5-15 & |Eastern white pine- & 3 \\
\hline & & & | Grasses----------------- & 15-25 & |Balsam fir-------- & 3 \\
\hline & & & | Pin cherry-------------- & <5 & |White spruce------ & 3 \\
\hline & & & |Wood anemone- & <5 & & \\
\hline & & & | Juneberry--------------- & <5 & & \\
\hline & & & | Barren strawberry**------ & 5-15 & & \\
\hline & & & | American starflower------ & <5 & & \\
\hline & & & | Cow wheat--------------- & <5 & & \\
\hline & & & | Wild sarsaparilla**------- & <5 & & \\
\hline & & & | Sweetfern---------------- & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{aligned}
& \text { | Secondary } \\
& \text { | habitat } \\
& \text { type }
\end{aligned}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline \multirow[t]{16}{*}{\[
\begin{gathered}
\text { 85A---- } \\
\text { Solona }
\end{gathered}
\]} & \multirow[t]{16}{*}{AVo-CI} & \multirow[t]{16}{*}{TMC-D} & |Sweet cicely*----------------- | & 5-15 & |Sugar maple------ & 1 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Eastern hemlock--- & 2 \\
\hline & & & | Canadian, downy yellow violet**| & <5 & | White ash-------- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Balsam fir------- & 2 \\
\hline & & & |Bedstraw---------------------- | & <5 & |American basswood- & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & | Ironwood---------- & 3 \\
\hline & & & |Red elderberry---------------- | & <5 & |Yellow birch----- & 3 \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Rattlesnake fern**------------| & <5 & & \\
\hline & & & |Blue cohosh**------------------ & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & & \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & |Jewelweed*-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 86B------------ | & \multirow[t]{16}{*}{Avo} & \multirow[t]{16}{*}{AVo-A} & | Sweet cicely*----------------- | & 5-15 & | Sugar maple------- & 1 \\
\hline \multirow[t]{15}{*}{Mashek} & & & |Sedges------------------------ | & 5-15 & |American basswood- & 2 \\
\hline & & & | Spinulose shield fern---------| & 5-15 & | Ironwood--------- & 2 \\
\hline & & & |Canadian, downy yellow violet* | & <5 & | Quaking aspen----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Eastern hemlock--- & 3 \\
\hline & & & |Bedstraw---------------------- | & <5 & |Black cherry----- & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & & \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & <5 & & \\
\hline & & & |Rattlesnake fern**------------ | & <5 & & \\
\hline & & & |Blue cohosh**------------------ & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 87B----------- | & \multirow[t]{16}{*}{Avo} & \multirow[t]{16}{*}{AVO-A} & |Sweet cicely*----------------- | & 5-15 & | Sugar maple------- & 1 \\
\hline \multirow[t]{15}{*}{Cunard} & & & |Sedges & 5-15 & |American basswood-- & 2 \\
\hline & & & | Spinulose shield fern---------| & 5-15 & | Ironwood---------- & 2 \\
\hline & & & | Canadian, downy yellow violet* | & <5 & | Quaking aspen----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Yellow birch------ & 3 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Eastern hemlock--- & 3 \\
\hline & & & |Bedstraw---------------------- | & <5 & | Black cherry------ & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- & <5 & & \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & <5 & & \\
\hline & & & |Rattlesnake fern**------------| & <5 & & \\
\hline & & & |Blue cohosh**----------------- & < 5 & & \\
\hline & & & |Bloodroot**-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{15}{*}{88------------} & \multirow[t]{15}{*}{TTM} & \multirow[t]{15}{*}{FI} & & 15-25 & | Northern whitecedar & 1 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | Balsam fir-------- & 1 \\
\hline & & & |American starflower-----------| & <5 & | Black ash--------- & 2 \\
\hline & & & | Naked miterwort*--------------| & 5-15 & |Eastern hemlock--- & 2 \\
\hline & & & | Twinflower* & <5 & | Red maple--------- & 3 \\
\hline & & & |Bedstraw--------------------- | & <5 & | Quaking aspen----- & 3 \\
\hline & & & | Dewberry---------------------- & 5-15 & | Balsam poplar------ & 3 \\
\hline & & & |Rattlesnake fern--------------- & <5 & & \\
\hline & & & | Bunchberry-------------------- | & 5-15 & & \\
\hline & & & | Sphagnum moss**--------------- | & >25 & & \\
\hline & & & | Pyrola---------------------- | & < & & \\
\hline & & & |American fly honeysuckle------| & <5 & & \\
\hline & & & |Fringed polygala*-------------| & <5 & & \\
\hline & & & | Goldthread------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Map symbol } \\
& \text { and soil name }
\end{aligned}
\] & Primary habitat type & & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline 89B: & & & & & & \\
\hline Emmet-------- | & Avo & TMC & | Sweet cicely*------------------ & 5-15 & | Sugar maple-- & 1 \\
\hline & & & |Spinulose shield fern---------| & 5-15 & | Red maple-------- & 1 \\
\hline & & 1 & |Canadian, downy yellow violet* & <5 & |Eastern hemlock-- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Yellow birch--- & 2 \\
\hline & & & |Rosy twistedstalk-------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & | Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Blue cohosh**------------------ | & <5 & & \\
\hline & & & & & & \\
\hline Solona-------- | & Avo & TMC & | Goldthread*------------------- | & 5-15 & | Sugar maple------- & \\
\hline & & & |Bunchberry* & 5-15 & |Red maple & \[
1
\] \\
\hline & & 1 | & |Wild lily-of-the-valley**------ & 5-15 & |Eastern hemlock--- & 2 \\
\hline & & 1 | & |Bracken fern------------------ | & 15-25 & | Yellow birch----- & 2 \\
\hline & & 1 | & | Wood sorrel**------------------ | & <5 & |Balsam fir------ & 3 \\
\hline & & & | Sedges & \[
5-15
\] & & \\
\hline & & & |Wild sarsaparilla-------------- & <5 & & \\
\hline & & | | & & & & \\
\hline 90B, 90D-------| & AVo & AVo-A & | Sweet cicely*----------------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Emmet-Escanaba| & & & | Sedges & 5-15 & |American basswood-- & 2 \\
\hline & & \(\mid\) | & | Spinulose shield fern---------| & 5-15 & | Ironwood--------- & 2 \\
\hline & & \(\mid\) | & |Canadian, downy yellow violet* & <5 & |Quaking aspen---- & 2 \\
\hline & & | | & |Hairy Solomon's seal----------| & <5 & | Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk-------------- & <5 & |Eastern hemlock-- & 3 \\
\hline & & \(\mid\) | & |Bedstraw---------------------- | & <5 & | Black cherry----- & 3 \\
\hline & & 1 | & |Lady fern--------------------- & 5-15 & & \\
\hline & & & |Red elderberry----------------- | & <5 & & \\
\hline & & & |False Solomon's seal---------- | & <5 & & \\
\hline & & 1 & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium----------------------| & <5 & & \\
\hline & & & |Rattlesnake fern**-------------| & <5 & & \\
\hline & & & |Blue cohosh** & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 91B----------- | & Avo & TM & | Sweet cicely*------------------ | & 5-15 & | Sugar maple------ & 1 \\
\hline Onaway-Nadeau & & & |Spinulose shield fern- & \[
5-15
\] & |Red maple & \[
1
\] \\
\hline & & 1 | & |Canadian, downy yellow violet* | & <5 & |Quaking aspen---- & 1 \\
\hline & & & | Hairy Solomon's seal----------| & <5 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk-------------- & <5 & |Yellow birch----- & 2 \\
\hline & & 1 & | Jack in the pulpit**----------- & <5 & | Balsam fir------ & 3 \\
\hline & & 1 | & |Blue cohosh**-----------------| & <5 & & \\
\hline & & & |Wild lily-of-the-valley*------- & 5-15 & & \\
\hline & & & |Bracken fern- & >25 & & \\
\hline & & & | Grasses----------------------- | & 5-15 & & \\
\hline & & & | Beaked hazelnut---------------- | & 15-25 & & \\
\hline & & & | Large-leaved aster------------- | & 5-15 & & \\
\hline & & & |Wild sarsaparilla & <5 & & \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & & & & \\
\hline & FI & TMC & |Jewelweed* & 5-15 & |Black ash & \\
\hline Ensley-Solona | & & | | & |Lady fern--------------------- & 5-15 & |White ash------- & 1 \\
\hline & & & |Red elderberry----------------- & 5-15 & |Red maple--------- & 1 \\
\hline & & 1 | & | Sedges----------------------- | & 15-25 & | Northern whitecedar & 2 \\
\hline & & 1 & | Grasses---------------------- | & 15-25 & |Balsam poplar------ & 2 \\
\hline & & 1 & | Dwarf enchanter's nightshade*--| & <5 & |Balsam fir-------- & 2 \\
\hline & & & |Mints------------------------ | & <5 & & \\
\hline & & \(\mid\) | & | Dewberry---------------------- | & <5 & & \\
\hline & & 1 | & | Gooseberry-------------------- | & < 5 & & \\
\hline & & & |Wild lily-of-the-valley------- | & <5 & & \\
\hline & & & |Raspberry-------------------- | & <5 & & \\
\hline & & 1 & | Stinging nettle--------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{array}{|c|}
\mid \text { Secondary } \mid \\
\mid \text { habitat } \mid \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline & & | & & Pct & & \\
\hline 103D---------- | & TMV & | AQVac & |Bracken fern----------------- | & >25 & |Red maple------ & 1 \\
\hline Rubicon- & & & |Wild lily-of-the-valley--------| & 5-15 & |Eastern hemlock-- & 1 \\
\hline Ocqueoc-Rock & & I & | Large-leaved aster------------ | & >25 & | Sugar maple----- & 2 \\
\hline outcrop & & | & |Canada blueberry*------------- | & <5 & |Eastern white pine- & 2 \\
\hline & & | & |Wild sarsaparilla*------------| & 5-15 & | Northern red oak- & 2 \\
\hline & & , & |Beaked hazelnut---------------| & 5-15 & | Balsam fir------ & 3 \\
\hline & & | & |Wintergreen-------------------| & 5-15 & | White spruce-- & 3 \\
\hline & & | & | American starflower-----------| & 5-15 & & \\
\hline & & | & |Low sweet blueberry**----------| & <5 & & \\
\hline & & & |Yellow beadlily**--------------| & <5 & & \\
\hline & & | & |False Solomon's seal**---------| & <5 & & \\
\hline & & & |Rosy twistedstalk**------------| & <5 & & \\
\hline & & | & |Wood betony*------------------ | & 5-15 & & \\
\hline & & | & | Spinulose shield fern**--------| & <5 & & \\
\hline & & | & |Sedges------------------------ | & <5 & & \\
\hline & & | & & & & \\
\hline 104C----------- | & Avo & | ATD & |Sweet cicely*----------------- | & 5-15 & | Sugar maple----- & 1 \\
\hline Fence & & & |Sedges------------------------ | & 5-15 & |American basswood- & 2 \\
\hline & & | & |Spinulose shield fern---------| & 5-15 & | Ironwood-------- & 2 \\
\hline & & | & |Canadian, downy yellow violet* | & <5 & |Quaking aspen- & 2 \\
\hline & & | & |Hairy Solomon's seal----------| & <5 & |Yellow birch------ & 3 \\
\hline & & | & |Rosy twistedstalk-------------- & <5 & |Eastern hemlock-- & 3 \\
\hline & & | & |Bedstraw---------------------- & <5 & |Black cherry----- & 3 \\
\hline & & | & |Lady fern--------------------- | & 5-15 & & \\
\hline & & | & |Red elderberry---------------- | & <5 & & \\
\hline & & | & |False Solomon's seal----------| & <5 & & \\
\hline & & , & |Jack in the pulpit**-----------| & < 5 & & \\
\hline & & | & |Trillium---------------------- | & < 5 & & \\
\hline & & | & |Rattlesnake fern**-------------| & <5 & & \\
\hline & & & |Blue cohosh**----------------- & <5 & & \\
\hline & & | & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 105C---------- | & AtD & | TM & | Spinulose shield fern*--------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Munising & & | & | Sugar maple seedlings---------- & >25 & |Eastern hemlock-- & 2 \\
\hline & & , & |Rosy twistedstalk-------------| & < & |Yellow birch----- & 2 \\
\hline & & I & |Hairy Solomon's seal-----------| & <5 & |Red maple------- & 2 \\
\hline & & | & | Sedges------------------------ | & 5-15 & |Black cherry----- & 2 \\
\hline & & | | & |Wild lily-of-the-valley--------| & <5 & |White spruce----- & 3 \\
\hline & & 1 & |Red elderberry** & <5 & |Balsam fir------- & 3 \\
\hline & & 1 | & | American starflower-----------| & <5 & & \\
\hline & & 1 | & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 106B, 106D-----| & AQVac & TMV & |Low sweet blueberry*----------- | & 5-15 & | Red maple------- & 1 \\
\hline Sagola-Rubicon| & & I & | Bracken fern------------------ | & >25 & | Northern red oak--- & 1 \\
\hline & & I & | Canada blueberry-------------- | & 5-15 & |Red pine---------- & 2 \\
\hline & & | & | Wintergreen------------------- | & 5-15 & | Jack pine------ & 2 \\
\hline & & | & | Large-leaved aster------------ | & 5-15 & |Quaking aspen----- & 2 \\
\hline & & | & |Beaked hazelnut*-------------- | & 5-15 & |Eastern white pine- & 3 \\
\hline & & | & |Grasses & 15-25 & | Balsam fir-------- & 3 \\
\hline & & | & | Pin cherry-------------------| & <5 & |White spruce------ & 3 \\
\hline & & | & |Wood anemone------------------| & <5 & & \\
\hline & & | & | Juneberry--------------------- | & <5 & & \\
\hline & & | & |Barren strawberry**------------ & 5-15 & & \\
\hline & & | & | American starflower-----------| & <5 & & \\
\hline & & | & | Cow wheat--------------------- | & <5 & & \\
\hline & & | & |Wild sarsaparilla**-----------| & < 5 & & \\
\hline & & I & | Sweetfern-------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \(\left|\begin{array}{c}\text { Secondary } \\ \mid \\ \text { habitat } \\ \text { type }\end{array}\right|\) & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{107B, 107D,} \\
\hline 107F--------- | & AtD & TMV & |Spinulose shield fern*--------| & 5-15 & | Sugar maple------ & 1 \\
\hline Goodman- & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock-- & 2 \\
\hline \multirow[t]{8}{*}{Sundog} & & | | & |Rosy twistedstalk-------------| & <5 & |Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal & <5 & |Red maple & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**--------------| & <5 & |Balsam fir------- & 3 \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 108B, 108D-----| & Avo & ATD & |Sweet cicely*----------------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Goodman- & & & |Sedges------------------------| & 5-15 & |American basswood-- & 2 \\
\hline \multirow[t]{14}{*}{Sundog-Wabeno |} & & 1 | & | Spinulose shield fern---------| & 5-15 & | Ironwood---------- & 2 \\
\hline & & & |Canadian, downy yellow violet* | & <5 & |Quaking aspen----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Eastern hemlock--- & 3 \\
\hline & & & | Bedstraw---------------------- | & <5 & | Black cherry----- & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & & \\
\hline & & | | & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Jack in the pulpit**----------| & <5 & & \\
\hline & & & |Trillium---------------------- & <5 & & \\
\hline & & | | & |Rattlesnake fern**------------- & <5 & & \\
\hline & & & |Blue cohosh**------------------ | & <5 & & \\
\hline & & & |Bloodroot**-------------------- & <5 & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{109B, 109D,} \\
\hline 109F---------- | & AQVac & QAE & |Low sweet blueberry* & 5-15 & |Red maple--------- & 1 \\
\hline Rubicon- & & & |Bracken fern & >25 & | Northern red oak- & 1 \\
\hline \multirow[t]{14}{*}{Keweenaw} & & & | Canada blueberry-------------- | & 5-15 & |Red pine--------- & 2 \\
\hline & & & |Wintergreen-------------------| & 5-15 & | Jack pine-------- & 2 \\
\hline & & & | Large-leaved aster------------| & 5-15 & | Quaking aspen----- & 2 \\
\hline & & & |Beaked hazelnut*--------------| & 5-15 & |Eastern white pine- & 3 \\
\hline & & & |Grasses & 15-25 & |Balsam fir-------- & 3 \\
\hline & & & | Pin cherry & <5 & |White spruce----- & 3 \\
\hline & & & |Wood anemone & <5 & & \\
\hline & & & |Juneberry--------------------- | & <5 & & \\
\hline & & & | Barren strawberry**----------- | & 5-15 & & \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & | Cow wheat-------------------- | & <5 & & \\
\hline & & & |Wild sarsaparilla**-----------| & <5 & & \\
\hline & & & |Sweetfern--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 110B, 110D-----| & AQVac & TMV & |Low sweet blueberry*-----------| & 5-15 & |Red maple-------- & 1 \\
\hline & & 1 | & |Bracken fern- & >25 & | Northern red oak--- & 1 \\
\hline \multirow[t]{14}{*}{Mancelona} & & & |Canada blueberry & 5-15 & |Red pine--------- & 2 \\
\hline & & & |Wintergreen------------------- | & 5-15 & | Jack pine-------- & 2 \\
\hline & & 1 | & | Large-leaved aster------------ | & 5-15 & | Quaking aspen----- & 2 \\
\hline & & | & |Beaked hazelnut*--------------| & 5-15 & |Eastern white pine- & 3 \\
\hline & & , & |Grasses & 15-25 & |Balsam fir-------- & 3 \\
\hline & & | & | Pin cherry-------------------| & <5 & | White spruce------ & 3 \\
\hline & & | & |Wood anemone------------------| & <5 & & \\
\hline & & | & | Juneberry & <5 & & \\
\hline & & & | Barren strawberry**-----------| & 5-15 & & \\
\hline & & | & |American starflower-----------| & <5 & & \\
\hline & & & |Cow wheat & <5 & & \\
\hline & & | & |Wild sarsaparilla**------------| & <5 & & \\
\hline & & | & |Sweetfern--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 118A: & & & & & & \\
\hline Croswell------ & TMC-V & QAE & |Bracken fern** & >25 & | Red maple----- & 1 \\
\hline & & & | Wintergreen----------------- & 5-15 & | Northern red oak-- & 1 \\
\hline & & & |Low sweet blueberry------------ | & 15-25 & |Red pine--------- & 2 \\
\hline & & & | Trailing arbutus*--------------| & <5 & | Jack pine-------- & 2 \\
\hline & & & | Canada blueberry- & 15-25 & |Quaking aspen---- & 2 \\
\hline & & & |Wild lily-of-the-valley**------| & <5 & |Eastern white pine- & 3 \\
\hline & & & |Sedges----------------------- & 5-15 & | Balsam fir-------- & 3 \\
\hline & & & & & |White spruce------- & 3 \\
\hline & & & & & & \\
\hline Deford-------- | & TMC-V & QAE & |Goldthread* & 5-15 & | Balsam fir-------- & 1 \\
\hline & & & |Bunchberry* & 5-15 & | Northern whitecedar & 1 \\
\hline & & & |Wood sorrel*------------------ & <5 & |Eastern hemlock--- & 1 \\
\hline & & & & & | Black spruce----- & 2 \\
\hline & & & & & |Red maple--------- & 3 \\
\hline & & & & & & \\
\hline 119B, 119D-----| & Atd & TM & | Spinulose shield fern*--------- & 5-15 & | Sugar maple------- & 1 \\
\hline Yalmer- & & & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock---- & 2 \\
\hline Kalkaska & & & |Rosy twistedstalk------------- & <5 & |Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & |Red maple-- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Black cherry------ & 2 \\
\hline & & & |Wild lily-of-the-valley------- | & <5 & | White spruce------ & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & | Balsam fir-------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & Canadan, & & & \\
\hline 121B--------- & ATD & TM & |Spinulose shield fern*--------- | & 5-15 & | Sugar maple------- & 1 \\
\hline Onota & & & | Sugar maple seedlings---------- & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk--------------| & <5 & |Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal----------- | & <5 & | Red maple-------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & \[
<5
\] & |Balsam fir------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 122------------ | & FI & TTM & Jewelweed* & 5-15 & |Black ash-------- & 1 \\
\hline Pleine & & & |Lady fern--------------------- & 5-15 & |Red maple--------- & 1 \\
\hline & & & |Red elderberry---------------- & 5-15 & | Northern whitecedar & 1 \\
\hline & & & |Sedges & 15-25 & | Balsam poplar----- & 2 \\
\hline & & & |Grasses & 15-25 & |Balsam fir------- & 2 \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & |Mints------------------------- | & <5 & & \\
\hline & & & | Dewberry--------------------- & <5 & & \\
\hline & & & | Gooseberry-------------------- | & <5 & & \\
\hline & & & |Wild lily-of-the-valley------- | & <5 & & \\
\hline & & & |Raspberry--------------------| & <5 & & \\
\hline & & & | Stinging nettle--------------- | & <5 & & \\
\hline & & & | | & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\begin{array}{|c|}
\mid \text { Secondary } \\
\mid \text { habitat } \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{17}{*}{\[
\begin{gathered}
123 \mathrm{~A}- \\
\text { Tula }
\end{gathered}
\]} & \multirow{17}{*}{TMC-D} & \multirow{17}{*}{AVo-cI} & & Pct & & \\
\hline & & & |Wild lily-of-the-valley*-------| & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & |Goldthread**------------------ | & 5-15 & |Red maple-------- & 1 \\
\hline & & & |Yellow beadlily--------------- | & <5 & | Sugar maple------ & 2 \\
\hline & & & |Bunchberry*------------------- | & 5-15 & | Yellow birch----- & 2 \\
\hline & & & | American starflower------------| & <5 & | Balsam fir----- & 3 \\
\hline & & & | Sedges------------------------- | & 5-15 & \multirow[t]{11}{*}{|White spruce-------} & \multirow[t]{10}{*}{3} \\
\hline & & & | Spinulose shield fern*---------| & 5-15 & & \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & |Rosy twistedstalk-------------- & <5 & & \\
\hline & & & |Shining clubmoss--------------| & <5 & & \\
\hline & & & |American fly honeysuckle-------| & <5 & & \\
\hline & & & | Wintergreen------------------- | & < 5 & & \\
\hline & & & |Wood sorrel*------------------ | & < 5 & & \\
\hline & & & | Oak fern*--------------------- | & < 5 & & \\
\hline & & & |Hairy Solomon's seal*----------| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& \text { 124B, 124D----- } \\
& \text { Gogebic-Dishno| }
\end{aligned}
\]} & \multirow[t]{10}{*}{AtD} & \multirow[t]{10}{*}{Avo} & | Spinulose shield fern*--------- | & 5-15 & | Sugar maple----- & 1 \\
\hline & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk------------- | & <5 & | Yellow birch----- & 2 \\
\hline & & & |Hairy Solomon's seal----------- | & <5 & | Red maple-------- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & |American basswood-- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | Black cherry------ & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & |White spruce---- & 3 \\
\hline & & & | American starflower-----------| & < 5 & \multirow[t]{3}{*}{|Balsam fir--------} & \multirow[t]{3}{*}{3} \\
\hline & & & |Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 125D, 125F-----| & \multirow[t]{9}{*}{ATD-D} & \multirow[t]{9}{*}{TMV} & | Spinulose shield fern*--------- | & 5-15 & | Sugar maple------- & 1 \\
\hline Keweenaw- & & & | Sugar maple seedlings---------- & >25 & |Eastern hemlock---- & 2 \\
\hline Kalkaska-Rock | & & & |Rosy twistedstalk--------------| & <5 & | Yellow birch----- & 2 \\
\hline \multirow[t]{6}{*}{outcrop} & & & |Hairy Solomon's seal----------| & <5 & |Red maple--------- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & | Paper birch------ & 3 \\
\hline & & & | American starflower-----------| & <5 & |Balsam fir-------- & 3 \\
\hline & & & & & & \\
\hline 126B, 126D, & & & & & & \\
\hline 126E--------- | & \multirow[t]{16}{*}{TMV} & \multirow[t]{16}{*}{---} & |Bracken fern------------------ | & >25 & |Red maple--------- & 1 \\
\hline Sundog & & & |Wild lily-of-the-valley--------| & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & | Large-leaved aster------------ | & >25 & | Sugar maple------ & 2 \\
\hline & & & | Canada blueberry*-------------- & <5 & |Eastern white pine- & 2 \\
\hline & & & |Wild sarsaparilla*------------| & 5-15 & | Northern red oak--- & 2 \\
\hline & & & |Beaked hazelnut--------------- | & 5-15 & |Balsam fir-------- & 3 \\
\hline & & & |Wintergreen-------------------| & 5-15 & |White spruce------ & \multirow[t]{10}{*}{3} \\
\hline & & & | American starflower------------ & 5-15 & & \\
\hline & & & | Low sweet blueberry------------ | & <5 & | & \\
\hline & & & | Yellow beadlily---------------| & <5 & & \\
\hline & & & |False Solomon's seal-----------| & <5 & & \\
\hline & & & |Rosy twistedstalk-------------- & <5 & | & \\
\hline & & & |Wood betony*------------------ | & 5-15 & , & \\
\hline & & & | Spinulose shield fern---------- | & <5 & & \\
\hline & & & |Sedges------------------------ | & \multirow[t]{3}{*}{<5} & & \\
\hline & & & & & , & \\
\hline & & 1 & & & & \\
\hline 127F---------| & \multirow[t]{10}{*}{AtD} & \multirow[t]{10}{*}{---} & | Spinulose shield fern*-------- | & 5-15 & | Sugar maple------- & 1 \\
\hline \multirow[t]{9}{*}{Sundog} & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock---- & 2 \\
\hline & & & |Rosy twistedstalk-------------| & <5 & |Yellow birch------- & 2 \\
\hline & & & | Hairy Solomon's seal----------| & <5 & |Red maple & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Black cherry------- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & < 5 & |White spruce------ & 3 \\
\hline & & & |Red elderberry---------------- & <5 & |Balsam fir-------- & \multirow[t]{4}{*}{3} \\
\hline & & & | American starflower-----------| & <5 & | & \\
\hline & & & | Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & , & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & Secondary habitat type & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline 128B, 128D, & & & & & & \\
\hline 128E--------- | & ATD-D & TM & | Spinulose shield fern* & 5-15 & | Sugar maple----- & 1 \\
\hline Kalkaska- & & & |Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline Waiska & & & |Rosy twistedstalk-------------| & <5 & |Yellow birch--- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple--- & 2 \\
\hline & & & | Sedges------------------------- | & 5-15 & | Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & | White spruce------ & 3 \\
\hline & & & |Red elderberry**-------------- | & <5 & | Paper birch------- & 3 \\
\hline & & & |American starflower-----------| & <5 & | Balsam fir-------- & 3 \\
\hline & & & & & & \\
\hline 129C----------| & ATD & --- & | Spinulose shield fern*--------| & 5-15 & |Sugar maple------ & 1 \\
\hline Kalkaska- & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline Munising & & & |Rosy twistedstalk-------------- & <5 & |Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple-------- & 2 \\
\hline & & & | Sedges & 5-15 & | Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry---------------- & <5 & |Balsam fir-------- & 3 \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 130A----------- | & TMC-V & TMV & | Goldthread**------------------ | & 5-15 & | Red maple-------- & 1 \\
\hline Chabeneau & & & |Wild lily-of-the-valley**------| & 5-15 & | Balsam fir------- & 1 \\
\hline & & & |Yellow beadlily---------------| & <5 & | White spruce---- & 1 \\
\hline & & & | Bunchberry**------------------ | & 5-15 & |Quaking aspen----- & 2 \\
\hline & & & | American starflower-----------| & <5 & |Eastern hemlock--- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Red pine-------- & 3 \\
\hline & & & | Bracken fern------------------ | & 15-25 & |Eastern white pine- & 3 \\
\hline & & & |Canada blueberry*------------- | & 5-15 & | Paper birch------- & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & | Shining clubmoss--------------| & <5 & & \\
\hline & & & |Wintergreen------------------- | & <5 & & \\
\hline & & & |Wood sorrel**------------------ | & <5 & & \\
\hline & & & & & & \\
\hline 131----------- & TTS & FI & |Sphagnum moss*---------------- | & >25 & | Northern whitecedar & 1 \\
\hline Witbeck-Cathro| & & & |Sedges & 15-25 & | Black ash--------- & 1 \\
\hline & & & |Tag alder---------------------| & 15-25 & |Balsam fir-------- & 2 \\
\hline & & & | Dewberry---------------------- | & 5-15 & |Red maple------ & 2 \\
\hline & & & |American starflower-----------| & <5 & |Quaking aspen-- & 3 \\
\hline & & & |Goldthread** & <5 & | Paper birch-- & 3 \\
\hline & & & |Wood sorrel**------------------ | & <5 & |Balsam poplar----- & 3 \\
\hline & & & |Bunchberry-------------------- | & 5-15 & & \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & & \\
\hline & & & | Naked miterwort*-------------- | & 5-15 & & \\
\hline & & & |Twinflower*-------------------- | & <5 & & \\
\hline & & & |Bedstraw---------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 132. & & & & & & \\
\hline Slickens & & & & & & \\
\hline & & & & & & \\
\hline 133B, 133D-----| & ATD & TMV & | Spinulose shield fern*--------- | & 5-15 & | Sugar maple------- & 1 \\
\hline Keewaydin- | & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline Dishno & & & |Rosy twistedstalk-------------| & <5 & | Yellow birch------- & 2 \\
\hline & & | | & |Hairy Solomon's seal----------| & <5 & |Red maple--------- & 2 \\
\hline & & & | Sedges----------------------- | & 5-15 & |Black cherry-- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce------ & 3 \\
\hline & & & |Red elderberry**-------------- | & <5 & | Balsam fir-------- & 3 \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & | Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\left.\begin{array}{|c|}
\mid \\
\mid \text { Secondary } \\
\text { habitat } \\
\text { type }
\end{array} \right\rvert\,
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 134B, 134D, & & & & & & \\
\hline 134F--------- | & ATD & | --- | & | Spinulose shield fern*--------- | & 5-15 & | Sugar maple- & 1 \\
\hline Keewaydin & & & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk & <5 & |Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & |Red maple---- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley-------- | & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry & <5 & |Balsam fir------ & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 135A----------- | & TTS & TMC-D & | Goldthread**------------------ | & <5 & | Northern whitecedar & 1 \\
\hline Witbeck-Net & & & | Bunchberry------------------- | & <5 & |Balsam fir------ & 1 \\
\hline & & & |Wild lily-of-the-valley--------| & 5-15 & | Black spruce----- & 2 \\
\hline & & & |Sphagnum moss* & >25 & |Red maple------- & 2 \\
\hline & & & | Canada blueberry-------------- | & <5 & | Quaking aspen- & 3 \\
\hline & & & | Wood sorrel**----------------- | & <5 & | Paper birch------ & 3 \\
\hline & & & | Creeping snowberry------------| & <5 & |Balsam poplar---- & 3 \\
\hline & & & | Dewberry & <5 & & \\
\hline & & & |Tag alder---------------------| & 15-25 & & \\
\hline & & & | Horsetail*-------------------- | & 5-15 & & \\
\hline & & & | Sedges----------------------- | & 15-25 & & \\
\hline & & & |Willow sp.--------------------| & <5 & & \\
\hline & & & & & & \\
\hline 136A--- & TMC-v & PCS & | Goldthread**------------------ | & 5-15 & | Red maple-------- & 1 \\
\hline Minocqua- & & & |Wild lily-of-the-valley**------| & 5-15 & |Balsam fir--- & 1 \\
\hline Channing & & & |Yellow beadlily---------------| & <5 & | Black spruce---- & 1 \\
\hline & & & | Bunchberry**------------------ | & 5-15 & | Quaking aspen---- & 2 \\
\hline & & & | American starflower------------| & <5 & |Eastern hemlock-- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & |Red pine-------- & 3 \\
\hline & & & | Bracken fern----------------- | & 15-25 & |Eastern white pine- & 3 \\
\hline & & & |Canada blueberry* & 5-15 & | Paper birch------ & 3 \\
\hline & & & |Wild sarsaparilla-------------| & <5 & & \\
\hline & & & |Shining clubmoss--------------| & <5 & & \\
\hline & & & |Wintergreen- & < 5 & & \\
\hline & & & |Wood sorrel* & <5 & & \\
\hline & & & |Labrador tea------------------ | & 5-15 & & \\
\hline & & & | Sphagnum moss----------------- | & 5-15 & & \\
\hline & & & & & & \\
\hline 137D, 137F----| & ATD & TMV & | Spinulose shield fern*--------- | & 5-15 & |Sugar maple------ & 1 \\
\hline Keewaydin- & & & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock--- & 2 \\
\hline Sundog & & & |Rosy twistedstalk & <5 & |Yellow birch----- & 2 \\
\hline & & & |Hairy Solomon's seal----------- | & <5 & |Red maple------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry- & 3 \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- | & <5 & |Balsam fir------- & 3 \\
\hline & & & | American starflower------------ | & <5 & & \\
\hline & & & & & & \\
\hline & TMV & - & & & & \\
\hline Sundog-Rock & & & |Wild lily-of-the-valley & \[
5-15
\] & |Eastern hemlock--- & 1 \\
\hline outcrop & & & | Large-leaved aster------------ | & >25 & | Sugar maple-------- & 2 \\
\hline & & & | Canada blueberry*------------- | & <5 & |Eastern white pine- & 2 \\
\hline & & & |Wild sarsaparilla*------------| & 5-15 & | Northern red oak--- & 2 \\
\hline & & & |Beaked hazelnut & 5-15 & |Balsam fir------- & 3 \\
\hline & & & | Wintergreen------------------ | & 5-15 & |White spruce------ & 3 \\
\hline & & & | American starflower------------ & 5-15 & & \\
\hline & & & | Low sweet blueberry------------ | & <5 & & \\
\hline & & & | Yellow beadlily---------------| & <5 & & \\
\hline & & & |False Solomon's seal----------| & <5 & & \\
\hline & & & |Rosy twistedstalk-------------| & <5 & & \\
\hline & & & |Wood betony* & 5-15 & & \\
\hline & & & | Spinulose shield fern--------- | & <5 & & \\
\hline & & & |Sedges------------------------ | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & | & & & & \\
\hline 148B: & & & & & & \\
\hline Shoepac------| & Avo & --- & |Sweet cicely*----------------| & 5-15 & | Sugar maple----- & 1 \\
\hline & & & |Spinulose shield fern---------| & 5-15 & |American basswood- & 2 \\
\hline & & & Canadian, downy yellow violet* & < 5 & | Yellow birch----- & 2 \\
\hline & & & |Jack in the pulpit------------| & < & Ironwood--------- & 3 \\
\hline & & & Blue cohosh & <5 & & \\
\hline & & & |Bloodroot--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline Ensley-------- & FI & --- & |Jewelweed*-------------------- | & 5-15 & | Black ash--- & 1 \\
\hline & & & | Dwarf enchanter's nightshade*--| & <5 & |Red maple---- & 1 \\
\hline & & & |Dewberry--------------------- | & <5 & | Northern whitecedar & 2 \\
\hline & & | & |Stinging nettle---------------| & <5 & |Balsam fir-------- & 2 \\
\hline & & & Sedges & 15-25 & |Balsam poplar----- & 3 \\
\hline & & & \(|M i n t s-----------------------|\) & <5 & & \\
\hline & & & & & & \\
\hline 149------- & FMC-C & FMC & |Sedges*---------------------- | & >25 & -- & -- \\
\hline Evart-Cathro & & & \(|M i n t s *----------------------|\) & 15-25 & & \\
\hline & & & |Tag alder--------------------- & >25 & & \\
\hline & & & |Sensitive fern----------------| & <5 & & \\
\hline & & & |Dewberry---------------------- | & 5-15 & & \\
\hline & & & |Redosier dogwood--------------- | & <5 & & \\
\hline & & & |Willow sp.--------------------| & <5 & & \\
\hline & & & |Grasses----------------------- | & 15-25 & & \\
\hline & & & | Purple meadowrue-------------- | & <5 & & \\
\hline & & & & & & \\
\hline & FI & FMC & & 5-15 & | Black ash-------- & \\
\hline Shag & & & Lady fern & 5-15 & | Red maple-------- & 1 \\
\hline & & & |Red elderberry---------------- | & 5-15 & | Northern whitecedar & 1 \\
\hline & & & |Sedges----------------------- | & 15-25 & |Balsam poplar---- & 2 \\
\hline & & & Grasses & 15-25 & |Balsam fir------- & 2 \\
\hline & & & Dwarf enchanter's nightshade*--| & <5 & & \\
\hline & & & \(\mid\) Mints------------------------- & <5 & & \\
\hline & & & |Dewberry---------------------- | & <5 & & \\
\hline & & & |Gooseberry-------------------- | & <5 & & \\
\hline & & & Wild lily-of-the-valley-------| & <5 & & \\
\hline & & & |Raspberry-------------------- | & <5 & & \\
\hline & & | & | Stinging nettle--------------- | & <5 & & \\
\hline & & & & & & \\
\hline 151A----------- | & TMC-D & TTP & |Goldthread*------------------- | & 5-15 & |Red maple-------- & 1 \\
\hline Spear & & | & Wild lily-of-the-valley**------ & 5-15 & |Balsam fir-------- & 1 \\
\hline & & & |Yellow beadlily---------------| & <5 & |White spruce----- & 1 \\
\hline & & & | Bunchberry*------------------- | & 5-15 & | Quaking aspen----- & 2 \\
\hline & & | & |American starflower-----------| & <5 & |Eastern hemlock--- & 2 \\
\hline & & & |Sedges----------------------- | & 5-15 & |Red pine---------- & 3 \\
\hline & & , & Bracken fern & 15-25 & |Eastern white pine- & 3 \\
\hline & & & Wild sarsaparilla-------------| & <5 & | Paper birch-------- & 3 \\
\hline & & & |Shining clubmoss--------------| & <5 & & \\
\hline & & | & |Wintergreen------------------| & <5 & & \\
\hline & & & Wood sorrel*------------------ | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline 153D, 153F-----| & AQVac & TMV & |Low sweet blueberry*----------| & 5-15 & |Red maple-------- & 1 \\
\hline Ishpeming-Rock & & & | Bracken fern------------------ | & >25 & | Northern red oak-- & 1 \\
\hline outcrop & & & | Canada blueberry-------------- | & 5-15 & |Red pine--------- & 2 \\
\hline & & 1 & |Wintergreen------------------- | & 5-15 & |Jack pine-------- & 2 \\
\hline & & 1 & | Large-leaved aster------------| & 5-15 & | Quaking aspen----- & 2 \\
\hline & & & |Beaked hazelnut*-------------- | & 5-15 & |Eastern white pine- & 3 \\
\hline & & & | Grasses----------------------- | & 15-25 & |Balsam fir-------- & 3 \\
\hline & & 1 | & \(\mid\) Pin cherry-------------------- & <5 & |White spruce----- & 3 \\
\hline & & & |Wood anemone-------------------| & <5 & & \\
\hline & & & |Juneberry--------------------- | & <5 & & \\
\hline & & & | Barren strawberry**-----------| & 5-15 & & \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & | Cow wheat--------------------- & <5 & & \\
\hline & & & |Wild sarsaparilla**-----------| & <5 & & \\
\hline & & & | Sweetfern--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 154B, 154D-----| & AQVac & QAE & |Low sweet blueberry*----------- | & 5-15 & | Red maple-------- & 1 \\
\hline Rubicon-Sayner| & & & | Bracken fern------------------ | & >25 & |Northern red oak--- & 1 \\
\hline & & & |Canada blueberry-------------- & 5-15 & |Red pine------ & 2 \\
\hline & & & |Wintergreen------------------- | & 5-15 & | Jack pine-------- & 2 \\
\hline & & 1 & | Large-leaved aster------------- & 5-15 & |Quaking aspen---- & 2 \\
\hline & & & |Beaked hazelnut*-------------- | & 5-15 & |Eastern white pine- & 3 \\
\hline & & & |Grasses & 15-25 & | Balsam fir-------- & 3 \\
\hline & & 1 | & \(\mid\) Pin cherry-------------------- & <5 & |White spruce----- & 3 \\
\hline & & \(\mid\) | & |Wood anemone------------------ | & < 5 & & \\
\hline & & & |Juneberry--------------------- | & <5 & & \\
\hline & & & | Barren strawberry**----------- | & 5-15 & & \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & | Cow wheat--------------------- & < 5 & & \\
\hline & & & |Wild sarsaparilla**------------| & <5 & & \\
\hline & & & | Sweetfern--------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 155A: & & & & & & \\
\hline Zeba---------- | & TMC & | --- | & | Goldthread-------------------- | & 5-15 & |Red maple-------- & 1 \\
\hline & & & |Wild lily-of-the-valley-------| & 5-15 & | Balsam fir------- & 1 \\
\hline & & 1 & | Bunchberry------------------- | & 5-15 & | White spruce------ & 2 \\
\hline & & & |Sedges & 5-15 & | Quaking aspen---- & 2 \\
\hline & & & | Bracken fern------------------ | & 15-25 & |Eastern hemlock-- & 3 \\
\hline & & & | Canada blueberry*------------- | & 5-15 & |Eastern white pine- & 3 \\
\hline & & & |Wood sorrel-------------------| & <5 & | Paper birch------ & 3 \\
\hline & & & & & & \\
\hline Jacobsville---| & TTS & | --- | & | Sphagnum moss*---------------- | & >25 & | Northern whitecedar & 1 \\
\hline & & & |Tag alder----------------------| & 15-25 & |Balsam fir-------- & 1 \\
\hline & & & |Sedges-------------------------| & 15-25 & |Eastern hemlock---- & 2 \\
\hline & & & |Horsetail*-------------------- \({ }^{\text {- }}\) & 5-15 & | Black spruce------ & 2 \\
\hline & & & & & |Red maple--------- & 3 \\
\hline & & & & & & \\
\hline 156B---------- | & AVo-A & AVo & | Sweet cicely*----------------- | & 5-15 & | Sugar maple------- & 1 \\
\hline Duel & & & |Sedges------------------------ | & 5-15 & |American basswood-- & 2 \\
\hline & & & | Spinulose shield fern--------- | & 5-15 & | Ironwood---------- & 2 \\
\hline & & 1 & |Canadian, downy yellow violet* & <5 & | Yellow birch------ & 2 \\
\hline & & 1 & |Hairy Solomon's seal----------| & <5 & |Eastern hemlock---- & 3 \\
\hline & & 1 | & |Maidenhair fern*--------------| & <5 & | \({ }^{\text {black }}\) cherry------ & 3 \\
\hline & & 1 | & |Wild leek*-------------------- | & <5 & & \\
\hline & & & |Lady fern---------------------- | & 5-15 & & \\
\hline & & 1 | & |Red elderberry---------------- | & <5 & & \\
\hline & & 1 & |False Solomon's seal----------| & < & | & \\
\hline & & 1 & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium---------------------- | & < 5 & & \\
\hline & & | | & |Rattlesnake fern**------------ | & <5 & | & \\
\hline & & & |Blue cohosh**------------------ & <5 & & \\
\hline & & & |Bloodroot**-------------------- | & <5 & & \\
\hline & & & & & | & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & \begin{tabular}{l}
Primary \\
habitat \\
type
\end{tabular} & \[
\begin{array}{|c|}
\mid \text { Secondary } \mid \\
\text { habitat } \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline & & | | & & Pct & | & \\
\hline & & 1 & & & 1 & \\
\hline 162B----------- | & ATD & | TMV & |Spinulose shield fern*--------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Buckroe & & | & |Sugar maple seedlings----------| & >25 & |Eastern hemlock--- & 2 \\
\hline & & | & |Rosy twistedstalk-------------- & < 5 & |Yellow birch------ & 2 \\
\hline & & | & |Hairy Solomon's seal-----------| & <5 & |Red maple--- & 2 \\
\hline & & | & | Sedges------------------------ | & 5-15 & |Black cherry------ & 3 \\
\hline & & , & |Wild lily-of-the-valley--------| & <5 & |White spruce------ & 3 \\
\hline & & | & |Red elderberry**-------------- & <5 & |Balsam fir------- & 3 \\
\hline & & | & |American starflower-----------| & <5 & & \\
\hline & & | & |Canadian, downy yellow violet--| & <5 & | & \\
\hline & & & & & & \\
\hline 165B---------- | & AVO & | ATD & | Sweet cicely*-----------------| & 5-15 & | Sugar maple------ & 1 \\
\hline Chocolay- & & | & |Sedges------------------------ | & 5-15 & |American basswood- & 2 \\
\hline Waiska & & , & |Spinulose shield fern----------| & 5-15 & | Ironwood---------- & 2 \\
\hline & & & |Canadian, downy yellow violet* | & <5 & |Quaking aspen----- & 2 \\
\hline & & | & |Hairy Solomon's seal----------| & <5 & |Yellow birch------ & 3 \\
\hline & & | & |Rosy twistedstalk-------------- & < 5 & |Eastern hemlock--- & 3 \\
\hline & & , & | Bedstraw--------------------- | & <5 & |Black cherry------ & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & | & \\
\hline & & | & |False Solomon's seal----------| & <5 & | & \\
\hline & & | & |Jack in the pulpit**-----------| & <5 & | & \\
\hline & & | & |Trillium--------------------- | & <5 & & \\
\hline & & | & |Rattlesnake fern**------------- | & < 5 & | & \\
\hline & & | & |Blue cohosh**------------------ & < 5 & & \\
\hline & & | & |Bloodroot**------------------- | & <5 & & \\
\hline & & | & & & & \\
\hline & TTS & | po & |Goldthread**------------------ | & <5 & | Northern whitecedar & 1 \\
\hline Skandia & & | & |Bunchberry & <5 & | Balsam fir-------- & 1 \\
\hline & & | & |Wild lily-of-the-valley--------| & 5-15 & | Black spruce---- & 2 \\
\hline & & | & |Sphagnum moss*---------------- | & >25 & |Red maple------- & 2 \\
\hline & & | & |Canada blueberry--------------- | & <5 & |Quaking aspen----- & 3 \\
\hline & & | & | Wood sorrel**------------------- | & <5 & | Paper birch------ & 3 \\
\hline & & & | Creeping snowberry------------| & <5 & | Balsam poplar---- & 3 \\
\hline & & | & |Dewberry---------------------- | & <5 & & \\
\hline & & | & |Tag alder & 15-25 & & \\
\hline & & | & |Horsetail*-------------------- | & 5-15 & & \\
\hline & & | & |Sedges------------------------- | & 15-25 & | & \\
\hline & & & |Willow sp. & <5 & & \\
\hline & & 1 | & | Cinnamon fern*---------------- | & 15-25 & & \\
\hline & & | | & |Wild raisin-------------------| & 5-15 & | & \\
\hline & & I & \(\mid\) Marsh marigold**---------------| & <5 & | & \\
\hline & & & & & & \\
\hline 167------------ | & TTS & | po & | Goldthread**------------------ | & <5 & | Northern whitecedar & 1 \\
\hline Skandia- & & | & | Bunchberry-------------------- | & <5 & | Balsam fir------- & 1 \\
\hline Jacobsville & & | & |Wild lily-of-the-valley--------| & 5-15 & | Black spruce------ & 2 \\
\hline & & | & |Sphagnum moss* & >25 & |Red maple & 2 \\
\hline & & | & | Canada blueberry-------------- | & <5 & | Quaking aspen----- & 3 \\
\hline & & | & |Wood sorrel**----------------- | & < 5 & | Paper birch------- & 3 \\
\hline & & | & | Creeping snowberry------------ | & <5 & |Balsam poplar----- & 3 \\
\hline & & | & | Dewberry--------------------- | & <5 & & \\
\hline & & | & |Tag alder---------------------| & 15-25 & | & \\
\hline & & | & |Horsetail*-------------------- | & 5-15 & | & \\
\hline & & | & | Sedges------------------------ | & 15-25 & | & \\
\hline & & | & |Willow sp.---------------------| & <5 & | & \\
\hline & & | & | Cinnamon fern*---------------- | & 15-25 & | & \\
\hline & & | & |Wild raisin-------------------| & 5-15 & | & \\
\hline & & I & |Marsh marigold**--------------| & <5 & | & \\
\hline & & & | & & 1 & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & & | Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 168B: & & & & & & \\
\hline Yellowdog----- | & AtD & | --- & |Spinulose shield fern* & 5-15 & | Sugar maple-- & 1 \\
\hline & & & | Sugar maple seedlings- & >25 & |Eastern hemlock--- & 2 \\
\hline & & & |Rosy twistedstalk--------------| & <5 & | Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & | Red maple----- & 2 \\
\hline & & & | Sedges- & 5-15 & | Black cherry--- & 3 \\
\hline & & & |Red elderberry---------------- & <5 & |White spruce----- & 3 \\
\hline & & & & & | Balsam fir------- & 3 \\
\hline & & & & & & \\
\hline Burt---------- | & TTS & , & | Goldthread------------------ & <5 & | Northern whitecedar & 1 \\
\hline & & & | Bunchberry-------------------- | & <5 & | Eastern hemlock---- & 2 \\
\hline & & & |Sphagnum moss* & >25 & |Balsam fir------- & 2 \\
\hline & & & | Tag alder--------------------- | & 15-25 & | Black spruce-- & 3 \\
\hline & & & | Wood sorrel------------------- | & <5 & |Red maple-------- & 3 \\
\hline & & & | Sedges & 15-25 & & \\
\hline & & & | Dewberry---------------------- | & <5 & & \\
\hline & & & & & & \\
\hline & Avo & | ATD & & & & \\
\hline Chocolay & & & |Sedges & \[
5-15
\] & |American basswood- & \[
2
\] \\
\hline & & & | Spinulose shield fern----------| & 5-15 & | Ironwood------- & 2 \\
\hline & & & |Canadian, downy yellow violet* & <5 & | Quaking aspen-- & 2 \\
\hline & & & | Hairy Solomon's seal----------| & <5 & | Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk--------------| & <5 & |Eastern hemlock-- & 3 \\
\hline & & & | Bedstraw--------------------- | & <5 & | Black cherry------ & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry---------------- | & <5 & & \\
\hline & & & |False Solomon's seal-----------| & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium---------------------| & <5 & & \\
\hline & & & |Rattlesnake fern**-------------| & <5 & & \\
\hline & & & |Blue cohosh**----------------- | & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline 171B---------- | & ATD & Avo & |Spinulose shield fern*-------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Paavola & & & |Sugar maple seedlings & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk & <5 & | Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & |Red maple------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce------ & 3 \\
\hline & & & |Red elderberry**-------------- | & <5 & | Balsam fir------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 172D, 172F-----| & ATD & | --- & | Spinulose shield fern*-------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Buckroe-Rock & & & | Sugar maple seedlings--------- | & >25 & |Eastern hemlock--- & 2 \\
\hline outcrop & & & |Rosy twistedstalk & <5 & | Yellow birch------- & 2 \\
\hline & & & |Hairy Solomon's seal & <5 & | Red maple--------- & 2 \\
\hline & & & | Sedges------------------------ | & 5-15 & | Black cherry------- & 3 \\
\hline & & & |Wild lily-of-the-valley-------- & <5 & | White spruce------- & 3 \\
\hline & & | & |Red elderberry---------------- & <5 & | Balsam fir-------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & 迷 & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & & | Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{17}{*}{\[
\begin{aligned}
& \text { 173B, 173D---- } \\
& \text { Pence }
\end{aligned}
\]} & \multirow{17}{*}{AQVac} & \multirow{17}{*}{---} & & Pct & & \\
\hline & & & |Low sweet blueberry*----------- | & 5-15 & |Red maple------- & 1 \\
\hline & & & | Bracken fern------------------ | & >25 & | Northern red oak-- & 1 \\
\hline & & & |Canada blueberry-------------- | & 5-15 & |Red pine--------- & 2 \\
\hline & & & |Wintergreen------------------- | & 5-15 & |Jack pine----- & 2 \\
\hline & & & | Large-leaved aster------------| & 5-15 & |Quaking aspen- & 2 \\
\hline & & & |Beaked hazelnut*-------------- | & 5-15 & |Bigtooth aspen--- & 2 \\
\hline & & & |Grasses----------------------- | & 15-25 & |Eastern white pine- & 3 \\
\hline & & & \(\mid\) Pin cherry-------------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & |Wood anemone-------------------| & <5 & \multirow[t]{3}{*}{|White spruce-------} & \multirow[t]{7}{*}{3} \\
\hline & & & |Juneberry--------------------- | & <5 & & \\
\hline & & & | Barren strawberry**----------- | & 5-15 & & \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & | Cow wheat--------------------- & < 5 & & \\
\hline & & & |Wild sarsaparilla**-----------| & < 5 & & \\
\hline & & & | Sweetfern--------------------- | & \multirow[t]{2}{*}{<5} & \multirow[t]{2}{*}{} & \\
\hline & & & & & & \\
\hline 174D---------- | & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{TMV} & |Spinulose shield fern*--------| & 5-15 & | Sugar maple- & 1 \\
\hline Yalmer- & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock-- & 2 \\
\hline Rubicon- & & & |Rosy twistedstalk-------------| & <5 & |Yellow birch---- & 2 \\
\hline \multirow[t]{7}{*}{Urban land} & & & |Hairy Solomon's seal----------| & <5 & |Red maple------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & \multirow[t]{4}{*}{| Balsam fir--------} & \multirow[t]{4}{*}{3} \\
\hline & & & |American starflower-----------| & <5 & & \\
\hline & & & | Canadian, downy yellow violet--| & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 175E, 175F-----| & \multirow[t]{9}{*}{ATD-D} & \multirow[t]{9}{*}{---} & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------ & 1 \\
\hline Kalkaska- & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline \multirow[t]{7}{*}{Waiska} & & & |Rosy twistedstalk--------------| & <5 & |Yellow birch----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple-------- & 2 \\
\hline & & & |Sedges------------------------ & 5-15 & |Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry---------------- & <5 & | Paper birch----- & 3 \\
\hline & & & |American starflower-----------| & \multirow[t]{2}{*}{<5} & \multirow[t]{3}{*}{| Balsam fir---------} & \multirow[t]{3}{*}{3} \\
\hline & & & & & & \\
\hline 176B: & & & & & & \\
\hline \multirow[t]{11}{*}{Greenwood----|} & \multirow[t]{11}{*}{PCS} & \multirow[t]{11}{*}{---} & | Sphagnum moss*---------------- | & >25 & | Black spruce----- & 1 \\
\hline & & & |Labrador tea------------------- | & 15-25 & | Tamarack--------- & 1 \\
\hline & & & | Leatherleaf* & 15-25 & \multirow[t]{9}{*}{|Eastern white pine-} & \multirow[t]{9}{*}{2} \\
\hline & & & |Sedges------------------------ | & >25 & & \\
\hline & & & |Canada blueberry-------------- | & 5-15 & & \\
\hline & & & |Small cranberry---------------| & 5-15 & & \\
\hline & & & |Bog rosemary*----------------- | & 5-15 & & \\
\hline & & & | Pale laurel*------------------| & 5-15 & & \\
\hline & & & |Pitcher plant-----------------| & <5 & & \\
\hline & & & |Sundew------------------------ | & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline \multirow[t]{7}{*}{Croswell------} & \multirow[t]{7}{*}{TMC-V} & \multirow[t]{7}{*}{---} & | Bracken fern------------------ | & 15-25 & |Red maple-------- & 1 \\
\hline & & & |Wintergreen------------------- | & <5 & | Eastern hemlock---- & 1 \\
\hline & & & |Canada blueberry & 5-15 & | Paper birch------ & 2 \\
\hline & & & | Bunchberry*-------------------- | & 5-15 & |Red pine--------- & 2 \\
\hline & & & |Goldthread*-------------------- | & \multirow[t]{3}{*}{5-15} & | Balsam fir-------- & 3 \\
\hline & & & & & |Eastern white pine- & \multirow[t]{2}{*}{3} \\
\hline & & & & & & \\
\hline 177E, 177F-----| & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{---} & | Spinulose shield fern*--------| & 5-15 & | Sugar maple------ & 1 \\
\hline \multirow[t]{9}{*}{Frohling} & & & | Sugar maple seedlings---------| & >25 & |Eastern hemlock---- & 2 \\
\hline & & & |Rosy twistedstalk--------------| & <5 & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & |Red maple--------- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry------- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & | White spruce------- & 3 \\
\hline & & & |Red elderberry--------------- & < 5 & \multirow[t]{4}{*}{|Balsam fir--------} & \multirow[t]{4}{*}{3} \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline 178D, 178F-----| & & & | Spinulose shield fern* & 5-15 & | Sugar maple--- & 1 \\
\hline Schweitzer----| & ATD & --- & | Sugar maple seedlings---------- & >25 & |Eastern hemlock-- & 2 \\
\hline Kalkaska------| & ATD-D & --- & |Rosy twistedstalk-------------- & <5 & |Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal----------- & <5 & |Red maple--- & 2 \\
\hline & & & | Sedges- & 5-15 & |Black cherry & 3 \\
\hline & & & |Wild lily-of-the-valley- & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry---------------- & <5 & | Paper birch------- & 3 \\
\hline & & & | American starflower---------- & <5 & | Balsam fir------- & 3 \\
\hline & & & & & & \\
\hline Rock outcrop. & & & & & & \\
\hline & & & & & & \\
\hline 179E----- & ATD & Avo & | Spinulose shield fern* & 5-15 & | Sugar maple-- & 1 \\
\hline Schweitzer- & & & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock-- & 2 \\
\hline Michigamme & & & |Rosy twistedstalk-------------- & <5 & | Yellow birch------ & 2 \\
\hline & & & |Hairy Solomon's seal & <5 & |Red maple & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley-------- & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 180E, 180F-----| & & & |Spinulose shield fern*-------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Kalkaska------ & ATD-D & --- & | Sugar maple seedlings----------| & >25 & |Eastern hemlock-- & 2 \\
\hline Frohling------ & ATD & --- & |Rosy twistedstalk--------------| & <5 & | Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal---------- | & <5 & |Red maple-------- & 2 \\
\hline & & & |Sedges & 5-15 & | Black cherry--- & 3 \\
\hline & & & |Wild lily-of-the-valley------- | & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry---------------- & < & | Paper birch------- & 3 \\
\hline & & & | American starflower------------ & <5 & |Balsam fir-------- & 3 \\
\hline & & & & & & \\
\hline & ATD & --- | & & & & 1 \\
\hline Frohling- & & & Sugar maple seedlings & >25 & |Eastern hemlock-- & 2 \\
\hline Tokiahok & & & |Rosy twistedstalk-------------- & <5 & |Yellow birch---- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & | Red maple--- & 2 \\
\hline & & & |Sedges & 5-15 & |Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley------- | & <5 & | White spruce----- & 3 \\
\hline & & & |Red elderberry--------- & <5 & | Balsam fir------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & | Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 184C: & & & & & & \\
\hline Dishno-------- & ATD & - & & & |Sugar maple- & \\
\hline & & & | Sugar maple seedlings----------| & >25 & |Eastern hemlock-- & 2 \\
\hline & & & |Rosy twistedstalk--------------| & <5 & | Yellow birch--- & 2 \\
\hline & & & | Hairy Solomon's seal-----------| & <5 & |Red maple---- & 2 \\
\hline & & & |Sedges & 5-15 & | White spruce----- & 2 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |Balsam fir------- & 3 \\
\hline & & & |Red elderberry---------------- & < 5 & & \\
\hline & & & |American starflower & \[
<5
\] & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline Witbeck------- & TMC-D & FI & |Goldthread*------------------ | & 5-15 & | Balsam fir-------- & 1 \\
\hline & & & |Bunchberry* & 5-15 & | Northern whitecedar & 1 \\
\hline & & & |Wood sorrel* & <5 & | Black spruce------- & 2 \\
\hline & & & | Oak fern**-------------------- | & <5 & |Eastern hemlock---- & 2 \\
\hline & & & |Spinulose shield fern*-------- | & 5-15 & | Red maple--------- & 3 \\
\hline & & & & & & \\
\hline Rock outcrop. & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \[
\left.\begin{array}{|c|}
\mid \\
\mid \text { Secondary } \\
\mid \text { habitat } \\
\text { type }
\end{array} \right\rvert\,
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline \multirow{13}{*}{\[
\begin{gathered}
\text { 185B------ } \\
\text { Northland }
\end{gathered}
\]} & \multirow{13}{*}{TM} & \multirow[t]{13}{*}{- |} & & Pct & & \\
\hline & & & |Wild lily-of-the-valley*------ & 5-15 & | Quaking aspen----- & 1 \\
\hline & & & | Grasses----------------------- & 15-25 & |Red maple-------- & 1 \\
\hline & & & | Sedges------------------------ & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & |Bracken fern------------------- & >25 & | Sugar maple----- & 2 \\
\hline & & & | American starflower----------- | & <5 & |Yellow birch------ & 2 \\
\hline & & & |Bedstraw--------------------- & <5 & | Paper birch------- & 3 \\
\hline & & & |Wild sarsaparilla------------- & <5 & | White spruce----- & 3 \\
\hline & & & |Beaked hazelnut--------------- & 15-25 & |Balsam fir------- & 3 \\
\hline & & & | Ground pine------------------- & <5 & |Eastern white pine- & 3 \\
\hline & & & | Large-leaved aster------------ | & 5-15 & & \\
\hline & & & | Juneberry & <5 & & \\
\hline & & & & & & \\
\hline 187B---------- | & \multirow[t]{16}{*}{Avo} & \multirow[t]{16}{*}{AtD} & | Sweet cicely*----------------- & 5-15 & | Sugar maple------ & 1 \\
\hline \multirow[t]{15}{*}{Reade} & & & |Sedges------------------------ & 5-15 & |American basswood-- & 2 \\
\hline & & & |Spinulose shield fern--------- & 5-15 & | Ironwood--------- & 2 \\
\hline & & & | Canadian, downy yellow violet* & <5 & | Quaking aspen-- & 2 \\
\hline & & & | Hairy Solomon's seal---------- & <5 & |Yellow birch------ & 3 \\
\hline & & & |Rosy twistedstalk------------- & <5 & |Eastern hemlock--- & 3 \\
\hline & & & |Bedstraw--------------------- & <5 & | Black cherry------ & \multirow[t]{9}{*}{3} \\
\hline & & & |Lady fern--------------------- & 5-15 & & \\
\hline & & & |Red elderberry---------------- & <5 & & \\
\hline & & & |False Solomon's seal---------- | & <5 & & \\
\hline & & & |Jack in the pulpit**----------- & <5 & | & \\
\hline & & & |Trillium---------------------- & <5 & | & \\
\hline & & & |Rattlesnake fern**------------ & <5 & & \\
\hline & & & |Blue cohosh**------------------ & <5 & & \\
\hline & & & |Bloodroot**-------------------- & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline 190B---------- | & \multirow[t]{16}{*}{Avo} & \multirow[t]{16}{*}{AVo-A} & | Sweet cicely*----------------- & 5-15 & | Sugar maple------ & 1 \\
\hline \multirow[t]{15}{*}{Emmet-Cunard} & & & | Sedges------------------------ & 5-15 & |American basswood-- & 2 \\
\hline & & & | Spinulose shield fern---------| & 5-15 & | Ironwood--------- & 2 \\
\hline & & & |Canadian, downy yellow violet* & <5 & | Quaking aspen---- & 2 \\
\hline & & & | Hairy Solomon's seal---------- & <5 & |Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk------------- & <5 & |Eastern hemlock-- & 3 \\
\hline & & & |Bedstraw--------------------- & <5 & | Black cherry----- & \multirow[t]{10}{*}{3} \\
\hline & & & |Lady fern--------------------- & 5-15 & & \\
\hline & & & |Red elderberry---------------- & <5 & & \\
\hline & & & |False Solomon's seal---------- | & <5 & | & \\
\hline & & & |Jack in the pulpit**---------- & <5 & & \\
\hline & & & |Trillium---------------------- & <5 & & \\
\hline & & & |Rattlesnake fern**------------ | & <5 & & \\
\hline & & & |Blue cohosh**----------------- & <5 & & \\
\hline & & & |Bloodroot**-------------------- & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{7}{*}{Nahma-------- |} & \multirow[t]{7}{*}{FI} & \multirow[t]{7}{*}{TTM} & |Jewelweed* & & |Black ash-------- & 1 \\
\hline & & & | Dwarf enchanter's nightshade*-- & <5 & |Red maple------- & 1 \\
\hline & & & |Dewberry---------------------- & <5 & | Balsam fir------- & 2 \\
\hline & & & |Stinging nettle & <5 & |Balsam poplar----- & \multirow[t]{4}{*}{2} \\
\hline & & & |Sedges & 5-15 & & \\
\hline & & & |Mints------------------------- & \multirow[t]{2}{*}{<5} & & \\
\hline & & & & & & \\
\hline \multirow[t]{7}{*}{Sundell------- |} & \multirow[t]{7}{*}{AVo-cI} & \multirow[t]{7}{*}{---} & |Jewelweed*-------------------- & <5 & | Sugar maple-------- & 1 \\
\hline & & & | Dwarf enchanter's nightshade*-- & <5 & |American basswood-- & 2 \\
\hline & & & |Blue cohosh------------------- & <5 & | Ironwood---------- & 3 \\
\hline & & & |Bloodroot-------------------- & <5 & |Yellow birch------- & 3 \\
\hline & & & | Sweet cicely*----------------- & 5-15 & & \\
\hline & & & |Canadian, downy yellow violet* & <5 & & \\
\hline & & & & & , & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Primary habitat type & \begin{tabular}{l}
| Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 193E---------- & ATD & - & | Spinulose shield fern* & 5-15 & |Sugar maple------ & 1 \\
\hline Frohling- & & & | Sugar maple seedlings-------- & >25 & |Eastern hemlock-- & 2 \\
\hline Tokiahok & & & |Rosy twistedstalk-------------- & <5 & |Yellow birch----- & 2 \\
\hline & & & | Hairy Solomon's seal----------- & <5 & |Red maple---- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & | Black cherry--- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry--------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & | American starflower------------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 194E---------- & Avo & ATD & | Sweet cicely*----------------- | & 5-15 & | Sugar maple------- & 1 \\
\hline Sporley & & & |Sedges------------------------ | & 5-15 & |American basswood-- & 2 \\
\hline & & & | Spinulose shield fern----------| & 5-15 & | Ironwood--------- & 2 \\
\hline & & & |Canadian, downy yellow violet* & <5 & | Quaking aspen-- & 2 \\
\hline & & & | Hairy Solomon's seal---------- | & <5 & |Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk-------------- & <5 & |Eastern hemlock--- & 3 \\
\hline & & & |Bedstraw--------------------- | & <5 & |Black cherry---- & 3 \\
\hline & & & |Lady fern--------------------- | & 5-15 & & \\
\hline & & & |Red elderberry----------------- & <5 & & \\
\hline & & & |False Solomon's seal-----------| & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & <5 & & \\
\hline & & & |Rattlesnake fern**-------------| & <5 & & \\
\hline & & & |Blue cohosh**------------------ & < 5 & & \\
\hline & & & |Bloodroot**------------------- & <5 & & \\
\hline & & & & & & \\
\hline & Atd & | TM & & & & \\
\hline Frohling- & & & Sugar maple seedlings & >25 & Eastern hemlock- & \[
2
\] \\
\hline Onota- & & & |Rosy twistedstalk-------------- | & <5 & |Yellow birch---- & 2 \\
\hline Tokiahok & & & | Hairy Solomon's seal-----------| & <5 & | Red maple------- & 2 \\
\hline & & & Sedges & 5-15 & | Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley-------| & <5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry**-------------- & <5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower & \[
<5
\] & & \\
\hline & & & | Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 197B---------- & Avo & | AVO-A & |Sweet cicely*----------------- | & 5-15 & |Sugar maple------ & 1 \\
\hline Shoepac- & & & Sedges & 5-15 & |American basswood-- & 2 \\
\hline Trenary & & & | Spinulose shield fern--------- | & 5-15 & | Ironwood--------- & 2 \\
\hline & & & |Canadian, downy yellow violet* | & <5 & | Quaking aspen---- & 2 \\
\hline & & & | Hairy Solomon's seal---------- | & <5 & |Yellow birch----- & 3 \\
\hline & & & |Rosy twistedstalk & <5 & |Eastern hemlock-- & 3 \\
\hline & & & |Bedstraw--------------------- | & <5 & | Black cherry------- & 3 \\
\hline & & & |Lady fern--------------------- & 5-15 & & \\
\hline & & | & |Red elderberry---------------- & <5 & & \\
\hline & & | & |False Solomon's seal----------- & <5 & & \\
\hline & & & |Jack in the pulpit**-----------| & <5 & & \\
\hline & & & |Trillium--------------------- | & <5 & & \\
\hline & & | & |Rattlesnake fern**------------- | & <5 & & \\
\hline & & & |Blue cohosh**----------------- | & <5 & & \\
\hline & & & |Bloodroot**------------------- | & <5 & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & \begin{tabular}{l}
Primary \\
habitat \\
type
\end{tabular} & \[
\begin{array}{|c|}
\mid \text { Secondary } \mid \\
\mid \text { habitat } \mid \\
\text { type }
\end{array}
\] & Common ground flora & Extent & Tree species & Dominance \\
\hline & & | | & & Pct & | & \\
\hline & & | | & & & & \\
\hline 198B---------- | & Avo & AVo-A & |Sweet cicely*----------------- & 5-15 & | Sugar maple------ & 1 \\
\hline Shoepac- & & | | & |Sedges------------------------ & 5-15 & |American basswood- & 2 \\
\hline \multirow[t]{14}{*}{Reade} & & | | & |Spinulose shield fern--------- & 5-15 & | Ironwood----------- & 2 \\
\hline & & 1 | & |Canadian, downy yellow violet* & <5 & |Quaking aspen---- & 2 \\
\hline & & | | & |Hairy Solomon's seal---------- & < & |Yellow birch------ & 3 \\
\hline & & | | & |Rosy twistedstalk------------- & <5 & |Eastern hemlock--- & 3 \\
\hline & & 1 & |Bedstraw--------------------- & <5 & | Black cherry----- & 3 \\
\hline & & | | & |Lady fern--------------------- & 5-15 & & \\
\hline & & | | & |Red elderberry---------------- & <5 & | & \\
\hline & & | | & |False Solomon's seal---------- & <5 & & \\
\hline & & | | & |Jack in the pulpit**----------- & <5 & & \\
\hline & & 1 | & |Trillium---------------------- & <5 & | & \\
\hline & & | | & |Rattlesnake fern**------------- & <5 & & \\
\hline & & | | & |Blue cohosh**------------------ & <5 & & \\
\hline & & | | & |Bloodroot**-------------------- & <5 & & \\
\hline & & | | & & & | & \\
\hline \multirow[t]{7}{*}{200A:
Charlevoix----|} & & | | & & & & \\
\hline & \multirow[t]{6}{*}{TMC} & \multirow[t]{6}{*}{---} & |Goldthread*------------------- & 5-15 & | Red maple--------- & 1 \\
\hline & & & | Bunchberry*-------------------- & 5-15 & |Eastern hemlock--- & 1 \\
\hline & & & |Wood sorrel*------------------- & <5 & | Sugar maple------ & 2 \\
\hline & & & | Oak fern---------------------- & <5 & |Yellow birch------- & 2 \\
\hline & & & |Wild lily-of-the-valley------- & 5-15 & | Balsam fir-------- & 3 \\
\hline & & & & & & \\
\hline \multirow[t]{7}{*}{Ensley------- |} & \multirow[t]{7}{*}{FI} & \multirow[t]{7}{*}{---} & |Jewelweed*-------------------- & 5-15 & | Black ash--------- & 1 \\
\hline & & & | Dwarf enchanter's nightshade*-- & 5-15 & | Red maple-------- & 1 \\
\hline & & & |Dewberry*--------------------- & <5 & | Northern whitecedar & 2 \\
\hline & & & |Stinging nettle--------------- & <5 & | Balsam fir-------- & 2 \\
\hline & & & |Sedges & <5 & |Balsam poplar----- & 3 \\
\hline & & & |Mints & 15-25 & & \\
\hline & & & & & & \\
\hline 201B: & & & & & & \\
\hline \multirow[t]{10}{*}{Sauxhead------} & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{---} & | Spinulose shield fern*-------- & 5-15 & | Sugar maple------ & 1 \\
\hline & & & | Sugar maple seedlings--------- & >25 & |Eastern hemlock---- & 2 \\
\hline & & & |Rosy twistedstalk------------- & <5 & |Yellow birch------ & 2 \\
\hline & & & | Hairy Solomon's seal---------- & <5 & |Red maple-------- & 2 \\
\hline & & & |Sedges------------------------ & 5-15 & |Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley------- & <5 & |White spruce------ & 3 \\
\hline & & & |Red elderberry---------------- & <5 & |Balsam fir------- & 3 \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline \multirow[t]{7}{*}{Jacobsville---|} & \multirow[t]{7}{*}{TTS} & \multirow[t]{7}{*}{FI} & & & |Eastern hemlock---- & 1 \\
\hline & & & |Sedges & 15-25 & | Northern whitecedar & 1 \\
\hline & & & | Tag alder--------------------- & 15-25 & | Balsam fir--------- & 2 \\
\hline & & & | Goldthread**------------------ & <5 & | Black spruce------ & 2 \\
\hline & & & |Bunchberry* & < 5 & | Red maple--------- & 3 \\
\hline & & & |Dewberry- & <5 & & \\
\hline & & & & & & \\
\hline & \multirow[t]{10}{*}{ATD} & \multirow[t]{10}{*}{---} & & 5-15 & & 1 \\
\hline \multirow[t]{9}{*}{Sauxhead |} & & & | Sugar maple seedlings--------- & >25 & |Eastern hemlock---- & 2 \\
\hline & & & |Rosy twistedstalk------------- & <5 & | Yellow birch------- & 2 \\
\hline & & & | Hairy Solomon's seal---------- & <5 & |Red maple--------- & 2 \\
\hline & & & |Sedges & 5-15 & | Black cherry------- & 3 \\
\hline & & & |Wild lily-of-the-valley------- & <5 & |White spruce------- & 3 \\
\hline & & & |Red elderberry---------------- & <5 & | Balsam fir--------- & 3 \\
\hline & & & | American starflower----------- & <5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & | & \\
\hline & & & & & | & \\
\hline
\end{tabular}

Table 10.--Forest Habitat Types--Continued

Table 10.--Forest Habitat Types--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & \begin{tabular}{l}
Primary \\
habitat \\
type
\end{tabular} & \begin{tabular}{l}
| Secondary \\
habitat type
\end{tabular} & Common ground flora & Extent & Tree species & Dominance \\
\hline & & & & Pct & & \\
\hline & & & & & & \\
\hline 208F---------- & ATD & TMV & |Spinulose shield fern*--------- | & 5-15 & | Sugar maple------ & 1 \\
\hline Keewaydin- & & & |Sugar maple seedlings---------| & >25 & |Eastern hemlock--- & 2 \\
\hline Michigamme & & & |Rosy twistedstalk-------------- | & < 5 & |Yellow birch------ & 2 \\
\hline & & | | & |Hairy Solomon's seal-----------| & <5 & |Red maple--- & 2 \\
\hline & & & |Sedges------------------------ | & 5-15 & |Black cherry------ & 3 \\
\hline & & & |Wild lily-of-the-valley--------| & <5 & |White spruce------ & 3 \\
\hline & & & |Red elderberry**-------------- | & <5 & | Balsam fir------- & 3 \\
\hline & & & |American starflower-----------| & < 5 & & \\
\hline & & & |Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline 209B---------- & & & | Spinulose shield fern*---------| & 5-15 & | Sugar maple------ & 1 \\
\hline Garlic------- & ATD-D & | --- | & | Sugar maple seedlings---------- | & >25 & |Eastern hemlock-- & 2 \\
\hline Fence-------- & ATD & | --- | & |Rosy twistedstalk-------------| & < 5 & | Yellow birch----- & 2 \\
\hline & & & |Hairy Solomon's seal----------| & <5 & | Red maple-------- & 2 \\
\hline & & & |Sedges & 5-15 & | Black cherry----- & 3 \\
\hline & & & |Wild lily-of-the-valley--------| & < 5 & |White spruce----- & 3 \\
\hline & & & |Red elderberry--------------- | & <5 & | Balsam fir------ & 3 \\
\hline & & & | American starflower-----------| & <5 & & \\
\hline & & & | Canadian, downy yellow violet--| & <5 & & \\
\hline & & & & & & \\
\hline M-W. & & 1 & & & | & \\
\hline Miscellaneous & & & & & | & \\
\hline water & & & & & & \\
\hline & & & & & & \\
\hline W. & & 1 & & & | & \\
\hline Water & & 1 & & & | & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{13E:} & & & & & \\
\hline & | Severe: & Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & too sandy & too sandy & too sandy & too sandy & \\
\hline & & & & & \\
\hline 13F: & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & | Severe: & Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & & slope \\
\hline & too sandy & too sandy & too sandy & too sandy & \\
\hline & & & & & \\
\hline 14B: & & & & & \\
\hline \multirow[t]{3}{*}{Rousseau} & Severe: & Severe: & Severe: & |Severe: & Moderate: \\
\hline & | too sandy & too sandy & too sandy & | too sandy & droughty \\
\hline & & & & & \\
\hline 14D: & & & & & \\
\hline \multirow[t]{4}{*}{Rousseau-} & & & & & \\
\hline & | too sandy & too sandy & slope & | too sandy & slope \\
\hline & & & | too sandy & & droughty \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { 15A: } \\
& \text { Croswel }
\end{aligned}
\]} & & & & & \\
\hline & & Severe: & | Severe: & | Severe: & | Moderate: \\
\hline & | too sandy & too sandy & too sandy & | too sandy & too sandy \\
\hline & too acid & too acid & too acid & & droughty \\
\hline & & & & & \\
\hline 16A: & & & & & \\
\hline \multirow[t]{3}{*}{Paquin} & & & & & \\
\hline & cemented pan too sandy & cemented pan too sandy & cemented pan too sandy & | too sandy & cemented pan \\
\hline & & & & & \\
\hline 17A: & & & & & \\
\hline \multirow[t]{5}{*}{Au Gres} & & & & & \\
\hline & too sandy & too sandy & too sandy & | too sandy & wetness \\
\hline & | wetness & wetness & wetness & | wetness & \\
\hline & too acid & too acid & | too acid & & \\
\hline & & & & & \\
\hline 18 : & & & & & \\
\hline \multirow[t]{4}{*}{Kinross} & & & & & \\
\hline & excess humus & excess humus & excess humus & | excess humus & excess humus \\
\hline & ponding & ponding & ponding & | ponding & ponding \\
\hline & & & & & \\
\hline 19 : & & & & & \\
\hline \multirow[t]{3}{*}{Deford} & & & & & \\
\hline & excess humus ponding & excess humus ponding & excess humus ponding & \begin{tabular}{l}
| excess humus \\
| ponding
\end{tabular} & excess humus ponding \\
\hline & & & & & \\
\hline 20B: & & & & & \\
\hline \multirow[t]{3}{*}{Rousseau---------} & Severe: & Severe: & Severe: & | Severe: & Moderate: \\
\hline & too sandy & too sandy & too sandy & | too sandy & droughty \\
\hline & | Severe: & Severe: & | Severe: & | Severe: & | Moderate: \\
\hline \multirow{2}{*}{Ocqueoc----------} & too sandy & too sandy & too sandy & | too sandy & droughty \\
\hline & & & & & \\
\hline 20D: & & & & & \\
\hline \multirow[t]{4}{*}{Rousseau} & | Severe: & Severe: & | Severe: & | Severe: & | Moderate: \\
\hline & too sandy & too sandy & | slope & | too sandy & | slope \\
\hline & & & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Ocqueoc} & | Severe: & Severe: & | Severe: & |Severe: & Moderate: \\
\hline & too sandy & too sandy & | slope & | too sandy & | slope \\
\hline & & & | too sandy & & | droughty \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & | \\
\hline \multicolumn{6}{|l|}{20E:} \\
\hline \multirow[t]{4}{*}{Rousseau-} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & | slope \\
\hline & too sandy & too sandy & too sandy & too sandy & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Ocqueoc-} & Severe: & | Severe: & Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & too sandy & too sandy & too sandy & | too sandy & \\
\hline & & & & & \\
\hline 22B: & & & & & \\
\hline \multirow[t]{3}{*}{Alcona-----------} & Slight & |Slight & Moderate: & | Slight & | Slight \\
\hline & & & slope & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{24B :} \\
\hline \multirow[t]{4}{*}{Munising} & \multirow[t]{4}{*}{Severe: wetness} & | Moderate: & | Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { wetness }
\end{aligned}
\]} & | Moderate: \\
\hline & & | percs slowly & percs slowly & & wetness \\
\hline & & | wetness & wetness & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{5}{*}{Munising} & \multirow[t]{5}{*}{Severe: wetness} & \(\mid\) Moderate: & | Severe: & \multirow[t]{2}{*}{Moderate:} & |Moderate: \\
\hline & & | percs slowly & percs slowly & & | slope \\
\hline & & slope & slope & & | wetness \\
\hline & & wetness & wetness & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{25B :} \\
\hline \multirow[t]{4}{*}{Munising} & Severe: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & wetness & | percs slowly & percs slowly & wetness & | wetness \\
\hline & & wetness & wetness & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer} & | Severe: & |Severe: & |Severe: & | Severe: & Severe: \\
\hline & too sandy & too sandy & percs slowly & too sandy & droughty \\
\hline & wetness & & too sandy & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{25D:} \\
\hline \multirow[t]{5}{*}{Munising} & |Severe: & Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & wetness & | percs slowly & percs slowly & wetness & | slope \\
\hline & & | slope & slope & & | wetness \\
\hline & & wetness & wetness & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Yalmer} & |Severe: & Severe: & |Severe: & | Severe: & Severe: \\
\hline & too sandy & too sandy & percs slowly & too sandy & droughty \\
\hline & wetness & & slope & & \\
\hline & & & too sandy & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{26A:} \\
\hline \multirow[t]{3}{*}{Skanee-----------} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & percs slowly & percs slowly & | percs slowly & \multirow[t]{3}{*}{wetness} & \multirow[t]{3}{*}{wetness} \\
\hline & wetness & wetness & wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{27:} \\
\hline \multirow[t]{5}{*}{Gay} & Severe: & Severe: & |Severe: & Severe: & Severe: \\
\hline & excess humus \\
\hline & ponding & | ponding & large stones & large stones & | ponding \\
\hline & & & ponding & ponding & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{28B:} \\
\hline \multirow[t]{3}{*}{Keweenaw-} & Slight & |Slight & | Moderate: & |Slight & | Moderate: \\
\hline & & & slope & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{28D: | | |} \\
\hline \multirow[t]{4}{*}{Keweenaw-} & Moderate: & | Moderate: & | Severe: & |Slight & | Moderate: \\
\hline & slope & slope & slope & & | slope \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & | Playgrounds & Paths and trails & Golf fairways \\
\hline & & & | & | & \\
\hline \multirow[t]{4}{*}{28E:
Keweenaw} & & & | & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { 29B: } \\
& \text { Yalmer }
\end{aligned}
\]} & & & & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & too sandy wetness & too sandy & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { too sandy }
\end{aligned}
\] & too sandy & droughty \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{29D:
Yalmer} & & & & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & too sandy & | too sandy & | percs slowly & | too sandy & droughty \\
\hline & wetness & & | slope & & \\
\hline & & & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{31D:
Trenary} & & & & & \\
\hline & Moderate: & | Moderate: & | Severe: & | Slight & Moderate: \\
\hline & slope & slope & | slope & & large stones \\
\hline & & & & & slope \\
\hline & & & | & & \\
\hline 32A: & & & & & \\
\hline \multirow[t]{3}{*}{Charlevoix} & Severe: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & wetness & | wetness & | wetness & | wetness & | wetness \\
\hline & & & & & \\
\hline 33: & & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & & & & & |Severe: \\
\hline & excess humus ponding & excess humus ponding & excess humus
ponding & | excess humus ponding & excess humus ponding \\
\hline & & & & & \\
\hline 34B: & & & | & & \\
\hline \multirow[t]{4}{*}{Onaway} & Slight & | Slight & | Moderate: & | Slight & | Moderate: \\
\hline & & & | slope & & large stones \\
\hline & & & | small stones & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{34D:
Onaway} & & & & & \\
\hline & & & & | Slight & \\
\hline & slope & slope & | slope & & large stones \\
\hline & & & & & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{34E:
Onaway} & & & | & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & | slope & | slope & | slope \\
\hline & & & & & \\
\hline 35B: & & & | & & \\
\hline \multirow[t]{4}{*}{Champion} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly & percs slowly & large stones & large stones & large stones \\
\hline & wetness & & | wetness & | wetness & \\
\hline & & & & & \\
\hline 35D: & & & & & \\
\hline \multirow[t]{4}{*}{Champion} & Severe: & |Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly wetness & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & \begin{tabular}{l}
| large stones \\
| slope
\end{tabular} & | large stones | wetness & | large stones \\
\hline & & & | wetness & & \\
\hline & & & | & & \\
\hline \multirow[t]{6}{*}{36A
Net} & & & | & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & percs slowly & | percs slowly & | large stones & | wetness & | wetness \\
\hline & wetness & | wetness & | percs slowly & & \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline Witbeck----- & \begin{tabular}{l}
|Severe: \\
excess humus \\
large stones ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus \\
large stones ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| excess humus \\
| large stones \\
| ponding
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{38B:} \\
\hline \multirow[t]{4}{*}{Pence------------} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{5}{*}{Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope } \\
& \mid \text { small stones }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{38D:
Pence-} & \multirow[t]{2}{*}{Moderate:} & & & & \\
\hline & & & & \multirow[t]{5}{*}{| Slight} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { large stones } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} \\
\hline & slope & slope & | slope & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{38E:} \\
\hline \multirow[t]{3}{*}{Pence} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Severe:} & | Severe: & | Severe: & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\]} \\
\hline & & & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \\
\hline & & \multirow[t]{2}{*}{} & & & \\
\hline 39B: & & & & & \\
\hline \multirow[t]{3}{*}{Amasa------------} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Moderate: } \\
& \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
| large stones
\end{tabular}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{39D:
Amasa-} & & & & & \\
\hline & | Moderate: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { large stones } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & slope & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{39E:
Amasa} & & & & & \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Severe: \({ }^{\text {| }}\) slope} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
slope
\end{tabular}} & | Severe: & | Severe: \\
\hline & & & & slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{40B:
Waiska} & \multirow[b]{2}{*}{| Moderate:} & & & & \\
\hline & & | Moderate: & | Severe: & \multirow[t]{3}{*}{| Slight} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & large stones & large stones & large stones small stones & & \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{40D:
Waiska} & \multirow[t]{2}{*}{| Moderate:} & & & & \\
\hline & & | Moderate: & | Severe: & \multirow[t]{5}{*}{| Slight} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { large stones } \\
& \mid \text { droughty }
\end{aligned}
\]} \\
\hline & large stones & large stones & | large stones & & \\
\hline & slope & slope & slope & & \\
\hline & & & small stones & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{41A:
Channing} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{42:
Minocqua---------------| Severe:} & & & & \\
\hline Minocqua- & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] & |Severe:
| excess humus
ponding & | Severe:
\(\mid\) excess humus
\(\mid\) ponding & ```
|Severe:
``` \\
\hline \multirow[t]{5}{*}{43B:
Karlin} & & & & & \\
\hline & \multirow[t]{4}{*}{| Slight} & \multirow[t]{5}{*}{|slight} & \multirow[t]{4}{*}{```
|Moderate:
| slope
| small stones
```} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Moderate: \\
| droughty
\end{tabular}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{43D:
Karlin---------------|Moderate:}} & & & & \\
\hline & & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline \multirow[t]{3}{*}{Karlin-} & \multirow[t]{3}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Map symbol and soil name} & Camp areas & Picnic areas & Playgrounds & \[
\begin{gathered}
\text { Paths and } \\
\text { trails }
\end{gathered}
\] & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{4}{*}{Carlshend} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
too acid depth to rock
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
| wetness
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 45A : & & & & & \\
\hline \multirow[t]{3}{*}{Zeba-} & \multirow[t]{3}{*}{Severe: wetness} & | Severe: & | Severe: & & \\
\hline & & \multirow[t]{2}{*}{wetness} & \multirow[t]{2}{*}{| wetness} & \multirow[t]{2}{*}{wetness} & \multirow[t]{2}{*}{\begin{tabular}{l}
Severe: \\
| wetness
\end{tabular}} \\
\hline & & & & & \\
\hline 46: & & \multirow[t]{2}{*}{} & & & \\
\hline \multirow[t]{5}{*}{Jacobsville} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
| excess humus \\
| large stones \\
| ponding
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\]} \\
\hline & & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
excess humus ponding
\end{tabular}} & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 48: & & & & & \\
\hline \multirow[t]{5}{*}{Burt} & |Severe: & & & \multirow[t]{5}{*}{| Severe: too sandy ponding} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | ponding } \\
& \text { depth to rock }
\end{aligned}
\]} \\
\hline & too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & | too sandy & & \\
\hline & \multirow[t]{2}{*}{\begin{tabular}{l}
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
ponding \\
depth to rock
\end{tabular}} & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 50A: & & & & & \\
\hline \multirow[t]{3}{*}{Sundell} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{| Severe: \({ }_{\text {| }}\) wetness} & | Severe: \\
\hline & & & & & \multirow[t]{2}{*}{wetness} \\
\hline & & & & & \\
\hline 51: & | & & & & \\
\hline \multirow[t]{4}{*}{Nahma -} & \multirow[t]{4}{*}{|Severe:
\(\mid\) excess humus
\(\mid\) ponding} & \multirow[t]{4}{*}{|Severe:
\(\mid\) excess humus
\(\mid\) ponding} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
| excess humus \\
| ponding
\end{tabular}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline 52B: & & & & & \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Summerville \\
55F:
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | depth to rock }
\end{aligned}
\]} & | Severe: & | Severe: & \multirow[t]{3}{*}{| Slight} & |Severe: \\
\hline & & \multirow[t]{2}{*}{depth to rock} & \multirow[t]{2}{*}{| depth to rock} & & \multirow[t]{2}{*}{| depth to rock} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{55F:
Michigamme} & \multirow[t]{4}{*}{| Severe:} & \multirow[t]{4}{*}{| Severe:
| slope} & | Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { large stones } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & & & \multirow[t]{2}{*}{large stones slope} & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & | Severe: & | Severe: & \multirow[t]{4}{*}{| Severe:
| slope} & \multirow[t]{4}{*}{```
|Severe:
```} \\
\hline & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & & \\
\hline & & & & & \\
\hline & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|} & & & \\
\hline 56D: & & & & | slope & \\
\hline Peshekee- & & & | Severe: & | Moderate: & | Severe: \\
\hline & depth to rock & depth to rock & | large stones & large stones & | large stones \\
\hline & & & | slope & & | depth to rock \\
\hline & & & depth to rock & & \\
\hline & & & & & \\
\hline Rock outcrop & Severe: & | Severe: & | Severe: & | Slight & | Severe: \\
\hline & depth to rock & depth to rock & | slope & & | depth to rock \\
\hline & & & | depth to rock & & \\
\hline & & & & & \\
\hline 56E: & & & & & \\
\hline Peshekee- & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & | large stones & slope & | large stones \\
\hline & depth to rock & | depth to rock & | slope & & | slope \\
\hline & & & depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline Rock outcrop- & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & | slope & slope & | slope \\
\hline & depth to rock & depth to rock & depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{66B:} \\
\hline Udipsamments & Severe: too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
droughty
\end{tabular} \\
\hline \multirow[t]{2}{*}{Urban land.} & & & | & & \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{67B:} \\
\hline \multicolumn{6}{|l|}{Urban land.} \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rubicon-} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & too sandy & too sandy & | too sandy & | too sandy & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{68 :} \\
\hline \multirow[t]{4}{*}{Pits, quarri} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & & & & slope & \\
\hline & depth to rock & depth to rock & | depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{69B:} \\
\hline \multirow[t]{3}{*}{Escanaba-} & & & & & \\
\hline & too sandy & | too sandy & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { too sandy }
\end{aligned}\right.
\] & | too sandy & | droughty \\
\hline & & & too sandy & & \\
\hline \multicolumn{6}{|l|}{69D:} \\
\hline \multirow[t]{4}{*}{Escanaba} & Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & slope & | slope & | slope & | too sandy & slope \\
\hline & too sandy & | too sandy & & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{70B:} \\
\hline \multirow[t]{4}{*}{Nadeau----------} & Slight & | Slight & & | Slight & \\
\hline &  & & | slope & & | large stones \\
\hline & & & | small stones & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{70D:} \\
\hline \multirow[t]{5}{*}{Nadeau} & Moderate: & |Moderate: & | Severe: & | Slight & | Moderate: \\
\hline & slope & slope & | slope & & large stones \\
\hline & & & & & slope \\
\hline & & & & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{71B:} \\
\hline \multirow[t]{4}{*}{Evart-} & & & & & \\
\hline & flooding & | wetness & | flooding & | wetness & | flooding \\
\hline & wetness & & | wetness & & wetness \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Pelkie-} & & | Slight & & | Slight & \\
\hline & flooding & & | flooding & & | flooding \\
\hline & & & | slope & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sturgeon-} & & & & & \\
\hline & flooding & wetness & | wetness & wetness & | wetness \\
\hline & wetness & & & & \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{72B:} \\
\hline \multirow[t]{4}{*}{Emmet------------} & Slight & | Slight & | Moderate: & | Slight & | Moderate: \\
\hline & & & | slope & & | large stones \\
\hline & & & | small stones & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72D:} \\
\hline \multirow[t]{4}{*}{Emmet} & Moderate: & | Moderate: & | Severe: & | Slight & | Moderate: \\
\hline & slope & slope & | slope & & | large stones \\
\hline & & & & & slope \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72E:} \\
\hline \multirow[t]{3}{*}{Emmet} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{73B:} \\
\hline \multirow[t]{3}{*}{Gogebic} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly wetness & percs slowly wetness & large stones wetness & | large stones | wetness & large stones droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{73D:} \\
\hline \multirow[t]{4}{*}{Gogebic} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly wetness & percs slowly wetness & | large stones slope & & \\
\hline & & & \begin{tabular}{l}
slope \\
wetness
\end{tabular} & | wetness & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{74D:} \\
\hline \multirow[t]{5}{*}{Schweitze} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly & | percs slowly & | large stones & | large stones & | slope \\
\hline & slope & slope & & | slope & \\
\hline & & & | slope & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Michigamme} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & slope & large stones & | large stones & | large stones \\
\hline & & & slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{74F:} \\
\hline \multirow[t]{5}{*}{Schweitze} & |Severe: & | Severe: & | Severe: & |Severe: & |Severe: \\
\hline & percs slowly & percs slowly & large stones & slope & slope \\
\hline & slope & slope & | percs slowly & & \\
\hline & & & | slope & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Michigamme--} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & | large stones
slope & | slope & \[
\begin{array}{|l}
\text { large stones } \\
\text { slope }
\end{array}
\] \\
\hline & & & slope & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{76C: | | |} \\
\hline \multirow[t]{4}{*}{Garlic} & \multirow[t]{2}{*}{Severe:} & | Severe: & | Severe: & | Severe: & \(\mid\) Moderate: \\
\hline & & | too sandy & | slope & | too sandy & | slope \\
\hline & & & too sandy & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Alcona} & \multirow[t]{3}{*}{|Slight} & | Slight & | Severe: & \multirow[t]{3}{*}{| Slight} & | Moderate: \\
\hline & & & | slope & & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Voelker} & | Severe: & |Severe: & | Severe: & |Severe: & | Moderate: \\
\hline & too sandy & too sandy & slope & | too sandy & slope \\
\hline & & & | too sandy & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{76E:} \\
\hline \multirow[t]{4}{*}{Garlic} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & | slope & | too sandy & | slope \\
\hline & too sandy & too sandy & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Alcona} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & slope & | slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Voelker} & | Severe: \\
\hline & slope & | slope & | slope & | too sandy & | slope \\
\hline & too sandy & too sandy & | too sandy & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & | & \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{4}{*}{Garlic} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & | slope & | slope \\
\hline & too sandy & too sandy & | too sandy & | too sandy & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Alcona-} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Voelker} & & & & & \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & too sandy & too sandy & too sandy & | too sandy & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{77D:} \\
\hline \multirow[t]{4}{*}{Garlic} & Severe: & | Severe: & | Severe: & | Severe: & | Moderate: \\
\hline & too sandy & too sandy & & | too sandy & | slope \\
\hline & & & | too sandy & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Alcona} & Slight & | Slight & | Severe: & | Slight & | Moderate: \\
\hline & & & | slope & & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Voelker-----------} & Severe: & | Severe: & | Severe: & & | Moderate: \\
\hline & too sandy & too sandy & | slope & | too sandy & | slope \\
\hline & & & | too sandy & & | droughty \\
\hline & & & & & | \\
\hline \multicolumn{6}{|l|}{77E:} \\
\hline \multirow[t]{4}{*}{Garlic-} & & & & & | Severe: \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & too sandy & | too sandy & | too sandy & | too sandy & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Alcona-} & & & & & \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Voelker} & & & & & \\
\hline & slope & | slope & | slope & | too sandy & slope \\
\hline & too sandy & | too sandy & | too sandy & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{78C:} \\
\hline \multirow[t]{3}{*}{Keweenaw---------} & Slight & | Slight & | Severe: & | Slight & | Moderate: \\
\hline & & & slope & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & & & & & \\
\hline & too sandy & | too sandy & | slope & | too sandy & | too sandy \\
\hline & & & | too sandy & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{78E:} \\
\hline \multirow[t]{3}{*}{Keweenaw} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & | slope & | too sandy & | slope \\
\hline & too sandy & | too sandy & | too sandy & & \\
\hline & & & & &  \\
\hline \multicolumn{6}{|l|}{78F:} \\
\hline \multirow[t]{3}{*}{Keweenaw-} & & & & & \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & | slope & | slope & | slope \\
\hline & | too sandy & | too sandy & | too sandy & | too sandy & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & &  & \\
\hline \multicolumn{6}{|l|}{79B:} \\
\hline Keweenaw- & Slight & | Slight & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\] & | Slight & \begin{tabular}{l}
| Moderate: \\
| droughty
\end{tabular} \\
\hline Munising-------- & Severe: wetness & |Moderate: percs slowly wetness & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \text { wetness } \\
& \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{80B:} \\
\hline Sayner & \begin{tabular}{l}
Moderate: \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| slope \\
| small stones \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline Rubicon- & |Severe: too sandy & |Severe:
\(\mid\) too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { too sandy } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{80D:} \\
\hline Sayner & Moderate: slope too sandy & \begin{tabular}{l}
\(\mid\) Moderate: \\
| slope \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & \\
\hline Rubicon- & Severe: too sandy & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { | too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & | Moderate:
\(\mid\) slope
\(\mid\) too sandy
\(\mid\) droughty \\
\hline \multicolumn{6}{|l|}{80E:} \\
\hline Sayner & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & | slope & slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon-} & & & & & \\
\hline & slope & | slope & slope & | slope & | slope \\
\hline & too sandy & | too sandy & | too sandy & | too sandy & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{81B:} \\
\hline Pelissier & Slight & | Slight & \begin{tabular}{l}
|Severe: \\
small stones
\end{tabular} & | Slight & \begin{tabular}{l}
|Severe: \\
| droughty
\end{tabular} \\
\hline & & & small stones & & droughty \\
\hline \multicolumn{6}{|l|}{81D:} \\
\hline Pelissier & Moderate: & | Moderate: & | Severe: & | Slight & Severe: \\
\hline & slope & slope & slope & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{81E:} \\
\hline Pelissier- & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & | slope & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}\right.
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{84D:} \\
\hline Rubicon-- & Severe: slope too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { | too sandy }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
slope \\
too sandy
\end{tabular} & |Severe: too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline Ishpeming--- & Severe: slope too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { | too sandy }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline Rock outcrop. & & & & | & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{100E:} \\
\hline \multirow[t]{4}{*}{Sayner} & Severe: & | Severe: & | Severe: & | Moderate: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & & & & | too sandy & droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & too sandy & slope \\
\hline & too sandy & too sandy & too sandy & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{100F:} \\
\hline \multirow[t]{4}{*}{Sayner} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & | slope & slope & slope & slope \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & | slope & slope & slope \\
\hline & too sandy & too sandy & | too sandy & | too sandy & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{103D:} \\
\hline \multirow[t]{4}{*}{Rubicon} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & | slope & too sandy & slope \\
\hline & too sandy & too sandy & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Ocqueoc} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & | slope & | too sandy & | slope \\
\hline & too sandy & | too sandy & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & slope & & slope & slope \\
\hline & depth to rock & | depth to rock & | depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{104C:} \\
\hline \multirow[t]{3}{*}{Fence------------} & Slight & | Slight & & & Slight \\
\hline & & & | slope & | erodes easily & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{105C:} \\
\hline \multirow[t]{5}{*}{Munising} & Severe: & & & |Moderate: & \\
\hline & wetness & | percs slowly & | percs slowly & | wetness & | wetness \\
\hline & & | wetness & | slope & & | droughty \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{106B:} \\
\hline \multirow[t]{3}{*}{Sagola} & Slight & | Slight & & | Slight & \\
\hline & & & | large stones & & | large stones | droughty \\
\hline & & & & & \\
\hline Rubicon- & Severe: too sandy & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
| Severe: \\
large stones too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & | Moderate: too sandy droughty \\
\hline \multicolumn{6}{|l|}{106D:} \\
\hline \multirow[t]{5}{*}{Sagola} & Moderate: & | Moderate: & | Severe: & | Slight & | Moderate: \\
\hline & slope & | slope & | large stones & & | large stones \\
\hline & & & | slope & & | slope \\
\hline & & & & & droughty \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon} & & & | Severe: & & | Moderate: \\
\hline & too sandy & | too sandy & | large stones & | too sandy & | slope \\
\hline & & & | slope & & | too sandy \\
\hline & & & | too sandy & & droughty \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107B:} \\
\hline \multirow[t]{3}{*}{Goodman---------} & \multirow[t]{3}{*}{Slight} & \multirow[t]{3}{*}{| Slight} & |Severe: & |Severe: & |Moderate: \\
\hline & & & large stones & | erodes easily & large stones \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{| Slight} & | Severe: & | Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & large stones & | erodes easily & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107D:} \\
\hline \multirow[t]{5}{*}{Goodman-} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & | Severe: & |Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { large stones } \\
& \text { slope }
\end{aligned}
\]} \\
\hline & & & | large stones & | erodes easily & \\
\hline & & & | slope & & \\
\hline & & & | too acid & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{| Moderate:
| slope} & | Severe: & | Severe: & | Moderate: \\
\hline & & & | large stones & | erodes easily & | large stones \\
\hline & & & | slope & & slope \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107F:} \\
\hline \multirow[t]{4}{*}{Goodman} & Severe: & Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & | large stones & | erodes easily & | slope \\
\hline & & & | slope & | slope & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{large stones slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{108B :} \\
\hline \multirow[t]{3}{*}{Goodman----------} & \multirow[t]{3}{*}{Slight} & \multirow[t]{3}{*}{| Slight} & & |Severe: & |Moderate: \\
\hline & & & large stones & | erodes easily & large stones \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | large stones }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { erodes easily }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Wabeno-----------} & \multirow[t]{5}{*}{Severe: wetness} & \multirow[t]{5}{*}{| Moderate: percs slowly wetness} & \multirow[t]{5}{*}{| Severe:
\(\mid\) large stones
\(\mid\) percs slowly
\(\mid\) wetness} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { erodes easily }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
large stones
\end{tabular}} \\
\hline & & & & & \\
\hline \multicolumn{2}{|l|}{108D:} & & & & \\
\hline \multirow[t]{3}{*}{Goodman} & \multirow[t]{3}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & |Severe: & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { erodes easily }
\end{aligned}
\]} & | Moderate: \\
\hline & & & | large stones
slope & & \(\mid l\)
\(\mid l\)
large stones \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { large stones } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { erodes easily }
\end{aligned}
\]} & \multirow[t]{5}{*}{| Moderate:
\(\mid\) large stones
| slope
\(\mid\) droughty} \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Wabeno-} & \multirow[t]{5}{*}{Severe: wetness} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Moderate: \\
percs slowly \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{|Severe:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) wetness} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { erodes easily }
\end{aligned}
\]} & \multirow[t]{5}{*}{| Moderate:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) wetness} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{109B:} \\
\hline \multirow[t]{3}{*}{Rubicon} & \multirow[t]{3}{*}{Severe: too sandy} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { large stones } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Moderate: too sandy droughty} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw-} & \multirow[t]{3}{*}{|Moderate:
\(\mid\) large stones} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
large stones
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | large stones }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Slight} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
large stones droughty
\end{tabular}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{112F:} \\
\hline \multirow[t]{4}{*}{Keewaydin} & Severe: & | Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & slope & large stones & slope & large stones \\
\hline & & & slope & & slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Michigamme} & Severe: & | Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & slope & large stones & slope & large stones \\
\hline & & & slope & & \[
\begin{aligned}
& \text { slope }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{113B:} \\
\hline \multirow[t]{3}{*}{Vanripe} & & & & & | Severe: \\
\hline & large stones & large stones & | large stones & | large stones & | large stones \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{113D:} \\
\hline \multirow[t]{4}{*}{Vanripe} & & & & & \\
\hline & large stones & large stones & | large stones & | large stones & large stones \\
\hline & slope & slope & slope & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{113F:} \\
\hline \multirow[t]{4}{*}{Vanriper} & Severe: & | Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & slope & large stones & slope & | large stones \\
\hline & & & slope & & slope \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{114B :} \\
\hline \multirow[t]{3}{*}{Vanrip} & & & & & \\
\hline & large stones & large stones & | large stones & | large stones & large stones \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{114D:} \\
\hline \multirow[t]{4}{*}{Vanriper} & & & & & \\
\hline & large stones & large stones & | large stones & | large stones & | large stones \\
\hline & slope & slope & | slope & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{114F:} \\
\hline \multirow[t]{3}{*}{Vanrip} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & \begin{tabular}{|l} 
large stones \\
slope
\end{tabular} & slope & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline & & & slope & & \\
\hline \multicolumn{6}{|l|}{117B:} \\
\hline \multirow[t]{4}{*}{Fence} & Moderate: & | Moderate: & \(\mid\) Moderate: & | Severe: & |Slight \\
\hline & wetness & wetness & | slope & | erodes easily & \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{118A:} \\
\hline \multirow[t]{4}{*}{Croswell} & & & & & \\
\hline & too sandy & too sandy & | too sandy & | too sandy & | droughty \\
\hline & too acid & too acid & | too acid & & \\
\hline & & & & & \\
\hline Deford----------- & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} & |Severe:
\(\mid\) excess humus
| ponding & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | excess humus } \\
& \text { ponding }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{119B:} \\
\hline \multirow[t]{2}{*}{Yalmer} & Severe: too sandy wetness & \begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular} & \begin{tabular}{l}
| Severe: \\
percs slowly too sandy
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & \\
\hline Kalkaska- & Severe: too sandy & \begin{tabular}{l}
Severe: \\
too sandy
\end{tabular} & \begin{tabular}{l}
Severe: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
Moderate: \\
too sandy \\
droughty
\end{tabular} \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{119D:
Yalmer} & & & & & \\
\hline & | Severe: \\
\hline & too sandy & | too sandy & percs slowly & too sandy & droughty \\
\hline & wetness & & slope & & \\
\hline & & & too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska} & \multirow[t]{5}{*}{Severe: too sandy} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{5}{*}{| Moderate:
\(\mid\) slope
\(\mid\) too sandy
\(\mid\) droughty} \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{121B:
Onota} & & & & & \\
\hline & \multirow[t]{4}{*}{Moderate: small stones} & \multirow[t]{4}{*}{|Moderate: small stones} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { small stones }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Moderate:
\(\mid\) large stones
\(\mid\) small stones} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{\(122:\)
Pleine} & & & & & \\
\hline & Severe: & | Severe: & Severe: & |Severe: & \multirow[t]{5}{*}{| Severe:
\(\mid\) excess humus
\(\mid\) large stones
\(\mid\) ponding} \\
\hline & excess humus & | excess humus & | excess humus & | excess humus & \\
\hline & large stones & large stones & large stones & large stones & \\
\hline & ponding & | ponding & | ponding & | ponding & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{123A:} \\
\hline \multirow[t]{5}{*}{Tula} & | Severe: & | Severe: & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{} \\
\hline & percs slowly & percs slowly & large stones & & \\
\hline & & & | percs slowly & & \\
\hline & & & wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{124B:} \\
\hline \multirow[t]{3}{*}{Gogebic} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly wetness & \begin{tabular}{l}
percs slowly \\
wetness
\end{tabular} & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & | large stones | droughty \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Dishno-----------} & Moderate: & | Moderate: & | Severe: & | Moderate: & | Severe: \\
\hline & large stones wetness & large stones wetness & | large stones & large stones & | large stones \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{124D:} \\
\hline \multirow[t]{4}{*}{Gogebic} & \multirow[t]{4}{*}{|Severe: percs slowly wetness} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { percs slowly } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{3}{*}{|Severe:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) wetness} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
large stones wetness
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Dishno} & | Moderate: & | Moderate: & | Severe: & | Moderate: & |Severe: \\
\hline & large stones wetness & | large stones wetness & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] & | large stones & | large stones \\
\hline & & & slope & & \\
\hline \multicolumn{6}{|l|}{125D:} \\
\hline \multirow[t]{4}{*}{Keweenaw-} & Severe: & | Severe: & | Severe: & \multirow[t]{4}{*}{| Moderate:
| slope} & \multirow[t]{3}{*}{| Severe:} \\
\hline & slope & slope & large stones & & \\
\hline & & & slope & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska} & | Severe: \\
\hline & slope & | slope & large stones & too sandy & | slope \\
\hline & too sandy & | too sandy & slope & & | droughty \\
\hline & & & too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & | Severe: & | Severe: & Moderate: & | Severe: \\
\hline & slope & slope & slope & slope & | slope \\
\hline & depth to rock & depth to rock & depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{138F:
Rock outcrop} & & & & & \\
\hline & |Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & | slope & slope & | slope & | slope & | slope \\
\hline & depth to rock & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline 139B: & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & Moderate: & | Moderate: & | Severe: & | Severe: & | Moderate: \\
\hline & large stones & large stones & large stones & erodes easily & | large stones droughty \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{139D:
Sundo} & & & & & \\
\hline & Moderate: & | Moderate: & | Severe: & | Severe: & \(\mid\) Moderate: \\
\hline & & & & erodes easily & | large stones \\
\hline & slope & | slope & | slope & & | slope \\
\hline & & & & & | droughty \\
\hline & & | & & & \\
\hline \multirow[t]{4}{*}{140B:} & & & & & \\
\hline & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & percs slowly wetness & | percs slowly | wetness & | large stones | wetness & | large stones | wetness & | large stones \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Dishno} & Moderate: & | Moderate: & | Severe: & | Moderate: & | Severe: \\
\hline & | large stones wetness & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & large stones & large stones & | large stones \\
\hline & & & & & \\
\hline 140D: & & & & & \\
\hline \multirow[t]{4}{*}{Champion} & & & & & \\
\hline & percs slowly wetness & | percs slowly & | large stones
slope & | large stones & | large stones \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Dishno} & Moderate: & | Moderate: & | Severe: & | Moderate: & | Severe: \\
\hline & large stones wetness & | large stones | wetness & \[
\begin{array}{|l}
\text { large stones } \\
\text { slope }
\end{array}
\] & large stones & | large stones \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline 141D: & & & & & \\
\hline \multirow[t]{4}{*}{Pelissier} & | Severe: & |Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & slope & slope & | slope \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline 142B: & & & & & \\
\hline \multirow[t]{3}{*}{Pelissie} & |Slight & | Slight & & | Slight & \\
\hline & & & | small stones & & | droughty \\
\hline & & & & & \\
\hline 142D: & & & & & \\
\hline \multirow[t]{3}{*}{Pelissier} & & & & | Slight & \\
\hline & slope & | slope & | slope & & | droughty \\
\hline & & & & & \\
\hline 144B: & & & & & | \\
\hline \multirow[t]{3}{*}{Farquar} & | Moderate: & | Moderate: & | Severe: & | Slight & | Severe: \\
\hline & small stones wetness & small stones wetness & | small stones & & | droughty \\
\hline & & & & & \\
\hline 145C: & & | & & & | \\
\hline \multirow[t]{4}{*}{Munising} & | Severe: & | Severe: & | Severe: & | Moderate: & | Moderate: \\
\hline & percs slowly wetness & | percs slowly & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & | wetness & | large stones | wetness \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued


Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & | & & & \\
\hline \multicolumn{6}{|l|}{153F:} \\
\hline \multirow[t]{5}{*}{Ishpeming-} & | Severe: \\
\hline & slope & | slope & large stones & slope & slope \\
\hline & too sandy & | too sandy & slope & too sandy & \\
\hline & & & too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & depth to rock & | depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{154B:} \\
\hline \multirow[t]{3}{*}{Rubicon} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{|Severe: too sandy} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \text { | too sandy } \\
& \text { droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Sayner} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
too sandy
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Moderate: \\
| too sandy
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
slope \\
small stones \\
too sandy
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
too sandy
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{154D:
Rubicon} & & & & & \\
\hline & Severe: & | Severe: & | Severe: & | Severe: & | Moderate: \\
\hline & too sandy & | too sandy & & too sandy & \\
\hline & & & | too sandy & & | too sandy \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sayner} & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\mid \text { Moderate: } \\
\mid \text { slope } \\
\mid \text { too sandy }
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\]} & \multirow[t]{4}{*}{|Severe: slope} & \multirow[t]{4}{*}{Moderate: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{155A: | | |} \\
\hline \multirow[t]{2}{*}{Zeba} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & \multirow[t]{2}{*}{Severe: wetness} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { wetness }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Jacobsville} & \multirow[t]{2}{*}{|Severe:
\(\mid\) excess humus
\(\mid\) ponding} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
excess humus \\
large stones ponding
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{|Severe:
\(\mid\) excess humus
\(\mid\) ponding} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{156B:} \\
\hline \multirow[t]{3}{*}{Duel} & \multirow[t]{3}{*}{Moderate: large stones too sandy} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
large stones too sandy
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
| large stones
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
Moderate: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { depth to rock } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{157B:} \\
\hline \multirow[t]{5}{*}{Reade} & \multirow[t]{5}{*}{Moderate: wetness} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Moderate: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
large stones \\
slope \\
small stones
\end{tabular}} & \multirow[t]{5}{*}{Moderate: wetness} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { large stones } \\
& \text { depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline Nahma------------- & |Severe:
\(\mid\) excess humus
\(\mid\) ponding & |Severe:
| excess humus
| ponding & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] & |Severe:
excess humus
ponding & | Severe:
\(\mid\) excess humus
\(\mid\) ponding \\
\hline \multicolumn{6}{|l|}{158C:} \\
\hline \multirow[t]{4}{*}{Munising} & \multirow[t]{4}{*}{Severe: percs slowly wetness} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | percs slowly }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
percs slowly \\
slope \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{Moderate: wetness} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
large stones \\
wetness
\end{tabular}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Onota} & \multirow[t]{4}{*}{Moderate: small stones} & \multirow[t]{4}{*}{\begin{tabular}{l}
Moderate: \\
| small stones
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Severe: } \\
& \mid \text { slope } \\
& \text { small stones }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\text { Moderate: } \\
\mid \text { large stones } \\
\text { small stones }
\end{array}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{158C:} \\
\hline Yalmer & Severe: too sandy wetness & \begin{tabular}{l}
|Severe: \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
percs slowly \\
slope \\
too sandy
\end{tabular} & | Severe:
\(\mid\) too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{159A:} \\
\hline Jeske & Severe: too sandy wetness & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy } \\
& \mid \text { wetness }
\end{aligned}
\] & | Severe: too sandy wetness & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { too sandy } \\
& \mid \text { wetness }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{160B:} \\
\hline Paquin & Severe: cemented pan too sandy & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cemented pan } \\
& \mid \text { too sandy }
\end{aligned}
\] & | Severe: cemented pan too sandy & \begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
cemented pan
\end{tabular} \\
\hline & & & & & \\
\hline Finch & \begin{tabular}{l}
Severe: \\
cemented pan too sandy wetness
\end{tabular} & |Severe:
\(\mid\) too sandy
\(\mid\) wetness
\(\mid\) too acid & \begin{tabular}{l}
| Severe: \\
cemented pan \\
too sandy \\
wetness
\end{tabular} & | Severe: too sandy wetness & \begin{tabular}{l}
| Severe: \\
wetness \\
too acid \\
droughty
\end{tabular} \\
\hline \multicolumn{6}{|l|}{161B:} \\
\hline Yellowdog- & \begin{tabular}{l}
Severe: \\
small stones
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
small stones too sandy
\end{tabular} & \begin{tabular}{l}
| Severe: \\
small stones too sandy
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { small stones } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{162B:} \\
\hline Buckroe & \begin{tabular}{l}
Severe: \\
small stones
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { small stones }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { small stones }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { small stones }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Severe: } \\
& \mid \text { small stones } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{165B :} \\
\hline Chocolay & & | Moderate: & | Severe: & Severe: & | Severe: \\
\hline & large stones small stones wetness & large stones small stones wetness & large stones small stones & large stones & large stones \\
\hline & & & & & \\
\hline Waiska & Moderate: small stones & |Moderate: small stones & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { small stones }
\end{aligned}
\] & | Slight & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{166:} \\
\hline Skandia & \begin{tabular}{l}
Severe: \\
excess humus ponding
\end{tabular} & |Severe:
\(\mid\) excess humus
ponding & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} & | Severe:
\(\mid\) excess humus
ponding & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{167 :} \\
\hline Skandia- & Severe: excess humus ponding &  & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \text { ponding }
\end{aligned}
\] & |Severe:
\(\mid\) excess humus
\(\mid\) ponding & \begin{tabular}{l}
|Severe: \\
excess humus ponding
\end{tabular} \\
\hline Jacobsville-- & Severe: excess humus ponding & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { ponding }
\end{aligned}
\] & |Severe:
\(\mid\) excess humus
| ponding & \begin{tabular}{l}
|Severe: \\
excess humus ponding
\end{tabular} \\
\hline \multicolumn{6}{|l|}{168B:} \\
\hline Yellowdog- & \begin{tabular}{l}
Severe: \\
small stones
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| too sandy
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { small stones } \\
& \mid \text { too sandy }
\end{aligned}
\] & \[
\begin{array}{|l}
\mid \text { Severe: } \\
\mid \text { small stones } \\
\text { too sandy }
\end{array}
\] & \[
\begin{aligned}
& \text { Severe: } \\
& \mid \text { small stones } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline Burt & ```
Severe:
    too sandy
    ponding
    depth to rock
``` & | Severe:
\(\mid\) too sandy
| ponding
| depth to rock & \begin{tabular}{l}
| Severe: \\
too sandy \\
ponding \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy } \\
& \mid \text { ponding }
\end{aligned}
\] & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{170B:
Chocolay} & & & & & \\
\hline & Moderate: & | Moderate: & | Severe: & | Severe: & | Severe: \\
\hline & large stones & | large stones & | large stones & large stones & | large stones \\
\hline & small stones & | small stones & | small stones & & \\
\hline & wetness & wetness & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{171B:
Paavola} & & & & & \\
\hline & | Severe: \\
\hline & percs slowly & percs slowly & small stones & small stones & | small stones \\
\hline & small stones wetness & | small stones & | wetness & & | droughty \\
\hline & & & & & \\
\hline 172D: & & & & & \\
\hline \multirow[t]{5}{*}{Buckroe} & | Severe: \\
\hline & slope & slope & slope & small stones & | slope \\
\hline & small stones & small stones & small stones & & | small stones \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & slope & slope & slope \\
\hline & depth to rock & | depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline 172F: & & & & & \\
\hline \multirow[t]{5}{*}{Buckroe} & | Severe: \\
\hline & slope & | slope & | slope & slope & | slope \\
\hline & small stones & | small stones & small stones & small stones & | small stones \\
\hline & & & & & | droughty \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: \\
\hline & slope & | slope & slope & slope & | slope \\
\hline & depth to rock & | depth to rock & depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline 173B: & & & & & \\
\hline \multirow[t]{4}{*}{Pence} & | Slight & | Slight & & | Slight & \\
\hline & & & | slope & & | large stones \\
\hline & & & small stones & & | droughty \\
\hline & & & & & \\
\hline 173D: & & & & & \\
\hline \multirow[t]{5}{*}{Pence} & Moderate: & | Moderate: & | Severe: & | Slight & | Moderate: \\
\hline & slope & | slope & slope & & | large stones \\
\hline & & & & & slope \\
\hline & & & & & \\
\hline & & & & & \\
\hline 174D: & & & & & \\
\hline \multirow[t]{5}{*}{Yalmer-} & & |Severe: & & |Severe: & |Severe: \\
\hline & | too sandy & | too sandy & | percs slowly & | too sandy & | droughty \\
\hline & wetness & & | slope & & \\
\hline & & & | too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon} & | Severe: & | Severe: & | Severe: & |Severe: & | Moderate: \\
\hline & too sandy & too sandy & | slope & too sandy & slope \\
\hline & & & | too sandy & & \begin{tabular}{l}
| too sandy \\
| droughty
\end{tabular} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Urban land.} & & & & & | \\
\hline & & & & & | \\
\hline 175E: & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & | Severe: \\
\hline & slope & | slope & | slope & | too sandy & | slope \\
\hline & too sandy & too sandy & too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Waiska} & | Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & | slope & slope & | slope \\
\hline & & & | small stones & & | droughty \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{175F:} \\
\hline \multirow[t]{4}{*}{Kalkaska} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & too sandy & too sandy & too sandy & too sandy & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Waiska-} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & & & small stones & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{176B:} \\
\hline \multirow[t]{4}{*}{Greenwood} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & excess humus & excess humus & excess humus & & \\
\hline & ponding & ponding & ponding & ponding & ponding \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Croswell} & Severe: & | Severe: & | Severe: & & Moderate: \\
\hline & too sandy \\
\hline & too acid & too acid & | too acid & & droughty \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{177E:} \\
\hline \multirow[t]{4}{*}{Frohling---------} & Severe: & | Severe: & | Severe: & \(\mid\) Moderate: & Severe: \\
\hline & percs slowly & percs slowly & percs slowly & slope & slope \\
\hline & slope & slope & slope & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{177F:} \\
\hline \multirow[t]{4}{*}{Frohling} & Severe: & |Severe: & |Severe: & & \\
\hline & percs slowly & percs slowly & | percs slowly & slope & slope \\
\hline & slope & slope & slope & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{178D:} \\
\hline \multirow[t]{5}{*}{Schweitzer-------} & Severe: & | Severe: & | Severe: & | Moderate: & Severe: \\
\hline & percs slowly & percs slowly & large stones & large stones & slope \\
\hline & slope & slope & percs slowly & slope & \\
\hline & & & slope & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska---------} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & | slope & slope & | too sandy & slope \\
\hline & too sandy & too sandy & too sandy & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Moderate: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{178F:} \\
\hline \multirow[t]{5}{*}{Schweitzer-------} & Severe: & | Severe: & | Severe: & & \\
\hline & percs slowly & percs slowly & large stones & slope & slope \\
\hline & slope & slope & | percs slowly & & \\
\hline & & & slope & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska---------} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & too sandy & too sandy & too sandy & too sandy & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{179E:} \\
\hline \multirow[t]{5}{*}{Schweitzer-------} & Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & percs slowly & percs slowly & | large stones & slope & slope \\
\hline & slope & slope & percs slowly & & \\
\hline & & & slope & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued

Table 11.--Recreational Development--Continued

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & | Playgrounds & Paths and trails & Golf fairways \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{```
199.
 Udorthents, ash
```} & & & | & & \\
\hline & & & | & & \\
\hline & & & | & & \\
\hline 200A: & & & & & \\
\hline \multirow[t]{2}{*}{Charlevoix} & Severe: wetness & \begin{tabular}{l}
|Moderate: \\
| wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| wetness
\end{tabular} \\
\hline & & & & & \\
\hline Ensley & \begin{tabular}{l}
Severe: \\
excess humus ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] \\
\hline 201B: & & & & & \\
\hline \multirow[t]{5}{*}{Sauxhead-} & Severe: & | Severe: & | Severe: & | Slight & | Severe: \\
\hline & small stones & | small stones & | large stones & & | small stones \\
\hline & depth to rock & depth to rock & | small stones & & | depth to rock \\
\hline & & & | depth to rock & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Jacobsville} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & excess humus \\
\hline & ponding & | ponding & | large stones | ponding & | ponding & | ponding \\
\hline & & & & & \\
\hline 202B: & & & & & \\
\hline \multirow[t]{5}{*}{Sauxhead} & Severe: & | Severe: & | Severe: & | Slight & Severe: \\
\hline & small stones & | small stones & | large stones & & | small stones \\
\hline & depth to rock & | depth to rock & | small stones & & | depth to rock \\
\hline & & & | depth to rock & & \\
\hline & & & & & \\
\hline 203A: & & & & & \\
\hline \multirow[t]{5}{*}{Au Gres} & & & & & | Severe: \\
\hline & too sandy & | too sandy & | too sandy & | too sandy & wetness \\
\hline & wetness & | wetness & | wetness & | wetness & \\
\hline & too acid & | too acid & | too acid & & \\
\hline & & & & & \\
\hline Deford & \begin{tabular}{l}
Severe: \\
excess humus ponding
\end{tabular} & |Severe:
\(\mid\) excess humus
| ponding & \(\mid\) Severe:
\(\mid\) excess humus
\(\mid\) ponding & |Severe:
\(\mid\) excess humus
| ponding & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{204B:
Gogebi} & & & & & \\
\hline & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & \begin{tabular}{l}
percs slowly \\
wetness
\end{tabular} & | percs slowly & \(\left\lvert\, \begin{aligned} & \text { large stones } \\ & \text { percs slowly }\end{aligned}\right.\) & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & \begin{tabular}{|l}
\(\mid\) large stones \\
droughty
\end{tabular} \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Tula} & & & & |Severe: & \\
\hline & percs slowly & | percs slowly & | large stones & | wetness & | large stones \\
\hline & wetness & | wetness & | percs slowly & & | wetness \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline 206B: & & & | & & \\
\hline \multirow[t]{4}{*}{Traunik} & Slight & | Slight & & | Slight & | Moderate: \\
\hline & & & | small stones & & | large stones \\
\hline & & & & & | small stones \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{207D:
Dishno} & & & | & & \\
\hline & Moderate: & | Moderate: & | Severe: & | Moderate: & | Severe: \\
\hline & large stones wetness & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & | large stones & | large stones & large stones \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Michigamme} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & | slope & | large stones & | large stones & large stones \\
\hline & & & | slope & | slope & slope \\
\hline & & & & & \\
\hline
\end{tabular}

Table 11.--Recreational Development--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Camp areas & Picnic areas & Playgrounds & Paths and trails & Golf fairways \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{207D:} \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & slope & slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & | depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{208F:} \\
\hline \multirow[t]{4}{*}{Keewaydin} & | Severe: \\
\hline & slope & slope & | large stones & slope & large stones \\
\hline & & & slope & & | slope \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Michigamme} & | Severe: \\
\hline & slope & slope & | large stones & slope & large stones \\
\hline & & & | slope & & slope \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{209B :} \\
\hline \multirow[t]{2}{*}{Garlic-} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
too sandy
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| droughty
\end{tabular} \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Fence} & | Moderate: & | Moderate: & | Moderate: & | Severe: & Slight \\
\hline & | wetness & | wetness & | slope & | erodes easily & \\
\hline & & & | wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{M-w.} \\
\hline \multirow[t]{2}{*}{Miscellaneous water} & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{W.} \\
\hline \multirow[t]{2}{*}{Water} & | & & | & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 12.--Wildife Habitat
(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Grain \\
and \\
seed \\
crops
\end{tabular}} & \multirow[t]{4}{*}{Grasses and legumes} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wild \\
herbaceous plants
\end{tabular}} & \multirow[b]{4}{*}{Hardwood trees} & & & & Open- & Wood- & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Conif- } \\
& \mid \text { erous } \\
& \mid \text { plants }
\end{aligned}
\]} & \multirow[t]{3}{*}{Wetland plants} & \multirow[t]{3}{*}{\begin{tabular}{l}
Shallow \\
water \\
areas
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
land \\
wild- \\
life
\end{tabular}} & land & \\
\hline & & & & & & & & & wild- & \\
\hline & & & & & & & & & life & \\
\hline & & & & & | & | & & & & \\
\hline \multicolumn{11}{|l|}{25D:} \\
\hline \multirow[t]{3}{*}{Munising----------} & \multirow[t]{3}{*}{Fair} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Very
| poor} & \multirow[t]{3}{*}{| Very
| poor} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \\
\hline & & & & & & & & & & \multirow[t]{2}{*}{|Very poor} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Yalmer} & \multirow[t]{3}{*}{Fair} & \multirow[t]{3}{*}{|Fair} & \multirow[t]{3}{*}{| Fair} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & | Very & Very & & \multirow[t]{2}{*}{Good} & \\
\hline & & & & & & \multirow[t]{2}{*}{poor} & poor & \multirow{2}{*}{air} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} \\
\hline & & & & & & & & & | & \\
\hline \multicolumn{11}{|l|}{26A:} \\
\hline \multirow[t]{3}{*}{Skanee------------
27:} & \multirow[t]{2}{*}{Fair} & | Fair & | Good & | Good & | Good & | Fair & | Fair & Fair & | Good & |Fair \\
\hline & & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{i} & \multirow[t]{2}{*}{i} & \multirow[t]{2}{*}{} & | & - \\
\hline & & & & & & & & & &  \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{very poor} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{|Fair} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{|Fair} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 28B: & & & & & | & & & & & \\
\hline Keweenaw- & Fair & | Fair & | Good & | Good & | Good & | Poor & | Very & | Fair & | Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 28D: & & & & & | & & & & & \\
\hline Keweenaw- & Fair & | Fair & | Good & | Good & | Good & | Very & | Very & | Fair & | Good & | Very \\
\hline & & & & & & | poor & | poor & & & | poor \\
\hline & & & & & | & & & & & \\
\hline 28E: & & & & & & & & & & \\
\hline Keweenaw- & Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 29B: & & & & & & & & & & \\
\hline Yalmer & Fair & | Fair & | Fair & | Good & | Good & | Poor & | Poor & |Fair & | Good & Poor \\
\hline & & & & & & & & & & \\
\hline 29D: & & & & & | & & & & & \\
\hline Yalmer & Fair & | Fair & | Fair & | Good & | Good & | Very & | Very & |Fair & | Good & | Very \\
\hline & & & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 31D: & & & & & | & & & & & \\
\hline Trenary & Fair & | Good & | Good & | Good & | Good & | Very & | Very & | Good & | Good & | Very \\
\hline & & & & & & | poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 32A: & & & & & & & & & & \\
\hline Charlevoix- & Fair & | Good & | Good & | Good & | Good & | Fair & |Fair & | Good & | Good & |Fair \\
\hline & & & & & & & & & & \\
\hline 33 : & & & & & | & & & & & \\
\hline Ensley & Very & | Poor & | Fair & |Fair & | Fair & | Good & | Good & | Poor & | Fair & Good \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 34B: & & & & & & & & & & \\
\hline Onaway & Good & | Poor & & | Good & | Good & \\
\hline & & & & & & & poor & & & poor \\
\hline & & & & & | & & & & & \\
\hline 34D: & & & & & | & & & & & \\
\hline Onaway- & Fair & | Good & | Good & | Good & | Good & & & | Good & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 34E: & & & & & | & | & & & & \\
\hline Onaway- & Very & | Fair & | Good & | Good & | Good & | Very & | Very & | Fair & | Good & | Very \\
\hline & poor & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 35B : & & & & & | & | & & & & \\
\hline Champion- & Very & | Poor & | Good & | Good & | Good & | Poor & | Poor & | Poor & | Good & | Poor \\
\hline Chanion & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{array}{|c|}
\mid \text { Grasses } \\
\text { and } \\
\mid \text { legumes }
\end{array}
\]} & \multirow[t]{4}{*}{Wild herbaceous plants} & \multirow[b]{4}{*}{\begin{tabular}{l}
Hard- \\
wood \\
trees
\end{tabular}} & \multirow[t]{4}{*}{Coniferous plants} & \multirow[t]{4}{*}{|Wetland |plants} & \multirow[t]{4}{*}{Shallow water areas} & \multirow[t]{4}{*}{\begin{tabular}{|l} 
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & | & & | & & & & \\
\hline \multicolumn{11}{|l|}{59:} \\
\hline \multirow[t]{3}{*}{Chippeny} & | Very & | Poor & | Poor & | Poor & | Poor & | Good & | Fair & Very & | Poor & | Fair \\
\hline & poor & & & & & & & poor & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Nahma-} & | Very & | Poor & |Fair & | Fair & | Fair & | Good & |Fair & Poor & |Fair & | Fair \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 60 : & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Histosols} & | Very & | Good & | Good & Very & | Very & | Good \\
\hline & poor & | poor & poor & | poor & poor & & & poor & poor & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Aquents---------------- |} & Very & & & |Very & | Very & | Good & | Good & Very & | Very & Good \\
\hline & | poor & | poor & poor & | poor & | poor & & & poor & | poor & \\
\hline & & & & & & & & & & \\
\hline 61. & & & & | & & | & & & & \\
\hline \multirow[t]{2}{*}{Pits, borrow} & & & & | & & | & & & & \\
\hline & & & & | & & | & & & & \\
\hline 62B: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Udorthents-------------} & | Poor & | Very & Poor & Poor & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Udipsamments-----------} & | Poor & | Very & Poor & Poor & | Very \\
\hline & & & & & & & | poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline 64. & & & & | & & | & & & & \\
\hline \multirow[t]{2}{*}{Pits and Dumps} & & & & | & & | & & & & \\
\hline & & & & | & & | & & & & \\
\hline 65B. & & & & | & & | & & & & \\
\hline \multirow[t]{2}{*}{Udorthents-Urban land} & & & & | & & | & & & & \\
\hline & & & & | & & | & & & & \\
\hline 66B. & & & & | & & | & & & & \\
\hline \multirow[t]{2}{*}{Udipsamments-Urban land} & & & & | & & & & & & \\
\hline & & & & | & & | & & & & \\
\hline 67B: & & & & | & & | & & & & \\
\hline \multirow[t]{2}{*}{Urban land.} & & & & | & & & & & & \\
\hline & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Rubicon---------------- |} & | Poor & | Poor & |Fair & |Fair & | Fair & | Very & | Very & Poor & Fair & | Very \\
\hline & & & & & & | poor & | poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline 68 : & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Pits, quarrie} & | very & Very & | Very & | Very \\
\hline & poor & | poor & poor & | poor & | poor \\
\hline & & & & & & & & & & \\
\hline 69B: & & & & | & & & & & & \\
\hline \multirow[t]{4}{*}{Escanaba} & | Fair & | Fair & | Good & | Good & | Good & | Poor & | Very & Fair & | Good & | Very \\
\hline & & & & | & & & | poor & & & | poor \\
\hline & & & & | & & | & & & & \\
\hline & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{69D:
Escanaba---------------} & | Fair & | Fair & | Good & | Good & | Good & | Very & | Very & Fair & | Good & | Very \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & , & & & & & & \\
\hline 70B: & & & & | & & | & & & & \\
\hline \multirow[t]{3}{*}{Nadeau-----------------} & |Fair & | Good & | Good & | Good & | Good & | Poor & & Good & | Good & \\
\hline & & & & | & & & poor & & & poor \\
\hline & & & & | & & | & & & & \\
\hline 70D: & & & & | & & , & & & & \\
\hline \multirow[t]{3}{*}{Nadeau----------------} & Fair & | Good & | Good & | Good & | Good & | Very & | Very & Good & | Good & | Very \\
\hline & & & & | & & | poor & poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { Grasses } \mid \\
\left\lvert\, \begin{array}{c}
\text { and } \\
\mid \text { legumes }
\end{array}\right. \\
\hline
\end{array}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wild \\
herba- \\
ceous \\
plants
\end{tabular}} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{\[
\begin{array}{|r|}
\hline \text { Conif- } \\
\mid \text { erous } \\
\mid \text { plants }
\end{array}
\]} & \multirow[t]{4}{*}{Wetland |plants} & \multirow[t]{4}{*}{\begin{tabular}{l}
Shallow \\
water \\
areas
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{|l|l|} 
Open- \\
\(\mid\) & land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{71B:} \\
\hline \multirow[t]{3}{*}{Evart} & Very & | Very & | Poor & | Poor & | Poor & | Good & | Good & Very & Poor & | Good \\
\hline & poor & poor & & & & & & poor & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Pelkie} & Poor & | Fair & | Good & | Fair & | Fair & | Poor & | Poor & Fair & | Fair & | Poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sturgeon} & Fair & |Fair & | Good & | Good & | Good & | Fair & Fair & Fair & | Good & |Fair \\
\hline & & & & & & & & & & \\
\hline 72B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & | Good & | Poor & | Very & | Good & | Good & | Very \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 72D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & Fair & | Good & | Good & | Good & | Good & \(\mid\) Very & | Very & | Good & | Good & | Very \\
\hline & & & & & & | poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 72E: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & Very & |Fair & | Good & | Good & | Good & | Very & | Very & | Fair & | Good & | Very \\
\hline & poor & & & & & | poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 73B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Gogebic} & Very & | Poor & | Good & | Good & | Good & | Poor & | Very & | Poor & | Good & | Very \\
\hline & poor & & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 73D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Gogebic} & Very & | Poor & | Good & | Good & | Good & | Very & \(\mid\) very & | Poor & | Good & | Very \\
\hline & poor & & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 74D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Schweitzer} & Very & | Poor & | Good & | Good & | Good & | Very & \(\mid\) Very & | Poor & | Good & | Very \\
\hline & poor & & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Michigamme-} & Very & | Poor & | Good & | Good & | Good & | Very & \(\mid\) very & | Poor & Good & | Very \\
\hline & poor & & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 74F: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Schweitzer} & & | very & | Good & | Good & | Good & & & | Poor & Fair & \\
\hline & poor & | poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Michigamme-} & Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & | poor \\
\hline \multirow{3}{*}{Rock outcrop.} & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 76C: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Garlic} & Poor & \(\mid\) Poor & | Fair & | Good & | Good & | Very & \(\mid\) very & | Poor & Fair & | Very \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Alcona} & Fair & | Good & | Good & | Good & | Good & | Very & & | Good & | Good & | Very \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Voelker} & Poor & |Fair & | Fair & | Good & | Good & & & |Fair & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Grain \\
and \\
seed \\
crops
\end{tabular}} & \multirow[t]{4}{*}{|Grasses and legumes} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wild \\
herba- \\
ceous \\
plants
\end{tabular}} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \\
& \mid \text { Wetland } \mid \\
& \mid \text { plants }
\end{aligned}
\]} & \multirow[t]{4}{*}{\(\mid\) Shallow
| water
areas} & \multirow[t]{4}{*}{\begin{tabular}{l}
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{```
Wetland
    wild-
    life
```} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & | & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multirow[t]{3}{*}{Mashek-----------} & | Good & | Poor & & | Good & | Good & | Very \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Cunard} & | Good & | Poor & | Very & | Good & | Good & | Very \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline 88: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Cathro} & | Very & | Poor & | Poor & | Poor & | Poor & | Good & | Good & | Very & | Poor & | Good \\
\hline & poor & & & & & & & | poor & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & | Very & | Poor & |Fair & |Fair & | Fair & | Good & | Good & | Poor & |Fair & | Good \\
\hline & poor & & & & & & & & & \\
\hline & & & & | & & & & & & \\
\hline 89B: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & | Good & | Poor & | Very & | Good & | Good & | very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Solona} & | Good & | Fair & |Fair & | Good & | Good & | Fair \\
\hline & & & & & & & & & & \\
\hline 90B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & | Good & | Poor & & | Good & | Good & \\
\hline & & & & & & & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Escanaba} & |Fair & | Fair & | Good & | Good & | Good & | Poor & & | Fair & | Good & \\
\hline & & & & & & & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 90D: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & |Fair & | Good & | Good & | Good & | Good & & & | Good & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Escanaba} & |Fair & | Fair & | Good & | Good & | Good & & & | Fair & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 91B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Onaway} & | Good & | Poor & & | Good & | Good & \\
\hline & & & & & & & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Nadeau} & |Fair & | Good & | Good & | Good & | Good & & & | Good & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 92A: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & & | Poor & |Fair & | Fair & | Fair & | Good & | Good & | Poor & | Fair & | Good \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Solona} & | Good & |Fair & |Fair & | Good & | Good & | Fair \\
\hline & & & & & & & & & & \\
\hline 93: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Tawas} & | Very & | Poor & | Poor & | Poor & | Poor & | Good & | Good & |Very & | Poor & | Good \\
\hline & | poor & & & & & & & poor & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Deford} & | Very & | Poor & |Fair & |Fair & | Fair & | Good & | Good & | Poor & |Fair & | Good \\
\hline & | poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 94B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw} & |Fair & | Fair & | Good & | Good & | Good & | Poor & | Very & |Fair & | Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Poor & | Poor & |Fair & | Good & \(\mid\) Good & | Very & |Very & Poor & |Fair & |Very \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{array}{|c|}
|c| \\
\mid \text { Grasses } \\
\text { and } \\
\mid \text { legumes }
\end{array}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wild \\
herbaceous plants
\end{tabular}} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{\[
\begin{array}{|r|}
\hline \text { Conif- } \\
\mid \text { erous } \\
\mid \text { plants }
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \\
& \text { | Wetland } \\
& \text { |plants }
\end{aligned}
\]} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(|l|\) \\
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multirow[t]{3}{*}{Sagola------------} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Fair} & \multirow[t]{3}{*}{| Good} & |Very \\
\hline & & & & & & & & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rubicon} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Fair} & \multirow[t]{3}{*}{| Fair} & \multirow[t]{3}{*}{| Fair} & | Very & |Very & | Poor & Fair & Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{107B:} \\
\hline \multirow[t]{3}{*}{Goodman-} & \multirow[t]{2}{*}{Poor} & | Poor & | Good & | Good & & | Poor & | Very & | Fair & | Good & |Very \\
\hline & & & & & & & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{\(\mid\) Poor} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Poor} & & \multirow[t]{2}{*}{Fair} & Good & Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{107D:} \\
\hline \multirow[t]{3}{*}{Goodman-----------} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Very \\
poor
\end{tabular}} & |Fair & \multirow[t]{2}{*}{| Good} & \\
\hline & & & & & & & & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & \multirow[t]{3}{*}{Poor} & \multirow[t]{3}{*}{\(\mid\) Poor} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{2}{*}{| Very poor} & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mid\) Very \\
poor
\end{tabular}} & \multirow[t]{3}{*}{Fair} & \multirow[t]{2}{*}{| Good} & \\
\hline & & & & & & & & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{107F:} \\
\hline \multirow[t]{3}{*}{Goodman-} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Very \\
poor
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Very \\
poor
\end{tabular}} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{\(\mid\) Good} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Very } \\
& \mid \text { poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{Poor} & \multirow[t]{3}{*}{|Fair} & \multirow[t]{3}{*}{Very poor} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Very \\
poor
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{| Fair} & \\
\hline & & & & & & & & & & poor \\
\hline & & & & & & & & & & \\
\hline 108B: & | & \multirow[t]{2}{*}{| Poor} & & & \multirow[b]{2}{*}{| Good} & & & & & \\
\hline \multirow[t]{3}{*}{Goodman} & \multirow[t]{3}{*}{| Poor} & & | Good & | Good & & \multirow[t]{3}{*}{\(\mid\) Poor} & \multirow[t]{2}{*}{Very poor} & Fair & Good & \\
\hline & & \multirow{2}{*}{| Poor} & & & & & & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog------------} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{Very poor} & \multirow[t]{3}{*}{Fair} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Very \\
poor
\end{tabular}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Wabeno} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{| Very poor} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{| Good} & \\
\hline & & & & & & & & & & poor \\
\hline & & & & & & | & & & & \\
\hline 108D : & | & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| Good} & \multirow[b]{2}{*}{| Good} & \multirow{3}{*}{| Good} & \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{|Very poor} & \multirow[b]{2}{*}{Fair} & \multirow[b]{2}{*}{| Good} & \\
\hline \multirow[t]{3}{*}{Goodman-----------} & \multirow[t]{2}{*}{| Poor} & & & & & & & & & \\
\hline & & \({ }^{\text {Poor }}\) & | & \multirow[t]{2}{*}{} & & | poor & & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{2}{*}{| Poor} & | Good & | Good & | Good & | Very & \(\mid\) Very & Fair & | Good & Very \\
\hline & & & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline Wabeno- & Poor & | Poor & | Good & | Good & | Good & | Very & | Very & |Fair & | Good & \\
\hline & & & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 109B: & & & & & & & & & & \\
\hline Rubicon & Very & | Very & | Fair & |Fair & | Fair & | Very & | Very & Poor & |Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline Keweenaw- & Very & | Very & | Good & | Good & | Good & | Poor & | Very & Poor & |Fair & | Very \\
\hline & poor & poor & & & & & | poor & & & | poor \\
\hline & & & & & & | & & & & \\
\hline 109D: & & & & & & & & & & \\
\hline Rubicon- & Very & | very & | Fair & |Fair & | Fair & | very & | Very & Poor & |Fair & | very \\
\hline & poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline Keweenaw- & Very & | Very & | Good & \(\mid\) Good & | Good & |Very & | Very & Poor & |Fair & |Very \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Grain \\
and \\
seed \\
crops
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{|c|}
\hline \text { Grasses } \mid \\
\mid \text { and } \mid \\
\mid \text { legumes }
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\left\lvert\, \begin{array}{c}
\text { Wild } \\
\mid \text { herba- } \\
\text { ceous } \\
\mid \text { plants }
\end{array}\right. \\
\hline
\end{array}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Hard- \\
wood \\
trees
\end{tabular}} & \multirow[t]{4}{*}{| Conif-
\(\mid\) erous
\(\mid\) plants} & \multirow[t]{4}{*}{|Wetland |plants} & \multirow[t]{4}{*}{Shallow water areas} & \multirow[t]{4}{*}{\begin{tabular}{l}
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{Wood-
land
wild-
life} & \multirow[t]{4}{*}{```
Wetland
 wild-
 life
```} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multirow[t]{3}{*}{Rubicon} & Very & | Very & |Fair & | Fair & | Fair & | Very & | Very & | Poor & | Fair & | Very \\
\hline & & poor & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw-} & | Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 110B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Nadeau} & |Fair & | Good & | Good & | Good & | Good & | Poor & & | Good & | Good & \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Mancelona} & |Fair & |Fair & | Good & | Good & | Good & & & | Fair & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 110D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Nadeau} & |Fair & | Good & | Good & | Good & | Good & & & | Good & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Mancelona} & |Fair & |Fair & | Good & | Good & | Good & & & | Fair & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 111B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Grayling} & | Poor & | Poor & |Fair & | Poor & | Poor & & & | Poor & | Poor & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 112D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keewaydin} & & & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Michigamme} & & & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & | & & & & & & & & \\
\hline & & | & & & & & & & & \\
\hline 112F: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keewaydin} & & & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & | poor & & & & poor & poor & & & poor \\
\hline & &  & & & & & & & & \\
\hline \multirow[t]{3}{*}{Michigamme-} & & | Very & | Good & | Good & | Good & \(\mid\) Very & \(\mid\) Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 113B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Vanriper} & | Very & | Very & | Good & | Good & | Good & | Poor & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 113D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Vanriper} & | Very & & | Good & | Good & | Good & | Very & & | Poor & | Fair & \\
\hline & | poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 113F: & & | & & & & & & & & \\
\hline \multirow[t]{3}{*}{Vanriper} & | very & |Very & | Good & | Good & | Good & | Very & | very & | Poor & | Fair & | very \\
\hline & | poor & poor & & & & poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 114B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Vanriper} & | Very & | Very & | Good & | Good & | Good & \(\mid\) Poor & |Very & | Poor & | Fair & \\
\hline & | poor & | poor & & & & & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Grain \\
and \\
seed \\
crops
\end{tabular}} & \multirow[t]{4}{*}{Grasses and legumes} & \multirow[t]{4}{*}{Wild herbaceous plants} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{|Coniferous |plants} & \multirow[t]{4}{*}{|Wetland |plants} & \multirow[b]{4}{*}{Shallow
water
areas} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Open- \\
\(\mid\) land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{114D:} \\
\hline \multirow[t]{3}{*}{Vanriper} & \multirow[t]{3}{*}{|Very poor} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & |Very & Very & \multirow[t]{2}{*}{Poor} & \multirow[t]{2}{*}{Fair} & | Very \\
\hline & & & & & & poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 114F: & & & & | & & & & & & \\
\hline \multirow[t]{2}{*}{Vanriper} & Very & Very & | Good & | Good & Good & | Very & | Very & Poor & Fair & Very \\
\hline & poor & poor & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{| poor} & \multirow[t]{2}{*}{poor} & \multirow[t]{2}{*}{} &  & \multirow[t]{2}{*}{poor} \\
\hline & & & & & & & & & & \\
\hline 117B: & & \multirow[b]{2}{*}{| Good} & & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{| Poor} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Good} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{3}{*}{Fence} & \multirow[t]{2}{*}{| Good} & & \multirow[t]{2}{*}{| Good} & & & & & & & \\
\hline & & & & | & | & | & \begin{tabular}{l}
|Very \\
poor
\end{tabular} & Good & , & \multirow[t]{2}{*}{\begin{tabular}{l}
|very \\
| poor
\end{tabular}} \\
\hline & & & & | & & & & & & \\
\hline 118A: & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|Fair} & \multirow[b]{2}{*}{|Fair} & \multirow[b]{2}{*}{Fair} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| Poor} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{Croswell} & \multirow[t]{2}{*}{| Poor} & & & & & & & & & \\
\hline & & | Poor & |Fair & | & | & | & | | & Poor &  & Poor \\
\hline \multirow[t]{3}{*}{Deford} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{Fair} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{\(\mid\) Poor} & \multirow[t]{2}{*}{| Fair} & \multirow[t]{2}{*}{| Good} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 119B: & | & & \multirow[b]{2}{*}{| Fair} & \multirow[b]{2}{*}{| Good} & \multirow[b]{2}{*}{Good} & \multirow[b]{2}{*}{| Poor} & \multirow{3}{*}{| Poor} & \multirow{3}{*}{Fair} & \multirow{3}{*}{Good} & \multirow{3}{*}{| Poor} \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Yalmer \\
Kalkaska
\end{tabular}} & \multirow[t]{2}{*}{|Fair} & \multirow[t]{2}{*}{| Fair} & & & & & & & & \\
\hline & & & | & | & | & | & & & & \\
\hline & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{|Fair} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |very } \\
& \text { | poor }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{3}{*}{|Fair} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Very \\
poor
\end{tabular}} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 119D: & & & | & \multirow[t]{2}{*}{\(\mid\) Good} & \multirow[b]{2}{*}{| Good} & \multirow{4}{*}{| Very poor} & \multirow{4}{*}{|Very poor} & \multirow[b]{2}{*}{Fair} & \multirow[b]{2}{*}{| Good} & \multirow{4}{*}{\[
\begin{aligned}
& \text { |Very } \\
& \text { | poor }
\end{aligned}
\]} \\
\hline \multirow[t]{3}{*}{Yalmer} & \multirow[t]{3}{*}{| Fair} & \multirow[t]{3}{*}{|Fair} & \multirow[t]{3}{*}{| Fair} & & & & & & & \\
\hline & & & & | Good & \multirow[t]{2}{*}{\({ }^{\text {Good }}\)} & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & \multirow[t]{3}{*}{| Poor} & \multirow[t]{2}{*}{| Poor} & \multirow[t]{2}{*}{|Fair} & | Good & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Very \\
| poor
\end{tabular}} & \multirow[t]{2}{*}{| Very poor} & Poor & Fair & \multirow[t]{2}{*}{\begin{tabular}{l}
|Very \\
poor
\end{tabular}} \\
\hline & & & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{| Good} & & & & & & & \\
\hline 121B: & | & & & & & & & & & \\
\hline Onota- & | Good & | Good & & | Good & | Good & | Poor & | Very & | Good & Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 122: & & & & | & & & & & & \\
\hline Pleine & | Very & | Very & | Fair & |Fair & Fair & | Good & |Fair & | Poor & |Fair & |Fair \\
\hline & poor & | poor & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 123A: & & & & | & & & & & & \\
\hline Tula & | Very & | Very & | Good & | Good & | Good & |Fair & | Poor & | Poor & |Fair & | Poor \\
\hline & poor & | poor & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 124B: & & & & & & & & & & \\
\hline Gogebic & | Very & | Poor & | Good & | Good & | Good & | Poor & | Very & | Poor & | Good & | Very \\
\hline & poor & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline Dishno- & | Very & | Poor & | Good & | Good & | Good & | Poor & | Poor & | Poor & | Good & | Poor \\
\hline & | poor & & & & & & & & & \\
\hline & & & & | & & & & & & \\
\hline 124D: & & & & | & & & & & & \\
\hline Gogebic & | Very & | Poor & | Good & | Good & | Good & | Very & \(\mid\) very & | Poor & | Good & \(\mid\) Very \\
\hline & | poor & & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline Dishno- & \[
\begin{aligned}
& \text { |Very } \\
& \text { | poor }
\end{aligned}
\] & | Poor & | Good & | Good & | Good & \[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\] & |Very poor & | Poor & | Good & \[
\begin{aligned}
& \mid \text { Very } \\
& \mid \text { poor }
\end{aligned}
\] \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Grasses } \mid \\
\mid \text { and } \\
\mid \text { legumes } \mid
\end{array}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Wild } \\
& \mid \text { herba- } \\
& \text { | ceous } \\
& \text { |plants }
\end{aligned}
\]} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{\(\mid\) Conif-
\(\mid\) erous
\(\mid\) plants} & \multirow[t]{4}{*}{|Wetland |plants} & \multirow[t]{4}{*}{\(\mid\) Shallow
\(\mid\) water
areas} & \multirow[t]{4}{*}{\begin{tabular}{|l|l|} 
Open- \\
\(\mid\) land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{Wood-
\(\mid\) land
wild-
|
life} & \multirow[t]{4}{*}{```
Wetland
    wild-
    life
```} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & | & & & & & & \\
\hline \multicolumn{11}{|l|}{125D:} \\
\hline \multirow[t]{3}{*}{Keweenaw} & Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & very & | Very & | Fair & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & | & & & & & & \\
\hline & & & & | & & & & & & \\
\hline 125F: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw} & & & | Good & | Good & | Good & & & Poor & | Fair & | Very \\
\hline & poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Very & | Very & | Fair & | Good & | Good & | Very & & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & | & & & & & & \\
\hline & & & & | & & & & & & \\
\hline 126B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & | Good & | Poor & & | Good & | Good & \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline 126D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & |Fair & | Good & | Good & | Good & | Good & & & | Good & | Good & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline 126E: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & | Very & | Very & | Good & | Good & | Good & | Very & \(\mid\) Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 127B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & Poor & | Poor & | Good & | Good & | Good & | Poor & \(\mid\) very & |Fair & | Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline \multirow[t]{4}{*}{127D:
Sundog} & & & & & & & & & & \\
\hline & | Very & | Very & | Good & | Good & | Good & \(\mid\) Very & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{127F:
Sundog} & & & & & & & & & & \\
\hline & | Very & | Very & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & | poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 128B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Poor & | Poor & | Fair & | Good & | Good & & & | Poor & | Fair & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Waiska} & | Poor & | Poor & | Fair & | Good & | Good & | Very & & Poor & | Fair & \\
\hline & & & & & & | poor & poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline 128D: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Poor & | Poor & | Fair & | Good & | Good & & & Poor & | Fair & \\
\hline & & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Waiska} & | Poor & | Poor & |Fair & \(\mid\) Good & \(\mid\) Good & | Very & & Poor & | Fair & \\
\hline & & & & & & & poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline 128E: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Very & | Very & \(\mid\) Fair & | Good & \(\mid\) Good & |Very & & | Poor & | Fair & \\
\hline & | poor & poor & & & & poor & poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\hline \text { Grasses } \\
\text { | and } \\
\text { | legumes }
\end{array}
\]} & \multirow[t]{4}{*}{| Wild |herba| ceous |plants} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{|l|l|}
\(\mid\) Wetland \(\mid\) Shallow \\
|
\end{tabular}}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{Wood-
land
wild-
life} & \multirow[t]{4}{*}{```
Wetland
 wild-
 life
```} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Keewaydin \\
Sundog
\end{tabular}} & | Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline & | very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 137F: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Keewaydin} & & | Very & | Good & | Good & | Good & | Very & & | Poor & | Fair & \\
\hline & poor & | poor & & & & | poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & & & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 138D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & & & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & | & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 138F: & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sundog} & | Very & | Very & | Good & | Good & | Good & & & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & | & & & & & & & & & \\
\hline & & | & & & & & & & & \\
\hline 139B: & I & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & | Very & | Very & | Good & | Good & | Good & | Poor & | Very & | Poor & | Fair & \(\mid\) Very \\
\hline & | poor & | poor & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 139D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & & | Very & | Good & | Good & | Good & & & | Poor & | Fair & \\
\hline & poor & | poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 140B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Champion} & & | Poor & | Good & | Good & | Good & | Poor & | Poor & | Poor & | Good & | Poor \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Dishno} & & | Poor & | Good & | Good & | Good & \(\mid\) Poor & | Poor & | Poor & | Good & \(\mid\) Poor \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 140D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Champion} & & | Poor & | Good & | Good & | Good & & & | Poor & | Good & \\
\hline & poor & & & & & | poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Dishno} & & | Poor & | Good & | Good & | Good & & & | Poor & | Good & \\
\hline & poor & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 141D: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Pelissier} & | Very & | Poor & | Fair & |Fair & | Fair & & & | Poor & |Fair & \\
\hline & poor & & & & & poor & poor & & & poor \\
\hline & & & & & & & & & | & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & | & | & & & & & & & | & \\
\hline & | & & & & & & & & | & \\
\hline 142B: & | & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Pelissier} & | Poor & | Poor & | Fair & | Fair & | Fair & | Very & & | Poor & | Fair & | very \\
\hline & & & & & & | poor & poor & & & | poor \\
\hline & & 1 & & & & & & & | & \\
\hline \multirow[t]{4}{*}{142D:
Pelissier} & | & & & & & & & & & \\
\hline & | Poor & | Poor & | Fair & | Fair & | Fair & \(\mid\) very & & | Poor & | Fair & \\
\hline & & & & & & | poor & poor & & | & poor \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued


Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
Grain \\
and \\
seed \\
crops
\end{tabular}} & \multirow[t]{4}{*}{Grasses and legumes} & \multirow[t]{4}{*}{Wild herbaceous plants} & \multirow[b]{4}{*}{Hardwood trees} & \multirow[t]{4}{*}{|Coniferous |plants} & \multirow[t]{4}{*}{|Wetland plants} & \multirow[b]{4}{*}{\begin{tabular}{l}
Shallow \\
water \\
areas
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Open- \\
\(\mid\) land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wood- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{```
Wetland
    wild-
    life
```} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & 1 & & & & & & \\
\hline \multicolumn{11}{|l|}{181E:} \\
\hline \multirow[t]{3}{*}{Tokiahok} & | Very & | Very & Fair & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 181F: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Frohling} & | Very & | Very & Good & | Good & | Good & | Very & | Very & | Poor & |Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok} & | Very & | Very & Fair & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 184C: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Dishno} & | Very & | Poor & | Good & | Good & | Good & | Very & | Very & | Poor & | Good & | Very \\
\hline & poor & & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Witbeck} & | Very & | Very & Fair & |Fair & Fair & | Good & |Fair & | Poor & |Fair & |Fair \\
\hline & | poor & | poor & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & | & & & & & & \\
\hline & & & & | & & & & & & \\
\hline 185B: & & & & | & & & & & & \\
\hline \multirow[t]{2}{*}{Northland-} & |Fair & | Fair & | Good & | Good & | Good & | Poor & | Poor & |Fair & | Good & | Poor \\
\hline & & & & & & & & & & \\
\hline 187B: & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Reade} & |Fair & | Fair & | Good & | Good & | Good & | Poor & | Poor & | Fair & | Good & | Poor \\
\hline & & & & & & & & & & \\
\hline 190B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Emmet} & | Good & | Good & Good & | Good & | Good & | Poor & | Very & | Good & | Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Cunard} & | Good & | Poor & | Very & | Good & | Good & | Very \\
\hline & & & & & & & | poor & & & | poor \\
\hline & & & & | & & & & & & \\
\hline 191B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Nahma} & | Very & | Poor & Fair & |Fair & | Fair & | Good & |Fair & | Poor & Fair & | Fair \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sundell} & |Fair & | Good & | Good & | Good & | Good & |Fair & |Fair & | Good & | Good & | Fair \\
\hline & & & & & & & & & & \\
\hline 193E: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Frohling} & | Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & Fair & | Very \\
\hline & poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok} & & & Fair & | Good & | Good & & & | Poor & |Fair & \\
\hline & | poor & | poor & & & & | poor & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline 194E: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sporley} & | Poor & | Fair & | Good & | Good & | Good & | Very & | Very & | Fair & | Good & | Very \\
\hline & & & & & & | poor & | poor & & & poor \\
\hline & & & & | & & & & & & \\
\hline 196E: & & & & | & & & & & & \\
\hline \multirow[t]{3}{*}{Frohling} & | Very & | Very & | Good & | Good & | Good & | Very & | Very & | Poor & | Fair & | Very \\
\hline & | poor & | poor & & & & | poor & | poor & & & | poor \\
\hline & & & & & & & & & & | \\
\hline \multirow[t]{2}{*}{Onota} & \[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { very } \\
& \text { | poor }
\end{aligned}
\] & | Good & | Good & | Good & \[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\] & \begin{tabular}{l}
| Very \\
poor
\end{tabular} & | Poor & | Fair & \[
\begin{aligned}
& \mid \text { Very } \\
& \text { | poor }
\end{aligned}
\] \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok-} & & & Fair & | Good & | Good & & & | Poor & |Fair & \\
\hline & | poor & poor & & & & poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{5}{*}{Map symbol and soil name} & \multicolumn{7}{|c|}{Potential for habitat elements} & \multicolumn{3}{|l|}{| Potential as habitat for--} \\
\hline & \multirow[t]{4}{*}{Grain and seed crops} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \\
& \mid \text { Grasses } \\
& \text { and } \\
& \text { legumes }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Wild |herba| ceous |plants} & \multirow[b]{4}{*}{\begin{tabular}{l}
Hard- \\
wood \\
trees
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Conif- \\
erous \\
|plants
\end{tabular}} & \multirow[t]{4}{*}{|Wetland plants} & \multirow[t]{4}{*}{\(\mid\) Shallow
\(\mid\) water
areas} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
Open- \\
land \\
wild- \\
life
\end{tabular}} & \multirow[t]{4}{*}{Wood-
land
wild-
life} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Wetland } \\
& \text { wild- } \\
& \text { life }
\end{aligned}
\]} \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{} \\
\hline \multirow[t]{3}{*}{Shoepac-----------} & |Fair & | Fair & | Good & | Good & | Good & | Poor & & |Fair & | Good & | Poor \\
\hline & & & & & & & poor & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Trenary} & | Good & | Poor & |Very & | Good & | Good & | Very \\
\hline & & & & & & & poor & & & | poor \\
\hline & & & & & & & & & & \\
\hline \multicolumn{11}{|l|}{198B:} \\
\hline \multirow[t]{3}{*}{Shoepac} & Fair & | Fair & | Good & | Good & | Good & | Poor & & | Fair & | Good & | Poor \\
\hline & & & & & & & poor & & & \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Reade} & |Fair & |Fair & | Good & | Good & | Good & | Poor & | Poor & |Fair & | Good & | Poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{199. \({ }_{\text {Udorthents, ash }}\)} & & & & & & & | & & & \\
\hline & & & & & & & & & & \\
\hline Udorthents, ash & & & & & & & & & & \\
\hline 200A: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Charlevoix---------------------} & |Fair & | Good & | Good & | Good & | Good & | Fair & | Fair & | Good & | Good & | Fair \\
\hline & & & & & & & & & & \\
\hline & & | Poor & | Fair & |Fair & |Fair & | Good & | Good & | Poor & | Fair & | Good \\
\hline \multirow{2}{*}{Ensley} & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 201B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sauxhead} & & & | Poor & |Fair & |Fair & & & & | Poor & \\
\hline & poor & poor & & & & poor & poor & poor & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Jacobsville-} & & | Poor & | Fair & | Fair & | Fair & | Good & | Fair & | Poor & | Fair & | Fair \\
\hline & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 202B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sauxhead} & Very & & | Poor & |Fair & |Fair & & & & | Poor & \\
\hline & poor & | poor & & & & poor & poor & poor & & poor \\
\hline & & & & & & & & & & \\
\hline 203A: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Au Gres------------------------
Deford----} & | Poor & \(\mid\) Poor & | Good & |Fair & |Fair & |Fair & | Fair & \(\mid\) Fair & | Fair & | Fair \\
\hline & & & & & & & & & & \\
\hline & & | Poor & | Fair & | Fair & | Fair & | Good & | Good & \(\mid\) Poor & | Fair & | Good \\
\hline \multirow{2}{*}{Deford-} & poor & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 204B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Gogebic} & Very & | Poor & | Good & | Good & | Good & \(\mid\) Poor & Very & \(\mid\) Poor & | Good & \\
\hline & | poor & & & & & & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Tula} & & & | Good & | Good & | Good & | Fair & |Fair & | Poor & | Fair & | Fair \\
\hline & poor & | poor & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline 206B: & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Traunik} & | Poor & | Poor & | Good & | Good & | Good & & & |Fair & | Good & \\
\hline & & & & & & | poor & poor & & & poor \\
\hline & & & & & & & & & & \\
\hline 207D: & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Dishno} & |Very poor & \(\mid\) Poor & | Good & | Good & | Good & \begin{tabular}{l}
| Very \\
poor
\end{tabular} & |Very poor & \(\mid\) Poor & | Good & \begin{tabular}{l}
| Very \\
poor
\end{tabular} \\
\hline & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Michigamme} & |Very poor & \begin{tabular}{l}
|Very \\
poor
\end{tabular} & | Good & | Good & | Good & \begin{tabular}{l}
| Very \\
poor
\end{tabular} & |Very poor & \(\mid\) Poor & | Fair & \begin{tabular}{l}
| Very \\
poor
\end{tabular} \\
\hline & & & & & & & & & & \\
\hline & & | & & | & & & & & & \\
\hline Rock outcrop. & & & & & & & & & & \\
\hline
\end{tabular}

Table 12.--Wildlife Habitat--Continued

Table 13.--Building Site Development
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & | & & & \\
\hline \multicolumn{7}{|l|}{10B:} \\
\hline Grayling- & Severe: cutbanks cave & | Slight & | Slight & | Slight & Slight & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{10D:} \\
\hline Grayling- & Severe: & |Moderate: & & | Severe: & | Moderate: & \\
\hline & cutbanks cave & slope & slope & slope & slope & | droughty \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{10E:} \\
\hline Grayling- & Severe: & | Severe: & | Severe: & | Severe: & & | Severe: \\
\hline & slope & | slope & | slope & | slope & slope & | slope \\
\hline & cutbanks cave & & & & & | droughty \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{11C:} \\
\hline Deer Park- & Severe: & | Slight & | Slight & | Slight & Slight & | Severe: \\
\hline & cutbanks cave & & & & & droughty \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{11D:} \\
\hline \multirow[t]{4}{*}{Deer Park
12B :} & & \multirow[t]{3}{*}{Moderate: slope} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Severe: slope} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{3}{*}{|Severe: droughty} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{12B:
Rubicon} & & \multirow[t]{5}{*}{Slight} & \multirow[t]{5}{*}{| Slight} & \multirow[t]{5}{*}{| Slight} & \multirow[t]{5}{*}{| Slight} & \multirow[t]{4}{*}{| Moderate: too sandy droughty} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{6}{*}{12D:
Rubicon} & & & & & & \\
\hline & Severe: & | Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & cutbanks cave & slope & | slope & slope & slope & | slope \\
\hline & & & & & & | too sandy \\
\hline & & & & & & droughty \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{12E:
Rubicon---------------| \({ }^{\text {| Severe: }}\) |}} & & & & & \\
\hline & & | Severe: & | Severe: & | Severe: & & | Severe: \\
\hline \multirow{3}{*}{Rubicon-} & slope & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{3}{*}{| slope} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{12F:
Rubicon} & & & & & & \\
\hline & Severe: & | Severe: \\
\hline & slope & slope & | slope & | slope & slope & | slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{13B:} & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & Severe: & \multirow[t]{5}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Moderate: \\
too sandy droughty
\end{tabular}} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{13D:} & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-} & & \multirow[t]{5}{*}{Moderate: slope} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{| Moderate:
\(\mid\) slope
\(\mid\) too sandy
\(\mid\) droughty} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{13E:} & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska----------} & Severe: & \multirow[t]{4}{*}{Severe: slope} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Severe:} & \multirow[t]{3}{*}{| Severe:
slope} \\
\hline & slope & & & & & \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{46:
Jacobsvill} & & & & & & \\
\hline & ```
Severe:
 ponding
 cutbanks cave
 depth to rock
``` & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & ```
| Severe:
| ponding
| depth to rock
``` & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { frost action } \\
& \mid \text { ponding }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} \\
\hline & & & & & & \\
\hline 48: & & & & & & \\
\hline \multirow[t]{4}{*}{} & Severe: & | Severe: \\
\hline & ponding & ponding & ponding & ponding & ponding & ponding \\
\hline & depth to rock & depth to rock & | depth to rock & depth to rock & depth to rock & depth to rock \\
\hline & & & & & & \\
\hline 50A: & & & & & & \\
\hline \multirow[t]{4}{*}{Sundell} & Severe: & | Severe: \\
\hline & wetness & wetness & | wetness & wetness & frost action & wetness \\
\hline & depth to rock & & | depth to rock & & wetness & \\
\hline & & & & & & \\
\hline 51: & & & & & & \\
\hline \multirow[t]{4}{*}{Nahma} & Severe: & | Severe: \\
\hline & ponding & ponding & | ponding & ponding & | frost action & | excess humus \\
\hline & depth to rock & & | depth to rock & & | ponding & | ponding \\
\hline & & & & & & \\
\hline 52B: & & & & & & \\
\hline \multirow[t]{3}{*}{Summerville} & & & & & & \\
\hline & depth to rock & depth to rock & | depth to rock & depth to rock & | depth to rock & | depth to rock \\
\hline & & & & & & \\
\hline 55F: & & & | & & & \\
\hline \multirow[t]{5}{*}{Michigamme} & Severe: & | Severe: & | Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & slope & | slope & slope & slope & large stones \\
\hline & cutbanks cave & & | depth to rock & & & slope \\
\hline & depth to rock & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & slope & | slope & | slope & slope & | slope \\
\hline & depth to rock & depth to rock & | depth to rock & | depth to rock & depth to rock & | depth to rock \\
\hline & & & & & & \\
\hline 56D: & & & & & & \\
\hline \multirow[t]{3}{*}{Peshekee} & & & & & & \\
\hline & depth to rock & depth to rock & | depth to rock & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\] & | depth to rock & \(\left\lvert\, \begin{aligned} & \text { large stones } \\ & \text { depth to rock }\end{aligned}\right.\) \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop-} & Severe: & | Severe: & | Severe: & | Severe: & & \\
\hline & depth to rock & depth to rock & | depth to rock & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\] & depth to rock & | depth to rock \\
\hline & & & & & & \\
\hline 56E: & & & & & & \\
\hline \multirow[t]{4}{*}{Peshekee} & Severe: & | Severe: \\
\hline & slope & | slope & | slope & | slope & slope & | large stones \\
\hline & depth to rock & | depth to rock & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\] \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & & & & & & \\
\hline & slope & | slope \\
\hline & depth to rock & | depth to rock & | depth to rock & | depth to rock & depth to rock & depth to rock \\
\hline & & & & & & \\
\hline 56F: & & & | & & & \\
\hline \multirow[t]{4}{*}{Peshek} & Severe: & | Severe: \\
\hline & slope & | slope & | slope & | slope & slope & large stones \\
\hline & depth to rock & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\] \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: \\
\hline & slope & slope & | slope & slope & slope & slope \\
\hline & depth to rock & depth to rock & | depth to rock & depth to rock & depth to rock & depth to rock \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline 57: & & & | & & | & \\
\hline Carbondale-- & Severe: excess humus ponding & \begin{tabular}{l}
|Severe: \\
low strength \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| low strength \\
| subsides \\
| ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| low strength \\
| subsides \\
| ponding
\end{tabular} & | Severe:
\(\mid\) frost action
\(\mid\) subsides
\(\mid\) ponding & \begin{tabular}{l}
|Severe: \\
| excess humus \\
| ponding
\end{tabular} \\
\hline Tawas & \begin{tabular}{l}
Severe: \\
excess humus \\
ponding \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
| Severe: \\
low strength \\
subsides \\
ponding
\end{tabular} & | Severe:
\(\mid\) subsides
\(\mid\) ponding & \(\mid\) Severe:
\(\mid\) low strength
\(\mid\) subsides
\(\mid\)
ponding & | Severe:
\(\mid\) frost action
\(\mid\) subsides
\(\mid\) ponding & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{} \\
\hline Greenwood- & \begin{tabular}{l}
Severe: \\
excess humus ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
low strength ponding
\end{tabular} & |Severe:
\(\mid\) low strength
| ponding & |Severe:
\(\mid\) low strength
| ponding & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| excess humus \\
| ponding
\end{tabular} \\
\hline Dawson & \begin{tabular}{l}
Severe: \\
excess humus \\
ponding \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Severe: \\
low strength subsides ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
subsides ponding
\end{tabular} & | Severe:
\(\mid\) low strength
\(|\)\begin{tabular}{l}
subsides \\
\(\mid\) \\
ponding
\end{tabular} & | Severe:
\(\mid\) frost action
\(\mid\) subsides
\(\mid\) ponding & \begin{tabular}{l}
|Severe: \\
| excess humus \\
| ponding
\end{tabular} \\
\hline \multicolumn{7}{|l|}{59 :} \\
\hline Chippeny & \begin{tabular}{l}
Severe: \\
ponding \\
cutbanks cave \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
low strength \\
subsides \\
ponding
\end{tabular} & | Severe:
\(\mid\) subsides
| ponding
| depth to rock & \begin{tabular}{l}
|Severe: \\
| low strength \\
| subsides \\
| ponding
\end{tabular} & \(\mid\) Severe:
\(\mid\) frost action
\(\mid\) subsides
\(\mid\) ponding & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\] \\
\hline Nahma- & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & |Severe: ponding & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding } \\
& \text { depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
| ponding
\end{tabular} & | Severe:
\(\mid\) frost action
\(\mid\) ponding & |Severe:
\(\mid\) excess humus
\(\mid\) ponding \\
\hline \multicolumn{7}{|l|}{60 :} \\
\hline Histosols & Severe: excess humus ponding & \begin{tabular}{l}
| Severe: \\
low strength ponding
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { low strength } \\
& \text { | ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { frost action } \\
& \mid \text { ponding }
\end{aligned}
\] & |Severe:
excess humus
ponding \\
\hline Aquents & Severe: wetness & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & \(\mid\) Severe:
\(\mid\) frost action
\(\mid\) wetness & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{Pits, borrow}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{```
62B:
 Udorthents.
```}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline Udipsamments- & Severe: cutbanks cave & | Slight & | Slight & | Slight & | Slight & \begin{tabular}{l}
| Moderate: \\
| droughty
\end{tabular} \\
\hline \multicolumn{7}{|l|}{64.} \\
\hline \multicolumn{7}{|l|}{Pits and Dumps} \\
\hline \multicolumn{7}{|l|}{\multirow[t]{3}{*}{```
65B.
    Udorthents-Urban land
```}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{66B:} \\
\hline Udipsamments & Severe: cutbanks cave & |Slight & | Slight & | Slight & | Slight & \begin{tabular}{l}
| Moderate: \\
| droughty
\end{tabular} \\
\hline Urban land. & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & | & | & & \\
\hline \multicolumn{7}{|l|}{73D:} \\
\hline \multirow[t]{5}{*}{Gogebic} & & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Moderate: \\
frost action \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
large stones droughty
\end{tabular}} \\
\hline & wetness & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{74D:} \\
\hline \multirow[t]{4}{*}{Schweitzer} & Severe: & | Severe: & \multirow[t]{2}{*}{| Severe: \({ }^{\text {c }}\) slope} & | Severe: & Severe: & | Severe: \\
\hline & slope & \multirow[t]{3}{*}{| slope} & & \multirow[t]{3}{*}{| slope} & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} \\
\hline & cutbanks cave & & \multirow{2}{*}{slope} & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme} & Severe: & | Severe: & |Severe: & | Severe: & Severe: & | Severe: \\
\hline & slope & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{large stones slope} \\
\hline & cutbanks cave & & & & & \\
\hline & depth to rock & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & | & & & \\
\hline & & & | & & & \\
\hline \multicolumn{2}{|l|}{74F:} & \multirow[t]{2}{*}{Severe:} & \multirow[b]{2}{*}{| Severe:} & & \multirow[b]{2}{*}{| Severe:} & \\
\hline \multirow[t]{4}{*}{Schweitzer} & Severe: & & & | Severe: & & | Severe: \\
\hline & slope & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{slope} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme--} & Severe: & | Severe: & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
slope
\end{tabular}} & | Severe: & | Severe: \\
\hline & slope & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} & & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{large stones slope} \\
\hline & & & & & & \\
\hline & depth to rock & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{76C:
Garlic} & & \multirow{5}{*}{| Slight} & & & & \\
\hline & Severe: & & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Alcona} & Severe: & \multirow[t]{3}{*}{| Slight} & \multirow[t]{3}{*}{| Slight} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
| slope
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
frost action
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Moderate: \\
slope
\end{tabular}} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Voelker} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & |Moderate: & |Severe: & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{76E:
Garlic--------------|Severe:}} & \multirow[t]{2}{*}{Severe:} & & & slope & \\
\hline & & & | Severe: & & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
slope
\end{tabular}} & \multirow[t]{3}{*}{} \\
\hline \multirow[t]{7}{*}{Alcona} & \multirow[t]{3}{*}{Severe:
slope
cutbanks cave} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{slope} & & \\
\hline & & & & & & \\
\hline & & & & & & | slope \\
\hline & & & & & & \\
\hline & slope & | slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline Voelker- & Severe: & | Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & slope & slope & | slope & slope & slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & | & | & & \\
\hline 76F: & & & & & & \\
\hline Garlic & Severe: & | Severe: \\
\hline & slope & slope & slope & slope & slope & slope \\
\hline & cutbanks cave & & 兂 & & & \\
\hline & & & & & & \\
\hline Alcona- & Severe: & | Severe: \\
\hline & slope & slope & slope & | slope & | slope & slope \\
\hline & cutbanks cave & & | & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & \begin{tabular}{l}
Small \\
commercial buildings
\end{tabular} & Local roads and streets & Lawns and landscaping \\
\hline \multicolumn{7}{|l|}{76F:} \\
\hline Voelker- & \begin{tabular}{l}
Severe: \\
slope cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
slope
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{77D:} \\
\hline \multirow[t]{2}{*}{Garlic} & Severe: cutbanks cave & \begin{tabular}{l}
Moderate: \\
slope
\end{tabular} & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Alcona} & Severe: cutbanks cave & | Slight & | Slight & Moderate: slope & \begin{tabular}{l}
| Moderate: \\
frost action
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Voelker-----------} & Severe: cutbanks cave & Moderate: slope & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{77E:} \\
\hline \multirow[t]{3}{*}{Garlic} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Alcona-} & & & & & & \\
\hline & slope cutbanks cave & slope & | slope & slope & | slope & slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Voelker-} & & & & & |Severe: & \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & slope & | slope & slope & | slope & slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{78C:} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Keweenaw---------------| \(|\)\begin{tabular}{l}
Severe: \\
\\
\(\mid\) cutbanks cave
\end{tabular}}} & | Slight & | Slight & | Moderate: slope & | Slight & \begin{tabular}{l}
|Moderate: \\
| droughty
\end{tabular} \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Kalkaska----------} & Severe: cutbanks cave & | Slight & | Slight & Moderate: slope & | Slight & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { too sandy } \\
& \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{78E:} \\
\hline \multirow[t]{4}{*}{Keweenaw} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & slope & | slope & | slope & slope & | slope & slope \\
\hline & cutbanks cave & & & & & \\
\hline & Severe: & & & & & \\
\hline \multirow{3}{*}{Kalkaska-} & slope & slope & | slope & slope & slope & | slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{78F:} \\
\hline \multirow[t]{3}{*}{Keweenaw} & Severe: & | Severe: \\
\hline & slope
cutbanks cave & slope & slope & slope & | slope & | slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & Severe: & | Severe: \\
\hline & slope
cutbanks cave & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{79B:} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Keweenaw--------------| \(|\)\begin{tabular}{l}
Severe: \\
\\
\(\mid\) cutbanks cave
\end{tabular}}} & | Slight & | Slight & | Slight & | Slight & \begin{tabular}{l}
|Moderate: \\
droughty
\end{tabular} \\
\hline & & & & & & \\
\hline Munising---------- & \begin{tabular}{l}
Severe: \\
wetness \\
cutbanks cave
\end{tabular} & | Severe: wetness & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & | Severe: wetness & \begin{tabular}{l}
| Moderate: \\
frost action wetness
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| wetness \\
droughty
\end{tabular} \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & | & & & , & \\
\hline \multicolumn{7}{|l|}{85A:} \\
\hline Solona- & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| frost action
\end{tabular} & ```
| Moderate:
\(\mid\) large stones
| wetness
``` \\
\hline \multicolumn{7}{|l|}{86B:} \\
\hline Mashek & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { wetness } \\
& \mid \text { dense layer }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| wetness
\end{tabular} & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { frost action } \\
& \mid \text { wetness }
\end{aligned}
\] & \begin{tabular}{l}
Moderate: \\
| large stones
\end{tabular} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{87B:} \\
\hline Cunard- & \begin{tabular}{l}
| Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
| depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
frost action \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | large stones }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{88:} \\
\hline Cathro & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
subsides ponding
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | subsides } \\
& \text { | ponding }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Severe: \\
\(\mid\) \\
frost action \\
\(\mid\) \\
\(\mid\) \\
\(\mid\) \\
subsides \\
ponding
\end{tabular} & ```
| Severe:
\(\mid\) excess humus
\(\mid\) ponding
``` \\
\hline & & & & & & \\
\hline Ensley & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \left\lvert\, \begin{array}{l}
\text { frost action } \\
\mid \\
\text { ponding }
\end{array}\right.
\end{aligned}
\] & | Severe:
\(\mid\) excess humus
| ponding \\
\hline \multicolumn{7}{|l|}{89B:} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Emmet \\
Solona
\end{tabular}} & |Slight & | Slight & Slight & | Slight & | Moderate: & Moderate: \\
\hline & & & & & | frost action & large stones \\
\hline & & & & & & \\
\hline & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & |Severe:
\(\mid\) frost action & \begin{tabular}{l}
| Moderate: \\
large stones wetness
\end{tabular} \\
\hline \multicolumn{7}{|l|}{90B:} \\
\hline \multirow[t]{3}{*}{Emmet-------------} & |Slight & | Slight & | Slight & | Slight & | Moderate: & Moderate: \\
\hline & & & & & | frost action & large stones \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Escanaba} & \begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular} & | Slight & | Slight & | Slight & \begin{tabular}{l}
| Moderate: \\
| frost action
\end{tabular} & Moderate: droughty \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{90D:} \\
\hline \multirow[t]{3}{*}{Emmet} & Moderate: & | Moderate: & \(\mid\) Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & slope & slope & slope & slope & \[
\begin{aligned}
& \text { frost action } \\
& \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Escanaba} & | Severe: & | Moderate: & | Moderate: & | Severe: & | Moderate: & Moderate: \\
\hline & cutbanks cave & | slope & | slope & slope & \[
\begin{array}{|l}
\text { frost action } \\
\text { slope }
\end{array}
\] & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}\right.
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{91B:} \\
\hline \multirow[t]{3}{*}{Onaway------------} & |Slight & | Slight & | Slight & | Slight & & Moderate: \\
\hline & & & & & frost action & | large stones \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Nadeau-------------} & | Severe: & | Moderate: & \(\mid\) Moderate: & | Moderate: & | Moderate: & | Moderate: \\
\hline & | cutbanks cave & large stones & large stones & large stones & \(\mid\) frost action & \(\left\lvert\, \begin{aligned} & \text { large stones } \\ & \text { droughty }\end{aligned}\right.\) \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{92A:} \\
\hline Ensley- & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| ponding
\end{tabular} & \[
\begin{array}{|l}
\mid \text { Severe: } \\
\mid \text { frost action } \\
\mid \text { ponding }
\end{array}
\] & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline \multicolumn{7}{|l|}{} \\
\hline Sundog & Severe: cutbanks cave & \begin{tabular}{l}
|Moderate: \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
|Moderate: \\
| frost action \\
slope
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| large stones \\
| slope \\
| droughty
\end{tabular} \\
\hline \multicolumn{7}{|l|}{107F:} \\
\hline \multirow[t]{4}{*}{Goodman} & Severe: & \multirow[t]{4}{*}{Severe: slope} & | Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & & slope & slope & slope & slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & Severe: & Severe: & Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{108B:} & & \multirow{4}{*}{| Slight} & \multirow{4}{*}{|Slight} & & \\
\hline \multirow[t]{3}{*}{Goodman} & \multirow[t]{3}{*}{Severe: cutbanks cave} & \multirow[t]{3}{*}{|Slight} & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { frost action }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { large stones }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog------------} & \multirow[t]{3}{*}{Severe: cutbanks cave} & \multirow[t]{3}{*}{| Slight} & \multirow[t]{3}{*}{Slight} & \multirow[t]{3}{*}{|Slight} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Moderate: \\
frost action
\end{tabular}} & \multirow[t]{3}{*}{| Moderate: large stones droughty} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Wabeno-} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
wetness \\
cutbanks cave
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Moderate: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
| wetness
\end{tabular}} & \multirow[t]{4}{*}{|Moderate: frost action wetness} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
| large stones
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{108D:
Goodman--------------- | \({ }^{\text {| }}\) Severe:}} & & & & & \\
\hline & & \multirow[t]{3}{*}{| Moderate: slope} & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline \multirow{2}{*}{Goodman} & \multirow[t]{2}{*}{cutbanks cave} & & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { frost action } \\
& \text { slope }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & \multirow[t]{5}{*}{| Severe: \(\quad\) | cutbanks cave} & \multirow[t]{5}{*}{| Moderate:
| slope} & \multirow[t]{5}{*}{| Moderate:
| slope} & \multirow[t]{5}{*}{| Severe: \({ }_{\text {| }}\) slope} & \multirow[t]{5}{*}{\(\mid\) Moderate:
\(\mid\) frost action
\(\mid\)
slope} & \multirow[t]{5}{*}{| Moderate:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) droughty} \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Wabeno-} & \multirow[t]{5}{*}{|Severe:
| wetness
| cutbanks cave} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { slope } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
frost action \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Moderate: \\
| large stones \\
| slope \\
| wetness
\end{tabular}} \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{109B:
Rubicon--------------| \({ }^{\text {| }}\) Severe:}} & \multirow[t]{5}{*}{|Slight} & & & & \\
\hline & & & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
too sandy \\
droughty
\end{tabular}} \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Rubicon \\
Keweenaw
\end{tabular}} & \multirow[t]{3}{*}{Severe: cutbanks cave} & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & \multirow[t]{4}{*}{Severe: cutbanks cave} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Moderate:
\(\mid\) large stones
\(\mid\) droughty} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & & & \\
\hline & & Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline \multirow{4}{*}{Rubicon} & \multirow[t]{4}{*}{Severe: cutbanks cave} & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{slope too sandy droughty} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw-} & \multirow[t]{5}{*}{Severe: cutbanks cave} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
Moderate: \\
| large stones \\
| slope \\
| droughty \\
|
\end{tabular}} \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline \multicolumn{7}{|l|}{109F:} \\
\hline Rubicon & \begin{tabular}{l}
Severe: \\
slope \\
cutbanks cave
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\] \\
\hline Keweenaw- & ```
Severe:
 slope
 cutbanks cave
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] \\
\hline \multicolumn{7}{|l|}{110B:} \\
\hline Nadeau & \begin{tabular}{l}
Severe: \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
large stones
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| large stones
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
large stones
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
\(\mid\) frost action
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline Mancelona & |Severe: cutbanks cave & | Slight & | Slight & |Slight & | Slight & \begin{tabular}{l}
|Moderate: \\
large stones \\
droughty
\end{tabular} \\
\hline \multicolumn{7}{|l|}{110D:} \\
\hline Nadeau- & \begin{tabular}{l}
Severe: \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
large stones slope
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
large stones slope
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] &  & | Moderate:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) droughty \\
\hline Mancelona & | Severe: & | Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & cutbanks cave & slope & slope & slope & slope & \begin{tabular}{l}
large stones \\
slope \\
droughty
\end{tabular} \\
\hline \multicolumn{7}{|l|}{111B :} \\
\hline Grayling & \begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular} & | Slight & | Slight & | Slight & Slight & \begin{tabular}{l}
|Severe: \\
droughty
\end{tabular} \\
\hline \multicolumn{7}{|l|}{112D:} \\
\hline Keewaydin & S Severe: & | Severe: \\
\hline & slope cutbanks cave & slope & slope & slope & | slope & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline Michigamme & Severe: & | Severe: \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & slope & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\] & slope & | slope & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline & depth to rock & & & & & \\
\hline & & & & & & \\
\hline Rock outcrop- & Severe: & | Severe: \\
\hline & slope & slope & slope & slope & | slope & | slope \\
\hline & depth to rock & depth to rock & depth to rock & depth to rock & | depth to rock & | depth to rock \\
\hline \multicolumn{7}{|l|}{112F:} \\
\hline Keewaydin- & Severe: & | Severe: \\
\hline & slope
cutbanks cave & slope & slope & slope & | slope & \begin{tabular}{l}
large stones \\
slope
\end{tabular} \\
\hline & Severe: & & & & & \\
\hline Michigamme- & \begin{tabular}{l}
Severe: \\
slope \\
cutbanks cave \\
depth to rock
\end{tabular} & | Severe: \({ }^{\text {| slope }}\) & |Severe:
| slope
| depth to rock & | Severe: \({ }^{\text {| }}\) slope & | Severe: & \begin{tabular}{l}
Severe: \\
large stones slope
\end{tabular} \\
\hline Rock outcrop- & \begin{tabular}{l}
|Severe: \\
slope \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\] & ```
|Severe:
    slope
    depth to rock
``` \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & | & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { cutbanks cave } \\
& \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Moderate: } \\
& \text { frost action } \\
& \text { depth to rock }
\end{aligned}
\] & |Moderate:
\(\mid\) large stones
\(\mid\) small stones \\
\hline \multicolumn{7}{|l|}{122 :} \\
\hline Pleine & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & |Severe:
\(\mid\) frost action
\(\mid\) ponding & |Severe:
\(\mid\) excess humus
\(\mid\) large stones
\(\mid\) ponding \\
\hline \multicolumn{7}{|l|}{123A:} \\
\hline Tula & | Severe: & Severe: \\
\hline & | wetness \({ }^{\text {| cutbanks cave }}\) & wetness & wetness & wetness & | frost action | wetness & | large stones | wetness \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{124B:} \\
\hline Gogebic & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & | Moderate: frost action wetness & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Dishno} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
large stones wetness
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness }
\end{aligned}
\]} & |Moderate: & | Moderate: & |Severe: \\
\hline & & & & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] & \(\left\lvert\, \begin{aligned} & \text { frost action } \\ & \text { large stones }\end{aligned}\right.\) & | large stones \\
\hline & & & & wetness & wetness & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{124D:} \\
\hline \multirow[t]{5}{*}{Gogebic} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{| Severe:
| wetness} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\(\mid\) Moderate:
\(\mid\) frost action
\(\mid\) slope
\(\mid\) wetness} & \multirow[t]{4}{*}{|Severe:
\(\mid\) large stones
\(\mid\) droughty} \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Dishno-} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & | Moderate: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\(\mid\) Moderate:
\(\mid\) frost action
\(\mid\) slope
\(\mid\)
wetness} & | Severe: \\
\hline & & \[
\begin{aligned}
& \mid \text { large stones } \\
& \text { slope }
\end{aligned}
\] & & & & | large stones \\
\hline & & | wetness & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{125D:} \\
\hline \multirow[t]{3}{*}{Keweenaw} & | Severe: & | Severe: & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & | Severe: \\
\hline & | slope \({ }^{\text {cutbanks cave }}\) & | slope & | slope & | slope & & | slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Severe: & | Severe: & | Severe: & | Severe: & \multirow[t]{3}{*}{| Severe:} & | Severe: \\
\hline & \(\left\lvert\, \begin{aligned} & \text { slope } \\ & \text { cutbanks cave }\end{aligned}\right.\) & | slope & slope & slope & & \[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}\right.
\] \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & |Severe: \\
\hline & | slope & | slope & | slope & slope & | slope & | slope \\
\hline & depth to rock & depth to rock & | depth to rock & depth to rock & depth to rock & | depth to rock \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{125F:
Keweenaw--------------| \({ }^{\text {| }}\) Severe:}} & & & & & \\
\hline & & | Severe: & | Severe: & \multirow[t]{4}{*}{| Severe:} & \multirow[t]{4}{*}{| Severe:} & | Severe: \\
\hline \multirow{3}{*}{Keweenaw-} & \multirow[t]{3}{*}{| Severe:
| slope
| cutbanks cave} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} & & & \multirow[t]{3}{*}{| slope} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{4}{*}{| Severe: \({ }^{\text {| }}\) slope} & \multirow[t]{4}{*}{| Severe:} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Severe: \({ }^{\text {| slope }}\)} & | Severe: \\
\hline & & & & & & | slope \\
\hline & cutbanks cave & & & & & | droughty \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop} & | Severe: \\
\hline & slope & | slope \\
\hline & depth to rock \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & \begin{tabular}{l}
Small \\
commercial \\
buildings
\end{tabular} & Local roads and streets & Lawns and landscaping \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{126B:} \\
\hline \multirow[t]{4}{*}{Sundog} & & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
| frost action
\end{tabular}} & \multirow[t]{4}{*}{| Moderate: large stones droughty} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{126D:} \\
\hline \multirow[t]{5}{*}{Sundog-} & \multirow[t]{5}{*}{Severe: cutbanks cave} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Moderate: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
frost action slope
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Moderate: \\
large stones \\
slope \\
droughty
\end{tabular}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{126E:} \\
\hline \multirow[t]{4}{*}{Sundog} & Severe: & Severe: & Severe: & Severe: & |Severe: & \multirow[t]{4}{*}{Severe: slope} \\
\hline & | slope & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline 127B: & \multirow[b]{2}{*}{| Severe:} & \multirow{5}{*}{| Slight} & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & & & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Moderate: \\
frost action
\end{tabular}} & \multirow[t]{4}{*}{| Moderate: large stones droughty} \\
\hline & \multirow[t]{3}{*}{cutbanks cave} & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{6}{*}{127D:
Sundog} & & & & & & \\
\hline & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular}} & | Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & & \multirow[t]{4}{*}{slope} & \multirow[t]{4}{*}{| slope} & \multirow[t]{4}{*}{slope} & \multirow[t]{3}{*}{frost action slope} & \multirow[t]{4}{*}{large stones slope droughty} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{127F:
Sundog} & & & & \multirow[b]{2}{*}{| Severe:} & & \\
\hline & |Severe: & Severe: & | Severe: & & | Severe: & | Severe: \\
\hline & \multirow[t]{3}{*}{\[
\begin{array}{|l}
\text { slope } \\
\text { cutbanks cave }
\end{array}
\]} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & | & & & \\
\hline & & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Moderate: \\
| too sandy \\
droughty
\end{tabular}} \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Kalkaska \\
Waiska
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular}} & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & | Slight & | Slight & | Slight & | Slight & \\
\hline & | cutbanks cave & & & & & large stones \\
\hline & & & & & & droughty \\
\hline & & & & & & \\
\hline 128D: & & & & & & \\
\hline Kalkaska- & Severe: & | Moderate: & | Moderate: & | Severe: & | Moderate: & | Moderate: \\
\hline & cutbanks cave & slope & | slope & | slope & | slope & | slope \\
\hline & & & & & & | too sandy \\
\hline & & & & & & droughty \\
\hline & & & & & & \\
\hline Waiska- & Severe: & | Moderate: & | Moderate: & | Severe: & | Moderate: & | Severe: \\
\hline & cutbanks cave & slope & | slope & | slope & slope & | large stones \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 128E: & & & & & & \\
\hline Kalkaska- & Severe: & | Severe: \\
\hline & slope & slope & | slope & | slope & slope & slope \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline Waiska- & Severe: & | Severe: \\
\hline & slope & slope & | slope & | slope & slope & large stones \\
\hline & | cutbanks cave & & & & & droughty \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline Witbeck- & \begin{tabular}{l}
Severe: \\
ponding \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
Severe: \\
ponding
\end{tabular} & Severe: ponding & \begin{tabular}{l}
|Severe: \\
frost action \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus ponding
\end{tabular} \\
\hline \multirow[t]{3}{*}{} & Severe: & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
frost action wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
large stones wetness
\end{tabular}} \\
\hline & wetness \({ }^{\text {cutbanks cave }}\) & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{136A:} \\
\hline \multirow[t]{3}{*}{Minocqu} & Severe: & \multirow[t]{3}{*}{| Severe:
| ponding} & \multirow[t]{3}{*}{\begin{tabular}{l}
Severe: \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{| Severe: \({ }^{\text {| ponding }}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { frost action } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\]} \\
\hline & ponding
cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Channing} & Severe: & \multirow[t]{4}{*}{Severe: wetness} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
frost action wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} \\
\hline & wetness & & & & & \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{137D:} & \multirow[b]{2}{*}{| Severe:} & & \multirow[b]{2}{*}{| Severe:} & \multirow[b]{2}{*}{| Severe:} & \\
\hline \multirow[t]{4}{*}{Keewaydin} & Severe: & & | Severe: & & & | Severe: \\
\hline & slope & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| slope} & \multirow[t]{3}{*}{| large stones} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & Severe: & \multirow[t]{4}{*}{| Severe:
| slope} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
slope
\end{tabular}} & | Severe: & \multirow[t]{4}{*}{| Severe:} & | Severe: \\
\hline & slope & & & \multirow[t]{3}{*}{| slope} & & \multirow[t]{3}{*}{| large stones} \\
\hline & cutbanks cave & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{137F:} & & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{2}{*}{Severe:} & | slope & \\
\hline \multirow[t]{3}{*}{Keewaydin} & Severe: & \multirow[t]{3}{*}{\begin{tabular}{l}
Severe: \\
slope
\end{tabular}} & & & Severe: & \\
\hline & slope
cutbanks cave & & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { large stones } \\
& \text { slope }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog} & Severe: & | Severe: & |Severe: & |Severe: & \multirow[t]{3}{*}{| Severe: \({ }^{\text {| }}\) slope} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { large stones } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & slope
cutbanks cave & \multirow[t]{2}{*}{| slope} & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{slope} & & \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{138D:} & | & & \multirow[t]{2}{*}{} & & \\
\hline \multirow[t]{3}{*}{Sundog} & Severe: & \multirow[t]{3}{*}{| Severe:} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
slope
\end{tabular}} & & \multirow[t]{3}{*}{| Severe:} & \multirow[t]{3}{*}{} \\
\hline & slope
cutbanks cave & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & \multirow[t]{2}{*}{|Severe:} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
slope
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & & \multirow[t]{4}{*}{```
| Severe:
 slope
 depth to rock
```} \\
\hline & slope & & & & \begin{tabular}{l}
|Severe: \\
slope \\
depth to rock
\end{tabular} & \\
\hline & depth to rock & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & \multirow[t]{2}{*}{| depth to rock} & \multirow[t]{2}{*}{depth to rock} & \\
\hline & & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{|} & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{138F:
Sundog---------------| \({ }^{\text {| Severe: }}\) :}} & & & & & \\
\hline & & & & & & \\
\hline & slope \(\begin{aligned} & \text { cutbanks cave }\end{aligned}\) & | slope & slope & | slope & slope & \[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline Rock outcrop- & Severe: & | Severe: \\
\hline & slope & slope & slope & | slope & slope & slope \\
\hline & depth to rock & depth to rock & depth to rock & | depth to rock & depth to rock & depth to rock \\
\hline & & & & & & \\
\hline 139B: & & & & & & \\
\hline Sundog- & Severe: & |Slight & | Slight & | Slight & Moderate: & | Moderate: \\
\hline & cutbanks cave & & & & frost action & \begin{tabular}{l}
| large stones \\
| droughty
\end{tabular} \\
\hline & & & & & & \\
\hline 139D: & & & & & & \\
\hline Sundog- & & & & & | Moderate: & | Moderate: \\
\hline & cutbanks cave & | slope & slope & | slope & frost action slope & \[
\left\lvert\, \begin{aligned}
& \text { large stones } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}\right.
\] \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued


Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & \multirow[t]{2}{*}{Lawns and landscaping} \\
\hline & & & & & | & \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multirow[t]{2}{*}{Skanee-} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
wetness \\
cutbanks cave
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { frost action } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Gay-} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{|Severe: | ponding} & \multirow[t]{2}{*}{|Severe: ponding} & \multirow[t]{2}{*}{|Severe:
\(\mid\) ponding} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { frost action } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{2}{*}{```
|Severe:
    excess humus
    ponding
```} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{148B:} \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness \\
cutbanks cave
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | wetness }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { frost action } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | large stones }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Ensley} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
| ponding
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { frost action } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{149:} \\
\hline \multirow[t]{4}{*}{Evart} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { flooding } \\
& \text { | wetness }
\end{aligned}
\]} \\
\hline & wetness & | flooding & | flooding & | flooding & | flooding & \\
\hline & cutbanks cave & wetness & wetness & | wetness & | wetness & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Cathro------------} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | subsides } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
subsides \\
ponding
\end{tabular}} & \multirow[t]{5}{*}{```
| Severe:
| subsides
| ponding
```} & \multirow[t]{5}{*}{\(\mid\) Severe:
\(\mid\) frost action
\(\mid\) subsides
\(\mid\) ponding} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular}} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{150: | | | | | | | | | | |} \\
\hline \multirow[t]{3}{*}{Shag} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding } \\
& \text { | cutbanks cave }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
| ponding
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { frost action } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\]} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{151A:
Spear} & & & & & & \\
\hline & \multirow[t]{4}{*}{|Severe:
| wetness
| cutbanks cave} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { frost action } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{153D :} \\
\hline \multirow[t]{5}{*}{Ishpeming} & | Severe: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & | Severe: & \multirow[t]{5}{*}{| Severe:} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\text { slope } \\
\mid \text { cutbanks cave } \\
\text { depth to rock }
\end{array}
\]} & & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{153F:} \\
\hline \multirow[t]{5}{*}{Ishpeming} & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{| Severe:} & \multirow[t]{5}{*}{| Severe: \({ }_{\text {| }}^{\text {slope }}\) (} & \multirow[t]{5}{*}{| Severe: \({ }^{\text {| }}\) slope} \\
\hline & \multirow[t]{4}{*}{\[
\left\lvert\, \begin{aligned}
& \text { slope } \\
& \text { cutbanks cave } \\
& \text { depth to rock }
\end{aligned}\right.
\]} & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & | Severe: \\
\hline & slope & | slope & slope & | slope & | slope & slope \\
\hline & depth to rock \\
\hline & & & & & & \\
\hline 154B: & & & & & & \\
\hline Rubicon & | Severe: & | Slight & | Slight & |Slight & | Slight & \\
\hline & | cutbanks cave & & & & & | too sandy \\
\hline & & & & & & droughty \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued


Table 13.--Building Site Development--Continued


Table 13.--Building Site Development--Continued


Table 13.--Building Site Development--Continued


Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & \begin{tabular}{l}
Dwellings \\
with \\
basements
\end{tabular} & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline \multicolumn{7}{|l|}{180F:} \\
\hline Kalkaska & ```
Severe:
    slope
    cutbanks cave
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Frohling} & ```
Severe:
 slope
 cutbanks cave
``` & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{181E:} \\
\hline \multirow[t]{2}{*}{Frohling} & ```
Severe:
    slope
    cutbanks cave
``` & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & Severe: & Severe: & & & & \\
\hline \multirow{2}{*}{Tokiahok} & \[
\begin{aligned}
& \text { slope } \\
& \text { cutbanks cave }
\end{aligned}
\] & | slope & | slope & | slope & slope & | slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{181F:} \\
\hline \multirow[t]{3}{*}{Frohling} & Severe: & | Severe: & | Severe: & | Severe: & | Severe: & Severe: \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok} & Severe: & | Severe: \\
\hline & slope cutbanks cave & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{184C:} \\
\hline \multirow[t]{2}{*}{Dishno} & Severe: & | Moderate: & | Severe: & | Severe: & | Moderate: & | Severe: \\
\hline & wetness & \(\mid\) large stones
\(\mid\) slope
\(\mid\) wetness & wetness & slope & frost action slope wetness & large stones \\
\hline \multirow[t]{3}{*}{Witbeck} & Severe: & | Severe: & | Severe: & Severe: & | Severe: & | Severe: \\
\hline & \begin{tabular}{l}
ponding \\
cutbanks cave
\end{tabular} & | ponding & ponding & ponding & frost action ponding & excess humus ponding \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{185B :} \\
\hline \multirow[t]{3}{*}{Northland} & Severe: & | Moderate: & | Severe: & | Moderate: & | Moderate: & | Moderate: \\
\hline & \begin{tabular}{l}
wetness \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & wetness & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & frost action large stones wetness & | droughty \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{187B:} \\
\hline Reade & \begin{tabular}{l}
Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| wetness \\
| depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
frost action \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
large stones \\
depth to rock
\end{tabular} \\
\hline \multicolumn{7}{|l|}{190B:} \\
\hline \multirow[t]{3}{*}{Emmet-------------} & Slight & | Slight & |Slight & | Slight & | Moderate: & |Slight \\
\hline & & & & & frost action & \\
\hline & & & & & & \\
\hline Cunard------------ & \begin{tabular}{l}
Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
frost action \\
depth to rock
\end{tabular} & \begin{tabular}{|l}
\(\mid\) Moderate: \\
\(\mid\) large stones \\
\(\mid\) depth to rock \\
droughty
\end{tabular} \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline \multicolumn{7}{|l|}{191B:} \\
\hline Nahma- & \begin{tabular}{l}
|Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & ```
| Severe:
| ponding
 depth to rock
``` & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & |Severe:
\(\mid\) frost action
| ponding & \begin{tabular}{l}
|Severe: \\
excess humus \\
ponding
\end{tabular} \\
\hline Sundell- & \begin{tabular}{l}
| Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
frost action wetness
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} \\
\hline \multicolumn{7}{|l|}{193E:} \\
\hline \multirow[t]{3}{*}{Frohling} & | Severe: \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok} & | Severe: \\
\hline & slope
cutbanks cave & slope & slope & slope & slope & slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{194E:} \\
\hline \multirow[t]{3}{*}{Sporley} & | Severe: \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & | slope & slope & slope & \[
\begin{aligned}
& \text { frost action } \\
& \text { slope }
\end{aligned}
\] & | slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{196E:} \\
\hline \multirow[t]{3}{*}{Frohling} & | Severe: \\
\hline & \[
\begin{aligned}
& \text { slope } \\
& \text { cutbanks cave }
\end{aligned}
\] & slope & slope & slope & | slope & slope \\
\hline & & & & & & \\
\hline \multirow[t]{5}{*}{Onota} & | Severe: \\
\hline & slope & slope & slope & slope & slope & slope \\
\hline & cutbanks cave & & depth to rock & & & \\
\hline & depth to rock & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Tokiahok-} & & & & & & \\
\hline & \begin{tabular}{l}
slope \\
cutbanks cave
\end{tabular} & | slope & | slope & slope & | slope & slope \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{197B :} \\
\hline \multirow[t]{3}{*}{Shoepac} & & & & & | Moderate: & | Moderate: \\
\hline & \begin{tabular}{l}
wetness \\
cutbanks cave
\end{tabular} & | wetness & | wetness & | wetness & | frost action
wetness & large stones \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Trenary} & Severe: & |Slight & | Slight & | Slight & | Moderate: & | Moderate: \\
\hline & cutbanks cave & & & & frost action & | large stones \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{198B:} \\
\hline Shoepac & \begin{tabular}{l}
| Severe: \\
wetness \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & | Moderate: frost action wetness & \begin{tabular}{l}
|Moderate: \\
large stones
\end{tabular} \\
\hline & & & & & & \\
\hline Reade------------- & \begin{tabular}{l}
|Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
| wetness \\
| depth to rock
\end{tabular} & | Severe:
\(\mid\) wetness
| depth to rock & \begin{tabular}{l}
| Moderate: \\
| wetness \\
| depth to rock
\end{tabular} & \(\mid\) Moderate:
\(\mid\) frost action
\(\mid\) wetness
\(|\)\begin{tabular}{l} 
depth to rock
\end{tabular} & \begin{tabular}{l}
| Moderate: \\
large stones depth to rock
\end{tabular} \\
\hline \multicolumn{7}{|l|}{199.} \\
\hline \multicolumn{7}{|l|}{Udorthents, ash} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{200A:} \\
\hline Charlevoix- & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness
\end{tabular} & |Severe:
| frost action & \begin{tabular}{l}
| Moderate: \\
wetness
\end{tabular} \\
\hline
\end{tabular}

Table 13.--Building Site Development--Continued

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & Shallow excavations & Dwellings without basements & Dwellings with basements & Small commercial buildings & Local roads and streets & Lawns and landscaping \\
\hline & & & & & & \\
\hline 208F: & & & & & & \\
\hline Michigamme- & Severe: & | Severe: & Severe: & | Severe: & | Severe: & | Severe: \\
\hline & slope & slope & slope & slope & | slope & large stones \\
\hline & depth to rock & & depth to rock & & & | slope \\
\hline & & & & & & \\
\hline 209B: & & & & & & \\
\hline Garlic- & Severe: & | Slight & Slight & Moderate: & |Slight & | Moderate: \\
\hline & cutbanks cave & & & | slope & & d droughty \\
\hline & & & & & & \\
\hline Fence- & Severe: & | Slight & Moderate: & | Slight & | Severe: & | Slight \\
\hline & cutbanks cave & & wetness & & | frost action & \\
\hline & & & & & & \\
\hline M-W. & & & & & & \\
\hline Miscellaneous water & & & & & & \\
\hline & & & & & & \\
\hline w. & & & & & & \\
\hline Water & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{gathered}
\text { |Trench sanitary } \mid \\
\text { landfill }
\end{gathered}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{10B:} \\
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Severe: poor filter} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{| Severe: seepage too sandy} & \multirow[t]{2}{*}{Severe: seepage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{10D:} \\
\hline \multirow[t]{4}{*}{Grayling} & \multirow[t]{4}{*}{Severe: poor filter} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{|Severe: seepage too sandy} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{10E:} \\
\hline \multirow[t]{5}{*}{Grayling} & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & slope & seepage & seepage & | seepage & seepage \\
\hline & poor filter & slope & slope & slope & slope \\
\hline & & & too sandy & & too sandy \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{11C:} \\
\hline \multirow[t]{4}{*}{Deer Park} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
poor filter
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage \\
too sandy
\end{tabular}} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { seepage } \\
& \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{11D:} \\
\hline \multirow[t]{4}{*}{Deer Park-} & \multirow[t]{4}{*}{Severe: poor filter} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
seepage \\
too sandy
\end{tabular}} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{12B:} \\
\hline \multirow[t]{4}{*}{Rubicon-} & |Severe: & |Severe: & | Severe: & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & \multirow[t]{3}{*}{poor filter} & \multirow[t]{3}{*}{| seepage} & \multirow[t]{3}{*}{\begin{tabular}{l}
seepage \\
too sandy
\end{tabular}} & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{12D:
Rubicon} & & & & seepage & \\
\hline & \multirow[t]{4}{*}{|Severe: poor filter} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage too sandy
\end{tabular}} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{| Poor:
| seepage
\(\mid\) too sandy} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{12E:} \\
\hline \multirow[t]{5}{*}{Rubicon-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & |Severe: & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
| seepage
\end{tabular}} & & | Poor: \\
\hline & & \multirow[t]{2}{*}{| seepage} & & seepage & | seepage \\
\hline & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { slope } \\
& \text { poor filter }
\end{aligned}
\]} & & | \(\begin{aligned} & \text { seepage } \\ & \text { slope }\end{aligned}\) & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{| slope \({ }^{\text {too sandy }}\)} \\
\hline & & \multirow{2}{*}{| slope} & \(\left\lvert\, \begin{aligned} & \text { slope } \\ & \text { too sandy }\end{aligned}\right.\) & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{12F:} \\
\hline \multirow[t]{5}{*}{Rubicon} & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & slope & | seepage & | seepage & seepage & | seepage \\
\hline & \multirow[t]{3}{*}{poor filter} & \multirow[t]{3}{*}{| slope} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { slope } \\
\text { | too sandy }
\end{array}
\]} & \multirow[t]{2}{*}{slope} & | slope \\
\hline & & & & & | too sandy \\
\hline & & & | too sandy & & \\
\hline \multicolumn{6}{|l|}{13B :} \\
\hline \multirow[t]{4}{*}{Kalkaska} & \multirow[t]{4}{*}{Severe: poor filter} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{} & \multirow[t]{3}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{13D:} \\
\hline \multirow[t]{4}{*}{Kalkaska} & \multirow[t]{4}{*}{Severe: poor filter} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Severe: seepage too sandy} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \text { Trench sanitary } \\
\text { landfill }
\end{array}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline 13E: & & & & & \\
\hline Kalkaska- & \begin{tabular}{l}
| Severe: \\
slope \\
poor filter
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
Poor: \\
seepage \\
slope \\
too sandy
\end{tabular} \\
\hline 13F: & & & & & \\
\hline Kalkaska & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { | poor filter }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy & | Severe: seepage slope & \begin{tabular}{l}
Poor: \\
seepage \\
slope \\
too sandy
\end{tabular} \\
\hline 14B: & & & & & \\
\hline Rousseau- & Severe: poor filter & Severe: seepage & | Severe: seepage too sandy & Severe: seepage & Poor: seepage too sandy \\
\hline 14D: & & & & & \\
\hline Rousseau & Severe: poor filter & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & |Severe: seepage too sandy & Severe: seepage & Poor: seepage too sandy \\
\hline 15A: & & & & & \\
\hline Croswell & Severe: wetness poor filter & Severe: seepage wetness & \begin{tabular}{l}
| Severe: \\
seepage \\
too sandy \\
wetness
\end{tabular} & |Severe: seepage wetness & \begin{tabular}{l}
Poor: \\
seepage \\
too sandy \\
too acid
\end{tabular} \\
\hline 16A: & & & & &  \\
\hline Paquin & \begin{tabular}{l}
|Severe: \\
cemented pan \\
wetness \\
poor filter
\end{tabular} & \begin{tabular}{l}
Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) too sandy
wetness & \begin{tabular}{l}
| Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & \begin{tabular}{l}
Poor: \\
cemented pan seepage too sandy
\end{tabular} \\
\hline 17A: & & & & & \\
\hline Au Gres & Severe: wetness poor filter & Severe: seepage wetness & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| wetness
\end{tabular} & |Severe: seepage wetness & \begin{tabular}{l}
Poor: \\
seepage too sandy wetness
\end{tabular} \\
\hline 18: & & & & & \\
\hline Kinross & Severe: ponding poor filter & \begin{tabular}{l}
Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
Poor: \\
seepage too sandy ponding
\end{tabular} \\
\hline 19 : & & & & & \\
\hline Deford- & Severe: ponding poor filter & \begin{tabular}{l}
Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
Poor: \\
seepage too sandy ponding
\end{tabular} \\
\hline 20B: & & & & & \\
\hline Rousseau & Severe: poor filter & Severe: seepage & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
Poor: \\
seepage too sandy
\end{tabular} \\
\hline Ocqueoc---------- & Severe: percs slowly & Severe: seepage & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { too sandy }
\end{aligned}
\] & |Severe: seepage & Poor: too sandy \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued


Table 14.--Sanitary Facilities--Continued


Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & areas & \[
\left\lvert\, \begin{gathered}
\text { Trench sanitary } \\
\mid \\
\text { landfill }
\end{gathered}\right.
\] & \[
\begin{array}{|c}
\text { Area sanitary } \\
\text { landfill }
\end{array}
\] & Daily cover for landfill \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{35D:} \\
\hline \multirow[t]{5}{*}{Champion} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
percs slowly wetness
\end{tabular}} & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & | Poor: \\
\hline & & large stones & \multirow[t]{2}{*}{| seepage} & & \multirow[t]{2}{*}{seepage small stones} \\
\hline & & \multirow[t]{2}{*}{\begin{tabular}{l}
seepage \\
slope
\end{tabular}} & & wetness & \\
\hline & & & wetness & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{36A:} \\
\hline \multirow[t]{5}{*}{Net} & |Severe: & Severe: & |Severe: & & | Poor: \\
\hline & percs slowly & | seepage & | seepage & seepage & | small stones \\
\hline & wetness & \multirow[t]{2}{*}{| wetness} & | wetness & \multirow[t]{2}{*}{| wetness} & \multirow[t]{2}{*}{| wetness} \\
\hline & & & | too acid & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{37:} \\
\hline \multirow[t]{3}{*}{Witbeck} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { percs slowly } \\
& \text { ponding }
\end{aligned}
\]} & \multirow[t]{3}{*}{|Severe:
|excess humus
ponding} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
ponding
\end{tabular}} & \multirow[t]{3}{*}{Severe: ponding} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { small stones } \\
& \text { ponding }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{38B:} \\
\hline \multirow[t]{5}{*}{Pence} & \multirow[t]{5}{*}{|Severe: poor filter} & \multirow[t]{2}{*}{Severe:} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{} & \\
\hline & & & & & \multirow[t]{3}{*}{\begin{tabular}{l}
seepage \\
small stones too sandy
\end{tabular}} \\
\hline & & \multirow{3}{*}{seepage} & \[
\begin{array}{|l}
\text { seepage } \\
\text { too sandy }
\end{array}
\] & \multirow{2}{*}{seepage} & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{38D:} \\
\hline \multirow[t]{5}{*}{Pence} & Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & | Severe: & | Poor: \\
\hline & \multirow[t]{3}{*}{poor filter} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { seepage } \\
& \text { | slope }
\end{aligned}
\]} & & \multirow[t]{3}{*}{seepage} & \multirow[t]{3}{*}{seepage small stones too sandy} \\
\hline & & & \(\left\lvert\, \begin{aligned} & \text { seepage } \\ & \text { | too sandy }\end{aligned}\right.\) & & \\
\hline & & \multirow[t]{2}{*}{} & | & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{38E:} \\
\hline \multirow[t]{5}{*}{Pence} & Severe: & | Severe: & \multirow[t]{2}{*}{\(\mid\) Severe:} & \multirow[t]{2}{*}{| Severe:} & | Poor: \\
\hline & slope & seepage & & & \\
\hline & \multirow[t]{3}{*}{| poor filter} & \multirow[t]{2}{*}{slope} & | slope & \multirow[t]{2}{*}{slope} & \multirow[t]{2}{*}{small stones too sandy} \\
\hline & & & \multirow[t]{2}{*}{too sandy} & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{39B:} \\
\hline \multirow[t]{5}{*}{Amasa} & |Severe: & Severe: & |Severe: & Severe: & | Poor: \\
\hline & poor filter & seepage & | seepage & seepage & | seepage \\
\hline & & & too sandy & & small stones \\
\hline & & & & & too sandy \\
\hline & & & & & \\
\hline 39D: & & & & & \\
\hline Amasa- & Severe: & | Severe: & | Severe: & |Severe: & Poor: \\
\hline & poor filter & | seepage & | seepage & | seepage & seepage \\
\hline & & slope & | too sandy & & small stones \\
\hline & & & & & too sandy \\
\hline & & & & & \\
\hline 39E: & & & & & \\
\hline Amasa & | Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & slope & | seepage & | seepage & | seepage & seepage \\
\hline & poor filter & slope & | slope & slope & small stones \\
\hline & & & | too sandy & & too sandy \\
\hline & & & & & \\
\hline 40B: & & & & & \\
\hline Waiska & & & & & | Poor: \\
\hline & | poor filter & | seepage & | seepage & seepage & | seepage \\
\hline & & & too sandy & & small stones \\
\hline & & & & & too sandy \\
\hline & & & & & \\
\hline 40D: & & & & & \\
\hline Waiska- & & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & | poor filter & | seepage & | seepage & seepage & | seepage \\
\hline & & slope & | too sandy & & | small stones \\
\hline & | & & & & too sandy \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \text { Trench sanitary } \\
\text { landfill }
\end{array}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline 41A: & & & & & \\
\hline Channing- & Severe: wetness poor filter & Severe: seepage wetness & \begin{tabular}{l}
| Severe: \\
seepage \\
too sandy \\
wetness
\end{tabular} & |Severe: seepage wetness & \begin{tabular}{l}
| Poor: \\
seepage \\
small stones \\
too sandy
\end{tabular} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{42:
Minocq} & & & & & \\
\hline & Severe: ponding poor filter & \begin{tabular}{l}
Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
too sandy \\
ponding
\end{tabular} & |Severe: seepage ponding & \begin{tabular}{l}
| Poor: \\
seepage \\
small stones too sandy
\end{tabular} \\
\hline \multirow[t]{3}{*}{43B:
Karlin} & & & & & \\
\hline & Severe: poor filter & Severe: seepage & | Severe: seepage too sandy & Severe: seepage & | Poor: seepage too sandy \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{43D:
Karl} & & & & & \\
\hline & Severe: poor filter & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & ```
| Severe:
    seepage
    too sandy
``` & Severe: seepage & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | seepage } \\
& \text { too sandy }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{44B:
Carlshend} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness \\
depth to rock
\end{tabular} & ```
|Poor:
 wetness
 depth to rock
``` \\
\hline \multirow[t]{2}{*}{45A:} & Severe: & Severe: & |Severe: & Severe: & | Poor: \\
\hline & \begin{tabular}{l}
wetness \\
depth to rock
\end{tabular} \\
\hline \multirow[t]{3}{*}{46:
Jacobsville} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
excess humus \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { ponding } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{48:} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Poor: \\
seepage \\
too sandy \\
depth to rock
\end{tabular} \\
\hline \multirow[t]{2}{*}{50A:
Sundell} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
wetness depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
wetness \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { wetness } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{51:
Nahma} & & & & & \\
\hline & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
excess humus \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding \\
depth to rock
\end{tabular} &  \\
\hline \multirow[t]{2}{*}{52B:
Summerville} & & & & & \\
\hline & Severe: depth to rock & \begin{tabular}{l}
Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
depth to rock
\end{tabular} \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{aligned}
& \mid \text { Trench sanitary } \\
& \text { landfill }
\end{aligned}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline \multicolumn{6}{|l|}{} \\
\hline Michigamme & \begin{tabular}{l}
Severe: \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
large stones \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{|l} 
| Severe: \\
\(\mid\) large stones \\
| slope \\
\(\mid\) depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope \\
depth to rock
\end{tabular} & | Poor:
\(\mid\) large stones
| slope
\(\mid\) depth to rock \\
\hline Rock outcrop- & \begin{tabular}{l}
Severe: \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope \\
depth to rock
\end{tabular} &  & \begin{tabular}{l}
| Severe: \\
slope \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{56D:} \\
\hline Pesheke & Severe: depth to rock & ```
| Severe:
    large stones
    slope
    depth to rock
``` & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { large stones } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \left\lvert\, \begin{array}{l}
\text { large stones } \\
\text { depth to rock }
\end{array}\right.
\end{aligned}
\] \\
\hline Rock outcrop & \begin{tabular}{l}
Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{56E:} \\
\hline Peshekee & ```
Severe:
 slope
 depth to rock
``` & ```
| Severe:
    large stones
    slope
    depth to rock
``` & | Severe:
\(\mid\) large stones
| slope
\(\mid\) depth to rock & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { slope } \\
& \text { depth to rock }
\end{aligned}
\] & | Poor:
| large stones
| slope
| depth to rock \\
\hline Rock outcrop & \begin{tabular}{l}
Severe: \\
slope \\
depth to rock
\end{tabular} & ```
| Severe:
 slope
 depth to rock
``` & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { slope } \\
& \text { depth to rock }
\end{aligned}
\] & ```
| Severe:
    slope
    depth to rock
``` & \[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 56F: } \\
& \text { Pesh }
\end{aligned}
\] & Severe: & | Severe: & | Severe: & | Severe: & \\
\hline & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
large stones \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
large stones \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
large stones \\
slope \\
depth to rock
\end{tabular} \\
\hline Rock outcrop & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} \\
\hline \multicolumn{6}{|l|}{57 :} \\
\hline Carbondale & \begin{tabular}{l}
|Severe: \\
percs slowly \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & | Severe: seepage ponding & | Poor:
\(\mid\) excess humus
\(\mid\) ponding \\
\hline Tawas & \begin{tabular}{l}
Severe: \\
percs slowly \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
too sandy \\
ponding
\end{tabular} & |Severe: seepage ponding & \begin{tabular}{l}
| Poor: \\
| seepage \\
| too sandy \\
| ponding
\end{tabular} \\
\hline \multicolumn{6}{|l|}{58 :} \\
\hline Greenwood & |Severe: ponding & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & | Severe: seepage ponding & | Poor:
\(\mid\) excess humus
| ponding \\
\hline Dawson- & \begin{tabular}{l}
|Severe: \\
percs slowly \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & | Severe: seepage ponding & |Poor:
\(\mid\) excess humus
| ponding \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \text { Trench sanitary } \\
\mid \quad \text { landfill }
\end{array}
\] & \[
\begin{array}{|c}
\text { Area sanitary } \\
\text { landfill }
\end{array}
\] & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{70B:} \\
\hline Nadeau & Severe: poor filter & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \(\mid\) Poor:
\(\mid\) seepage
\(\mid\) small stones
\(\mid\)
too sandy \\
\hline \multicolumn{6}{|l|}{70D:} \\
\hline Nadeau- & Severe: poor filter & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| seepage
\end{tabular} & \(\mid\) Poor:
\(\mid\) seepage
\(\mid\) small stones
\(\mid\) too sandy \\
\hline \multicolumn{6}{|l|}{71B:} \\
\hline \multirow[t]{5}{*}{Evart} & | Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & flooding & flooding & flooding & flooding & seepage \\
\hline & wetness & seepage & | seepage & seepage & | too sandy \\
\hline & poor filter & wetness & | wetness & wetness & wetness \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Pelkie-----------} & | Severe: & | Severe: & | Severe: & | Severe: & Poor: \\
\hline & flooding & flooding & | flooding & | flooding & seepage \\
\hline & wetness & seepage & | seepage & | seepage & too sandy \\
\hline & poor filter & wetness & | wetness & wetness & x \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Sturgeon} & & | Severe: & | Severe: & | Severe: & Poor: \\
\hline & | flooding & | flooding & | flooding & flooding & seepage \\
\hline & wetness & | seepage & | seepage & seepage & too sandy \\
\hline & poor filter & wetness & | wetness & wetness & wetness \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72B:} \\
\hline \multirow[t]{3}{*}{Emmet} & Moderate: & | Moderate: & | Slight & |Slight & |Fair: \\
\hline & percs slowly & | slope & & & small stones \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72D:} \\
\hline \multirow[t]{4}{*}{Emmet} & Moderate: & | Severe: & | Moderate: & | Moderate: & Fair: \\
\hline & percs slowly & | slope & slope & seepage & slope \\
\hline & & & & & | small stones \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72E:} \\
\hline \multirow[t]{4}{*}{Emmet} & & & & & \\
\hline & slope & | slope & | slope & seepage & | slope \\
\hline & & & & | slope & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{73B:} \\
\hline \multirow[t]{3}{*}{Gogebi} & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & percs slowly wetness & large stones & | large stones | wetness & wetness & | large stones | wetness \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{73D:} \\
\hline \multirow[t]{3}{*}{Gogebic} & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & percs slowly wetness & | large stones slope & | large stones | wetness & | wetness & | large stones | wetness \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{74D:} \\
\hline \multirow[t]{5}{*}{Schweitzer} & | Severe: & | Severe: & | Severe: & | Severe: & Poor: \\
\hline & | percs slowly & | slope & | large stones & | slope & slope \\
\hline & slope & & | slope & & small stones \\
\hline & & & | too acid & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme} & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & slope & | large stones & | large stones & slope & | large stones \\
\hline & depth to rock & slope & | slope & depth to rock & slope \\
\hline & & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & | & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \\
\mid \text { Trench sanitary } \\
\mid \quad \text { landfill }
\end{array}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{91B:} \\
\hline & \begin{tabular}{l}
Severe: \\
percs slowly
\end{tabular} & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { slope }
\end{aligned}
\] & | Slight & | Slight & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { small stones }
\end{aligned}
\] \\
\hline Nadeau- & Severe: poor filter & |Severe: seepage & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & | Poor:
\(\mid\) seepage
\(\mid\) small stones
| too sandy \\
\hline \multicolumn{6}{|l|}{92A:} \\
\hline Ensley & Severe: ponding & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { ponding }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | ponding }
\end{aligned}
\] \\
\hline & & & & & \\
\hline Solona- & Severe: wetness & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
wetness
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { small stones } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{93 :} \\
\hline Tawas - & \begin{tabular}{l}
| Severe: \\
percs slowly \\
subsides \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage ponding
\end{tabular} & | Poor:
| seepage
\(\mid\) too sandy
\(\mid\) ponding \\
\hline Deford- & Severe: & |Severe: & | Severe: & |Severe: & | Poor: \\
\hline & \begin{tabular}{l}
ponding \\
poor filter
\end{tabular} & excess humus seepage ponding & \(|\)\begin{tabular}{l}
seepage \\
\(\mid\) too sandy \\
ponding
\end{tabular} & seepage ponding & \(|\)\begin{tabular}{l}
seepage \\
too sandy \\
ponding
\end{tabular} \\
\hline \multicolumn{6}{|l|}{94B:} \\
\hline Keweenaw- & Slight & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \left\lvert\, \begin{array}{l}
\text { seepage }
\end{array}\right. \\
& \text { small stones }
\end{aligned}
\] \\
\hline & & & & & \\
\hline Kalkaska & Severe: poor filter & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| seepage \\
| too sandy
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Poor: \\
| seepage \\
| too sandy
\end{tabular} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{94D:} \\
\hline Keweenaw- & Moderate : slope & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { seepage } \\
& \mid \text { small stones }
\end{aligned}
\] \\
\hline Kalkaska- & Severe: poor filter & \begin{tabular}{l}
|Severe: \\
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy
\end{tabular} & |Severe: seepage & \[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{94E:} \\
\hline Keweenaw- & Severe: slope & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { seepage } \\
& \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Severe: } \\
& \begin{array}{|l}
\text { seepage } \\
\text { slope }
\end{array}
\end{aligned}
\] & | Severe:
\(\mid\) seepage
\(\mid\) slope & |Poor:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) small stones \\
\hline Kalkaska-- & \begin{tabular}{l}
|Severe: \\
slope \\
poor filter
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
slope
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy & \begin{tabular}{l}
|Severe: \\
seepage \\
slope
\end{tabular} & \(\mid\) Poor:
\(\mid\) seepage
| slope
\(\mid\) too sandy \\
\hline \multicolumn{6}{|l|}{95B :} \\
\hline Liminga-- & Severe: poor filter & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage too sandy
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { too sandy }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \\
\mid \text { Trench sanitary } \\
\mid \\
\text { landfill }
\end{array}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{127D:} \\
\hline Sundog- & Severe: poor filter & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | seepage } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\] & Severe: seepage & \begin{tabular}{l}
| Poor: \\
| seepage \\
| small stones \\
| too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{127F:} \\
\hline Sundog- & \begin{tabular}{l}
Severe: \\
slope \\
poor filter
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy & Severe: seepage slope & \begin{tabular}{l}
| Poor: \\
| seepage \\
small stones too sandy
\end{tabular} \\
\hline \multicolumn{5}{|l|}{128B:} & \\
\hline Kalkaska & Severe: poor filter & |Severe: seepage & |Severe: seepage too sandy & |Severe: seepage & \begin{tabular}{l}
| Poor: \\
seepage too sandy
\end{tabular} \\
\hline Waiska- & Severe: poor filter & |Severe: seepage & |Severe: seepage too sandy & |Severe: seepage & \begin{tabular}{l}
| Poor: \\
| seepage \\
small stones \\
too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{128D:} \\
\hline Kalkaska & Severe: poor filter & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | seepage } \\
& \text { | too sandy }
\end{aligned}
\] & Severe: seepage & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { seepage } \\
& \text { too sandy }
\end{aligned}
\] \\
\hline Waiska- & Severe: poor filter & |Severe: seepage slope & |Severe: seepage too sandy & Severe: seepage & \begin{tabular}{l}
| Poor: \\
seepage \\
small stones too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{128E:} \\
\hline Kalkaska & \begin{tabular}{l}
Severe: \\
slope \\
poor filter
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage slope
\end{tabular} & | Severe:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy & |Severe: seepage slope & | Poor:
\(\mid\) seepage
\(\mid\) slope
\(\mid\) too sandy \\
\hline & & & & & \\
\hline & slope poor filter & \begin{tabular}{l}
seepage \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { Severe: } \\
& \text { seepage } \\
& \text { slope } \\
& \text { too sandy }
\end{aligned}
\] & \begin{tabular}{l}
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
seepage \\
small stones too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{129C:} \\
\hline Kalkaska & Severe: poor filter & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy }
\end{aligned}
\] & Severe: seepage & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { seepage } \\
& \text { too sandy }
\end{aligned}
\] \\
\hline Munising- & Severe: percs slowly wetness & Moderate: seepage slope & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & |Severe: wetness & \begin{tabular}{l}
Poor: \\
seepage wetness
\end{tabular} \\
\hline \multicolumn{6}{|l|}{130A:} \\
\hline Chabeneau- & Severe: wetness poor filter & | Severe: seepage wetness & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| wetness
\end{tabular} & |Severe: seepage wetness & \begin{tabular}{l}
| Poor: \\
| seepage \\
| small stones too sandy
\end{tabular} \\
\hline 131: & & & & & \\
\hline Witbeck- & Severe: percs slowly ponding & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & Severe: ponding & |Poor:
\(\mid\) small stones
| ponding \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{gathered}
\text { Trench sanitary } \\
\text { landfill }
\end{gathered}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline Cathro- & \begin{tabular}{l}
| Severe: \\
percs slowly ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
excess humus \\
seepage \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage ponding
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | ponding }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{132.} \\
\hline \multicolumn{6}{|l|}{Slickens} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{133B:} \\
\hline \multirow[t]{5}{*}{Keewaydin--------} & | Severe: & Severe: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\(\mid\) Poor:
\(\mid\) seepage
\(\mid\) small stones
\(\mid\) too sandy} \\
\hline & | poor filter & & & & \\
\hline & & seepage & too sandy & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno-----------} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{|Fair:
\(\mid\) small stones
| wetness
\(\mid\) depth to rock} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{133D:} \\
\hline \multirow[t]{5}{*}{Keewaydin} & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \text { small stones } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & | poor filter & large stones & & & \\
\hline & & seepage & | too sandy & & \\
\hline & & slope & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno-} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| wetness
\end{tabular}} & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{\(\mid\) Fair:
\(\mid\) slope
\(\mid\) small stones
\(\mid\) depth to rock} \\
\hline & & & | depth to rock & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{134B:} \\
\hline \multirow[t]{5}{*}{Keewaydin} & & | Severe: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage }
\end{aligned}
\]} & Severe: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \mid \text { small stones } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & | poor filter & large stones & & seepage & \\
\hline & & seepage & | too sandy & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{134D:} \\
\hline \multirow[t]{5}{*}{Keewaydin} & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{\(\mid\) Poor:
\(\mid\) seepage
| small stones
\(\mid\) too sandy} \\
\hline & | poor filter & large stones & & & \\
\hline & & seepage & too sandy & & \\
\hline & & slope & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{134F:} \\
\hline \multirow[t]{4}{*}{Keewaydin--------} & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & | slope & large stones & | seepage & seepage & \multirow[t]{4}{*}{seepage small stones too sandy} \\
\hline & poor filter & seepage & | slope & slope & \\
\hline & & slope & | too sandy & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{135A:} \\
\hline \multirow[t]{3}{*}{Witbeck-} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
percs slowly ponding
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
ponding
\end{tabular}} & \multirow[t]{3}{*}{Severe: ponding} & \multirow[t]{3}{*}{|Poor:
| small stones
ponding} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Net} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
percs slowly wetness
\end{tabular}} & \multirow[t]{5}{*}{|Severe: seepage wetness} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
seepage \\
wetness \\
too acid
\end{tabular}} & \multirow[t]{5}{*}{Severe: seepage wetness} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { small stones } \\
& \text { | wetness }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\left\lvert\, \begin{gathered}
\mid \text { Trench sanitary } \\
\mid \text { landfill }
\end{gathered}\right.
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline Skanee & \begin{tabular}{l}
Severe: \\
percs slowly \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness }
\end{aligned}
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{147A:} \\
\hline \multirow[t]{2}{*}{Skanee} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
percs slowly \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
| wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Gay} & \multirow[t]{2}{*}{Severe: ponding} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{2}{*}{Severe: ponding} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Poor: \\
ponding
\end{tabular}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{148B:} \\
\hline \multirow[t]{4}{*}{Shoepac} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
percs slowly
\end{tabular}} & \(\mid\) Moderate: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{4}{*}{Severe: wetness} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { wetness }
\end{aligned}
\]} \\
\hline & & seepage & & & \\
\hline & wetness & | slope & too acid & & \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & \multirow[t]{3}{*}{Severe: ponding} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Severe: \\
| excess humus \\
| ponding
\end{tabular}} & | Severe: & \multirow[t]{3}{*}{| Severe:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | ponding }
\end{aligned}
\]} \\
\hline & & & \multirow[t]{2}{*}{| ponding} & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{149:} \\
\hline \multirow[t]{5}{*}{Evart} & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & | flooding & | flooding & | flooding & | flooding & | seepage \\
\hline & wetness & seepage & seepage & seepage & | too sandy \\
\hline & poor filter & wetness & wetness & wetness & | wetness \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Cathro-} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
percs slowly ponding
\end{tabular}} & \multirow[t]{5}{*}{```
| Severe:
| excess humus
| seepage
| ponding
```} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| ponding
\end{tabular}} & \multirow[t]{5}{*}{Severe: seepage ponding} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Poor: \\
| ponding
\end{tabular}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{150:} \\
\hline \multirow[t]{4}{*}{Shag} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { percs slowly } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { excess humus } \\
& \text { | ponding }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{4}{*}{Severe: ponding} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | ponding }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{151A:} & & & & & \\
\hline & | Severe: & | Severe: & | Severe: & |Severe: & |Poor: \\
\hline & percs slowly wetness & | wetness & wetness & wetness & | wetness \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{153D:} \\
\hline \multirow[t]{5}{*}{Ishpeming} & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & | slope & | seepage & | seepage & seepage & | seepage \\
\hline & poor filter & slope & slope & slope & slope \\
\hline & depth to rock \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & | Severe: & | Poor: \\
\hline & slope & | slope & & slope & | slope \\
\hline & depth to rock & depth to rock & depth to rock & depth to rock & | depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{153F:} \\
\hline \multirow[t]{5}{*}{Ishpeming} & Severe: & |Severe: & Severe: & Severe: & | Poor: \\
\hline & slope & | seepage & | seepage & | seepage & | seepage \\
\hline & poor filter & | slope & slope & | slope & | slope \\
\hline & depth to rock \\
\hline & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline \multirow{3}{*}{Rock outcrop} & | slope \\
\hline & depth to rock \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & ```
Trench sanitary
    landfill
``` & \begin{tabular}{l}
Area sanitary \\
landfill
\end{tabular} & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{154B:} \\
\hline \multirow[t]{2}{*}{Rubicon} & \multirow[t]{2}{*}{|Severe: poor filter} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\mid\) Severe:
\(\mid\) seepage} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline Sayner & \begin{tabular}{l}
|Severe: \\
poor filter
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & ```
|Severe:
 seepage
 too sandy
``` & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \(\mid\) Poor:
\(\mid\) seepage
\(\mid\)
small stones
too sandy \\
\hline \multicolumn{6}{|l|}{154D:} \\
\hline \multirow[t]{2}{*}{Rubicon} & \multirow[t]{2}{*}{Severe: poor filter} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
seepage too sandy
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \begin{array}{l}
\text { seepage } \\
\mid \text { too sandy }
\end{array}
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sayner} & \multirow[t]{4}{*}{Severe: poor filter} & \multirow[t]{4}{*}{|Severe:
\(\mid\) seepage
| slope} & \multirow[t]{4}{*}{```
Severe:
    seepage
    too sandy
```} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { seepage } \\
& \mid \text { small stones } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{155A :} \\
\hline \multirow[t]{3}{*}{Zeba-} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
wetness \\
depth to rock
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Jacobsville} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{|l}
| Severe: \\
\(\mid\) excess humus \\
\(\mid\) ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding } \\
& \text { depth to rock }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { ponding } \\
& \mid \text { depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{156B:} \\
\hline \multirow[t]{5}{*}{Duel} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
poor filter depth to rock
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{5}{*}{| Severe:
| seepage
\(\mid\) too sandy
\(\mid\) depth to rock} & \multirow[t]{5}{*}{```
| Severe:
 seepage
 depth to rock
```} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \mid \text { too sandy } \\
& \text { | depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{157B:
Reade} & & & & & \\
\hline & Severe: wetness & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & \begin{tabular}{l}
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| wetness \\
depth to rock
\end{tabular} & depth to rock & | depth to rock & depth to rock \\
\hline & depth to rock & d depth to rock & & & \\
\hline \multirow[t]{4}{*}{Nahma} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{|l} 
| Severe: \\
\(\mid\) excess humus \\
\(\mid\) ponding \\
\(\mid\) \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { ponding } \\
& \text { depth to rock }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | ponding } \\
& \text { depth to rock }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { ponding } \\
& \text { | depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{158C:
Munising} & & & & & \\
\hline & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
percs slowly \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{Severe: wetness} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { seepage } \\
& \mid \text { wetness }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Onota} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{| Severe: \({ }^{\text {| seepage }}\) ( depth to rock} & \multirow[t]{4}{*}{| Severe: \({ }^{\text {| seepage }}\) | depth to rock} & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { depth to rock }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer} & \multirow[t]{4}{*}{|Severe: percs slowly wetness} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
wetness \\
too acid
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { too acid }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{array}{|c|}
\mid \text { Trench sanitary } \\
\mid \quad \text { landfill }
\end{array}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline 159A: & & & & & \\
\hline Jeske & \begin{tabular}{l}
|Severe: \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| seepage \\
| wetness \\
| depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
| seepage \\
| too sandy \\
| depth to rock
\end{tabular} \\
\hline \multicolumn{6}{|l|}{160B:} \\
\hline Paquin & \begin{tabular}{l}
Severe: \\
cemented pan \\
wetness \\
poor filter
\end{tabular} & \begin{tabular}{l}
| Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
too sandy \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & \begin{tabular}{l}
| Poor: \\
cemented pan \\
seepage \\
too sandy
\end{tabular} \\
\hline Finch & \begin{tabular}{l}
|Severe: \\
cemented pan \\
wetness \\
poor filter
\end{tabular} & \begin{tabular}{l}
| Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| seepage \\
| too sandy \\
| wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
cemented pan \\
seepage \\
wetness
\end{tabular} & \begin{tabular}{l}
| Poor: \\
| cemented pan \\
| seepage \\
| too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{161B:} \\
\hline Yellowdog & \begin{tabular}{l}
Severe: \\
poor filter \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage \\
depth to rock
\end{tabular} & | Severe:
| seepage
| depth to rock & \begin{tabular}{l}
|Severe: \\
seepage \\
depth to rock
\end{tabular} &  \\
\hline \multicolumn{6}{|l|}{162B:} \\
\hline Buckroe & \begin{tabular}{l}
Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
depth to rock
\end{tabular} & \begin{tabular}{|l|} 
| Severe: \\
| seepage \\
| depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
seepage \\
too sandy \\
depth to rock
\end{tabular} \\
\hline \multicolumn{6}{|l|}{165B :} \\
\hline Chocolay & \begin{tabular}{l}
|Severe: \\
large stones \\
wetness \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
large stones \\
wetness \\
depth to rock
\end{tabular} & | Severe:
\(\mid\) large stones
| wetness
| depth to rock & \begin{tabular}{l}
|Severe: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
large stones \\
depth to rock
\end{tabular} \\
\hline & & & & & \\
\hline & poor filter & seepage & \[
\begin{array}{|l}
\text { seepage } \\
\text { too sandy }
\end{array}
\] & seepage & \begin{tabular}{l}
seepage \\
small stones \\
too sandy
\end{tabular} \\
\hline \multicolumn{6}{|l|}{166:} \\
\hline Skandia & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
excess humus \\
ponding \\
depth to rock
\end{tabular} \\
\hline \multicolumn{6}{|l|}{167 :} \\
\hline Skandia- & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
seepage \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
| ponding \\
| depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Poor: \\
excess humus \\
ponding \\
depth to rock
\end{tabular} \\
\hline Jacobsville & \begin{tabular}{l}
Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus \\
ponding \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding } \\
& \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | ponding } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { ponding } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline \multicolumn{6}{|l|}{168B:} \\
\hline Yellowdog- & \begin{tabular}{l}
Severe: \\
poor filter \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Severe: \\
seepage \\
depth to rock
\end{tabular} &  & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { seepage } \\
& \text { depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Poor: \\
seepage \\
too sandy \\
depth to rock
\end{tabular} \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\left\lvert\, \begin{gathered}
\text { |Trench sanitary } \\
\text { landfill }
\end{gathered}\right.
\] & Area sanitary landfill & Daily cover for landfill \\
\hline \multirow[b]{2}{*}{168B:} & & & & & \\
\hline & \begin{tabular}{l}
| Severe: \\
ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
excess humus \\
seepage \\
depth to rock
\end{tabular} & \begin{tabular}{|l|} 
| Severe: \\
\(\mid\) seepage \\
| ponding \\
\(\mid\) \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding \\
depth to rock
\end{tabular} & \(\mid\) Poor:
\(\mid\) seepage
\(\mid\) too sandy
\(\mid\) depth to rock \\
\hline \multicolumn{6}{|l|}{170B:} \\
\hline \multirow[t]{2}{*}{Chocolay} & Severe: & Severe: & |Severe: & Severe: & | Poor: \\
\hline & large stones wetness depth to rock & large stones wetness depth to rock & \begin{tabular}{l}
| large stones \\
| wetness \\
| depth to rock
\end{tabular} & depth to rock & \(\left\lvert\, \begin{aligned} & \text { large stones } \\ & \text { depth to rock }\end{aligned}\right.\) \\
\hline \multicolumn{6}{|l|}{171B:} \\
\hline \multirow[t]{3}{*}{Paavola} & | Severe: & Severe: & | Severe: & & | Poor: \\
\hline & large stones percs slowly wetness & large stones & \begin{tabular}{l}
| large stones \\
| wetness
\end{tabular} & wetness & \[
\begin{array}{|l}
\text { seepage } \\
\text { small stones } \\
\text { wetness }
\end{array}
\] \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{172D:} \\
\hline \multirow[t]{5}{*}{Buckroe} & | Severe: & | Severe: & | Severe: & \multirow[t]{2}{*}{Severe:
slope} & | Poor: \\
\hline & slope & seepage & | seepage & & seepage \\
\hline & depth to rock & slope & slope & depth to rock & too sandy \\
\hline & & depth to rock & depth to rock & & depth to rock \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop} & Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & slope & slope & | slope & slope & | slope \\
\hline & depth to rock \\
\hline \multicolumn{6}{|l|}{172F:} \\
\hline \multirow[t]{5}{*}{Buckroe---} & Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & Severe: & | Poor: \\
\hline & | slope & seepage & & slope & | seepage \\
\hline & \multirow[t]{2}{*}{depth to rock} & slope & | slope & \multirow[t]{2}{*}{depth to rock} & | too sandy \\
\hline & & depth to rock & | depth to rock & & | depth to rock \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & | Severe: & | Severe: & | Severe: & Severe: & | Poor: \\
\hline & slope & slope & | slope & slope & | slope \\
\hline & depth to rock \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{173B:} \\
\hline \multirow[t]{5}{*}{Pence} & \multirow[t]{5}{*}{Severe: poor filter} & |Severe: & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{Severe: seepage} & | Poor: \\
\hline & & seepage & & & | seepage \\
\hline & & & too sandy & & | small stones \\
\hline & & & & & | too sandy \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{173D:} \\
\hline \multirow[t]{5}{*}{Pence} & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{2}{*}{Severe:} & | Poor: \\
\hline & poor filter & seepage & & & | seepage \\
\hline & & slope & too sandy & & small stones \\
\hline & & & & & | too sandy \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{174D:} \\
\hline \multirow[t]{5}{*}{Yalmer} & |Severe: & | Severe: & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & Severe: & | Poor: \\
\hline & percs slowly & seepage & & | seepage & | too acid \\
\hline & wetness & slope & | too acid & & \\
\hline & & wetness & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon} & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe:} & Severe: & | Poor: \\
\hline & poor filter & seepage & & | seepage & | seepage \\
\hline & & slope & | too sandy & & | too sandy \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Urban land.} & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued


Table 14.--Sanitary Facilities--Continued


Table 14.--Sanitary Facilities--Continued


Table 14.--Sanitary Facilities--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Septic tank absorption fields & Sewage lagoon areas & \[
\begin{gathered}
\text { |Trench sanitary } \\
\text { landfill }
\end{gathered}
\] & Area sanitary landfill & Daily cover for landfill \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{196E:} \\
\hline \multirow[t]{5}{*}{Onota-} & Severe: & | Severe: & | Severe: & | Severe: & | Poor: \\
\hline & slope & seepage & seepage & seepage & slope \\
\hline & \multirow[t]{2}{*}{depth to rock} & | slope & slope & slope & \multirow[t]{2}{*}{| depth to rock} \\
\hline & & depth to rock & depth to rock & depth to rock & \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Tokiahok} & Severe: & | Severe: & | Severe: & |Severe: & | Poor: \\
\hline & | percs slowly & | seepage & | slope & | seepage & | seepage \\
\hline & slope & slope & | too sandy & slope & slope \\
\hline & & & & & | too sandy \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{197B:} \\
\hline \multirow[t]{4}{*}{Shoepac} & |Severe: & | Moderate: & | Severe: & |Severe: & |Fair: \\
\hline & percs slowly & | seepage & | wetness & wetness & | wetness \\
\hline & wetness & slope & too acid & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Trenary} & \multirow[t]{4}{*}{\begin{tabular}{l}
Moderate: \\
percs slowly
\end{tabular}} & \multirow[t]{4}{*}{\(\mid\) Moderate:
\(|\)\begin{tabular}{l} 
seepage \\
\(\mid\) \\
slope
\end{tabular}} & \multirow[t]{4}{*}{| Slight} & \multirow[t]{4}{*}{|Slight} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \text { small stones }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{198B:} \\
\hline \multirow[t]{4}{*}{Shoepac----------} & | Severe: & \multirow[t]{2}{*}{| Moderate:} & \multirow[t]{2}{*}{| Severe:} & | Severe: & \\
\hline & percs slowly & & & | wetness & | wetness \\
\hline & wetness & slope & | too acid & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Reade-----------} & & & & |Severe: & | Poor: \\
\hline & wetness & | wetness & depth to rock & depth to rock & | depth to rock \\
\hline & depth to rock & depth to rock & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{199.} \\
\hline \multirow[t]{2}{*}{Udorthents, ash} & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{200A:} \\
\hline \multirow[t]{4}{*}{Charlevoix} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{| Severe:
\(\mid\) wetness} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
wetness \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{Severe: wetness} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { wetness }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Ensley} & \multirow[t]{4}{*}{| Severe:} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { excess humus } \\
& \mid \text { ponding }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { ponding } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | ponding }
\end{aligned}
\]} \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{201B:} \\
\hline \multirow[t]{5}{*}{Sauxhead-} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{| Severe: wetness} & | Severe: & |Severe: & | Poor: \\
\hline & & & | too sandy & depth to rock & | seepage \\
\hline & depth to rock & | depth to rock & | depth to rock & & | too sandy \\
\hline & & & & & depth to rock \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Jacobsville-------} & & \multirow[t]{2}{*}{|Severe:} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
ponding
\end{tabular}} & & \\
\hline & ponding & & & ponding & | ponding \\
\hline & \multirow[t]{2}{*}{| depth to rock} & \(\left\lvert\, \begin{aligned} & \text { ponding } \\ & \text { depth to rock }\end{aligned}\right.\) & depth to rock & depth to rock & \multirow[t]{2}{*}{| depth to rock} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{202B:} \\
\hline \multirow[t]{4}{*}{Sauxhead-} & \multirow[t]{2}{*}{\begin{tabular}{l}
Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{| Severe: too sandy} & Severe: & | Poor: \\
\hline & & & & depth to rock & | seepage \\
\hline & depth to rock & | depth to rock & | depth to rock & & \(\left\lvert\, \begin{aligned} & \text { too sandy } \\ & \text { depth to rock }\end{aligned}\right.\) \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{203A:} \\
\hline \multirow[t]{5}{*}{Au Gres} & \multirow[t]{2}{*}{Severe: wetness} & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{2}{*}{| Severe:} & | Severe: & | Poor: \\
\hline & & & & | seepage & | seepage \\
\hline & poor filter & wetness & | too sandy & wetness & | too sandy \\
\hline & & & | wetness & & | wetness \\
\hline & & & & & \\
\hline
\end{tabular}

Table 14.--Sanitary Facilities--Continued


Table 15.--Construction Materials
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and soil name
\end{tabular} & Roadfill & Sand & Gravel & Topsoil \\
\hline & & | & & \\
\hline \multicolumn{5}{|l|}{10B:} \\
\hline \multirow[t]{4}{*}{Grayling----------} & \multirow[t]{4}{*}{Good} & \multirow[t]{4}{*}{| Probable} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { too sandy } \\
& \text { too acid }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{10D:} \\
\hline \multirow[t]{4}{*}{Grayling---------} & \multirow[t]{4}{*}{Good} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular}} & | Poor: \\
\hline & & & & too sandy \\
\hline & & & & | too acid \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{10E:} \\
\hline \multirow[t]{5}{*}{Grayling-} & & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{| Improbable: too sandy} & | Poor: \\
\hline & \multirow[t]{4}{*}{slope} & & & | slope \\
\hline & & & & | too sandy \\
\hline & & & & too acid \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{11C:
Deer Park-} & & & & \\
\hline & \multirow[t]{4}{*}{Good} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular}} & | Poor: \\
\hline & & & & | too sandy \\
\hline & & & & | too acid \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{11D:
Deer Park-} & & & & \\
\hline & \multirow[t]{4}{*}{| Good} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{| Improbable: too sandy} & | Poor: \\
\hline & & & & too sandy \\
\hline & & & & too acid \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{12B:} \\
\hline \multirow[t]{3}{*}{Rubicon-----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{| Improbable: too sandy} & \multirow[t]{3}{*}{| Poor:
| too sandy} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{12D:} \\
\hline \multirow[t]{3}{*}{Rubicon-----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Probable} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Improbable: } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{12E: | | |} \\
\hline \multirow[t]{4}{*}{Rubicon--} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{| Poor:} \\
\hline & & & & \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{12F:} \\
\hline \multirow[t]{4}{*}{Rubicon-} & Poor: & \multirow[t]{4}{*}{Probable} & | Improbable: & | Poor: \\
\hline & \multirow[t]{3}{*}{slope} & & \multirow[t]{3}{*}{too sandy} & \multirow[t]{3}{*}{slope
too sandy} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{13B:} \\
\hline \multirow[t]{3}{*}{Kalkaska----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Improbable: } \\
& \text { | too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{| Poor:
\(\mid\) too sandy} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{13D: | | |} \\
\hline \multirow[t]{3}{*}{Kalkaska---------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{| Probable} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{13E: | | | |} \\
\hline \multirow[t]{4}{*}{Kalkaska----------} & \multirow[t]{4}{*}{Poor: slope} & \multirow[t]{4}{*}{| Probable} & \multirow[t]{4}{*}{| Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & | & | \\
\hline \multicolumn{5}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{rl} 
Charlevoix-------------| & Fair: \\
\(\mid\) wetness
\end{tabular}}} & \begin{tabular}{l}
|Improbable: \\
excess fines
\end{tabular} & | Improbable: excess fines & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{33 :} \\
\hline \multirow[t]{4}{*}{Ensley} & \multirow[t]{4}{*}{wetness} & \multirow[t]{4}{*}{Improbable: excess fines} & \multirow[t]{4}{*}{Improbable: excess fines} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { small stones } \\
& \text { wetness }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline 34B: &  & & & \\
\hline \multirow[t]{3}{*}{Onaway------------} & \multirow[t]{3}{*}{| Good} & | Improbable: & | Improbable: & |Fair: \\
\hline & & | excess fines & | excess fines & | small stones \\
\hline & & & & \\
\hline 34D: & & & & \\
\hline \multirow[t]{4}{*}{Onaway} & \multirow[t]{4}{*}{Good} & \multirow[t]{4}{*}{Improbable: excess fines} & \multirow[t]{4}{*}{Improbable: excess fines} & |Fair: \\
\hline & & & & | slope \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{34E:} \\
\hline \multirow[t]{3}{*}{Onaway-} & \multirow[t]{3}{*}{\begin{tabular}{l}
Poor: \\
slope
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\]} & | Poor: \\
\hline & & & & | slope \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{35B:
Champion} & & & & | \\
\hline & |Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & large stones & | excess fines & | excess fines & area reclaim \\
\hline & wetness & & & | large stones \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{35D:} \\
\hline \multirow[t]{4}{*}{Champion} & Fair: & Improbable: & Improbable: & | Poor: \\
\hline & large stones & | excess fines & | excess fines & | area reclaim \\
\hline & wetness & & & | large stones \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{36A:} \\
\hline \multirow[t]{5}{*}{Net-} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Poor: \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{Improbable: excess fines} & \multirow[t]{5}{*}{\begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular}} & \multirow[t]{5}{*}{\(\mid\) Poor:
\(\mid\) area reclaim
\(\mid\) small stones
\(\mid\) wetness} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{37 :} \\
\hline \multirow[t]{5}{*}{Witbeck-} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | wetness }
\end{aligned}
\]} & \multirow[t]{5}{*}{Improbable: excess fines} & \multirow[t]{5}{*}{Improbable: excess fines} & \multirow[t]{5}{*}{| Poor:
\(\mid\) area reclaim
\(\mid\) small stones
\(\mid\) wetness} \\
\hline & & & & \\
\hline \multirow[t]{6}{*}{38B:
Pence} & & & & \\
\hline & \multirow[t]{5}{*}{| Good} & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{Probable} & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{38D:} \\
\hline \multirow[t]{5}{*}{Pence-------------} & \multirow[t]{5}{*}{| Good} & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{Probable} & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{38E:} \\
\hline \multirow[t]{5}{*}{Pence-} & \multirow[t]{5}{*}{Poor:
slope} & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{| Probable} & \multirow[t]{5}{*}{| Poor:
\(\mid\) area reclaim
\(\mid\) small stones
\(\mid\) too sandy} \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & | & | & | \\
\hline \multirow[t]{5}{*}{39B:
Amasa} & | & & & | \\
\hline & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline 39D: & & & & \\
\hline \multirow[t]{5}{*}{Amasa-} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Amasa-} & & | Probable & | Probable & \\
\hline & slope & & & | area reclaim \\
\hline & & & & | slope \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline 40B: & & & & \\
\hline \multirow[t]{5}{*}{Waiska------------} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline 40D: & & | & & \\
\hline \multirow[t]{5}{*}{Waiska} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & | & & & | small stones \\
\hline & | & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{41A:
Channing-} & & & & \\
\hline & & | Probable & | Probable & \\
\hline \multirow[t]{4}{*}{Channing} & | wetness & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | wetness \\
\hline & | & & & \\
\hline \multirow[t]{6}{*}{42:
Minocqua} & & & & \\
\hline & & | Probable & | Probable & | Poor: \\
\hline & wetness & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
43B : \\
Karlin
\end{tabular}} & & & & \\
\hline & Good & | Probable & Improbable: & |Fair: \\
\hline & & & too sandy & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline 43D: & & & & \\
\hline \multirow[t]{5}{*}{Karlin-----------} & | Good & | Probable & & |Fair: \\
\hline & & & too sandy & | slope \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & | & & & \\
\hline \multirow[t]{3}{*}{44B: Carlshend} & & & & \\
\hline & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 45A: } \\
& \text { Zeba }
\end{aligned}
\]} & & & & \\
\hline & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { small stones } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline 46 : Jacobsville & \begin{tabular}{l}
Poor: \\
wetness depth to rock
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { small stones }
\end{aligned}
\]
wetness \\
\hline 48: Burt & Poor: wetness depth to rock & | Improbable: thin layer & | Improbable: too sandy & \begin{tabular}{l}
| Poor: \\
too sandy \\
wetness \\
depth to rock
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 50A: } \\
& \text { Sundell- }
\end{aligned}
\] & Poor: wetness depth to rock & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
51: \\
Nahma -
\end{tabular} & \begin{tabular}{l}
Poor: \\
wetness depth to rock
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { small stones } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { 52B: } \\
& \text { Summerville }
\end{aligned}
\] & \begin{tabular}{l}
Poor: \\
depth to rock
\end{tabular} & | Improbable:
excess fines & | Improbable:
excess fines & \begin{tabular}{l}
| Poor: \\
depth to rock
\end{tabular} \\
\hline \begin{tabular}{l}
55F: \\
Michigamme
\end{tabular} & \begin{tabular}{l}
Poor: \\
slope \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & ```
Poor:
    large stones
    slope
``` \\
\hline Rock outcrop & Poor: slope depth to rock & \[
\begin{aligned}
& \text { | Improbable: } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Improbable: } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { slope } \\
& \text { depth to rock }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
56D: \\
Peshekee
\end{tabular} & \begin{tabular}{l}
Poor: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Poor: \\
large stones depth to rock
\end{tabular} \\
\hline Rock outcrop- & \begin{tabular}{l}
Poor: \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { depth to rock }
\end{aligned}
\] \\
\hline 56E: & & & & \\
\hline Peshekee- & \begin{tabular}{l}
Poor: \\
slope \\
depth to rock
\end{tabular} & | Improbable:
excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Poor: \\
large stones \\
slope \\
depth to rock
\end{tabular} \\
\hline Rock outcrop & Poor: slope depth to rock & \[
\begin{aligned}
& \text { |Improbable: } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \text { depth to rock }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
56F: \\
Peshekee
\end{tabular} & Poor: slope depth to rock & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & Improbable: excess fines & | Poor:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) depth to rock \\
\hline Rock outcrop- & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Improbable: \\
depth to rock
\end{tabular} & ```
| Improbable:
 depth to rock
``` & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{68 :} \\
\hline \multirow[t]{3}{*}{Pits, quarries----} & Poor: & Improbable: & | Improbable: & | Poor: \\
\hline & slope & depth to rock & depth to rock & slope \\
\hline & depth to rock & & & depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{69B:} \\
\hline \multirow[t]{2}{*}{Escanaba---------} & \multirow[t]{2}{*}{Good} & \multirow[t]{2}{*}{Improbable: excess fines} & \multirow[t]{2}{*}{| Improbable: excess fines} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{69D:} \\
\hline \multirow[t]{3}{*}{Escanaba---------} & \multirow[t]{3}{*}{Good} & | Improbable: & | Improbable: & \multirow[t]{3}{*}{| Poor:
| too sandy} \\
\hline & & excess fines & excess fines & \\
\hline & & & & \\
\hline 70B: & & & & \\
\hline \multirow[t]{5}{*}{Nadeau-} & \multirow[t]{5}{*}{\begin{tabular}{l}
Fair: \\
large stones
\end{tabular}} & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{| Probable} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { area reclaim } \\
& \mid \text { small stones } \\
& \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{70D:} \\
\hline \multirow[t]{5}{*}{Nadeau} & |Fair: & \multirow[t]{5}{*}{Probable} & \multirow[t]{5}{*}{Probable} & | Poor: \\
\hline & large stones & & & area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{71B:} \\
\hline \multirow[t]{4}{*}{Evart} & \multirow[t]{4}{*}{\begin{tabular}{l}
Poor: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Poor: } \\
& \left\lvert\, \begin{array}{l}
\text { too sandy } \\
\mid \\
\text { wetness }
\end{array}\right.
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Pelkie} & Fair: & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { too sandy }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & wetness & & & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Sturgeon} & Poor: & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Improbable: \\
| too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | wetness }
\end{aligned}
\]} \\
\hline & wetness & & & \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{72B:} & \multirow[t]{4}{*}{} & & & \\
\hline & & Improbable: & | Improbable: & |Fair: \\
\hline & & excess fines & | excess fines & | small stones \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{72D:} \\
\hline \multirow[t]{4}{*}{Emmet-----------} & \multirow[t]{4}{*}{| Good} & Improbable: & | Improbable: & |Fair: \\
\hline & & \multirow[t]{3}{*}{excess fines} & \multirow[t]{3}{*}{| excess fines} & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
small stones
\end{tabular}} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{72E:} \\
\hline \multirow[t]{3}{*}{Emmet-} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | slope }
\end{aligned}
\]} & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | slope }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{73B:} \\
\hline \multirow[t]{4}{*}{Gogebic----------} & |Fair: & Improbable: & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Poor: \\
area reclaim large stones
\end{tabular}} \\
\hline & large stones & excess fines & & \\
\hline & wetness & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{73D:} \\
\hline \multirow[t]{4}{*}{Gogebic----------} & Fair: & \multirow[t]{4}{*}{\begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular}} & \multirow[t]{4}{*}{Improbable: excess fines} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { area reclaim } \\
& \text { | large stones }
\end{aligned}
\]} \\
\hline & large stones & & & \\
\hline & wetness & & & \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & | \\
\hline \multicolumn{5}{|l|}{77D:} \\
\hline \multirow[t]{3}{*}{Garlic-----------} & \multirow[t]{3}{*}{Good} & \multirow[t]{3}{*}{Probable} & | Improbable: & | Poor: \\
\hline & & & too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Alcona-----------} & \multirow[t]{3}{*}{| Good} & | Improbable: & | Improbable: & |Fair: \\
\hline & & | excess fines & | excess fines & | slope \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Voelker-----------} & \multirow[t]{3}{*}{| Good} & | Improbable: & | Improbable: & | Poor: \\
\hline & & excess fines & excess fines & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{77E:
Garlic} & \multirow[b]{2}{*}{Poor:} & & & \\
\hline & & | Probable & | Improbable: & | Poor: \\
\hline & slope & & too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Alcona-} & Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & | slope \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Voelker} & Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline 78C: & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw-} & \multirow[t]{3}{*}{| Good} & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska---------} & \multirow[t]{3}{*}{| Good} & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{78E:} \\
\hline \multirow[t]{4}{*}{Keweenaw-} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \text { | slope }
\end{aligned}
\]} & | Probable & | Improbable: & | Poor: \\
\hline & & & too sandy & \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska-} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \text { | slope }
\end{aligned}
\]} & | Probable & & | Poor: \\
\hline & & & | too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline 78F: & & & & \\
\hline \multirow[t]{4}{*}{Keweenaw-} & | Poor: & \multirow[t]{4}{*}{Probable} & | Improbable: & | Poor: \\
\hline & slope & & | too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska-} & | Poor: & \multirow[t]{4}{*}{| Probable} & | Improbable: & | Poor: \\
\hline & slope & & too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{79B:} \\
\hline \multirow[t]{3}{*}{Keweenaw--------} & \multirow[t]{3}{*}{Good} & \multirow[t]{3}{*}{Probable} & & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Munising} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { wetness }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Improbable: excess fines} & \[
\begin{aligned}
& \text { |Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{80B:} \\
\hline \multirow[t]{3}{*}{Sayner----------} & \multirow[t]{2}{*}{| Good} & \multirow[t]{2}{*}{Probable} & | Improbable: & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { too sandy }
\end{aligned}
\] \\
\hline & & & | too sandy & | too sandy \\
\hline & \multirow[t]{3}{*}{| Good} & | Probable & | Improbable: & \\
\hline \multirow{2}{*}{Rubicon----------} & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & | \\
\hline \multicolumn{5}{|l|}{94B:} \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & Improbable: & | Poor: \\
\hline & & & too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska----------} & \multirow[t]{3}{*}{Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{Improbable: too sandy} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{94D:} \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{\begin{tabular}{l}
Improbable: \\
too sandy
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska----------} & \multirow[t]{3}{*}{Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{Improbable: too sandy} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Poor: } \\
& \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{94E:} \\
\hline \multirow[t]{4}{*}{Keweenaw-} & \multirow[t]{4}{*}{\begin{tabular}{l}
Poor: \\
slope
\end{tabular}} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska-} & \multirow[t]{4}{*}{\begin{tabular}{l}
Poor: \\
slope
\end{tabular}} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \begin{array}{l}
\text { slope } \\
\text { | too sandy }
\end{array}
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{95B:
Liminga} & & & & \\
\hline & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & Improbable: & \multirow[t]{3}{*}{| Poor:
| too sandy} \\
\hline & & & | excess fines & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{95D:} \\
\hline \multirow[t]{3}{*}{Liminga-----------} & \multirow[t]{3}{*}{| Good} & \multirow[t]{3}{*}{Probable} & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{100E:
Sayner-----------------|Fair:}} & & & \\
\hline & & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \begin{array}{l}
\text { slope } \\
\text { | too sandy }
\end{array}
\end{aligned}
\]} \\
\hline \multirow[t]{3}{*}{Sayner} & \multirow[t]{3}{*}{slope} & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rubicon--} & \multirow[t]{4}{*}{\begin{tabular}{l}
Fair: \\
slope
\end{tabular}} & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{100F:
Sayner} & & & & \\
\hline & | Poor: & \multirow[t]{4}{*}{Probable} & Improbable: & | Poor: \\
\hline & \multirow[t]{3}{*}{slope} & & \multirow[t]{3}{*}{too sandy} & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rubicon-----------} & Poor: & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable:
| too sandy} & | Poor: \\
\hline & slope & & & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{2}{|l|}{103D:} & & & \\
\hline \multirow[t]{4}{*}{Rubicon--} & Fair: & \multirow[t]{4}{*}{Probable} & \multirow[t]{4}{*}{Improbable: too sandy} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & slope & & & \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Ocqueoc-} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{3}{*}{Improbable: excess fines} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \mid \text { too sandy }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & \multirow[t]{4}{*}{```
Poor:
    depth to rock
```} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Improbable: \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\]} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & | & & | & | \\
\hline \multicolumn{5}{|l|}{104C:} \\
\hline \multirow[t]{3}{*}{Fence} & |Fair: & | Improbable: & | Improbable: & | Good \\
\hline & | wetness & | excess fines & | excess fines & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{105C:} \\
\hline \multirow[t]{3}{*}{Munising} & & Improbable: & | Improbable: & |Fair: \\
\hline & wetness & excess fines & | excess fines & | area reclaim \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{106B :} \\
\hline \multirow[t]{3}{*}{Sagola------------} & | Good & | Improbable: & & | Good \\
\hline & & excess fines & | excess fines & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Rubicon} & | Good & Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{106D :} \\
\hline \multirow[t]{3}{*}{Sagola------------} & | Good & & | Improbable: & | Fair \\
\hline & & excess fines & | excess fines & \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Rubicon} & | Good & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{107B:} \\
\hline \multirow[t]{3}{*}{Goodman} & | Good & | Improbable: & | Improbable: & | Good \\
\hline & & excess fines & | excess fines & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & | & | area reclaim \\
\hline & | & & | & | small stones \\
\hline & & & | & | too sandy \\
\hline & & & | & \\
\hline \multicolumn{5}{|l|}{107D :} \\
\hline \multirow[t]{3}{*}{Goodman----------} & | Good & Improbable: & | Improbable: & |Fair: \\
\hline & & | excess fines & | excess fines & | slope \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Sundog-} & | Good & Probable & | Probable & \\
\hline & & & & | area reclaim \\
\hline & & & | & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{107F:} \\
\hline \multirow[t]{5}{*}{Goodman-} & & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & | area reclaim \\
\hline & & & & | slope \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Sundog-} & & | Probable & | Probable & | Poor: \\
\hline & slope & & & slope \\
\hline & & & | & \\
\hline \multicolumn{5}{|l|}{108B :} \\
\hline \multirow[t]{3}{*}{Goodman-----------} & | Good & | Improbable: & | Improbable: & \(\mid\) Good \\
\hline & & excess fines & | excess fines & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Sundog-} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & | & | area reclaim \\
\hline & & & | & | small stones \\
\hline & & & | & too sandy \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Wabeno} & \[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { wetness }
\end{aligned}
\] & | Improbable: excess fines & \[
\begin{aligned}
& \mid \text { Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{108D:} \\
\hline \multirow[t]{3}{*}{Goodman----------} & Good & | Improbable: & | Improbable: & |Fair: \\
\hline & & | excess fines & excess fines & slope \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Sundog------------} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Wabeno-} & Fair: & Improbable: & Improbable: & \\
\hline & wetness & | excess fines & | excess fines & | area reclaim \\
\hline & & & & slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{109B:} \\
\hline \multirow[t]{3}{*}{Rubicon-----------} & Good & | Probable & Improbable: & | Poor: \\
\hline & & & | too sandy & too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & Good & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{109D:} \\
\hline \multirow[t]{3}{*}{Rubicon----------} & Good & | Probable & | Improbable: & | Poor: \\
\hline & & & too sandy & too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & Good & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{109F:} \\
\hline \multirow[t]{4}{*}{Rubicon-} & Poor: & | Probable & | Improbable: & | Poor: \\
\hline & slope & & | too sandy & slope \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Keweenaw-} & Poor: & | Probable & Improbable: & | Poor: \\
\hline & slope & & | too sandy & slope \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{110B:} \\
\hline \multirow[t]{5}{*}{Nadeau-} & Fair: & | Probable & | Probable & | Poor: \\
\hline & large stones & & & area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Mancelona--------} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{110D:} \\
\hline \multirow[t]{5}{*}{Nadeau-} & Fair: & | Probable & | Probable & | Poor: \\
\hline & large stones & & & | area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Mancelona---------} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{111B:} \\
\hline \multirow[t]{4}{*}{Grayling----------} & Good & | Probable & Improbable: & | Poor: \\
\hline & & & too sandy & | too sandy \\
\hline & & & & | too acid \\
\hline & & & & | \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{118A:} \\
\hline \multirow[t]{4}{*}{Croswell} & Fair: & | Probable & | Improbable: & | Poor: \\
\hline & wetness & & | too sandy & | too sandy \\
\hline & & & & | too acid \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Deford} & Poor: & | Probable & | Improbable: & | Poor: \\
\hline & wetness & & | too sandy & | too sandy \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{119B:} \\
\hline \multirow[t]{2}{*}{Yalmer} & \begin{tabular}{l}
|Fair: \\
wetness
\end{tabular} & | Improbable: excess fines & | Improbable: & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy }
\end{aligned}
\] \\
\hline & wetness & & & too sandy \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Good & | Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{119D:} \\
\hline \multirow[t]{3}{*}{Yalmer} & Fair: & Improbable: & | Improbable: & | Poor: \\
\hline & | wetness & excess fines & | excess fines & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Good & Probable & | Improbable: & | Poor: \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{121B:} \\
\hline \multirow[t]{2}{*}{Onota} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & | Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | depth to rock }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{122 :} \\
\hline \multirow[t]{5}{*}{Pleine} & Poor: & Improbable: & | Improbable: & | Poor: \\
\hline & wetness & | excess fines & | excess fines & area reclaim \\
\hline & & & & | large stones | wetness \\
\hline & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{123A:} \\
\hline \multirow[t]{4}{*}{Tula} & |Poor: & Improbable: & | Improbable: & | Poor: \\
\hline & wetness & & & area reclaim small stones \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{124B:} \\
\hline \multirow[t]{4}{*}{Gogebic} & & & | Improbable: & | Poor: \\
\hline & large stones & excess fines & | excess fines & | area reclaim \\
\hline & wetness & & & | large stones \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Dishno} & |Fair: & Improbable: & | Improbable: & |Poor: \\
\hline & depth to rock & excess fines & | excess fines & | large stones \\
\hline \multicolumn{5}{|l|}{124D:} \\
\hline \multirow[t]{3}{*}{Gogebic} & |Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & large stones wetness & | excess fines & | excess fines & \begin{tabular}{l}
area reclaim \\
large stones
\end{tabular} \\
\hline & wetness & & & | large stones \\
\hline \multirow[t]{2}{*}{Dishno} & \begin{tabular}{l}
Fair: \\
depth to rock
\end{tabular} & | Improbable: excess fines & | Improbable: excess fines & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | large stones }
\end{aligned}
\] \\
\hline & depth to rock & & & | large stones \\
\hline \multicolumn{5}{|l|}{125D:} \\
\hline \multirow[t]{4}{*}{Keweenaw} & |Fair: & | Probable & | Improbable: & | Poor: \\
\hline & slope & & | too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multirow[t]{6}{*}{128B:
Waiska} & & & & \\
\hline & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline 128D: & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska} & | Good & | Probable & & \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Waiska------------} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline 128E: & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & | Poor: & | Probable & | Improbable: & | Poor: \\
\hline & slope & & too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Waiska} & | Poor: & | Probable & | Probable & | Poor: \\
\hline & slope & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline 129C: & & & & \\
\hline \multirow[t]{3}{*}{Kalkaska-} & | Good & | Probable & & \\
\hline & & & | too sandy & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Munising} & |Fair: & | Improbable: & | Improbable: & |Fair: \\
\hline & wetness & | excess fines & | excess fines & | area reclaim \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{130A:
Chabeneau} & & & & \\
\hline & |Fair: & | Probable & Probable & |Poor: \\
\hline & wetness & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{131:
Witbeck} & & & & \\
\hline & \begin{tabular}{l}
|Poor: \\
wetness
\end{tabular} & | Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \\
\hline & wetness & & | excess fines & | area reclaim small stones \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Cathro-} & Poor: & | Improbable: & | Improbable: & Poor: \\
\hline & | wetness & | excess fines & excess fines & thin layer \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{132.
Slickens} & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline 133B: & & & & \\
\hline \multirow[t]{4}{*}{Keewaydin-} & |Fair: & | Probable & | Probable & | Poor: \\
\hline & | large stones & & & | area reclaim \\
\hline & & & & large stones \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Dishno-} & |Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & | excess fines & | excess fines & | large stones \\
\hline \multirow[t]{5}{*}{133D:
Keewaydin} & & & & \\
\hline & |Fair: & | Probable & | Probable & | Poor: \\
\hline & | large stones & & & | area reclaim \\
\hline & & & & | large stones \\
\hline & & & & | \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{138D:} \\
\hline \multirow[t]{5}{*}{Sundog} & Fair: & | Probable & | Probable & | Poor: \\
\hline & slope & & & area reclaim \\
\hline & & & & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & depth to rock & | depth to rock & | depth to rock & slope \\
\hline & & & & | depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{138F:} \\
\hline \multirow[t]{5}{*}{Sundog} & Poor: & | Probable & | Probable & | Poor: \\
\hline & slope & & & area reclaim \\
\hline & & & & small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & | depth to rock & | depth to rock & slope \\
\hline & depth to rock & & & | depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{139B:} \\
\hline \multirow[t]{5}{*}{Sundog} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{139D:} \\
\hline \multirow[t]{5}{*}{Sundog} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{140B :} \\
\hline \multirow[t]{3}{*}{Champion----------} & Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & large stones wetness & | excess fines & | excess fines & | area reclaim \\
\hline & wetness & & & large stones \\
\hline \multirow[t]{3}{*}{Dishno} & Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & | excess fines & | excess fines & | large stones \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{140D:} \\
\hline \multirow[t]{3}{*}{Champion} & & | Improbable: & | Improbable: & | Poor: \\
\hline & large stones wetness & | excess fines & | excess fines & \begin{tabular}{l}
| area reclaim \\
large stones
\end{tabular} \\
\hline & & & & large stones \\
\hline \multirow[t]{3}{*}{Dishno} & Fair: & Improbable: & Improbable: & | Poor: \\
\hline & depth to rock & | excess fines & | excess fines & | large stones \\
\hline \multicolumn{5}{|l|}{\multirow[b]{2}{*}{141D:}} \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Pelissier} & Fair: & | Probable & | Probable & | Poor: \\
\hline & slope & & & | area reclaim \\
\hline & & & & small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & & | Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & | depth to rock & | depth to rock & | slope \\
\hline & & & & | depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{142B:} \\
\hline \multirow[t]{5}{*}{Pelissier---------} & Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & \(\mid\) too sandy \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & | & \\
\hline \multirow[t]{6}{*}{142D:
Pelissier} & & & & \\
\hline & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & | & | small stones \\
\hline & & & & | too sandy \\
\hline & & & | & \\
\hline \multirow[t]{6}{*}{144B:
Farquar} & & & & \\
\hline & & | Probable & | Probable & \\
\hline & wetness & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{145C:
Munising} & & & & \\
\hline & & Improbable: & | Improbable: & |Fair: \\
\hline & wetness & | excess fines & | excess fines & | area reclaim \\
\hline & & & & | \\
\hline \multirow[t]{3}{*}{Yalmer} & |Fair: & Improbable: & | Improbable: & \\
\hline & wetness & excess fines & | excess fines & | too sandy \\
\hline & & & & \\
\hline 146B : & & & & \\
\hline \multirow[t]{2}{*}{Munising} & \begin{tabular}{l}
|Fair: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Skanee} & | Poor: & Improbable: & | Improbable: & | Poor: \\
\hline & wetness & | excess fines & | excess fines & | area reclaim \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline 147A: & & & & \\
\hline \multirow[t]{3}{*}{Skanee} & \begin{tabular}{l}
| Poor: \\
wetness
\end{tabular} & | Improbable: excess fines & \[
\begin{aligned}
& \text { |Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Gay} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { wetness }
\end{aligned}
\] & | Improbable: excess fines & \[
\begin{aligned}
& \text { | Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline & & & & \\
\hline 148B: & & & & \\
\hline \multirow[t]{2}{*}{Shoepac} & \begin{tabular}{l}
|Fair: \\
wetness
\end{tabular} & | Improbable: excess fines & | Improbable: excess fines & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Ensley} & \begin{tabular}{l}
|Poor: \\
wetness
\end{tabular} & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & | Improbable: & | Poor: \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline 149: & & & & \\
\hline \multirow[t]{4}{*}{Evart} & | Poor: & | Probable & | Improbable: & | Poor: \\
\hline & wetness & & | too sandy & | too sandy \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Cathro} & \begin{tabular}{l}
| Poor: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { excess humus }
\end{aligned}
\] \\
\hline & wetness & & | excess fines & \begin{tabular}{l}
excess humus \\
| wetness
\end{tabular} \\
\hline & & & & \\
\hline 150: & & & & \\
\hline \multirow[t]{3}{*}{Shag} & | Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & | wetness & | excess fines & | excess fines & | wetness \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{151A:
Spear} & & & & \\
\hline & & | Improbable: & | Improbable: & \\
\hline & wetness & excess fines & | excess fines & | wetness \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{153D:} \\
\hline Ishpeming- & ```
Poor:
 depth to rock
``` & Improbable: thin layer & \begin{tabular}{l}
Improbable: \\
too sandy
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \begin{array}{l}
\text { slope } \\
\text { | too sandy }
\end{array}
\end{aligned}
\] \\
\hline & & & & \\
\hline Rock outcrop & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { depth to rock }
\end{aligned}
\] & \begin{tabular}{l}
| Improbable: \\
depth to rock
\end{tabular} & Improbable: excess fines depth to rock & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \text { depth to rock }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{153F:} \\
\hline Ishpeming & ```
Poor:
    slope
    depth to rock
``` & Improbable: thin layer & Improbable: too sandy & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { slope } \\
& \text { |oo sandy }
\end{aligned}
\] \\
\hline Rock outcrop- & \begin{tabular}{l}
Poor: \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Improbable: \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Improbable: \\
depth to rock
\end{tabular} & ```
|Poor:
 slope
 depth to rock
``` \\
\hline \multicolumn{5}{|l|}{154B:} \\
\hline Rubicon & Good & Probable & Improbable: too sandy & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { too sandy }
\end{aligned}
\] \\
\hline Sayner- & Good & Probable & Improbable: too sandy & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { too sandy }
\end{aligned}
\] \\
\hline 154D: & & & & \\
\hline Rubicon- & Good & Probable & Improbable: too sandy & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { too sandy }
\end{aligned}
\] \\
\hline Sayner & Good & Probable & |mprobable: too sandy & ```
|Poor:
    too sandy
``` \\
\hline \multicolumn{5}{|l|}{155A :} \\
\hline Zeba & ```
Poor:
 wetness
 depth to rock
``` & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
|Poor: \\
small stones \\
wetness
\end{tabular} \\
\hline Jacobsville & \begin{tabular}{l}
Poor: \\
wetness \\
depth to rock
\end{tabular} & Improbable: excess fines & |mprobable: excess fines & \begin{tabular}{l}
| Poor: \\
small stones wetness
\end{tabular} \\
\hline \multicolumn{5}{|l|}{156B :} \\
\hline Duel & \begin{tabular}{l}
Poor: \\
depth to rock
\end{tabular} & Improbable: thin layer & Improbable: too sandy & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | too sandy }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{157B :} \\
\hline Reade- & ```
Poor:
    depth to rock
``` & Improbable: excess fines & Improbable: excess fines & ```
|Fair:
 small stones
 depth to rock
``` \\
\hline Nahma- & \begin{tabular}{l}
Poor: \\
wetness depth to rock
\end{tabular} & Improbable: excess fines & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & ```
|Poor:
    small stones
    wetness
``` \\
\hline 158C: & & & & \\
\hline Munising- & \begin{tabular}{l}
Fair: \\
wetness
\end{tabular} & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & Improbable: excess fines & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline Onota- & ```
Poor:
 depth to rock
``` & Improbable: excess fines & | Improbable: excess fines & \begin{tabular}{l}
|Fair: \\
depth to rock
\end{tabular} \\
\hline Yalmer & Fair: wetness & Improbable: excess fines & Improbable: excess fines & \begin{tabular}{l}
| Poor: \\
too sandy
\end{tabular} \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & | & \\
\hline \multicolumn{5}{|l|}{159A:} \\
\hline \multirow[t]{4}{*}{Jeske} & | Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & wetness & thin layer & | too sandy & | too sandy \\
\hline & depth to rock & & & | wetness \\
\hline & & & I & \\
\hline \multicolumn{5}{|l|}{160B :} \\
\hline \multirow[t]{5}{*}{Paquin} & & | Probable & & \\
\hline & wetness & & | too sandy & | area reclaim \\
\hline & & & & | cemented pan \\
\hline & & & | & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Finch} & Poor: & | Probable & | Improbable: & | Poor: \\
\hline & wetness & & | too sandy & | area reclaim \\
\hline & & & & | cemented pan \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{161B:} \\
\hline \multirow[t]{3}{*}{Yellowdog} & | Poor: & Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & | thin layer & | thin layer & \begin{tabular}{l}
| small stones \\
too sandy
\end{tabular} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{162B:} \\
\hline \multirow[t]{5}{*}{Buckroe} & & | Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & | thin layer & | thin layer & | small stones \\
\hline & & & & | too sandy \\
\hline & | & & & | depth to rock \\
\hline & | & & & \\
\hline \multicolumn{5}{|l|}{165B :} \\
\hline \multirow[t]{4}{*}{Chocolay} & & & & \\
\hline & large stones & large stones & | large stones & | large stones \\
\hline & depth to rock & | excess fines & | excess fines & \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Waiska} & | Good & | Probable & | Probable & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & | & & & | too sandy \\
\hline & | & & & \\
\hline \multicolumn{5}{|l|}{166:} \\
\hline \multirow[t]{3}{*}{Skandia-} & & | Improbable: & | Improbable: & \\
\hline & \begin{tabular}{l}
wetness \\
depth to rock
\end{tabular} & & & \begin{tabular}{l}
excess humus \\
| wetness
\end{tabular} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{167 :} \\
\hline \multirow[t]{3}{*}{Skandia} & \begin{tabular}{l}
| Poor: \\
wetness
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess humus
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess humus
\end{tabular} & | Poor: \\
\hline & d depth to rock & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Jacobsville} & & | Improbable: & | Improbable: & \\
\hline & | wetness & | excess fines & | excess fines & small stones wetness \\
\hline & depth to rock & & & wetness \\
\hline \multicolumn{5}{|l|}{168B:} \\
\hline \multirow[t]{3}{*}{Yellowdog} & |Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & depth to rock & thin layer & | thin layer & \begin{tabular}{l}
small stones \\
| too sandy
\end{tabular} \\
\hline & | & & & \\
\hline \multirow[t]{4}{*}{Burt-} & |Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & \begin{tabular}{l}
wetness \\
depth to rock
\end{tabular} & thin layer & too sandy & too sandy \\
\hline & depth to rock & & & depth to rock \\
\hline & & & | & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued


Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{175F:} \\
\hline \multirow[t]{4}{*}{Kalkaska} & Poor: & | Probable & Improbable: & | Poor: \\
\hline & slope & & too sandy & slope \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Waiska} & | Poor: & | Probable & Probable & | Poor: \\
\hline & slope & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{176B:} \\
\hline \multirow[t]{3}{*}{Greenwood-} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & low strength wetness & | excess humus & excess humus & excess humus wetness \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Croswell} & |Fair: & | Probable & Improbable: & | Poor: \\
\hline & wetness & & too sandy & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{177E:} \\
\hline \multirow[t]{4}{*}{Frohling-} & & | Improbable: & Improbable: & | Poor: \\
\hline & slope & | excess fines & excess fines & | area reclaim \\
\hline & & & & | slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{177F:} \\
\hline \multirow[t]{4}{*}{Frohling} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & slope & | excess fines & excess fines & | area reclaim \\
\hline & & & & slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{178D:} \\
\hline \multirow[t]{5}{*}{Schweitzer} & & & Improbable: & \\
\hline & large stones & | excess fines & excess fines & area reclaim \\
\hline & slope & & & | slope \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & Fair: & | Probable & Improbable: & | Poor: \\
\hline & slope & & too sandy & slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & depth to rock & | depth to rock & & \\
\hline & & & depth to rock & depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{178F:} \\
\hline \multirow[t]{4}{*}{Schweitzer-} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & slope & | excess fines & excess fines & \[
\begin{aligned}
& \text { area reclaim } \\
& \text { slope }
\end{aligned}
\] \\
\hline & & & & | small stones \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska-} & Poor: & | Probable & Improbable: & | Poor: \\
\hline & slope & & too sandy & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & | slope & | depth to rock & excess fines & | slope \\
\hline & depth to rock & & depth to rock & depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{179E:} \\
\hline \multirow[t]{4}{*}{Schweitzer--------} & | Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & | slope & | excess fines & excess fines & area reclaim \\
\hline & & & & small stones \\
\hline & & & & | \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{179E:} \\
\hline \multirow[t]{4}{*}{Michigamme-} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & slope & excess fines & | excess fines & large stones \\
\hline & depth to rock & & & slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{180E:} \\
\hline \multirow[t]{4}{*}{Kalkaska} & Fair: & | Probable & Improbable: & | Poor: \\
\hline & slope & & too sandy & slope \\
\hline & & & & too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Frohling} & Fair: & | Improbable: & | Improbable: & |Poor: \\
\hline & slope & | excess fines & excess fines & area reclaim \\
\hline & & & & | slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{180F:} \\
\hline \multirow[t]{4}{*}{Kalkaska-} & & | Probable & & | Poor: \\
\hline & slope & & | too sandy & slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Frohling} & | Poor: & Improbable: & Improbable: & Poor: \\
\hline & & | excess fines & | excess fines & area reclaim slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{181E:} \\
\hline \multirow[t]{4}{*}{Frohling} & Fair: & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & excess fines & excess fines & | area reclaim \\
\hline & & & & slope \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Tokiahok} & Fair: & Improbable: & Improbable: & | Poor: \\
\hline & slope & excess fines & excess fines & slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{181F:} \\
\hline \multirow[t]{4}{*}{Frohling} & Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & slope & | excess fines & excess fines & | area reclaim \\
\hline & & & & | slope \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Tokiahok} & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{184C:} \\
\hline \multirow[t]{2}{*}{Dishno} & \begin{tabular}{l}
Fair: \\
depth to rock
\end{tabular} & | Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { large stones }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{5}{*}{Witbeck} & Poor: & | Improbable: & | Improbable: & | Poor: \\
\hline & wetness & excess fines & excess fines & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | wetness \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{185B:} \\
\hline \multirow[t]{5}{*}{Northland-} & Fair: & | Probable & | Probable & | Poor: \\
\hline & wetness & & & | area reclaim \\
\hline & & & & | small stones \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{187B :} \\
\hline \multirow[t]{4}{*}{Reade} & Poor: & | Improbable: & |mprobable: & |Fair: \\
\hline & depth to rock & | excess fines & | excess fines & | small stones \\
\hline & & & & | depth to rock \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & | & & \\
\hline \multicolumn{5}{|l|}{190B:} \\
\hline \multirow[t]{3}{*}{Emmet-------------} & \multirow[t]{3}{*}{| Good} & | Improbable: & | Improbable: & |Fair: \\
\hline & & | excess fines & excess fines & | small stones \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Cunard-------------} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Poor: } \\
& \mid \text { depth to rock }
\end{aligned}
\]} & | Improbable: excess fines & | Improbable: excess fines & \[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { small stones }
\end{aligned}
\] \\
\hline & & & & | depth to rock \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{191B:} \\
\hline \multirow[t]{3}{*}{Nahma} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | wetness } \\
& \text { | depth to rock }
\end{aligned}
\]} & | Improbable: & Improbable: & | Poor: \\
\hline & & | excess fines & excess fines & \(\mid\) small stones
wetness \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Sundell} & \multirow[t]{4}{*}{```
|Poor:
    wetness
    depth to rock
```} & | Improbable: & Improbable: & | Poor: \\
\hline & & | excess fines & excess fines & | wetness \\
\hline & & & & \\
\hline & & & & \\
\hline 193E: & & & & \\
\hline \multirow[t]{3}{*}{Frohling} & \multirow[t]{3}{*}{\begin{tabular}{l}
Poor: \\
slope
\end{tabular}} & & Improbable: & \\
\hline & & | excess fines & excess fines & \[
\begin{aligned}
& \text { | area reclaim } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{Tokiahok---------} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Poor: } \\
& \text { | slope }
\end{aligned}
\]} & & | Improbable: & | Poor: \\
\hline & & excess fines & | excess fines & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multirow[t]{4}{*}{194E:
Sporley} & & \multirow[t]{2}{*}{| Improbable:} & & \\
\hline & |Fair: & & | Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & | slope \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{196E:} \\
\hline \multirow[t]{4}{*}{Frohling} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Improbable: } \\
& \mid \text { excess fines }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular}} & | Poor: \\
\hline & & & & | area reclaim \\
\hline & & & & | slope \\
\hline & & & & \\
\hline \multirow[t]{2}{*}{Onota} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | depth to rock }
\end{aligned}
\]} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | slope }
\end{aligned}
\] \\
\hline & & & excess fines & slope \\
\hline \multirow[t]{4}{*}{Tokiahok-} & \multirow[t]{4}{*}{|Fair:
\(\mid\) slope} & | Improbable: & Improbable: & | Poor: \\
\hline & & | excess fines & | excess fines & | slope \\
\hline & & & & | too sandy \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{197B:} \\
\hline \multirow[t]{3}{*}{Shoepac} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Fair: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular}} & | Improbable: & |Fair: \\
\hline & & & excess fines & | area reclaim \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Trenary-----------} & \multirow[t]{3}{*}{| Good} & | Improbable: & Improbable: & |Fair: \\
\hline & & excess fines & excess fines & | small stones \\
\hline & & & & \\
\hline 198B: & & & & \\
\hline \multirow[t]{2}{*}{Shoepac} & \multirow[t]{2}{*}{\begin{tabular}{l}
Fair: \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{| Improbable:
excess fines} & \multirow[t]{2}{*}{Improbable: excess fines} & \[
\begin{aligned}
& \text { |Fair: } \\
& \text { | area reclaim }
\end{aligned}
\] \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{Reade} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Poor: } \\
& \text { | depth to rock }
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|mprobable: \\
excess fines
\end{tabular}} & |Fair: \\
\hline & & & & \begin{tabular}{l}
small stones \\
| depth to rock
\end{tabular} \\
\hline & & & & \\
\hline \multirow[t]{3}{*}{199.
Udorthents, ash} & \multirow[t]{3}{*}{1} & | & & | \\
\hline & & & & | \\
\hline & & & & \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{200A:} \\
\hline Charlevoix & \begin{tabular}{l}
Fair: \\
wetness
\end{tabular} & Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | wetness }
\end{aligned}
\] \\
\hline & & & & \\
\hline Ensley- & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \text { | wetness }
\end{aligned}
\] & Improbable: excess fines & | Improbable:
\(\mid\) excess fines & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { small stones } \\
& \text { wetness }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{201B:} \\
\hline Sauxhead & \begin{tabular}{l}
Poor: \\
depth to rock
\end{tabular} & Improbable: thin layer & \begin{tabular}{l}
| Improbable: \\
thin layer
\end{tabular} & \[
\begin{aligned}
& \text { |Poor: } \\
& \mid \text { small stones } \\
& \text { too sandy } \\
& \text { depth to rock }
\end{aligned}
\] \\
\hline Jacobsville- & ```
Poor:
 wetness
 depth to rock
``` & Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { small stones } \\
& \text { wetness }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{202B: | | | | |} \\
\hline Sauxhead- & ```
Poor:
    depth to rock
``` & Improbable: thin layer & | Improbable: thin layer & ```
|Poor:
| small stones
| too sandy
| depth to rock
``` \\
\hline \multicolumn{5}{|l|}{203A:} \\
\hline Au Gres- & Poor: wetness & Probable & | Improbable:
\(\mid\) too sandy & \[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { too sandy } \\
& \text { | wetness }
\end{aligned}
\] \\
\hline Deford- & \begin{tabular}{l}
Poor: \\
wetness
\end{tabular} & Probable & \begin{tabular}{l}
| Improbable: \\
too sandy
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \text { | too sandy } \\
& \text { | wetness }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{204B:} \\
\hline Gogebic & \[
\begin{aligned}
& \text { |Fair: } \\
& \mid \text { large stones } \\
& \mid \text { wetness }
\end{aligned}
\] & Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \text { | Poor: } \\
& \mid \text { area reclaim } \\
& \text { | large stones }
\end{aligned}
\] \\
\hline & & & & \\
\hline Tula & \[
\begin{aligned}
& \text { |Poor: } \\
& \text { | wetness }
\end{aligned}
\] & Improbable: excess fines & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { area reclaim } \\
& \mid \text { small stones } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline \multicolumn{5}{|l|}{206B:} \\
\hline Traunik & \begin{tabular}{l}
Fair: \\
large stones
\end{tabular} & Probable & | Probable & | Poor:
| area reclaim
| small stones
\(\mid\) too sandy \\
\hline \multicolumn{5}{|l|}{207D:} \\
\hline Dishno- & ```
Poor:
    depth to rock
``` & Improbable: excess fines & | Improbable: excess fines & \begin{tabular}{l}
| Poor: \\
large stones
\end{tabular} \\
\hline Michigamme--- & ```
Poor:
 depth to rock
``` & \begin{tabular}{l}
Improbable: \\
excess fines
\end{tabular} & \begin{tabular}{l}
| Improbable: \\
excess fines
\end{tabular} & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \mid \text { large stones } \\
& \text { slope }
\end{aligned}
\] \\
\hline Rock outcrop----- & ```
Poor:
    depth to rock
``` & \begin{tabular}{l}
Improbable: \\
depth to rock
\end{tabular} & \[
\begin{aligned}
& \text { | Improbable: } \\
& \text { | depth to rock }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Poor: } \\
& \left\lvert\, \begin{array}{l}
\text { slope } \\
\text { depth to rock }
\end{array}\right.
\end{aligned}
\] \\
\hline
\end{tabular}

Table 15.--Construction Materials--Continued
\begin{tabular}{|c|c|c|c|c|}
\hline Map symbol and soil name & Roadfill & Sand & Gravel & Topsoil \\
\hline & & & & \\
\hline 208F: & & & & \\
\hline Keewaydin- & Poor: & | Probable & | Probable & | Poor: \\
\hline & slope & & & | area reclaim \\
\hline & & & & large stones \\
\hline & & & & \\
\hline Michigamme- & Poor: & | Improbable: & Improbable: & | Poor: \\
\hline & slope & | excess fines & | excess fines & large stones \\
\hline & depth to rock & & & slope \\
\hline & & & & \\
\hline 209B: & & & & \\
\hline Garlic-- & Good & | Probable & & \\
\hline & & & too sandy & | too sandy \\
\hline & & & & \\
\hline Fence- & Fair: & | Improbable: & | Improbable: & | Good \\
\hline & wetness & | excess fines & | excess fines & \\
\hline & & & & \\
\hline M-W. & & & & \\
\hline Miscellaneous water & & & & \\
\hline & & & & \\
\hline W. & & & & \\
\hline Water & & & & \\
\hline & & & & \\
\hline
\end{tabular}
(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline Grayling- & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & |Limitation: too sandy soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{10D:} \\
\hline Grayling & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & ```
| Limitation:
``` & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{10E:} \\
\hline Grayling & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage \\
piping
\end{tabular} & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
| slope \\
\(\mid\) too sandy \\
\(\mid\) \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{11C:} \\
\hline Deer Park- & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage \\
piping
\end{tabular} & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & |Limitation:
| deep to water & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
too sandy soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{11D:} \\
\hline Deer Park & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & Severe: seepage piping & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|} 
| Limitation: \\
| slope \\
| too sandy \\
| soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{12B:} \\
\hline Rubicon & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage piping & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & |Limitation: too sandy soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{12D:} \\
\hline Rubicon- & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|} 
| Limitation: \\
slope \\
| \\
too sandy \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multirow[t]{5}{*}{Rubicon} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & seepage & seepage & no water & deep to water| & fast intake & slope & slope \\
\hline & slope & piping & & & slope & too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{12F:} \\
\hline \multirow[t]{5}{*}{Rubicon} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & | no water & | deep to water| & fast intake & slope & slope \\
\hline & slope & piping & & & slope & too sandy & droughty \\
\hline & & & & & droughty & soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{13B:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & | no water & | deep to water| & fast intake & too sandy & droughty \\
\hline & & piping & & & slope & soil blowing & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{13D:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & Severe: & Severe: & | Severe: & |Limitation: | & Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & | no water & | deep to water| & fast intake & | slope & slope \\
\hline & | slope & piping & & & slope & | too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{13E:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & | seepage & seepage & | no water & | deep to water| & fast intake & | slope & | slope \\
\hline & | slope & piping & & & slope & too sandy & | droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{13F:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & & & | Severe: & & & & |Limitation: \\
\hline & | seepage & seepage & no water & | deep to water| & fast intake & | slope & | slope \\
\hline & | slope & piping & & & slope & | too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{14B:} \\
\hline \multirow[t]{5}{*}{Rousseau-} & & & & & & & |Limitation: \\
\hline & | seepage & seepage & | no water & | deep to water| & fast intake & | too sandy & droughty \\
\hline & & piping & & & slope & | soil blowing & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & Pond reservoir \(\begin{gathered}\text { areas }\end{gathered}\) & dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & \multicolumn{7}{|l|}{|} \\
\hline \multicolumn{8}{|l|}{20D:} \\
\hline Rousseau- & \[
\begin{array}{|l}
\mid \text { Severe: } \\
\text { seepage } \\
\text { slope }
\end{array}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|} 
| Limitation: \\
| slope \\
\(\mid\) too sandy \\
\(\mid\) \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Ocqueoc} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & | Limitation: & |Limitation: \\
\hline & | seepage & piping & | no water & \multirow[t]{2}{*}{| deep to water|} & fast intake & | slope & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & \multirow[t]{2}{*}{| slope} & \multirow[t]{2}{*}{} & & & slope & | too sandy & \\
\hline & & & & & droughty & soil blowing & | droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{20E:} \\
\hline \multirow[t]{5}{*}{Rousseau} & |Severe: & & & |Limitation: & & & \\
\hline & | seepage & seepage & \multirow[t]{2}{*}{| no water} & \multirow[t]{2}{*}{| deep to water|} & fast intake & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & \multirow[t]{2}{*}{piping} & & & slope & | too sandy & \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Ocqueoc} & |Severe: & & |Severe: & \multirow[t]{2}{*}{} & |Limitation: & |Limitation: & | Limitation: \\
\hline & seepage & \multirow[t]{3}{*}{piping} & \multirow[t]{3}{*}{| no water} & & fast intake & | slope & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & & & \multirow{2}{*}{deep to water} & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { too sandy } \\
\text { soil blowing }
\end{array}
\]} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{22B:} \\
\hline \multirow[t]{4}{*}{Alcona} & \multirow[t]{2}{*}{Moderate:} & & & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\]} & |Limitation: & \multirow[t]{2}{*}{} & \\
\hline & & \multirow[t]{2}{*}{piping} & \multirow[t]{2}{*}{| no water} & & fast intake & & \multirow[t]{2}{*}{} \\
\hline & \multirow[t]{2}{*}{| slope} & & & & \multirow[t]{2}{*}{slope} & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{24B:} \\
\hline \multirow[t]{5}{*}{Munising---------} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\]} & & & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
| percs slowly \\
| slope
\end{tabular}} & |Limitation: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { rooting depth } \\
& \mid \\
& \text { wetness }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular}} \\
\hline & & \multirow[t]{4}{*}{piping} & \multirow[t]{3}{*}{| no water} & & \multirow[t]{3}{*}{\begin{tabular}{|l} 
slope \\
wetness \\
droughty
\end{tabular}} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 24D: & & & & & & & \\
\hline Munising & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | slope & piping & | no water & | percs slowly & | slope & | rooting depth & rooting depth \\
\hline & & & & slope & | wetness & | slope & | slope \\
\hline & 1 & & & & droughty & | wetness & wetness \\
\hline & | | & & & & & & \\
\hline 25B: & & & & & & & \\
\hline Munising & \(\mid\) Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & | no water & | percs slowly & | slope & | rooting depth| & rooting depth \\
\hline & slope & & & slope & wetness & wetness & wetness \\
\hline & & & & & droughty & & droughty \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | Pond reservoir & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{25B:} \\
\hline Yalmer & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
piping
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | no water }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | percs slowly } \\
& \text { slope }
\end{aligned}
\] & \begin{tabular}{|l} 
| Limitation: \\
| slope \\
\(\mid\) wetness \\
\(\mid\) droughty
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { rooting depth } \\
& \mid \text { wetness }
\end{aligned}
\] & | Limitation:
\(\mid\) rooting depth
\(\mid\) wetness
\(\mid\) droughty \\
\hline \multicolumn{8}{|l|}{25D:} \\
\hline Munising- & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
piping
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { percs slowly } \\
& \text { | slope }
\end{aligned}
\] & \(|\)\begin{tabular}{l} 
Limitation: \\
| slope \\
| wetness \\
\(\mid\) droughty
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) rooting depth \\
\(\mid\) \\
slope \\
\(\mid\) wetness
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
| slope \\
| wetness
\end{tabular} \\
\hline Yalmer & | Severe: & | Severe: & | Severe: & |Limitation: & |Limitation: & Limitation: & |Limitation: \\
\hline & \begin{tabular}{l}
seepage \\
slope
\end{tabular} & piping & no water & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & \(|\)\begin{tabular}{l} 
slope \\
wetness \\
droughty
\end{tabular} & \(|\)\begin{tabular}{l} 
rooting depth \\
slope \\
| wetness
\end{tabular} & rooting depth
slope
wetness \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{26A:} \\
\hline Skanee & Moderate: seepage & \begin{tabular}{l}
| Severe: \\
piping \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
frost action percs slowly
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \text { wetness } \\
& \text { droughty }
\end{aligned}
\] & \(\mid\) Limitation:
\(\mid\) rooting depth \(\mid\)
\(\mid\) wetness
\(\mid\)
soil blowing & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{27 :} \\
\hline Gay & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
ponding
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| slow refill
\end{tabular} & |Limitation: frost action ponding & |Limitation: soil blowing ponding & Limitation: soil blowing ponding & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{28B:} \\
\hline Keweenaw- & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & | Limitation:
\(\mid\) fast intake
\(\mid\) slope
\(\mid\)
droughty & |Limitation: too sandy soil blowing & \begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{28D:} \\
\hline Keweenaw- & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
seepage \\
piping
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & | Limitation:
fast intake
| slope
\(\mid\) droughty & \begin{tabular}{|l|}
\(\mid\) | Limitation: \\
\(\mid\) slope \\
\(\mid\) too sandy \\
\(\mid\) \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{28E:} \\
\hline Keweenaw- & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | seepage } \\
& \text { | piping }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | no water }
\end{aligned}
\] &  & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & Limitation: slope too sandy soil blowing & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline Map symbol and soil name & \[
\left.\begin{array}{|l|}
\mid \text { Pond reservoir } \\
\text { areas }
\end{array} \right\rvert\,
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{35B:} \\
\hline \multirow[t]{5}{*}{Champion} & Moderate: & | Severe: & | Severe: & |Limitation: & Limitation: & |Limitation: & Limitation: \\
\hline & seepage & | large stones & \multirow[t]{3}{*}{| no water} & \multirow[t]{2}{*}{\begin{tabular}{|l} 
| percs slowly \\
slope
\end{tabular}} & large stones & | large stones & | large stones \\
\hline & slope & | piping & & & slope & \multirow[t]{2}{*}{| rooting depth|} & \multirow[t]{2}{*}{| \({ }_{\text {rooting depth }}^{\text {wetness }}\)} \\
\hline & & & & & wetness & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{35D:} \\
\hline Champion & Severe: & | Severe: & | Severe: & |Limitation: & Limitation: & |Limitation: & Limitation: \\
\hline & slope & | large stones & \multirow[t]{2}{*}{| no water} & \multirow[t]{2}{*}{| percs slowly} & large stones & | large stones & | large stones \\
\hline & & piping & & & slope & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\(\mid\) \\
\(\mid\) \\
slope \\
wetness
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
wetness
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{36A:} \\
\hline \multirow[t]{5}{*}{Net} & & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{|Severe: no water} & \multirow[t]{2}{*}{|Limitation: frost action} & \multirow[t]{2}{*}{Limitation: wetness} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
large stones
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Limitation: \\
large stones rooting depth wetness
\end{tabular}} \\
\hline & seepage & & & & & & \\
\hline & & & & \multirow[t]{2}{*}{frost action percs slowly} & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { rooting depth } \\
& \text { wetness }
\end{aligned}
\]} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{37 :} \\
\hline \multirow[t]{4}{*}{Witbeck} & Moderate: & |Severe: & | Moderate: & |Limitation: & Limitation: & |Limitation: & Limitation: \\
\hline & seepage & \multirow[t]{2}{*}{| piping} & slow refill & \multirow[t]{2}{*}{\begin{tabular}{l}
frost action \\
| ponding
\end{tabular}} & large stones ponding & large stones & | large stones \\
\hline & & & | & & & ponding & wetness droughty \\
\hline & & | ponding & & & & & \\
\hline \multicolumn{8}{|l|}{38B:} \\
\hline \multirow[t]{3}{*}{Pence} & & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{| Severe: no water} & |Limitation: & Limitation: & & \multirow[t]{3}{*}{Limitation: droughty} \\
\hline & seepage & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{too sandy soil blowing} & \\
\hline & & | seepage & & & & & \\
\hline \multicolumn{8}{|l|}{38D:} \\
\hline \multirow[t]{5}{*}{Pence} & S Severe: & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|Limitation:
| deep to water \(\mid\)} & Limitation: & |Limitation: & Limitation: \\
\hline & seepage & & & & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{3}{*}{slope too sandy soil blowing} & \multirow[t]{2}{*}{slope droughty} \\
\hline & slope & \multirow{3}{*}{seepage} & | no water &  & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 38E: & & & & & & & \\
\hline \multirow[t]{5}{*}{Pence} & | Severe: & | Severe: & | Severe: & |Limitation: | & Limitation: & |Limitation: & |imitation: \\
\hline & seepage & \multirow[t]{4}{*}{| seepage} & \multirow[t]{3}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{slope droughty} & \multirow[t]{3}{*}{slope too sandy soil blowing} & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 39B: & & & & & & & \\
\hline \multirow[t]{4}{*}{Amasa} & | Severe: & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{|Severe: no water} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular}} & \multirow[t]{4}{*}{Limitation: slope soil blowing} & \multirow[t]{4}{*}{\(\mid\) Limitation:
\(\mid\) erodes easily
\(\mid\) too sandy
\(\mid\)} & \multirow[t]{4}{*}{Limitation: erodes easily} \\
\hline & seepage & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & | | & & & \\
\hline \multicolumn{8}{|l|}{52B:} \\
\hline \multirow[t]{5}{*}{Summerville} & Severe: & Severe: & \multirow[t]{5}{*}{Severe: no water} & |Limitation: & |Limitation: & Limitation: & Limitation: \\
\hline & | depth to rock| & \multirow[t]{4}{*}{\(\mid\) piping} & & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{depth to rock droughty} & \multirow[t]{3}{*}{soil blowing depth to rock|} & \multirow[t]{3}{*}{depth to rock droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{55F:} \\
\hline \multirow[t]{4}{*}{Michigamme} & | Severe: & Severe: & | Severe: & |Limitation: | & Limitation: & Limitation: & Limitation: \\
\hline & slope & large stones & no water & | deep to water| & large stones & large stones & large stones \\
\hline & & piping & & & droughty & depth to rock & \multirow[t]{2}{*}{depth to rock} \\
\hline & & & & & & depth to rock & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & Slight & Severe: & | Limitation: & Limitation: | & Limitation: & Limitation: \\
\hline & slope & & \multirow[t]{3}{*}{no water} & \multirow[t]{3}{*}{| deep to water|} & slope & slope & slope \\
\hline & depth to rock| & & & & depth to rock| & depth to rock & depth to rock \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{56D:} \\
\hline \multirow[t]{5}{*}{Pesheke} & | Severe: & | Severe: & | Severe: & |Limitation: | & Limitation: & Limitation: | & \multirow[t]{2}{*}{|Limitation:} \\
\hline & slope & \multirow[t]{4}{*}{large stones piping} & \multirow[t]{4}{*}{| no water} & \multirow[t]{4}{*}{| deep to water|} & \multirow[t]{4}{*}{\begin{tabular}{|l|} 
large stones \\
slope \\
droughty
\end{tabular}} & \multirow[t]{4}{*}{large stones slope depth to rock|} & \\
\hline & depth to rock & & & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { large stones } \\
& \text { slope } \\
& \text { depth to rock }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
slope
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Limitation: \\
slope
\end{tabular}} & |Limitation: \\
\hline & | slope & & & & & & | slope \\
\hline & depth to rock| & & & & depth to rock & depth to rock| & depth to rock \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{56E:} \\
\hline \multirow[t]{5}{*}{Peshekee} & | Severe: & | Severe: & & & |Limitation: | & Limitation: & Limitation: \\
\hline & | slope & \multirow[t]{2}{*}{large stones piping} & \multirow[t]{4}{*}{no water} & \multirow[t]{2}{*}{| deep to water|} & \multirow[t]{2}{*}{large stones
slope} & \multirow[t]{2}{*}{large stones
slope} & \multirow[t]{2}{*}{large stones slope} \\
\hline & depth to rock| & & & & & & \\
\hline & & \multirow[t]{2}{*}{thin layer} & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{depth to rock|} & \multirow[t]{2}{*}{depth to rock} \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop----} & & \multirow[t]{4}{*}{|Slight} & | Severe: & |Limitation: & Limitation: & Limitation: & Limitation: \\
\hline & | slope & & no water & | deep to water & slope & slope & slope \\
\hline & depth to rock| & & & & | depth to rock| & depth to rock| & depth to rock \\
\hline & & & & & & & \\
\hline 56F: & & \multirow[b]{2}{*}{| Severe:} & & \(\mid\) | & & & \\
\hline \multirow[t]{5}{*}{Pesheke} & | Severe: & & | Severe: & |Limitation: & Limitation: & Limitation: & Limitation: \\
\hline & slope & \multirow[t]{4}{*}{large stones piping thin layer} & \multirow[t]{4}{*}{no water} & \multirow[t]{4}{*}{| deep to water|} & \multirow[t]{4}{*}{large stones slope droughty} & \multirow[t]{4}{*}{large stones slope depth to rock|} & \multirow[t]{4}{*}{large stones slope depth to rock} \\
\hline & depth to rock| & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{Severe: no water} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { deep to water }
\end{array}
\]} & \multirow[t]{4}{*}{| Limitation:} & \multirow[t]{4}{*}{\begin{tabular}{l}
Limitation: \\
slope \\
depth to rock|
\end{tabular}} & \multirow[t]{4}{*}{```
Limitation:
    slope
    depth to rock
```} \\
\hline & | slope & & & & & & \\
\hline & depth to rock & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | \begin{tabular}{c}
Pond reservoir \\
areas
\end{tabular} & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & | & & | | & \\
\hline \multicolumn{8}{|l|}{69D:} \\
\hline \multirow[t]{5}{*}{Escanaba} & | Severe: & Severe: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{Limitation: deep to water} & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & \multirow[t]{4}{*}{| piping} & & & fast intake & | slope & \multirow[t]{2}{*}{slope droughty} \\
\hline & slope & & & & slope & too sandy & \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{| soil blowing} & droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{70B:} \\
\hline \multirow[t]{5}{*}{Nadeau-} & & |Severe: & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & Limitation: & |Limitation: & \multirow[t]{4}{*}{Limitation: large stones droughty} \\
\hline & | seepage & seepage & & & large stones & | large stones & \\
\hline & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} & \multirow[t]{2}{*}{too sandy} & \\
\hline & & & & & & & \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{70D:} \\
\hline \multirow[t]{5}{*}{Nadeau} & | Severe: & | Severe: & | Severe: & \multirow[t]{4}{*}{| Limitation: \(\mid\)} & Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & seepage & | no water & & large stones & | large stones & large stones \\
\hline & slope & & & & slope & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{slope droughty} \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & & \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{71B:} \\
\hline \multirow[t]{5}{*}{Evart} & \multirow[t]{5}{*}{Severe: seepage} & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { cutbanks cave }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Limitation: \\
flooding
\end{tabular}} & \multirow[t]{2}{*}{Limitation: wetness} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { wetness }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & \multicolumn{2}{|l|}{| piping | |} & \multirow[t]{2}{*}{cutbanks cave|} & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{wetness} & \multirow[t]{2}{*}{droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Pelkie} & \multirow[t]{5}{*}{Severe: seepage} & |Severe: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\]} & |Limitation: & \multirow[t]{2}{*}{|Limitation: wetness} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{Limitation: droughty} \\
\hline & & \multirow[t]{4}{*}{\begin{tabular}{l}
seepage \\
piping
\end{tabular}} & & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { flooding } \\
& \mid \text { cutbanks cave }
\end{aligned}\right.
\]} & & & \\
\hline & & & & & \multirow[t]{2}{*}{wetness droughty} & \multirow[t]{2}{*}{\begin{tabular}{l}
| too sandy \\
| wetness \\
| soil blowing
\end{tabular}} & \multirow{2}{*}{droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Sturgeon} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
seepage \\
piping \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
flooding \\
frost action \\
cutbanks cave
\end{tabular}} & \multirow[t]{4}{*}{\(\mid\) Limitation:} & \multirow[t]{4}{*}{\(\mid\) Limitation: \(\mid\) erodes easily|} & \multirow[t]{4}{*}{Limitation: erodes easily wetness} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 72B: & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & & & & \\
\hline \multirow[t]{4}{*}{Emmet} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\]} & & & \multirow[t]{2}{*}{Limitation:} & Limitation: & \multirow[t]{2}{*}{} & \\
\hline & & \multirow[t]{3}{*}{Severe: piping} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\]} & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
soil blowing
\end{tabular}} & & \multirow{3}{*}{Favorable} \\
\hline & & & & deep to water| & & \multirow{2}{*}{soil blowing} & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{72D:} & \multirow[t]{2}{*}{| Severe:} & \multirow{5}{*}{\begin{tabular}{l}
| Severe: \\
piping
\end{tabular}} & & & & & \\
\hline & & & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{|Limitation: deep to water} & \multirow[t]{4}{*}{```
Limitation:
 slope
 soil blowing
```} & \multirow[t]{4}{*}{```
Limitation:
    slope
    soil blowing
```} & \multirow[t]{4}{*}{| Limitation:
| slope} \\
\hline & \multirow[t]{3}{*}{| slope} & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & |Pond reservoir areas & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & | & & & \\
\hline \multicolumn{8}{|l|}{76F:} \\
\hline \multirow[t]{5}{*}{Voelker} & | Severe: & \multirow[t]{5}{*}{Severe: piping} & \multirow[t]{5}{*}{Severe: no water} & |Limitation: & Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & & & \multirow[t]{2}{*}{deep to water|} & fast intake & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & & & & slope & | too sandy & \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{77D:} \\
\hline \multirow[t]{5}{*}{Garlic} & Severe: & Severe: & | Severe: & |Limitation: & Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & \multirow[t]{2}{*}{| no water} & \multirow[t]{2}{*}{| deep to water|} & fast intake & slope & \multirow[t]{2}{*}{| slope \({ }^{\text {droughty }}\)} \\
\hline & slope & piping & & & slope & | too sandy & \\
\hline & & & & & droughty & | soil blowing & | droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Alcona} & | Severe: & Severe: & & |Limitation: & Limitation: & |Limitation: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & slope & \multirow[t]{4}{*}{piping} & \multirow[t]{3}{*}{no water} & \multirow[t]{3}{*}{deep to water|} & fast intake & | slope & \\
\hline & & & & & slope & \multirow[t]{2}{*}{| soil blowing} & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Voelker----------} & & & & | Limitation: | & |Limitation: & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
slope
\end{tabular}} & |Limitation: \\
\hline & seepage & \multirow[t]{4}{*}{piping} & \multirow[t]{4}{*}{no water} & \multirow[t]{4}{*}{deep to water|} & fast intake & & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & & & & slope & & \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{soil blowing} & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{77E:} \\
\hline \multirow[t]{5}{*}{Garlic} & Severe: & Severe: & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{2}{*}{|Limitation:
| deep to water \(\mid\)} & Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & \multirow[t]{2}{*}{seepage piping} & & & \multirow[b]{2}{*}{slope} & | slope & \multirow[t]{3}{*}{droughty} \\
\hline & slope & & | no water & \multirow[t]{2}{*}{| |} & & \multirow[t]{2}{*}{\begin{tabular}{l}
| too sandy \\
| soil blowing
\end{tabular}} & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Alcona} & & & \multirow[t]{2}{*}{} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & Limitation: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | soil blowing }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope }
\end{aligned}
\]} \\
\hline & slope & \multirow[t]{4}{*}{piping} & & & fast intake & & \\
\hline & & & \multirow{2}{*}{no water} & & \multirow[t]{2}{*}{slope droughty} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Voelker-----------} & & Severe: & & & & & \\
\hline & seepage & \multirow[t]{4}{*}{piping} & \multirow[t]{4}{*}{no water} & \multirow[t]{4}{*}{deep to water|} & fast intake & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & & & & \multirow[t]{3}{*}{slope droughty} & \multirow[t]{2}{*}{too sandy soil blowing} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 78C: & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw-} & \multirow[t]{5}{*}{Severe: seepage} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { piping }
\end{aligned}
\]} & \multirow[t]{5}{*}{Severe: no water} & \multirow[t]{5}{*}{\[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { deep to water } \mid
\end{array}
\]} & Limitation: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
too sandy soil blowing
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular}} \\
\hline & & & & & \multirow[t]{4}{*}{```
fast intake
slope
droughty
```} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \mid \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline 80B: & & & & & & & \\
\hline Rubicon- & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \[
\mid
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & |Limitation: too sandy soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{80D:} \\
\hline Sayner & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water }
\end{aligned}\right.
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
| slope \\
| too sandy \\
| soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline Rubicon & & & & |Limitation: & |Limitation: & |Limitation: & \\
\hline & \begin{tabular}{l}
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
seepage \\
piping
\end{tabular} & | no water & deep to water| & \begin{tabular}{|l} 
fast intake \\
slope \\
droughty
\end{tabular} & \(|\)\begin{tabular}{l} 
slope \\
too sandy \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{80E:} \\
\hline Sayner & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & |Severe: seepage & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | too sandy } \\
& \text { | soil blowing }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline Rubicon & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \mid \text { too sandy } \\
& \text { | soil blowing }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{81B:} \\
\hline Pelissier- & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \left\lvert\, \begin{array}{l}
\text { slope }
\end{array}\right. \\
& \mid \text { droughty }
\end{aligned}
\] & |Limitation: too sandy soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{81D:} \\
\hline Pelissier & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { deep to water } \mid
\end{array}
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | too sandy } \\
& \text { | soil blowing }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Limitation: } \\
& \text { | slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{81E:} \\
\hline Pelissier & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] & | Limitation:
| slope
| too sandy
| soil blowing & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \mid \text { droughty }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & | | & & & \\
\hline \multicolumn{8}{|l|}{84D:} \\
\hline \multirow[t]{5}{*}{Rubicon} & |Severe: |S & | Severe: & | Severe: & |Limitation: & Limitation: & |Limitation: & |Limitation: \\
\hline & seepage | & seepage & no water & deep to water| & fast intake & | slope & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & piping & & & slope & | too sandy & \\
\hline & & & & & droughty & soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Ishpeming} & | Severe: |S & | Severe: & | Severe: & |Limitation: & |Limitation: & \multirow[t]{2}{*}{| Limitation:} & Limitation: \\
\hline & | seepage & seepage & no water & \multirow[t]{2}{*}{| deep to water|} & fast intake & & \multirow[t]{3}{*}{slope depth to rock droughty} \\
\hline & slope & piping & & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
too sandy \\
depth to rock|
\end{tabular}} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{Rock outcrop.} \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{84F:} \\
\hline Rubicon & & \multirow[t]{2}{*}{|Severe:} & \multirow[t]{2}{*}{|Severe:} & \multirow[t]{2}{*}{|Limitation: deep to water} & Limitation: & \multirow[t]{2}{*}{|Limitation:} & |Limitation: \\
\hline & seepage & & & & fast intake & & \multirow[t]{2}{*}{slope droughty} \\
\hline & slope & \multirow[t]{2}{*}{piping} & no water & & slope & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { too sandy } \\
\text { soil blowing }
\end{array}
\]} & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Ishpeming--------} & Severe: & | Severe: & | Severe: & | Limitation: & Limitation: & \multirow[t]{2}{*}{|Limitation:} & Limitation: \\
\hline & | seepage | & seepage & | no water & | deep to water| & fast intake & & slope \\
\hline & slope & piping & \multirow[t]{2}{*}{} & & slope & too sandy & \multirow[t]{2}{*}{depth to rock droughty} \\
\hline & & & & & droughty & depth to rock| & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{85A:} \\
\hline \multirow[t]{4}{*}{Solona} & Moderate: & & \multirow[t]{2}{*}{\begin{tabular}{l}
|Moderate: \\
slow refill
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
frost action
\end{tabular}} & \multirow[t]{2}{*}{Limitation: wetness} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { wetness }
\end{aligned}
\]} & |Limitation: \\
\hline & | seepage & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { piping } \\
& \text { wetness }
\end{aligned}
\]} & & & & & \multirow[t]{2}{*}{} \\
\hline & & & - & | & soil blowing & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{86B:} \\
\hline \multirow[t]{4}{*}{Mashek} & & \multirow[t]{2}{*}{Severe:} & |Severe: & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
percs slowly
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Limitation: \\
slope
\end{tabular}} & & \multirow[t]{3}{*}{Limitation: rooting depth} \\
\hline & seepage & & \multirow[t]{2}{*}{| no water} & & & \multirow[t]{2}{*}{\begin{tabular}{l}
wetness \\
soil blowing
\end{tabular}} & \\
\hline & slope & \multirow{2}{*}{| piping} & & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & \begin{tabular}{l}
slope \\
soil blowing
\end{tabular} & & \\
\hline & & & & & & & \\
\hline 87B: & & & & & & & \\
\hline \multirow[t]{5}{*}{Cunard} & \(\mid\) Moderate : & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
piping
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{|Limitation: deep to water} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
slope \\
soil blowing \\
droughty
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
soil blowing \\
depth to rock
\end{tabular}} & \multirow[t]{5}{*}{Limitation: depth to rock droughty} \\
\hline & | seepage & & & & & & \\
\hline & slope & & & & & & \\
\hline & | depth to rock| & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { deep to water| }
\end{array}
\] & ```
Limitation:
    large stones
    slope
    droughty
``` & |Limitation: large stones too sandy & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { large stones } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{92A:} \\
\hline Ensley & \begin{tabular}{l}
|Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| slow refill
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
frost action ponding
\end{tabular} & |Limitation: soil blowing ponding & |Limitation: soil blowing ponding & \begin{tabular}{l}
|Limitation: \\
wetness
\end{tabular} \\
\hline Solona- & |Moderate: seepage & \begin{tabular}{l}
Severe: \\
piping \\
wetness
\end{tabular} & |Moderate:
| slow refill & \begin{tabular}{l}
Limitation: \\
frost action
\end{tabular} & |Limitation: wetness soil blowing & \[
\begin{aligned}
& \text { | Limitation: } \\
& \text { | wetness } \\
& \text { | soil blowing }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
wetness
\end{tabular} \\
\hline \multicolumn{8}{|l|}{93 :} \\
\hline Tawas & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
piping \\
ponding
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Severe: } \\
\mid \text { slow refill } \\
\mid \text { cutbanks cave }
\end{array}
\] & \begin{tabular}{l}
| Limitation: \\
frost action \\
subsides \\
ponding
\end{tabular} & |Limitation: soil blowing ponding & Limitation: too sandy soil blowing ponding & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { wetness }
\end{aligned}
\] \\
\hline Deford- & | Severe: & | Severe: & | Severe: & |Limitation: & |Limitation: & Limitation: & |Limitation: \\
\hline & seepage & \begin{tabular}{l}
seepage \\
piping \\
ponding
\end{tabular} & | cutbanks cave| & \begin{tabular}{l}
ponding \\
cutbanks cave
\end{tabular} & ponding droughty & too sandy soil blowing ponding & \[
\begin{array}{|l}
\text { wetness } \\
\text { droughty }
\end{array}
\] \\
\hline \multicolumn{8}{|l|}{94B:} \\
\hline \multirow[t]{4}{*}{Keweenaw} & S Severe: & | Severe: & | Severe: & |Limitation: & Limitation: & Limitation: & |Limitation: \\
\hline & seepage & | seepage & | no water & deep to water| & fast intake & too sandy & | droughty \\
\hline & & piping & & & slope droughty & soil blowing & \\
\hline & & & & & & & \\
\hline Kalkaska--------- & \begin{tabular}{l}
|Severe: \\
| seepage
\end{tabular} & Severe: seepage piping & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \multirow[t]{2}{*}{|Limitation: deep to water} & \multirow[t]{2}{*}{\begin{tabular}{l}
Limitation: \\
fast intake slope droughty
\end{tabular}} & |Limitation: too sandy soil blowing & \begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular} \\
\hline \multirow[t]{6}{*}{94D:
Keween} & & & & & & & \\
\hline & \multirow[t]{5}{*}{Severe:
seepage
slope} & \multirow[t]{5}{*}{Severe: seepage piping} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
| no water
\end{tabular}} & \multirow[t]{5}{*}{Limitation: deep to water|} & \multirow[t]{5}{*}{Limitation:
fast intake
slope
droughty} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { too sandy } \\
& \text { soil blowing }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{gathered}
\mid \text { Pond reservoir } \\
\text { areas }
\end{gathered}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & | & \\
\hline \multicolumn{8}{|l|}{94D:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & | Severe: & Severe: & | Severe: & |Limitation: & | Limitation: & Limitation: & Limitation: \\
\hline & | seepage & seepage & no water & deep to water| & fast intake & slope & slope \\
\hline & slope & piping & & & slope & too sandy & droughty \\
\hline & & & & & droughty & soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{94E:} \\
\hline \multirow[t]{5}{*}{Keweenaw---------} & Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & seepage & seepage & | no water & deep to water| & fast intake & slope & slope \\
\hline & slope & piping & & & slope & too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska} & Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & seepage & | no water & deep to water| & fast intake & slope & slope \\
\hline & slope & piping & & & slope & | too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{95B:} \\
\hline \multirow[t]{5}{*}{Liminga} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
seepage \\
piping
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{|Limitation:
| deep to water} & |Limitation: & \multirow[t]{4}{*}{```
|Limitation:
| too sandy
| soil blowing
```} & \multirow[t]{5}{*}{|Limitation: droughty} \\
\hline & & & & & fast intake & & \\
\hline & & & & & slope & & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{95D:} \\
\hline \multirow[t]{5}{*}{Liminga} & Severe: & | Severe: & | Severe: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{2}{*}{Limitation:
fast intake} & \multirow[t]{2}{*}{| Limitation:} & \\
\hline & | seepage & seepage & | no water & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} \\
\hline & slope & piping & & & \multirow[t]{3}{*}{droughty} & \multirow[t]{3}{*}{\begin{tabular}{l}
too sandy \\
| soil blowing
\end{tabular}} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{100E:} \\
\hline \multirow[t]{5}{*}{Sayner} & & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & | Limitation: & |Limitation: \\
\hline & seepage & & & & fast intake & | slope & slope \\
\hline & slope & & & & slope & too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon} & Severe: & & | Severe: & \multirow[t]{2}{*}{} & |Limitation: & Limitation: & |Limitation: \\
\hline & seepage & | seepage & \multirow[t]{2}{*}{| no water} & & fast intake & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & | piping & & deep to water| & slope & | too sandy & \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline 100F: & & & & & & & \\
\hline \multirow[t]{5}{*}{Sayner} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{Severe: seepage} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & |Limitation: & |Limitation: \\
\hline & & & & & fast intake & | slope & | slope \\
\hline & & & & & slope & | too sandy & droughty \\
\hline & & & & & droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \mid \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & | & & & \\
\hline \multicolumn{8}{|l|}{100F:} \\
\hline \multirow[t]{5}{*}{Rubicon} & | Severe: | & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage | & & & & fast intake & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope | & & & & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{too sandy soil blowing} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{103D:} \\
\hline \multirow[t]{5}{*}{Rubicon} & & |Severe: & |Severe: & Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage | & | seepage & \multirow[t]{3}{*}{no water} & \multirow[t]{2}{*}{deep to water|} & fast intake & | slope & | slope \\
\hline & | slope | & \multirow[t]{2}{*}{| piping} & & & | slope & | too sandy & \multirow[t]{2}{*}{droughty} \\
\hline & & & & & | droughty & | soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Ocqueoc} & | Severe: | & | Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & Limitation: \\
\hline & | seepage | & \multirow[t]{4}{*}{| piping} & \multirow[t]{4}{*}{| no water} & \multirow[t]{4}{*}{| deep to water|} & fast intake & slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & slope & & & & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{| too sandy soil blowing} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{4}{*}{| Slight} & | Severe: & |Limitation: | & \multirow[t]{2}{*}{|Limitation:} & |Limitation: & Limitation: \\
\hline & | slope | & & \multirow[t]{3}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & & & \\
\hline & | depth to rock| & & & & \multirow[t]{2}{*}{depth to rock|} & \multirow[t]{2}{*}{| depth to rock|} & \multirow[t]{2}{*}{depth to rock} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{104C:} \\
\hline \multirow[t]{5}{*}{Fence} & \(\mid\) Moderate: | & \multirow[t]{5}{*}{| Severe:
| piping} & \multirow[t]{5}{*}{| Severe:
| no water} & \multirow[t]{5}{*}{\(\mid\) Limitation:
\(\mid\) frost action
\(\mid\)
slope
cutbanks cave} & |Limitation: | & \multirow[t]{2}{*}{} & \multirow[t]{5}{*}{Limitation: erodes easily} \\
\hline & | seepage | & & & & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { erodes easily|} \\
& \text { slope }
\end{aligned}\right.
\]} & & \\
\hline & | slope & & & & & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { erodes easily } \mid \\
& \text { wetness }
\end{aligned}\right.
\]} & \\
\hline & & & & & \multirow[t]{2}{*}{wetness} & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{105C:} \\
\hline \multirow[t]{5}{*}{Munising} & |Moderate: | & | Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: | & |Limitation: \\
\hline & seepage | & \multirow[t]{4}{*}{| piping} & \multirow[t]{4}{*}{| no water} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{slope wetness droughty} & \multirow[t]{3}{*}{\begin{tabular}{l}
rooting depth \\
wetness
\end{tabular}} & \multirow[t]{4}{*}{rooting depth wetness droughty} \\
\hline & slope | & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{106B:} \\
\hline \multirow[t]{5}{*}{Sagola-----------} & & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
| piping
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{|l|} 
|Limitation: \\
slope \\
soil blowing \\
droughty
\end{tabular}} & \multirow[t]{5}{*}{|Limitation: too sandy soil blowing} & \multirow[t]{5}{*}{Limitation: droughty} \\
\hline & | seepage | & & & & & & \\
\hline & slope | & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{} & & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
seepage \\
piping
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{5}{*}{|Limitation: deep to water|} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
too sandy \\
soil blowing
\end{tabular}} & \multirow[t]{5}{*}{|Limitation: droughty} \\
\hline & | seepage | & & & & & & \\
\hline & | | & & & & & & \\
\hline & | & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{gathered}
\text { |Pond reservoir } \mid \\
\text { areas }
\end{gathered}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{106D:} \\
\hline \multirow[t]{5}{*}{Sagola} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & piping & no water & \multirow[t]{3}{*}{deep to water|} & slope & | slope & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & & & & & \multirow[t]{2}{*}{soil blowing droughty} & | too sandy & \\
\hline & & & & & & soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon} & |Severe: |S & | Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & \multirow[t]{3}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & fast intake & | slope & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & piping & & & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{too sandy soil blowing} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{107B:} \\
\hline \multirow[t]{4}{*}{Goodman} & Moderate: & \multirow[t]{2}{*}{\begin{tabular}{|l} 
| Severe: \\
| \\
piping
\end{tabular}} & | Severe: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & |Limitation: & \multirow[t]{2}{*}{} \\
\hline & seepage & & | no water & & | erodes easily & | erodes easily & \\
\hline & slope & & & & & too sandy & erodes easily \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{| Severe:} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water }
\end{aligned}
\]} & |Limitation: & |Limitation: | & \\
\hline & seepage & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
erodes easily| \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
erodes easily \\
droughty
\end{tabular}} \\
\hline & & \multirow{2}{*}{seepage} & | no water & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{107D:} \\
\hline \multirow[t]{4}{*}{Goodman} & | Severe: | & | Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & \multirow[t]{3}{*}{| piping} & \multirow[t]{3}{*}{| no water} & \multirow[t]{2}{*}{| deep to water} & \multirow[t]{2}{*}{\[
\mid \text { erodes easily| }
\]} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { erodes easily } \\
& \text { slope } \\
& \text { too sandy }
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { erodes easily } \\
& \text { slope }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & |Severe: |S & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Severe: \\
| no water
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular}} & |Limitation: | & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { erodes easily| }
\end{aligned}
\]} & |Limitation: \\
\hline & seepage | & & & & \multirow[t]{3}{*}{slope droughty} & & erodes easily \\
\hline & slope & & \multirow{2}{*}{| no water} & & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
too sandy
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{107F:} \\
\hline \multirow[t]{5}{*}{Goodman} & & |Severe: & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \\
\mid \text { erodes easily } \mid
\end{array}
\]} & \multirow[t]{2}{*}{| Limitation:} & \multirow[t]{4}{*}{|Limitation: erodes easily slope} \\
\hline & slope & \multirow[t]{3}{*}{| piping} & \multirow[t]{3}{*}{| no water} & & & & \\
\hline & & & & deep to water| & \[
\left\lvert\, \begin{aligned}
& \mid \text { erodes easily } \mid \\
& \text { slope }
\end{aligned}\right.
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
erodes easily \\
slope \\
too sandy
\end{tabular}} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & | Severe: | & \multirow[t]{5}{*}{| Severe: seepage} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{5}{*}{|Limitation:
| deep to water} & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage | & & & & | slope & erodes easily & erodes easily \\
\hline & slope & & & & droughty & slope & slope \\
\hline & & & & & & | too sandy | & droughty \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | Pond reservoir \(\mid\) & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{108B:} \\
\hline \multirow[t]{2}{*}{Goodman} & \[
\begin{aligned}
& \text { | Moderate: } \\
& \text { | seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: piping & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & \[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { erodes easily } \\
\text { slope }
\end{array}
\] & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { erodes easily } \\
& \text { too sandy }
\end{aligned}
\] & Limitation: erodes easily \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Sundog} & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & |Limitation: slope droughty & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { erodes easily } \\
& \text { too sandy }
\end{aligned}
\] & Limitation: erodes easily droughty \\
\hline & & & & & & & \\
\hline Wabeno & \[
\begin{aligned}
& \text { - Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: piping & |Severe: no water & | Limitation:
\(\mid\) large stones
percs slowly
\(\mid\) slope & \begin{tabular}{|l}
\(\mid\) Limitation: \\
\(\mid\) percs slowly \\
| slope \\
| wetness
\end{tabular} & ```
|Limitation:
    erodes easily|
    large stones
    rooting depth
``` & Limitation: erodes easily large stones rooting depth \\
\hline 108D: & & & & & & \multirow[b]{2}{*}{Limitation:} & \\
\hline \multirow[t]{2}{*}{Goodman} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slope }
\end{aligned}
\]} & | Severe: & | Severe: & | Limitation: & Limitation: & & |Limitation: \\
\hline & & piping & | no water & | deep to water| & \[
\begin{aligned}
& \text { erodes easily } \\
& \text { slope }
\end{aligned}
\] & ```
erodes easily|
slope
too sandy
``` & \[
\begin{aligned}
& \text { erodes easily } \\
& \text { slope }
\end{aligned}
\] \\
\hline \multirow[t]{5}{*}{Sundog} & |Severe: | & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{| Severe:
| no water} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \text { | deep to water } \mid
\end{aligned}
\]} & Limitation: & \multirow[t]{5}{*}{|Limitation:
\(\mid\) erodes easily
\(\mid\) slope
\(\mid\) too sandy} & |Limitation: \\
\hline & seepage | & & & & slope | & & erodes easily \\
\hline & slope | & & & & droughty | & & slope \\
\hline & & & & & & & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Wabeno} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{Severe: piping} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{```
|Limitation:
| large stones
| percs slowly
| slope
```} & \multirow[t]{5}{*}{|Limitation:
| percs slowly
| slope
| wetness} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) erodes easily \\
\(\mid\) \\
large stones \\
slope
\end{tabular}} & \multirow[t]{5}{*}{```
Limitation:
 erodes easily
 large stones
 slope
```} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{6}{*}{109B:
Rubicon} & & & & & & & \\
\hline & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & \multirow[t]{5}{*}{| Limitation: too sandy soil blowing} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular}} \\
\hline & & & & & fast intake & & \\
\hline & & & & & slope & & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { piping }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{5}{*}{|limitation:} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
large stones too sandy
\end{tabular}} & \multirow[t]{5}{*}{Limitation: large stones droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{109D:} \\
\hline Rubicon & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage \\
piping
\end{tabular} & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { slope } \\
& \text { too sandy } \\
& \text { | soil blowing }
\end{aligned}
\] & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline Keweenaw--------- & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & | Limitation:
| deep to water & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \(\mid\) Limitation:
\(\mid\) large stones
| slope
\(\mid\) too sandy & | Limitation:
\(\mid\) large stones
| slope
\(\mid\) droughty \\
\hline \multicolumn{8}{|l|}{109F:} \\
\hline \multirow[t]{4}{*}{Rubicon} & |Severe: & \multirow[t]{2}{*}{Severe:
seepage} & | Severe: & \multirow[t]{2}{*}{|Limitation: |} & Limitation: & \multirow[t]{2}{*}{Limitation:
slope} & |Limitation: \\
\hline & | seepage & & | no water & & fast intake & & slope \\
\hline & slope & piping & & & slope droughty & too sandy soil blowing & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{5}{*}{Severe: seepage piping} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water }
\end{aligned}\right.
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
| large stones \\
| slope \\
| too sandy
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{110B:} \\
\hline \multirow[t]{4}{*}{Nadeau} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\]} & Limitation: & \multirow[t]{3}{*}{|Limitation: large stones too sandy} & \multirow[t]{3}{*}{|Limitation: large stones droughty} \\
\hline & & & & & large stones & & \\
\hline & & & & & slope droughty & & \\
\hline & & & & & droughty & & \\
\hline \multirow[t]{3}{*}{Mancelona} & \multirow[t]{3}{*}{\begin{tabular}{l}
Severe: \\
| seepage
\end{tabular}} & \multirow[t]{3}{*}{Severe: seepage} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water }
\end{aligned}
\]} & |Limitation: & \multirow[t]{3}{*}{|Limitation: too sandy soil blowing} & \multirow[t]{3}{*}{|Limitation: droughty} \\
\hline & & & & & \begin{tabular}{l}
slope \\
droughty
\end{tabular} & & \\
\hline & & & & & & & \\
\hline 110D: & & & & & & & \\
\hline \multirow[t]{9}{*}{\begin{tabular}{l}
Nadeau \\
Mancelona
\end{tabular}} & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
seepage
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water| }
\end{aligned}
\]} & \multirow[t]{4}{*}{|Limitation:
\(\mid\) large stones
| slope
| droughty} & \multirow[t]{5}{*}{|Limitation:
\(\mid\) large stones
| slope
\(\mid\) too sandy} & \multirow[t]{5}{*}{```
|Limitation:
    large stones
    slope
    droughty
```} \\
\hline & | seepage & & & & & & \\
\hline & | slope & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
| no water
\end{tabular}} & \multirow[t]{4}{*}{\(\mid\) Limitation:
\(\mid\) deep to water \(\mid\)} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \text { | slope } \\
& \text { | droughty }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) slope \\
\(\mid\) too sandy \\
\(\mid\) \\
soil blowing
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | Pond reservoir areas & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{113D:} \\
\hline \multirow[t]{5}{*}{Vanripe} & Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular}} & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & slope & & \multirow[t]{4}{*}{no water} & \multirow[t]{3}{*}{deep to water} & large stones & large stones & large stones \\
\hline & & & & & slope & slope & \multirow[t]{2}{*}{slope droughty} \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{113F:} \\
\hline \multirow[t]{5}{*}{Vanriper} & | Severe: & | Severe: & Severe: & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & |Limitation: & | Limitation: \\
\hline & slope & large stones & \multirow[t]{3}{*}{no water} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\]} & large stones & \multirow[t]{2}{*}{large stones slope} \\
\hline & & piping & & & & \multirow[t]{2}{*}{slope} & \\
\hline & & & & & droughty & & \multirow[t]{2}{*}{droughty} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114B:} \\
\hline \multirow[t]{5}{*}{Vanripe} & | Moderate: & Severe: & | Severe: & |Limitation: | & Limitation: & Limitation: & |Limitation: \\
\hline & seepage & large stones & \multirow[t]{4}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{large stones slope droughty} & \multirow[t]{3}{*}{large stones} & \multirow[t]{3}{*}{large stones droughty} \\
\hline & slope & piping & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114D:} \\
\hline \multirow[t]{5}{*}{Vanriper} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Severe:} & \multirow[t]{3}{*}{Limitation: deep to water|} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline & slope & & & & & & \\
\hline & & \begin{tabular}{l}
large stones \\
piping
\end{tabular} & no water & & \begin{tabular}{l}
large stones \\
slope
\end{tabular} & large stones slope & \multirow[t]{2}{*}{large stones slope droughty} \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114F:} \\
\hline \multirow[t]{5}{*}{Vanriper} & | Severe: & | Severe: & | Severe: & |Limitation: | & Limitation: & Limitation: & |Limitation: \\
\hline & slope & \multirow[t]{3}{*}{large stones piping} & \multirow[t]{4}{*}{no water} & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{large stones slope droughty} & \multirow[t]{3}{*}{large stones slope} & \multirow[t]{4}{*}{large stones slope droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{117B:} \\
\hline \multirow[t]{5}{*}{Fence} & & \multirow[t]{5}{*}{Severe: piping} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
no water
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { frost action }
\end{aligned}
\]} & \multirow[t]{2}{*}{|Limitation: erodes easily} & \multirow[t]{2}{*}{|Limitation: erodes easily} & \multirow[t]{5}{*}{Limitation: erodes easily} \\
\hline & seepage & & & & & & \\
\hline & slope & & & \[
\begin{array}{|l|}
\mid \\
\text { frost action } \\
\text { slope }
\end{array}
\] & slope & \multirow[t]{2}{*}{erodes easily wetness} & \\
\hline & & & & \multirow[t]{2}{*}{| cutbanks cave|} & \multirow[t]{2}{*}{| wetness |} & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{118A:
Croswell} & & & & & & & \\
\hline & Severe: & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { cutbanks cave }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Limitation: } \\
& \text { wetness } \\
& \text { | droughty }
\end{aligned}
\]} & \multirow[t]{4}{*}{Limitation: too sandy wetness} & \multirow[t]{3}{*}{Limitation: droughty} \\
\hline & seepage & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Deford} & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
seepage \\
piping \\
ponding
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\]} & \multirow[t]{5}{*}{Limitation: ponding cutbanks cave|} & \multirow[t]{5}{*}{Limitation: ponding droughty} & \multirow[t]{5}{*}{Limitation: too sandy soil blowing ponding} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
wetness droughty
\end{tabular}} \\
\hline & | seepage & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline Map symbol and soil name & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{124B:} \\
\hline \multirow[t]{2}{*}{} & \begin{tabular}{|l|}
\(\mid\) Moderate: \\
\(\mid\) seepage \\
slope \\
\(\mid\) depth to rock
\end{tabular} & large stones piping & deep to water depth to rock & large stones slope & ```
|Limitation:
 large stones
 slope
 wetness
``` & |Limitation: large stones wetness & \begin{tabular}{l}
|Limitation: \\
large stones
\end{tabular} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{124D:} \\
\hline \multirow[t]{5}{*}{Gogebic-----------} & Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & & |Limitation: \\
\hline & slope & large stones & \multirow[t]{3}{*}{| no water} & | large stones & | large stones & large stones & large stones \\
\hline & & \multirow[t]{2}{*}{piping} & & percs slowly & slope & slope & \\
\hline & & & & slope & wetness & wetness & wetness \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Dishno} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & \multirow[t]{4}{*}{large stones piping} & \multirow[t]{4}{*}{| no water} & \multirow[t]{3}{*}{large stones
slope} & | large stones & large stones & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { large stones } \\
& \text { slope }
\end{aligned}
\]} \\
\hline & & & & & slope & slope & \\
\hline & & & & & wetness & wetness & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{125D:} \\
\hline \multirow[t]{5}{*}{Keweenaw---------} & & \multirow[t]{2}{*}{Severe: seepage} & & & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & & \multirow[t]{2}{*}{no water} & \multirow[t]{2}{*}{deep to water|} & fast intake & large stones & large stones \\
\hline & slope & seepage piping & & & slope & slope & slope \\
\hline & & \multirow[t]{2}{*}{} & & & droughty & too sandy & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska} & & \multirow[t]{2}{*}{Severe: seepage} & \multirow[t]{2}{*}{|Severe:} & \multirow[t]{2}{*}{\(\mid\) Limitation:
| deep to water \(\mid\)} & |Limitation: & |Limitation: & \\
\hline & | seepage & & & & fast intake & slope & slope \\
\hline & | slope & \multirow[t]{3}{*}{piping} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| |} & | slope & \multirow[t]{2}{*}{| too sandy soil blowing} & \multirow[t]{2}{*}{droughty} \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{4}{*}{Slight} & | Severe: & |Limitation: | & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & & | no water & deep to water| & slope & slope & slope \\
\hline & depth to rock & & & & depth to rock & depth to rock & depth to rock \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{125F:} \\
\hline \multirow[t]{5}{*}{Keweenaw----------} & | Severe: & \multirow[t]{5}{*}{Severe: seepage piping} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{5}{*}{Limitation: deep to water|} & |Limitation: & |Limitation: & \multirow[t]{5}{*}{| Limitation:
\(\mid\) large stones
| slope
| droughty} \\
\hline & | seepage & & & & fast intake & large stones & \\
\hline & | slope & & & & slope & slope & \\
\hline & & & & & droughty & too sandy & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska} & \begin{tabular}{l}
| Severe: \\
seepage
\end{tabular} & \multirow[t]{4}{*}{Severe: seepage piping} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{Limitation: deep to water|} & \multirow[t]{4}{*}{| Limitation:
\(\mid\) fast intake
\(\mid\) slope
\(\mid\) droughty} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) slope \\
\(\mid\) too sandy \\
\(\mid\) soil blowing \\
\(\mid\)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
slope droughty
\end{tabular}} \\
\hline & slope & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \mid \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & | & & & \\
\hline \multicolumn{8}{|l|}{125F:} \\
\hline \multirow[t]{4}{*}{Rock outcrop} & |Severe: | & \multirow[t]{4}{*}{Slight} & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & slope & & \multirow[t]{2}{*}{no water} & \multirow[t]{2}{*}{deep to water} & slope & slope & slope \\
\hline & depth to rock & & & & \multirow[t]{2}{*}{depth to rock|} & \multirow[t]{2}{*}{depth to rock|} & \multirow[t]{2}{*}{depth to rock} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{126B:} \\
\hline \multirow[t]{3}{*}{Sundog} & | Severe: |S & | Severe: & | Severe: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { erodes easily } \mid
\end{aligned}
\]} & \multirow[t]{3}{*}{|Limitation: erodes easily droughty} \\
\hline & | seepage & seepage & | no water & & \multirow[t]{2}{*}{droughty} & & \\
\hline & & & & & & too sandy & \\
\hline \multicolumn{8}{|l|}{126D:} \\
\hline \multirow[t]{5}{*}{Sundog} & & \multirow[t]{2}{*}{| Severe:} & |Severe: & \multirow[t]{2}{*}{|Limitation:
deep to water} & |Limitation: & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
erodes easily
\end{tabular}} & |Limitation: \\
\hline & seepage & & no water & & \multirow[t]{3}{*}{slope droughty} & & \multirow[t]{3}{*}{erodes easily slope droughty} \\
\hline & slope & & & & & slope & \\
\hline & & & & & & too sandy & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{126E:} \\
\hline \multirow[t]{5}{*}{Sundog} & | Severe: |S & | Severe: & | Severe: & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \text { | deep to water } \mid
\end{aligned}
\]} & |Limitation: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { erodes easily } \mid
\end{aligned}
\]} & |Limitation: \\
\hline & seepage & \multirow[t]{4}{*}{seepage} & \multirow[t]{2}{*}{| no water} & & slope & & erodes easily \\
\hline & | slope & & & & droughty & slope & \multirow[t]{2}{*}{slope} \\
\hline & & & & & & too sandy & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{127B:} \\
\hline \multirow[t]{3}{*}{Sundog} & & & | Severe: & |Limitation: & |Limitation: & \multirow[t]{3}{*}{\(\mid\) Limitation:
\(\mid\) erodes easily
too sandy} & \multirow[t]{3}{*}{Limitation: erodes easily droughty} \\
\hline & seepage & seepage & | no water & deep to water & \[
\begin{array}{|l}
\text { slope } \\
\text { droughty }
\end{array}
\] & & \\
\hline & & & & & & & \\
\hline 127D: & & & & & & & \\
\hline \multirow[t]{5}{*}{Sundog} & | Severe: & | Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & Limitation: \\
\hline & seepage & \multirow[t]{4}{*}{seepage} & \multirow[t]{3}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} & \multirow[t]{3}{*}{```
erodes easily
slope
too sandy
```} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { erodes easily } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} \\
\hline & slope & & & & & & \\
\hline & & & & & & & \\
\hline & | | & & & & & & \\
\hline \multicolumn{8}{|l|}{127F:} \\
\hline \multirow[t]{5}{*}{Sundog} & & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
seepage
\end{tabular}} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Limitation: deep to water} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
erodes easily
\end{tabular}} & \multirow[t]{2}{*}{|Limitation: erodes easily} \\
\hline & seepage & & & & & & \\
\hline & | slope & & \multirow{2}{*}{| no water} & & \multirow[t]{2}{*}{\begin{tabular}{l}
slope \\
droughty
\end{tabular}} & \multirow[t]{2}{*}{\(|\)\begin{tabular}{l}
erodes easily| \\
\(\mid\) slope \\
\(\mid\) too sandy
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
erodes easily \\
slope \\
droughty
\end{tabular}} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline 128B: & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska} & \multirow[t]{5}{*}{Severe: seepage} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \mid \text { piping }
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular}} & \multirow[t]{5}{*}{Limitation: too sandy soil blowing} & \multirow[t]{5}{*}{Limitation: droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline 128B: & & & & & & & \\
\hline Waiska & Severe: seepage & Severe: seepage & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & | Limitation:
fast intake
| slope
\(\mid\) droughty & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) \\
large stones \\
too sandy
\end{tabular} & |Limitation: large stones droughty \\
\hline \multicolumn{8}{|l|}{128D:} \\
\hline Kalkaska & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { deep to water }
\end{aligned}
\] & | Limitation:
fast intake
| slope
\(\mid\) droughty & \begin{tabular}{l}
|Limitation: \\
slope \\
too sandy soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline & \[
\begin{aligned}
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & seepage & | no water & deep to water & fast intake slope droughty & large stones slope too sandy & | large stones
slope
droughty \\
\hline \multicolumn{8}{|l|}{128E:} \\
\hline Kalkaska & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & | Limitation:
| deep to water & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
| droughty
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
slope \\
too sandy \\
soil blowing
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline & & & & & & & \\
\hline & Severe:
| seepage
| slope & Severe: seepage & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{l}
Limitation: \\
large stones \\
slope \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{129C:} \\
\hline Kalkaska & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage piping & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | deep to water }
\end{aligned}
\] & | Limitation:
\(\mid\) fast intake
\(\mid\) slope
\(\mid\) droughty & |Limitation: too sandy soil blowing & \begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular} \\
\hline & & & & & & & \\
\hline Munising & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: piping & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
percs slowly \\
slope \\
cutbanks cave
\end{tabular} & | Limitation:
\(\mid\) slope
| wetness
\(\mid\) droughty & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { rooting depth } \mid \\
& \mid \text { wetness }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{130A:} \\
\hline Chabeneau & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
cutbanks cave
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \text { wetness } \\
& \mid \text { droughty }
\end{aligned}
\] & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) erodes easily \\
\(\mid\) too sandy \\
\(\mid\) wetness \\
\(\mid\)
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { erodes easily } \\
& \text { droughty }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | \begin{tabular}{c}
Pond reservoir \\
areas
\end{tabular} & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & | & & \\
\hline \multicolumn{8}{|l|}{131:} \\
\hline Witbeck & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
piping \\
ponding
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Severe: } \\
\mid \text { slow refill } \\
\mid \text { cutbanks cave }
\end{array}
\] & |Limitation: frost action ponding & | Limitation:
\(\mid\) soil blowing
\(\mid\) ponding
\(\mid\) droughty & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { large stones } \\
& \mid \text { soil blowing } \\
& \mid \text { ponding }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
large stones wetness
\end{tabular} \\
\hline & & & & & & & \\
\hline & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage }
\end{aligned}
\] & \begin{tabular}{l}
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
slow refill
\end{tabular} & \begin{tabular}{l}
Limitation: \\
frost action \\
subsides \\
ponding
\end{tabular} & soil blowing ponding & soil blowing ponding & \begin{tabular}{l}
Limitation: \\
| wetness
\end{tabular} \\
\hline \multicolumn{8}{|l|}{132.} \\
\hline \multicolumn{8}{|l|}{Slickens} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{133B:} \\
\hline \multirow[t]{2}{*}{Keewaydin--------} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { seepage }
\end{aligned}
\] & \multirow[t]{2}{*}{\begin{tabular}{l}
| Severe: \\
large stones seepage
\end{tabular}} & \multirow[t]{2}{*}{|Severe: no water} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{```
Limitation:
 large stones
 slope
 droughty
```} & \multirow[t]{2}{*}{|Limitation:
large stones
|too sandy} & \multirow[t]{2}{*}{| Limitation:
| large stones
droughty} \\
\hline & & & & & & & \\
\hline Dishno------------ & \begin{tabular}{|l|}
\(\mid\) Moderate: \\
\(\mid\) seepage \\
\(\mid\) slope \\
\(\mid\) depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones slope
\end{tabular} & | Limitation:
\(\mid\) large stones
| slope
| wetness & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { large stones } \\
& \text { | wetness }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
large stones
\end{tabular} \\
\hline \multicolumn{8}{|l|}{133D:} \\
\hline \multirow[t]{5}{*}{Keewaydi} & | Severe: & | Severe: & \multirow[t]{5}{*}{| Severe:} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular}} & Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & large stones & & & | large stones & | large stones & | large stones \\
\hline & slope & seepage & & & | slope & | slope & | slope \\
\hline & & & & & droughty & too sandy & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Dishno} & & | Severe: & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{|Limitation: large stones slope} & |Limitation: & |Limitation: & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
large stones slope
\end{tabular}} \\
\hline & slope & large stones & & & | large stones & large stones & \\
\hline & & piping & & & | slope & slope & \\
\hline & & & & & | wetness & wetness & \\
\hline & & & & & & & \\
\hline \multirow[t]{3}{*}{134B:
Keewaydin} & & & & & & & \\
\hline & | Severe: & | Severe: & \multirow[t]{2}{*}{| Severe: \({ }^{\text {| no water }}\)} & \multirow[t]{2}{*}{Limitation:
deep to water} & Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & large stones seepage & & & large stones slope droughty & \(|\)\begin{tabular}{l} 
large stones \\
too sandy
\end{tabular} & large stones droughty \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \text { |Pond reservoir } \\
& \text { | areas }
\end{aligned}
\] & Embankments, dikes, and levees & \begin{tabular}{l}
Aquifer-fed \\
excavated ponds
\end{tabular} & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline \multicolumn{8}{|l|}{134D:} \\
\hline Keewaydin- & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
| Severe: \\
large stones seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & \[
\mid
\] & | Limitation:
\(\mid\) large stones
slope
| droughty & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{134F:} \\
\hline Keewaydin & \begin{tabular}{l}
| Severe: \\
seepage \\
slope
\end{tabular} & \begin{tabular}{l}
|Severe: \\
large stones seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{135A:} \\
\hline Witbeck & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| slow refill
\end{tabular} & | Limitation: frost action ponding & \begin{tabular}{l}
|Limitation: \\
large stones ponding
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones ponding
\end{tabular} & ```
|Limitation:
    large stones
    wetness
``` \\
\hline Net & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & |Limitation: frost action percs slowly & | Limitation:
\(\mid\) large stones
| wetness & \(\mid\) Limitation:
\(\mid\) large stones
rooting depth
wetness & \begin{tabular}{l}
|Limitation: \\
large stones \\
wetness \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{136A:} \\
\hline Minocqua & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
seepage \\
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) frost action \\
\(\mid\) \\
ponding \\
cutbanks cave
\end{tabular} & | Limitation: rooting depth ponding & \(|\)\begin{tabular}{l}
Limitation: \\
erodes easily \\
too sandy \\
ponding
\end{tabular} & |Limitation: erodes easily wetness \\
\hline & & Severe: & & |Limitation: & & & \\
\hline Channing- & Severe: seepage & Severe: seepage wetness & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
frost action cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
wetness droughty
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
too sandy \\
wetness \\
soil blowing
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
wetness droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{137D:} \\
\hline Keewaydin & \begin{tabular}{l}
|Severe: \\
seepage \\
slope
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { large stones } \\
& \mid \text { seepage }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { deep to water } \mid
\end{array}
\] & | Limitation:
\(\mid\) large stones
slope
| droughty & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
droughty
\end{tabular} \\
\hline Sundog- & \begin{tabular}{l}
Severe: \\
seepage \\
slope
\end{tabular} & |Severe: seepage & | Severe: no water & \[
\mid
\] & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
erodes easily| \\
slope \\
too sandy
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
erodes easily \\
slope \\
droughty
\end{tabular} \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | Pond reservoir areas & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline \multicolumn{8}{|l|}{140B:} \\
\hline Champion & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \mid \text { slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular} & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & |Limitation: percs slowly slope & ```
|imitation:
 large stones
 slope
 wetness
``` & \begin{tabular}{l}
|Limitation: \\
large stones wetness
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones rooting depth wetness
\end{tabular} \\
\hline Dishno & \begin{tabular}{l}
Moderate: \\
seepage \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular} & | Moderate: deep to water| depth to rock| & | Limitation: large stones slope & ```
Limitation:
    large stones
    slope
    wetness
``` & \begin{tabular}{l}
|Limitation: \\
large stones wetness
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones
\end{tabular} \\
\hline \multicolumn{8}{|l|}{140D:} \\
\hline Champion & | Severe: & Severe: & | Severe: & | Limitation: & |Limitation: & | Limitation: & |Limitation: \\
\hline & slope & large stones piping & no water & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & large stones slope wetness & | large stones & large stones slope wetness \\
\hline Dishno & & & & |Limitation: & & & \\
\hline & slope & large stones piping & deep to water| depth to rock| & large stones slope & large stones slope wetness & \begin{tabular}{|l|}
\(\mid l\) \\
\(\mid\) large stones \\
slope \\
wetness
\end{tabular} & large stones slope \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{141D:} \\
\hline Pelissier & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: seepage & |Severe: no water & |Limitation: deep to water & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\] & \(\mid\) Limitation:
| slope
| too sandy
| soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | slope } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline Rock outcrop & | Severe: & Slight & | Severe: & |Limitation: & | Limitation: & | Limitation: & |Limitation: \\
\hline & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & & no water & deep to water & ```
slope
depth to rock
``` & \begin{tabular}{l}
slope \\
depth to rock
\end{tabular} & ```
slope
depth to rock
``` \\
\hline \multicolumn{8}{|l|}{142B:} \\
\hline Pelissier & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage & | Severe: no water & | Limitation: deep to water| & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { | droughty }
\end{aligned}
\] & |Limitation: too sandy soil blowing & |Limitation: droughty \\
\hline \multicolumn{8}{|l|}{142D:} \\
\hline Pelissier & \[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & Severe: seepage & |Severe: no water & |Limitation: deep to water & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { slope } \\
& \text { droughty }
\end{aligned}
\] & \(\mid\) Limitation:
\(\mid\) slope
\(\mid\) too sandy
| soil blowing & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | slope } \\
& \text { droughty }
\end{aligned}
\] \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{array}{|l|}
\mid \text { Pond reservoir } \\
\text { areas }
\end{array}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline Farquar & |Severe: seepage & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid
\end{aligned}
\] & |Limitation: cutbanks cave & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \text { wetness } \\
& \text { droughty }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
large stones \\
too sandy \\
wetness
\end{tabular} & |Limitation: large stones droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{145C:} \\
\hline Munising- & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
piping
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & Limitation: percs slowly slope & | Limitation:
| slope
| wetness
\(\mid\) droughty & \(\mid\) Limitation:
\(\mid\) rooting depth \(\mid\)
\(\mid\) wetness & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline Yalmer & | Severe: & | Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & piping & no water & \[
\begin{aligned}
& \text { percs slowly } \\
& \text { slope }
\end{aligned}
\] & \(|\)\begin{tabular}{l}
slope \\
wetness \\
droughty
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \text { rooting depth| } \\
& \text { wetness }
\end{aligned}\right.
\] & rooting depth slope droughty \\
\hline \multicolumn{8}{|l|}{146B:} \\
\hline Munising & \[
\begin{aligned}
& \text { |Moderate: } \\
& \mid \text { seepage } \\
& \text { | slope }
\end{aligned}
\] & \begin{tabular}{l}
|Severe: \\
piping
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & |Limitation: percs slowly slope & \begin{tabular}{|l}
| Limitation: \\
| slope \\
\(\mid\) wetness \\
\(\mid\) droughty
\end{tabular} & \(\mid\) Limitation:
\(\mid\) rooting depth
\(\mid\) wetness & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline & & & & & & & \\
\hline Skanee- & \[
\begin{aligned}
& \mid \text { Moderate: } \\
& \mid \text { seepage }
\end{aligned}
\] & \begin{tabular}{l}
| Severe: \\
piping \\
wetness
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & Limitation: frost action percs slowly & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \text { wetness } \\
& \text { droughty }
\end{aligned}
\] & \(\mid\) Limitation:
\(\mid\) rooting depth
\(\mid\)
wetness
\(\mid\) soil blowing & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{147A:} \\
\hline Skanee & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
piping \\
wetness
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & Limitation: frost action percs slowly & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { wetness } \\
& \text { droughty }
\end{aligned}
\] & \(\mid\) Limitation:
\(\mid\) rooting depth
\(\mid\)
wetness
soil blowing & \begin{tabular}{l}
|Limitation: \\
rooting depth \\
wetness \\
droughty
\end{tabular} \\
\hline & & & & & & & \\
\hline Gay & \begin{tabular}{l}
Moderate: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Moderate: \\
| slow refill
\end{tabular} & Limitation: frost action ponding & |Limitation: soil blowing ponding & |Limitation: soil blowing ponding & \begin{tabular}{l}
Limitation: \\
wetness
\end{tabular} \\
\hline \multicolumn{8}{|l|}{148B:} \\
\hline Shoepac & \(\mid\) Moderate:
\(\mid\) seepage
\(\mid\) slope & |Severe:
| piping & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & |Limitation: percs slowly slope & \begin{tabular}{|l|}
| Limitation: \\
| slope \\
| wetness \\
| soil blowing
\end{tabular} & | Limitation: wetness soil blowing & \begin{tabular}{l}
|Limitation: \\
wetness
\end{tabular} \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{gathered}
\mid \text { Pond reservoir| } \\
\text { areas }
\end{gathered}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multicolumn{8}{|l|}{153F:} \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{| Severe:
| no water} & \multirow[t]{4}{*}{Limitation: deep to water|} & |Limitation: & \multirow[t]{2}{*}{| Limitation:
| slope} & |Limitation: \\
\hline & slope & & & & slope & & slope \\
\hline & depth to rock| & & & & depth to rock| & depth to rock & depth to rock \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{154B:} \\
\hline \multirow[t]{5}{*}{Rubicon} & \multirow[t]{5}{*}{} & Severe: & | Severe: & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & Limitation: & |Limitation: & |Limitation: \\
\hline & & seepage & \multirow[t]{2}{*}{| no water} & & fast intake & | too sandy & \multirow[t]{2}{*}{droughty} \\
\hline & & \multirow[t]{2}{*}{piping} & & & slope & | soil blowing & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Sayner} & Severe: & & | Severe: & \multirow[t]{2}{*}{|Limitation:
| deep to water \(\mid\)} & Limitation: & Limitation: & \multirow[t]{2}{*}{\begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular}} \\
\hline & seepage & seepage & | no water & & fast intake & too sandy & \\
\hline & & & & & slope & soil blowing & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{154D:} \\
\hline \multirow[t]{5}{*}{Rubicon} & & \multirow[t]{2}{*}{Severe:} & \multirow[t]{2}{*}{| Severe: no water} & \multirow[t]{2}{*}{\begin{tabular}{l}
Limitation: \\
deep to water|
\end{tabular}} & |Limitation: & \multirow[t]{2}{*}{|Limitation:} & |Limitation: \\
\hline & seepage & & & & fast intake & & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & \multirow[t]{2}{*}{piping} & | no water & & \multirow[t]{2}{*}{slope droughty} & \multirow[t]{2}{*}{| too sandy soil blowing} & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Sayner-----------} & Severe: & \multirow[t]{2}{*}{Severe:} & \multirow[t]{2}{*}{| Severe: \({ }^{\text {| }}\) no water} & \multirow[t]{2}{*}{Limitation: deep to water} & |Limitation: & |Limitation: & Limitation: \\
\hline & seepage & & & & fast intake & | slope & \multirow[t]{2}{*}{slope droughty} \\
\hline & slope & & & & slope & | too sandy & \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{| soil blowing} & droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{155A:} \\
\hline \multirow[t]{4}{*}{Zeba} & & | Severe: & & \multirow[t]{2}{*}{| Limitation:} & \multirow[t]{2}{*}{} & & \\
\hline & seepage & piping & \multirow[t]{2}{*}{| depth to rock|} & & & \multirow[t]{2}{*}{large stones wetness depth to rock} & \multirow[t]{3}{*}{large stones wetness depth to rock} \\
\hline & depth to rock| & & & frost action depth to rock & \(|\)\begin{tabular}{l}
wetness \\
depth to rock \\
\(\mid\) \\
droughty
\end{tabular} & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Jacobsville------} & Moderate: & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
piping \\
ponding
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { depth to rock } \mid
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
frost action \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
soil blowing \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
large stones \\
ponding \\
depth to rock
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
large stones \\
wetness \\
depth to rock
\end{tabular}} \\
\hline & seepage & & & & & & \\
\hline & depth to rock| & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{156B:} \\
\hline \multirow[t]{4}{*}{Duel} & \multirow[t]{4}{*}{Severe: seepage} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { seepage } \\
& \text { | piping }
\end{aligned}
\]} & \multirow[t]{4}{*}{|Severe: no water} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular}} & \multirow[t]{4}{*}{Limitation: too sandy depth to rock} & \multirow[t]{4}{*}{Limitation: depth to rock droughty} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \text { |Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{161B:} \\
\hline Yellowdog & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \[
\mid
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) too sandy \\
\(\mid\) depth to rock
\end{tabular} & ```
|Limitation:
 depth to rock
 droughty
``` \\
\hline \multicolumn{8}{|l|}{162B:} \\
\hline Buckroe & \[
\mid \text { Severe: } \mid
\] & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
|Severe: \\
| no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & |Limitation: too sandy depth to rock & \begin{tabular}{l}
| Limitation: \\
depth to rock droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{165B:} \\
\hline Chocolay & \begin{tabular}{l}
Moderate: \\
seepage \\
slope \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Severe: \\
large stones
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & |Limitation:
\(\mid\) large stones
\(\mid\) slope
\(\mid\) depth to rock & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
wetness
\end{tabular} & | Limitation:
\(\mid\) large stones
| wetness
| depth to rock & \begin{tabular}{l}
|Limitation: \\
large stones depth to rock droughty
\end{tabular} \\
\hline Waiska- & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\left\lvert\, \begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}\right.
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & |Limitation: too sandy soil blowing & \begin{tabular}{l}
|Limitation: \\
droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{166 :} \\
\hline Skandia & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & \begin{tabular}{l}
| Severe: \\
excess humus ponding
\end{tabular} &  & \(\mid\) Limitation:
\(\mid\) frost action
\(\mid\) ponding
\(\mid\) depth to rock & |Limitation:
\(\mid\) ponding
\(\mid\) depth to rock \(\mid\) & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
| ponding \\
depth to rock
\end{tabular} & |Limitation: wetness depth to rock \\
\hline \multicolumn{8}{|l|}{167:} \\
\hline Skandia & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & | Severe: excess humus ponding & \[
\mid \text { Severe: } \mid
\] & |Limitation:
\(\mid\) frost action
\(\mid\) ponding
\(\mid\) depth to rock & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
ponding \\
| depth to rock
\end{tabular} & \[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\text { ponding } \\
\text { depth to rock }
\end{array}
\] & \begin{tabular}{l}
|Limitation: \\
wetness \\
depth to rock
\end{tabular} \\
\hline Jacobsville & \begin{tabular}{|l|}
\(\mid\) Moderate: \\
seepage \\
\(\mid\) depth to rock \(\mid\)
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \mid \text { piping } \\
& \text { | ponding }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid \\
& \mid \text { depth to rock } \mid
\end{aligned}\right.
\] & |Limitation:
frost action
\(\mid\) ponding
\(\mid\) depth to rock & |Limitation:
| soil blowing
| ponding
depth to rock & \begin{tabular}{|l|} 
|Limitation: \\
\(\mid\) large stones \\
| ponding \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones \\
wetness \\
depth to rock
\end{tabular} \\
\hline \multicolumn{8}{|l|}{168B:} \\
\hline Yellowdog- & \begin{tabular}{l}
Severe: \\
seepage
\end{tabular} & Severe: seepage & \begin{tabular}{l}
| Severe: \\
| no water
\end{tabular} & \[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
fast intake \\
slope \\
droughty
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
too sandy \\
depth to rock
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
depth to rock droughty
\end{tabular} \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & | Pond reservoir areas & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{168B:} \\
\hline Burt & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { depth to rock } \mid
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage \\
piping \\
thin layer
\end{tabular} & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { cutbanks cave } \mid \\
& \mid \text { depth to rock } \mid
\end{aligned}
\] & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) ponding \\
depth to rock \(\mid\)
\end{tabular} & \begin{tabular}{l}
Limitation: \\
fast intake soil blowing ponding
\end{tabular} & | Limitation:
\(\mid\) too sandy
\(\mid\) ponding
\(\mid\) depth to rock \(\mid\) & \begin{tabular}{l}
Limitation: \\
wetness \\
depth to rock droughty
\end{tabular} \\
\hline \multicolumn{8}{|l|}{170B:} \\
\hline Chocolay & | Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & | seepage & large stones & | no water & large stones & large stones & large stones & large stones \\
\hline & slope & seepage & & slope & slope & wetness & depth to rock \\
\hline & depth to rock| & & & depth to rock| & wetness & depth to rock & droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{171B:} \\
\hline \multirow[t]{4}{*}{Paavola} & | Moderate: | & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
large stones seepage
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{4}{*}{| Limitation:
\(\mid\) large stones
| percs slowly
| slope} & \multirow[t]{4}{*}{```
Limitation:
    large stones
    slope
    wetness
```} & \multirow[t]{4}{*}{\(\mid\) Limitation:
\(\mid\) large stones
\(\mid\) rooting depth
\(\mid\)
wetness} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Limitation: \\
large stones rooting depth wetness
\end{tabular}} \\
\hline & seepage & & & & & & \\
\hline & | slope | & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{172D: | | | | | | |} \\
\hline \multirow[t]{4}{*}{Buckroe} & | Severe: | & \multirow[t]{4}{*}{| Severe:
| seepage
| thin layer} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\]} & \multirow[t]{4}{*}{|Limitation:
| deep to water} & \multirow[t]{2}{*}{| Limitation:} & \multirow[t]{2}{*}{| Limitation:} & Limitation: \\
\hline & | slope | & & & & & & slope \\
\hline & depth to rock| & & & & slope droughty & too sandy depth to rock & depth to rock droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & |Limitation: & \multirow[t]{2}{*}{| Limitation:
\(\mid\) slope} & Limitation: \\
\hline & slope & & & & slope & & slope \\
\hline & depth to rock| & & & & depth to rock| & depth to rock| & depth to rock \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{172F:} \\
\hline \multirow[t]{5}{*}{Buckro} & | Severe: |S & \multirow[t]{5}{*}{| Severe: seepage thin layer} & \multirow[t]{5}{*}{|Severe: no water} & \multirow[t]{5}{*}{\[
\mid
\]} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
|Limitation: \\
\(\mid\) fast intake \\
slope \\
droughty
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Limitation: \\
| slope \\
\(\mid\) too sandy \\
| depth to rock
\end{tabular}} & \multirow[t]{5}{*}{```
Limitation:
 slope
 depth to rock
 droughty
```} \\
\hline & slope | & & & & & & \\
\hline & depth to rock & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & | Severe: & \multirow[t]{5}{*}{Slight} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { deep to water } \mid
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Limitation: } \\
& \mid \text { slope } \\
& \mid \text { depth to rock }
\end{aligned}
\]} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { slope } \\
\text { depth to rock }
\end{array}
\]} & \multirow[t]{4}{*}{Limitation: slope depth to rock} \\
\hline & slope & & & & & & \\
\hline & depth to rock & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{173B:} & & & & & & & \\
\hline & | Severe: & \multirow[t]{3}{*}{Severe: seepage} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Limitation: \\
deep to water
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{|l|} 
| Limitation: \\
slope \\
droughty
\end{tabular}} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Limitation: \\
too sandy \\
soil blowing
\end{tabular}} & \multirow[t]{3}{*}{Limitation: droughty} \\
\hline & | seepage | & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{176B:} \\
\hline Greenwood- & \begin{tabular}{l}
|Severe: \\
seepage
\end{tabular} & Severe: excess humus ponding & Severe: slow refill cutbanks cave & \begin{tabular}{l}
Limitation: \\
frost action subsides ponding
\end{tabular} & \[
\left\lvert\, \begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { rooting depth } \\
\text { ponding }
\end{array}\right.
\] & Limitation: ponding & \begin{tabular}{l}
|Limitation: \\
wetness
\end{tabular} \\
\hline \multirow[t]{5}{*}{Croswell} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
seepage \\
piping
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
cutbanks cave
\end{tabular}} & \multirow[t]{2}{*}{| Limitation:} & Limitation: & \multirow[t]{4}{*}{Limitation: too sandy wetness} & \multirow[t]{4}{*}{|Limitation: droughty} \\
\hline & & & & & slope & & \\
\hline & & & & \multirow[t]{2}{*}{cutbanks cave} & \multirow[t]{3}{*}{wetness droughty} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{177E:} \\
\hline \multirow[t]{5}{*}{Frohling} & | Severe: & \multirow[t]{5}{*}{Severe:
piping} & | Severe: & \multirow[t]{5}{*}{|Limitation: deep to water} & Limitation: & \multirow[t]{2}{*}{Limitation: rooting depth} & |Limitation: \\
\hline & slope & & \multirow[t]{4}{*}{| no water} & & slope & & rooting depth \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{slope |} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{177F:} \\
\hline \multirow[t]{5}{*}{Frohling} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
slope
\end{tabular}} & \multirow[t]{5}{*}{Severe: piping} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{5}{*}{Limitation: deep to water|} & |Limitation: & & Limitation: \\
\hline & & & & & slope & rooting depth| & \multirow[t]{2}{*}{rooting depth slope} \\
\hline & & & & & \multirow[t]{2}{*}{droughty} & \multirow[t]{2}{*}{slope |} & \\
\hline & & & & & & & \multirow[t]{2}{*}{droughty} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{178D:} \\
\hline \multirow[t]{5}{*}{Schweitzer} & \multirow[t]{2}{*}{| Severe:} & & \multirow[t]{2}{*}{} & Limitation: & Limitation: & Limitation: & Limitation: \\
\hline & & \multirow[t]{3}{*}{large stones piping} & & \multirow[t]{3}{*}{deep to water|} & large stones & large stones | & \multirow[t]{3}{*}{large stones rooting depth slope} \\
\hline & & & \multirow{2}{*}{| no water} & & slope & rooting depth & \\
\hline & & & & & droughty & slope & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-} & & & & & |Limitation: & |Limitation: & |Limitation: \\
\hline & seepage & \multirow[t]{3}{*}{seepage
piping} & \multirow[t]{4}{*}{no water} & \multirow[t]{4}{*}{deep to water|} & \multirow[t]{4}{*}{fast intake slope droughty} & \multirow[t]{3}{*}{slope too sandy soil blowing} & \multirow[t]{3}{*}{slope droughty} \\
\hline & slope & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Severe: } \\
\mid \text { slope } \\
\mid \text { depth to rock } \mid
\end{array}
\]} & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{| Limitation: deep to water|} & \multirow[t]{4}{*}{\[
\left\lvert\, \begin{array}{|l|}
\mid \text { Limitation: } \\
\mid \text { slope } \\
\text { depth to rock }
\end{array}\right.
\]} & \multirow[t]{4}{*}{Limitation: slope depth to rock|} & \multirow[t]{4}{*}{Limitation: slope depth to rock} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{178F:
Schweitzer} & & & & & & & \\
\hline & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Severe: } \\
& \mid \text { slope }
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular}} & \multirow[t]{4}{*}{Severe: no water} & \multirow[t]{4}{*}{Limitation:
deep to water} & Limitation: & Limitation: & Limitation: \\
\hline & & & & & \multirow[t]{3}{*}{large stones slope droughty} & \multirow[t]{3}{*}{large stones rooting depth| slope} & \multirow[t]{3}{*}{large stones rooting depth slope} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued


Table 16.--Water Management--Continued


Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \(\left|\begin{array}{c}\text { Pond reservoir } \\ \text { areas }\end{array}\right|\) & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & | & & & & \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
187B: \\
Reade
\end{tabular}} & & & | | & & & & \\
\hline & | Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & no water & depth to rock| & & erodes easily| & erodes easily \\
\hline & slope & & & & soil blowing & wetness & rooting depth \\
\hline & | depth to rock| & & & & & | depth to rock| & depth to rock \\
\hline & | | & & & & & & \\
\hline 190B: & & & & & & & \\
\hline \multirow[t]{4}{*}{Emmet} & & & & & |Limitation: & & |Favorable \\
\hline & | seepage & piping & | no water & deep to water & slope & | soil blowing & \\
\hline & | slope & & & & soil blowing & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Cunard-} & Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & no water & deep to water| & slope & & depth to rock \\
\hline & | slope & & & & | soil blowing & depth to rock & droughty \\
\hline & depth to rock| & & & & droughty & & \\
\hline & & & & & & & \\
\hline 191B: & & & & & & & \\
\hline \multirow[t]{4}{*}{Nahma-} & |Moderate: | & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage | & piping & depth to rock & frost action & soil blowing & ponding & wetness \\
\hline & | depth to rock | & ponding & & \[
\left\lvert\, \begin{aligned}
& \text { ponding } \\
& \text { depth to rock }
\end{aligned}\right.
\] & \[
\left\lvert\, \begin{aligned}
& \text { ponding } \\
& \text { depth to rock }
\end{aligned}\right.
\] & depth to rock & depth to rock \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Sundell} & | Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage | & piping & | depth to rock| & frost action & wetness & wetness & wetness \\
\hline & | depth to rock| & wetness & & | depth to rock & depth to rock & depth to rock & depth to rock \\
\hline & & & & & & & \\
\hline 193E: & & & & & & & \\
\hline \multirow[t]{4}{*}{Frohling} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | slope & piping & | no water & deep to water| & \[
\begin{aligned}
& \text { slope } \\
& \text { droughty }
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { rooting depth| } \\
& \text { slope }
\end{aligned}
\] & \[
\begin{aligned}
& \text { rooting depth } \\
& \text { slope }
\end{aligned}
\] \\
\hline & | & & & & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Tokiahok-} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & seepage & no water & deep to water| & fast intake & rooting depth| & rooting depth \\
\hline & slope & piping & & & slope & slope & slope \\
\hline & & & & & droughty & too sandy & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{194E:} & & & | | & & & & \\
\hline & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | slope & piping & | no water & deep to water| & \[
\mid \text { erodes easily } \mid
\] & erodes easily| & erodes easily \\
\hline & & & & & | slope & | slope & | slope \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & | | & & | & & & & \\
\hline \multicolumn{8}{|l|}{196E:} \\
\hline \multirow[t]{5}{*}{Frohling} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & piping & | no water & deep to water| & slope & slope & | rooting depth \\
\hline & & & & & droughty & soil blowing & slope \\
\hline & & & & & & & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Onota} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & piping & no water & deep to water| & slope & slope & slope \\
\hline & & & & & soil blowing & soil blowing & depth to rock \\
\hline & & & & & & depth to rock| & droughty \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Tokiahok} & | Severe: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: | & |Limitation: \\
\hline & | seepage & seepage & | no water & deep to water| & fast intake & rooting depth| & rooting depth \\
\hline & slope & piping & & & | slope & slope & slope \\
\hline & & & & & droughty & too sandy & droughty \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{197B:} \\
\hline \multirow[t]{5}{*}{Shoepac} & \(\mid\) Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & | no water & | percs slowly & | slope & | wetness & | wetness \\
\hline & slope & & & slope & wetness & soil blowing & \\
\hline & & & & & soil blowing & & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Trenary} & \(\mid\) Moderate: & Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & |Favorable \\
\hline & | seepage & piping & no water & deep to water & slope & soil blowing & \\
\hline & slope & & & & soil blowing & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{198B:} \\
\hline \multirow[t]{4}{*}{Shoepac} & \(\mid\) Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & | no water & | percs slowly & wetness & wetness & wetness \\
\hline & slope & & & | slope & soil blowing & soil blowing & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Reade} & \(\mid\) Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & | no water & | depth to rock| & wetness & erodes easily & erodes easily \\
\hline & | depth to rock| & & & & soil blowing & wetness | & rooting depth \\
\hline & & & & & & depth to rock| & depth to rock \\
\hline & \(\mid\) | & & & & & & \\
\hline \multirow[t]{3}{*}{199. \({ }_{\text {Udorthents, ash }}\)} & | | & & & & & & \\
\hline & | | & & & & & & \\
\hline & | | & & & & & & \\
\hline \multirow[t]{5}{*}{200A:
Charlevo} & & & & & & & \\
\hline & | Moderate: & Severe: & | Moderate: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & | seepage & piping & | slow refill & | frost action & | wetness & wetness & wetness \\
\hline & \(\mid\) | & wetness & & & soil blowing & soil blowing & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{200A:} \\
\hline Ensley & \begin{tabular}{l}
| Moderate: \\
| seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
piping \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { |Severe: } \\
& \text { | slow refill }
\end{aligned}
\] & |Limitation: frost action ponding & |Limitation: soil blowing ponding & |Limitation: soil blowing ponding & |Limitation: wetness \\
\hline \multicolumn{8}{|l|}{201B:} \\
\hline Sauxhead & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { depth to rock } \mid
\end{aligned}
\] & Severe: seepage thin layer & \begin{tabular}{l}
| Severe: \\
no water
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
slope \\
| cutbanks cave \\
\(\mid\) \\
depth to rock
\end{tabular} & \begin{tabular}{|l}
\(\mid\) Limitation: \\
\(\mid\) slope \\
wetness \\
\(\mid\) droughty
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) too sandy \\
\(\mid\) wetness \\
\(\mid\) \\
depth to rock
\end{tabular} & |Limitation: depth to rock droughty \\
\hline Jacobsville & |Moderate: & Severe: & | Severe: & |Limitation: & |Limitation: & |Limitation: & |Limitation: \\
\hline & \(\mid\) seepage \(\mid\) & \begin{tabular}{l}
piping \\
ponding
\end{tabular} & depth to rock| & frost action ponding depth to rock & soil blowing ponding depth to rock & large stones ponding depth to rock & large stones wetness depth to rock \\
\hline \multicolumn{8}{|l|}{202B:} \\
\hline Sauxhead & \[
\begin{aligned}
& \mid \text { Severe: } \\
& \mid \text { depth to rock } \mid
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
seepage \\
thin layer
\end{tabular} & \[
\begin{aligned}
& \text { | Severe: } \\
& \text { | no water }
\end{aligned}
\] & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
slope \\
| cutbanks cave \\
\(\mid\) \\
depth to rock
\end{tabular} & \(\mid\) Limitation:
\(\mid\) slope
wetness
\(\mid\) droughty & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) too sandy \\
\(\mid\) wetness \\
\(\mid\) \\
depth to rock
\end{tabular} & | Limitation: depth to rock droughty \\
\hline \multicolumn{8}{|l|}{203A:} \\
\hline Au Gres & |Severe: seepage & \begin{tabular}{l}
Severe: \\
seepage \\
piping \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
cutbanks cave|
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \text { | wetness } \\
& \text { droughty }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
too sandy \\
wetness \\
soil blowing
\end{tabular} & |Limitation: wetness droughty \\
\hline & & & & & & & \\
\hline Deford & \begin{tabular}{l}
|Severe: \\
| seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
seepage \\
piping \\
ponding
\end{tabular} & \begin{tabular}{l}
|Severe: \\
cutbanks cave
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
ponding \\
cutbanks cave
\end{tabular} & \[
\begin{aligned}
& \text { |Limitation: } \\
& \mid \text { ponding } \\
& \text { droughty }
\end{aligned}
\] & \begin{tabular}{l}
|Limitation: \\
too sandy \\
soil blowing \\
ponding
\end{tabular} & \[
\begin{aligned}
& \text { | Limitation: } \\
& \mid \text { wetness } \\
& \text { | droughty }
\end{aligned}
\] \\
\hline \multicolumn{8}{|l|}{204B:} \\
\hline Gogebic & \[
\begin{aligned}
& \text { | Moderate: } \\
& \mid \text { seepage } \\
& \text { slope }
\end{aligned}
\] & \begin{tabular}{l}
Severe: \\
large stones piping
\end{tabular} & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & ```
|Limitation:
    large stones
    percs slowly
    slope
``` & \begin{tabular}{l}
|Limitation: \\
large stones \\
slope \\
wetness
\end{tabular} & \begin{tabular}{|l|}
\(\mid\) Limitation: \\
\(\mid\) \\
large stones \\
rooting depth \\
\(\mid\) \\
wetness
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones rooting depth wetness
\end{tabular} \\
\hline Tula & \begin{tabular}{l}
|Moderate: \\
| seepage
\end{tabular} & \begin{tabular}{l}
Severe: \\
piping \\
wetness
\end{tabular} & \begin{tabular}{l}
|Severe: \\
no water
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
frost action percs slowly
\end{tabular} & \begin{tabular}{l}
|Limitation: \\
large stones wetness
\end{tabular} & \(\mid\) Limitation:
\(\left|\begin{array}{l}\text { large stones } \\ \mid \\ \text { rooting depth } \\ \mid \\ \text { wetness }\end{array}\right|\) & \begin{tabular}{l}
|Limitation: \\
large stones rooting depth wetness
\end{tabular} \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Map symbol and soil name} & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline & \[
\begin{aligned}
& \mid \text { Pond reservoir } \mid \\
& \text { areas }
\end{aligned}
\] & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{206B:} \\
\hline \multirow[t]{5}{*}{Traunik} & \multirow[t]{5}{*}{\begin{tabular}{l}
Severe: \\
seepage
\end{tabular}} & \multirow[t]{5}{*}{Severe: seepage} & \multirow[t]{5}{*}{Severe: no water} & \multirow[t]{5}{*}{|Limitation:
| deep to water} & |Limitation: & |Limitation: & \\
\hline & & & & & large stones & large stones & \multirow[t]{3}{*}{\begin{tabular}{l}
|Limitation: \\
large stones droughty
\end{tabular}} \\
\hline & & & & & slope & too sandy & \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{207D:} \\
\hline \multirow[t]{5}{*}{Dishno} & & | Severe: & |Moderate: | & |Limitation: & |Limitation: & |Limitation: & Limitation: \\
\hline & | slope & | large stones & | deep to water| & large stones & large stones & large stones & large stones \\
\hline & & \multirow[t]{2}{*}{piping} & \multirow[t]{2}{*}{| depth to rock|} & \multirow[t]{2}{*}{slope} & slope & | slope & \multirow[t]{2}{*}{| slope} \\
\hline & & & & & wetness & wetness & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Michigamme} & & Severe: & | Severe: & |Limitation: | & Limitation: & |Limitation: & |Limitation: \\
\hline & | slope & \multirow[t]{3}{*}{large stones piping} & \multirow[t]{3}{*}{no water} & \multirow[t]{3}{*}{| deep to water|} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { large stones } \\
& \text { slope } \\
& \text { droughty }
\end{aligned}
\]} & ```
large stones
``` & \multirow[t]{2}{*}{large stones slope droughty} \\
\hline & & & & & & \multirow[t]{2}{*}{| depth to rock|} & \\
\hline & & & & & & & \\
\hline \multirow[t]{4}{*}{Rock outcrop-} & & \multirow[t]{4}{*}{Slight} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{|Limitation: \(\mid\)} & \multirow[t]{2}{*}{| Limitation:} & \multirow[t]{2}{*}{| Limitation:
| slope} & |Limitation: \\
\hline & | slope & & & & & & \multirow[t]{3}{*}{\begin{tabular}{l}
slope \\
depth to rock
\end{tabular}} \\
\hline & depth to rock| & & & & depth to rock & depth to rock| & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{208F:} \\
\hline \multirow[t]{5}{*}{Keewaydin} & | Severe: & Severe: & | Severe: & |Limitation: | & | Limitation: & Limitation: & |Limitation: \\
\hline & seepage & \multirow[t]{3}{*}{large stones seepage} & \multirow[t]{4}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & large stones & large stones & \\
\hline & slope & & & & | slope & slope & \multirow[t]{2}{*}{slope droughty} \\
\hline & & & & & droughty & too sandy & \\
\hline & & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme} & | Severe: & | Severe: & | Severe: & |Limitation: | & |Limitation: & |Limitation: & |Limitation: \\
\hline & slope & \multirow[t]{4}{*}{large stones piping} & \multirow[t]{4}{*}{| no water} & \multirow[t]{3}{*}{| deep to water|} & | large stones & | large stones & large stones \\
\hline & & & & & slope & \multirow[t]{2}{*}{slope depth to rock \(\mid\)} & \multirow[t]{3}{*}{slope droughty} \\
\hline & & & & & droughty & & \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{209B:} \\
\hline \multirow[t]{5}{*}{Garlic} & | Severe: & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
seepage \\
piping
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
| Severe: \\
no water
\end{tabular}} & \multirow[t]{4}{*}{Limitation: deep to water|} & |Limitation: & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Limitation: \\
droughty
\end{tabular}} \\
\hline & seepage & & & & \multirow[t]{3}{*}{fast intake slope droughty} & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & too sandy soil blowing & droughty \\
\hline \multirow[t]{5}{*}{Fence-----------} & \(\mid\) Moderate: | & \multirow[t]{5}{*}{Severe: piping} & \multirow[t]{5}{*}{| Severe: no water} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
frost action \\
slope \\
cutbanks cave
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Limitation: \\
erodes easily| \\
slope \\
wetness
\end{tabular}} & \multirow[t]{5}{*}{Limitation: erodes easily| wetness} & \multirow[t]{5}{*}{Limitation: erodes easily} \\
\hline & seepage & & & & & & \\
\hline & slope & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 16.--Water Management--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Limitations for--} & \multicolumn{4}{|c|}{Features affecting--} \\
\hline Map symbol and soil name & Pond reservoir areas & Embankments, dikes, and levees & Aquifer-fed excavated ponds & Drainage & Irrigation & Terraces and diversions & Grassed waterways \\
\hline & & & & & & & \\
\hline M-W. & & & & & & & \\
\hline Miscellaneous water & & & & & & & \\
\hline & & & & & & & \\
\hline w. & & & & & & & \\
\hline Water & | | & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & >10 & 3-10 & & & & & & \\
\hline & & & & & inches & inches & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & & & Pct & Pct & & & & & Pct & \\
\hline & & | | & | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{38E:} \\
\hline \multirow[t]{12}{*}{Pence---------} & 0-6 & |Fine sandy loam| & | SM & A-4 & 0 & 0-8 & |90-100| & |85-95 & | 55-85 & 30-50 & 0-20 & | NP-4 \\
\hline & 6-13 & |Gravelly sandy & | SM & A-2-4, A-4 & 0 & 0-8 & |65-100| & |60-95 & | \(40-85\) & 20-50 & 0-20 & | NP-4 \\
\hline & & \(|\)\begin{tabular}{|l|} 
loam, fine \\
sandy loam
\end{tabular} & & & & & & & & & & \\
\hline & 13-31 & |Gravelly coarse| & |SP-SM, SM, SP| & A-2-4, A-1-b, | & 0 & 0-8 & |65-95 & |60-90 & |20-70 & 0-30 & --- & NP \\
\hline & & | sand, loamy | & & A-3 | & & & & & & & & \\
\hline & & | sand, coarse & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & 31-80 & |Stratified, & |GP, SP-SM, & A-1, A-3 & 0 & 0-8 & |45-95 & 140-90 & |10-65 & 0-15 & --- & NP \\
\hline & & | very gravelly & SP, GP-GM & & & & & & & & & \\
\hline & & | coarse sand, & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{39B:} \\
\hline \multirow[t]{11}{*}{Amasa---------} & 0-5 & \(\mid\) Very fine sandy & ML, SM & A-4 & 0-3 & 0-8 & | 95-100| & |90-100| & 75-95 & 45-65 & 0-20 & | NP-4 \\
\hline & & | loam | & & & & & & & & & & \\
\hline & 5-16 & |Very fine sandy| & ML, SM & A-2-4, A-4 & 0-3 & 0-8 & |75-100| & |70-100| & |45-95 & 25-65 & 0-20 & | NP-4 \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam, sandy | & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 16-80 & |Very gravelly & |GP-GM, GP, & A-1, A-3 & 0-8 & 0-15 & |45-90 & | \(40-85\) & | 10-55 & 0-15 & --- & NP \\
\hline & & sand, gravelly| & SP, SP-SM & & & & & & & & & \\
\hline & & | sand, sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multirow[t]{10}{*}{Amasa---------} & 0-5 & \(\mid\) Very fine sandy & & & & & & & & & & \\
\hline & & | loam | & & & & & & & & & & \\
\hline & 5-16 & |Very fine sandy| & ML, SM & A-2-4, A-4 & 0-3 & 0-8 & 75-100| & |70-100| & |45-95 & 25-65 & 0-20 & | NP-4 \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & | loam, sandy | & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 16-80 & |Very gravelly | & |GP-GM, GP, & A-1, A-3 & 0-8 & 0-15 & 15-90 & 140-85 & | \(10-55\) & 0-15 & --- & NP \\
\hline & & | sand, gravelly| & SP, SP-SM & & & & & & & & & \\
\hline & & sand, sand | & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity |index} \\
\hline & & & \multirow[b]{3}{*}{Unified} & \multirow[b]{3}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{\[
\begin{array}{|l|c|}
\mid>10 & 3-10 \\
\mid \text { inches } \mid \text { inches } \mid
\end{array}
\]}} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow{14}{*}{\begin{tabular}{l}
\[
39 \mathrm{E}:
\] \\
Amasa
\end{tabular}} & \multirow[t]{3}{*}{In} & | | & & | & Pct & Pct & & & & & Pct & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline & \multirow[t]{2}{*}{0-5} & |Very fine sandy| & | ML, SM & |A-4 & 0-3 & 0-8 & | 95-100| & | 90-100 & |75-95 & |45-65 & 0-20 & |NP-4 \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{5-16} & |Very fine sandy| & | ML, SM & |A-2-4, A-4 & 0-3 & 0-8 & |75-100| & 70-100 & 45-95 & |25-65 & 0-20 & |NP-4 \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam, sandy | & & | & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{16-80} & |Very gravelly & |GP-GM, GP, & |A-1, A-3 & 0-8 & 0-15 & | \(45-90\) & | \(40-85\) & | \(10-55\) & 0-15 & --- & NP \\
\hline & & sand, gravelly| & SP, SP-SM & & & & & & & & & \\
\hline & & sand, sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 40B: & \multirow{3}{*}{0-4} & & & | & & & & & & & & \\
\hline \multirow[t]{11}{*}{Waiska--------} & & | Cobbly loamy & | SM & |A-2-4 & 0 & 15-30 & 180-95 & | 75-90 & | 35-70 & 10-25 & --- & NP \\
\hline & & | sand & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{4-36} & |Very cobbly & | GW, SM, SW & |A-1, A-2-4, & 0 & 0-30 & |40-60 & | 35-55 & |10-51 & 0-25 & --- & NP \\
\hline & & | loamy sand, & & | A-3 & & & & & & & & \\
\hline & & | very gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{36-80} & | Very gravelly & | SW, GW & |A-1 & 0 & 0-30 & 140-55 & | 35-50 & 5-45 & 0-10 & --- & NP \\
\hline & & | coarse sand, & & & & & & & & & & \\
\hline & & | very gravelly & & | & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{40D:} & & & & & & & & & & & \\
\hline \multirow[t]{11}{*}{Waiska--------} & \multirow[t]{2}{*}{0-4} & | Cobbly loamy & | SM & |A-2-4 & 0 & 15-30 & 180-95 & | 75-90 & | 35-70 & 10-25 & --- & NP \\
\hline & & | sand & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{4-36} & | Very cobbly & |GW, SW & |A-1, A-2-4 & 0 & 0-30 & 140-60 & | 35-55 & | 10-45 & 0-25 & --- & NP \\
\hline & & loamy sand, & & & & & & & & & & \\
\hline & & very gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{36-80} & |Very gravelly & |SW, GW & |A-1 & 0 & 0-30 & 140-55 & | 35-50 & 5-45 & 0-10 & --- & NP \\
\hline & & coarse sand, & & & & & & & & & & \\
\hline & & | very gravelly | & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline \multirow[t]{8}{*}{41A:
Channing} & & & & | & & & & & & & & \\
\hline & & |Fine sandy loam| & & & & & |90-100| & |85-100 & |55-85 & | 30-50 & 0-20 & | NP-4 \\
\hline & \multirow[t]{3}{*}{9-22} & |Very fine sandy| & |ML, SM & |A-4 & 0 & 0-5 & | 90-100| & |85-100 & |55-95 & | 30-65 & 0-20 & | NP-4 \\
\hline & & \(\left\lvert\, \begin{aligned} & \text { loam, fine } \\ & \text { sandy loam }\end{aligned}\right.\) & & + & & & & & & & & \\
\hline & & sandy loam & & |A-1, A-3 & & & & & & & & \\
\hline & \multirow[t]{3}{*}{22-80} & |Stratified sand| & \[
\begin{aligned}
& \text { SP, SP-SM, } \\
& \mid \mathrm{GP}, \mathrm{GP}-\mathrm{GM}
\end{aligned}
\] & A-1, A-3 & 0 & 0-15 & 40-80 & 35-75 & 10-60 & 0-15 & - & NP \\
\hline & & | gravelly sand | & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|c|}
\hline>10 & 3-10 \\
\mid \text { inches } & \text { inches } \\
\hline
\end{array}
\]}} & & & & & & \\
\hline & & & Unified & AASHTO & & & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & & | & Pct & Pct & & & & | & Pct & \\
\hline & & | | & & | & & & & & & | & & \\
\hline \multicolumn{13}{|l|}{42 :} \\
\hline \multirow[t]{10}{*}{Minocqua------} & 0-5 & | Muck & PT & |A-8 & 0 & 0 & --- & --- & - & --- & --- & --- \\
\hline & 5-23 & \(\mid\) Fine sandy & ML, SM & |A-2-4, A-4 & 0 & 0 & 90-100| & 85-100 & |50-100 & |25-90 & 0-25 & | NP-7 \\
\hline & & loam, sandy & & & & & & - & & ) & & \\
\hline & & loam, silt & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 23-80 & |Very gravelly & GP-GM, SP, & A-1, A-3 & 0 & 0 & 40-95 & | 35-90 & 5-65 & 0-15 & --- & NP \\
\hline & & \[
\mid \text { sand, gravelly } \mid
\] & GP, SP-SM & & & & & & & & & \\
\hline & & | coarse sand, & & & & & & & & & & \\
\hline & & sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{43B:} \\
\hline \multirow[t]{9}{*}{Karlin---------} & 0-4 & |Sandy loam & SM & |A-2-4 & 0 & 0-3 & 95-100| & 90-100 & 55-70 & 25-40 & 0-20 & | NP-4 \\
\hline & 4-15 & | Loamy fine & SM & |A-2-4, A-4 & 0 & 0-3 & 95-100| & 90-100 & |55-95 & | \(25-50\) & 0-20 & | NP-4 \\
\hline & & | sand, fine & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & | & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 15-29 & | Loamy sand, & |SM, SP, SP-SM| & A-2-4, A-3 & 0 & 0-3 & 95-100 & 90-100 & 10-75 & 0-30 & --- & NP \\
\hline & & | sand & & & & & & & & & & \\
\hline & 29-80 & | Sand & SP, SP-SM & A-2-4, A-3 & 0 & 0-3 & 95-100 & 90-100 & 10-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 43D: & & & & & & & & & & & & \\
\hline \multirow[t]{9}{*}{Karlin--------} & 0-4 & |Sandy loam & SM & |A-2-4 & 0 & 0-3 & 95-100 & 90-100 & |55-70 & | 25-40 & 0-20 & | NP-4 \\
\hline & 4-15 & | Loamy fine & SM & |A-2-4, A-4 & 0 & 0-3 & 95-100| & 90-100 & |55-95 & | 25-50 & 0-20 & | NP-4 \\
\hline & & sand, fine & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & 15-29 & | Loamy sand, & SM, SP, SP-SM| & A-2-4, A-3 & 0 & 0-3 & 95-100 & | 90-100| & 140-75 & 0-30 & --- & NP \\
\hline & & | sand &  &  & & & & & & & & \\
\hline & 29-80 & Sand & SP, SP-SM & A-2-4, A-3 & 0 & 0-3 & 95-100 & 90-100 & 40-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{44B:
Carlshend} & & & & & & & & & & & & \\
\hline & & |Fine sandy loam| & SM & |A-4 & 0 & 0-3 & 95-100 & 90-100 & |65-85 & | 35-50 & 0-20 & |NP-4 \\
\hline & 3-14 & |Sandy loam, | & SM & A-2-4, A-4 & 0 & 0-3 & 95-100| & 90-100 & |55-70 & | 25-40 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 14-25 & |Weathered & - & - & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & 25-35 & | Unweathered & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & | & & \\
\hline & & & & & & & & & & | & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{3}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid| \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & \multicolumn{2}{|r|}{\multirow[b]{3}{*}{Unified}} & \multirow[b]{3}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|c|}
\(\mid c 10\) & \(3-10\) \\
\(\mid\) inches & inches
\end{tabular}}} & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & | 4 & 10 & \multirow[t]{2}{*}{140} & 200 & & \\
\hline \multirow[b]{3}{*}{\[
51:
\]} & \multirow[t]{2}{*}{} & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Pct} & \multirow[t]{2}{*}{} & & & & & \multirow[t]{2}{*}{Pct} & \\
\hline & & & & & & & & & & & & & \\
\hline & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{| PT}} & & & & & & & & & \\
\hline Nahma---------- & 0-11 & Muck & & & |A-8 & 0 & 0 & --- & -- & --- & --- & --- & --- \\
\hline & 11-14 & |Mucky loam & \multicolumn{2}{|l|}{| ML} & |A-4 & 0 & 0-5 & | 90-100| & 85-100 & |70-95 & | 50-75 & |20-30 & | NP-9 \\
\hline & 14-24 & |Sandy loam, & \multirow[t]{7}{*}{L, S} & \multirow[t]{4}{*}{SM} & |A-2-4, A-4 & \multirow[t]{4}{*}{2-5} & \multirow[t]{4}{*}{0-10} & \multirow[t]{4}{*}{\(|80-100|\)} & \multirow[t]{4}{*}{|75-100|} & \multirow[t]{4}{*}{|50-95} & \multirow[t]{4}{*}{25-75} & \multirow[t]{4}{*}{|20-30} & \multirow[t]{4}{*}{|NP-9} \\
\hline & & | loam, gravelly| & & & \multirow[t]{2}{*}{|} & & & & & & & & \\
\hline & & fine sandy | & & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{24-34} & Unweathered & & \multirow[t]{3}{*}{---} \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{52B:} \\
\hline \multirow[t]{8}{*}{Summerville-----|} & 0-5 & |Fine sandy loam| & \multicolumn{2}{|l|}{SM} & A-4 & 0 & 0-3 & | 95-100| & 90-100 & \multirow[t]{2}{*}{|65-85} & \multirow[t]{2}{*}{\begin{tabular}{|l|}
\(35-50\) \\
\(30-50\)
\end{tabular}} & \[
0-20
\] & \[
\mid
\] \\
\hline & \multirow[t]{4}{*}{5-13} & Fine sandy & \multicolumn{2}{|l|}{SM} & A-4 & \multirow[t]{4}{*}{0-10} & \multirow[t]{4}{*}{0-10} & | 85-100 & & & & & \multirow[t]{4}{*}{|NP-4} \\
\hline & & \[
\begin{aligned}
& \text { loam, channery } \\
& \text { fine sandy }
\end{aligned}
\] & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multirow[t]{3}{*}{|} & & & \multirow[t]{3}{*}{| |} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{55-85} & \multirow[t]{3}{*}{\[
\text { | } 30-50
\]} & \multirow{3}{*}{0-20} & \\
\hline & & fine sandy & & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{13-23} & | Unweathered & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{---}} & \multirow[t]{3}{*}{---} \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & \\
\hline \multirow{15}{*}{Michigamme-----|} & 0-5 & | sandy loam & \multicolumn{2}{|l|}{| SM} & | A-4 & \[
0-8
\] & 15-30 & | 85-95 & 80-90 & | 55-80 & 30-50 & 0-20 & | NP-4 \\
\hline & \multirow[t]{7}{*}{5-24} & | Cobbly fine & \multirow[t]{7}{*}{| ML,} & \multirow[t]{7}{*}{SM} & \multirow[t]{7}{*}{|A-4} & \multirow[t]{7}{*}{0-8} & \multirow[t]{7}{*}{0-30} & \multirow[t]{7}{*}{| 85-100|} & \multirow[t]{7}{*}{80-95} & \multirow[t]{7}{*}{| 55-95} & \multirow[t]{7}{*}{| 25-85} & \multirow[t]{7}{*}{0-20} & \multirow[t]{7}{*}{NP-4} \\
\hline & & | sandy loam, & & & & & & & & & & & \\
\hline & & cobbly silt & & & & & & & & & & & \\
\hline & & loam, gravelly & & & & & & & & & & & \\
\hline & & fine sandy | & & & & & & & & & & & \\
\hline & & loam, fine & & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{24-29} & | Cobbly fine & \multicolumn{2}{|l|}{| SM} & \multirow[t]{4}{*}{| A-4} & \multirow[t]{4}{*}{0-8} & \multirow[t]{4}{*}{0-30} & |85-95 & 80-90 & 45-80 & 25-50 & 0-20 & \multirow[t]{4}{*}{NP-4} \\
\hline & & | sandy loam, & & & & & & & & & & & \\
\hline & & | gravelly fine & & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{29-39} & \multirow[t]{3}{*}{|Unweathered bedrock} & \multicolumn{2}{|r|}{\multirow[t]{3}{*}{---}} & \multirow[t]{3}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop----|} & \multirow[t]{2}{*}{0-80} & \multirow[t]{2}{*}{| Unweathered | bedrock} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{---}} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{ll}
\mid \\
\mid & -- \\
\mid & \mid
\end{array}\right.
\]} & --- \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{3}{|r|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
| Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|c|}
\hline\(>10\) & \(3-10\) \\
\(\mid\) inches & inches
\end{tabular}}} & & & & & & \\
\hline & & & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Unified}} & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{56D:} & \multirow[t]{3}{*}{In} & | & & & | & Pct & Pct & & & & & Pct & \\
\hline & & & | & & | & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{12}{*}{Peshekee--------|} & \multirow[t]{3}{*}{0-5} & | Cobbly very & | ML, & SM & |A-4 & 0-15 & 15-30 & 185-95 & | 80-95 & | 65-95 & 35-60 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-14} & | Cobbly very & | SM, & ML & |A-2-4, A-4 & 0-15 & 0-15 & | 85-100| & 180-95 & | 50-95 & | 20-55 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{14-24} & | Unweathered & & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----|} & \multirow[t]{3}{*}{0-80} & | Unweathered & & --- & -- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 56E: & \multirow{4}{*}{0-5} & & & & & & & & & & & & \\
\hline \multirow[t]{12}{*}{Peshekee--------|} & & | Cobbly very & | ML, & SM & |A-4 & 0-15 & 15-30 & 185-95 & | 80-95 & | 65-95 & | \(40-60\) & 0-20 & | NP-4 \\
\hline & & fine sandy & & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-14} & | Cobbly very & | SM, & ML & |A-2-4, A-4 & 0-15 & 0-15 & | 85-100| & 180-95 & | 50-95 & 25-65 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{14-24} & | Unweathered & & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----|} & \multirow[t]{3}{*}{0-80} & | Unweathered & & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 56F: & \multirow{3}{*}{0-5} & & & & & & & & & & & & \\
\hline \multirow[t]{12}{*}{Peshekee-------- |} & & | Cobbly very & | ML, & SM & |A-4 & 0-15 & 15-30 & 185-95 & | 80-95 & | 65-95 & | \(40-60\) & 0-20 & | NP-4 \\
\hline & & | fine sandy & , & , & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-14} & | Cobbly very & | ML, & SM & |A-2-4, A-4 & 0-15 & 0-15 & |85-100| & 80-95 & | 50-95 & | 25-65 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{14-24} & | Unweathered & & --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & | & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & \multirow[b]{3}{*}{Unified} & \multirow[b]{3}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|l|}
\hline \\
\hline\(>10\) \\
\(\mid\) inches \\
| inches
\end{tabular}}} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{72D:} & \multirow[t]{3}{*}{In} & & & | & Pct & Pct & & & & & Pct & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Emmet---------} & 0-3 & |Fine sandy loam| & | SM & |A-4 & 0-5 & 0-8 & | 95-100| & | 90-100 & |55-85 & 30-50 & 0-20 & | NP-4 \\
\hline & 3-21 & |Sandy loam, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & | 95-100| & 90-100 & 55-85 & 25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam | & & & & & & & & & & \\
\hline & 21-28 & | Sandy loam, & |SM, SC-SM & |A-2-4, A-4 & 0-5 & 0-8 & |95-100| & 90-100 & 55-85 & 25-50 & 120-30 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 28-80 & | Gravelly fine & |SM, SC-SM & |A-4 & 0-5 & 0-15 & 170-90 & |65-85 & |45-75 & 25-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 72E: & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Emmet---------} & 0-3 & |Fine sandy loam| & SM & |A-4 & 0-5 & 0-8 & |95-100| & 90-100 & |55-85 & 30-50 & 0-20 & |NP-4 \\
\hline & 3-21 & | Sandy loam, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & |95-100| & 90-100 & |55-85 & 25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 21-28 & & |SM, SC-SM & |A-2-4, A-4 & 0-5 & 0-8 & |95-100| & 90-100 & 55-85 & 25-50 & 120-30 & |NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 28-80 & | Gravelly fine & |SM, SC-SM & |A-4 & 0-5 & 0-15 & 170-90 & |65-85 & |45-75 & 25-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{20}{*}{73B:
Gogebic} & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{0-5} & | Cobbly silt & | ML & |A-4 & 5-10 & 10-20 & 175-95 & 170-90 & | 65-90 & 55-85 & 0-20 & | NP-4 \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-18} & | Cobbly sandy & | ML, SM & |A-2-4, A-4 & 0-10 & 1-20 & |75-100| & 70-95 & | \(50-90\) & 25-60 & 0-20 & |NP-4 \\
\hline & & loam, very & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{18-62} & |Very gravelly & | SM & |A-1-b, A-2-4 & 0-15 & 8-30 & -50-70 & |45-65 & | 30-60 & 10-40 & 0-25 & | NP-7 \\
\hline & & loamy sand, & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & \\
\hline & & | loam, very | & & & & & & & & & & \\
\hline & & | gravelly sandy| & & & & & & & & & & \\
\hline & & loam | & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{62-80} & | Gravelly sandy & | SM & |A-2-4 & 0-15 & 8-30 & 150-70 & |45-65 & | 35-60 & 10-30 & 0-20 & | NP-4 \\
\hline & & | loam, very | & & & & & & & & & & \\
\hline & & \(\mid\) gravelly sandy & & & & & & & & & & \\
\hline & & | loam | & & & & & & & | & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|c|}
\hline\(>10 \mid 3-10\) \\
\(\mid\) inches \(\mid\) inches \(\mid\)
\end{tabular}}} & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{76C:} & \multirow[t]{2}{*}{In} & & & & Pct & \multirow[t]{2}{*}{Pct} & - & & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{} & & \multirow[b]{2}{*}{| SM} & & & & & & & & & \\
\hline \multirow[t]{16}{*}{Voelker-------} & & \(\mid\) Fine sand & & |A-2-4 & 0 & 0 & 100 & | 95-100 & 75-90 & 120-35 & 0-20 & |NP-4 \\
\hline & \multirow[t]{3}{*}{\[
\begin{array}{r}
0-11 \\
11-15
\end{array}
\]} & \multirow[t]{3}{*}{|Sand, fine
\(\mid\) sand, loamy
fine sand} & \multirow[t]{3}{*}{SM, SP-SM} & A-2-4, A-3, & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{100} & \multirow[t]{3}{*}{|95-100} & \multirow[t]{3}{*}{|50-95} & \multirow[t]{3}{*}{5-50} & \multirow[t]{3}{*}{0-20} & \multirow[t]{3}{*}{| NP-4} \\
\hline & & & & | A-4 & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{15-31} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Sand, fine } \\
& \mid \text { sand, loamy } \\
& \text { fine sand }
\end{aligned}
\]} & \multirow[t]{3}{*}{SM, SP-SM} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{A}-2-4, \mathrm{~A}-3, \\
& \mathrm{~A}-4
\end{aligned}
\]} & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{100} & \multirow[t]{3}{*}{| 95-100} & \multirow[t]{3}{*}{50-95} & \multirow[t]{3}{*}{5-50} & \multirow[t]{3}{*}{0-20} & \multirow[t]{3}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{31-39} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{SC-SM, SM, ML} & \multirow[t]{5}{*}{A-4} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{100} & 95-100 & 70-95 & 140-65 & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{39-80} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Stratified silt| } \\
& \mid \text { loam to fine } \\
& \text { sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{|ML, SC-SM, SM|} & \multirow[t]{4}{*}{A-2-4, A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{100} & \multirow[t]{4}{*}{95-100} & \multirow[t]{4}{*}{75-100} & \multirow[t]{4}{*}{20-90} & \multirow[t]{4}{*}{0-25} & \multirow[t]{4}{*}{| NP-7} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{76E:} \\
\hline \multirow[t]{4}{*}{Garlic--------} & 0-9 & |Fine sand | & & |A-2-4 & \[
0
\] & & 95-100 & |90-100 & \[
\text { | } 70-95
\] & 15-35 & & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { NP } \\
& \text { NP }
\end{aligned}\right.
\]} \\
\hline & 9-26 & |Fine sand, sand| & |SP, SP-SM, SM| & A-2-4, A-3 & 0 & 0 & 95-100| & |90-100 & \multirow[t]{3}{*}{|45-95} & | 0-35 & --- & \\
\hline & \multirow[t]{2}{*}{26-80} & \multirow[t]{2}{*}{|Fine sand, sand|} & \multirow[t]{2}{*}{|SP, SM, SP-SM|} & \multirow[t]{2}{*}{A-2-4, A-3} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{|95-100|} & \multirow[t]{2}{*}{\(|90-100|\)} & & \multirow[t]{2}{*}{0-35} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| NP} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{20}{*}{Alcona--------} & \multirow[t]{2}{*}{0-9} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Loamy very fine } \mid \\
& \mid \text { sand }
\end{aligned}
\]} & \multirow[t]{2}{*}{SM} & \multirow[t]{2}{*}{A-4} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0-5} & \multirow[t]{2}{*}{|95-100|} & \multirow[t]{2}{*}{|90-100|} & \multirow[t]{2}{*}{|55-95} & \multirow[t]{2}{*}{| 35-60} & \multirow[t]{2}{*}{0-20} & \multirow[t]{2}{*}{|NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{9-13} & \multirow[t]{5}{*}{\(|\)\begin{tabular}{|l|}
\(\mid\) Loamy fine \\
\(\left|\begin{array}{l}\text { sand, very } \\
\text { fine sandy } \\
\mid \\
\text { loam, fine } \\
\text { sandy loam }\end{array}\right|\) \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{|A-4} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0-5} & \multirow[t]{5}{*}{95-100|} & 90-100 & |65-95 & | 35-65 & \multirow[t]{5}{*}{0-20} & \\
\hline & & & & & & & & - & | & | & & \multirow[t]{2}{*}{| NP-4} \\
\hline & & & & & & & &  &  & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{13-26} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Loamy fine } \\
& \mid \text { sand, fine } \\
& \text { sandy loam, } \\
& \mid \text { very fine } \\
& \text { sandy loam }
\end{aligned}
\]} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{A-4} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0-5} & 95-100 & 90-100 & 65-95 & 135-65 & 0-20 & \\
\hline & & & & & & & & & & & \multirow[t]{3}{*}{10-20} & \multirow[t]{3}{*}{\(\left.\right|^{\text {| NP-4 }}\)} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{26-49} & \multirow[t]{4}{*}{\(|\)\begin{tabular}{l} 
Fine sandy \\
\(\mid\) loam, silt \\
loam, loamy \\
sand
\end{tabular}} & \multirow[t]{4}{*}{| CL-ML, SM, ML} & \multirow[t]{4}{*}{A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0-5} & \multirow[t]{4}{*}{95-100} & 90-100 & 45-100 & 10-90 & & | NP-10 \\
\hline & & & & & & & & & & & \multirow{3}{*}{20-30} & \multirow[t]{3}{*}{} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{49-80} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& \mid \text { Stratified fine } \mid \text { ML, SM } \\
& \mid \text { sand to silt } \\
& \text { loam }
\end{aligned}
\]}} & \multirow[t]{4}{*}{A-2-4, A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0-5} & \multirow[t]{4}{*}{95-100} & \multirow[t]{4}{*}{| 90-100|} & |70-100| & 15-90 & 0-30 & | NP-10 \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{| Plas|ticity |index} \\
\hline & & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|l} 
\\
\hline>10 & 3-10
\end{array}
\]}} & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & |inches & inches & 4 & 10 & 40 & 200 & & \\
\hline & In & & & & Pct & Pct & & & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{76E:} \\
\hline \multirow[t]{16}{*}{Voelker-------} & 0-11 & \(\mid\) Fine sand & | SM & A-2-4 & 0 & 0 & 100 & | 95-100| & |75-90 & 20-35 & 0-20 & | NP-4 \\
\hline & 11-15 & |Sand, fine & | SM, SP-SM & A-2-4, A-3, & 0 & 0 & 100 & | 95-100| & 50-95 & 5-50 & 0-20 & | NP-4 \\
\hline & & | sand, loamy & & | A-4 & & & & & & & & \\
\hline & & fine sand & & & & & & & & & & \\
\hline & 15-31 & |Sand, fine & | SM, SP-SM & A-2-4, A-3, & 0 & 0 & 100 & |95-100| & 50-95 & 5-50 & 0-20 & |NP-4 \\
\hline & & | sand, loamy & & A-4 & & & & & & & & \\
\hline & & | fine sand & & & & & & & & & & \\
\hline & 31-39 & |Loamy very fine| & |SC-SM, SM, ML| & A-4 & 0 & 0 & 100 & | 95-100| & 70-95 & 40-65 & 0-20 & | NP-4 \\
\hline & & | sand, fine | & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | very fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 39-80 & |Stratified silt| & |ML, SC-SM, SM \({ }^{\text {d }}\) & A-2-4, A-4 & 0 & 0 & 100 & |95-100| & |75-100| & 20-90 & 0-25 & |NP-7 \\
\hline & & & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{76F:} \\
\hline \multirow[t]{4}{*}{Garlic--------} & 0-9 & |Fine sand & & A-2-4 & 0 & 0 & | 95-100| & |90-100| & |70-95 & 15-35 & --- & NP \\
\hline & 9-26 & |Fine sand, sand| & |SP, SM, SP-SM| & A-2-4, A-3 & 0 & 0 & |95-100| & |90-100| & |45-95 & 0-35 & --- & NP \\
\hline & 26-80 & |Fine sand, sand| & |SP, SP-SM, SM| & A-2-4, A-3 & 0 & 0 & |95-100| & |90-100| & |45-95 & 0-35 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{20}{*}{Alcona--------} & 0-9 & | Loamy very fine| & | SM & A-4 & 0 & 0-5 & |95-100| & | 90-100| & |55-95 & 35-60 & 0-20 & | NP-4 \\
\hline & & | sand | & & & & & & & & & & \\
\hline & 9-13 & | Loamy fine & | ML, SM & A-4 & 0 & 0-5 & |95-100| & |90-100| & |65-95 & 35-65 & 0-20 & | NP-4 \\
\hline & & | sand, very & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 13-26 & | Loamy fine & | ML, SM & A-4 & 0 & 0-5 & | 95-100| & | 90-100| & |65-95 & 35-65 & 0-20 & | NP-4 \\
\hline & & | sand, fine & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | very fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 26-49 & | Fine sandy & |CL-ML, SM, ML & A-2-4, A-4 & 0 & 0-5 & | 95-100| & |90-100| & |45-100| & 10-90 & 120-30 & | NP-10 \\
\hline & & | loam, silt & & & & & & & & & & \\
\hline & & | loam, loamy & & & & & & & & & & \\
\hline & & sand & & & & & & & & & & \\
\hline & 49-80 & |Stratified fine| & ML, SM & A-2-4, A-4 & 0 & 0-5 & | 95-100| & \(|90-100|\) & |70-100| & 15-90 & 0-30 & |NP-10 \\
\hline & & | sand to silt | & & & & & & & & & & \\
\hline & & loam | & & & & & & & | & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{| Plas|ticity index} \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|c|c|}
\hline\(>10 \mid 3-10\) \\
\(\mid\) inches \(\mid\) inches \(\mid\)
\end{tabular}}} & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{76F:} & \multirow[t]{2}{*}{In} & & & & Pct & \multirow[t]{2}{*}{Pct} & & - & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{16}{*}{Voelker-------} & 0-11 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{SM
SP-SM, SM} & A-2-4 & 0 & 0 & 100 & | 95-100 & 75-95 & |20-35 & 0-20 & |NP-4 \\
\hline & \multirow[t]{3}{*}{11-15} & & & A-2-4, A-3, & \multirow[t]{3}{*}{0} & 0 & 100 & | 95-100 & 50-95 & 5-50 & 0-20 & |NP-4 \\
\hline & & | sand, loamy & \multirow[t]{2}{*}{SP-SM, SM} & \multirow[t]{2}{*}{A-4} & & & & & & & & \\
\hline & & | fine sand & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{15-31} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { | Sand, fine } \\
& \mid \text { sand, loamy } \\
& \text { fine sand }
\end{aligned}
\]} & SM, SP-SM & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \mathrm{A}-2-4, \mathrm{~A}-3, \\
& \mathrm{~A}-4 \\
& \text {, }
\end{aligned}
\]} & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{0} & \multirow[t]{3}{*}{100} & \multirow[t]{3}{*}{95-100} & \multirow[t]{3}{*}{50-95} & \multirow[t]{3}{*}{5-50} & \multirow[t]{3}{*}{0-20} & \multirow[t]{3}{*}{| NP-4} \\
\hline & & & \multirow{2}{*}{SM, SP-SM} & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{31-39} & | Loamy very fine & \multirow[t]{5}{*}{SC-SM, SM, ML} & A-4 & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{100} & 95-100 & 70-95 & 140-65 & 0-20 & |NP-4 \\
\hline & & | sand, fine & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | very fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{39-80} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Stratified silt| } \\
& \mid \text { loam to fine } \\
& \text { | sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{|ML, SC-SM, SM} & \multirow[t]{4}{*}{A-2-4, A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{100} & \multirow[t]{4}{*}{| 95-100} & 75-100 & 20-90 & \multirow[t]{4}{*}{0-25} & \multirow[t]{4}{*}{| NP-7} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{} \\
\hline \multirow[t]{4}{*}{Garlic--------} & 0-9 & \(\mid\) Fine sand | & |SM | & |A-2-4 & 0 & 0 & | \(95-100 \mid\) & | 90-100 & \[
\text { | } 70-95
\] & 15-35 & & \\
\hline & \multirow[t]{2}{*}{\(9-26\)
\(26-80\)} & \multirow[t]{2}{*}{} & |SP, SM, SP-SM| & A-2-4, A-3 & \multirow[t]{2}{*}{0
0} & 0 & |95-100| & \[
\text { | } 90-100
\] & \[
\begin{aligned}
& \mid 70-95 \\
& \mid 45-95
\end{aligned}
\] & 1 0-35 & ---- & NP \\
\hline & & & \multirow[t]{2}{*}{|SP, SP-SM, SM|} & |A-2-4, A-3 & & 0 & |95-100| & 90-100 & |45-95 & 0-35 & --- & NP \\
\hline & 26-80 & |Fine sand, sand| & & & & & & & & & & \\
\hline \multirow[t]{20}{*}{Alcona--------} & \multirow[t]{2}{*}{0-9} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Loamy very fine } \mid \\
& \mid \text { sand }
\end{aligned}
\]} & \multirow[t]{2}{*}{| SM} & \multirow[t]{2}{*}{|A-4} & \multirow[t]{2}{*}{0} & \multirow[t]{2}{*}{0-5} & \multirow[t]{2}{*}{|95-100|} & \multirow[t]{2}{*}{90-100} & \multirow[t]{2}{*}{55-95} & \multirow[t]{2}{*}{| 35-60} & \multirow[t]{2}{*}{0-20} & \multirow[t]{2}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{9-13} & \multirow[t]{5}{*}{\begin{tabular}{|l}
\(\mid\) Loamy fine \\
\(\mid\) sand, very \\
\(\mid\) fine sandy \\
\(\mid\) loam, fine \\
\(\mid\) sandy loam
\end{tabular}} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{|A-4} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0-5} & 95-100 & 90-100 & |65-95 & | 35-65 & 0-20 & | NP-4 \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{13-26} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Loamy fine } \\
& \text { sand, fine } \\
& \text { sandy loam, } \\
& \text { very fine } \\
& \text { sandy loam }
\end{aligned}
\]} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{A-4} & \multirow[t]{5}{*}{0} & \multirow[t]{5}{*}{0-5} & 95-100 & 90-100 & 65-95 & |35-65 & 0-20 & |NP-4 \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{26-49} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Fine sandy } \\
& \text { loam, silt } \\
& \text { loam, loamy } \\
& \text { sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{| CL-ML, SM, ML} & \multirow[t]{4}{*}{A-2-4, A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0-5} & \multirow[t]{4}{*}{|95-100|} & 90-100 & |45-100| & 10-90 & |20-30 & |NP-10 \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{49-80} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { |Stratified fine| } \\
& \mid \text { sand to silt } \\
& \mid \text { loam } \\
& \mid
\end{aligned}
\]} & \multirow[t]{4}{*}{| ML, SM} & \multirow[t]{4}{*}{A-2-4, A-4} & \multirow[t]{4}{*}{0} & \multirow[t]{4}{*}{0-5} & \multirow[t]{4}{*}{|95-100|} & \multirow[t]{4}{*}{|90-100|} & \multirow[t]{4}{*}{|70-100|} & \multirow[t]{4}{*}{15-90} & \multirow[t]{4}{*}{0-30} & \multirow[t]{4}{*}{| NP-10} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline>10 \\
\text { inches }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\mid 3-10 \\
\text { inches }
\end{array}
\]} & & & & & & \\
\hline & & & Unified & AASHTO & & & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & & & Pct & Pct & & & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{77D:} \\
\hline \multirow[t]{16}{*}{Voelker-------} & 0-11 & \(\mid\) Fine sand & | SM & A-2-4 & 0 & 0 & 100 & | 95-100 & 75-90 & 20-35 & 0-20 & |NP-4 \\
\hline & 11-15 & |Sand, fine & |SP-SM, SM & A-4, A-3, & 0 & 0 & 100 & | 95-100 & 50-95 & 5-50 & 0-20 & |NP-4 \\
\hline & & | sand, loamy & & A-2-4 & & & & & & & & \\
\hline & & | fine sand & & & & & & & & & & \\
\hline & 15-31 & |Sand, fine & | SM, SP-SM & A-4, A-3, & 0 & 0 & 100 & | 95-100 & |50-95 & 5-50 & 0-20 & | NP-4 \\
\hline & & | sand, loamy & & A-2-4 & & & & & & & & \\
\hline & & | fine sand & & & & & & & & & & \\
\hline & 31-39 & | Loamy very fine| & |ML, SC-SM, SM \({ }^{\text {d }}\) & A-4 & 0 & 0 & 100 & 195-100 & |70-95 & 40-65 & 0-20 & | NP-4 \\
\hline & & | sand, fine | & & & & & & & & & & \\
\hline & & | sandy loam, | & & & & & & & & & & \\
\hline & & | very fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 39-80 & |Stratified silt| & |ML, SC-SM, SM \({ }^{\text {d }}\) & A-2-4, A-4 & 0 & 0 & 100 & | 95-100 & |75-100| & 20-90 & 0-25 & | NP-7 \\
\hline & & | loam to fine & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 77E: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Garlic--------} & 0-9 & \(\mid\) Fine sand & | SM & A-2-4 & 0 & 0 & 95-100 & |90-100 & |70-95 & 15-35 & --- & NP \\
\hline & 9-26 & |Fine sand, sand| & |SP, SM, SP-SM| & A-2-4, A-3 & 0 & 0 & 95-100| & | 90-100 & |45-95 & 0-35 & --- & NP \\
\hline & 26-80 & |Fine sand, sand| & |SP, SP-SM, SM| & A-2-4, A-3 & 0 & 0 & 95-100 & 90-100 & |45-95 & 0-35 & --- & NP \\
\hline & &  & & & & & & & & & & \\
\hline \multirow[t]{20}{*}{Alcona--------} & \multirow[t]{2}{*}{0-9} & | Loamy very fine| & | SM & A-4 & 0 & 0-5 & 95-100 & 90-100 & |55-95 & 35-60 & 0-20 & | NP-4 \\
\hline & & | sand | & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{9-13} & | Loamy fine & | ML, SM & A-4 & 0 & 0-5 & 95-100 & 90-100 & 65-95 & 35-65 & 0-20 & |NP-4 \\
\hline & & | sand, very & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{13-26} & | Loamy fine & | ML, SM & A-4 & 0 & 0-5 & 95-100 & 90-100 & |65-95 & 13-65 & 0-20 & | NP-4 \\
\hline & & | sand, fine & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | very fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{26-49} & |Fine sandy & |CL-ML, SM, ML \({ }^{\text {c }}\) & A-2-4, A-4 & 0 & 0-5 & 95-100 & 90-100 & | 45-100| & 10-90 & 20-30 & | NP-10 \\
\hline & & | loam, silt & & & & & & & & & & \\
\hline & & | loam, loamy & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{49-80} & |Stratified fine| & | ML, SM & A-2-4, A-4 & 0 & 0-5 & 95-100 & 90-100 & | 70-100| & 15-90 & 0-30 & | NP-10 \\
\hline & & | sand to silt | & & & & & & & & & & \\
\hline & & loam | & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Map symbol and soil name} & \multirow{3}{*}{Depth} & \multirow{3}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{Percentage passing sieve number--}} & \multirow[b]{3}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{3}{*}{Plas|ticity |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & Unified & AASHTO & \multicolumn{2}{|l|}{\[
\begin{array}{|c|c|}
\hline>10|3-10| \\
\mid \text { inches } & \text { inches } \\
\hline
\end{array}
\]} & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & | | & & Pct & Pct & & & & & Pct & \\
\hline & & | | & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{78F:} \\
\hline \multirow[t]{8}{*}{Keweenaw------} & 0-3 & | Loamy sand & | SM & |A-2-4 & 0-3 & 0-3 & |95-100| & \(|90-100|\) & 40-75 & 10-30 & --- & NP \\
\hline & 3-25 & | Loamy fine & |SM, SP-SM & A-2-4, A-3 & 0-3 & 0-5 & | 90-100| & | 85-100| & 40-95 & 5-50 & --- & NP \\
\hline & & | sand, loamy & & & & & & & & & & \\
\hline & & | sand, sand & & & & & & & & & & \\
\hline & 25-80 & |Fine sandy & |SC-SM, SP-SM, & A-2-4, A-3, & 0-3 & 0-5 & | 90-100| & | 85-100| & 40-85 & 5-50 & 0-20 & |NP-4 \\
\hline & & | loam, sand, & SM & \[
\text { A- } 4
\] & & & & & & & & \\
\hline & & loamy sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska------} & 0-6 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 | & |95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & \(|90-100|\) & |45-70 & 0-15 & --- & NP \\
\hline & 8-17 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & |95-100| & \(|90-100|\) & |45-70 & 0-15 & --- & NP \\
\hline & 17-80 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{79B:} \\
\hline \multirow[t]{7}{*}{Keweenaw------} & 0-3 & | Loamy sand & | SM & |A-2-4 & 0-3 & 0-3 & | 95-100| & \(|90-100|\) & 40-75 & 10-30 & --- & NP \\
\hline & 3-25 & | Loamy fine & | SM, SP-SM & A-3, A-2-4 & 0-3 & 0-5 & |90-100| & | 85-100| & 40-95 & 5-50 & --- & NP \\
\hline & & \[
\begin{array}{|l}
\text { sand, loamy } \\
\text { sand, sand }
\end{array}
\] & & & & & & & & & & \\
\hline & 25-80 & |Fine sandy & | SM, SC-SM, & |A-4, A-3, & 0-3 & 0-5 & | 90-100| & | 85-100| & |40-85 & 5-50 & 0-20 & |NP-4 \\
\hline & & | loam, sand, & | SP-SM & A-2-4 & & & & & & & & \\
\hline & & | loamy sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{12}{*}{Munising------} & & |Fine sandy loam| & & & & & & \(|90-100|\) & |55-85 & | 30-50 & 0-20 & \\
\hline & 6-18 & | Sandy loam, | & | SM & A-2-4, A-4 & 0-3 & 0-8 & |95-100| & |90-100| & |50-85 & 25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 18-50 & & |SM, SC-SM & A-2-4, A-4 & 0-3 & 0-8 & |95-100| & \(|90-100|\) & |40-95 & |10-50 & 0-30 & | NP-9 \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | loamy fine & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & 50-80 & | Sandy loam, & |SM, SC-SM & A-2-4, A-4 & 0-3 & 0-8 & |95-100| & |90-100| & 50-85 & |25-50 & 0-20 & |NP-6 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{80B:} \\
\hline \multirow[t]{6}{*}{Sayner--------} & 0-2 & | Loamy sand & | SM & |A-2-4 & 0 & 0-8 & |90-100| & \(|85-100|\) & |40-75 & 10-30 & --- & NP \\
\hline & 2-14 & | Loamy sand,
| sand & |SP-SM, SM, SP| & A-2-4, A-3 & 0 & 0-8 & | 90-100| & | 85-100| & |40-75 & 0-30 & --- & NP \\
\hline & 14-27 & | Loamy sand,
sand & |SP-SM, SM, SP| & A-2-4, A-3 & 0 & 0-8 & |90-100| & |85-100| & |40-75 & 0-30 & --- & NP \\
\hline & 27-80 & \[
\begin{aligned}
& \mid \text { Stratified sand } \mid \\
& \mid \text { to gravelly }
\end{aligned}
\] & SP-SM, SP & A-3, A-1-b & 0 & 0-15 & |65-90 & |60-85 & | 15-55 & 0-15 & --- & NP \\
\hline & & coarse sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid| \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & \multirow[b]{3}{*}{Unified} & \multirow[b]{3}{*}{AASHTO} & \multirow[b]{3}{*}{\[
\begin{array}{|c|}
\mid>10 \\
\mid \text { inches }
\end{array}
\]} & \multirow[t]{3}{*}{\begin{tabular}{l}
3-10 \\
inches
\end{tabular}} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline & In & & | | & & Pct & Pct & & & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline 80B: & & & & & & & & & & & & \\
\hline Rubicon- & 0-7 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 80D: & & & & & & & & & & & & \\
\hline Sayner & 0-2 & | Loamy sand & |SM & A-2-4 & 0 & 0-8 & | 90-100| & |85-100| & 40-75 & 10-30 & --- & NP \\
\hline & 2-14 & \begin{tabular}{l}
| Loamy sand, \\
sand
\end{tabular} & \[
|S P, \quad S P-S M, \quad S M| A
\] & A-2-4, A-3 & 0 & 0-8 & | 90-100| & \(|85-100|\) & 40-75 & 0-30 & --- & NP \\
\hline & 14-27 & \[
\begin{aligned}
& \text { | Loamy sand, } \\
& \text { | sand }
\end{aligned}
\] & \(|S M, ~ S P-S M, ~ S P| ~\) & A-2-4, A-3 & 0 & 0-8 & |90-100| & | 85-100| & 40-75 & 0-30 & -- & NP \\
\hline & 27-80 & \[
\begin{aligned}
& \mid \text { Stratified sand } \\
& \mid \text { to gravelly } \\
& \mid \text { coarse sand }
\end{aligned}
\] & |SP-SM, SP & A-3, A-1-b & 0 & 0-15 & 65-90 & |60-85 & |15-55 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline Rubicon- & 0-7 & | Sand & |SP-SM, SP & A-3, A-2-4 & 0 & 0 & |95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & | \(90-100 \mid\) & |45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 80E: & & & & & & & & & & & & \\
\hline Sayner & \[
0-2
\] & & & A-2-4 & & & | 90-100 & |85-100| & 40-75 & 10-30 & --- & NP \\
\hline & 2-14 & \[
\begin{aligned}
& \text { | Loamy sand, } \\
& \text { | sand }
\end{aligned}
\] & |SP-SM, SM, SP| & A-2-4, A-3 & 0 & 0-8 & | 90-100| & \(|85-100|\) & 40-75 & 0-30 & - & NP \\
\hline & 14-27 & \[
\begin{aligned}
& \text { | Loamy sand, } \\
& \text { | sand }
\end{aligned}
\] & |SP-SM, SP, SM| & A-2-4, A-3 & 0 & 0-8 & |90-100| & | 85-100| & 40-75 & 0-30 & --- & NP \\
\hline & 27-80 & \[
\begin{aligned}
& \mid \text { Stratified sand } \\
& \mid \text { to gravelly } \\
& \mid \text { coarse sand }
\end{aligned}
\] & |SP-SM, SP & A-3, A-1-b & 0 & 0-15 & | 65-90 & |60-85 & 15-55 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline Rubicon----- & 0-7 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 | & 0 & | 95-100| & | 90-100 | & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multirow{3}{*}{Depth} & \multirow{3}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{Percentage passing sieve number--}} & \multirow{3}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{3}{*}{Plasindex} \\
\hline & & & & & & & & & & & & \\
\hline & & & Unified & AASHTO & \[
\left\lvert\, \begin{gathered}
>10 \\
\text { inches }
\end{gathered}\right.
\] & 3-10
inches & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & | | & & Pct & Pct & & & & & Pct & \\
\hline & & | | & | & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{81B:} \\
\hline \multirow[t]{18}{*}{Pelissier-----} & 0-6 & | Gravelly sandy & | Sm & |A-2-4 & 0-3 & 0-10 & 65-80 & |60-75 & | 35-55 & 15-35 & -- & | NP-4 \\
\hline & & loam & & & & & & & & & & \\
\hline & 6-10 & | Gravelly sandy & |SM, SP, SP-SM| & A-2-4, A-3 & 0-3 & 0-20 & 65-80 & |60-75 & |30-60 & 0-35 & --- & |NP-4 \\
\hline & & loam, cobbly & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly sand & & & & & & & & & & \\
\hline & 10-21 & | Very gravelly & |GP-GM, SP, & A-1-b, A-2-4 & 0-3 & 0-20 & 40-75 & | 35-70 & 5-50 & 0-20 & --- & NP \\
\hline & & loamy coarse & SM, SP-SM & & & & & & & & & \\
\hline & & sand, gravelly| & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & 21-80 & |Very gravelly & | GW & | A-1 & 0-3 & 0-20 & 35-50 & | 30-45 & 5-40 & 0-10 & --- & NP \\
\hline & & coarse sand, & & & & & & & & & & \\
\hline & & very gravelly & & & & & & & & & & \\
\hline & & | sand, & & & & & & & & & & \\
\hline & & extremely & & & & & & & & & & \\
\hline & & | gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{81D:} \\
\hline \multirow[t]{17}{*}{Pelissier-----} & 0-6 & | Gravelly sandy & | SM & A-2-4 & 0-3 & 0-10 & 65-80 & |60-75 & | 35-55 & | 15-35 & 0-20 & |NP-4 \\
\hline & & | loam & & & & & & & & & & \\
\hline & 6-10 & |Gravelly sandy & |SP, SP-SM, SM| & A-2-4, A-3 & 0-3 & 0-20 & 65-80 & |60-75 & |30-60 & 0-35 & 0-20 & | NP-4 \\
\hline & & loam, cobbly & |SP, SP-SM, SM| & A-2-4, A-3 & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly sand & & & & & & & & & & \\
\hline & 10-21 & |Very gravelly & | SM, GP-GM, & A-1-b, A-2-4 & 0-3 & 0-20 & 40-75 & | 35-70 & 5-50 & 0-20 & --- & NP \\
\hline & & \begin{tabular}{l}
loamy coarse \\
sand, gravelly
\end{tabular} & SP-SM, SP & & & & & & & & & \\
\hline & & \begin{tabular}{l}
sand, gravelly \\
coarse sand
\end{tabular} & & & & & & & & & & \\
\hline & 21-80 & | Very gravelly & | GW & | A-1 & 0-3 & 0-20 & 35-50 & | 30-45 & 5-40 & 0-10 & --- & NP \\
\hline & & coarse sand, & & & & & & & & & & \\
\hline & & | very gravelly | & & & & & & & & & & \\
\hline & & | sand, & & & & & & & & & & \\
\hline & & extremely & & & & & & & & & & | \\
\hline & & | gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Map symbol and soil name} & \multirow{3}{*}{Depth} & \multirow{3}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow[b]{3}{*}{\begin{tabular}{l}
| Liquid \\
|limit
\end{tabular}} & \multirow[b]{3}{*}{Plasticity index} \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|c|c|}
\hline\(>10\) & \(3-10\) \\
inches & inches
\end{tabular}}} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{In} & | | & & | & Pct & Pct & & & & & Pct & \\
\hline & & 1 & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Emmet} & 0-3 & |Fine sandy loam| & | SM & |A-4 & 0-5 & 0-8 & | 95-100| & | 90-100 & 55-85 & 30-50 & 0-20 & | NP-4 \\
\hline & \multirow[t]{3}{*}{3-21} & |Sandy loam, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & | 95-100| & 90-100 & 55-85 & 25-50 & 0-20 & |NP-4 \\
\hline & & fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{21-28} & |Sandy loam, & | SM, SC-SM & |A-2-4, A-4 & 0-5 & 0-8 & | 95-100| & 90-100 & 55-85 & 25-50 & 20-30 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{28-80} & | Gravelly fine & |SC-SM, SM & |A-4 & 0-5 & 0-15 & 170-90 & |65-85 & |45-75 & 25-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{15}{*}{Escanaba------} & 0-6 & |Loamy fine sand| & SM & |A-4 & 0 & 0-3 & | 95-100| & | 90-100 & 75-95 & 30-50 & --- & NP \\
\hline & \multirow[t]{3}{*}{6-26} & | Loamy fine | & |SM, SP-SM & A-2-4, A-3, & 0 & 0-3 & | 95-100| & 90-100 & 40-95 & 5-50 & --- & NP \\
\hline & & | sand, fine & & | A-4 & & & & & & & & \\
\hline & & sand, sand & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{26-35} & | Loamy sand, & | SM & |A-2-4, A-4 & 0 & 0-8 & | 95-100| & 90-100 & |40-95 & 10-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, loamy & & & & & & & & & & \\
\hline & & | fine sand & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{35-42} & | Sandy loam, & |SM, SC-SM & |A-2-4, A-4 & 0 & 0-8 & | 95-100| & 90-100 & 50-95 & 25-50 & 0-25 & | NP-7 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{42-80} & | Gravelly fine & |SM, SC-SM & |A-4, A-2-4 & 0 & 0-15 & |70-100| & 65-95 & | 50-75 & 25-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 90D: & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Emmet---------} & 0-3 & |Fine sandy loam| & | SM & |A-4 & 0-5 & 0-8 & | 95-100| & | 90-100 & |55-85 & 130-50 & 0-20 & | NP-4 \\
\hline & \multirow[t]{3}{*}{3-21} & | Sandy loam, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & | 95-100| & 90-100 & |55-85 & 25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{21-28} & |Sandy loam, & |SM, SC-SM & |A-2-4, A-4 & 0-5 & 0-8 & |95-100| & 90-100 & |55-85 & 25-50 & 120-30 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{28-80} & | Gravelly fine & |SC-SM, SM & |A-4 & 0-5 & 0-15 & 170-90 & |65-85 & |45-75 & 25-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & | & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|c|}
\hline>10 & 3-10 \\
\mid \text { inches } & \text { inches } \\
\hline
\end{array}
\]}} & & & & & & \\
\hline & & & Unified & AASHTO & & & 4 & 10 & 40 & 200 & & \\
\hline & In & & & | & Pct & Pct & & & & & Pct & \\
\hline & & & & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{106B:} \\
\hline \multirow[t]{4}{*}{Rubicon-------} & 0-7 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 & 0 & | 95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 | & 0 & | 95-100| & | 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 & 0 & | 95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 106D: & & & & | & & & & & & & & \\
\hline \multirow[t]{10}{*}{Sagola--------} & 0-5 & |Fine sandy loam| & SM & |A-4 & 0-3 & 0-8 & | 95-100| & | 90-100 & |55-85 & | 30-50 & 0-20 & | NP-4 \\
\hline & 5-20 & |Fine sandy & | SM & |A-2-4, A-4 & 0-3 & 0-8 & | 95-100| & 90-100 & |55-95 & | 30-50 & 0-20 & | NP-4 \\
\hline & & \begin{tabular}{l}
| loam, loamy \\
|fine sand
\end{tabular} & & & & & & & & - & & \\
\hline & 20-56 & | Loamy sand, & | SM & |A-2-4, A-4 & 0-3 & 0-8 & | 95-100| & 90-100 & |40-85 & | 10-50 & 0-30 & | NP-9 \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 56-80 & |Sandy loam, & | SM & |A-2-4, A-4 & 0-3 & 0-8 & | 95-100| & 90-100 & |40-75 & | \(10-40\) & 0-20 & | NP-4 \\
\hline & & | loamy sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon-------} & 0-7 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 & 0 & | 95-100| & |90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 & 0 & | 95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & |A-3, A-2-4 & 0 & 0 & | 95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 107B: & & & & | & & & & & & & & \\
\hline \multirow[t]{11}{*}{Goodman-------} & 0-4 & |silt loam & | ML & |A-4 & 0-5 & 0-5 & | 95-100| & 90-100 & 80-100 & |65-90 & 0-20 & |NP-4 \\
\hline & 4-30 & |Silt loam, very| & ML & |A-4 & 0-5 & 0-5 & | 95-100| & 90-100 & 75-100 & |45-65 & 0-20 & | NP-4 \\
\hline & & \[
\begin{aligned}
& \text { fine sandy } \\
& \text { loam }
\end{aligned}
\] & & & & & & & & & & \\
\hline & 30-71 & | Loamy sand, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & | 70-100| & |65-95 & | 35-75 & | 10-50 & 0-20 & | NP-4 \\
\hline & & sandy loam, gravelly fine & & & & & |70-100| & & 35-75 & 10-50 & & \\
\hline & & \begin{tabular}{l}
| gravelly fine \\
sandy loam
\end{tabular} & & | & & & & & & & & \\
\hline & 71-80 & | Loamy sand, & | SM & |A-2-4, A-4 & 0-5 & 0-8 & | 70-100| & |65-95 & | 35-75 & |10-50 & 0-20 & |NP-4 \\
\hline & & sandy loam, & & & & & & & & & & \\
\hline & & | gravelly fine & & & & & & & & & & \\
\hline & & | sandy loam & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline \multirow[t]{10}{*}{Sundog--------} & 0-2 & |Silt loam & ML & |A-4 & 0-2 & 0-5 & | 85-100| & |80-100 & | 80-100 & 165-90 & 0-20 & |NP-4 \\
\hline & 2-22 & |Silt loam, very| & SM, ML & |A-4 & 0-2 & 0-5 & | 85-100| & | 80-100 & 55-100 & |30-90 & 0-20 & | NP-4 \\
\hline & & fine sandy & & - & & & & & & & & \\
\hline & & | loam, fine | & & | & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 22-80 & |Stratified & |SP, GP, SP- & |A-1, A-3 & 0-8 & 0-20 & |40-90 & | 35-85 & |20-60 & 0-15 & --- & NP \\
\hline & & | sand, very & | SM, GP-GM & & & & & & & & & \\
\hline & & | gravelly & & | & & & & & & & & \\
\hline & & | coarse sand & & + & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline>10 & 3-10 \\
\mid \text { inches } & \text { inches } \\
\hline
\end{array}
\]}} & & & & & & \\
\hline & & & & & & & | 4 & 10 & 40 & 200 & & \\
\hline & In & & | & | & Pct & Pct & & & & & Pct & \\
\hline & & & | & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{109B:} \\
\hline \multirow[t]{12}{*}{Keweenaw------} & 0-4 & | Cobbly loamy & | SM & |A-2-4 & 0-3 & | \(10-25\) & 175-95 & 10-90 & 35-70 & |10-25 & --- & NP \\
\hline & & | sand & & & & & & & & & & \\
\hline & 4-12 & | Cobbly loamy & | SM & A-2-4, A-4 & 0-3 & | \(10-25\) & 175-95 & 170-90 & 35-85 & 10-50 & --- & NP \\
\hline & & | sand, cobbly & & & & & & & & & & \\
\hline & & | loamy fine & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & 12-23 & | Cobbly sand, & |SM, SP, SP-SM| & A-2-4, A-3 & 0-3 & | \(10-25\) & 75-95 & 10-90 & 35-70 & 0-25 & --- & NP \\
\hline & & cobbly loamy sand & & & & & & & & & & \\
\hline & 23-80 & \(\mid\) Fine sandy & |SM, SP, SP-SM| & A-4, A-3, & 0-3 & 0-8 & |90-100| & | 85-100 | & 40-85 & 0-50 & 0-20 & | NP-4 \\
\hline & & | loam, sand, & & A-2-4 & & & & & & & & \\
\hline & & loamy sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{109D:} \\
\hline \multirow[t]{4}{*}{Rubicon-------} & 0-7 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & \(|90-100|\) & 45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & |95-100| & \(|90-100|\) & 45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{13}{*}{Keweenaw-------} & 0-4 & | Cobbly loamy & | SM & |A-2-4 & 0-3 & | \(10-25\) & |75-95 & 170-90 & 35-70 & 10-25 & -- & NP \\
\hline & & | sand & & & & & & & & & & \\
\hline & 4-12 & | Cobbly loamy & | SM & A-2-4, A-4 & 0-3 & | \(10-25\) & 175-95 & 10-90 & 35-85 & 10-50 & --- & NP \\
\hline & & | sand, cobbly & & & & & & & & & & \\
\hline & & | loamy fine & & & & & & & & & & \\
\hline & & sand & & & & & & & & & & \\
\hline & 12-23 & | Cobbly sand, & |SP, SP-SM, SM| & A-2-4, A-3 & 0-3 & | 10-25 & 75-95 & |70-90 & 35-70 & 0-25 & --- & NP \\
\hline & & cobbly loamy & & & & & & & & & & \\
\hline & & | sand & & & & & & & & & & \\
\hline & 23-80 & \(\mid\) Fine sandy & |SM, SP, SP-SM| & A-4, A-3, & 0-3 & 0-8 & | 90-100| & | 85-100| & 40-85 & 0-50 & 0-20 & | NP-4 \\
\hline & & l loam, sand, & & A-2-4 & & & & & & & & \\
\hline & & loamy sand & & & & & & & & & & \\
\hline & & & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{109F:} \\
\hline \multirow[t]{4}{*}{Rubicon-------} & 0-7 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & |95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 7-18 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & |95-100| & \(|90-100|\) & 45-70 & 0-15 & --- & NP \\
\hline & 18-80 & | Sand & |SP, SP-SM & A-3, A-2-4 & 0 & 0 & |95-100| & \(|90-100|\) & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity |index} \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{|l|}
\(|>10| 3-10\) \\
\(\mid\) inches \(\mid\) inches \(\mid\)
\end{tabular}}} & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow{8}{*}{\begin{tabular}{l}
112F: \\
Keewaydin
\end{tabular}} & \multirow[t]{3}{*}{In} & | | & | | & & \multirow[t]{3}{*}{Pct} & \multirow[t]{3}{*}{Pct} & | & - & & | & \multirow[t]{3}{*}{Pct} & index \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow{3}{*}{| SM} & \multirow{3}{*}{A-4} & & & & & & & & \\
\hline & \multirow[t]{2}{*}{0-4} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |Cobbly fine } \\
& \text { | sandy loam }
\end{aligned}
\]} & & & \multirow[t]{2}{*}{0-5} & \multirow[t]{2}{*}{10-30} & \multirow[t]{2}{*}{180-95} & \multirow[t]{2}{*}{75-90} & \multirow[t]{2}{*}{|55-80} & |30-50 & \multirow[t]{2}{*}{0-20} & \multirow[t]{2}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{4-10} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { |Fine sandy } \\
& \mid \text { loam, cobbly } \\
& \text { silt loam }
\end{aligned}
\]} & \multirow[t]{3}{*}{| ML, SM} & \multirow[t]{3}{*}{A-4} & \multirow[t]{3}{*}{0-5} & \multirow[t]{3}{*}{0-30} & \multirow[t]{3}{*}{85-100} & \multirow[t]{3}{*}{80-95} & \multirow[t]{3}{*}{| 55-95} & \multirow[t]{3}{*}{|30-90} & \multirow[t]{3}{*}{0-20} & \multirow[t]{3}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{10-20} & \multirow[t]{5}{*}{\begin{tabular}{|l}
\(\mid\) Fine sandy \\
\(\mid l o a m, ~ c o b b l y\) \\
\(\mid\) fine sandy \\
loam, cobbly \\
silt loam
\end{tabular}} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{A-4} & \multirow[t]{5}{*}{0-5} & \multirow[t]{5}{*}{0-30} & \multirow[t]{5}{*}{85-100} & \multirow[t]{5}{*}{80-95} & \multirow[t]{4}{*}{| 55-95} & \multirow[t]{5}{*}{30-85} & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{| NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{20-31} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { | Gravelly loamy } \\
& \mid \text { sand, cobbly } \\
& \text { loamy sand, } \\
& \text { | gravelly sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{\(|\mathrm{SM}, \mathrm{SP}-\mathrm{SM}, \mathrm{SP}|\)} & \multirow[t]{4}{*}{A-2-4, A-3} & \multirow[t]{4}{*}{0-5} & \multirow[t]{4}{*}{0-30} & \multirow[t]{4}{*}{75-90} & \multirow[t]{4}{*}{70-85} & \multirow[t]{4}{*}{| 30-65} & \multirow[t]{4}{*}{0-25} & \multirow[t]{4}{*}{---} & \multirow[t]{4}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{31-80} & \multirow[t]{6}{*}{\(\mid\) Very cobbly
\(\mid\) loamy sand,
\(\mid\) very gravelly
\(\mid\) sand, gravelly
\(\left|\begin{array}{l}\text { loamy sand }\end{array}\right|\)} & \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { |GP, SM, GP- } \\
& \text { GM, SP-SM } \\
& \text { | }
\end{aligned}
\]} & \multirow[t]{6}{*}{A-1, A-2-4,
A-3} & \multirow[t]{6}{*}{0-15} & \multirow[t]{6}{*}{5-45} & \multirow[t]{6}{*}{40-80} & \multirow[t]{6}{*}{135-75} & \multirow[t]{6}{*}{130-65} & \multirow[t]{6}{*}{0-25} & \multirow[t]{6}{*}{---} & \multirow[t]{6}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{15}{*}{Michigamme------|} & \multirow[t]{2}{*}{0-5} & | Cobbly fine & \multirow[t]{2}{*}{| SM} & \multirow[t]{2}{*}{|A-4} & \multirow[t]{2}{*}{0-8} & \multirow[t]{2}{*}{15-30 |} & \multirow[t]{2}{*}{| 85-95} & \multirow[t]{2}{*}{80-90} & \multirow[t]{2}{*}{| 55-80} & \multirow[t]{2}{*}{|30-50} & \multirow[t]{2}{*}{0-20} & \multirow[t]{2}{*}{| NP-4} \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{7}{*}{5-24} & | Cobbly silt & \multirow[t]{7}{*}{|ML, SM} & \multirow[t]{7}{*}{A-4} & \multirow[t]{7}{*}{0-8} & \multirow[t]{7}{*}{0-30} & \multirow[t]{7}{*}{| 85-100|} & \multirow[t]{7}{*}{80-95} & \multirow[t]{7}{*}{|45-95} & \multirow[t]{7}{*}{|25-85} & \multirow[t]{7}{*}{0-20} & \multirow[t]{7}{*}{| NP-4} \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam, gravelly & & & & & & & & & & \\
\hline & & \(\mid\) fine sandy | & & & & & & & & & & \\
\hline & & loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{24-29} & \multirow[t]{3}{*}{\begin{tabular}{|l|} 
| Cobbly fine \\
\(\mid\) sandy loam, \\
gravelly fine \\
\(\mid\) sandy loam
\end{tabular}} & | SM & \multirow[t]{3}{*}{|A-4} & \multirow[t]{3}{*}{0-8} & \multirow[t]{3}{*}{0-30} & 85-95 & 80-90 & | \(45-80\) & 25-50 & & \\
\hline & & & & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{0-20} & \multirow{2}{*}{NP -4} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{29-39} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Unweathered \\
| bedrock
\end{tabular}} & \multirow[t]{3}{*}{---} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----|} & \multirow[t]{3}{*}{0-80} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Unweathered \\
| bedrock
\end{tabular}} & \multirow[t]{3}{*}{---} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{---} & \multirow[t]{3}{*}{---} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{---} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity |index} \\
\hline & & & \multirow[b]{3}{*}{Unified} & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & & & & & & \\
\hline & & & & \multirow[b]{2}{*}{AASHTO} & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{113B:} & \multirow[t]{3}{*}{In} & | & | & | & Pct & Pct & & & & & Pct & \\
\hline & & | & | & | & & & & & & & & \\
\hline & & | & & | & & & & & & & & \\
\hline \multirow[t]{18}{*}{Vanriper------} & \multirow[t]{2}{*}{0-3} & |Very cobbly & | ML & |A-4 & 3-25 & |25-40 & 60-85 & | 55-80 & | 55-80 & |45-70 & 0-20 & |NP-4 \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & \multirow[t]{8}{*}{3-20} & |Very cobbly & | ML, SM & |A-4 & 3-40 & | 10-40 & 55-90 & | 50-85 & | \(45-80\) & 25-70 & 0-20 & |NP-4 \\
\hline & & | very fine & & , & & & & & & & & \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | very cobbly & & | & & & & & & & & \\
\hline & & | silt loam, & & | & & & & & & & & \\
\hline & & | very stony & & | & & & & & & & & \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{8}{*}{20-80} & |Very cobbly & | SM & |A-2-4, A-4 & 3-40 & 10-40 & 55-75 & | 50-70 & | \(40-65\) & 20-50 & 0-20 & |NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, very & & | & & & & & & & & \\
\hline & & | stony fine & & | & & & & & & & & \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | very cobbly & & | & & & & & & & & \\
\hline & & | sandy loam & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline \multirow[t]{19}{*}{113D:
Vanriper} & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{0-3} & |Very cobbly & | ML & |A-4 & 3-25 & |25-40 & 60-85 & | 55-80 & | 55-80 & 45-70 & 0-20 & | NP-4 \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & \multirow[t]{8}{*}{3-20} & |Very cobbly & | ML, SM & |A-4 & 3-40 & 10-40 & 55-90 & | 50-85 & | \(45-80\) & 25-70 & 0-20 & |NP-4 \\
\hline & & | very fine & |M, SM & - & & & & & & & & \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | very cobbly & & | & & & & & & & & \\
\hline & & | silt loam, & & | & & & & & & & & \\
\hline & & | very stony & & | & & & & & & & & \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{8}{*}{20-80} & | Very cobbly & | SM & |A-2-4, A-4 & 3-40 & 10-40 & 55-75 & | 50-70 & | \(40-65\) & 20-50 & 0-20 & |NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, very & & | & & & & & & & & \\
\hline & & | stony fine & & | & & & & & & & & | \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | very cobbly & & | & & & & & & & & | \\
\hline & & | sandy loam & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
| Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c|}
\mid>10 \\
\mid \text { inches }
\end{array}\right|
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
3-10 \\
\text { inches }
\end{gathered}\right.
\]} & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{In} & & & & Pct & Pct & & & & & Pct & \\
\hline & & | | & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{16}{*}{\begin{tabular}{l}
117B: \\
Fence
\end{tabular}} & \multirow[t]{2}{*}{0-3} & \(\mid\) Very fine sandy & | ML & |A-4 & 0 & 0 & 100 & | 95-100| & | 85-100| & 70-90 & 0-20 & | NP-4 \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{3-7} & |silt loam, very| & | ML & | A-4 & 0 & 0 & 100 & | 95-100| & | 80-100| & |70-90 & 0-20 & | NP-4 \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{7-19} & |Silt loam, very| & | ML & |A-4 & 0 & 0 & 100 & | 95-100| & | 80-100| & 60-90 & 0-20 & | NP-4 \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & | loam, loamy | & & & & & & & & & & \\
\hline & & | very fine sand| & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{19-42} & |Silt loam, very| & CL-ML, ML & |A-4 & 0 & 0 & 100 & | 95-100| & | 85-100| & 70-90 & 20-30 & |NP-11 \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{42-80} & |Stratified very| & | SM, ML & |A-4 & 0 & 0 & 100 & | 95-100| & |50-95 & |30-90 & 0-25 & NP-7 \\
\hline & & | fine sand to | & & & & & & & & & & \\
\hline & & silt & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{118A:
Croswell} & & & & & & & & & & & & \\
\hline & 0-7 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 7-34 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & \(|90-100|\) & |45-70 & 0-15 & --- & NP \\
\hline & 34-80 & Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & |95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Deford---------} & 0-6 & | Muck & \(\mid \mathrm{PT}\) & | A - 8 & 0 & 0 & --- & --- & --- & --- & --- & --- \\
\hline & \multirow[t]{2}{*}{6-80} & \[
\begin{aligned}
& \text { | Sand, loamy } \\
& \mid \text { sand }
\end{aligned}
\] & |SP, SP-SM, SM & A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-75 & 0-30 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline 119B: & & & & & & & & & & & & \\
\hline \multirow[t]{8}{*}{Yalmer--------} & 0-10 & |Fine sand & | SM & |A-2-4 & 0 & 0-5 & | 95-100| & \(|90-100|\) & |70-95 & |15-35 & --- & NP \\
\hline & \multirow[t]{2}{*}{10-30} & | Loamy sand, & |SM, SP-SM & A-3, A-2-4 & 0 & 0-5 & | 95-100| & |90-100| & | 35-95 & 5-35 & --- & NP \\
\hline & & | fine sand, &  & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{30-80} & sand & & & & & & & & & & \\
\hline & & | Loamy fine | sand, sandy & |SC-SM, SM & A-2-4, A-4 & 0 & 0-5 & | 90-100| & |85-95 & |45-95 & |20-55 & 0-25 & |NP-7 \\
\hline & & loam, fine & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-------} & 0-6 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & \(|90-100|\) & |45-70 & 0-15 & - & NP \\
\hline & 8-17 & Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 17-80 & Sand & |SP, SP-SM & A-2-4, A-3 & 0 & 0 & |95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multirow{3}{*}{Depth} & \multirow{3}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{2}{*}{Percentage passing sieve number--}} & \multirow{3}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{3}{*}{Plasticity index} \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
|>10| 3-10 \mid \\
\mid \text { inches } \mid \text { inches } \mid
\end{array}
\]}} & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow{6}{*}{123A:} & \multirow[t]{2}{*}{In} & & & & \multirow[t]{2}{*}{Pct} & \multirow[t]{2}{*}{Pct} & & & & & \multirow[t]{3}{*}{Pct} & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & 0-8 & | Cobbly very & | ML, SM & |A-4 & 0-8 & 8-30 & |80-100| & 75-95 & 70-95 & | \(40-65\) & 0-20 & NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 8-20 & | Cobbly very & | ML, SM & |A-4 & 0-8 & 8-30 & |80-100| & 75-95 & 55-85 & |30-65 & 0-20 & NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 20-28 & | Gravelly sandy & | SM & |A-2-4 & 0-8 & 5-10 & |75-85 & | 70-80 & 45-75 & |20-50 & 0-20 & NP-4 \\
\hline & & \[
\mid \text { loam, gravelly }
\] & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 28-62 & | Gravelly sandy & | CL-ML, SM & |A-2-4, A-4 & 0-8 & 5-10 & |65-90 & |60-85 & 30-80 & | 10-65 & 0-25 & NP-7 \\
\hline & & & & & & & & & & & & \\
\hline & & | loam, gravelly & & & & & & & & & & \\
\hline & & | loamy sand | & & & & & & & & & & \\
\hline & 62-80 & | Gravelly sandy & | Sm & |A-4, A-2-4 & 0-8 & 5-10 & |65-90 & |60-85 & 35-60 & | 15-36 & 0-20 & NP-4 \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 124B: & & & & & & & & & & & & \\
\hline Gogebic- & 0-5 & |Cobbly silt & & | A-4 & 5-10 & 10-20 & 75-95 & 170-90 & 65-90 & | 55-85 & 0-20 & NP-4 \\
\hline & & | loam & & & & & & & & & & \\
\hline & 5-18 & | Cobbly sandy & | ML, SM & |A-2-4, A-4 & 0-10 & 1-20 & 75-100 & 75-95 & 50-90 & |25-60 & 0-20 & NP-4 \\
\hline & & loam, very & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 18-62 & | Very gravelly & | SM & |A-1-b, A-2-4 & 0-15 & 8-30 & | 50-70 & |45-65 & 30-60 & | 10-40 & 0-25 & NP-7 \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & \\
\hline & & | loam, very & & & & & & & & & & \\
\hline & & | gravelly sandy & & & & & & & & & & \\
\hline & & loam | & & & & & & & & & & \\
\hline & 62-80 & | Very gravelly & | SM & |A-2-4 & 0-15 & 8-30 & | 50-70 & |45-65 & | 35-60 & | 10-30 & 0-20 & NP-4 \\
\hline & & sandy loam, & & & & & & & & & & \\
\hline & & | gravelly sandy & & & & & & & & & & \\
\hline & & | loam | & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued


Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{|l|}
\(|>10| 3-10 \mid\) \\
\(\mid\) inches \(\mid\) inches \(\mid\)
\end{tabular}}} & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow{10}{*}{\[
\begin{aligned}
& \text { 124D: } \\
& \text { Dishno }
\end{aligned}
\]} & \multirow[t]{2}{*}{In} & & & & Pct & \multirow[t]{2}{*}{Pct} & & & & & \multirow[t]{2}{*}{Pct} & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{0-9} & | Cobbly silt & ML & |A-4 & 0-10 & \multirow[t]{2}{*}{10-20} & 85-95 & 180-90 & 15-90 & 55-75 & \multirow[t]{2}{*}{0-20} & |NP-4 \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{9-22} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Cobbly loam, \\
| cobbly fine \\
| sandy loam, \\
| fine sandy \\
| loam
\end{tabular}} & \multirow[t]{5}{*}{| ML, SM} & \multirow[t]{5}{*}{|A-4} & \multirow[t]{5}{*}{0-10} & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{85-100|} & \multirow[t]{5}{*}{80-95} & \multirow[t]{5}{*}{55-85} & \multirow[t]{5}{*}{30-60} & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{NP-4} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{22-46} & \multirow[t]{4}{*}{```
|very stony
    loamy sand,
    gravelly loamy
    sand
```} & \multirow[t]{4}{*}{SM} & \multirow[t]{4}{*}{|A-2-4} & \multirow[t]{4}{*}{0-20} & \multirow[t]{4}{*}{0-15} & 50-80 & 45-75 & 30-65 & 10-25 & \multirow[t]{4}{*}{---} & \multirow[t]{4}{*}{NP} \\
\hline & & & & & & & \multirow[t]{3}{*}{|} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{)} & \multirow[t]{3}{*}{} & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{46-50} & \multirow[t]{3}{*}{\begin{tabular}{l}
| Unweathered \\
| bedrock
\end{tabular}} & \multirow[t]{3}{*}{---} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 125D: & \multirow{3}{*}{0-4} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { | Cobbly loamy } \\
& \text { | sand }
\end{aligned}
\]} & & \multirow{3}{*}{|A-2-4} & \multirow{3}{*}{0-3} & & \multirow{3}{*}{75-95} & \multirow{3}{*}{70-90} & \multirow{3}{*}{35-70} & \multirow[b]{2}{*}{10-25} & \multirow{3}{*}{---} & \multirow{3}{*}{NP} \\
\hline Keweenaw- & & & \multirow[t]{2}{*}{| SM} & & & \multirow[t]{2}{*}{10-25} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{4-12} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Cobbly loamy } \\
& \mid \text { fine sand, } \\
& \text { cobbly loamy } \\
& \text { sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{| SM} & \multirow[t]{4}{*}{|A-2-4, A-4} & \multirow[t]{4}{*}{0-3} & \multirow[t]{4}{*}{10-25} & \multirow[t]{4}{*}{75-95} & \multirow[t]{4}{*}{170-90} & \multirow[t]{4}{*}{35-85} & \multirow[t]{4}{*}{10-50} & \multirow[t]{4}{*}{---} & \multirow[t]{4}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{12-23} & \multirow[t]{3}{*}{| Cobbly sand,
\(\mid\) cobbly loamy
| sand} & \multirow[t]{3}{*}{SP, SM, SP-SM|} & \multirow[t]{3}{*}{A-2-4, A-3} & \multirow[t]{3}{*}{0-3} & \multirow[t]{3}{*}{10-25} & \multirow[t]{3}{*}{75-95} & \multirow[t]{3}{*}{170-90} & \multirow[t]{3}{*}{| 35-70} & \multirow[t]{3}{*}{0-25} & \multirow[t]{3}{*}{---} & \multirow[t]{3}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{23-80} & \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Fine sandy } \\
& \text { loam, sand, } \\
& \text { loamy sand }
\end{aligned}
\]} & \multirow[t]{4}{*}{|SM, SP, SP-SM|} & A-4, A-3, & \multirow[t]{4}{*}{0-3} & \multirow[t]{4}{*}{0-8} & \multirow[t]{4}{*}{| 90-100|} & \multirow[t]{4}{*}{| 85-100|} & \multirow[t]{4}{*}{40-85} & \multirow[t]{4}{*}{0-50} & \multirow[t]{4}{*}{0-20} & \multirow[t]{3}{*}{NP-4} \\
\hline & & & & \multirow[t]{2}{*}{A-2-4} & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{5}{*}{Kalkaska------} & 0-6 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & & |90-100| & 45-70 & & --- & \\
\hline & 6-8 & | Sand & |SP, SP-SM & A-2-4, A-3 & 0 & \multirow[t]{2}{*}{0
0} & | 95-100| | & | 90-100 & |45-70 & \[
\left\lvert\, \begin{aligned}
& 0-15 \\
& 0-15
\end{aligned}\right.
\] & | --- & \[
\begin{aligned}
& \text { NP } \\
& \text { | }
\end{aligned}
\] \\
\hline & \multirow[t]{2}{*}{\(8-17\)
\(17-80\)} & | Sand & |SP, SP-SM & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\mid A-2-4, & A-3 \\
\mid A-2-4, & A-3
\end{array}
\]} & \multirow[t]{2}{*}{0} & & \multirow[t]{2}{*}{| 95-100|} & 90-100| & |45-70 & \[
0-15
\] & | --- & \\
\hline & & | Sand & |SP, SP-SM & & & 0 & & |90-100| & 45-70 & 0-15 & - & \multirow[t]{2}{*}{NP
NP} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop---} & \multirow[t]{3}{*}{0-80} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Unweathered } \\
& \text { bedrock } \\
& \text { | }
\end{aligned}
\]} & \multirow[t]{3}{*}{| \(\quad\) -} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & --- & -- & --- & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & | & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & | & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline>10 \\
\mid \text { inches }
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
|3-10| \\
\mid \text { inches } \mid
\end{array}
\]} & & & & & & \\
\hline & & & Unified & | AASHTO & & & 4 & 10 & 40 & 200 & & \\
\hline & In & & | & | & Pct & Pct & & & & & Pct & \\
\hline & & & | & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{128B:} \\
\hline \multirow[t]{5}{*}{Kalkaska-------} & 0-6 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 8-17 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 17-80 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Waiska--------} & 0-4 & |Cobbly loamy & | SM & |A-2-4 & 0 & 15-30 & |80-95 & 15-90 & | 35-70 & 10-25 & --- & NP \\
\hline & 4-36 & | Very cobbly & |GW, SM, SW & |A-1, A-2-4 & 0 & 0-30 & |40-60 & | 35-55 & |10-50 & 0-25 & --- & NP \\
\hline & & | sand, very & |GW, SM, SW & A-1, A-2-4 & & & |40-60 & 35-55 & 10-50 & & & \\
\hline & & gravelly & & | & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & 36-80 & | Very gravelly & |GW, SW & |A-1 & 0 & 0-30 & | \(40-55\) & | 35-50 & 5-45 & 0-10 & --- & NP \\
\hline & & coarse sand, & & | & & & & & & & & \\
\hline & & | very gravelly & & & & & & & & & & \\
\hline & & | sand & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline 128D: & & & & | & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska------} & 0-6 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100 & 45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 8-17 & | Sand & |SP, SP-SM & |A-2-4, A-3 & & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & 17-80 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & | 90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Waiska--------} & 0-4 & \begin{tabular}{l}
| Cobbly loamy \\
sand
\end{tabular} & | SM & |A-2-4 & 0 | & 15-30 & |80-95 & 15-90 & |35-70 & 10-25 & --- & NP \\
\hline & 4-36 & |Very cobbly & |GW, SM, SW & |A-1, A-2-4 & 0 & 0-30 & |40-60 & | 35-55 & |10-50 & 0-25 & --- & NP \\
\hline & & sand, very & |ow, SM, SW & & & & & & & & & \\
\hline & & | gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & | & & & & & & & & \\
\hline & 36-80 & |Very gravelly & |GW, SW & |A-1 & 0 & 0-30 & | \(40-55\) & | 35-50 & 5-45 & 0-10 & --- & NP \\
\hline & & coarse sand, & GW, SW & | & & & & & & & & \\
\hline & & | very gravelly & & | & & & & & & & & \\
\hline & & sand & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline 128E: & & & & | & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska------} & 0-6 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 8-17 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & |45-70 & 0-15 & --- & NP \\
\hline & 17-80 & | Sand & |SP, SP-SM & |A-2-4, A-3 & 0 & 0 & | 95-100| & |90-100| & 45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & >10 & 3-10 & & & & & & \\
\hline & & & Unified & AASHTO & |inches & |inches| & 4 & 10 & 40 & 200 & & \\
\hline & In & \(\mid\) | & | | & & Pct & Pct & & & & & Pct & \\
\hline & & | | & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{137F:} \\
\hline \multirow[t]{20}{*}{Keewaydin------} & 0-4 & | Cobbly fine & | SM & | A-4 & 0-5 & 10-30 & 180-95 & |75-90 & | 55-80 & 130-50 & 0-20 & | NP-4 \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & 4-10 & |Fine sandy & | ML, SM & | A-4 & 0-5 & 0-30 & | 85-100| & |80-95 & | 55-95 & 130-90 & 0-20 & | NP-4 \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & 10-20 & | Cobbly fine & | ML, SM & A-4 & 0-5 & 0-30 & | 85-100| & |80-95 & | 55-95 & | 30-85 & 0-20 & |NP-4 \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & 20-31 & | Gravelly loamy & |SP, SP-SM, SM| & A-3, A-2-4 & 0-5 & 0-30 & |75-90 & |70-85 & | 30-65 & 0-25 & --- & NP \\
\hline & & sand, cobbly & |SP, SP-SM, SM| & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly sand & & & & & & & & & & \\
\hline & 31-80 & |Very cobbly & | SM, GP, SP- & A-3, A-2-4, & 0-15 & 5-45 & | \(40-80\) & | 35-75 & |30-65 & 0-25 & --- & NP \\
\hline & & | loamy sand, | & SM, GP-GM & A-1 & & & & & & & & \\
\hline & & | very gravelly | & & & & & & & & & & \\
\hline & & | sand, gravelly| & & & & & & & & & & \\
\hline & & | loamy sand | & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Sundog--------} & & |Silt loam & & & 0-8 & 0-10 & | 85-100| & |80-100 & 80-100 & |65-90 & 0-20 & | NP-4 \\
\hline & 2-22 & |Silt loam, very| & | SM, ML & |A-4 & 0-8 & 0-10 & \(|85-100|\) & |80-100 & | 55-100| & 30-90 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 22-80 & |Stratified & |SP, GP, SP- & A-1, A-3 & 0-8 & 0-20 & 10-90 & | 35-85 & | 20-60 & 0-15 & --- & NP \\
\hline & & | sand, very & | SM, GP-GM & & & & & & & & & \\
\hline & & | gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{138D:} \\
\hline \multirow[t]{10}{*}{Sundog--------} & & |Silt loam & & & & & | 85-100| & |80-100 & \(|80-100|\) & 65-90 & 0-20 & |NP-4 \\
\hline & 2-22 & |Silt loam, very| & | SM, ML & | A-4 & 0-8 & 0-10 & | 85-100| & |80-100 & | 55-100| & |30-90 & 0-20 & | NP-4 \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 22-80 & |Stratified & |SP, GP, SP- & A-1, A-3 & 0-8 & 0-20 & |40-90 & | 35-85 & |20-60 & 0-15 & --- & NP \\
\hline & & sand, very & | SM, GP-GM & & & & & & & & & \\
\hline & & | gravelly & & & & & & & & & & \\
\hline & & | coarse sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop---} & 0-80 & | Unweathered & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{Fragments} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & \multirow[b]{3}{*}{Unified} & \multirow[b]{3}{*}{AASHTO} & \multirow[b]{3}{*}{\[
\begin{array}{|l|}
\mid \text { inches }
\end{array}
\]} & \multirow[b]{3}{*}{\[
\begin{gathered}
3-10 \\
\text { inches }
\end{gathered}
\]} & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{138F:} & \multirow[t]{2}{*}{In} & & & | & Pct & \multirow[t]{2}{*}{Pct} & & & & & Pct & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Sundog---------} & 0-2 & |Silt loam & ML & |A-4 & 0-8 & 0-10 & 85-100 & | 80-100| & |80-100| & 65-90 & 0-20 & | NP-4 \\
\hline & \multirow[t]{4}{*}{2-22} & |Silt loam, very| & \multirow[t]{4}{*}{SM, ML} & \multirow[t]{4}{*}{| \({ }^{\text {A-4 }}\)} & \multirow[t]{4}{*}{0-8} & \multirow[t]{4}{*}{0-10} & \multirow[t]{4}{*}{\(|85-100|\)} & \multirow[t]{4}{*}{80-100|} & \multirow[t]{4}{*}{|55-100|} & \multirow[t]{4}{*}{30-90} & \multirow[t]{4}{*}{0-20} & \multirow[t]{4}{*}{NP-4} \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam, fine | & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{22-80} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Stratified \\
sand, very \\
gravelly \\
coarse sand
\end{tabular}} & \multirow[t]{4}{*}{|SP, GP, SPSM, GP-GM} & \multirow[t]{5}{*}{|A-1, A-3} & \multirow[t]{5}{*}{0-8} & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{40-90} & \multirow[t]{5}{*}{35-85} & \multirow[t]{5}{*}{20-60} & \multirow[t]{5}{*}{0-15} & \multirow[t]{5}{*}{---} & \multirow[t]{5}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop--} & \multirow[t]{4}{*}{0-80} & | Unweathered & \multirow[t]{3}{*}{---} \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{12}{|l|}{139B:} & \\
\hline \multirow[t]{10}{*}{Sundog} & 0-2 & |Silt loam & \multirow[t]{5}{*}{| ML \({ }_{\text {SM, ML }}\)} & |A-4 & 0-8 & 0-10 & 85-100 & |80-100| & |80-100| & 65-90 & 0-20 & | NP-4 \\
\hline & \multirow[t]{4}{*}{2-22} & |silt loam, very| & & \multirow[t]{4}{*}{|A-4} & \multirow[t]{4}{*}{0-8} & \multirow[t]{4}{*}{0-10} & \multirow[t]{4}{*}{85-100|} & \multirow[t]{4}{*}{80-100} & \multirow[t]{4}{*}{55-100|} & \multirow[t]{4}{*}{30-90} & \multirow[t]{4}{*}{0-20} & \multirow[t]{4}{*}{| NP-4} \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & loam, fine & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{22-80} & |Stratified & \multirow[t]{5}{*}{|SP, GP, SP-} & |A-1, A-3 & \multirow[t]{6}{*}{0-8} & \multirow[t]{5}{*}{0-20} & \multirow[t]{6}{*}{140-90} & \multirow[t]{5}{*}{35-85} & \multirow[t]{5}{*}{20-60} & \multirow[t]{5}{*}{0-15} & \multirow[t]{5}{*}{---} & \multirow[t]{5}{*}{NP} \\
\hline & & | sand, very & & & & & & & & & & \\
\hline & & \multirow[t]{3}{*}{\begin{tabular}{l}
gravelly \\
coarse sand
\end{tabular}} & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 139D: & & & & & & & & & & & & \\
\hline \multirow[t]{10}{*}{Sundog--------} & 0-2 & |Silt loam & \multirow[t]{5}{*}{ML
SM, ML} & |A-4 & 0-8 & 0-10 & 85-100 & | 80-100| & \(|80-100|\) & 65-90 & 0-20 & | NP-4 \\
\hline & \multirow[t]{4}{*}{2-22} & |Silt loam, very| & & \multirow[t]{4}{*}{|A-4} & \multirow[t]{4}{*}{0-8} & \multirow[t]{4}{*}{0-10} & \multirow[t]{4}{*}{| 85-100|} & \multirow[t]{4}{*}{80-100} & \multirow[t]{4}{*}{55-100|} & \multirow[t]{4}{*}{30-90} & \multirow[t]{4}{*}{0-20} & \multirow[t]{4}{*}{NP-4} \\
\hline & & fine sandy | & & & & & & & & & & \\
\hline & & loam, fine | & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{22-80} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Stratified \\
sand, very \\
gravelly \\
coarse sand
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |SP, GP, SP- } \\
& \mid \mathrm{SM}, \mathrm{GP}-\mathrm{CM}
\end{aligned}
\]} & \multirow[t]{5}{*}{A-1, A-3} & \multirow[t]{5}{*}{0-8} & \multirow[t]{5}{*}{0-20} & \multirow[t]{5}{*}{140-90} & \multirow[t]{5}{*}{35-85} & \multirow[t]{5}{*}{20-60} & \multirow[t]{5}{*}{0-15} & \multirow[t]{5}{*}{---} & \multirow[t]{5}{*}{NP} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{Classification} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{| Plas|ticity |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|l|l|}
\hline>10 & 3-10 \\
\mid \text { inches } & \text { inches } \\
\hline
\end{array}
\]}} & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline & In & | | & | | & & Pct & Pct & & & & & Pct & \\
\hline & & & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{146B:} \\
\hline \multirow[t]{14}{*}{Skanee--------} & \multirow[t]{2}{*}{0-7} & | Cobbly fine & | SM & |A-4 & 0-3 & 10-20 & | 85-100| & |80-95 & | 50-80 & 30-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{7-12} & |Fine sandy & | SM & A-2-4, A-4 & 0-3 & 3-20 & | 85-100| & |80-100 & 50-80 & 25-50 & 0-20 & | NP-4 \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{12-30} & |Sandy loam, & |SC-SM, SM, SC| & A-2-4, A-4, & 0-3 & 0-8 & |90-100| & |85-100 & 40-95 & 10-55 & |20-35 & | NP-15 \\
\hline & & loamy sand, & & | A-6 & & & & & & & & \\
\hline & & | sandy clay & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{30-80} & |Sandy loam, & |SC-SM, SM & A-2-4, A-4 & 0-3 & 0-8 & | 90-100| & |85-100 & |50-85 & |25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{147A:} \\
\hline \multirow[t]{14}{*}{Skanee--------} & \multirow[t]{2}{*}{0-7} & & | SM & |A-4 & 0-3 & 10-20 & | 85-100| & |80-95 & | 50-80 & 30-50 & 0-20 & |NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{7-12} & | Fine sandy & | SM & A-2-4, A-4 & 0-3 & 3-20 & | 85-100| & 80-100 & 50-80 & 25-50 & 0-20 & |NP-4 \\
\hline & & loam, cobbly & & & & & & & & & & \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{12-30} & | Sandy loam, & |SC-SM, SM, SC| & A-2-4, A-4, & 0-3 & 0-8 & | 90-100| & 85-100 & |40-95 & 10-55 & |20-35 & | NP-15 \\
\hline & & loamy sand, & & A-6 & & & & & & & & \\
\hline & & | sandy clay & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{30-80} & | Sandy loam, & |SC-SM, SM & A-2-4, A-4 & 0-3 & 0-8 & |90-100| & 85-100 & 50-85 & 25-50 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{13}{*}{Gay----------} & & | Muck & & & --- & & --- & --- & --- & --- & --- & \\
\hline & \multirow[t]{5}{*}{2-18} & |Fine sandy & | SM & A-2-4, A-4 & 0-8 & 0-15 & \(|80-100|\) & 75-100 & |35-85 & 10-50 & 0-25 & | NP-7 \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | loamy sand, | & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{18-31} & |Sandy loam, & |SC-SM, SM & A-2-4, A-4 & 0-3 & 0-8 & |90-100| & 85-100 & |50-85 & | 25-50 & 0-25 & |NP-7 \\
\hline & & | fine sandy & |SC-SM, SM & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{31-80} & & |SC-SM, SM & A-2-4, A-4 & 0-3 & 0-8 & |90-100| & |85-100 & |50-85 & |25-50 & 0-25 & | NP-7 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{Classification} & \multicolumn{2}{|l|}{} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
Liquid \\
limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity index} \\
\hline & & & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\(\qquad\)} & & & & & & \\
\hline & & & & \multirow[b]{2}{*}{AASHTO} & >10 & 3-10 & & & & & & \\
\hline & & & | Unified & & inches & inches & | 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{178F:} & \multirow[t]{3}{*}{} & | & & | & Pct & Pct & & & & & Pct & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{27}{*}{Schweitzer----} & \multirow[t]{3}{*}{0-5} & | Cobbly very & | ML, SM & |A-4 & 2-15 & | \(10-30\) & 180-95 & | 75-90 & |70-85 & 40-65 & 0-20 & | NP-4 \\
\hline & & fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-21} & | Cobbly very & | ML, SM & |A-4 & 2-15 & | 10-30 & 180-95 & 15-90 & 55-90 & | 30-80 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | silt loam, & & & & & & & & & & \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{21-43} & |Very cobbly & | SM & |A-2-4, A-4 & 2-15 & 5-35 & 150-75 & 15-70 & 30-70 & 10-45 & 0-20 & | NP-4 \\
\hline & & \[
\begin{aligned}
& \text { sandy loam, } \\
& \text { very cobbly }
\end{aligned}
\] & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{43-61} & | Very cobbly & | SM & |A-2-4, A-4 & 2-15 & 5-35 & 150-75 & |45-70 & 30-70 & 10-45 & 0-25 & | NP-7 \\
\hline & & sandy loam, & & & & & & & & & & \\
\hline & & | very cobbly & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{7}{*}{61-80} & |Very cobbly & | SM & |A-1-b, A-2-4, & 2-15 & 5-35 & 50-75 & |45-70 & 30-70 & 5-45 & 0-20 & | NP-4 \\
\hline & & | loamy sand, & & A-4 & & & & & & & & \\
\hline & & | very gravelly & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | cobbly sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska------} & 0-6 & | Sand & |SP-SM, SP & |A-2-4, A-3 & 0 & 0 & |95-100| & |90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 6-8 & | Sand & |SP-SM, SP & |A-2-4, A-3 & 0 & 0 & |95-100| & |90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 8-17 & | Sand & |SP-SM, SP & A-2-4, A-3 & 0 & 0 & |95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & 17-80 & | Sand & |SP-SM, SP & |A-2-4, A-3 & 0 & 0 & |95-100| & 90-100 & |45-70 & 0-15 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop--} & \multirow[t]{3}{*}{0-80} & | Unweathered & --- & - & --- & - & --- & - & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid| \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{| Plas|ticity |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & >10 & 3-10 & & & & & & \\
\hline & & & & & | inches & inches & 4 & 10 & 40 & 200 & & \\
\hline \multirow[b]{3}{*}{179E:} & \multirow[t]{3}{*}{In} & | | & & | & Pct & Pct & & & & & Pct & \\
\hline & & , & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{27}{*}{Schweitzer----} & \multirow[t]{3}{*}{0-5} & | Cobbly very & | ML, SM & |A-4 & 2-15 & | 10-30 & 180-95 & 175-90 & | \(70-85\) & |40-65 & 0-20 & |NP-4 \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam & & | & & & & & & & & \\
\hline & \multirow[t]{6}{*}{5-21} & | Cobbly very & | ML, SM & |A-4 & 2-15 & |10-30 & | 80-95 & |75-90 & | 55-90 & | \(30-80\) & 0-20 & | NP-4 \\
\hline & & | fine sandy & & | & & & & & & & & \\
\hline & & | loam, cobbly & & | & & & & & & & & \\
\hline & & | silt loam, & & | & & & & & & & & \\
\hline & & fine sandy & & | & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{21-43} & |Very cobbly & | SM & |A-2-4, A-4 & 2-15 & 5-35 & 150-75 & 15-70 & |30-70 & 10-45 & 0-20 & | NP-4 \\
\hline & & sandy loam, very cobbly & & & & & & & & & & \\
\hline & & | very cobbly & & & & & & & & & & \\
\hline & & | loamy sand, gravelly fine & & & & & & & & & & \\
\hline & & sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{6}{*}{43-61} & |Very cobbly & | SM & |A-2-4, A-4 & 2-15 & 5-35 & 150-75 & |45-70 & | 30-70 & 10-45 & 0-25 & |NP-7 \\
\hline & & sandy loam, & & & & & & & & & & \\
\hline & & | very cobbly & & & & & & & & & & \\
\hline & & | loamy sand, & & | & & & & & & & & \\
\hline & & | gravelly fine & & | & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{7}{*}{61-80} & |Very cobbly & | SM & |A-1-b, A-2-4, & 2-15 & 5-35 & 150-75 & |45-70 & |30-70 & 5-45 & 0-20 & | NP-4 \\
\hline & & | loamy sand, & & | A-4 & & & & & & & & \\
\hline & & | very gravelly & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | cobbly sandy & & | & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{16}{*}{Michigamme----} & \multirow[t]{2}{*}{0-5} & | Cobbly fine & | SM & |A-4 & 0-8 & | 15-30 & | 85-95 & |80-90 & | 55-80 & 30-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{7}{*}{5-24} & | Cobbly fine & | ML, SM & |A-4 & 0-8 & 0-30 & | 85-100| & |80-95 & | \(45-95\) & 25-85 & 0-20 & | NP-4 \\
\hline & & | sandy loam, & & & & & & & & & & \\
\hline & & | cobbly silt & & & & & & & & & & \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | fine sandy | & & | & & & & & & & & \\
\hline & & | loam, fine | & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{4}{*}{24-29} & | Cobbly fine & | SM & |A-4 & 0-8 & 0-30 & 185-95 & 180-90 & | \(45-80\) & 25-50 & 0-20 & |NP-4 \\
\hline & & | sandy loam, & & | & & & & & & & & \\
\hline & & | gravelly fine & & | & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{29-39} & | Unweathered & - & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & | & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plas|ticity |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[b]{2}{*}{Unified} & \multirow[b]{2}{*}{AASHTO} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\mid>10 \\
\mid \text { inches } \mid
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline 3-10 \\
\text { inches }
\end{array}
\]} & & & & & & \\
\hline & & & & & & & 4 & 10 & 40 & 200 & & \\
\hline & In & & | | & & Pct & Pct & & & & & Pct & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{194E:} \\
\hline \multirow[t]{12}{*}{Sporley-------} & 0-6 & |Silt loam & | ML & A-4 & 0 & 0 & 100 & | 95-100| & 90-100 & 70-90 & 0-20 & | NP-4 \\
\hline & 6-16 & |Silt loam, very| & ML & A-4 & 0 & 0 & 100 & | 95-100| & | 85-100 & 70-90 & 0-20 & | NP-4 \\
\hline & & | fine sandy & & & & & & & & & & \\
\hline & & | loam & & & & & & & & & & \\
\hline & 16-45 & \(\mid\) Very fine sandy & |CL-ML, ML & A-4 & 0 & 0 & 100 & | 95-100| & 85-100 & 70-90 & 120-30 & | NP-9 \\
\hline & & | loam, silt & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 45-80 & |Stratified & | CL-ML, CL, ML \({ }^{\text {d }}\) & A-4 & 0 & 0 & 100 & | 95-100| & 60-100 & 60-95 & 120-30 & | NP-9 \\
\hline & & | loamy very & & & & & & & & & & \\
\hline & & | fine sand to & & & & & & & & & & \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{196E:} \\
\hline \multirow[t]{9}{*}{Frohling------} & & |Fine sandy loam| & & & & & & |85-100| & |55-85 & 130-50 & 0-20 & \\
\hline & 7-16 & |Fine sandy | & |SM & A-2-4, A-4 & 0-2 & 0-8 & |90-100| & |85-100| & |50-85 & 25-50 & 0-20 & |NP-4 \\
\hline & & | loam, sandy & & & & & & & & & & \\
\hline & & loam & & & & & & & & & & \\
\hline & 16-80 & |Fine sandy & |SC-SM, SM & A-2-4, A-4 & 0-2 & 0-8 & |90-100| & |85-100| & |40-85 & 10-50 & 0-30 & |NP-9 \\
\hline & & | loam, sandy & & & & & & & & & & \\
\hline & & | loam, loamy & & & & & & & & & & \\
\hline & & fine sand & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{13}{*}{Onota---------} & 0-2 & & |SM & A-2 & 0 & 0-15 & 170-90 & |65-85 & 40-60 & 10-35 & 0-20 & NP-4 \\
\hline & & | loam & & & & & & & & & & \\
\hline & 2-7 & |Gravelly sandy & | SM & A-2-4 & 0 & 0-15 & |70-100| & 65-95 & | 30-65 & 10-35 & 0-20 & | NP-4 \\
\hline & & | loam, sandy & & & & & & & & & & \\
\hline & & | loam, gravelly & & & & & & & & & & \\
\hline & & loamy sand | & & & & & & & & & & \\
\hline & 7-22 & | Gravelly sandy & | SM & A-2-4 & 0 & 0-15 & |70-100| & 65-95 & | 30-65 & 10-35 & 0-20 & | NP-4 \\
\hline & & | loam, sandy & & & & & & & & & & \\
\hline & & | loam, gravelly| & | & & & & & & & & & \\
\hline & & | loamy sand | & & & & & & & & & & \\
\hline & 22-32 & | Unweathered & | --- & --- & --- & --- & --- & --- & --- & --- & --- & --- \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 17.--Engineering Index Properties--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{USDA texture} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Classification}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Fragments}} & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{Percentage passing sieve number--}} & \multirow{4}{*}{\begin{tabular}{l}
|Liquid \\
|limit
\end{tabular}} & \multirow[b]{4}{*}{Plasticity index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{|c|c|}
\hline>10 & 3-10 \\
\mid \text { inches } & \text { inches }
\end{array}
\]}} & & & & & & \\
\hline & & & Unified & AASHTO & & & 4 & 10 & 40 & 200 & & \\
\hline & In & & | | & | & Pct & | Pct & & & & & Pct & \\
\hline & & & | | & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{208F:} \\
\hline \multirow[t]{18}{*}{Keewaydin------} & 0-4 & | Cobbly fine & | SM & |A-4 & 0-5 & | 10-30 & 180-95 & 175-90 & | 55-80 & | 30-50 & 0-20 & | NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 4-10 & \(\mid\) Fine sandy & | ML, SM & |A-4 & 0-5 & 0-30 & |85-100| & |80-95 & |55-95 & | 30-90 & 0-20 & | NP-4 \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & 10-20 & | Fine sandy & | ML, SM & |A-4 & 0-5 & 0-30 & |85-100| & 180-95 & | 55-95 & | 30-85 & 0-20 & | NP-4 \\
\hline & & loam, cobbly & & & & & & & & & & \\
\hline & & | silt loam & & & & & & & & & & \\
\hline & 20-31 & | Gravelly loamy & |SP-SM, SP, SM| & A-2-4, A-3 & 0-5 & 0-30 & 75-90 & 170-85 & |30-65 & 0-25 & --- & NP \\
\hline & & sand, cobbly & & & & & & & & & & \\
\hline & & | loamy sand, & & & & & & & & & & \\
\hline & & | gravelly sand & & & & & & & & & & \\
\hline & 31-80 & |Very cobbly & |GP, GP-GM, & |A-1, A-2-4, & 0-15 & 5-45 & 50-80 & |45-75 & | \(30-65\) & 0-25 & --- & NP \\
\hline & & | loamy sand, & | SP-SM, SM & | A-3 & & & & & & & & \\
\hline & & | very gravelly & & & & & & & & & & \\
\hline & & | sand, gravelly| & & & & & & & & & & \\
\hline & & | loamy sand | & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{16}{*}{Michigamme----} & 0-5 & | Cobbly fine & | SM & |A-4 & 0-8 & 15-30 & 185-95 & 180-90 & |55-80 & | 30-50 & 0-20 & |NP-4 \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 5-24 & | Cobbly silt & | ML, SM & |A-4 & 0-8 & 0-30 & | 85-100| & 180-95 & | \(45-95\) & | 25-85 & 0-20 & | NP-4 \\
\hline & & | loam, cobbly & & & & & & & & & & \\
\hline & & fine sandy & & & & & & & & & & \\
\hline & & | loam, gravelly| & & & & & & & & & & \\
\hline & & | fine sandy | & & & & & & & & & & \\
\hline & & | loam, fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 24-29 & | Cobbly fine & | SM & A-4 & 0-8 & 0-30 & 185-95 & 180-90 & |45-80 & |25-50 & 0-20 & |NP-4 \\
\hline & & sandy loam, & & & & & & & & & & \\
\hline & & | gravelly fine & & & & & & & & & & \\
\hline & & | sandy loam & & & & & & & & & & \\
\hline & 29-39 & | Unweathered & | --- | & --- & --- & --- & --- & --- & --- & - & --- & --- \\
\hline & & | bedrock & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 209B: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Garlic--------} & 0-9 & \(\mid\) Fine sand & | SM & | A-2-4 & 0 & 0 & |95-100| & |90-100| & 70-95 & |15-35 & --- & NP \\
\hline & 9-26 & |Fine sand, sand| & |SP, SP-SM, SM| & A-3, A-2-4 & 0 & 0 & |95-100| & |90-100| & 45-95 & 0-35 & - & NP \\
\hline & 26-80 & |Fine sand, sand| & |SP, SP-SM, SM| & A-3, A-2-4 & 0 & 0 & |95-100| & |90-100| & 45-95 & 0-35 & --- & NP \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 17.--Engineering Index Properties--Continued

Table 18.--Physical Properties of the Soils
(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" and "Wind erodibility index" apply only to the surface layer. Absence of an entry indicates that data were not estimated)

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\text { |Available } \\
\text { | water } \\
\text { |capacity } \\
\hline
\end{array}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Linear \\
extensi- \\
bility
\end{tabular}} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors|}} & \multirow[t]{4}{*}{|Wind |erodi|bility |group} & \multirow[t]{4}{*}{|Wind erodi|bility |index} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline \multirow[t]{2}{*}{} & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/ hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{13E:
Kalkaska--------} & & & & & & & & & & & & \\
\hline & 0-6 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & 0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & 0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 13F: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Kalkaska-------} & 0-6 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & | & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & 0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 14B: & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rousseau--------} & 0-6 & 0-5 & 1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 6-27 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & & \\
\hline & 27-80 & 0-5 & | 1.50-1.65| & 6-20 & 0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 14D: & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rousseau-------} & 0-6 & 0-5 & 1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 6-27 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & & \\
\hline & 27-80 & 0-5 & 1.50-1.65| & 6-20 & 0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 15A: & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Croswell--------} & 0-7 & 0-5 & 1.30-1.55| & 6-20 & |0.06-0.09 & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-34 & 0-5 & |1.40-1.60| & 6-20 & |0.06-0.10 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 34-80 & 0-5 & 1.50-1.65| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 16A: & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Paquin----------} & 0-11 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.10 & 0.0-2.9 & 0.0-1.0 & . 15 & . 15 & 2 & 1 & 220 \\
\hline & 11-12 & 0-5 & | 1.40-1.65| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.0-2.0 & . 15 & . 15 & & & \\
\hline & 12-14 & 0-5 & 1.75-2.00| & 0.6-6 & |0.05-0.06 & 0.0-2.9 & 0.6-2.0 & . 15 & . 15 & & | & \\
\hline & 14-36 & 0-5 & 1.45-1.60| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 36-80 & 0-5 & 1.50-1.70| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 17A: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Au Gres} & 0-8 & 0-5 & 1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-4.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 8-27 & 0-5 & | 1.50-1.70| & 6-20 & |0.06-0.09 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 27-80 & 0-5 & 1.50-1.70| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & | & \\
\hline & & & & & & & & & & & & \\
\hline 18 : & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Kinross---------} & 0-5 & 0-0 & |0.10-0.35| & 2-20 & |0.35-0.45 & --- & 20-70 & -- & --- & 3 & 2 & 134 \\
\hline & 5-30 & 0-5 & | 1.40-1.70| & 6-20 & |0.04-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & & & \\
\hline & 30-80 & 0-5 & 1.40-1.70| & 6-20 & |0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \(19:\) & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Deford---------} & & --- & 0.30-0.50| & & |0.35-0.45 & & & --- & -- & 5 & 2 & 134 \\
\hline & 6-80 & 0-5 & 1.40-1.60| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & | & \\
\hline & & & & & & & & & & & & \\
\hline 20B: & & & & & & & & & & & I & \\
\hline \multirow[t]{4}{*}{Rousseau--------} & 0-6 & 0-5 & 1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 6-27 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & | & \\
\hline & 27-80 & 0-5 & 1.50-1.65| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & | & \\
\hline & & & & & & & & & & & | & \\
\hline \multirow[t]{5}{*}{Ocqueoc---------} & 0-2 & 0-5 & 1.30-1.60| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 2-7 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.12 & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & | & \\
\hline & 7-27 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.12 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & | & \\
\hline & 27-80 & 5-15 & 1.50-1.80| & 0.2-0.6 & |0.05-0.21 & 0.0-2.9 & 0.0-0.5 & . 37 & . 37 & & | & \\
\hline & & & & & & & & & & & | & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\begin{tabular}{l}
Moist \\
bulk \\
density
\end{tabular}} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{|c}
\text { Linear } \\
\text { |extensi- } \\
\text { | bility }
\end{array}
\]} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|group
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/ hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{20D:} \\
\hline \multirow[t]{4}{*}{Rousseau--------} & 0-6 & 0-5 & |1.30-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 6-27 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & & \\
\hline & 27-80 & 0-5 & |1.50-1.65| & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Ocqueoc---------} & 0-2 & 0-5 & | 1.30-1.60| & 6-20 & |0.07-0.09| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 2-7 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.12| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & \\
\hline & 7-27 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.12| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 27-80 & 5-15 & 1.50-1.80| & 0.2-0.6 & |0.05-0.21| & 0.0-2.9 & 0.0-0.5 & . 37 & . 37 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{20E:} \\
\hline \multirow[t]{4}{*}{Rousseau--------} & 0-6 & 0-5 & |1.30-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 6-27 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & & \\
\hline & 27-80 & 0-5 & |1.50-1.65| & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Ocqueoc---------} & 0-2 & 0-5 & |1.30-1.60| & 6-20 & |0.07-0.09| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 2-7 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.12| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & \\
\hline & 7-27 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.12| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 27-80 & 5-15 & | 1.50-1.80| & 0.2-0.6 & |0.05-0.21| & 0.0-2.9 & 0.0-0.5 & . 37 & . 37 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{22B:} \\
\hline \multirow[t]{6}{*}{Alcona----------} & 0-9 & 2-8 & | 1.30-1.60| & 0.6-2 & |0.10-0.14| & 0.0-2.9 & 1.0-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 9-13 & 2-8 & | 1.35-1.70| & 0.6-2 & |0.10-0.17| & 0.0-2.9 & --- & . 20 & . 24 & & & \\
\hline & 13-26 & 2-8 & | 1.35-1.70| & 0.6-2 & |0.08-0.17| & 0.0-2.9 & --- & . 15 & . 17 & & & \\
\hline & 26-49 & 10-20 & | 1.35-1.70| & 0.6-2 & |0.13-0.20| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 49-80 & 5-15 & |1.50-1.70| & 0.6-2 & |0.08-0.20| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{24B:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & 2-8 & | 1.30-1.65| & 0.6-2 & | 0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 4 & 3 & 86 \\
\hline & 6-18 & 2-8 & |1.35-1.65| & 0.6-2 & | 0.09-0.17| & 0.0-2.9 & 0.6-1.0 & . 20 & . 24 & & & \\
\hline & 18-50 & 5-18 & |1.80-2.10| & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 50-80 & 4-12 & | 1.55-1.75| & 0.6-2 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{24D:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & 2-8 & |1.30-1.65| & 0.6-2 & |0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 4 & 3 & 86 \\
\hline & 6-18 & 2-8 & |1.35-1.65| & 0.6-2 & |0.09-0.17| & 0.0-2.9 & 0.6-1.0 & . 20 & . 24 & & & \\
\hline & 18-50 & 5-18 & |1.80-2.10| & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 50-80 & 4-12 & | 1.55-1.75| & 0.6-2 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{25B:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & 2-8 & |1.30-1.65| & 0.6-2 & |0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 4 & 3 & 86 \\
\hline & 6-18 & 2-8 & |1.35-1.65| & 0.6-2 & |0.09-0.17| & 0.0-2.9 & 0.6-1.0 & . 20 & . 24 & & & \\
\hline & 18-50 & 5-18 & |1.80-2.10| & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 50-80 & 4-12 & |1.55-1.75| & 0.6-2 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & |1.80-2.05| & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & | \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{25D:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & 2-8 & |1.30-1.65| & 0.6-2 & | 0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 4 & 3 & 86 \\
\hline & 6-18 & 2-8 & |1.35-1.65| & 0.6-2 & |0.09-0.17| & 0.0-2.9 & 0.6-1.0 & . 20 & . 24 & & & | \\
\hline & 18-50 & 5-18 & |1.80-2.10| & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 50-80 & 4-12 & |1.55-1.75| & 0.6-2 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & | \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & | 1.30-1.60| & 6-20 & |0.06-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & | \\
\hline & 30-80 & 5-15 & | 1.80-2.05| & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & | & | \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi|bility |group} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|index
\end{tabular}} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline & In & Pct & g/cc & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{26A:} \\
\hline \multirow[t]{4}{*}{Skanee----------} & 0-7 & 2-10 & 1.30-1.60| & 0.6-2 & |0.09-0.18 & 0.0-2.9 & 2.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 7-12 & 2-8 & 1.40-1.70| & 0.6-2 & |0.11-0.17 & 0.0-2.9 & 0.6-1.0 & . 24 & . 24 & & & \\
\hline & 12-30 & 10-14 & 1.75-2.10| & 0.0-0.06 & |0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 30-80 & 4-12 & 1.40-1.70| & 0.6-2 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{27:} \\
\hline \multirow[t]{4}{*}{Gay-------------} & 0-2 & 0-10| & |0.90-1.60| & 0.2-6 & |0.35-0.45 & 0.0-2.9 & 55-75 & . 24 & . 24 & 2 & 2 & 134 \\
\hline & 2-18 & 5-12 & 1.15-1.60| & 0.6-2 & |0.07-0.14 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 18-31 & 5-15 & 1.30-1.80| & 0.6-2 & |0.10-0.18 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 31-80 & 4-12 & 1.80-1.95| & 0.6-2 & |0.09-0.17 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{28B:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12 & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 3-25 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{28D:} \\
\hline \multirow[t]{3}{*}{Keweenaw--------} & 0-3 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12 & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 3-25 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{28E:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12 & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 3-25 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{29B:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & 1.35-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-10| & 1.30-1.60| & 6-20 & |0.06-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & 1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{29D:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & 1.35-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & 1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{31D:} \\
\hline \multirow[t]{5}{*}{Trenary---------} & 0-5 & 2-10 & 1.35-1.55| & 0.6-2 & |0.18-0.22 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 5-15 & 2-10| & 1.35-1.60| & 0.6-2 & |0.14-0.19 & 0.0-2.9 & 0.5-1.0 & . 24 & . 24 & & & \\
\hline & 15-48 & 10-20| & 1.40-1.70| & 0.6-2 & |0.08-0.14 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 48-80 & 7-11 & 1.60-1.80| & 0.6-2 & |0.09-0.19 & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{32A:} \\
\hline \multirow[t]{5}{*}{Charlevoix------} & 0-8 & 2-10| & 1.30-1.65| & 0.6-2 & |0.12-0.18 & 0.0-2.9 & 2.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 8-12 & 2-10 & 1.35-1.65| & 0.6-2 & |0.08-0.20 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 12-28 & 10-25 & 1.40-1.70| & 0.6-2 & |0.12-0.18 & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 28-80 & 7-11 & 1.55-1.70| & 0.6-2 & |0.06-0.12 & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{33 :} \\
\hline \multirow[t]{4}{*}{Ensley----------} & 0-5 & --- & 0.30-0.55| & 0.2-6 & |0.35-0.45 & --- & 55-75 & -- & --- & 4 & 2 & 134 \\
\hline & 5-19 & 5-15 & 1.30-1.70| & 0.6-2 & |0.11-0.18 & 0.0-2.9 & 0.0-0.5 & . 24 & . 37 & & & \\
\hline & 19-80 & 7-11 & 1.70-1.80| & 0.6-2 & |0.10-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{34B:} \\
\hline \multirow[t]{5}{*}{Onaway----------} & 0-6 & 2-10 | & 1.30-1.55| & 0.6-2 & |0.08-0.16 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 6-13 & 2-10| & 1.40-1.70| & 0.6-2 & |0.12-0.17 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 13-18 & 18-30| & 1.40-1.70| & 0.2-0.6 & |0.12-0.19 & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 18-80 & 7-11 & 1.60-1.80| & 0.2-0.6 & |0.10-0.20 & 0.0-2.9 & --- & . 32 & . 43 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Map symbol and soil name} & \multirow{3}{*}{Depth} & \multirow{3}{*}{Clay} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{3}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { | Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{3}{*}{Linear extensibility} & \multirow[b]{3}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{3}{*}{|Wind |erodi |bility |group} & \multirow[t]{3}{*}{\begin{tabular}{l}
|Wind |erodi|bility \\
index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{34D:} \\
\hline \multirow[t]{4}{*}{Onaway----------} & 0-6 & 2-8 & 1.30-1.55| & 0.6-2 & |0.08-0.16 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 6-13 & 2-8 & 1.40-1.70| & 0.6-2 & |0.12-0.17 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 13-18 & 18-30 & 1.40-1.70| & 0.2-0.6 & |0.12-0.19 & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 18-80 & 7-11 & 1.60-1.80| & 0.2-0.6 & |0.10-0.20 & 0.0-2.9 & --- & . 32 & . 43 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{34E:} \\
\hline \multirow[t]{4}{*}{Onaway----------} & 0-6 & 2-8 & 1.30-1.55| & 0.6-2 & |0.08-0.16 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 6-13 & 2-8 & 1.40-1.70| & 0.6-2 & |0.12-0.17 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 13-18 & 18-30 & 1.40-1.70| & 0.2-0.6 & |0.12-0.19 & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 18-80 & 7-11 & 1.60-1.80| & 0.2-0.6 & |0.10-0.20 & 0.0-2.9 & --- & . 32 & . 43 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{35B:} \\
\hline \multirow[t]{4}{*}{Champion--------} & 0-5 & 2-8 & 1.10-1.35| & 0.6-2 & |0.10-0.17 & 0.0-2.9 & 1.0-3.0 & . 17 & . 37 & 4 & 3 & 86 \\
\hline & 5-26 & 2-8 & 1.25-1.65| & 0.6-2 & |0.10-0.20 & 0.0-2.9 & 0.6-1.0 & . 24 & . 43 & & & \\
\hline & 26-43 & 1-10 & 1.80-2.05| & 0.0-0.06 & |0.01-0.04 & 0.0-2.9 & 0.0-0.5 & . 15 & . 20 & & & \\
\hline & 43-80 & 1-10 & 1.30-1.65| & 2-6 & |0.01-0.04 & 0.0-2.9 & 0.0-0.5 & . 15 & . 20 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{35D:} \\
\hline \multirow[t]{4}{*}{Champion-------} & 0-5 & 2-8 & 1.10-1.35| & 0.6-2 & |0.10-0.17 & 0.0-2.9 & 1.0-3.0 & . 17 & . 37 & 4 & 3 & 86 \\
\hline & 5-26 & 2-8 & 1.25-1.65| & 0.6-2 & |0.10-0.20 & 0.0-2.9 & 0.6-1.0 & . 24 & . 43 & & & \\
\hline & 26-43 & 1-10 & 1.80-2.05| & 0.0-0.06 & |0.01-0.04 & 0.0-2.9 & 0.0-0.5 & . 15 & . 20 & & & \\
\hline & 43-80 & 1-10 & 1.30-1.65| & 2-6 & |0.01-0.04 & 0.0-2.9 & 0.0-0.5 & . 15 & . 20 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{36A:} \\
\hline \multirow[t]{4}{*}{Net-------------} & 0-5 & 2-8 & 1.30-1.60| & 0.6-2 & |0.08-0.12 & 0.0-2.9 & 2.0-6.0 & . 17 & --- & 4 & 8 & 0 \\
\hline & 5-18 & 2-8 & |1.40-1.65| & 0.6-2 & |0.09-0.21 & 0.0-2.9 & 0.6-1.0 & . 28 & . 37 & & & \\
\hline & 18-45 & 1-10 & |1.80-2.05| & 0.0-0.06 & |0.01-0.02 & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 45-80 & 1-10 & |1.30-1.70| & 0.6-2 & |0.01-0.02 & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{37:} \\
\hline \multirow[t]{4}{*}{Witbeck--------} & 0-8 & --- & |0.15-0.40| & 0.2-6 & |0.35-0.45 & 0.0-2.9 & 40-70 & --- & --- & 5 & 8 & 0 \\
\hline & 8-15 & 3-10 & |1.25-1.60| & 0.6-2 & |0.08-0.16 & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 15-22 & 3-10 & |1.55-1.75 & 0.6-2 & |0.04-0.18 & 0.0-2.9 & 0.0-0.5 & . 24 & . 32 & & & \\
\hline & 22-80 & 3-10 & 1.55-1.75| & 0.2-2 & |0.04-0.17 & 0.0-2.9 & 0.0-0.5 & . 24 & . 32 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{38B:} \\
\hline \multirow[t]{4}{*}{Pence-----------} & 0-6 & 2-8 & |1.20-1.65| & 2-6 & |0.10-0.18 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 6-13 & 2-8 & |1.35-1.45| & 2-6 & |0.10-0.15 & 0.0-2.9 & 1.0-2.0 & . 17 & . 24 & & & \\
\hline & 13-31 & 0-5 & |1.65-1.75| & 6-60 & |0.05-0.08 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & 31-80 & 0-4 & |1.35-1.80| & 6-60 & |0.02-0.05 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{38D:} \\
\hline \multirow[t]{4}{*}{Pence-----------} & 0-6 & 2-8 & |1.20-1.65| & 2-6 & |0.10-0.18 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 6-13 & 2-8 & |1.35-1.45| & 2-6 & |0.10-0.15 & 0.0-2.9 & 1.0-2.0 & . 17 & . 24 & & & \\
\hline & 13-31 & 0-5 & |1.65-1.75| & 6-60 & |0.05-0.08 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & 31-80 & 0-4 & |1.35-1.80| & 6-60 & |0.02-0.05 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{38E:} \\
\hline \multirow[t]{4}{*}{Pence-----------} & 0-6 & 2-8 & |1.20-1.65| & 2-6 & |0.10-0.18 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 6-13 & 2-8 & |1.35-1.45| & 2-6 & |0.10-0.15 & 0.0-2.9 & 1.0-2.0 & . 17 & . 24 & & & \\
\hline & 13-31 & 0-5 & |1.65-1.75| & 6-60 & |0.05-0.08 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & 31-80 & 0-4 & |1.35-1.80| & 6-60 & |0.02-0.05 & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{39B:} \\
\hline \multirow[t]{4}{*}{Amasa-----------} & 0-5 & 2-8 & |1.20-1.60| & 0.6-2 & |0.15-0.18 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 4 & 3 & 86 \\
\hline & 5-16 & 2-8 & |1.20-1.70| & 0.6-2 & |0.14-0.22 & 0.0-2.9 & --- & . 37 & . 37 & & & \\
\hline & 16-80 & 0-3 & |1.50-1.65| & 6-20 & |0.02-0.04 & 0.0-2.9 & --- & . 10 & . 15 & & | & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[t]{4}{*}{\(\mid\) Available \(\mid\)
\(\mid\) water
\(\mid\) capacity} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi-| |bility| |group} & \multirow[t]{4}{*}{|Wind |erodi|bility |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 58: & & & & & | | & & & & & & & \\
\hline Greenwood- & 0-8 & 0-0 & |0.30-0.40| & 6-20 & |0.55-0.65| & | --- & 55-75 & --- & --- & 3 & 7 & 38 \\
\hline & 8-80 & 0-0 & |0.10-0.25| & 0.2-6 & |0.45-0.55| & | --- & 55-75 & - & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Dawson- & 0-6 & 0-0 & |0.15-0.30| & 6-20 & |0.55-0.65| & --- & 65-85 & --- & --- & 2 & 7 & 38 \\
\hline & 6-34 & 0-0 & | 0.15-0.40| & 0.2-6 & |0.35-0.45| & - --- & 65-85 & --- & --- & & & \\
\hline & 34-36 & 0-5 & | 1.55-1.75| & 0.6-2 & \(|0.18-0.20|\) & 0.0-2.9 & 5.0-15 & . 24 & . 24 & & & \\
\hline & 36-80 & 0-5 & |1.55-1.75| & 6-20 & \(|0.03-0.10|\) & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 59 : & & & & & & & & & & & & \\
\hline Chippeny- & 0-29 & 0-0 & |0.15-0.30| & 0.2-0.6 & |0.35-0.45| & --- & 55-75 & - & - & 1 & 2 & 134 \\
\hline & 29-38 & 7-11 & |1.45-1.75| & \[
0.2-2
\] & \(|0.04-0.19|\) & 0.0-2.9 & --- & --- & --- & & & \\
\hline & 38-48 & --- & | --- | & 0.06-0.6 & --- | & | --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Nahma - & 0-11 & 0-0 & |0.30-0.40| & 0.2-6 & |0.35-0.45| & | --- & 40-60 & --- & --- & 2 & 2 & 134 \\
\hline & 11-14 & 8-15 & |1.30-1.60| & 0.6-2 & \(|0.12-0.20|\) & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 14-24 & 8-15 & |1.40-1.70| & 0.6-2 & \(|0.10-0.19|\) & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 24-34 & --- & | & 0.06-0.6 & | --- | & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 60: & & & & & | | & & & & & & & \\
\hline Histosols- & & & & & & & 50-70 & & & 3 & 2 & 134 \\
\hline & 51-80 & - & -- - & 0.01-0.02 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & | | & & & & & & & \\
\hline Aquents- & 0-80 & - & --- & 0.02-0.02 & -- & | --- & --- & --- & --- & 5 & --- & -- \\
\hline & & & & & 1 & & & & & & & \\
\hline 61. & & & & & 1 & & & & & & & \\
\hline Pits, borrow & & & & & 1 & & & & & & & \\
\hline & & & & & 1 & & & & & & & \\
\hline 62B: & & & & & | | & & & & & & & \\
\hline Udorthents- & 0-60 & 2-18 & |1.50-1.70| & 0.6-2 & |0.11-0.18| & 0.0-2.9 & --- & . 24 & --- & 5 & 3 & 86 \\
\hline & 60-80 & & | --- | & 0.6-2 & - & | --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Udipsamments- & 0-80 & 0-5 & |1.35-1.65| & 6-20 & |0.05-0.09| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & & & & & |0.05-0.09| & & & & & & & \\
\hline & & & & & | | & & & & & & & \\
\hline Pits and Dumps & & & & & 1 & & & & & & & \\
\hline & & & & & 1 & & & & & & & \\
\hline 65B: & & & & & & & & & & & & \\
\hline Udorthents- & \[
0-60
\] & 2-18 & |1.50-1.70| & \[
0.6-2
\] & |0.11-0.18| & 0.0-2.9 & --- & . 24 & -- & 5 & 3 & 86 \\
\hline & 60-80 & --- & - -- | & 0.6-2 & | --- & --- & -- & --- & -- & & & \\
\hline & & & & & | & & & & & & & \\
\hline Urban land. & & & & & 1 & & & & & & & \\
\hline & & & & & 1 & & & & & & & \\
\hline 66B: & & & & & 1 & & & & & & & \\
\hline Udipsamments-- & 0-80 & 0-5 & | 1.35-1.65| & 6-20 & |0.05-0.09| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & & & & & & & & & & & & \\
\hline Urban land. & & & & & 1 & & & & & & & \\
\hline & & & & & 1 & & & & & & & \\
\hline 67B: & & & & & 1 & & & & & & & \\
\hline Urban land. & & & & & 1 & & & & & & & \\
\hline & & & & & 1 & & & & & & & \\
\hline Rubicon- & 0-7 & 0-5 & |1.25-1.45| & 6-20 & |0.05-0.09| & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & |1.30-1.60| & 6-20 & |0.04-0.08| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & |1.40-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 68 : & & & & & 1 & & & & & & & \\
\hline Pits, quarries-- & 0-80 & --- & --- & 0.01-20 & --- & --- & --- & --- & --- & 5 & 8 & 0 \\
\hline & & & & & 1 | & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permeability \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \mid \text { water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{|l}
\text { Linear } \\
\mid \text { extensi- } \\
\text { | bility }
\end{array}
\]} & \multirow{4}{*}{\begin{tabular}{l}
Organic \\
matter
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{|Wind |erodi|bility| |group} & \multirow[t]{4}{*}{Wind erodibility index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{69B:} \\
\hline \multirow[t]{6}{*}{Escanaba--------} & 0-6 & 0-5 & |1.35-1.65| & 2-6 & |0.09-0.12| & 0.0-2.9 & 0.5-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 6-26 & 0-5 & |1.30-1.65| & 2-6 & |0.08-0.11| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & 26-35 & 2-8 & | 1.30-1.65| & 0.6-2 & |0.09-0.11| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & 35-42 & 5-15 & |1.30-1.70| & 0.6-2 & | 0.12-0.17| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & 42-80 & 7-11 & | 1.60-1.80| & 0.6-2 & |0.10-0.16| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{69D:} \\
\hline \multirow[t]{6}{*}{Escanaba--------} & 0-6 & 0-5 & |1.35-1.65| & 2-6 & |0.09-0.12| & 0.0-2.9 & 0.5-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 6-26 & 0-5 & | 1.30-1.65| & 2-6 & |0.08-0.11| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & 26-35 & 2-8 & | 1.30-1.65| & 0.6-2 & |0.09-0.11| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & 35-42 & 5-15 & |1.30-1.70| & 0.6-2 & | 0.12-0.17| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & 42-80 & 7-11 & |1.60-1.80| & 0.6-2 & | 0.10-0.16| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{70B:} \\
\hline \multirow[t]{5}{*}{Nadeau----------} & 0-7 & 5-15 & |1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-17 & 5-15 & | 1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 17-23 & 8-18 & |1.35-1.60| & 0.6-2 & |0.04-0.09| & 0.0-2.9 & 0.0-0.5 & . 10 & . 24 & & & \\
\hline & 23-80 & 0-2 & | 1.45-1.65| & 20-20 & | 0.01-0.04| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{70D:} \\
\hline \multirow[t]{5}{*}{Nadeau----------} & 0-7 & 5-15 & |1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-17 & 5-15 & |1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 17-23 & 8-18 & |1.35-1.60| & 0.6-2 & |0.04-0.09| & 0.0-2.9 & 0.0-0.5 & . 10 & . 24 & & & \\
\hline & 23-80 & 0-2 & |1.45-1.65| & 20-20 & | 0.01-0.04| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{71B:} \\
\hline \multirow[t]{3}{*}{Evart-----------} & 0-10 & 2-8 & |1.35-1.50| & 0.6-2 & |0.19-0.22| & 0.0-2.9 & 1.0-6.0 & . 28 & . 28 & 3 & 5 & 56 \\
\hline & 10-80 & 0-5 & |1.40-1.65| & 6-20 & |0.05-0.10| & 0.0-2.9 & 0.0-0.0 & . 15 & . 20 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Pelkie----------} & 0-7 & 0-5 & |1.30-1.55| & 6-20 & |0.08-0.12| & 0.0-2.9 & 1.0-2.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 7-80 & 0-5 & | 1.25-1.65| & 6-20 & |0.05-0.09| & 0.0-2.9 & --- & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Sturgeon--------} & & & | 1.40-1.65| & \[
0.6-2
\] & |0.20-0.22| & & 2.0-3.0 & . 37 & . 37 & 4 & 3 & 86 \\
\hline & 6-35 & 2-8 & |1.50-1.70| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & --- & . 28 & . 28 & & & \\
\hline & 35-80 & 0-5 & |1.50-1.65| & 6-20 & | 0.05-0.07| & 0.0-2.9 & --- & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{72B:} \\
\hline \multirow[t]{5}{*}{Emmet-----------} & 0-3 & 2-8 & |1.30-1.65| & 0.6-2 & | 0.12-0.15| & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 3-21 & 2-8 & | 1.40-1.70| & 0.6-2 & | 0.11-0.14| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 21-28 & 10-18 & |1.50-1.75| & 0.6-2 & | 0.11-0.18| & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 28-80 & 7-11 & |1.60-1.80| & 0.2-0.6 & |0.08-0.14| & 0.0-2.9 & --- & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{72D:} \\
\hline \multirow[t]{5}{*}{Emmet-----------} & 0-3 & 2-8 & |1.30-1.65| & 0.6-2 & | 0.12-0.15| & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 3-21 & 2-8 & | 1.40-1.70| & 0.6-2 & | 0.11-0.14| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 21-28 & 10-18 & | 1.50-1.75| & 0.6-2 & | 0.11-0.18| & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 28-80 & 7-11 & |1.60-1.80| & 0.2-0.6 & |0.08-0.14| & 0.0-2.9 & --- & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{72E:} \\
\hline \multirow[t]{5}{*}{Emmet-----------} & 0-3 & 2-8 & |1.30-1.65| & 0.6-2 & |0.12-0.15| & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 3-21 & 2-8 & |1.40-1.70| & 0.6-2 & |0.11-0.14| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 21-28 & 10-18 & |1.50-1.75| & 0.6-2 & | 0.11-0.18| & 0.0-2.9 & --- & . 32 & . 32 & & & \\
\hline & 28-80 & 7-11 & |1.60-1.80| & 0.2-0.6 & | 0.08-0.14| & 0.0-2.9 & --- & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{73B :} \\
\hline \multirow[t]{5}{*}{Gogebic--------} & 0-5 & 2-8 & | 1.25-1.65| & 0.6-2 & |0.08-0.15| & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 3 & 86 \\
\hline & 5-18 & 2-8 & | 1.25-1.65| & 0.6-2 & |0.08-0.14| & 0.0-2.9 & 0.5-1.0 & . 17 & . 24 & & & \\
\hline & 18-62 & 5-15 & |1.80-2.05| & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 62-80 & 2-10 & |1.60-1.80| & 0.6-2 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & | & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\begin{tabular}{l}
Moist \\
bulk \\
density
\end{tabular}} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{|}
\mid \text { Available } \\
\text { water } \\
\text { capacity }
\end{array}
\]} & \multirow[b]{4}{*}{\[
\begin{array}{|c}
\text { Linear } \\
\mid \text { extensi- } \\
\mid \text { bility }
\end{array}
\]} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|group
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/ hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 92A: & & & & & & & & & & & & \\
\hline Ensley & 0-5 & --- & 0.30-0.55| & 0.2-6 & |0.35-0.45| & --- & 55-75 & --- & --- & 4 & 2 & 134 \\
\hline & 5-19 & 5-15 & 1.30-1.70| & 0.6-2 & |0.11-0.18| & 0.0-2.9 & 0.0-0.5 & . 24 & . 37 & & & \\
\hline & 19-80 & 7-11 & 1.70-1.80| & 0.6-2 & |0.10-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline Solona- & 0-9 & 2-8 & 1.35-1.70| & 0.6-2 & |0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 9-25 & 5-15 & 1.45-1.65| & 0.6-2 & |0.09-0.19| & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 25-80 & 7-11 & 1.45-1.70| & 0.6-2 & |0.08-0.19 & 0.0-2.9 & 0.0-0.5 & . 37 & . 37 & & & \\
\hline & & & & & & & & & & & & \\
\hline 93 : & & & & & & & & & & & & \\
\hline Tawas & 0-6 & --- & 0.30-0.55| & 0.2-6 & |0.35-0.45| & & 40-60 & --- & - & 2 & 2 & 134 \\
\hline & \[
6-25
\] & --- & 0.30-0.55| & \[
0.2-6
\] & |0.24-0.45| & --- & \[
40-60
\] & -- & - & & & \\
\hline & 25-80 & 0-5 & 1.40-1.65| & 6-20 & |0.03-0.10| & 0.0-2.9 & 0.0-0.0 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Deford & 0-6 & --- & 0.30-0.50| & 0.2-6 & |0.35-0.45| & --- & 40-60 & --- & --- & 5 & 2 & 134 \\
\hline & 6-80 & 0-5 & 1.40-1.60| & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline 94B: & & & & & & & & & & & & \\
\hline Keweenaw- & 0-3 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12| & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 3-25 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska- & 0-6 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 94D: & & & & & & & & & & & & \\
\hline Keweenaw- & \[
0-3
\] & 0-5 & 1.35-1.60| & \[
2-6
\] & |0.09-0.12| & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & \[
3-25
\] & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska & 0-6 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & \[
8-17
\] & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50 & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 94E: & & & & & & & & & & & & \\
\hline Keweenaw- & & & & & & \[
0.0-2.9
\] & \[
1.0-2.0
\] & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 3-25 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 25-80 & 2-10 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska- & 0-6 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 95B : & & & & & & & & & & & & \\
\hline Liminga- & 0-4 & 0-5 & 1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 4-30 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & & & \\
\hline & 30-80 & 0-5 & 1.50-1.65| & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Liminga- & 0-4 & 0-5 & 1.30-1.55 & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 4-30 & 0-5 & 1.30-1.60| & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & & & \\
\hline & 30-80 & 0-5 & 1.50-1.65| & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 100E: & & & & & & & & & & & & \\
\hline Sayner- & 0-2 & 0-5 & 1.25-1.45| & 6-20 & |0.08-0.12| & 0.0-2.9 & 1.0-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 2-14 & 0-5 & 1.35-1.65| & 6-20 & |0.03-0.11| & 0.0-2.9 & 1.0-2.0 & . 17 & . 17 & & & \\
\hline & 14-27 & 0-4 & 1.45-1.70| & 6-20 & |0.03-0.11| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & 27-80 & 0-3 & 1.55-1.80| & 6-20 & |0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{gathered}
\text { Moist } \\
\text { bulk } \\
\text { density }
\end{gathered}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{|Wind |erodi|bility |group} & \multirow[t]{4}{*}{|Wind |erodi|bility |index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 109B: & & & & & | & & & & & & & \\
\hline Rubicon & 0-7 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & 1.30-1.60| & 6-20 & |0.04-0.08 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & 1.40-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Keweenaw- & 0-4 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12| & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 4-12 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 12-23 & 0-5 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 23-80 & 2-10 & --- | & --- & --- & --- & --- & --- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline 109D: & & & & & & & & & & & & \\
\hline Rubicon & 0-7 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & 1.30-1.60| & 6-20 & |0.04-0.08 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & 1.40-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Keweenaw- & 0-4 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12| & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 4-12 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 12-23 & 0-5 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 23-80 & 2-10 & --- | & --- & | --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 109F: & & & & & | & & & & & & & \\
\hline Rubicon & 0-7 & 0-5 & 1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & 1.30-1.60 & 6-20 & |0.04-0.08 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & 1.40-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Keweenaw- & 0-4 & 0-5 & 1.35-1.60| & 2-6 & |0.09-0.12| & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 4-12 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 12-23 & 0-5 & 1.50-1.80| & 2-6 & |0.06-0.14| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 23-80 & 2-10 & --- | & --- & - & --- & --- & -- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline 110B: & & & & & | & & & & & & & \\
\hline Nadeau & 0-7 & 5-15 & 1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-17 & 5-15 & 1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 17-23 & 8-18 & 1.35-1.60| & 0.6-2 & |0.04-0.09 & 0.0-2.9 & 0.0-0.5 & . 10 & . 24 & & & \\
\hline & 23-80 & 0-2 & 1.45-1.65 & 20-20 & |0.01-0.04| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Mancelona & 0-3 & 2-8 & 1.35-1.65| & 2-6 & |0.09-0.14| & 0.0-2.9 & 0.5-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 3-33 & 0-5 & 1.30-1.65 & 2-6 & |0.06-0.12| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 33-37 & 5-15 & 1.30-1.65| & 2-6 & |0.06-0.16 & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 37-80 & 0-3 & 1.45-1.65| & 20-20 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 110D: & & & & & | & & & & & & & \\
\hline Nadeau & 0-7 & 5-15 & 1.30-1.60| & 0.6-2 & |0.12-0.22 & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-17 & 5-15 & 1.30-1.60| & 0.6-2 & |0.12-0.22| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 17-23 & 8-18 & 1.35-1.60| & 0.6-2 & |0.04-0.09 & 0.0-2.9 & 0.0-0.5 & . 10 & . 24 & & & \\
\hline & 23-80 & 0-2 & 1.45-1.65| & 20-20 & |0.01-0.04| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Mancelona & 0-3 & 2-8 & 1.35-1.65| & 2-6 & |0.09-0.14| & 0.0-2.9 & 0.5-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 3-33 & 0-5 & 1.30-1.65 & 2-6 & |0.06-0.12| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 33-37 & 5-15 & 1.30-1.65| & 2-6 & |0.06-0.16| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 37-80 & 0-3 & 1.45-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 111B: & & & & & I & & & & & & & \\
\hline Grayling- & 0-3 & 0-5 & 1.30-1.65| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-6.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 3-23 & 0-5 & 1.30-1.65| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.3-0.5 & . 15 & . 15 & & & | \\
\hline & 23-80 & 0-5 & 1.45-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{```
 Moist
 bulk
density
```} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permeability \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|c|}
\mid \text { Available } \\
\text { water } \\
\mid \text { capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi|bility group} & \multirow[t]{4}{*}{\begin{tabular}{l}
Wind \\
erodi- \\
bility \\
index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & | & & & & & & & \\
\hline \multicolumn{13}{|l|}{112D:} \\
\hline \multirow[t]{6}{*}{Keewaydin----------} & 0-4 & 2-8 & |1.35-1.60| & 0.6-2 & \(|0.10-0.15|\) & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 5 & 86 \\
\hline & 4-10 & 2-8 & |1.35-1.65| & 0.6-2 & \(|0.10-0.22|\) & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 10-20 & 2-8 & |1.35-1.65| & 0.6-2 & \(|0.10-0.22|\) & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 20-31 & 0-5 & \(|1.35-1.70|\) & 2-20 & \(|0.03-0.09|\) & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & 31-80 & 0-5 & \(|1.55-1.75|\) & 2-20 & \(|0.03-0.09|\) & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme--------- |} & 0-5 & 2-8 & |1.10-1.35| & 0.6-2 & \(|0.10-0.17|\) & 0.0-2.9 & 1.0-4.0 & . 17 & . 37 & 2 & 3 & 86 \\
\hline & 5-24 & 2-8 & \(|1.35-1.60|\) & 0.6-2 & \(|0.07-0.22|\) & 0.0-2.9 & 0.6-1.0 & . 28 & . 37 & & & \\
\hline & 24-29 & 5-10 & |1.50-1.85| & 0.6-2 & \(|0.05-0.16|\) & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 29-39 & --- & --- | & 0.01-0.06 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop-------- |} & 0-80 & --- & -- - & 0.01-0.06 & -- & - & --- & -- & --- & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{112F:} \\
\hline \multirow[t]{6}{*}{Keewaydin---------- |} & 0-4 & 2-8 & |1.35-1.60| & 0.6-2 & \(|0.10-0.15|\) & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 5 & 86 \\
\hline & 4-10 & 2-8 & \(|1.35-1.65|\) & 0.6-2 & \(|0.10-0.22|\) & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 10-20 & 2-8 & \(|1.35-1.65|\) & 0.6-2 & \(|0.10-0.22|\) & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 20-31 & 0-5 & |1.35-1.70| & 2-20 & \(|0.03-0.09|\) & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & 31-80 & 0-5 & | 1.55-1.75| & 2-20 & \(|0.03-0.09|\) & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme--------- |} & 0-5 & 2-8 & |1.10-1.35| & 0.6-2 & \(|0.10-0.17|\) & 0.0-2.9 & 1.0-4.0 & . 17 & . 37 & 2 & 3 & 86 \\
\hline & 5-24 & 2-8 & \(|1.35-1.60|\) & 0.6-2 & \(|0.07-0.22|\) & 0.0-2.9 & 0.6-1.0 & . 28 & . 37 & & & \\
\hline & 24-29 & 5-10 & |1.50-1.85| & 0.6-2 & \(|0.05-0.16|\) & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 29-39 & --- & & 0.01-0.06 & | --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop--------} & 0-80 & --- & --- & 0.01-0.06 & -- & --- & --- & -- & - & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{113B:} \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & | 1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & - & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & - & & & \\
\hline & 20-80 & 2-8 & \(|1.45-1.80|\) & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 113D: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & | 1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & - & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & --- & & & \\
\hline & 20-80 & 2-8 & \(|1.45-1.80|\) & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 113F: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & |1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & - & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & --- & & & \\
\hline & 20-80 & 2-8 & | 1.45-1.80| & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 114B: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & |1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & --- & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & --- & & & \\
\hline & 20-80 & 2-8 & | 1.45-1.80| & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 114D: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & |1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & --- & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & --- & & & \\
\hline & 20-80 & 2-10 & | 1.45-1.80| & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 114F: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Vanriper----------- |} & 0-3 & 2-8 & |1.30-1.55| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 1.0-3.0 & . 28 & --- & 5 & 8 & 0 \\
\hline & 3-20 & 2-8 & \(|1.40-1.70|\) & 0.6-2 & \(|0.08-0.14|\) & 0.0-2.9 & 0.6-1.0 & . 32 & --- & & & \\
\hline & 20-80 & 2-8 & | 1.45-1.80| & 0.6-2 & \(|0.07-0.12|\) & 0.0-2.9 & 0.0-0.5 & . 20 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi|bility |group} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
|index
\end{tabular}} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{117B:} \\
\hline \multirow[t]{6}{*}{Fence-----------} & 0-3 & 2-8 & |1.35-1.55| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-2.0 & . 37 & . 37 & 5 & 5 & 56 \\
\hline & 3-7 & 2-8 & |1.35-1.55| & 0.6-2 & |0.20-0.22 & 0.0-2.9 & 0.5-1.0 & . 37 & . 37 & & & \\
\hline & 7-19 & 2-8 & |1.50-1.65| & 0.6-2 & \(\mid 0.16-0.22\) & 0.0-2.9 & 1.0-2.0 & . 37 & . 37 & & & \\
\hline & 19-42 & 8-18 & |1.50-1.65| & 0.6-2 & |0.16-0.22 & 0.0-2.9 & 0.0-0.5 & . 43 & . 43 & & & \\
\hline & 42-80 & 5-15 & |1.50-1.65| & 0.2-0.6 & |0.14-0.20 & 0.0-2.9 & 0.0-0.5 & . 43 & . 43 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{118A:} \\
\hline \multirow[t]{4}{*}{Croswell--------} & 0-7 & 0-5 & |1.30-1.55| & 6-20 & |0.06-0.09 & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-34 & 0-5 & |1.40-1.60| & 6-20 & |0.06-0.10 & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 34-80 & 0-5 & |1.50-1.65| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Deford----------} & 0-6 & --- | & |0.30-0.50| & 0.2-6 & |0.35-0.45 & --- & 40-60 & --- & --- & 5 & 2 & 134 \\
\hline & 6-80 & 0-5 & |1.40-1.60| & 6-20 & |0.05-0.07 & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{119B:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-10 & |1.30-1.60| & 6-20 & |0.06-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & | 1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & 0-5 & |1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & |1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & |1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & |1.35-1.50| & 6-20 & |0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{119D:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & |1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & & & |1.25-1.45| & 6-20 & |0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & |1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & |1.35-1.45| & 6-20 & |0.06-0.08 & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & |1.35-1.50| & 6-20 & |0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{121B:} \\
\hline \multirow[t]{5}{*}{Onota-----------} & 0-2 & 2-10 & |1.30-1.65| & 0.6-2 & |0.07-0.11 & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 2 & 3 & 86 \\
\hline & 2-7 & 2-10 & |1.30-1.65| & 0.6-2 & |0.11-0.14 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 7-22 & 2-10 & | 1.35-1.70| & 0.6-2 & |0.07-0.13 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 22-32 & --- & | --- | & 0.2-2 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{122 :} \\
\hline \multirow[t]{5}{*}{Pleine----------} & 0-9 & --- & |0.30-0.40| & 0.2-6 & |0.35-0.45 & --- & 40-70 & --- & --- & 5 & 8 & 0 \\
\hline & 9-20 & 5-10 & |1.10-1.35| & 0.6-2 & |0.16-0.22 & 0.0-2.9 & 0.0-5.0 & . 24 & . 28 & & & \\
\hline & 20-33 & 5-15 & |1.50-1.85| & 0.6-2 & |0.15-0.19 & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & 33-80 & 5-10 & |1.55-1.70| & 0.6-2 & |0.11-0.16 & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{123A:} \\
\hline \multirow[t]{6}{*}{Tula------------} & 0-8 & 2-8 & |1.20-1.50| & 0.6-2 & |0.20-0.22 & 0.0-2.9 & 2.0-3.0 & . 28 & . 37 & 4 & 3 & 86 \\
\hline & 8-20 & 2-8 & | 1.35-1.60| & 0.6-2 & |0.17-0.22 & 0.0-2.9 & 0.6-1.0 & . 20 & . 28 & & & \\
\hline & 20-28 & 2-8 & |1.40-1.60| & 0.6-2 & |0.15-0.19 & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & 28-62 & 5-15 & |1.75-2.10| & 0.01-0.06 & |0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & 62-80 & 5-10 & \(\mid 1.55-1.70\) | & 0.6-2 & |0.11-0.16 & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{124B:} \\
\hline \multirow[t]{5}{*}{Gogebic---------} & 0-5 & 2-8 & |1.25-1.65| & 0.6-2 & |0.08-0.15 & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 3 & 86 \\
\hline & 5-18 & 2-8 & |1.25-1.65| & 0.6-2 & |0.08-0.14 & 0.0-2.9 & 0.5-1.0 & . 17 & . 24 & & & \\
\hline & 18-62 & 5-15 & |1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 62-80 & 2-10 & |1.60-1.80| & 0.6-2 & | 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{```
    Moist
    bulk
density
```} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permeability \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|c}
\text { Available } \\
\text { water } \\
\text { capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi|bility group} & \multirow[t]{4}{*}{Wind erodibility index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 124B: & & & & & & & & & & & & \\
\hline Dishno & 0-9 & 2-8 & 1.30-1.60| & 0.6-2 & 0.20-0.24 & 0.0-2.9 & 1.0-4.0 & . 28 & . 37 & 4 & 5 & 56 \\
\hline & 9-22 & 2-8 & 1.35-1.70| & 0.6-2 & 0.16-0.18 & 0.0-2.9 & 0.5-2.0 & . 32 & . 32 & & & \\
\hline & 22-46 & 1-5 & 1.50-1.80| & 2-6 & 0.08-0.10 & 0.0-2.9 & 0.0-0.5 & . 10 & . 20 & & & \\
\hline & \[
46-50
\] & --- & --- & 0.01-0.06 & -- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 124D: & & & & & & & & & & & & \\
\hline Gogebic & 0-5 & 2-8 & 1.25-1.65| & 0.6-2 & 0.08-0.15 & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 3 & 86 \\
\hline & 5-18 & 2-8 & 1.25-1.65| & 0.6-2 & 0.08-0.14 & 0.0-2.9 & 0.5-1.0 & . 17 & . 24 & & & \\
\hline & 18-62 & 5-15 & 1.80-2.05| & 0.0-0.06 & 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 62-80 & 2-10| & 1.60-1.80| & 0.6-2 & 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline Dishno & 0-9 & 2-8 & 1.30-1.60| & 0.6-2 & 0.20-0.24 & 0.0-2.9 & 1.0-4.0 & . 28 & . 37 & 4 & 5 & 56 \\
\hline & 9-22 & 2-8 & 1.35-1.70| & 0.6-2 & 0.16-0.18 & 0.0-2.9 & 0.5-2.0 & . 32 & . 32 & & & \\
\hline & 22-46 & 1-5 & 1.50-1.80| & 2-6 & 0.08-0.10 & 0.0-2.9 & 0.0-0.5 & . 10 & . 20 & & & \\
\hline & 46-50 & --- & & 0.01-0.06 & --- & --- & --- & -- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 125D : & & & & & & & & & & & & \\
\hline Keweenaw- & 0-4 & 0-5 & 1.35-1.60| & 2-6 & 0.09-0.12 & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 4-12 & 0-5 & 1.45-1.80| & 2-6 & |0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 12-23 & 2-10| & 1.50-1.80| & 2-6 & | 0.06-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 23-80 & 2-10| & --- & --- & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska & 0-6 & 0-5 & 1.25-1.45| & 6-20 & 0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45| & 6-20 & 0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & 0.06-0.08 & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & 0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop- & 0-80 & --- & - & 0.01-0.06 & - & --- & --- & -- & -- & - & -- & --- \\
\hline & & & & & & & & & & & & \\
\hline 125F: & & & & & & & & & & & & \\
\hline Keweenaw- & 0-4 & 0-5 & 1.35-1.60| & 2-6 & 0.09-0.12 & 0.0-2.9 & 1.0-2.0 & . 15 & . 17 & 5 & 2 & 134 \\
\hline & 4-12 & 0-5 & 1.45-1.80| & 2-6 & 0.08-0.11 & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 12-23 & 0-5 & 1.50-1.80| & 2-6 & 0.06-0.14 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 23-80 & 2-10| & --- | & --- & --- & --- & --- & --- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska- & 0-6 & 0-5 & 1.25-1.45| & 6-20 & 0.05-0.09 & 0.0-2.9 & 1.0-4.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & \[
6-8
\] & 0-5 & 1.35-1.45| & 6-20 & 0.06-0.08 & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45| & 6-20 & 0.06-0.08 & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50| & 6-20 & 0.04-0.06 & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop- & 0-80 & --- & & 0.01-0.06 & & - & -- & -- & -- & & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline 126B: & & & & & & & & & & & & \\
\hline Sundog- & \[
0-2
\] & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-3.0 & . 37 & - & 4 & 5 & 56 \\
\hline & \[
2-22
\] & \[
2-8
\] & 1.35-1.70| & \[
0.6-2
\] & |0.14-0.22 & 0.0-2.9 & --- & . 28 & - & & & \\
\hline & 22-80 & 0-2 & 1.55-1.65| & 20-20 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 10 & - & & & \\
\hline & & & & & & & & & & & & \\
\hline 126D: & & & & & & & & & & & & \\
\hline Sundog- & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-3.0 & . 37 & - & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & 1.35-1.70| & 0.6-2 & |0.14-0.22 & 0.0-2.9 & --- & . 28 & --- & & & \\
\hline & 22-80 & 0-2 & 1.55-1.65| & 20-20 & 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 126E: & & & & & & & & & & & & \\
\hline Sundog- & \[
0-2
\] & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-3.0 & . 37 & --- & 4 & 5 & 56 \\
\hline & \[
2-22
\] & 2-8 & 1.35-1.70| & 0.6-2 & | 0.14-0.22 & 0.0-2.9 & --- & . 28 & --- & & & \\
\hline & 22-80 & 0-2 & 1.55-1.65| & 20-20 & | 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 127B: & & & & & & & & & & & & \\
\hline Sundog- & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-3.0 & . 37 & - & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & 1.35-1.70| & 0.6-2 & |0.14-0.22 & 0.0-2.9 & -- & . 28 & - & & & \\
\hline & 22-80 & 0-2 & 1.55-1.65| & 20-20 & | 0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\text { |Available } \\
\text { | water } \\
\text { |capacity } \\
\hline
\end{array}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Linear \\
extensi- \\
bility
\end{tabular}} & \multirow{4}{*}{\begin{tabular}{l}
Organic \\
matter
\end{tabular}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind erodibility| group} & \multirow[t]{4}{*}{Wind erodibility index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline \multirow{7}{*}{135A:
Net-} & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & 0-5 & 2-8 & |1.30-1.60| & 0.6-2 & |0.08-0.12| & 0.0-2.9 & 2.0-6.0 & . 15 & . 28 & 4 & 8 & 0 \\
\hline & 5-18 & 2-8 & |1.40-1.65| & 0.6-2 & |0.09-0.21| & 0.0-2.9 & 0.6-1.0 & . 28 & . 37 & & & \\
\hline & 18-45 & 1-10 & 1.80-2.05| & 0.0-0.06 & |0.01-0.02| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 45-80 & 1-10 & 1.30-1.70| & 0.6-2 & |0.01-0.02| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline 136A: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Minocqua--------} & 0-5 & 0-0 & |0.15-0.45| & 2-6 & |0.35-0.45| & 0.0-2.9 & 30-60 & . 10 & . 10 & 4 & 2 & 134 \\
\hline & 5-23 & 3-12 & |1.50-1.60| & 0.6-2 & |0.11-0.19| & 0.0-2.9 & 0.5-2.0 & . 43 & . 43 & & & \\
\hline & 23-80 & 0-3 & |1.75-1.85| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & . 10 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Channing--------} & 0-9 & 2-8 & 1.10-1.65| & 0.6-2 & |0.12-0.18| & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 4 & 3 & 86 \\
\hline & 9-22 & 2-8 & |1.25-1.70| & 0.6-2 & |0.11-0.16| & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 22-80 & 0-3 & | \(1.50-1.65 \mid\) & 20-20 & |0.02-0.04| & 0.0-2.9 & --- & . 10 & . 15 & & & \\
\hline \multirow[b]{2}{*}{137D:} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & 2-8 & 1.35-1.60| & 0.6-2 & |0.10-0.15| & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 5 & 86 \\
\hline & 4-10 & 2-8 & |1.35-1.65| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 10-20 & 2-8 & |1.35-1.65| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 20-31 & 0-5 & |1.35-1.70| & 2-20 & |0.03-0.09| & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & 31-80 & 0-5 & 1.55-1.75| & 2-20 & |0.03-0.09| & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 2-8 & | 1.30-1.60| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & . 37 & & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & |1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & & & & \\
\hline & 22-80 & 0-2 & |1.55-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & - & & & \\
\hline & & & & & & & & & & & & \\
\hline 137F: & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & 2-8 & 1.35-1.60| & 0.6-2 & |0.10-0.15| & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 5 & 86 \\
\hline & 4-10 & 2-8 & 1.35-1.65| & 0.6-2 & \(|0.10-0.22|\) & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 10-20 & 2-8 & |1.35-1.65| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 20-31 & 0-5 & |1.35-1.70| & 2-20 & |0.03-0.09| & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & 31-80 & 0-5 & 1.55-1.75| & 2-20 & |0.03-0.09| & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & . 37 & & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & | 1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & --- & & & \\
\hline & 22-80 & 0-2 & |1.55-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & - & & & \\
\hline & & & & & & & & & & & & \\
\hline 138D: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog----------} & 0-2 & 2-8 & 1.30-1.60| & \[
0.6-2
\] & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & & -- & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & |1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & - & & & \\
\hline & 22-80 & 0-2 & |1.55-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
138F:} & 0-80 & --- & -- | & 0.01-0.06 & --- & --- & --- & --- & --- & - & -- & - \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & . 37 & --- & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & | 1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & - & & & \\
\hline & 22-80 & 0-2 & | \(1.55-1.65 \mid\) & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & - & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
139B:} & 0-80 & -- & - & 0.01-0.06 & - & -- & --- & --- & - & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{139B:
Sundog} & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & . 37 & --- & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & 1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & --- & & & \\
\hline & 22-80 & 0-2 & |1.55-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 139D: & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-3.0 & . 37 & --- & 4 & 5 & 56 \\
\hline & 2-22 & 2-8 & |1.35-1.70| & 0.6-2 & |0.14-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & - & & & \\
\hline & 22-80 & 0-2 & |1.55-1.65| & 20-20 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{l}
Map symbol \\
and soil name \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{```
 Moist
 bulk
density
```} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|c}
\text { Available } \\
\text { water } \\
\text { capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi|bility group} & \multirow[t]{4}{*}{\begin{tabular}{l}
| Wind erodi|bility \\
index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 153F: & & & & & & & & & & & & \\
\hline Ishpeming & 0-6 & 0-5 & |1.30-1.55| & 6-20 & 0.06-0.08| & 0.0-2.9 & 1.0-2.0 & . 10 & . 15 & 4 & 1 & 220 \\
\hline & 6-24 & 0-8 & |1.30-1.65| & 6-20 & 0.09-0.11| & 0.0-2.9 & 0.0-0.0 & . 17 & . 17 & & & \\
\hline & 24-38 & 0-8 & |1.30-1.70| & 6-20 & 0.08-0.10| & 0.0-2.9 & 0.0-0.0 & . 17 & . 17 & & & \\
\hline & 38-60 & --- & --- & 0.01-0.06 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop & 0-80 & -- & --- & 0.01-0.06 & --- & --- & --- & --- & -- & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline 154B: & & & & & & & & & & & & \\
\hline Rubicon & 0-7 & 0-5 & |1.25-1.45| & 6-20 & 0.05-0.09| & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & |1.30-1.60| & 6-20 & 0.04-0.08| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & |1.40-1.65| & 6-20 & 0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & | & & & & & & & & & \\
\hline Sayner & 0-2 & 0-5 & |1.25-1.45| & 6-20 & 0.08-0.12| & 0.0-2.9 & 1.0-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 2-14 & 0-5 & |1.35-1.65| & 6-20 & 0.03-0.11| & 0.0-2.9 & 1.0-2.0 & . 17 & . 17 & & & \\
\hline & 14-27 & 0-4 & |1.45-1.70| & 6-20 & 0.03-0.11| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & 27-80 & 0-3 & |1.55-1.80| & 6-20 & 0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 154D: & & & & & & & & & & & & \\
\hline Rubicon & 0-7 & 0-5 & |1.25-1.45| & 6-20 & |0.05-0.09| & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & |1.30-1.60| & 6-20 & 0.04-0.08| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & |1.40-1.65| & 6-20 & 0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Sayner & 0-2 & 0-5 & |1.25-1.45| & 6-20 & 0.08-0.12| & 0.0-2.9 & 1.0-3.0 & . 17 & . 17 & 5 & 2 & 134 \\
\hline & 2-14 & 0-5 & |1.35-1.65| & 6-20 & \(|0.03-0.11|\) & 0.0-2.9 & 1.0-2.0 & . 17 & . 17 & & & \\
\hline & 14-27 & 0-4 & |1.45-1.70| & 6-20 & 0.03-0.11| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & 27-80 & 0-3 & |1.55-1.80| & 6-20 & 0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 155A: & & & & & & & & & & & & \\
\hline Zeba & 0-14 & 2-8 & |1.30-1.70| & 0.6-2 & 0.07-0.18| & 0.0-2.9 & 2.0-4.0 & . 17 & . 17 & 2 & 3 & 86 \\
\hline & 14-31 & 5-15 & |1.40-1.80| & 0.6-2 & \(|0.07-0.18|\) & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & 31-41 & --- & | --- | & 0.2-2 & - & - -- & --- & - & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Jacobsville & 0-4 & 0-0 & |0.30-0.40| & 0.6-6 & |0.35-0.45| & --- & 40-60 & --- & --- & 2 & 2 & 134 \\
\hline & 4-9 & 2-8 & |1.30-1.60| & 0.6-2 & \(|0.09-0.15|\) & 0.0-2.9 & 0.0-1.0 & . 24 & . 24 & & & \\
\hline & 9-16 & 5-15 & |1.30-1.60| & 0.6-2 & 0.12-0.15| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & 16-28 & 3-12 & |1.30-1.60| & 0.6-2 & \(|0.05-0.11|\) & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 28-38 & --- & | --- | & 0.2-2 & --- | & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 156B: & & & & & & & & & & & & \\
\hline Duel & 0-2 & 2-5 & |1.25-1.50| & 6-20 & \(|0.10-0.12|\) & 0.0-2.9 & 1.0-2.0 & . 17 & . 17 & 2 & 2 & 134 \\
\hline & 2-22 & 0-5 & | 1.25-1.60| & 6-20 & \(|0.06-0.11|\) & 0.0-2.9 & 0.6-1.0 & . 15 & . 15 & & & \\
\hline & 22-32 & --- & - & 0.2-2 & | --- | & --- & --- & --- & --- & & & \\
\hline & 32-40 & --- & & 0.0-0.2 & & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 157B: & & & & & & & & & & & & \\
\hline Reade & 0-7 & 2-8 & |1.30-1.60| & 0.6-2 & |0.19-0.21| & 0.0-2.9 & 1.0-3.0 & . 37 & . 37 & 2 & 3 & 86 \\
\hline & 7-15 & 2-8 & |1.35-1.70| & 0.6-2 & \(|0.15-0.21|\) & 0.0-2.9 & 0.0-0.0 & . 43 & . 43 & & & \\
\hline & 15-28 & 7-11 & |1.35-2.10| & 0.6-2 & \(|0.11-0.16|\) & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 28-38 & - & --- | & 0.06-2 & --- & --- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Nahma & 0-11 & 0-0 & |0.30-0.40| & 0.2-6 & \(|0.35-0.45|\) & - -- & 40-60 & --- & -- & 2 & 2 & 134 \\
\hline & 11-14 & 8-15 & |1.30-1.60| & 0.6-2 & \(|0.12-0.20|\) & 0.0-2.9 & 0.0-1.0 & . 24 & . 24 & & & \\
\hline & 14-24 & 8-15 & |1.40-1.70| & 0.6-2 & \(|0.10-0.19|\) & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 24-34 & --- & --- & 0.06-0.6 & --- & --- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 158C: & & & & & & & & & & & & \\
\hline Munising- & 0-6 & 2-8 & |1.30-1.65| & 0.06-2 & |0.10-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 4 & 3 & 86 \\
\hline & 6-18 & 2-8 & |1.35-1.65| & 0.6-2 & \(|0.09-0.17|\) & 0.0-2.9 & 0.6-1.0 & . 20 & . 24 & & & \\
\hline & 18-50 & 5-18 & |1.80-2.10| & 0.0-0.06 & \(|0.02-0.04|\) & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 50-80 & 4-12 & |1.55-1.75| & 0.6-2 & \(|0.02-0.04|\) & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Available } \\
\mid \text { water } \\
\text { |capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi-| |bility| |group} & \multirow[t]{4}{*}{|Wind |erodi|bility index} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline & In & Pct & g/cc & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{158C:} \\
\hline \multirow[t]{5}{*}{Onota-----------} & 0-2 & 2-10 & |1.30-1.65| & 0.6-2 & |0.07-0.11| & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 2 & 3 & 86 \\
\hline & 2-7 & 2-10 & |1.30-1.65| & 0.6-2 & |0.11-0.14| & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 7-22 & 2-10 & | 1.35-1.70| & 0.6-2 & |0.07-0.13| & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 22-32 & - & --- | & 0.2-2 & --- & -- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & \\
\hline & 30-80 & 5-15 & |1.80-2.05| & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{159A:} \\
\hline \multirow[t]{4}{*}{Jeske-----------} & 0-11 & 0-5 & |1.50-1.70| & 6-20 & |0.07-0.09| & 0.0-2.9 & 0.0-1.0 & . 15 & . 15 & 2 & 1 & 220 \\
\hline & 11-21 & 0-5 & | 1.50-1.70| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.0-0.0 & . 15 & - & & & \\
\hline & 21-31 & --- | & | & 0.2-0.6 & --- & --- & --- & --- & --- & & & \\
\hline & 31-60 & --- & --- & 0.2-2 & -- & --- & --- & -- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{160B:} \\
\hline \multirow[t]{6}{*}{Paquin----------} & 0-11 & 0-5 & |1.35-1.45| & 6-20 & |0.06-0.10| & 0.0-2.9 & 0.0-1.0 & . 15 & . 15 & 2 & 1 & 220 \\
\hline & 11-12 & 0-5 & |1.40-1.65| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.0-2.0 & . 15 & . 15 & & & \\
\hline & 12-14 & 0-5 & | 1.75-2.00| & 0.6-6 & |0.05-0.06| & 0.0-2.9 & 0.6-2.0 & . 15 & . 15 & & & \\
\hline & 14-36 & 0-5 & |1.45-1.60| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 36-80 & 0-5 & |1.50-1.70| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Finch-----------} & 0-10 & 0-5 & |1.20-1.50| & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-10 & . 15 & . 15 & 2 & 1 & 220 \\
\hline & 10-20 & 0-5 & |1.30-1.55| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 20-29 & 0-5 & |1.75-2.05| & 0.6-3 & |0.02-0.04| & 0.0-2.9 & 0.5-3.0 & . 15 & . 15 & & & \\
\hline & 29-80 & 0-5 & |1.40-1.55| & 6-20 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{161B:} \\
\hline \multirow[t]{3}{*}{Yellowdog-------} & 0-32 & 0-3 & |1.50-1.70| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & 2 & 2 & 160 \\
\hline & 32-60 & --- | & & 0.2-2 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{162B:} \\
\hline \multirow[t]{4}{*}{Buckroe---------} & 0-4 & 0-3 & |1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-3.0 & . 10 & . 17 & 2 & 1 & 220 \\
\hline & 4-15 & 0-3 & |1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-0.0 & . 05 & . 15 & & & \\
\hline & 15-25 & --- & - & 0.2-2 & -- & --- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{165B :} \\
\hline \multirow[t]{5}{*}{Chocolay--------} & 0-8 & 3-8 & |1.30-1.60| & 0.6-2 & |0.09-0.10| & 0.0-2.9 & 1.0-3.0 & . 20 & . 28 & 4 & 3 & 86 \\
\hline & 8-14 & 3-8 & | 1.35-1.70| & 0.6-2 & |0.07-0.09| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 14-27 & 3-8 & | 1.35-1.70| & 0.6-2 & |0.07-0.09| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 27-37 & --- | & | & 0.2-2 & --- & --- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Waiska----------} & 0-4 & 0-5 & |1.35-1.45| & 20-20 & |0.08-0.12| & 0.0-2.9 & 0.5-2.0 & . 17 & . 24 & 5 & 2 & 134 \\
\hline & 4-36 & 0-5 & |1.30-1.60| & 20-20 & |0.04-0.08| & 0.0-2.9 & 0.6-2.0 & . 10 & . 17 & & & \\
\hline & 36-80 & 0-3 & |1.45-1.60| & 20-20 & |0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{166:} \\
\hline \multirow[t]{5}{*}{Skandia---------} & 0-4 & 0-0 & |0.10-0.20| & & |0.45-0.55| & --- & 65-85 & --- & --- & 1 & 5 & 56 \\
\hline & 4-26 & 0-0 & |0.13-0.23| & 0.6-6 & |0.35-0.45| & --- & 65-85 & --- & --- & & & \\
\hline & 26-31 & --- | & | --- | & 0.2-0.6 & --- & --- & --- & -- & --- & & & \\
\hline & 31-41 & - & --- & 0.2-2 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{167 :} \\
\hline \multirow[t]{5}{*}{Skandia---------} & 0-4 & 0-0 & |0.10-0.20| & 0.6-6 & |0.45-0.55| & --- & 65-85 & --- & --- & 1 & 5 & 56 \\
\hline & 4-26 & 0-0 & \(|0.13-0.23|\) & 0.6-6 & |0.35-0.45| & --- & 65-85 & --- & --- & & & \\
\hline & 26-31 & --- & - & 0.2-2 & --- & --- & --- & --- & --- & & & \\
\hline & 31-41 & --- & --- & 0.2-2 & --- & --- & --- & --- & --- & & & | \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Available } \\
\mid \text { water } \\
\text { |capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind erodi-| |bility| group} & \multirow[t]{4}{*}{|Wind |erodi|bility index} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/ hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{167 :} \\
\hline \multirow[t]{5}{*}{Jacobsville-----} & 0-4 & 0-0 & 0.30-0.40 & 0.6-6 & |0.35-0.45| & --- & 40-60 & --- & & 2 & 2 & 134 \\
\hline & 4-9 & 2-8 & 1.30-1.60 & 0.6-2 & |0.09-0.15| & 0.0-2.9 & 0.0-1.0 & . 24 & . 24 & & & \\
\hline & 9-16 & 5-15 & 1.30-1.60| & 0.6-2 & |0.12-0.15| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & 16-28 & 3-12 & |1.30-1.60| & 0.6-2 & |0.05-0.11| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 28-38 & - & -- & 0.2-2 & --- & --- & --- & --- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{168B:} \\
\hline \multirow[t]{3}{*}{Yellowdog-------} & 0-32 & 0-3 & |1.50-1.70| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & 2 & 2 & 160 \\
\hline & 32-60 & --- & - & 0.2-2 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Burt------------} & 0-7 & 0-0 & |1.30-1.60| & 6-20 & |0.09-0.12| & 0.0-2.9 & 10-20 & . 15 & . 15 & 4 & 2 & 134 \\
\hline & 7-18 & 0-5 & |1.30-1.60| & 6-20 & |0.04-0.08| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & 18-28 & - & - & 0.2-2 & | --- | & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{170B:} \\
\hline \multirow[t]{4}{*}{Chocolay--------} & 0-8 & 3-8 & | 1.30-1.60| & 0.6-2 & |0.09-0.10| & 0.0-2.9 & 1.0-3.0 & . 20 & . 28 & 4 & 3 & 86 \\
\hline & 8-14 & 3-8 & |1.35-1.70| & 0.6-2 & |0.07-0.09| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 14-27 & 3-8 & 1.35-1.70 & 0.6-2 & |0.07-0.09| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 27-37 & --- & - & 0.2-2 & --- & - & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{171B:} \\
\hline \multirow[t]{3}{*}{Paavola---------} & 0-8 & 0-5 & |1.35-1.65| & 6-20 & |0.05-0.08| & 0.0-2.9 & 1.0-3.0 & . 10 & . 17 & 4 & 2 & 134 \\
\hline & 8-33 & 0-5 & |1.30-1.70| & 6-20 & |0.01-0.04| & 0.0-2.9 & 0.6-1.0 & . 10 & . 17 & & & \\
\hline & 33-80 & 5-12 & 1.80-2.10| & 0.0-0.06 & |0.01-0.04| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{172D:} \\
\hline \multirow[t]{4}{*}{Buckroe----------} & 0-4 & 0-3 & |1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-3.0 & . 10 & . 17 & 2 & 1 & 220 \\
\hline & 4-15 & 0-3 & | 1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-0.0 & . 05 & . 15 & & & \\
\hline & 15-25 & --- & & 0.2-2 & --- | & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop- & 0-80 & --- & | --- & 0.01-0.06 & --- & --- & --- & -- & --- & - & -- & - \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{172F:} \\
\hline \multirow[t]{4}{*}{Buckroe---------} & 0-4 & 0-3 & |1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-3.0 & . 10 & . 17 & 2 & 1 & 220 \\
\hline & 4-15 & 0-3 & | 1.35-1.45| & 20-20 & |0.01-0.05| & 0.0-2.9 & 0.0-0.0 & . 05 & . 15 & & & \\
\hline & 15-25 & --- & --- & 0.2-2 & - & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop- & 0-80 & --- & - & 0.01-0.06 & --- & --- & --- & -- & --- & - & -- & --- \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{173B:} \\
\hline \multirow[t]{4}{*}{Pence-----------} & 0-6 & 2-8 & |1.20-1.65| & 2-6 & \(|0.10-0.18|\) & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 6-13 & 2-8 & | 1.35-1.45| & 2-6 & \(|0.10-0.15|\) & 0.0-2.9 & 1.0-2.0 & . 17 & . 24 & & & \\
\hline & 13-31 & 0-5 & |1.65-1.75| & 6-60 & |0.05-0.08| & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & 31-80 & 0-4 & | 1.35-1.80| & 6-60 & |0.02-0.05| & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & | \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{173D:} \\
\hline \multirow[t]{4}{*}{Pence-----------} & 0-6 & 2-8 & | 1.20-1.65| & 2-6 & \(|0.10-0.18|\) & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 3 & 3 & 86 \\
\hline & 6-13 & 2-8 & |1.35-1.45| & 2-6 & \(|0.10-0.15|\) & 0.0-2.9 & 1.0-2.0 & . 17 & . 24 & & & \\
\hline & 13-31 & 0-5 & |1.65-1.75| & 6-60 & |0.05-0.08| & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & 31-80 & 0-4 & | 1.35-1.80| & 6-60 & \(|0.02-0.05|\) & 0.0-2.9 & 0.0-0.5 & . 05 & . 10 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{174D:} \\
\hline \multirow[t]{3}{*}{Yalmer----------} & 0-10 & 0-5 & |1.35-1.55| & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 10-30 & 0-5 & |1.30-1.60| & 6-20 & |0.06-0.11| & 0.0-2.9 & 0.6-1.0 & . 15 & . 17 & & & | \\
\hline & 30-80 & 5-15 & |1.80-2.05| & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Rubicon---------} & 0-7 & 0-5 & |1.25-1.45| & 6-20 & |0.05-0.09| & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-18 & 0-5 & | \(1.30-1.60 \mid\) & 6-20 & |0.04-0.08| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 18-80 & 0-5 & |1.40-1.65| & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & | \\
\hline \multirow[t]{2}{*}{Urban land.} & & & & & & & & & & & & | \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { bulk } \\
& \text { density }
\end{aligned}
\]} & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Available } \\
\mid \text { water } \\
\mid \text { capacity }
\end{array}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi-| |bility |group} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind \\
|erodi- \\
|bility \\
index
\end{tabular}} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 175E: & & & & & & & & & & & & \\
\hline Kalkaska & 0-6 & 0-5 & 1.25-1.45 & 6-20 & |0.05-0.09| & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50 & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Waiska & 0-4 & 0-5 & 1.35-1.45 & 20-20 & |0.08-0.12| & 0.0-2.9 & 0.5-2.0 & . 17 & . 24 & 5 & 2 & 134 \\
\hline & 4-36 & 0-5 & 1.30-1.60 & 20-20 & |0.04-0.08| & 0.0-2.9 & 0.6-2.0 & . 10 & . 17 & & & \\
\hline & 36-80 & 0-3 & 1.45-1.60 & 20-20 & |0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 175F: & & & & & & & & & & & & \\
\hline Kalkaska & 0-6 & 0-5 & 1.25-1.45 & 6-20 & |0.05-0.09| & 0.0-2.9 & 1.0-4.0 & . 15 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.5-2.0 & . 15 & . 15 & & & \\
\hline & 17-80 & 0-5 & 1.35-1.50 & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Waiska & 0-4 & 0-5 & 1.35-1.45 & 20-20 & |0.08-0.12| & 0.0-2.9 & 0.5-2.0 & . 17 & . 24 & 5 & 2 & 134 \\
\hline & 4-36 & 0-5 & 1.30-1.60 & 20-20 & |0.04-0.08| & 0.0-2.9 & 0.6-2.0 & . 10 & . 17 & & & \\
\hline & 36-80 & 0-3 & 1.45-1.60 & 20-20 & |0.01-0.03| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline 176B: & & & & & & & & & & & & \\
\hline Greenwood & 0-8 & 0-0 & 0.30-0.40 & 6-20 & |0.55-0.65| & --- & 55-75 & --- & --- & 3 & 7 & 38 \\
\hline & 8-80 & 0-0 & 0.10-0.25 & 0.2-6 & |0.45-0.55| & --- & 65-85 & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline Croswell & 0-7 & 0-5 & 1.30-1.55 & 6-20 & |0.06-0.09| & 0.0-2.9 & 0.5-2.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 7-34 & 0-5 & 1.40-1.60 & 6-20 & |0.06-0.10| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 34-80 & 0-5 & 1.50-1.65 & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & | \\
\hline & & & & & & & & & & & & \\
\hline 177E: & & & & & & & & & & & & \\
\hline Frohling- & 0-7 & 2-8 & 1.30-1.65 & 0.6-2 & |0.13-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-16 & 2-8 & 1.35-1.70 & 0.6-2 & |0.12-0.17| & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 16-80 & 5-18 & 1.80-2.10 & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline 177F: & & & & & & & & & & & & \\
\hline Frohling- & 0-7 & 2-8 & 1.30-1.65 & 0.6-2 & |0.13-0.18| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-16 & 2-8 & 1.35-1.70 & 0.6-2 & |0.12-0.17| & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 16-80 & 5-18 & 1.80-2.10 & 0.0-0.06 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline 178D: & & & & & & & & & & & & \\
\hline Schweitzer & 0-5 & 2-8 & 1.30-1.60 & 0.6-2 & |0.14-0.16| & 0.0-2.9 & 1.0-3.0 & . 28 & . 37 & 4 & 8 & 0 \\
\hline & 5-21 & 2-8 & 1.35-1.70 & 0.6-2 & |0.12-0.16| & 0.0-2.9 & 0.0-0.0 & . 32 & . 43 & & & | \\
\hline & 21-43 & 2-10 & 1.80-2.10 & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & 43-61 & 5-15 & 1.30-1.70 & 0.6-2 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & 61-80 & 2-10 & 1.60-1.80 & 0.6-2 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline Kalkaska- & 0-6 & 0-5 & 1.25-1.45 & 6-20 & |0.05-0.09| & 0.0-2.9 & 1.0-4.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 6-8 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 1.0-3.0 & . 15 & . 15 & & & \\
\hline & 8-17 & 0-5 & 1.35-1.45 & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & | \\
\hline & 17-80 & 0-5 & 1.35-1.50 & 6-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop & 0-80 & --- & --- & 0.01-0.06 & --- & --- & --- & --- & -- & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline 178F: & & & & & & & & & & & & \\
\hline Schweitzer & 0-5 & 2-8 & 1.30-1.60 & 0.6-2 & |0.14-0.16| & 0.0-2.9 & 1.0-3.0 & . 28 & . 37 & 4 & 8 & 0 \\
\hline & 5-21 & 2-8 & 1.35-1.70 & 0.6-2 & |0.12-0.16| & 0.0-2.9 & 0.0-0.0 & . 32 & . 43 & & & \\
\hline & 21-43 & 2-10 & 1.80-2.10 & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & 43-61 & 5-15 & 1.30-1.70 & 0.6-2 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & 61-80 & 2-10 & 1.60-1.80 & 0.6-2 & |0.02-0.04| & 0.0-2.9 & 0.0-0.0 & . 20 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued


Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { |Available } \\
& \text { | water } \\
& \text { |capacity }
\end{aligned}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Erosion factors}} & \multirow[t]{4}{*}{Wind |erodi-| |bility| |group} & \multirow[t]{4}{*}{|Wind |erodi|bility index} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline & In & Pct & g/cc & In/hr & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{184C:} \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & 2-8 & 1.30-1.60| & 0.6-2 & |0.20-0.24 & 0.0-2.9 & 1.0-4.0 & . 28 & . 37 & 4 & 5 & 56 \\
\hline & 9-22 & 2-8 & 1.35-1.70| & 0.6-2 & |0.16-0.18 & 0.0-2.9 & 0.5-2.0 & . 32 & . 32 & & & \\
\hline & 22-46 & 1-5 & 1.50-1.80| & 2-6 & |0.08-0.10 & 0.0-2.9 & 0.0-0.5 & . 10 & . 20 & & & \\
\hline & 46-50 & --- | & --- | & 0.01-0.06 & | --- & -- & -- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Witbeck----------} & 0-8 & --- | & 0.15-0.40| & 0.2-6 & |0.35-0.45 & 0.0-2.9 & 40-70 & --- & --- & 5 & 2 & 134 \\
\hline & 8-15 & 3-10 & 1.25-1.60| & 0.6-2 & |0.08-0.16 & 0.0-2.9 & 0.0-1.0 & . 24 & - & & & \\
\hline & 15-22 & 3-10 & 1.55-1.75| & 0.6-2 & |0.04-0.18 & 0.0-2.9 & 0.0-0.5 & . 24 & . 32 & & & \\
\hline & 22-80 & 3-10| & 1.55-1.75| & 0.2-2 & |0.04-0.17 & 0.0-2.9 & 0.0-0.5 & . 24 & . 32 & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop- & 0-80 & --- & --- | & --- & - & --- & --- & --- & --- & - & --- & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{185B :} \\
\hline \multirow[t]{5}{*}{Northland-------} & 0-5 & 2-8 & 1.30-1.60| & 0.6-2 & |0.16-0.18 & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 5-8 & 2-8 & 1.35-1.70| & 0.6-2 & |0.15-0.17 & 0.0-2.9 & 0.0-0.5 & . 20 & . 24 & & & \\
\hline & 8-18 & 8-18 & 1.35-1.70| & 0.6-2 & |0.17-0.19 & 0.0-2.9 & 0.0-0.5 & . 24 & . 28 & & & \\
\hline & 18-80 & 0-5 & 1.45-1.65| & 20-20 & |0.01-0.04 & 0.0-2.9 & 0.0-0.5 & . 05 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{187B:} \\
\hline \multirow[t]{5}{*}{Reade-----------} & 0-7 & 2-8 & 1.30-1.60| & 0.6-2 & |0.19-0.21 & 0.0-2.9 & 1.0-3.0 & . 37 & . 37 & 4 & 3 & 86 \\
\hline & 7-15 & 2-8 & 1.35-1.70| & 0.6-2 & |0.15-0.21 & 0.0-2.9 & 0.0-0.0 & . 43 & . 43 & & & \\
\hline & 15-28 & 5-12| & 1.35-2.10| & 0.6-2 & |0.11-0.16 & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 28-38 & --- & --- | & 0.06-2 & | --- & -- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{190B:} \\
\hline \multirow[t]{5}{*}{Emmet-----------} & 0-3 & 2-8 & 1.30-1.65| & 0.06-2 & |0.12-0.15 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 5 & 3 & 86 \\
\hline & 3-21 & 2-8 & 1.40-1.70| & 0.06-2 & |0.11-0.14 & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 21-28 & 10-18| & 1.50-1.75| & 0.6-2 & |0.11-0.18 & 0.0-2.9 & 0.0-0.0 & . 32 & . 32 & & & \\
\hline & 28-80 & 7-11 & 1.50-1.75| & 0.2-0.6 & |0.08-0.14 & 0.0-2.9 & 0.0-0.0 & . 28 & . 28 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Cunard----------} & 0-4 & 5-10 | & 1.30-1.60| & 0.6-2 & |0.10-0.15 & 0.0-2.9 & 1.0-3.0 & . 24 & . 24 & 2 & 3 & 86 \\
\hline & 4-19 & 5-18| & 1.35-1.70| & 0.6-2 & |0.09-0.19 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 19-27 & 7-11 & 1.60-1.70| & 0.6-2 & |0.08-0.18 & 0.0-2.9 & --- & . 24 & . 32 & & & \\
\hline & 27-37 & --- & & 0.06-0.6 & --- & | --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{191B:} \\
\hline \multirow[t]{5}{*}{Nahma-----------} & 0-11 & & 0.30-0.40| & 0.2-6 & |0.35-0.45 & --- & 40-60 & --- & --- & 2 & 2 & 134 \\
\hline & 11-14 & 8-15 & 1.30-1.60| & 0.6-2 & |0.12-0.20 & 0.0-2.9 & -- & . 24 & . 24 & & & \\
\hline & 14-24 & 8-15 & 1.40-1.70| & 0.6-2 & |0.10-0.19 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 24-34 & --- | & & 0.06-0.6 & --- & | --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Sundell---------} & 0-8 & 2-10 & 1.30-1.50| & 0.6-2 & |0.15-0.22 & 0.0-2.9 & 5.0-10 & . 32 & . 32 & 2 & 5 & 56 \\
\hline & 8-17 & 2-10| & 1.30-1.50| & 0.6-2 & |0.08-0.15 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 17-22 & 7-11| & 1.35-1.70| & 0.6-2 & |0.11-0.19 & 0.0-2.9 & --- & . 24 & . 24 & & & \\
\hline & 22-40 & --- & & 0.06-0.6 & --- & -- & --- & -- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{193E:} \\
\hline \multirow[t]{4}{*}{Frohling--------} & 0-7 & & 1.30-1.65| & & |0.13-0.18 & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 7-16 & 2-8 & 1.35-1.70| & 0.6-2 & |0.12-0.17 & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & 16-80 & 5-18 & 1.80-2.10| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.0 & . 24 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Tokiahok--------} & 0-11 & 0-5 & 1.35-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 2.0-3.0 & . 15 & . 15 & 4 & 1 & 220 \\
\hline & 11-24 & 0-5 | & 1.30-1.60| & 6-20 & |0.06-0.11 & 0.0-2.9 & 0.0-1.0 & . 17 & . 17 & & & \\
\hline & 24-49 & 5-15 & 1.80-2.05| & 0.0-0.06 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 49-59 & 5-15 & 1.40-1.65| & 0.6-2 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & \\
\hline & 59-80 & 4-12 & 1.40-1.65| & 0.6-2 & |0.02-0.04 & 0.0-2.9 & 0.0-0.5 & . 24 & . 24 & & & | \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued


Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Map symbol and soil name} & \multirow{4}{*}{Depth} & \multirow{4}{*}{Clay} & & \multirow[b]{4}{*}{\begin{tabular}{l}
Permea- \\
bility \\
(Ksat)
\end{tabular}} & \multirow[b]{4}{*}{\[
\begin{aligned}
& \mid \text { Available| } \\
& \mid \text { water } \\
& \text { |capacity } \\
& \hline
\end{aligned}
\]} & \multirow[b]{4}{*}{Linear extensibility} & \multirow{4}{*}{Organic matter} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{|Erosion factors}} & \multirow[t]{4}{*}{Wind erodi|bility group} & \multirow[t]{4}{*}{\begin{tabular}{l}
|Wind |erodi|bility \\
index
\end{tabular}} \\
\hline & & & Moist & & & & & & & & & \\
\hline & & & bulk & & & & & & & & & \\
\hline & & & density & & & & & Kw & Kf & T & & \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & In/hr & In/in & Pct & Pct & & & & & \\
\hline \multicolumn{13}{|l|}{201B:} \\
\hline \multirow[t]{5}{*}{Sauxhead} & 0-4 & 2-8 & 1.30-1.60 & 2-6 & |0.12-0.14| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 2 & 3 & 86 \\
\hline & 4-14 & 0-3 & 1.30-1.70 & 20-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.0 & . 05 & . 15 & & & \\
\hline & 14-17 & --- & --- & 0.2-0.6 & --- & --- & --- & --- & --- & & & \\
\hline & 17-27 & --- & --- & 0.0-0.2 & - & --- & --- & --- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Jacobsville-----} & 0-4 & 0-0 & 0.30-0.40 & 0.6-6 & |0.35-0.45| & --- & 40-60 & --- & --- & 2 & 2 & 134 \\
\hline & 4-9 & 2-8 & 1.30-1.60 & 0.6-2 & |0.09-0.15| & 0.0-2.9 & 0.0-1.0 & . 24 & . 24 & & & \\
\hline & 9-16 & 5-15 & 1.30-1.60 & 0.6-2 & |0.12-0.15| & 0.0-2.9 & 0.0-0.5 & . 28 & . 28 & & & \\
\hline & 16-28 & 3-12 & 1.30-1.60 & 0.6-2 & |0.05-0.11| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 28-38 & --- & --- & 0.2-2 & - & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{202B:} \\
\hline \multirow[t]{4}{*}{Sauxhead--------} & 0-4 & 2-8 & 1.30-1.60 & 2-6 & |0.12-0.14| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 2 & 3 & 86 \\
\hline & 4-14 & 0-3 & 1.30-1.70 & 20-20 & |0.04-0.06| & 0.0-2.9 & 0.0-0.0 & . 05 & . 15 & & & \\
\hline & 14-17 & --- & --- & 0.2-0.6 & --- & --- & --- & --- & --- & & & \\
\hline & 17-27 & --- & --- & 0.0-0.2 & - & --- & --- & --- & -- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{203A:} \\
\hline \multirow[t]{4}{*}{Au Gres} & 0-8 & 0-5 & 1.30-1.55 & 6-20 & |0.07-0.09| & 0.0-2.9 & 2.0-4.0 & . 10 & . 15 & 5 & 1 & 220 \\
\hline & 8-27 & 0-5 & 1.50-1.70 & 6-20 & |0.06-0.09| & 0.0-2.9 & 0.6-1.0 & . 10 & . 15 & & & \\
\hline & 27-80 & 0-5 & 1.50-1.70 & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Deford----------} & 0-6 & --- & 0.30-0.50 & 0.2-6 & |0.35-0.45| & --- & 40-60 & - & --- & 5 & 2 & 134 \\
\hline & 6-80 & 0-5 & 1.40-1.60 & 6-20 & |0.05-0.07| & 0.0-2.9 & 0.0-0.5 & . 17 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{204B:} \\
\hline \multirow[t]{5}{*}{Gogebic---------} & 0-5 & 2-8 & 1.25-1.65 & 0.6-2 & |0.08-0.15| & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 3 & 3 & 86 \\
\hline & 5-18 & 2-8 & 1.25-1.65 & 0.6-2 & |0.08-0.14| & 0.0-2.9 & 0.5-1.0 & . 17 & . 24 & & & \\
\hline & 18-62 & 5-15 & 1.80-2.05 & 0.0-0.06 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & 62-80 & 2-10 & 1.60-1.80 & 0.6-2 & |0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 17 & . 24 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Tula------------} & 0-8 & 2-8 & 1.20-1.50 & 0.6-2 & |0.20-0.22| & 0.0-2.9 & 2.0-3.0 & . 28 & . 37 & 4 & 3 & 86 \\
\hline & 8-20 & 2-8 & 1.35-1.60 & 0.6-2 & |0.17-0.22| & 0.0-2.9 & 0.6-1.0 & . 20 & . 28 & & & \\
\hline & 20-28 & 5-10 & 1.40-1.60 & 0.6-2 & \(|0.15-0.19|\) & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & 28-62 & 5-15 & 1.75-2.10 & 0.01-0.06 & |0.04-0.06| & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & 62-80 & 5-10 & 1.55-1.70 & 0.6-2 & |0.11-0.16| & 0.0-2.9 & 0.0-0.5 & . 20 & . 32 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{206B:} \\
\hline \multirow[t]{5}{*}{Traunik---------} & 0-4 & 2-8 & 1.30-1.60 & 0.6-2 & |0.12-0.14| & 0.0-2.9 & 1.0-3.0 & . 20 & . 24 & 3 & 3 & 86 \\
\hline & 4-11 & 2-8 & 1.35-1.70 & 0.6-2 & |0.10-0.12| & 0.0-2.9 & 0.5-1.0 & . 20 & . 24 & & & \\
\hline & 11-31 & 0-3 & 1.35-1.65 & 6-40 & |0.04-0.05| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & 31-80 & 0-3 & 1.55-1.65 & 6-40 & | 0.02-0.04| & 0.0-2.9 & 0.0-0.5 & . 10 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{207D:} \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & 2-8 & 1.30-1.60 & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-4.0 & . 28 & . 37 & 4 & 5 & 56 \\
\hline & 9-22 & 2-8 & 1.35-1.70 & 0.6-2 & |0.16-0.18| & 0.0-2.9 & 0.5-2.0 & . 32 & . 32 & & & \\
\hline & 22-46 & 1-5 & 1.50-1.80 & 2-6 & |0.08-0.10| & 0.0-2.9 & 0.0-0.5 & . 10 & . 20 & & & \\
\hline & 46-50 & --- & - & 0.01-0.06 & - & - & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme------} & 0-5 & 2-8 & 1.10-1.35 & 0.6-2 & |0.10-0.17| & 0.0-2.9 & 1.0-4.0 & . 17 & . 37 & 2 & 3 & 86 \\
\hline & 5-24 & 2-8 & 1.35-1.60 & 0.6-2 & |0.07-0.22| & 0.0-2.9 & 0.6-1.0 & . 28 & . 37 & & & \\
\hline & 24-29 & 5-10 & 1.50-1.85 & 0.6-2 & |0.05-0.16| & 0.0-2.9 & 0.0-0.5 & . 20 & . 28 & & & \\
\hline & 29-39 & --- & --- & 0.01-0.06 & --- & --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop} & 0-80 & - & --- & 0.01-0.06 & --- & --- & --- & --- & --- & - & --- & --- \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 18.--Physical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & | Erosi & fac & ors & Wind & \\
\hline Map symbol & Depth & Clay & Moist & Permea- & Available & Linear & Organic & & & & erodi- & erodi- \\
\hline and soil name & & & bulk & bility & water & extensi- & matter & & & & bility & bility \\
\hline & & & density & (Ksat) & |capacity & bility & & Kw & Kf & T & group & | index \\
\hline & In & Pct & \(\mathrm{g} / \mathrm{cc}\) & \(\mathrm{In} / \mathrm{hr}\) & In/in & Pct & Pct & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 208F: & & & & & & & & & & & & \\
\hline Keewaydin----------- | & 0-4 & 2-8 & |1.35-1.60| & 0.6-2 & |0.10-0.15 & 0.0-2.9 & 1.0-3.0 & . 17 & . 24 & 2 & 3 & 86 \\
\hline & 4-10 & 2-8 & |1.35-1.65| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 10-20 & 2-8 & | 1.35-1.65| & 0.6-2 & |0.10-0.22| & 0.0-2.9 & 0.0-1.0 & . 20 & . 28 & & & \\
\hline & 20-31 & 0-5 & |1.35-1.70| & 2-20 & |0.03-0.09 & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & 31-80 & 0-5 & |1.55-1.75| & 2-20 & |0.03-0.09 & 0.0-2.9 & 0.0-0.0 & . 10 & . 17 & & & \\
\hline & & & & & & & & & & & & \\
\hline Michigamme--------- | & 0-5 & 2-8 & | 1.25-1.60| & 0.6-2 & |0.11-0.18| & 0.0-2.9 & 1.0-4.0 & . 28 & . 37 & 2 & 3 & 86 \\
\hline & 5-24 & 2-8 & |1.35-1.60| & 0.6-2 & |0.07-0.22| & 0.0-2.9 & 0.6-2.0 & . 28 & . 43 & & & \\
\hline & 24-29 & 5-10 & |1.50-1.85| & 0.6-2 & |0.05-0.16| & 0.0-2.9 & 0.0-0.5 & . 15 & . 24 & & & \\
\hline & 29-39 & --- | & | --- | & 0.01-0.06 & | --- | & | --- & --- & --- & --- & & & \\
\hline & & & & & & & & & & & & \\
\hline 209B: & & & & & & & & & & & & \\
\hline Garlic------------- | & 0-9 & 0-5 & |1.30-1.55| & 6-20 & |0.07-0.09 & 0.0-2.9 & 1.0-2.0 & . 15 & . 15 & 5 & 1 & 250 \\
\hline & 9-26 & 0-5 & | 1.40-1.65| & 6-20 & |0.06-0.08| & 0.0-2.9 & 0.5-1.0 & . 15 & . 15 & & & \\
\hline & 26-80 & 0-5 & |1.55-1.65| & 6-20 & |0.05-0.10| & 0.0-2.9 & 0.0-0.5 & . 15 & . 15 & & & \\
\hline & & & & & & & & & & & & \\
\hline Fence-------------- | & 0-3 & 2-8 & |1.35-1.55| & 0.6-2 & |0.20-0.24| & 0.0-2.9 & 1.0-2.0 & . 37 & . 37 & 5 & 5 & 56 \\
\hline & 3-7 & 2-8 & | 1.35-1.55| & 0.6-2 & |0.20-0.22| & 0.0-2.9 & 0.5-1.0 & . 37 & . 37 & & & \\
\hline & 7-19 & 2-8 & | 1.50-1.65| & 0.6-2 & |0.16-0.22| & 0.0-2.9 & 1.0-2.0 & . 37 & . 37 & & & \\
\hline & 19-42 & 8-18 & |1.50-1.65| & 0.6-2 & |0.16-0.22| & 0.0-2.9 & 0.0-0.5 & . 43 & . 43 & & & \\
\hline & 42-80 & 5-15 & |1.50-1.65| & 0.2-0.6 & |0.14-0.20| & 0.0-2.9 & 0.0-0.5 & . 43 & . 43 & & & \\
\hline & & & & & & & & & & & & \\
\hline M-W. & & & & & & & & & & & & \\
\hline Miscellaneous water & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline W. & & & & & & & & & & & & \\
\hline Water & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated)


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cationexchange capacity & |Effective cation|exchange |capacity & Soil reaction & Calcium carbonate \\
\hline 26A: & In & \(1 \mathrm{meq} / 100 \mathrm{~g}\) & |meq/100 g & pH & Pct \\
\hline \multirow[t]{5}{*}{Skanee----------} & 0-7 & --- & 5.0-20 & 3.5-6.0 & 0 \\
\hline & 7-12 & - - & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 12-30 & --- & 5.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{27:} \\
\hline \multirow[t]{5}{*}{Gay-------------} & 0-2 & 50-90 & - & 5.1-6.0 & 0 \\
\hline & 2-18 & 12-20 & --- & 5.1-6.0 & 0 \\
\hline & 18-31 & 1.0-8.0 & --- & 5.1-6.0 & 0 \\
\hline & 31-80 & 1.0-3.0 & - & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{28B:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 3-25 & 2.0-10 & - & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{28D:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 3-25 & 2.0-10 & - & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{28E:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 3-25 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{29B:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & --- & 5.0-10 & 3.5-6.0 & 0 \\
\hline & 10-30 & - & 1.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & - & 2.0-10 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{29D:} \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & - & 5.0-10 & 3.5-6.0 & 0 \\
\hline & 10-30 & - & 1.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{31D:} \\
\hline \multirow[t]{4}{*}{Trenary---------} & 0-5 & 3.0-15 & --- & 4.1-6.0 & 0 \\
\hline & 5-15 & 1.0-5.0 & --- & 4.1-6.0 & 0 \\
\hline & 15-48 & 1.0-5.0 & - & 5.1-7.3 & 0 \\
\hline & 48-80 & 1.0-10 & --- & 6.6-8.4 & 1-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{32A:} \\
\hline \multirow[t]{5}{*}{Charlevoix------} & 0-8 & 10-30 & --- & 4.1-6.0 & 0 \\
\hline & 8-12 & 5.0-10 & --- & 4.1-6.0 & 0 \\
\hline & 12-28 & 5.0-10 & --- & 5.6-7.3 & 0-5 \\
\hline & 28-80 & 2.0-10 & --- & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{33:} \\
\hline \multirow[t]{4}{*}{Ensley----------} & 0-5 & 150-200 & --- & 6.1-7.3 & 0 \\
\hline & 5-19 & 4.0-8.0 & --- & 6.1-7.3 & 0 \\
\hline & 19-80 & 1.0-4.0 & --- & 7.4-8.4 & 10-20 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{34B:} \\
\hline \multirow[t]{5}{*}{Onaway----------} & 0-6 & 5.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 6-13 & 3.0-10 & --- & 5.1-7.3 & 0 \\
\hline & 13-18 & 5.0-20 & --- & 6.6-7.8 & 1-10 \\
\hline & 18-80 & 5.0-25 & --- & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils-Continued


Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation|exchange capacity & Effective cationexchange capacity & \[
\begin{aligned}
& \text { Soil } \\
& \text { reaction }
\end{aligned}
\] & |Calcium |carbonate \\
\hline & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & \(|\mathrm{meq} / 100 \mathrm{~g}|\) & pH & Pct \\
\hline \multicolumn{6}{|l|}{69B:} \\
\hline \multirow[t]{6}{*}{Escanaba--------} & 0-6 & 3.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 6-26 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 26-35 & 2.0-10 & --- & 5.5-7.3 & 0 \\
\hline & 35-42 & 2.0-10 & --- & 6.6-7.8 & 0 \\
\hline & 42-80 & 2.0-10 & --- & 6.6-7.8 & 0-20 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{69D:} \\
\hline \multirow[t]{5}{*}{Escanaba--------} & 0-6 & 3.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 6-26 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 26-35 & 2.0-10 & --- & 5.5-7.3 & 0 \\
\hline & 35-42 & 2.0-10 & - & 6.6-7.8 & 0 \\
\hline & 42-80 & 2.0-10 & --- & 6.6-7.8 & 0-20 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{70B:} \\
\hline \multirow[t]{5}{*}{Nadeau} & 0-7 & 5.0-15 & --- & 5.6-7.3 & 0 \\
\hline & 7-17 & 2.0-10 & --- & 5.6-7.3 & 0 \\
\hline & 17-23 & 3.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 23-80 & 1.0-2.0 & --- & 7.9-8.4 & 10-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{70D:} \\
\hline \multirow[t]{5}{*}{Nadeau---------} & 0-7 & 5.0-15 & --- & 5.6-7.3 & 0 \\
\hline & 7-17 & 2.0-10 & --- & 5.6-7.3 & 0 \\
\hline & 17-23 & 3.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 23-80 & 1.0-2.0 & --- & 7.9-8.4 & 10-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{71B:} \\
\hline \multirow[t]{3}{*}{Evart} & 0-10 & 5.0-20 & --- & 6.1-7.3 & 0 \\
\hline & 10-80 & 1.0-3.0 & --- & 6.1-8.4 & 0-10 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Pelkie----------} & 0-7 & 4.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 7-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sturgeon--------} & 0-6 & 5.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 6-35 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 35-80 & 1.0-5.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72B:} \\
\hline \multirow[t]{5}{*}{Emmet} & 0-3 & 10-20 & -- & 5.6-6.5 & 0 \\
\hline & 3-21 & 2.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & --- & 6.6-7.8 & 1-8 \\
\hline & 28-80 & 1.0-3.0 & --- & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72D:} \\
\hline \multirow[t]{5}{*}{Emmet} & 0-3 & 10-20 & --- & 5.6-6.5 & 0 \\
\hline & 3-21 & 2.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & --- & 6.6-7.8 & 1-8 \\
\hline & 28-80 & --- & --- & 7.4-8.4 & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{72E:} \\
\hline \multirow[t]{5}{*}{Emmet-----------} & 0-3 & 10-20 & --- & 5.6-6.5 & 0 \\
\hline & 3-21 & 2.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & --- & 6.6-7.8 & 1-8 \\
\hline & 28-80 & 1.0-3.0 & --- & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{73B:} \\
\hline \multirow[t]{5}{*}{Gogebic---------} & 0-5 & --- & 5.0-20 & 4.5-6.0 & 0 \\
\hline & 5-18 & -- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 18-62 & --- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 62-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation| exchange |capacity & |Effective cation|exchange capacity & ```
Soil
``` & |Calcium |carbonate \\
\hline 73D: & In & |meq/100 & \(\mid\) meq/100 g & pH & Pct \\
\hline \multirow[t]{4}{*}{Gogebic---------} & 0-5 & --- & 5.0-20 & 4.5-6.0 & 0 \\
\hline & 5-18 & --- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 18-62 & --- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 62-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{74D:} \\
\hline \multirow[t]{6}{*}{Schweitzer------} & 0-5 & --- & 2.0-20 & 3.5-5.5 & 0 \\
\hline & 5-21 & --- & 2.0-20 & 4.5-6.0 & 0 \\
\hline & 21-43 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 43-61 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 61-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme------} & 0-5 & --- & 3.0-30 & 3.5-6.0 & 0 \\
\hline & 5-24 & --- & 3.0-15 & 3.5-6.0 & 0 \\
\hline & 24-29 & 1.0-5.0 & --- & 4.5-6.5 & 0 \\
\hline & 29-39 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
74 F :} & 0-80 & --- & --- & - & --- \\
\hline & & & & & \\
\hline & \multicolumn{5}{|c|}{74F:} \\
\hline \multirow[t]{6}{*}{Schweitzer------} & 0-5 & --- & 2.0-20 & 3.5-5.5 & 0 \\
\hline & 5-21 & --- & 2.0-20 & 4.5-6.0 & 0 \\
\hline & 21-43 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 43-61 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 61-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme------} & 0-5 & --- & 3.0-30 & 3.5-6.0 & 0 \\
\hline & 5-24 & - & 3. 0-15 & 3.5-6.0 & 0 \\
\hline & 24-29 & 1.0-5.0 & --- & 4.5-6.5 & 0 \\
\hline & 29-39 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
76 C :} & 0-80 & - & - & --- & -- \\
\hline & & & & & \\
\hline & \multicolumn{5}{|c|}{76 C :} \\
\hline \multirow[t]{4}{*}{Garlic----------} & 0-9 & - & 1.0-8.0 & 4.5-5.5 & 0 \\
\hline & 9-26 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 26-80 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Alcona----------} & 0-9 & 3.0-15 & --- & 4.5-6.0 & \\
\hline & 9-13 & 1.0-6.0 & --- & 4.5-6.0 & 0 \\
\hline & 13-26 & 1.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 26-49 & 2.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 49-80 & 1.0-8.0 & --- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Voelker} & 0-11 & - & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 11-15 & - & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 15-31 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 31-39 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & 39-80 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{76 E :} \\
\hline \multirow[t]{4}{*}{Garlic----------} & 0-9 & --- & 1.0-8.0 & 4.5-5.5 & 0 \\
\hline & 9-26 & -- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 26-80 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Alcona----------} & 0-9 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 9-13 & 1.0-6.0 & --- & 4.5-6.0 & 0 \\
\hline & 13-26 & 1.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 26-49 & 2.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 49-80 & 1.0-8.0 & --- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & | Cation|exchange |capacity & Effective cation| exchange capacity & Soil reaction & \[
\begin{aligned}
& \text { |Calcium } \\
& \text { |carbon- } \\
& \text { ate }
\end{aligned}
\] \\
\hline 76E: & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & \(|\mathrm{meq} / 100 \mathrm{~g}|\) & pH & Pct \\
\hline \multirow[t]{5}{*}{Voelker---------} & 0-11 & --- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 11-15 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 15-31 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 31-39 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & 39-80 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{76F:} \\
\hline \multirow[t]{3}{*}{Garlic---------} & 0-9 & --- & 1.0-8.0 & 4.5-5.5 & 0 \\
\hline & 9-26 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 26-80 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Alcona----------} & 0-9 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 9-13 & 1.0-6.0 & --- & 4.5-6.0 & 0 \\
\hline & 13-26 & 1.0-8.0 & -- & 5.1-6.5 & 0 \\
\hline & 26-49 & 2.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 49-80 & 1.0-8.0 & -- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Voelker---------} & 0-11 & --- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 11-15 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 15-31 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 31-39 & 2.0-15 & - & 5.6-6.5 & 0 \\
\hline & 39-80 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{77D:} \\
\hline \multirow[t]{4}{*}{Garlic---------} & 0-9 & - & 1.0-8.0 & 4.5-5.5 & 0 \\
\hline & 9-26 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 26-80 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Alcona----------} & 0-9 & 3.0-15 & -- & 4.5-6.0 & 0 \\
\hline & 9-13 & 1.0-6.0 & --- & 4.5-6.0 & 0 \\
\hline & 13-26 & 1.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 26-49 & 2.0-8.0 & -- & 5.1-6.5 & 0 \\
\hline & 49-80 & 1.0-8.0 & --- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Voelker---------} & 0-11 & - & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 11-15 & - & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 15-31 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 31-39 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & 39-80 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{77E:} \\
\hline \multirow[t]{4}{*}{Garlic---------} & 0-9 & -- & 1.0-8.0 & 4.5-5.5 & 0 \\
\hline & 9-26 & -- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 26-80 & 1.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Alcona---------} & 0-9 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 9-13 & 1.0-6.0 & --- & 4.5-6.0 & 0 \\
\hline & 13-26 & 1.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 26-49 & 2.0-8.0 & --- & 5.1-6.5 & 0 \\
\hline & 49-80 & 1.0-8.0 & --- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Voelker---------} & 0-11 & --- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 11-15 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 15-31 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 31-39 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & 39-80 & 2.0-15 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued

Table 19.--Chemical Properties of the Soils--Continued

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & | Cation|exchange |capacity & ```
|ffective
 cation-
| exchange
|capacity
``` & \[
\begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}
\] & Calcium carbonate \\
\hline & In & |meq/100 & |meq/100 g| & pH & Pct \\
\hline \multicolumn{6}{|l|}{86B:} \\
\hline \multirow[t]{7}{*}{Mashek----------} & 0-3 & 10-20 & -- & 5.1-6.0 & 0 \\
\hline & 3-17 & 2.0-6.0 & --- & 5.1-6.0 & 0 \\
\hline & 17-27 & 2.0-6.0 & - & 6.1-7.3 & 0 \\
\hline & 27-38 & 3.0-9.0 & --- & 6.6-7.8 & 0 \\
\hline & 38-43 & 1.0-3.0 & --- & 7.4-8.4 & 0-20 \\
\hline & 43-80 & 1.0-3.0 & --- & 7.4-8.4 & 10-30 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{87B:} \\
\hline \multirow[t]{5}{*}{Cunard----------} & 0-4 & 3.0-15 & | --- & 5.6-7.3 & 0 \\
\hline & 4-19 & 1.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 19-27 & 1.0-10 & -- & 7.4-8.4 & 5-30 \\
\hline & 27-37 & --- & --- & --- & -- \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{88 :} \\
\hline \multirow[t]{4}{*}{Cathro----------} & 0-18 & 150-230 & - & 4.5-7.3 & 0 \\
\hline & 18-31 & 150-230 & | --- & 4.5-7.3 & 0 \\
\hline & 31-80 & 2.0-20 & - & 5.6-8.4 & 5-25 \\
\hline & & & | & & \\
\hline \multirow[t]{4}{*}{Ensley----------} & 0-5 & 150-200 & --- & 6.1-7.3 & 0 \\
\hline & 5-19 & 4.0-8.0 & | --- & 6.1-7.3 & 0 \\
\hline & 19-80 & 1.0-4.0 & --- & 7.4-8.4 & 10-20 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{89B:} \\
\hline \multirow[t]{5}{*}{Emmet} & 0-3 & 10-20 & | --- & 5.6-6.5 & 0 \\
\hline & 3-21 & 2.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & --- & 6.6-7.8 & 1-8 \\
\hline & 28-80 & 1.0-3.0 & - & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Solona----------} & 0-9 & 3.0-25 & --- & 6.6-7.3 & 0 \\
\hline & 9-25 & 2.0-15 & - & 6.6-7.3 & 0 \\
\hline & 25-80 & 1.0-20 & --- & 7.4-8.4 & 0-35 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{90B:} \\
\hline \multirow[t]{5}{*}{Emmet} & 0-3 & 10-20 & | --- & 5.6-6.5 & 0 \\
\hline & 3-21 & 2.0-6.0 & | --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & - & 6.6-7.8 & 1-8 \\
\hline & 28-80 & 1.0-3.0 & --- & 7.4-8.4 & 10-30 \\
\hline & & & | & & \\
\hline \multirow[t]{6}{*}{Escanaba} & 0-6 & 3.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 6-26 & 1.0-10 & | --- & 5.1-6.0 & 0 \\
\hline & 26-35 & 2.0-10 & | & 5.5-7.3 & 0 \\
\hline & 35-42 & 2.0-10 & | --- & 6.6-7.8 & 0 \\
\hline & 42-80 & 2.0-10 & --- & 6.6-7.8 & 0-20 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{90D:} \\
\hline \multirow[t]{5}{*}{Emmet} & 0-3 & 10-20 & --- & 5.6-6.5 & \\
\hline & 3-21 & 2.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & 21-28 & 3.0-9.0 & | --- & 6.6-7.8 & 1-8 \\
\hline & 28-80 & 1.0-3.0 & --- & 7.4-8.4 & 10-30 \\
\hline & & & , & & \\
\hline \multirow[t]{6}{*}{Escanaba--------} & 0-6 & 3. 0-15 & | --- & 5.1-6.0 & 0 \\
\hline & 6-26 & 1.0-10 & | --- & 5.1-6.0 & 0 \\
\hline & 26-35 & 2.0-10 & | --- & 5.5-7.3 & 0 \\
\hline & 35-42 & 2.0-10 & --- & 6.6-7.8 & 0 \\
\hline & 42-80 & 2.0-10 & --- & 6.6-7.8 & 0-20 \\
\hline & & & | & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cationexchange capacity & |Effective cation|exchange |capacity & Soil reaction & Calcium carbonate \\
\hline & In & meq/100 g & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & pH & Pct \\
\hline \multicolumn{6}{|l|}{91B:} \\
\hline \multirow[t]{5}{*}{Onaway----------} & 0-6 & 5.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 6-13 & 3.0-10 & --- & 5.1-7.3 & 0 \\
\hline & 13-18 & 5.0-20 & --- & 6.6-7.8 & 1-10 \\
\hline & 18-80 & 5.0-25 & --- & 7.4-8.4 & 10-30 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Nadeau-----------} & 0-7 & 5.0-15 & --- & 5.6-7.3 & 0 \\
\hline & 7-17 & 2.0-10 & --- & 5.6-7.3 & 0 \\
\hline & 17-23 & 3.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 23-80 & 1.0-2.0 & --- & 7.9-8.4 & 10-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{92A:} \\
\hline \multirow[t]{4}{*}{Ensley----------} & 0-5 & 150-200 & --- & 6.1-7.3 & 0 \\
\hline & 5-19 & 4.0-8.0 & --- & 6.1-7.3 & 0 \\
\hline & 19-80 & 1.0-4.0 & --- & 7.4-8.4 & 10-20 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Solona----------} & 0-9 & 3.0-25 & - & 6.6-7.3 & 0 \\
\hline & 9-25 & 2.0-15 & - & 6.6-7.3 & 0 \\
\hline & 25-80 & 1.0-20 & - & 7.4-8.4 & 0-35 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{93 :} \\
\hline \multirow[t]{4}{*}{Tawas-----------} & 0-6 & 80-120 & --- & 4.5-6.5 & 0 \\
\hline & 6-25 & 80-120 & - & 4.5-7.3 & 0 \\
\hline & 25-80 & 1.0-3.0 & --- & 5.6-8.4 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Deford----------} & 0-6 & 80-120 & --- & 3.5-6.0 & 0 \\
\hline & \[
6-80
\] & \[
1.0-5.0
\] & --- & \[
\text { 4.5-8. } 4
\] & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{94B:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 3-25 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & - & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & - & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & - & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{94D:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & & 3.0-15 & --- & 4.5-6.0 & \\
\hline & 3-25 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & --- & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{94E:} \\
\hline \multirow[t]{4}{*}{Keweenaw--------} & 0-3 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 3-25 & 2.0-10 & -- & 4.5-6.0 & 0 \\
\hline & 25-80 & 1.0-10 & -- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & --- & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{95B :} \\
\hline \multirow[t]{4}{*}{Liminga---------} & 0-4 & 2.0-5.0 & --- & 3.5-5.5 & 0 \\
\hline & 4-30 & 2.0-5.0 & --- & 4.5-6.0 & 0 \\
\hline & 30-80 & 1.0-4.0 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & | Cation|exchange |capacity & ```
|Effective
    cation-
| exchange
|capacity
``` & \[
\left\lvert\, \begin{gathered}
\text { Soil } \\
\text { |reaction }
\end{gathered}\right.
\] & |Calcium |carbonate \\
\hline & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & |meq/100 g| & pH & Pct \\
\hline \multicolumn{6}{|l|}{95D :} \\
\hline \multirow[t]{4}{*}{Liminga---------} & 0-4 & 2.0-5.0 & --- & 3.5-5.5 & 0 \\
\hline & 4-30 & 2.0-5.0 & --- & 4.5-6.0 & 0 \\
\hline & 30-80 & 1.0-4.0 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{100E:} \\
\hline \multirow[t]{5}{*}{Sayner----------} & 0-2 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 2-14 & --- & 2.0-8.0 & 4.5-6.0 & 0 \\
\hline & 14-27 & 0.0-4.0 & - & 4.5-6.5 & 0 \\
\hline & 27-80 & 0.0-3.0 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & - & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{100F:} \\
\hline \multirow[t]{5}{*}{Sayner----------} & 0-2 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 2-14 & --- & 2.0-8.0 & 4.5-6.0 & 0 \\
\hline & 14-27 & 0.0-4.0 & --- & 4.5-6.5 & 0 \\
\hline & 27-80 & 0.0-3.0 & --- & 5.1-6.5 & 0 \\
\hline & & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline \multirow{3}{*}{Rubicon---------} & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{103D:} \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Ocqueoc---------} & 0-2 & - & 3.0-14 & 4.5-6.0 & 0 \\
\hline & 2-7 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 7-27 & 3.0-14 & --- & 4.5-6.5 & 0 \\
\hline & 27-80 & 6.0-22 & --- & 5.6-7.8 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
104C:} & 0-80 & --- & - & - & --- \\
\hline & & & & & \\
\hline & \multicolumn{5}{|c|}{104C:} \\
\hline \multirow[t]{6}{*}{Fence----------} & 0-3 & 4.0-20 & --- & 3.6-6.0 & 0 \\
\hline & 3-7 & --- & 2.0-15 & 3.6-6.0 & 0 \\
\hline & 7-19 & --- & 3.0-15 & 3.6-6.0 & 0 \\
\hline & 19-42 & 2.0-15 & --- & 5.2-7.3 & 0 \\
\hline & 42-80 & --- & 1.0-13 & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{105C:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 6-18 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 18-50 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 50-80 & 1.0-6.0 & -- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{106B:} \\
\hline \multirow[t]{5}{*}{Sagola----------} & 0-5 & 3.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 5-20 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & 20-56 & 1.0-5.0 & --- & 6.6-7.8 & \[
0
\] \\
\hline & 56-80 & 1.0-5.0 & - & 6.6-7.8 & 1-10 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & -- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & \[
\begin{aligned}
& \text { | Cation- } \\
& \text { |exchange } \\
& \text { |capacity }
\end{aligned}
\] & Effective cationexchange capacity & \[
\begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}
\] & |Calcium |carbonate \\
\hline & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & meq/100 g & pH & Pct \\
\hline \multicolumn{6}{|l|}{106D:} \\
\hline \multirow[t]{5}{*}{Sagola----------} & 0-5 & 3.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 5-20 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & 20-56 & 1.0-5.0 & --- & 6.6-7.8 & 0 \\
\hline & 56-80 & 1.0-5.0 & --- & 6.6-7.8 & 1-10 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107B:} \\
\hline \multirow[t]{5}{*}{Goodman--------} & 0-4 & - & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 4-30 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 30-71 & --- & 0.0-10 & 4.5-6.0 & 0 \\
\hline & 71-80 & 0.0-10 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107D:} \\
\hline \multirow[t]{5}{*}{Goodman--------} & 0-4 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 4-30 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 30-71 & --- & 0.0-10 & 4.5-6.0 & 0 \\
\hline & \[
71-80
\] & 0.0-10 & & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & \[
22-80
\] & 1.0-5.0 & --- & \[
5.3-6.0
\] & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{107F:} \\
\hline \multirow[t]{5}{*}{Goodman--------} & 0-4 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 4-30 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 30-71 & --- & 0.0-10 & 4.5-6.0 & 0 \\
\hline & 71-80 & 0.0-10 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & \[
2-22
\] & 4.0-12 & -- - & \[
4.5-6.0
\] & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{108B :} \\
\hline \multirow[t]{5}{*}{Goodman--------} & 0-4 & --- & 2. 0-10 & 4.5-5.5 & 0 \\
\hline & 4-30 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 30-71 & -- - & 0.0-10 & 4.5-6.0 & 0 \\
\hline & 71-80 & 0.0-10 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Wabeno----------} & 0-3 & --- & 3. 0-15 & 4.5-5.5 & 0 \\
\hline & 3-23 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 23-29 & 1.0-15 & --- & 5.1-6.5 & 0 \\
\hline & 29-57 & 1.0-15 & --- & 5.1-6.5 & 0 \\
\hline & 57-80 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation|exchange |capacity & ```
|Effective
 cation-
| exchange
|capacity
``` & \[
\left\lvert\, \begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}\right.
\] & \begin{tabular}{l}
|Calcium |carbon- \\
| ate
\end{tabular} \\
\hline 108D: & In & \[
\mid \mathrm{meq} / 100
\] & |meq/100 g| & pH & Pct \\
\hline \multirow[t]{5}{*}{Goodman---------} & 0-4 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 4-30 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 30-71 & --- & 0.0-10 & 4.5-6.0 & 0 \\
\hline & 71-80 & 0.0-10 & --- & 5.1-6.5 & 0 \\
\hline & & & , & & \\
\hline \multirow[t]{3}{*}{Sundog-----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & | --- & 5.3-6.0 & 0 \\
\hline \multirow[t]{6}{*}{Wabeno} & 0-3 & --- & 3.0-15 & 4.5-5.5 & 0 \\
\hline & 3-23 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 23-29 & 1.0-15 & -- & 5.1-6.5 & 0 \\
\hline & 29-57 & 1.0-15 & | --- & 5.1-6.5 & 0 \\
\hline & 57-80 & 1.0-10 & - & 4.5-6.5 & 0 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{109B :} \\
\hline \multirow[t]{4}{*}{Rubicon} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & 0-4 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline \multirow{4}{*}{Keweenaw--------} & 4-12 & 2.0-10 & --- & 4.5-6.0 & 0 \\
\hline & 12-23 & 1.0-10 & | --- & 4.5-6.5 & 0 \\
\hline & 23-80 & --- & | --- & --- & - \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{109D:} \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & , & & \\
\hline \multirow[t]{5}{*}{Keweenaw--------} & 0-4 & 3.0-15 & , & 4.5-6.0 & 0 \\
\hline & 4-12 & 2.0-10 & | --- & 4.5-6.0 & 0 \\
\hline & 12-23 & 1.0-10 & - & 4.5-6.5 & 0 \\
\hline & 23-80 & --- & --- & --- & --- \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{109F:} \\
\hline \multirow[t]{4}{*}{Rubicon---------} & 0-7 & --- & 1.0-6.0 & 4.5-6.0 & 0 \\
\hline & 7-18 & --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & 18-80 & 1.0-2.0 & -- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw-} & 0-4 & 3.0-15 & --- & 4.5-6.0 & 0 \\
\hline & 4-12 & 2.0-10 & | -- & 4.5-6.0 & 0 \\
\hline & 12-23 & 1.0-10 & --- & 4.5-6.5 & 0 \\
\hline & 23-80 & --- & --- & - & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{110B:} \\
\hline \multirow[t]{5}{*}{Nadeau----------} & 0-7 & 5.0-15 & --- & 5.6-7.3 & 0 \\
\hline & 7-17 & 2.0-10 & | --- & 5.6-7.3 & 0 \\
\hline & 17-23 & 3.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 23-80 & 1.0-2.0 & --- & 7.9-8.4 & 10-25 \\
\hline & & & 1 & & \\
\hline \multirow[t]{5}{*}{Mancelona-------} & 0-3 & 2.0-15 & | --- & 5.1-6.0 & 0 \\
\hline & 3-33 & 1.0-10 & --- & 5.6-7.3 & 0 \\
\hline & 33-37 & 4.0-15 & --- & 6.1-7.8 & --- \\
\hline & 37-80 & 1.0-4.0 & --- & 7.4-8.4 & 10-25 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & \[
\begin{aligned}
& \text { | Cation- } \\
& \text { | exchange } \\
& \text { |capacity }
\end{aligned}
\] & Effective cationexchange capacity & \[
\begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}
\] & |Calcium carbonate \\
\hline & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & \(|\mathrm{meq} / 100 \mathrm{~g}|\) & pH & Pct \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{126E:} \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{127B:} \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{127D:} \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{127F:} \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{128B:} \\
\hline \multirow[t]{4}{*}{Kalkaska--------} & 0-6 & --- & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Waiska----------} & 0-4 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 4-36 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & 36-80 & --- & 1.0-5.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{128D:} \\
\hline \multirow[t]{4}{*}{Kalkaska--------} & 0-6 & - & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Waiska----------} & 0-4 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 4-36 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & 36-80 & --- & 1.0-5.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{128E:} \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & --- & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Waiska----------} & 0-4 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 4-36 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & 36-80 & --- & 1.0-5.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{129C:} \\
\hline \multirow[t]{5}{*}{Kalkaska--------} & 0-6 & --- & 1.0-15 & 3.6-6.0 & 0 \\
\hline & 6-8 & --- & 4.0-15 & 3.6-6.0 & 0 \\
\hline & 8-17 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 17-80 & 1.0-2.0 & --- & 4.5-6.5 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation|exchange |capacity & Effective cationexchange capacity & Soil reaction & |Calcium |carbonate \\
\hline 129C: & In & |meq/100 & meq/100 g & pH & Pct \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & --- & 3. 0-15 & 4.5-6.0 & 0 \\
\hline & 6-18 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 18-50 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 50-80 & 1.0-6.0 & - & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{130A:} \\
\hline \multirow[t]{4}{*}{Chabeneau-------} & 0-5 & --- & 4.0-20 & 3.5-6.0 & 0 \\
\hline & 5-22 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{131:} \\
\hline \multirow[t]{5}{*}{Witbeck---------} & 0-8 & - & 50-90 & 4.5-6.0 & 0 \\
\hline & 8-15 & --- & 30-40 & 4.5-6.0 & 0 \\
\hline & 15-22 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-3.0 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Cathro----------} & 0-18 & 150-230 & - & 4.5-7.3 & 0 \\
\hline & 18-31 & 150-230 & - & 4.5-7.3 & 0 \\
\hline & 31-80 & 2.0-20 & --- & 5.6-8.4 & 5-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{132.} \\
\hline \multicolumn{6}{|l|}{Slickens} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{133B:} \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & - & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & - & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & \[
20-31
\] & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & - & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 9-22 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 22-46 & - & 1.0-10 & 4.5-6.0 & 0 \\
\hline & 46-50 & - & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{133D:} \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & - & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 9-22 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 22-46 & --- & 1.0-10 & 4.5-6.0 & 0 \\
\hline & 46-50 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{134B:} \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & - & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & - & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{134D:} \\
\hline \multirow[t]{6}{*}{Keewaydin------} & 0-4 & --- & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.6-6.0 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cationexchange capacity & Effective cationexchange capacity & Soil reaction & |Calcium |carbonate \\
\hline & In & \(1 \mathrm{meq} / 100 \mathrm{~g}\) & |meq/100 g & pH & Pct \\
\hline \multicolumn{6}{|l|}{134F:} \\
\hline \multirow[t]{5}{*}{Keewaydin-------} & 0-4 & --- & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & - & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & - & 5.6-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & - & 5.6-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{135A:} \\
\hline \multirow[t]{5}{*}{Witbeck---------} & 0-8 & - & 50-90 & 4.5-6.0 & 0 \\
\hline & 8-15 & --- & 30-40 & 4.5-6.0 & 0 \\
\hline & 15-22 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-3.0 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Net-------------} & 0-5 & --- & 6.0-25 & 3.5-6.0 & 0 \\
\hline & 5-18 & --- & 6.0-12 & 3.5-6.0 & 0 \\
\hline & 18-45 & --- & 1.0-6.0 & 3.5-6.0 & 0 \\
\hline & 45-80 & 1.0-3.0 & - & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{136A:} \\
\hline \multirow[t]{4}{*}{Minocqua--------} & 0-5 & 120-190 & - & 4.5-6.0 & 0 \\
\hline & 5-23 & 2.0-20 & - & 4.5-6.5 & 0 \\
\hline & 23-80 & 0.0-3.0 & - & 5.1-7.8 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Channing--------} & 0-9 & --- & 6.0-10 & 4.5-6.0 & 0 \\
\hline & 9-22 & --- & 2.0-14 & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-2.0 & - & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{137D:} \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & --- & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Sundog----------} & 0-2 & 10-20 & - & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & - & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{137F:} \\
\hline \multirow[t]{6}{*}{Keewaydin-------} & 0-4 & --- & 2.0-15 & 3.5-5.5 & 0 \\
\hline & 4-10 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 10-20 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 20-31 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & 31-80 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{138D:} \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 10-20 & --- & 4.5-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 4.5-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & & & | & & \\
\hline \multirow[t]{3}{*}{Rock outcrop----
138F:} & 0-80 & --- & | --- & --- & --- \\
\hline & & & | & & \\
\hline & \multicolumn{5}{|c|}{138F:} \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 10-20 & --- & 5.1-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop} & 0-80 & --- & | --- & --- & --- \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation|exchange |capacity & |Effective cation|exchange |capacity & \[
\left\lvert\, \begin{gathered}
\text { Soil } \\
\mid \text { reaction }
\end{gathered}\right.
\] & |Calcium |carbon| ate \\
\hline & In & |meq/100 & \(|\mathrm{meq} / 100 \mathrm{~g}|\) & pH & Pct \\
\hline \multicolumn{6}{|l|}{139B:} \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 10-20 & --- & 5.1-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{139D:} \\
\hline \multirow[t]{4}{*}{Sundog} & 0-2 & 10-20 & --- & 5.1-6.0 & 0 \\
\hline & 2-22 & 4.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 22-80 & 1.0-5.0 & --- & 5.3-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{140B:} \\
\hline \multirow[t]{5}{*}{Champion--------} & 0-5 & --- & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 5-26 & --- & 2.0-10 & 3.5-6.0 & 0 \\
\hline & 26-43 & --- & 1.0-2.0 & 3.5-6.0 & 0 \\
\hline & 43-80 & --- & 0.0-1.0 & 3.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 9-22 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 22-46 & --- & 1.0-10 & 4.5-6.0 & 0 \\
\hline & 46-50 & - & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{140D:} \\
\hline \multirow[t]{5}{*}{Champion---------} & 0-5 & --- & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 5-26 & --- & 2.0-10 & 3.5-6.0 & 0 \\
\hline & 26-43 & --- & 1.0-2.0 & 3.5-6.0 & 0 \\
\hline & 43-80 & --- & 0.0-1.0 & 3.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Dishno----------} & 0-9 & - & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 9-22 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 22-46 & --- & 1.0-10 & 4.5-6.0 & 0 \\
\hline & 46-50 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{141D:} \\
\hline \multirow[t]{5}{*}{Pelissier-------} & 0-6 & --- & 2. 0-10 & 3.5-5.5 & --- \\
\hline & 6-10 & --- & 1.0-5.0 & 4.5-5.5 & --- \\
\hline & 10-21 & --- & 1.0-4.0 & 5.1-6.0 & --- \\
\hline & 21-80 & --- & 1.0-2.0 & 5.1-6.0 & --- \\
\hline & & & & & \\
\hline \multirow[t]{3}{*}{Rock outcrop-----
142B:} & 0-80 & -- & --- & --- & --- \\
\hline & & & & & \\
\hline & \multicolumn{5}{|c|}{142B:} \\
\hline \multirow[t]{5}{*}{Pelissier------} & 0-6 & - & 2.0-10 & 3.5-5.5 & --- \\
\hline & 6-10 & --- & 1.0-5.0 & 4.5-5.5 & --- \\
\hline & 10-21 & --- & 1.0-4.0 & 5.1-6.0 & --- \\
\hline & 21-80 & --- & 1.0-2.0 & 5.1-6.0 & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{142D:} \\
\hline \multirow[t]{5}{*}{Pelissier-------} & & --- & & 3.5-5.5 & -- \\
\hline & 6-10 & --- & 1.0-5.0 & 4.5-6.0 & --- \\
\hline & 10-21 & - -- & 1.0-4.0 & 5.1-6.0 & --- \\
\hline & 21-80 & --- & 1.0-2.0 & 5.1-5.5 & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{144B:} \\
\hline \multirow[t]{5}{*}{Farquar---------} & 0-6 & | --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & 6-9 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & 9-20 & 1.0-5.0 & --- & 5.1-6.0 & 0 \\
\hline & 20-36 & 1.0-4.0 & --- & 5.1-6.0 & 0 \\
\hline & 36-80 & 1.0-4.0 & --- & 5.1-6.5 & 0 \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & ```
| Cation-
| exchange
|capacity
``` & |Effective cation|exchange capacity & Soil reaction & |Calcium carbonate \\
\hline & In & \(\mid \mathrm{meq} / 100 \mathrm{~g}\) & \(\mid\) meq/100 g| & pH & Pct \\
\hline \multicolumn{6}{|l|}{145C:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 6-18 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 18-50 & - & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 50-80 & 1.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & - & 5.0-10 & 3.5-6.0 & 0 \\
\hline & 10-30 & - & 1.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{146B:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & --- & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 6-18 & - & | 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 18-50 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 50-80 & 1.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Skanee----------} & 0-7 & --- & | 5.0-20 & 3.5-6.0 & 0 \\
\hline & 7-12 & --- & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 12-30 & - & | 5.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & - & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{147A:} \\
\hline \multirow[t]{5}{*}{Skanee----------} & 0-7 & --- & 5.0-20 & 3.5-6.0 & 0 \\
\hline & \[
7-12
\] & --- & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 12-30 & | --- & 5.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & | --- & 1.0-4.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Gay-------------} & 0-2 & 50-90 & --- & 5.1-6.0 & 0 \\
\hline & 2-18 & 12-20 & - & 5.1-6.0 & 0 \\
\hline & 18-31 & 1.0-8.0 & - & 5.1-6.0 & 0 \\
\hline & 31-80 & 1.0-3.0 & --- & 5.1-7.3 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{148B:} \\
\hline \multirow[t]{5}{*}{Shoepac---------} & 0-6 & | --- & 5.0-15 & 3.5-6.0 & --- \\
\hline & 6-23 & | --- & 3.0-11 & 3.5-6.0 & --- \\
\hline & 23-53 & 3.0-9.0 & | --- & 5.1-6.5 & -- \\
\hline & 53-80 & 1.0-3.0 & --- & 7.4-8.4 & --- \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Ensley----------} & 0-5 & 150-200 & --- & 6.1-7.3 & \\
\hline & \[
5-19
\] & 4.0-8.0 & --- & 6.1-7.3 & \[
0
\] \\
\hline & 19-80 & 1.0-4.0 & --- & 7.4-8.4 & 10-20 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{149:} \\
\hline \multirow[t]{3}{*}{Evart-----------} & 0-10 & 5.0-20 & --- & 6.1-7.3 & 0 \\
\hline & 10-80 & 1.0-3.0 & --- & 6.1-8.4 & 0-10 \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Cathro----------} & 0-18 & 150-230 & -- & 4.5-7.3 & \\
\hline & 18-31 & 150-230 & --- & 4.5-7.3 & \[
0
\] \\
\hline & 31-80 & | 2.0-20 & --- & 5.6-8.4 & 5-25 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{150:} \\
\hline \multirow[t]{5}{*}{Shag} & 0-2 & 80-140 & --- & 5.6-7.3 & 0 \\
\hline & 2-11 & 2.0-20 & -- & 5.6-7.3 & 0 \\
\hline & 11-25 & 2.0-10 & --- & 6.6-7.8 & 0 \\
\hline & 25-80 & 2.0-20 & --- & 6.6-7.8 & 0 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{151A:} \\
\hline \multirow[t]{5}{*}{Spear-----------} & 0-2 & --- & | 4.0-15 & 4.5-6.0 & 0 \\
\hline & 2-6 & --- & | 2.0-12 & 4.5-5.5 & 0 \\
\hline & 6-31 & 6.0-14 & --- & 5.1-6.0 & 0 \\
\hline & 31-80 & 2.0-22 & --- & 5.6-7.3 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cationexchange capacity & ```
|fffective
 cation-
| exchange
|capacity
``` & \[
\left\lvert\, \begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}\right.
\] & \begin{tabular}{l}
|Calcium |carbon- \\
| ate
\end{tabular} \\
\hline & In & |meq/100 & |meq/100 g| & pH & Pct \\
\hline \multicolumn{6}{|l|}{157B:} \\
\hline \multirow[t]{5}{*}{Nahma-----------} & 0-11 & 80-120 & --- & 6.1-7.3 & 0 \\
\hline & 11-14 & 2.0-10 & | --- & 6.1-7.3 & 0 \\
\hline & 14-24 & 2.0-10 & --- & 6.6-8.4 & 5-30 \\
\hline & 24-34 & --- & | --- & -- & --- \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{158C:} \\
\hline \multirow[t]{5}{*}{Munising--------} & 0-6 & - & 3.0-15 & 4.5-6.0 & 0 \\
\hline & 6-18 & --- & 2.0-5.0 & 4.5-6.0 & 0 \\
\hline & 18-50 & --- & 1.0-8.0 & 4.5-6.0 & 0 \\
\hline & 50-80 & 1.0-6.0 & --- & 5.6-6.5 & 0 \\
\hline & & & I & & \\
\hline \multirow[t]{5}{*}{Onota-----------} & 0-2 & 3. 0-15 & - & 4.5-6.0 & 0 \\
\hline & 2-7 & 2.0-10 & | --- & 4.5-6.0 & 0 \\
\hline & 7-22 & 2.0-10 & --- & 5.1-6.5 & 0 \\
\hline & 22-32 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multirow[t]{4}{*}{Yalmer----------} & 0-10 & --- & | 5.0-10 & 3.5-6.0 & 0 \\
\hline & 10-30 & --- & 1.0-10 & 3.5-6.0 & 0 \\
\hline & 30-80 & --- & 2.0-10 & 4.5-6.0 & 0 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{159A:} \\
\hline \multirow[t]{5}{*}{Jeske} & 0-11 & --- & 1.0-3.0 & 4.5-5.5 & 0 \\
\hline & 11-21 & --- & 1.0-3.0 & 4.5-5.5 & 0 \\
\hline & 21-31 & --- & | --- & --- & --- \\
\hline & 31-60 & --- & - & --- & --- \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{160B:} \\
\hline \multirow[t]{6}{*}{Paquin----------} & 0-11 & --- & 3.0-5.0 & 3.5-5.5 & --- \\
\hline & 11-12 & - & 1.0-4.0 & 3.5-6.0 & -- \\
\hline & 12-14 & 1.0-2.0 & -- & 3.5-6.0 & --- \\
\hline & 14-36 & 1.0-2.0 & - & 5.1-6.5 & --- \\
\hline & 36-80 & 3.0-5.0 & -- & 5.1-6.5 & --- \\
\hline & & & 5 0-20 & & \\
\hline \multirow[t]{4}{*}{Finch-----------} & \(0-10\)
\(10-20\) & --- & 5.0-20
\(1.0-4.0\) & 3.5-6.0
3.5-6.0 & 0 \\
\hline & 20-29 & --- & 1.0-4.0 & 3.5-6.0 & 0 \\
\hline & 29-80 & 1.0-4.0 & | --- & 5.1-6.0 & 0 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{161B:} \\
\hline \multirow[t]{3}{*}{Yellowdog} & 0-32 & --- & 1.0-2.0 & 4.5-6.0 & 0 \\
\hline & 32-60 & --- & - & --- & --- \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{162B:} \\
\hline \multirow[t]{4}{*}{Buckroe---------} & 0-4 & - & | 4.0-15 & 4.5-6.0 & 0 \\
\hline & 4-15 & --- & | 4.0-15 & 4.5-6.0 & 0 \\
\hline & 15-25 & - & 10.0-0.0 & --- & 0 \\
\hline & & & 1 & & \\
\hline \multicolumn{6}{|l|}{165B :} \\
\hline \multirow[t]{5}{*}{Chocolay--------} & 0-8 & --- & | 5.0-20 & 4.5-5.5 & 0 \\
\hline & 8-14 & 3.0-10 & - --- & 5.1-6.0 & 0 \\
\hline & 14-27 & 5.0-20 & | --- & 5.1-6.5 & 0 \\
\hline & 27-37 & --- & | --- & --- & --- \\
\hline & & & | & & \\
\hline \multirow[t]{4}{*}{Waiska----------} & 0-4 & --- & | 3.0-15 & 4.5-6.0 & 0 \\
\hline & 4-36 & --- & | 2.0-10 & 4.5-6.0 & 0 \\
\hline & 36-80 & --- & 1.0-5.0 & 4.5-6.0 & 0 \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued


Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cationexchange capacity & \(\mid\) Effective
cation-
|exchange
|capacity & Soil reaction & |Calcium |carbonate \\
\hline & In & |meq/100 & |meq/100 g & pH & Pct \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multirow[t]{6}{*}{Tokiahok--------} & 0-11 & --- & 5.0-10 & 4.5-5.5 & 0 \\
\hline & 11-24 & --- & 1.0-10 & 4.5-5.5 & 0 \\
\hline & 24-49 & 2. 0-10 & --- & 5.1-6.5 & 0 \\
\hline & 49-59 & 1.0-10 & - & 5.6-6.5 & 0 \\
\hline & 59-80 & 1.0-10 & --- & 5.1-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{194E:} \\
\hline \multirow[t]{5}{*}{Sporley---------} & 0-6 & --- & 4.0-15 & 4.5-6.0 & 0 \\
\hline & 6-16 & - & 2.0-10 & 4.5-6.0 & 0 \\
\hline & 16-45 & 5.0-10 & --- & 4.5-6.5 & 0 \\
\hline & \[
45-80
\] & 3.0-30 & --- & 5.6-8.4 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{196E:} \\
\hline \multirow[t]{4}{*}{Frohling--------} & 0-7 & -- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 7-16 & --- & 2.0-10 & 4.5-5.5 & 0 \\
\hline & 16-80 & 2.0-10 & --- & 5.1-6.0 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Onota-----------} & 0-2 & 3.0-15 & | --- & 4.5-6.0 & 0 \\
\hline & 2-7 & 2.0-10 & - & 4.5-6.0 & 0 \\
\hline & 7-22 & 2.0-10 & - & 5.1-6.5 & 0 \\
\hline & 22-32 & --- & --- & , & --- \\
\hline & & & , & & \\
\hline \multirow[t]{6}{*}{Tokiahok--------} & 0-11 & - & 10-15 & 4.5-5.5 & 0 \\
\hline & 11-24 & - & 1.0-10 & 4.5-5.5 & 0 \\
\hline & 24-49 & 2.0-10 & -- & 5.1-6.5 & 0 \\
\hline & 49-59 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & 59-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{197B:} \\
\hline \multirow[t]{5}{*}{Shoepac---------} & 0-6 & - & 5.0-15 & 3.5-6.0 & -- \\
\hline & 6-23 & --- & 3.0-11 & 3.5-6.0 & --- \\
\hline & 23-53 & 3.0-9.0 & --- & 5.1-6.5 & --- \\
\hline & 53-80 & 1.0-3.0 & --- & 7.4-8.4 & --- \\
\hline & & & | & & \\
\hline \multirow[t]{5}{*}{Trenary---------} & 0-5 & 3.0-15 & -- & 4.1-6.0 & 0 \\
\hline & 5-15 & 1.0-5.0 & --- & 4.1-6.0 & 0 \\
\hline & 15-48 & 1.0-5.0 & --- & 5.1-7.3 & 0 \\
\hline & 48-80 & 1.0-10 & --- & 6.6-8.4 & 1-25 \\
\hline & & & 1 & & \\
\hline \multicolumn{6}{|l|}{198B:} \\
\hline \multirow[t]{5}{*}{Shoepac--------} & 0-6 & - & 5.0-15 & 3.5-6.0 & - \\
\hline & 6-23 & --- & 3.0-11 & 3.5-6.0 & --- \\
\hline & 23-53 & 3.0-9.0 & --- & 5.1-6.5 & --- \\
\hline & 53-80 & 1.0-3.0 & --- & 5.6-7.3 & --- \\
\hline & & & | & & \\
\hline \multirow[t]{5}{*}{Reade-----------} & 0-7 & -- & 4.0-16 & 4.5-5.5 & 0 \\
\hline & 7-15 & --- & | 2.0-10 & 4.5-6.0 & 0 \\
\hline & 15-28 & 2.0-10 & --- & 5.6-7.8 & 0 \\
\hline & 28-38 & --- & --- & --- & --- \\
\hline & & & , & & \\
\hline \multicolumn{6}{|l|}{199.} \\
\hline \multicolumn{6}{|l|}{Udorthents, ash} \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{200A:} \\
\hline \multirow[t]{6}{*}{Charlevoix------} & 0-8 & 10-30 & --- & 4.1-6.0 & 0 \\
\hline & 8-12 & 5.0-10 & --- & 4.1-6.0 & 0 \\
\hline & 12-28 & 5.0-10 & --- & 5.6-7.3 & 0-5 \\
\hline & 28-70 & 2.0-10 & | --- & 7.4-8.4 & 10-30 \\
\hline & 70-80 & --- & | --- & --- & --- \\
\hline & & & & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued
\begin{tabular}{|c|c|c|c|c|c|}
\hline Map symbol and soil name & Depth & Cation|exchange capacity & Effective cation|exchange |capacity & \[
\left\lvert\, \begin{gathered}
\text { Soil } \\
\text { reaction }
\end{gathered}\right.
\] & Calcium carbonate \\
\hline & In & meq/100 & |meq/100 g| & pH & Pct \\
\hline \multicolumn{6}{|l|}{200A:} \\
\hline \multirow[t]{5}{*}{Ensley----------} & 0-5 & 150-200 & --- & 6.1-7.3 & 0 \\
\hline & 5-19 & 4.0-8.0 & --- & 6.1-7.3 & 0 \\
\hline & 19-70 & 1.0-4.0 & --- & 7.4-8.4 & 10-20 \\
\hline & 70-80 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{201B:} \\
\hline \multirow[t]{5}{*}{Sauxhead--------} & 0-4 & --- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 4-14 & --- & 0.0-0.0 & 5.1-5.5 & 0 \\
\hline & 14-17 & --- & --- & --- & -- \\
\hline & 17-27 & --- & - & --- & --- \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Jacobsville-----} & 0-4 & 80-120 & --- & 4.5-6.0 & 0 \\
\hline & 4-9 & 1.0-10 & -- & 4.5-6.0 & 0 \\
\hline & 9-16 & 1.0-5.0 & - & 5.1-6.5 & 0 \\
\hline & 16-28 & 1.0-5.0 & --- & 5.1-6.5 & 0 \\
\hline & 28-38 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{202B:} \\
\hline \multirow[t]{5}{*}{Sauxhead--------} & 0-4 & --- & 4.0-15 & 4.5-5.5 & 0 \\
\hline & 4-14 & --- & 0.0-0.0 & 5.1-5.5 & 0 \\
\hline & 14-17 & --- & --- & -- & --- \\
\hline & 17-27 & --- & --- & --- & --- \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{203A:} \\
\hline \multirow[t]{4}{*}{Au Gres} & 0-8 & --- & 5.0-10 & 3.5-5.5 & 0 \\
\hline & 8-27 & --- & 2.0-5.0 & 3.5-6.0 & 0 \\
\hline & 27-80 & 1.0-2.0 & --- & 4.5-6.0 & 0 \\
\hline & & 80-120 & --- & & \\
\hline \multirow[t]{2}{*}{Deford----------} & 6-80 & 1.0-5.0 & --- & 4.5-8.4 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{204B:} \\
\hline \multirow[t]{5}{*}{Gogebic---------} & 0-5 & --- & 5.0-20 & 4.5-6.0 & 0 \\
\hline & 5-18 & --- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 18-62 & --- & 1.0-15 & 4.5-6.0 & 0 \\
\hline & 62-80 & 1.0-10 & --- & 5.6-6.5 & 0 \\
\hline & & & & & \\
\hline \multirow[t]{6}{*}{Tula} & 0-8 & 6.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 8-20 & 6.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 20-28 & 6.0-12 & --- & 5.1-6.0 & 0 \\
\hline & 28-62 & 4.0-16 & --- & 5.1-6.5 & 0 \\
\hline & 62-80 & 6.0-12 & - & 5.6-6.5 & 0 \\
\hline & & & | & & \\
\hline \multicolumn{6}{|l|}{206B:} \\
\hline \multirow[t]{5}{*}{Traunik---------} & 0-4 & 4.0-15 & --- & 5.1-6.0 & 0 \\
\hline & 4-11 & 2.0-8.0 & --- & 5.1-6.0 & 0 \\
\hline & 11-31 & 0.0-8.0 & -- & 5.6-7.8 & 0 \\
\hline & 31-80 & 0.0-4.0 & - & 6.6-7.8 & 0 \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{207D:} \\
\hline \multirow[t]{5}{*}{Dishno} & 0-9 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 9-22 & --- & 2.0-10 & 3.5-5.5 & 0 \\
\hline & 22-46 & - & 1.0-10 & 4.5-6.0 & 0 \\
\hline & 46-50 & --- & - & --- & --- \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme} & 0-5 & --- & 5.0-15 & 3.5-6.0 & 0 \\
\hline & 5-24 & --- & 3.0-15 & 3.5-6.0 & 0 \\
\hline & 24-29 & 1.0-5.0 & --- & 4.5-6.5 & 0 \\
\hline & 29-39 & --- & --- & --- & --- \\
\hline & & & | & & \\
\hline \multirow[t]{2}{*}{Rock outcrop--------} & 0-80 & --- & | --- & --- & --- \\
\hline & & & 1 & & \\
\hline
\end{tabular}

Table 19.--Chemical Properties of the Soils--Continued


Table 20.--Soil Moisture Status by Depth
(Depths of layers are in feet)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} &  & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & & & & & | & & \\
\hline \multirow[t]{6}{*}{10B:
Grayling} & & & & | & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{A} & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & Moist & Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & & --- & | --- & -- & -- & -- & --- & |2.0-7.0: & |3.0-7.0: & | --- & | --- & --- & | --- \\
\hline & & & & | & & & & | Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline 10D: & \multirow[t]{6}{*}{} & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Grayling----} & & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & , & , & | --- & | --- & , & --- & | 2.0-7.0: & |3.0-7.0: & -- & & --- & --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{10E:
Graylin} & A & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & | --- & | --- & --- & | --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & | --- & --- & | --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 11C: & \multirow{6}{*}{A} & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Deer Park} & & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & --- & | --- & | --- & --- & | --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & | --- & --- & --- \\
\hline & & & & & & & & Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multirow[t]{6}{*}{11D:
Deer Park} & \multirow{6}{*}{A} & & & & & & & & & & & & \\
\hline & & & & & & & |0.0-7.0: & 10.0-2.0: & & & & & \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & | --- & , & | --- & --- & | --- & --- & |2.0-7.0: & |3.0-7.0: & | --- & | --- & | --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 12B: & \multirow{6}{*}{A} & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon------} & & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & 0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & | Moist & Moist & | Dry & | Dry & Moist & | Moist & | Moist & | Moist \\
\hline & & & & | --- & & - & --- & | 2.0-7.0: & |3.0-7.0: & | --- & , & , & , \\
\hline & & & & | & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{12D:
Rubicon} & \multirow[b]{6}{*}{} & & & & & & & & & & & & \\
\hline & & & & 10.0-7.0: & & & |0.0-7.0: & 10.0-2.0: & & & & & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & --- & | --- & --- & --- & --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \begin{tabular}{l}
|Hydro-| \\
|logic \\
|group
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & & | & & & & & \\
\hline \multicolumn{14}{|l|}{12E:} \\
\hline \multirow[t]{5}{*}{Rubicon------} & \multirow[t]{5}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & & Moist & Moist & Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & - & | --- & - & - & - & \multirow[t]{2}{*}{---} & |2.0-7.0: & 3.0-7.0: & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & Moist & --- & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{12F:} \\
\hline \multirow[t]{5}{*}{Rubicon-----} & \multirow[t]{5}{*}{A |0} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & 0.0-7.0: & 0.0-7.0: \\
\hline & & Moist & \multirow[t]{2}{*}{Moist} & | Moist & Moist & | Moist & | Moist & & | Dry & \multirow[t]{2}{*}{} & Moist & & \multirow[t]{2}{*}{} \\
\hline & & & & & & --- & --- & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 2.0-7.0: \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & | --- & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{13B:} \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{3}{*}{A 1} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & \multirow[t]{2}{*}{} & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0:
\end{aligned}
\]} & | Dry & \multirow[t]{2}{*}{| Moist} & Moist & & Moist \\
\hline & & & &  & - & - & - -- & & \multirow[t]{2}{*}{} & & --- & Moist --- & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & & | --- & & & \\
\hline & & & & & & & & & Moist & & & & \\
\hline \multicolumn{14}{|l|}{13D:} \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{3}{*}{A |} & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & Moist & Moist & Moist & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Dry } \\
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Moist} & | Moist & Moist & | Moist \\
\hline & & & & | --- & -- & --- & --- & & & & --- & --- & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{13E:} \\
\hline Kalkaska- & \multirow[t]{3}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-3.0: } \\
& \text { Dry }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 0.0-7.0: \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \left\lvert\, \begin{array}{c}
\text { Moist }
\end{array}\right. \\
& \hline
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \left\lvert\, \begin{array}{c}
\text { Moist }
\end{array}\right. \\
& \hline
\end{aligned}
\]} \\
\hline & & & & & & \multirow[t]{2}{*}{\(\left\lvert\, \begin{array}{r}\text { Moist } \\ ---\end{array}\right.\)} & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0:
\end{aligned}
\]} & & & & & \\
\hline & & | --- & & |r Moist & | Moist & & --- & & \[
\begin{aligned}
& \text { Dry } \\
& \text { | } 3.0-7.0: ~
\end{aligned}
\] & | -- & --- & --- & | Moist \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{13F:} \\
\hline Kalkaska- & \multirow[t]{3}{*}{A |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist ---} & \multirow[t]{2}{*}{\[
\begin{array}{|r}
\text { Moist } \\
\text { | }
\end{array}
\]} & | Moist & | Moist & | Moist & | Moist & | Dry & | Dry & | Moist & Moist & Moist & | Moist \\
\hline & & & & --- & | --- & --- & --- & |2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & | & & & & & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Rousseau- & A 1 & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & Moist & Moist & | Moist & Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & --- & --- & --- & --- & --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \text { | Hydro- } \\
& \mid \text { logic } \\
& \text { | group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & & | & | & & & & \\
\hline \multicolumn{14}{|l|}{20B:} \\
\hline \multirow[t]{5}{*}{Rousseau-----} & \multirow[t]{5}{*}{| A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: \\
\hline & & & & & & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & Moist \\
\hline & & --- & | Moist & | --- & | --- & | --- & | --- & |2.0-7.0: & |3.0-7.0: & --- & | --- & --- & | --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Ocqueoc------} & \multirow[t]{5}{*}{A} & \multirow[t]{2}{*}{| Mo.0-7.0:} & \multirow[t]{2}{*}{| 0.0-7.0:} & 10.0-7.0: & \multirow[t]{2}{*}{| \(0.0-7.0\) :} & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & \multirow[t]{2}{*}{|0.0-7.0:} & 0.0-7.0: \\
\hline & & & & | \(0.0-7.0\) Moist & & | Moist & | Moist & | Dry & | Dry & | Moist & O.0-7.0:
| Moist & & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |2.0-7.0: & | 3.0-7.0: & \multirow[t]{2}{*}{---} & | --- & Moist & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{20D:} \\
\hline \multirow[t]{5}{*}{Rousseau----} & \multirow[t]{2}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-2.0: & 10.0-3.0: & & & 0.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
2.0-7.0:
\end{gathered}
\]} & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & & & & | --- & --- & --- & & | 3.0-7.0: & & | --- & - & | --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Ocqueoc-- & A & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-2.0: & 10.0-3.0: & |0.0-7.0: & & & 0.0-7.0: \\
\hline & & | Moist & | Dry & | Dry & Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & | --- & | --- & --- & | --- & |2.0-7.0: & | 3.0-7.0: & --- & | --- & --- & --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 20E: & & & & & & & & & & & & & \\
\hline Rousseau- & A & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & | Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & Moist \\
\hline & & - & -- & --- & - & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & -- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Ocqueoc- & A & 10.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & & & \\
\hline & & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & | --- & | --- & - & | --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 22B: & & | & & & & & & & & & & & \\
\hline Alcona & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & Moist \\
\hline & & --- & --- & --- & --- & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & | & & & & & & & & & & & \\
\hline 24B: & & & & & & & & & & & & & \\
\hline Munising- & B & 10.0-7.0: & |0.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-2.0: & |0.0-1.5: & 10.0-7.0: \\
\hline & & | Moist & | Moist & Moist & | Moist & | Moist & | Moist & | Dry & | Dry & Moist & | Moist & Moist & | Moist \\
\hline & & | --- & --- & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & --- & |1.0-7.0: & |1.5-7.0: & -- & |2.0-2.5: & 1.5-2.5: & --- \\
\hline & | | & | & & | Wet & | Wet & Wet & & | Moist & Moist & & Wet & Wet & \\
\hline & & --- & - & | 2.5-7.0: & | 2.5-7.0: & | 2.5-7.0: & | --- & --- & | --- & --- & | 2.5-7.0: & | 2.5-7.0: & --- \\
\hline & | | & | & & Moist & Moist & Moist & & & | & & | Moist & Moist & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{35D:} \\
\hline \multirow[t]{7}{*}{Champion----} & \multirow[t]{7}{*}{B} & \multirow[t]{2}{*}{\begin{tabular}{l}
|0.0-7.0: \\
Moist
\end{tabular}} & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 0.0-1.5: & 10.0-7.0: \\
\hline & & & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & \multirow[t]{2}{*}{---} & & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & \multirow[t]{2}{*}{---} & |2.0-2.5: & |1.5-2.5: & \multirow[t]{2}{*}{| ---} \\
\hline & & & | --- & | Wet & | Wet & Wet & & Moist & | Moist & & | Wet & | Wet & \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{|2.5-7.0:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{|2.5-7.0:} & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & | 2.5-7.0: & |2.5-7.0: & | --- \\
\hline & & & & & & & & & & & | Moist & | Moist & --- \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{9}{*}{Net} & \multirow[t]{9}{*}{c} & |0.0-5.5: & |0.0-5.5: & 10.0-1.5: & 10.0-0.5: & 10.0-2.5: & 10.0-1.0: & 10.0-5.5: & 10.0-0.5: & 0.0-7.0: & 10.0-2.0: & 10.0-1.5: & 10.0-5.5: \\
\hline & & | Moist & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 1.5-2.5:
\end{aligned}
\]} & | Moist & \multirow[t]{2}{*}{| Wet \(2.5-4.5\) :} & | Moist & \multirow[t]{2}{*}{| Moist \({ }_{\text {| }}^{\text {5.5-7.0 }}\) :} & | Dry & Moist & | Moist & | Moist & | Moist \\
\hline & & 5.5-7.0: & \multirow[b]{2}{*}{| Wet} & & \multirow[t]{2}{*}{|0.5-2.5:} & & |1.0-2.5: & & |0.5-7.0: & \multirow[t]{2}{*}{| ---} & |2.0-2.5: & |1.5-2.5: & | 5.5-7.0: \\
\hline & & | Wet & & | Wet & & |2.5-4.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Wet } \\
& \text { |2.5-4.5: }
\end{aligned}
\]} & \[
\begin{aligned}
& \mid 5.5-7.0: \\
& \mid \text { Wet }
\end{aligned}
\] & | Moist & & | Wet & | Wet & \multirow[t]{2}{*}{\[
\begin{array}{|r|}
|r| \\
\text { | }
\end{array}
\]} \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-5.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \[
\begin{aligned}
& \mid \text { Wet } \\
& \mid 2.5-4.5:
\end{aligned}
\] & \[
\begin{aligned}
& \text { Moist } \\
& \mid 4.5-7.0:
\end{aligned}
\] & & | Wet & \multirow[t]{2}{*}{| ---} & --- & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |2.5-5.5: } \\
& \text { Moist }
\end{aligned}
\]} & | 2.5-5.5: & \\
\hline & & & & & | Moist & \[
\begin{aligned}
& \mid 4.5-7.0: \\
& \mid \text { Wet }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |2.5-4.5: } \\
& \text { Moist }
\end{aligned}
\] & \multirow[t]{2}{*}{} & & & & | Moist & | --- \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |5.0-7.0: } \\
& \text { Wet }
\end{aligned}
\]} & |4.5-7.0: & \multirow[t]{2}{*}{---} & 4.5-7.0: & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| 5.5-7.0:} & | 5.5-7.0: & \multirow[t]{2}{*}{---} \\
\hline & & & & & \multirow[t]{2}{*}{| Wet} & & \multirow[t]{2}{*}{| Wet} & & & & & Wet & \\
\hline & & & & & & & & & & & Wet & & \\
\hline \multicolumn{14}{|l|}{37:} \\
\hline Witbeck & \multirow[t]{5}{*}{B/D |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & 10.0-1.0: & 10.0-2.0: & 0.0-1.5: & 10.0-0.5: & 0.0-7.0: & \multirow[t]{2}{*}{|0.0-7.0:} \\
\hline & & Wet & | Wet & | Wet & \multirow[t]{2}{*}{| Wet} & Wet & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moist } \\
\mid 0.5-7.0:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Moist } \\
& \text { 1.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 2.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Moist } \\
& \text { 1.5-7.0: }
\end{aligned}
\]} & | Moist & \multirow[t]{2}{*}{Wet} & \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & & \multirow[t]{2}{*}{--} & & & & & |0.5-7.0: & & \multirow[t]{2}{*}{---} \\
\hline & & & & & \[
\text { | }--
\] & & | Wet & \[
\begin{aligned}
& \text { |1.0-7.0: } \\
& \text { | Wet }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |2.0-7.0: } \\
& \mid \text { Wet }
\end{aligned}
\] & \[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Wet }
\end{aligned}
\] & Wet & | & \\
\hline & & & & & & & & & & & & | & \\
\hline 38B: & & & & & & & & & & & & & \\
\hline Pence- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & | Dry & | Dry & | Moist & | Moist & Moist & Moist \\
\hline & & -- & -- & | --- & | --- & --- & -- & | 1.0-7.0: & |1.5-7.0: & --- & | --- & --- & -- \\
\hline & & & & & & & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 38D: & & & & & & & & & & & & & \\
\hline Pence- & B & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & | Moist & | Dry & Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & - & - & - & | --- & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & | --- & - & | --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 38E: & & & & & & & & | & & & & & \\
\hline Pence & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & - & - & - & - & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & & --- \\
\hline & & & & | & & & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro- } \\
& \mid \text { logic | } \\
& \mid \text { group | }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & & | & | & & & & & & \\
\hline 51: & & & | & & & & 1 & & & & & & \\
\hline Nahma- & B/D | & 10.0-2.0: & |0.0-2.0: & 10.0-2.0: & 10.0-2.0: & 10.0-2.0: & 10.0-0.5: & |0.0-1.5: & 10.0-2.0: & |0.0-1.0: & 10.0-2.0: & 0.0-2.0: & |0.0-2.0: \\
\hline & & Wet & Wet & | Wet & Wet & Wet & | Moist & Moist & Moist & Moist & Wet & Wet & Wet \\
\hline & & | --- & | --- & | --- & --- & | --- & |0.5-2.0: & |1.5-2.0: & --- & |1.0-2.0: & --- & --- & | --- \\
\hline & & & | & & & & Wet & Wet & & Wet & & & \\
\hline & & & & & & & & & & & & & \\
\hline 52B: & & & & & & | & | & & & & & & \\
\hline Summerville- & D & 0.0-1.1: & 10.0-1.1: & 10.0-1.1: & 10.0-1.1: & 10.0-1.1: & 0.0-1.1: & 0.0-1.0: & 10.0-1.1: & 0.0-1.1: & 0.0-1.1: & 0.0-1.1: & 0.0-1.1: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & | Dry & Dry & | Moist & Moist & Moist & | Moist \\
\hline & &  & -- & -- & --- & -- &  & |1.0-1.1: & &  & --- & --- & \\
\hline & & & & & & & & Moist & & & & & \\
\hline & & & & & & & | & & & & & & \\
\hline 55F: & & & & & & & & & & & & & \\
\hline Michigamme-- & c | & |0.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-1.0: & 10.0-1.5: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & \\
\hline & & Moist & Moist & Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & Moist & | Moist & Moist \\
\hline & & | --- & | --- & | --- & --- & | --- & | --- & |1.0-2.4: & & | --- & --- & --- & | --- \\
\hline & & & & & & & | & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Rock outcrop. & & & | & | & & & | & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 56D : & & & & & & & 1 & & & & & & \\
\hline Peshekee & D | & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.0: & 10.0-1.2: & |0.0-1.2: & |0.0-1.2: & 0.0-1.2: & |0.0-1.2: \\
\hline & & Moist & | Moist & | Moist & Moist & Moist & | Moist & & Dry & | Moist & Moist & Moist & | Moist \\
\hline & & --- & --- & --- & --- & --- & --- & |1.0-1.2: & & | --- & --- & --- & | --- \\
\hline & & & & & & & & | Moist & & & & & \\
\hline & & & & & & & | & & & & & & \\
\hline Rock outcrop. & & & & & & & & & & & & & \\
\hline & & & & & & & | & & & & & & \\
\hline 56E: & & & & & & & & & & & & & \\
\hline Peshekee---- & D & & 10.0-1.2: & 10.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.0: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & 0.0-1.2: & |0.0-1.2: \\
\hline & & Moist & | Dry & | Dry & | Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & | --- & --- & | --- & | --- & |1.0-1.2: & -- & --- & --- & --- & -- \\
\hline & & & & & & & & Moist & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Rock outcrop. & & & & I & & & | & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Peshekee & D & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.0: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: & |0.0-1.2: \\
\hline & & Moist & Moist & | Moist & Moist & Moist & | Moist & | Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & 1 & -- & -- & | --- & --- & --- & --- & \[
\begin{aligned}
& \mid 1.0-1.2: \\
& \mid \text { Moist }
\end{aligned}
\] & --- & --- & --- & --- & --- \\
\hline & & & & & & & | & & & & & & \\
\hline Rock outcrop. & 1 & & | & | & & | & | & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & | Hydro|logic group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & & | & | & & & & \\
\hline \multicolumn{14}{|l|}{62B:} \\
\hline \multirow[t]{5}{*}{Udorthents------|} & \multirow[t]{5}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & & & | Moist & | Moist & Moist & | Moist & | Dry & | Dry & | Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & | --- & - & --- & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & & & & \\
\hline & & & & & | & & & & & & & & \\
\hline \multirow[t]{5}{*}{Udipsamments----|} & \multirow[t]{5}{*}{A} & \multirow[t]{2}{*}{0.0-7.0:
Moist} & |0.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & & | Moist & | Moist & |0.0-7.0: & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & | Moist \\
\hline & & , & --- & --- & , & , & --- & |2.0-7.0: & |3.0-7.0: & & --- & & | --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & | & & | & & & & & & & & \\
\hline \multicolumn{14}{|l|}{64.} \\
\hline \multicolumn{14}{|l|}{Pits and Dumps} \\
\hline & & & & & | & & & & & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{5}{*}{Udorthents------|} & \multirow[t]{2}{*}{--- |0.} & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 10.0-1.0: & 0.0-1.5: & |0.0-7.0: & |0.0-7.0: & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \left\lvert\, \begin{array}{l}
\text { Moist }
\end{array}\right. \\
& \text { | }
\end{aligned}
\]} \\
\hline & & Moist & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | 0.0-7.0: & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 1.0-7.0 \text { : }
\end{aligned}
\]} & Dry & \multirow[t]{2}{*}{Moist} & | Moist & & \\
\hline & & - & & - & | --- & | --- & | --- & & |1.5-7.0: & & | --- & Moist --- & Moist \\
\hline & & & & & & & & | Moist & \multirow[t]{2}{*}{| Moist} & \multirow{2}{*}{| ---} & & & \\
\hline & & & \multirow[b]{2}{*}{|} & 1 & | & | & | & Moist & & & & & \\
\hline \multirow[t]{2}{*}{Urban land.} & \multirow[t]{2}{*}{1} & \multirow[t]{2}{*}{1} & &  & & & & & | & & & & \\
\hline & & & & & | & & & & | & & & & \\
\hline 66B: & & & & & & & & & & & & & \\
\hline Udipsamments----| & A 1 & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-2.0: & 10.0-3.0: & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & | --- & | --- & | --- & --- & --- & |2.0-7.0: & | 3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Urban land. & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 67B: & 1 | & & & & | & & & & & & & & \\
\hline Urban land. & & | & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Rubicon--------| & A & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & | --- & | --- & | --- & | --- & --- & | --- & |2.0-7.0: & |3.0-7.0: & --- & --- & --- & |0.0-7.0: \\
\hline & & & & & & & & | Moist & | Moist & & & & | Moist \\
\hline & & & & & & & & & & & & & \\
\hline 68 : & & | & & & | & & & & | & & & & \\
\hline Pits, quarries--| & A & - & --- & - & -- & --- & --- & --- & --- & --- & --- & -- & --- \\
\hline & & & & & & & & & & & & & \\
\hline 69B: & & & & & & & & & & & & & \\
\hline Escanaba-------| & A 1 & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & & & \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & Moist & | Moist \\
\hline & & & & | --- & | --- & & | --- & | 2.0-7.0: & |3.0-7.0: & & -- & - & \\
\hline & & | & & I & | & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \text { |Hydro-| } \\
& \mid \text { logic } \\
& \text { | group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline Pelissier & \multirow[t]{5}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: \\
\hline & & & & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & 2.0-7.0: & |3.0-7.0: & \multirow[t]{2}{*}{| ---} & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{84D:} \\
\hline \multirow[t]{5}{*}{Rubicon-------} & \multirow[t]{5}{*}{A} & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & \(\left\lvert\, \begin{aligned} & \text { 0.0-7.0: } \\ & \text { Moist }\end{aligned}\right.\) & | Moist & | Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{| Moist} & | Moist & \multirow[t]{2}{*}{Moist} & Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid=\text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & --- & & | --- \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Ishpeming} & \multirow[t]{5}{*}{A} & 10.0-3.2: & 10.0-3.2: & |0.0-3.2: & 10.0-3.2: & 0.0-3.2: & |0.0-3.2: & 10.0-2.0: & \[
0.0-3.0:
\] & 10.0-3.2: & 10.0-3.2: & |0.0-3.2 : & 10.0-3.2 : \\
\hline & & | Moist & Moist & | Moist & | Moist & Moist & Moist & Dry & | Dry & | Moist & Moist & Moist & Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.0-3.2: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 3.0-3.2: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{Rock outcrop.} \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{84F:} \\
\hline \multirow[t]{5}{*}{Rubicon-------} & \multirow[t]{2}{*}{- A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & \multirow[t]{2}{*}{| Moist} & Moist & Moist & | Dry & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
3.0-7.0:
\end{gathered}
\]} & Moist & | Moist & Moist & \\
\hline & & & & | --- & & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & \multirow[t]{2}{*}{} & | --- & --- &  \\
\hline & & & & & & & & & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \text { Moist }
\end{aligned}
\] & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Ishpeming-- & A & & 10.0-3.2: & 10.0-3.2: & 10.0-3.2: & 10.0-3.2: & 10.0-3.2: & 10.0-2.0: & 10.0-3.0: & 10.0-3.2: & 10.0-3.2: & 10.0-3.2: & 10.0-3.2: \\
\hline & & | Moist & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{r}
\text { Moist } \\
\mid---
\end{array}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|r}
\text { Moist } \\
---
\end{array}
\]} & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
\text { | } 2.0-3.2:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \text { 13.0-3.2: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|r}
\text { Moist } \\
\text {-- }
\end{array}
\]} & | Moist & | Moist & | Moist \\
\hline & | | & --- & & & & & --- & & & & | --- & | -- & -- \\
\hline & \(|\quad|\) & & | & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Rock outcrop. & | | & & | & | & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 85A: & \(|\quad|\) & & & & & & & & & & & & \\
\hline Solona- & c & 0.0-1.5: & |0.0-1.5: & 10.0-1.5: & |0.0-1.0: & 10.0-0.5: & 10.0-2.0: & 10.0-2.5: & 10.0-0.5: & 10.0-2.5: & 10.0-1.5: & 0.0-1.0: & 10.0-1.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & \(\mid\) | & |1.5-7.0: & |1.5-7.0: & |1.5-7.0: & |1.0-7.0: & 10.5-7.0: & |2.0-7.0: & |2.5-7.0: & 10.5-4.0: & |2.5-7.0: & |1.5-7.0: & |1.0-7.0: & |1.0-7.0: \\
\hline & & | Wet & Wet & Wet & | Moist & | Wet & | Wet & | Wet & | Wet \\
\hline & 1 | & --- & - & - & -- & -- & --- & -- & |4.0-7.0: & | --- & -- & --- & --- \\
\hline & 1 | & & & & & & & & Wet & & & & \\
\hline & 1 | & & & & & & & & & & & & \\
\hline 86B: & | | & & | & , & & & & & & & & & \\
\hline Mashek----- & B & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & |0.0-1.5: & 10.0-2.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-5.0: & 0.0-4.5: & 10.0-5.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & | Moist \\
\hline & | & | --- & | --- & |2.0-7.0: & |1.5-7.0: & | 2.0-7.0: & --- & |1.0-7.0: & |1.5-7.0: & | --- & | 5.0-7.0: & |4.5-7.0: & | 5.0-7.0: \\
\hline & , & & | & | Wet & Wet & Wet & & Moist & Moist & & | Wet & Wet & Wet \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \(\mid\)
\(\mid\) Hydro-
\(\mid\)
\(|\)\begin{tabular}{l} 
logic
\end{tabular}
\(\mid\) group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{94B:} \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 10.0-7.0: & 0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & , & | --- & | --- & | --- & --- & |2.0-7.0: & |3.0-7.0: & | --- & --- & --- & --- \\
\hline & & & & | & & & & Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{94D:} \\
\hline \multirow[t]{5}{*}{Keweenaw----} & \multirow[t]{5}{*}{| A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & | --- & | --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & -- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska----} & \multirow[t]{5}{*}{A} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & & |0.0-7.0: & & |0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & | --- & , & | --- & --- & --- & --- & | 2.0-7.0: & |3.0-7.0: & | --- & --- & --- & --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{94E:} \\
\hline \multirow[t]{5}{*}{Keweenaw----} & \multirow[t]{5}{*}{- A} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & Moist & Moist & Moist & Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & & | --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & | --- & --- & , & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{A} & & & 10.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 10.0-2.0: & & 10.0-7.0: & 10.0-7.0: & & \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & | --- & & | --- & --- & - -- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & | --- \\
\hline & & & & | & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{95B:} \\
\hline \multirow[t]{5}{*}{Liminga-----} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & Moist & Moist & Moist & & | Dry & Moist & Moist & Moist & Moist \\
\hline & & --- & --- & , & --- & - & - & | 2.0-7.0: & |3.0-7.0: & , & - & --- & --- \\
\hline & & & & & & & & Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{95D:} \\
\hline \multirow[t]{5}{*}{Liminga-----} & \multirow[t]{5}{*}{A} & & & & & & |0.0-7.0: & 10.0-2.0: & & & 10.0-7.0: & & |0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & --- & --- & | --- & --- & -- & --- & | 2.0-7.0: & | 3.0-7.0: & -- & --- & | --- & --- \\
\hline & & & & & & & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{100E:} \\
\hline \multirow[t]{5}{*}{Sayner-------} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & | Moist & | Moist & | Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & & | --- & | --- & & --- & & | 2.0-7.0: & | 3.0-7.0: & | --- & , & , & - \\
\hline & & & | & | & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \(\mid\)
\(\mid\) Hydro-
\(|\)\begin{tabular}{l} 
logic
\end{tabular}
\(\mid\) group & | January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{106B:} \\
\hline \multirow[t]{5}{*}{Sagola------} & \multirow[t]{5}{*}{| B} & 10.0-7.0: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & |0.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-1.0: & |0.0-1.5: & |0.0-7.0: & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & & & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & --- & & & | --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & |1.0-7.0: & |1.5-7.0: & --- & | --- & --- & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon------} & \multirow[t]{5}{*}{A} & 10.0-7.0: & \multirow[t]{2}{*}{| \(0.0-7.0\) :
| Moist} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & & | Moist & Moist & | Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & Moist \\
\hline & & - & , & , & , & \multirow[t]{2}{*}{---} & --- & |2.0-7.0: & & \multirow[t]{2}{*}{---} & --- & --- & | --- \\
\hline & & & & & & & & Moist & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{106D: | | |} \\
\hline \multirow[t]{5}{*}{Sagola------} & \multirow[t]{2}{*}{B} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & & & & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & | Moist & | Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & | --- & | --- & | --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |1.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & |1.5-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Rubicon-} & \multirow[t]{5}{*}{A} & 10.0-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & & | Moist & \multirow[t]{2}{*}{| Moist} & Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \text { 2.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & --- & | --- & | --- & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & & & --- & --- & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & --- & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{107B:} \\
\hline \multirow[t]{5}{*}{Goodman-----} & \multirow[t]{2}{*}{| B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & \multirow[t]{2}{*}{Moist} & | Moist & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 1.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.5-7.0:
\end{gathered}
\]} & Moist & Moist & | Moist & \multirow[t]{2}{*}{Moist
\(\qquad\)} \\
\hline & & --- & & | --- & & & --- & & & \multirow[t]{2}{*}{---} & --- & --- & \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & Moist & & & & \\
\hline & & & & & & & & & & & & 1 & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{5}{*}{Sundog----} & \multirow[t]{2}{*}{B} & 10.0-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 0.0-1.5: & 10.0-7.0: & 0.0-7.0: & 0.0-7.0: & \\
\hline & & | Moist & & & | Moist & | Moist & | Moist & | Dry & | Dry & | Moist & Moist & Moist & | Moist \\
\hline & & | --- & | --- & | --- & | --- & --- & | --- & |1.0-7.0: & |1.5-7.0: & --- & --- & --- & - \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 107D: & & & & & & & & | & & & & & \\
\hline Goodman- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 0.0-7.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & - & - & - & - & --- & --- & |1.0-7.0: & |1.5-7.0: & , & --- & --- & --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Sundog---- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & Moist & Moist & | Moist & Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & - & & - & --- & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & & \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \(\mid\)
\(\mid\) Hydro-
\(|\)\begin{tabular}{l} 
logic
\end{tabular}
\(\mid\) group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{109B:} \\
\hline \multirow[t]{5}{*}{Rubicon------} & \multirow[t]{5}{*}{| A} & 10.0-7.0: & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & & & & Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & --- & & & | --- & --- & | --- & |2.0-7.0: & |3.0-7.0: & \multirow[t]{2}{*}{---} & --- & --- & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw-----} & \multirow[t]{5}{*}{A} & 0.0-7.0: & \multirow[t]{2}{*}{| \(0.0-7.0\) :
Moist} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & & | Moist & Moist & | Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & Moist \\
\hline & & - & , & & , & & --- & | 2.0-7.0: & | 3.0-7.0: & \multirow[t]{2}{*}{---} & --- & --- & --- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{109D: | | |} \\
\hline \multirow[t]{5}{*}{Rubicon------} & \multirow[t]{2}{*}{A} & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & & & & \\
\hline & & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & | Moist \\
\hline & & | --- & & , & , & , & | --- & |2.0-7.0: & |3.0-7.0: & \multirow[t]{2}{*}{| ---} & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw-} & \multirow[t]{5}{*}{A} & 0.0-7.0: & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & & | Moist & | Moist & Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \text { |3.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & & & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & --- & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{109F: | | |} \\
\hline \multirow[t]{5}{*}{Rubicon------} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Moist } \\
\hline---
\end{array}
\]} & \multirow[t]{2}{*}{Moist} & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 2.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 13.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{Moist} & & | Moist & Moist \\
\hline & & --- & & & & & & & & & | Moist & | --- & | --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Keweenaw----} & \multirow[t]{2}{*}{A} & 0.0-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & \\
\hline & & Moist & & & | Moist & | Moist & | Moist & | Dry & | Dry & | Moist & Moist & | Moist & | Moist \\
\hline & & - & | --- & | --- & | --- & --- & | --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 110B: & & & & & & & & | & & & & & \\
\hline Nadeau- & B & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 0.0-7.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & - & - & - & - & --- & --- & |1.0-7.0: & |1.5-7.0: & - & --- & --- & --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Mancelona-- & A & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & | Moist & | Dry & | Dry & | Moist & Moist & Moist & Moist \\
\hline & & - & & - & --- & --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & & - \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \text { | Hydro-| } \\
& \mid \text { logic | } \\
& \text { | group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & , & & & | & & & & & & & \\
\hline \multirow[t]{6}{*}{110D:
Nadeau} & & & I & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{B} & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & Dry & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{Moist} & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{-} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & 1.0-7.0: & 1.5-7.0: & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & Moist & Moist & | --- & & --- & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Mancelona---} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 0.0-7.0: \\
\hline & & Moist & | Moist & Moist & Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{| Moist} & | Moist & \multirow[t]{2}{*}{Moist} & Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\mid 2.0-7.0: \\
\mid \text { Moist }
\end{array}
\]} & |3.0-7.0: & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & & | Moist & --- & & --- & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{111B:} \\
\hline \multirow[t]{5}{*}{Grayling----} & \multirow[t]{2}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & | Moist & Moist & Moist & | Moist & Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\text { 2.0-7.0: }
\end{gathered}\right.
\]} & & \multirow[t]{2}{*}{Moist} & Moist & Moist & | Moist \\
\hline & | | & & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & --- & --- & --- \\
\hline & & \multirow[t]{2}{*}{} & & & & & & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & \multirow[t]{2}{*}{} & | & & \\
\hline & & & & & & & & & | Moist & & | & & \\
\hline \multicolumn{14}{|l|}{112D:} \\
\hline \multirow[t]{5}{*}{Keewaydin-----} & \multirow[t]{5}{*}{| B |} & |0.0-7.0: & |0.0-7.0: & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 0.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & | Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
1.0-7.0
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 1.5-7.0:
\end{aligned}
\]} & Moist & Moist & | Moist & Moist \\
\hline & & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & & --- & \multirow[t]{2}{*}{---} & --- & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 1.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & & \\
\hline & & & & & & \multirow[t]{2}{*}{|0.0-2.4:} & & & & & & & \\
\hline \multirow[t]{5}{*}{Michigamme---} & \multirow[t]{5}{*}{C} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-2.4: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-2.4: } \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-2.4: & 10.0-2.4: & & 10.0-2.4: & 10.0-1.0: & 10.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-2.4: \\
& \mid \text { Moist }
\end{aligned}
\]} & |0.0-2.4: & & 10.0-2.4: \\
\hline & & & & | Moist & Moist & Moist & Moist & Dry & | Dry & & Moist & Moist & Moist \\
\hline & & --- & | --- & - & - & & --- & 1.0-2.4: & |1.5-2.4: & | --- & -- & --- & -- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & | & & & & & & & & & & \\
\hline Rock outcrop. & & & | & & & & & & & & & & \\
\hline & & & | & & & & & & & & & & \\
\hline 112F: & & & & & & & & & & & & & \\
\hline Keewaydin-- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & 1 & Moist & | Moist & Moist & Moist & Moist & Moist & Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & 1 | & | --- & | --- & | --- & -- & | --- & --- & 1.0-7.0: & |1.5-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Michigamme-- & c & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 10.0-2.4: & 0.0-1.0: & 10.0-1.5: & 10.0-2.4: & |0.0-2.4: & & \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & Moist & Moist \\
\hline & & | --- & , & --- & | --- & | --- & --- & |1.0-2.4: & |1.5-2.4: & --- & --- & --- & --- \\
\hline & & & , & & & & & Moist & Moist & & & & \\
\hline & 1 | & & & & & & & & & & & & \\
\hline Rock outcrop. & 1 | & & , & & & | & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{118A:} \\
\hline \multirow[t]{7}{*}{Croswell----} & \multirow[t]{7}{*}{A} & 10.0-5.0: & 10.0-5.0: & 10.0-2.5: & 10.0-2.0: & 10.0-2.0: & 10.0-3.5: & 10.0-1.5: & 10.0-2.5: & 10.0-4.5: & 10.0-3.0: & 10.0-2.5: & 10.0-3.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & | Moist & | Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & & |5.0-7.0: & |5.0-7.0: & | 2.5-7.0: & |2.0-7.0: & |2.0-7.0: & |3.5-7.0: & |1.5-4.5: & |2.5-5.5: & | 4.5-7.0: & | 3.0-7.0: & |2.5-7.0: & |3.0-7.0: \\
\hline & & Wet & Wet & | Wet & | Wet & Wet & | Wet & | Moist & Moist & Wet & Wet & Wet & Wet \\
\hline & & | --- & & & | --- & --- & | --- & | 4.5-7.0: & | 5.5-7.0: & --- & & --- & \\
\hline & & & & | & & & & | Wet & Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Deford------} & \multirow[t]{5}{*}{A/D} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-0.5: & |0.0-1.5: & 10.0-2.0: & |0.0-1.0: & 10.0-7.0: & |0.0-7.0: & \\
\hline & & Wet & | Moist & | Moist & | Moist & Moist & | Wet & Wet & | Wet \\
\hline & & & & & & --- & |0.5-7.0: & |1.5-7.0: & |2.0-7.0: & |1.0-7.0: & | --- & --- & --- \\
\hline & & & & & | & & | Wet & | Wet & Wet & Wet & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{1198:} \\
\hline \multirow[t]{7}{*}{Yalmer------} & \multirow[t]{7}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-1.5: & |0.0-1.0: & |0.0-1.5: & |0.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 10.0-2.0: & |0.0-1.5: & |0.0-7.0: \\
\hline & & Moist & Moist & & & & | Moist & & & Moist & & & Moist \\
\hline & & --- & --- & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & --- & | 2.0-7.0: & | 3.0-7.0: & --- & |2.0-2.5: & |1.5-2.5: & --- \\
\hline & & & & | Wet & | Wet & & & | Moist & Moist & & | Wet & Wet & \\
\hline & & - & --- & |2.5-7.0: & |2.5-7.0: & |2.5-7.0: & | --- & -- & -- & --- & | 2.5-7.0: & |2.5-7.0: & - \\
\hline & & & & | Moist & | Moist & Moist & & & & & | Moist & | Moist & \\
\hline & & & & & & & & 1 & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & Moist \\
\hline & & - & - & --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & -- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{119D:} \\
\hline \multirow[t]{7}{*}{Yalmer------} & \multirow[t]{7}{*}{B} & |0.0-7.0: & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & |0.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-2.0: & 10.0-1.5: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & Dry & Moist & | Moist & Moist & Moist \\
\hline & & - & -- & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & | --- & |2.0-7.0: & |3.0-7.0: & --- & |2.0-2.5: & |1.5-2.5: & -- \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & & | Wet & | Wet & \\
\hline & & - & - & |2.5-7.0: & |2.5-7.0: & |2.5-7.0: & - & - & -- & --- & |2.5-7.0: & |2.5-7.0: & -- \\
\hline & & & & | Moist & | Moist & | Moist & & & & & | Moist & Moist & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{| A} & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Dry & | Dry & Moist & | Moist & | Moist & Moist \\
\hline & & --- & --- & --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & | & | & & & & & & & & \\
\hline \multicolumn{14}{|l|}{121B:} \\
\hline \multirow[t]{5}{*}{Onota--------} & \multirow[t]{5}{*}{| B} & |0.0-1.8: & |0.0-1.8: & 10.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.0: & 10.0-1.5: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & | --- & | --- & | & --- & --- & | --- & |1.0-1.8: & |1.5-1.8: & | --- & | --- & | --- & | --- \\
\hline & & & | & | & | & & & | Moist & Moist & & & & \\
\hline & & & & | & | & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{122:} \\
\hline \multirow[t]{5}{*}{Pleine------} & \multirow[t]{5}{*}{D} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & |0.0-1.0: & 10.0-2.0: & |0.0-1.5: & 10.0-0.5: & 10.0-7.0: & 10.0-7.0: \\
\hline & & & Wet & | Wet & Wet & | Wet & Moist & | Moist & | Moist & | Moist & | Moist & Wet & | Wet \\
\hline & & \multirow[t]{2}{*}{---} & & & --- & --- & 0.5-7.0: & 1.0-7.0: & |2.0-7.0: & |1.5-7.0: & |0.5-7.0: & | --- & --- \\
\hline & & & & & & & Wet & Wet & Wet & Wet & \multirow[t]{2}{*}{Wet} & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{123A:} \\
\hline Tula- & C & 10.0-5.5: & 10.0-5.5: & 10.0-1.5: & 0.0-0.5: & 10.0-2.5: & 0.0-1.0: & 0.0-5.5: & 10.0-0.5: & 10.0-7.0: & 10.0-2.0: & & \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Moist } \\
& \mid 5.5-7.0:
\end{aligned}
\]} & | Moist & | Moist & | Moist & | Wet & | Moist & | Moist & \multirow[t]{2}{*}{} & | Moist & | Moist & |0.0-1.5: & M.0-5.5: \\
\hline & & & |5.5-7.0: & |1.5-2.5: & |0.5-2.5: & | 2.5-4.5: & |1.0-2.5: & |5.5-7.0: & & --- & 2.0-2.5: & & \\
\hline & & Wet & | Wet & | Wet & | Wet & \multirow[t]{2}{*}{Moist} & | Wet & \multirow[t]{2}{*}{| Wet} & \[
\begin{aligned}
& \mid 0.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & | & | Wet & | Wet & Wet \\
\hline & & \multirow[t]{2}{*}{---} & | --- & |2.5-5.0: & | 2.5-4.5: & & | 2.5-4.5: & & Moist
--- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 2.5-5.5: } \\
& \mid \text { Moist }
\end{aligned}
\]} & |2.5-5.5: & \multirow[t]{2}{*}{---} \\
\hline & & & & | Moist & Moist & | 4.5-7.0: & | Moist & | --- & & & & Moist & \\
\hline & & \multirow[t]{2}{*}{---} & | --- & | 5.0-7.0: & | 4.5-7.0: & Wet & |4.5-7.0: & \multirow[t]{2}{*}{---} & --- & --- & | 5.5-7.0: & | 5.5-7.0: & \multirow[t]{2}{*}{---} \\
\hline & | & & & | Wet & | Wet & & \multirow[t]{2}{*}{Wet} & & & & \multirow[t]{2}{*}{| Wet} & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{7}{*}{Gogebic-----} & \multirow[t]{7}{*}{B} & |0.0-7.0: & 10.0-7.0: & \[
0.0-1.5:
\] & |0.0-1.0: & |0.0-1.5: & 10.0-7.0: & \[
0.0-1.0:
\] & |0.0-1.5: & |0.0-7.0: & \[
\mid 0.0-2.0:
\] & 10.0-1.5: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & | Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Moist } \\
& \mid 1.5-2.5:
\end{aligned}\right.
\]} & | Moist & | Moist & | Moist & | Dry & | Dry & | Moist & \[
\begin{gathered}
\text { |0.0-2.0: } \\
\text { Moist }
\end{gathered}
\] & Moist & Moist \\
\hline & & & \multirow[t]{2}{*}{| ---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | 1.0-2.5: } \\
& \text { | Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 1.5-2.5: } \\
& \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 1.0-7.0: \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 1.5-7.0: \\
\mid \text { Moist }
\end{gathered}
\]} & --- & \[
\begin{aligned}
& \text { | Moist } \\
& \mid 2.0-2.5:
\end{aligned}
\] & |1.5-2.5: & \multirow[t]{2}{*}{| ---} \\
\hline & & 兂 & & \[
\begin{aligned}
& \mid 1.5-2.5: \\
& \mid \text { Wet }
\end{aligned}
\] & & & & & & & \multirow[t]{2}{*}{| Wet} & | Wet & \\
\hline & & --- & --- & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |2.5-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |2.5-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{---} & --- & --- & --- & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & & & & \[
\begin{aligned}
& \text { |2.5-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\] & & \\
\hline & & \multirow[t]{2}{*}{10.0-3.8:} & \multirow[t]{2}{*}{0.0-3.8:} & & & & & & & & & & \\
\hline Dishno-- & c & & & 10.0-2.0: & 10.0-1.0: & 10.0-1.5: & 10.0-3.8: & 10.0-1.0: & |0.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-3.0: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-1.0: \\
& \text { Moist }
\end{aligned}
\]} & 0.0-2.0: & 10.0-3.8: \\
\hline & & | Moist & Moist & | Dry & | Dry & & & | Moist & Moist \\
\hline & 1 | & | --- & & |2.0-3.8: & |1.0-3.8: & |1.5-3.8: & --- & |1.0-3.8: & |1.5-3.8: & | 3.0-3.8: & |1.0-3.8: & |2.0-3.8: & -- \\
\hline & & & & | Wet & | Wet & | Wet & & Moist & | Moist & | Wet & | Wet & | Wet & \\
\hline & | & & & & & & & & & & & & \\
\hline 124D: & & & & & & & & & & & & & \\
\hline Gogebic & B & 10.0-7.0: & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & |0.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & | --- & , & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & --- & |1.0-7.0: & |1.5-7.0: & --- & |2.0-2.5: & |1.5-2.5: & --- \\
\hline & & & & | Wet & | Wet & Wet & & Moist & Moist & & | Wet & | Wet & \\
\hline & & --- & - & | 2.5-7.0: & | 2.5-7.0: & | 2.5-7.0: & --- & --- & --- & | --- & | 2.5-7.0: & |2.5-7.0: & | --- \\
\hline & & & & | Moist & | Moist & Moist & & & & & Moist & Moist & \\
\hline & & & & & & & & & & & & & \\
\hline Dishno- & c & 10.0-3.8: & 10.0-3.8: & 10.0-2.0: & |0.0-1.0: & |0.0-1.5: & 10.0-3.8: & |0.0-1.0: & 10.0-1.5: & 10.0-3.0: & |0.0-1.0: & 10.0-2.0: & 10.0-3.8: \\
\hline & & Moist & Moist & Moist & | Moist & Moist & Moist & Dry & Dry & Moist & | Moist & Moist & Moist \\
\hline & 1 | & | --- & | & |2.0-3.8: & |1.0-3.8: & |1.5-3.8: & --- & |1.0-3.8: & |1.5-3.8: & |3.0-3.8: & |1.0-3.8: & |2.0-3.8: & | --- \\
\hline & | | & & | & Wet & Wet & Wet & & Moist & Moist & Wet & Wet & Wet & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \text { | Hydro-| } \\
& \text { |logic } \\
& \text { | group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{127B:} \\
\hline \multirow[t]{5}{*}{Sundog------} & \multirow[t]{5}{*}{B} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & & Moist & | Mo-0-7.0: & | Moist & | Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{Moist} & | Moist \\
\hline & & \multirow[t]{2}{*}{---} & | --- & | --- & --- & --- & \multirow[t]{2}{*}{---} & 1.0-7.0: & |1.5-7.0: & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & Moist & --- & & - & \\
\hline & & & | & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{127D: | |} \\
\hline \multirow[t]{5}{*}{Sundog------} & \multirow[t]{5}{*}{| \({ }^{\text {B }}\)} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & | Moist & Moist & | Moist & | Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & | Moist & Moist \\
\hline & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 1.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & |1.5-7.0: & & | --- & & | --- \\
\hline & & & & & & & & & | Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{127F:} \\
\hline Sundog- & \multirow[t]{5}{*}{B} & \[
\mid 0.0-7.0:
\] & 10.0-7.0: & & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 0.0-7.0: & 0.0-7.0: & & \\
\hline & & Moist & Moist & | Moist & Moist & | Moist & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 1.0-7.0:
\end{aligned}
\]} & | Dry & Moist & Moist & Moist & Moist \\
\hline & & & - & | --- & | --- & - & --- & & |1.5-7.0: & \multirow[t]{2}{*}{| ---} & | --- & --- & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & | & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{128B:} \\
\hline \multirow[t]{5}{*}{Kalkaska} & \multirow[t]{3}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | Moist & Moist & | Dry & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 3.0-7.0:
\end{aligned}
\]} & Moist & | Moist & Moist & | Moist \\
\hline & & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 2.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & & \multirow[t]{2}{*}{---} & --- & \multirow[t]{2}{*}{---} & --- \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & & & & & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Waiska-------} & \multirow[t]{5}{*}{A} & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & |0.0-7.0: & 0.0-7.0: & \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | Moist & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \text { | } 2.0-7.0 \text { : }
\end{aligned}
\]} & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & & & | --- & --- & | --- & --- & & | 3.0-7.0: & --- & | --- & --- & - \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & | & & & & & & & & & & \\
\hline 128D: & & & | & | & & & & & & & & & \\
\hline Kalkaska- & A & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & Moist & | Moist \\
\hline & | | & --- & --- & --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & | --- \\
\hline & | | & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Waiska- & A & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & 1 | & | --- & --- & | --- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & | --- & --- & , \\
\hline & 1 | & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 128E: & | & & & & & & & & & & & & \\
\hline Kalkaska- & A & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & | | & - & --- & -- & --- & --- & --- & | 2.0-7.0: & | 3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & Moist & | Moist & & | & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & | Hydrologic group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & , & | & & & | & & & & & & & \\
\hline \multicolumn{14}{|l|}{128E:} \\
\hline \multirow[t]{5}{*}{Waiska-------} & \multirow[t]{5}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-2.0: & 10.0-3.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: \\
\hline & & & & & | Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \[
\begin{array}{|r|r|}
|r| & \text { Moist } \\
\text {--- }
\end{array}
\] & | --- & | --- & | --- & | --- & |2.0-7.0: & |3.0-7.0: & & --- & --- & -- \\
\hline & & & | & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{129C:} \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{A} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{4}{*}{Moist} & Moist & | Moist & Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{Moist} & | Moist \\
\hline & & & - & | --- & - & | --- & --- & | 2.0-7.0: & | 3.0-7.0: & & --- & & - \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Munising-----} & \multirow[t]{7}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & |0.0-1.5: & 10.0-7.0: \\
\hline & & | Moist & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moist } \\
\mid 1.5-2.5:
\end{gathered}
\]} & \multirow[t]{2}{*}{\(|\)\begin{tabular}{|c|} 
Moist \\
-
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.0-7.0:
\end{gathered}
\]} & | Dry & \multirow[t]{2}{*}{Moist - - -} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& 2.0-2.5:
\end{aligned}
\]} & | Moist & Moist \\
\hline & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |1.5-2.5: } \\
& \mid \text { Wet }
\end{aligned}
\]} & |1.0-2.5: & & & & |1.5-7.0: & & & |1.5-2.5: & \multirow[t]{2}{*}{| ---} \\
\hline & & & --- & & | Wet & \[
\begin{aligned}
& \text { 1.5-2.5: } \\
& \text { Wet }
\end{aligned}
\] & --- & \[
\begin{aligned}
& \text { |1.0-7.0: } \\
& \text { Moist }
\end{aligned}
\] & | Moist & | -- & \[
\begin{aligned}
& \text { |2.0-2.5: } \\
& \mid \text { Wet }
\end{aligned}
\] & | Wet & \\
\hline & & \multirow[t]{2}{*}{---} & | --- & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & |2.5-7.0: & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \[
\begin{aligned}
& \mid \text { Wet } \\
& \mid 2.5-7.0 \text { : }
\end{aligned}
\] & |2.5-7.0: & \multirow[t]{2}{*}{---} \\
\hline & & & & & & \multirow[t]{2}{*}{| Moist} & & & & & | Moist & | Moist & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{130A:} \\
\hline \multirow[t]{7}{*}{Chabeneau----} & \multirow[t]{7}{*}{| \(\mathrm{B}^{\text {- }}\)} & 10.0-5.0: & |0.0-5.0: & 0.0-2.5: & 10.0-2.0: & 0.0-2.0: & 0.0-3.5: & 0.0-1.5: & 0.0-2.5: & |0.0-4.5: & 10.0-3.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-2.5: } \\
& \text { Moist }
\end{aligned}
\]} & 10.0-3.0: \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 5.0-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 5.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 2.5-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Moist } \\
& \mid 2.0-7.0 \text { : }
\end{aligned}\right.
\]} & Moist & Moist & | Dry & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\mid 2.5-5.5:
\end{gathered}\right.
\]} & | Moist & | Moist & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& 3.0-7.0 \text { : }
\end{aligned}
\]} \\
\hline & & & & & & |2.0-7.0: & \multirow[t]{2}{*}{|3.5-7.0:} & \multirow[t]{2}{*}{1.5-4.5:} & & |4.5-7.0: & |3.0-7.0: & |2.5-7.0: & \\
\hline & & | Wet & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{\[
\begin{array}{|l}
\text { | Wet } \\
\text { | }
\end{array}
\]} & | Wet & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 5.5-7.0:
\end{aligned}
\]} & Wet & Wet & Wet & \\
\hline & & & & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& 4.5-7.0 \text { : }
\end{aligned}
\]} & & \multirow[t]{2}{*}{---} & --- & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{Wet} \\
\hline & & & \multirow[t]{2}{*}{} & - & \multirow[t]{2}{*}{|} & & & & | Wet & & & & \\
\hline & & & & & & | & & Wet & & & & & \\
\hline \multicolumn{14}{|l|}{131: | | | | |} \\
\hline Witbeck- & \multirow[t]{3}{*}{B/D |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & |0.0-1.0: & 10.0-2.0: & |0.0-1.5: & 10.0-0.5: & & \\
\hline & & Wet & | Moist & Wet & | Wet \\
\hline & & | --- & | --- & --- & --- & | --- & |0.5-7.0: & |1.0-7.0: & |2.0-7.0: & |1.5-7.0: & |0.5-7.0: & & --- \\
\hline & & & & & & & | Wet & Wet & | Wet & Wet & Wet & & \\
\hline & & & & & & & & & & & & & \\
\hline Cathro- & A/D & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & 10.0-0.5: & 10.0-1.0: & 10.0-0.5: & 10.0-7.0: & 10.0-7.0: & \\
\hline & & | Wet & | Moist & | Moist & | Moist & | Moist & | Wet & | Wet & | Wet \\
\hline & & | --- & | --- & --- & --- & | --- & |0.5-7.0: & |0.5-7.0: & |1.0-7.0: & |0.5-7.0: & --- & -- & -- \\
\hline & & & & & & & | Wet & | Wet & | Wet & | Wet & & & \\
\hline & & & & & & & & & & & & & \\
\hline 132. & & | & | & & & & & & & & & & \\
\hline Slickens & & | & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 133B: & & & & & & & & & & & & & \\
\hline Keewaydin- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & \\
\hline & & | Moist & Moist & 1 Dry & | Dry & Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & --- & | --- & | --- & | --- & |1.0-7.0: & |1.5-7.0: & --- & --- & | --- & \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \begin{tabular}{l}
\(\mid\) \\
\(\mid\) Hydro- \\
\(\left|\begin{array}{l}\text { logic } \\
\text { |group }\end{array}\right|\) \\
\hline
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{133B:} \\
\hline \multirow[t]{5}{*}{Dishno-------} & \multirow[t]{5}{*}{C} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid 0.0-3.8: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-3.8: & 10.0-2.0: & |0.0-1.0: & |0.0-1.5: & 10.0-3.8: & |0.0-1.0: & |0.0-1.5: & 10.0-3.0: & |0.0-1.0: & 10.0-2.0: & 10.0-3.8: \\
\hline & & & Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & & \multirow[t]{2}{*}{} & |2.0-3.8: & |1.0-3.8: & |1.5-3.8: & \multirow[t]{2}{*}{---} & 1.0-3.8: & |1.5-3.8: & |3.0-3.8: & |1.0-3.8: & 2.0-3.8: & \multirow[t]{2}{*}{| ---} \\
\hline & & --- & & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{Wet} & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{Wet} & \\
\hline & & & | & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{133D:} \\
\hline \multirow[t]{5}{*}{Keewaydin----} & \multirow[t]{5}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & & 10.0-7.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & | Moist & \[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { | Moist }
\end{aligned}
\] & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & | --- & | --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Dishno-------} & \multirow[t]{3}{*}{C} & & 10.0-3.8: & 10.0-2.0: & |0.0-1.0: & 10.0-1.5: & & 10.0-1.0: & 10.0-1.5: & 10.0-3.0: & 10.0-1.0: & & 10.0-3.8: \\
\hline & & | Moist & Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
1.0-3.8:
\end{gathered}\right.
\]} & Dry & | Moist & | Moist & \[
\begin{aligned}
& \mid 0.0-2.0: \\
& \text { Moist }
\end{aligned}
\] & Moist \\
\hline & & , & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.0-3.8: \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | 1.0-3. } 8: \\
& \text { | Wet }
\end{aligned}
\]} & |1.5-3.8: & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |1.5-3.8: } \\
& \mid \text { Moist }
\end{aligned}
\]} & |3.0-3.8: & |1.0-3.8: & \[
\begin{aligned}
& \text { | Moist } \\
& \mid 2.0-3.8:
\end{aligned}
\] & --- \\
\hline & & & & & & Wet & & \[
\begin{gathered}
\mid 1.0-3.8: \\
\mid \text { Moist }
\end{gathered}
\] & & | Wet & | Wet & \[
\begin{aligned}
& \mid 2.0-3.8: \\
& \mid \text { Wet }
\end{aligned}
\] & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{134B:} \\
\hline \multirow[t]{5}{*}{Keewaydin----} & \multirow[t]{2}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-1.0: & 10.0-1.5: & 10.0-7.0: & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { 0.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}\right.
\]} & |0.0-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { | Moist } \\
\text { | }
\end{array}
\]} & Moist & Moist & | Dry & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\mid 1.5-7.0:
\end{gathered}\right.
\]} & | Moist & & Moist & \\
\hline & & & & & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |1.0-7.0: & & \multirow[t]{2}{*}{} & --- & --- & Moist \\
\hline & | | & & & & & & & Moist & \[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & &  \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{134D:} \\
\hline Keewaydin-- & \multirow[t]{2}{*}{B} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 0.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{10.0-7.0:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & |0.0-1.0: & 0.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \text { Moist }
\end{aligned}
\]} & 0.0-7.0: & \\
\hline & & & & & & & & | Dry & | Dry & & & | Moist & | Moist \\
\hline & | & --- & | --- & , & | --- & --- & | --- & |1.0-7.0: & |1.5-7.0: & , & , & & -- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline 134F: & & & & & & & & & & & & & \\
\hline Keewaydin- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & --- & --- & --- & -- & --- & & |1.0-7.0: & |1.5-7.0: & , & , & --- & \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & | & & & & & & & & & & & & \\
\hline 135A: & | & & & & & & & & & & & & \\
\hline Witbeck- & B/D & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & 10.0-1.0: & 10.0-2.0: & |0.0-1.5: & 10.0-0.5: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Wet & | Wet & | Wet & Wet & Wet & | Moist & Wet & Wet \\
\hline & | | & -- & | --- & -- & --- & --- & 10.5-7.0: & |1.0-7.0: & |2.0-7.0: & |1.5-7.0: & |0.5-7.0: & --- & --- \\
\hline & & & & | & & & Wet & Wet & Wet & | Wet & | Wet & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} &  & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & & | & & & \multicolumn{6}{|l|}{} \\
\hline \multicolumn{14}{|l|}{135A:} \\
\hline \multirow[t]{9}{*}{Net----------} & \multirow[t]{9}{*}{-} & 10.0-5.5: & 10.0-5.5: & 10.0-1.5: & 10.0-0.5: & 10.0-2.5: & 10.0-1.0: & 10.0-5.5: & 10.0-0.5: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 0.0-5.5: \\
\hline & & Moist & | Moist & Moist & | Moist & Wet & Moist & Moist & | Dry & Moist & Moist & | Moist & Moist \\
\hline & & |5.5-7.0: & | 5.5-7.0: & |1.5-2.5: & |0.5-2.5: & |2.5-4.5: & |1.0-2.5: & |5.5-7.0: & |0.5-7.0: & --- & | 2.0-2.5: & |1.5-2.5: & | 5.5-7.0: \\
\hline & & Wet & | Wet & Wet & | Wet & Moist & Wet & Wet & Moist & & Wet & | Wet & Wet \\
\hline & & & | --- & |2.5-5.0: & | 2.5-4.5: & |4.5-7.0: & | 2.5-4.5: & | --- & --- & --- & |2.5-5.5: & |2.5-5.5: & --- \\
\hline & & & & Moist & | Moist & Wet & Moist & & & & Moist & | Moist & \\
\hline & & --- & --- & | 5.0-7.0: & |4.5-7.0: & --- & | 4.5-7.0: & --- & --- & --- & | 5.5-7.0: & |5.5-7.0: & --- \\
\hline & & & & Wet & | Wet & & Wet & & & & Wet & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{136A:} \\
\hline \multirow[t]{5}{*}{Minocqua-----} & \multirow[t]{5}{*}{B/D} & \multirow[t]{2}{*}{| 0.0-7.0:} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & 10.0-7.0: & 10.0-0.5: & 10.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-2.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 0.0-1.0: \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{} \\
\hline & & & & & & Wet & | Moist & | Moist & & & & & \\
\hline & & - & & & -- & --- & |0.5-7.0: & |1.5-7.0: & |2.0-7.0: & |1.0-7.0: & Wet & Wet & Wet
\(\qquad\) \\
\hline & & & & & & & Wet & | Wet & | Wet & Wet & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Channing-----} & \multirow[t]{7}{*}{B |} & 10.0-1.5: & 0.0-1.5: & 10.0-1.5: & 10.0-1.0: & 10.0-0.5: & 10.0-1.0: & 10.0-2.0: & 10.0-0.5: & 10.0-2.0: & |0.0-1.0: & 10.0-1.0: & 10.0-1.5: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & | Moist & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & |1.5-7.0: & |1.5-7.0: & |1.5-7.0: & |1.0-7.0: & |0.5-7.0: & |1.0-7.0: & |2.0-7.0: & |0.5-3.0: & | 2.0-7.0: & |1.0-7.0: & |1.0-7.0: & |1.5-7.0: \\
\hline & & Wet & Wet & Wet & Wet & Wet & Wet & | Wet & & Wet & | Wet & | Wet & Wet \\
\hline & & --- & -- & --- & --- & & & & |3.0-7.0: & --- & & & \\
\hline & & & & & & & & & | Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{5}{*}{Keewaydin----} & \multirow[t]{5}{*}{B} & 10.0-7.0: & \[
10.0-7.0:
\] & & & & & & & & 10.0-7.0: & 10.0-7.0: & \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 1.0-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
\mid 1.5-7.0:
\end{gathered}
\]} & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & & & --- & | --- & | --- & | --- & & & & | --- & --- & -- \\
\hline & & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Sundog------} & \multirow[t]{2}{*}{B |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & & 10.0-7.0: & & 10.0-1.0: & 10.0-1.5: & \multirow[t]{2}{*}{} & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & | Moist & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 1.0-7.0:
\end{aligned}
\]} & | Dry & & Moist & Moist & | Moist \\
\hline & & --- & & --- & | --- & - & - & & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 1.5-7.0: \\
\text { Moist }
\end{gathered}
\]} & Moist & --- & --- & \multirow[t]{2}{*}{Moist
---} \\
\hline & & & & & & & & \[
\begin{aligned}
& \text { |1.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\] & & & & & \\
\hline & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{} & & & & & & & & & \\
\hline 137F: & & & & & & & & \multirow[b]{2}{*}{|0.0-1.0:} & & \multirow[t]{2}{*}{0.0-7.0:} & & & \\
\hline \multirow[t]{5}{*}{Keewaydin----} & \multirow[t]{3}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & & 10.0-1.5: & & 0.0-7.0: & |0.0-7.0: & 0.0-7.0: \\
\hline & & Moist & \multirow[t]{2}{*}{| Moist} & | Moist & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\mid 1.0-7.0:
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.5-7.0:
\end{gathered}
\]} & Moist & Moist & Moist & Moist \\
\hline & & --- & & --- & & & --- & & & | --- & --- & | --- & --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Sundog-- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & & \\
\hline & & Moist & | Dry & | Dry & Moist & | Moist & | Moist & | Moist \\
\hline & & | --- & | --- & | --- & | --- & --- & | --- & |1.0-7.0: & |1.5-7.0: & | --- & | --- & | --- & --- \\
\hline & & | & & & & & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \(\mid\) Hydro-|
\(\mid\) logic
|group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{138D:} \\
\hline \multirow[t]{5}{*}{Sundog-------} & \multirow[t]{8}{*}{-} & \multirow[t]{5}{*}{\begin{tabular}{l}
|0.0-7.0: \\
Moist
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & & & & | Moist & \multirow[t]{2}{*}{Moist} & Moist & | Dry & | Dry & \multirow[t]{2}{*}{| Moist} & Moist & \multirow[t]{2}{*}{Moist} & Moist \\
\hline & & & & & | --- & & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & & --- & & | --- \\
\hline & & & & & & & & \multirow[t]{2}{*}{Moist} & | Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{Rock outcrop.} & \\
\hline & & & & , & & & & | & & & & & \\
\hline \multicolumn{13}{|l|}{138F:} & \\
\hline \multirow[t]{5}{*}{Sundog} & \multirow[t]{5}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{4}{*}{Moist ---} & Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & | Moist & Moist \\
\hline & & & & & & & & |1.0-7.0: & & & --- & --- & | --- \\
\hline & & & & & & & & \multirow[t]{2}{*}{| Moist} & |1.5-7.0: & | --- & & & \\
\hline & & & & & & & & & Moist & & & & \\
\hline \multicolumn{14}{|l|}{Rock outcrop.} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{139B: | | |} \\
\hline \multirow[t]{5}{*}{Sundog-------} & \multirow[t]{2}{*}{B} & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & \[
10.0-7.0:
\] & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & \multirow[t]{2}{*}{|0.0-7.0:} & & & \\
\hline & & Moist & Moist & | Moist & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& 1.0-7.0:
\end{aligned}
\]} & | Dry & & Moist & Moist & | Moist \\
\hline & & | --- & | --- & , & | --- & --- & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| ---} & - -- & --- & \multirow[t]{2}{*}{---} \\
\hline & & & & & & & & Moist & & & & & \\
\hline & & & & & & & & & Moist & & & & \\
\hline \multicolumn{14}{|l|}{139D:} \\
\hline \multirow[t]{5}{*}{Sundog-------} & \multirow[t]{2}{*}{| B |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.0-7.0:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.5-7.0:
\end{gathered}
\]} & Moist & Moist & | Moist & | Moist \\
\hline & & & & - & --- & & --- & & & \multirow[t]{2}{*}{} & --- & & | --- \\
\hline & & & & | & & & & \[
\begin{gathered}
\mid 1.0-7.0: \\
\text { Moist }
\end{gathered}
\] & \[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & & \\
\hline & & & & & & & & & | Moist & & & & \\
\hline \multicolumn{14}{|l|}{} \\
\hline \multirow[t]{7}{*}{Champion-----} & \multirow[t]{3}{*}{B |} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-2.0: & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-1.5: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Moist } \\
& \text { |1.5-2.5: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Moist } \\
& \text { |1.0-2.5: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 1.5-2.5:
\end{aligned}
\]} & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 1.0-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\mid 1.5-7.0:
\end{gathered}\right.
\]} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 2.0-2.5:
\end{aligned}
\]} & & \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| Moist} & & & & \multirow[t]{2}{*}{---} & & & --- & & \[
\begin{gathered}
\text { Moist } \\
1.5-2.5:
\end{gathered}
\] & | Moist \\
\hline & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Wet } \\
& \mid 2.5-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Wet } \\
& \mid 2.5-7.0:
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wet } \\
& \mid 2.5-7.0:
\end{aligned}
\]} & & \[
\begin{aligned}
& \text { 1.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\] & \[
\begin{aligned}
& \text { |1.5-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\] & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Wet } \\
& \mid 2.5-7.0 \text { : }
\end{aligned}
\]} & | Wet & \\
\hline & & --- & --- & & & & --- & --- & -- & & & |2.5-7.0: & --- \\
\hline & & & & | Moist & | Moist & | Moist & & & & & Moist & | Moist & \\
\hline & & & & & & & & & & & & & \\
\hline Dishno-- & c & & & & |0.0-1.0: & |0.0-1.5: & |0.0-3.8: & & |0.0-1.5: & & & 10.0-2.0: & 0.0-3.8: \\
\hline & & | Moist & | Dry & | Dry & | Moist & Moist & | Moist & Moist \\
\hline & 1 | & --- & --- & |2.0-3.8: & |1.0-3.8: & |1.5-3.8: & --- & |1.0-3.8: & |1.5-3.8: & | 3.0-3.8: & 1.0-3.8: & |2.0-3.8: & --- \\
\hline & & & & Wet & | Wet & Wet & & | Moist & Moist & Wet & Wet & Wet & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{140D:} \\
\hline \multirow[t]{7}{*}{Champion-----} & \multirow[t]{7}{*}{B} & 10.0-7.0: & \multirow[t]{4}{*}{\begin{tabular}{l}
0.0-7.0: \\
Moist
\end{tabular}} & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 0.0-1.5: & 10.0-7.0: \\
\hline & & Moist & & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & --- & & |1.5-2.5: & |1.0-2.5: & 1.5-2.5: & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & \multirow[t]{2}{*}{---} & |2.0-2.5: & |1.5-2.5: & \multirow[t]{2}{*}{| ---} \\
\hline & & & & Wet & | Wet & Wet & & Moist & Moist & & Wet & | Wet & \\
\hline & & --- & --- & |2.5-7.0: & | 2.5-7.0: & |2.5-7.0: & --- & | --- & --- & --- & |2.5-7.0: & | 2.5-7.0: & \multirow[t]{2}{*}{--} \\
\hline & & & & | Moist & | Moist & | Moist & & & & & Moist & | Moist & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Dishno------} & \multirow[t]{3}{*}{C} & 10.0-3.8: & 10.0-3.8: & 10.0-2.0: & 10.0-1.0: & 10.0-1.5: & 10.0-3.8: & 10.0-1.0: & 10.0-1.5: & 10.0-3.0: & 0.0-1.0: & 10.0-2.0: & 10.0-3.8: \\
\hline & & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { |2.0-3.8: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 1.0-3.8:
\end{aligned}
\]} & Moist & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.0-3.8:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
1.5-3.8:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Moist } \\
& \text { 3.0-3.8: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moist } \\
\text { 1.0-3.8: }
\end{gathered}
\]} & | Moist & \multirow[t]{2}{*}{Moist} \\
\hline & & | --- & | --- & & & |1.5-3.8: & & & & & & |2.0-3.8: & \\
\hline & & & & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{| Wet} & \multirow[t]{2}{*}{Wet} & & \multirow[t]{2}{*}{| Moist} & | Moist & Wet & \multirow[t]{2}{*}{Wet} & \multirow[t]{2}{*}{Wet} & --- \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{141D:} \\
\hline \multirow[t]{5}{*}{Pelissier----} & \multirow[t]{5}{*}{| A} & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & | Moist & | Moist & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Dry } \\
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & Moist & Moist & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{\begin{tabular}{l}
Moist \\
- - -
\end{tabular}} \\
\hline & & & - & & & & & & & | --- & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{Rock outcrop.} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{142B: | | |} \\
\hline \multirow[t]{5}{*}{Pelissier----} & \multirow[t]{5}{*}{A} & & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & \multirow[t]{2}{*}{|0.0-7.0:} & 0.0-7.0: & 0.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { Moist } \\
---
\end{array}
\]} & \multirow[t]{2}{*}{Moist - - -} & | Moist & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Dry } \\
\mid 2.0-7.0: \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Dry } \\
& \mid 3.0-7.0: \\
& \text { Moist }
\end{aligned}
\]} & & Moist & Moist & \multirow[t]{2}{*}{Moist} \\
\hline & & --- & | --- & & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & & Moist & \multirow[t]{2}{*}{---} & --- & \\
\hline & & & & & \multirow[t]{2}{*}{} & & & & & --- & & & --- \\
\hline & & & & & & , & | & | Moist & | Moist & & & & \\
\hline \multicolumn{14}{|l|}{142D: | | | | | |} \\
\hline Pelissier- & \multirow[t]{3}{*}{A} & 10.0-7.0: & 10.0-7.0: & \multirow[t]{2}{*}{10.0-7.0:} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 0.0-7.0: \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { 0.0-7.0: } \\
\text { Moist }
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-2.0: & 10.0-3.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
0.0-7.0: \\
Moist
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} \\
\hline & & Moist & Moist & & & & & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0:
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{| Dry} & & & & \\
\hline & & --- & | --- & | Moist & | --- & Moist & Moist & & & Moist & & & \\
\hline & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & --- & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{144B: | | | | | | | | | | | | | | |} \\
\hline Farquar & \multirow[t]{7}{*}{B} & 10.0-5.0: & 10.0-5.0: & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { 0.0-2.5: } \\
& \text { Moist } \\
& \mid 2.5-7.0:
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-2.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-2.0: \\
& \text { Moist }
\end{aligned}
\]} & 10.0-3.5: & 10.0-1.5: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-2.5: } \\
& \text { Dry }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-4.5: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-3.0: \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-2.5: \\
& \text { Moist }
\end{aligned}
\]} & 10.0-3.0: \\
\hline & & Moist & Moist & & & & Moist & | Dry & & & & & | Moist \\
\hline & & 5.0-7.0: & |5.0-7.0: & & |2.0-7.0: & |2.0-7.0: & |3.5-7.0: & |1.5-4.5: & |2.5-5.5: & |4.5-7.0: & 3.0-7.0: & |2.5-7.0: & |3.0-7.0: \\
\hline & & Wet & | Wet & \multirow[t]{4}{*}{| Wet} & | Wet & | Wet & | Wet & | Moist & Moist & | Wet & | Wet & | Wet & | Wet \\
\hline & & - & - & & - & - & -- & | 4.5-7.0: & |5.5-7.0: & --- & --- & - & --- \\
\hline & & & & & & & & Wet & Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \(\mid\) Hydro-|
\(\mid\) logic
|group & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & I & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{145C:} \\
\hline \multirow[t]{7}{*}{Munising-----} & \multirow[t]{7}{*}{| B} & \multirow[t]{2}{*}{\begin{tabular}{l}
|0.0-7.0: \\
Moist
\end{tabular}} & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 10.0-7.0: \\
\hline & & & Moist & | Dry & | Dry & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{} & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & \multirow[t]{2}{*}{---} & |1.0-7.0: & & & |2.0-2.5: & |1.5-2.5: & \multirow[t]{2}{*}{| ---} \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & \[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & | --- & | Wet & | Wet & \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |2.5-7.0: & | 2.5-7.0: & |2.5-7.0: & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & --- &  & | 2.5-7.0: & | 2.5-7.0: & \multirow[t]{2}{*}{---} \\
\hline & & & & | Moist & | Moist & Moist & & & & & Moist & \multirow[t]{2}{*}{Moist} & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Yalmer-------} & \multirow[t]{7}{*}{B} & 0.0-7.0: & & 10.0-1.5: & 10.0-1.0: & 0.0-1.5: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-2.0: & 0.0-1.5: & 10.0-7.0: \\
\hline & & Moist & | 0.0-7.0: & | Moist & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 2.0-7.0:
\end{aligned}
\]} & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |1.5-2.5: & \multirow[t]{2}{*}{|1.0-2.5:} & \multirow[t]{2}{*}{|1.5-2.5:} & \multirow[t]{2}{*}{| ---} & & |3.0-7.0: & \multirow[t]{2}{*}{| ---} & & & \multirow[t]{2}{*}{} \\
\hline & & & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mid \text { Wet } \\
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & & & \[
\begin{aligned}
& \text { 2.0-7.0: } \\
& \text { Moist }
\end{aligned}
\] & | Moist & & Wet & | Wet & \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & | -- & \[
\left\lvert\, \begin{array}{r}
\text { Moist } \\
---
\end{array}\right.
\] & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{} & | 2.5-7.0: & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & & & & Moist & \\
\hline & & & & & & & & & & & | Moist & & \\
\hline \multicolumn{14}{|l|}{146B:} \\
\hline Munising- & B & 10.0-7.0: & 10.0-7.0: & \multirow[t]{2}{*}{10.0-1.5:} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-1.0: } \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{|0.0-1.5:} & 10.0-7.0: & 0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 0.0-7.0: \\
\hline & & Moist & Moist & & & & Moist & \multirow[t]{2}{*}{} & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{---} & \[
\begin{aligned}
& \text { Moist } \\
& \mid 1.5-2.5:
\end{aligned}
\] & \[
\begin{aligned}
& \mid \text { Moist } \\
& 1.0-2.5:
\end{aligned}
\] & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | } 1.5-2.5: \\
& \text { | Wet }
\end{aligned}
\]} & \multirow[t]{3}{*}{} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |1.5-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | } 2.0-2.5: \\
& \mid \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |1.5-2.5: } \\
& \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{---} \\
\hline & & & & | Wet & \[
\begin{aligned}
& \mid 1.0-2.5: \\
& \mid \text { Wet }
\end{aligned}
\] & & & \[
\begin{aligned}
& \mid 1.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & & & & & \\
\hline & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & -- & --- & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 2.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |2.5-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & --- \\
\hline & & & & & & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{10.0-5.5:} & & & & & & & & & & & \\
\hline Skanee & c & & 10.0-5.5: & 10.0-1.5: & 10.0-0.5: & 10.0-2.5: & |0.0-1.0: & 10.0-5.5: & 10.0-0.5: & 10.0-7.0: & 10.0-2.0: & 0.0-1.5: & 10.0-5.5: \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Moist } \\
& \mid 5.5-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 5.5-7.0:
\end{aligned}
\]} & | Moist & | Moist & | Wet & Moist & | Moist & Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & & & |1.5-2.5: & |0.5-2.5: & |2.5-4.5: & |1.0-2.5: & |5.5-7.0: & |0.5-7.0: & --- & |2.0-2.5: & |1.5-2.5: & |5.5-7.0: \\
\hline & & Wet & Wet & & & | Moist & & | Wet & Moist & & & | Wet & Wet \\
\hline & & --- & -- & |2.5-5.0: & |2.5-4.5: & |4.5-7.0: & |2.5-4.5: & | --- & --- & --- & |2.5-5.5: & |2.5-5.5: & -- \\
\hline & & & & | Moist & | Moist & Wet & | Moist & & & & | Moist & | Moist & \\
\hline & & - & - & |5.0-7.0: & |4.5-7.0: & --- & |4.5-7.0: & | --- & --- & --- & | 5.5-7.0: & |5.5-7.0: & --- \\
\hline & & & & | Wet & | Wet & & Wet & & & & Wet & Wet & \\
\hline & & & & & & & & & & & & & \\
\hline 147A: & & & & & & & & & & & & & \\
\hline Skanee- & c & 10.0-5.5: & 10.0-5.5: & 10.0-1.5: & 10.0-0.5: & 10.0-2.5: & 10.0-1.0: & 10.0-5.5: & 10.0-0.5: & 10.0-7.0: & 10.0-2.0: & |0.0-1.5: & 10.0-5.5: \\
\hline & & Moist & Moist & | Moist & | Moist & | Wet & | Moist & | Moist & Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & |5.5-7.0: & |5.5-7.0: & |1.5-2.5: & 10.5-2.5: & |2.5-4.5: & |1.0-2.5: & | 5.5-7.0: & |0.5-7.0: & --- & |2.0-2.5: & |1.5-2.5: & |5.5-7.0: \\
\hline & & Wet & Wet & | Wet & | Wet & | Moist & | Wet & | Wet & Moist & & | Wet & | Wet & Wet \\
\hline & & | --- & | --- & |2.5-5.0: & | 2.5-4.5: & | 4.5-7.0: & |2.5-4.5: & | --- & --- & --- & |2.5-5.5: & |2.5-5.5: & --- \\
\hline & & & & | Moist & | Moist & Wet & Moist & | & & & | Moist & | Moist & \\
\hline & & | --- & | --- & |5.0-7.0: & | 4.5-7.0: & --- & |4.5-7.0: & | --- & --- & --- & |5.5-7.0: & |5.5-7.0: & --- \\
\hline & & & & | Wet & | Wet & & | Wet & & & & Wet & Wet & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \mid \text { group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & , & | & & | & | & & & & & \\
\hline \multirow[t]{6}{*}{155A:
Jacobsvil} & & & & I & & & 1 & | & & & & & \\
\hline & \multirow[t]{5}{*}{D} & 0.0-2.1: & |0.0-2.1: & |0.0-2.1: & |0.0-2.1: & |0.0-2.1: & 10.0-0.5: & 10.0-1.5: & 10.0-2.0: & |0.0-1.0: & 10.0-2.1: & |0.0-2.1: & 10.0-2.1: \\
\hline & & Wet & Wet & Wet & Wet & Wet & | Moist & | Moist & Moist & Moist & Wet & Wet & Wet \\
\hline & & --- & & & | --- & --- & |0.5-2.1: & |1.5-2.1: & |2.0-2.1: & |1.0-2.1: & --- & --- & --- \\
\hline & & & & | & & & Wet & Wet & Wet & Wet & & & \\
\hline & & & & | & & & & & & & & & \\
\hline 156B : & \multirow{3}{*}{A} & & & | & & & & | & & & & & \\
\hline \multirow[t]{3}{*}{Duel-} & & 0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & |0.0-1.8: & 10.0-1.8: & |0.0-1.8: & 0.0-1.8: & |0.0-1.8: & 0.0-1.8: \\
\hline & & Moist & Moist & | Moist & Moist & Moist & Moist & | Dry & Dry & Moist & Moist & Moist & Moist \\
\hline & & & & & & & & & & & & & \\
\hline 157B: & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Reade--------} & \multirow[t]{5}{*}{| B} & \[
0.0-2.3:
\] & 10.0-2.3: & 10.0-2.0: & 10.0-1.0: & |0.0-1.5: & 10.0-2.3: & 10.0-1.0: & 10.0-1.5: & |0.0-2.3: & |0.0-1.0: & 10.0-2.0: & 10.0-2.3: \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & Moist & Moist \\
\hline & & | --- & | --- & |2.0-2.3: & |1.0-2.3: & |1.5-2.3: & --- & |1.0-2.3: & |1.5-2.3: & --- & |1.0-2.3: & |2.0-2.3: & --- \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & & Wet & Wet & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Nahma--------} & \multirow[t]{5}{*}{| B/D} & |0.0-2.0: & |0.0-2.0: & |0.0-2.0: & |0.0-2.0: & |0.0-2.0: & 10.0-0.5: & |0.0-1.5: & |0.0-2.0: & |0.0-1.0: & 0.0-2.0: & 10.0-2.0: & 0.0-2.0: \\
\hline & & Wet & | Moist & | Moist & | Moist & Moist & Wet & | Wet & \\
\hline & & -- & & | -- & & & |0.5-2.0: & |1.5-2.0: & --- & |1.0-2.0: & & & \\
\hline & & & & & & & Wet & | Wet & & Wet & & & \\
\hline & & & & & & & & & & & & & \\
\hline 158C: & \multirow{8}{*}{| B} & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Munising-----} & & & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-2.0: & & \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & | Moist & | Moist \\
\hline & & | --- & | --- & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & | --- & |1.0-7.0: & |1.5-7.0: & --- & |2.0-2.5: & & --- \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & & Wet & | Wet & \\
\hline & & --- & --- & |2.5-7.0: & | 2.5-7.0: & |2.5-7.0: & --- & | --- & --- & --- & |2.5-7.0: & | 2.5-7.0: & --- \\
\hline & & & & | Moist & | Moist & Moist & & & & & Moist & | Moist & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Onota--------} & \multirow[t]{5}{*}{B} & |0.0-1.8: & & & & 10.0-1.8: & 10.0-1.8: & 10.0-1.0: & 10.0-1.5: & 10.0-1.8: & & & |0.0-1.8: \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & | Moist & | Moist \\
\hline & & - & | --- & - & - & --- & - & |1.0-1.8: & |1.5-1.8: & --- & --- & --- & -- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Yalmer-------} & \multirow[t]{7}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-1.5: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-2.0: & 0.0-1.5: & 0.0-7.0: \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & | Moist & Moist \\
\hline & & --- & --- & |1.5-2.5: & |1.0-2.5: & |1.5-2.5: & -- & |2.0-7.0: & |3.0-7.0: & -- & 2.0-2.5: & \[
\mid 1.5-2.5:
\] & --- \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & Moist & & Wet & | Wet & \\
\hline & & --- & - & |2.5-7.0: & |2.5-7.0: & | 2.5-7.0: & --- & - & - & --- & |2.5-7.0: & | 2.5-7.0: & --- \\
\hline & & & & | Moist & | Moist & Moist & & & & & Moist & Moist & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{159A:
Jesk} & \multirow{6}{*}{c} & & & & & & & | & & & & & \\
\hline & & 0.0-1.7: & 10.0-1.7: & 10.0-1.5: & |0.0-1.0: & 10.0-1.7: & |0.0-1.7: & |0.0-1.7: & 10.0-1.7: & |0.0-1.7: & 0.0-1.0: & |0.0-1.0: & |0.0-1.5: \\
\hline & & Moist & Moist & | Moist & | Moist & Wet & Moist & Moist & Moist & Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & |1.5-1.7: & |1.0-1.7: & --- & | --- & | --- & --- & --- & 1.0-1.7: & |1.0-1.7: & |1.5-1.7: \\
\hline & & & | & | Wet & | Wet & & & & & & Wet & Wet & Wet \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \begin{tabular}{l}
\(\mid\) \\
\(\mid\) Hydro- \\
\(\left|\begin{array}{l}\text { logic } \\
\text { |group }\end{array}\right|\) \\
\hline
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & I & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{160B:} \\
\hline \multirow[t]{7}{*}{Paquin-------} & \multirow[t]{7}{*}{| A |} & |0.0-5.0: & 10.0-5.0: & 10.0-2.5: & 10.0-2.0: & 10.0-2.0: & 10.0-3.5: & |0.0-1.5: & 10.0-2.5: & |0.0-4.5: & 10.0-3.0: & 10.0-2.5: & 10.0-3.0: \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & | 5.0-7.0: & |5.0-7.0: & | 2.5-7.0: & | 2.0-7.0: & |2.0-7.0: & |3.5-7.0: & |1.5-4.5: & |2.5-5.5: & |4.5-7.0: & |3.0-7.0: & | 2.5-7.0: & |3.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Wet} & \multirow[t]{2}{*}{| Wet} & Wet & \multirow[t]{2}{*}{Wet} & Wet & | Wet & Moist & | Moist & \multirow[t]{2}{*}{| Wet} & | Wet & Wet & | Wet \\
\hline & & & & & & & --- & |4.5-7.0: & |5.5-7.0: & & | --- & --- & | --- \\
\hline & & & & & & & & Wet & | Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Finch-------} & \multirow[t]{3}{*}{c} & 10.0-1.5: & 10.0-1.5: & 10.0-1.5: & 10.0-1.0: & 10.0-0.5: & 0.0-1.0: & 10.0-2.0: & 10.0-0.5: & 10.0-2.0: & 10.0-1.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-1.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & \\
\hline & & | Moist & | Dry & | Moist & Moist & & | \(0.0-1.5\) Moist \\
\hline & & |1.5-7.0: & |1.5-7.0: & |1.5-7.0: & |1.0-7.0: & 10.5-7.0: & |1.0-7.0: & |2.0-7.0 & 10.5-3.0: & |2.0-7.0: & |1.0-7.0: & \[
\begin{aligned}
& \mid \text { Moist } \\
& \mid 1.0-7.0:
\end{aligned}
\] & \[
\begin{aligned}
& \text { Moist } \\
& \mid 1.5-7.0:
\end{aligned}
\] \\
\hline & & \multirow[t]{2}{*}{Wet} & | Wet & \multirow[t]{2}{*}{\[
\begin{array}{|l|l}
\text { | Wet } \\
\hline
\end{array}
\]} & & Wet & \multirow[t]{2}{*}{Wet} & | Wet & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moist } \\
\mid 3.0-7.0 \text { : }
\end{gathered}
\]} & \multirow[t]{2}{*}{| Wet} & Wet & \multirow[t]{2}{*}{| Wet} & \[
\begin{aligned}
& \text { | } 1.5-7.0: \\
& \mid \text { Wet }
\end{aligned}
\] \\
\hline & & & | --- & & --- & --- & & --- & & & | --- & & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & & | Wet & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{161B:} \\
\hline \multirow[t]{5}{*}{Yellowdog----} & \multirow[t]{2}{*}{A} & 10.0-2.7: & \multirow[t]{2}{*}{10.0-2.7:} & \multirow[t]{2}{*}{10.0-2.7:} & 10.0-2.7: & 10.0-2.7: & \multirow[t]{2}{*}{10.0-2.7:} & 10.0-2.0: & 10.0-2.7: & 10.0-2.7: & 10.0-2.7: & & 0.0-2.7: \\
\hline & & \multirow[t]{2}{*}{Moist} & & & | Moist & | Moist & & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
2.0-2.7:
\end{gathered}
\]} & \multirow[t]{2}{*}{| Dry} & Moist & Moist &  & | Moist \\
\hline & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & --- & | --- \\
\hline & & & & & & & & \[
\begin{aligned}
& \mid 2.0-2.7: \\
& \mid \text { Moist }
\end{aligned}
\] & | --- & & & & \\
\hline & & & & & & & & Moist & & & & & \\
\hline \multicolumn{14}{|l|}{162B: | | | |} \\
\hline Buckroe- & \multirow[t]{2}{*}{A} & 10.0-1.2: & 0.0-1.2: & |0.0-1.2: & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-1.2: } \\
& \text { Dry }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-1.2: } \\
& \text { Dry }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-1.2: } \\
& \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-1.2: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-1.2: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 0.0-1.2: \\
\text { Moist }
\end{gathered}
\]} \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{| Moist} & & & & & & & & & \\
\hline & & & & & | Moist & | Moist & Moist & & & & & & \\
\hline \multicolumn{14}{|l|}{165B:} \\
\hline Chocolay- & \multirow[t]{5}{*}{A} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{gathered}
0.0-2.3: \\
\text { Moist } \\
---
\end{gathered}\right.
\]} & \multirow[t]{4}{*}{\[
\left\{\begin{array}{c}
0.0-2.3: \\
\text { Moist } \\
---
\end{array}\right.
\]} & 10.0-2.0: & |0.0-1.0: & |0.0-1.5: & 10.0-2.3: & |0.0-1.0: & |0.0-1.5: & |0.0-2.3: & |0.0-1.0: & |0.0-2.0: & \\
\hline & & & & | Moist & | Moist & | Moist & Moist & Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & & & |2.0-2.3: & |1.0-2.3: & |1.5-2.3: & --- & |1.0-2.3: & |1.5-2.3: & --- & |1.0-2.3: & |2.0-2.3: & - \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & & | Wet & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline Waiska--- & A & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & | Moist & Moist & Dry & | Dry & | Moist & | Moist & Moist & Moist \\
\hline & | | & -- & | --- & --- & - & --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & | & & & & & & & Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 166: & & & & & & & & & & & & & \\
\hline Skandia- & D & 10.0-2.2: & 10.0-2.2: & 10.0-2.2: & 10.0-2.2: & 10.0-2.2: & 10.0-2.2: & 10.0-2.2: & 10.0-0.5: & 10.0-2.2: & 10.0-2.2: & 0.0-2.2: & 10.0-2.2: \\
\hline & & Wet & | Wet & | Wet & Wet & Wet & Wet & Wet & | Moist & Wet & Wet & Wet & Wet \\
\hline & & | --- & | --- & | --- & --- & - & --- & --- & 10.5-2.2: & | --- & | --- & | --- & | --- \\
\hline & & & & & & & & & | Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol & | Hydro-| & January & February & March & April & May & June & July & August & |September & October & November & December \\
\hline and & |logic | & & & & , & & & & August & |Septerner & & & \\
\hline soil name & | group & & & & & & & & | & & & & \\
\hline & & & & & | & & & & | & & & & \\
\hline \multicolumn{14}{|l|}{175F:} \\
\hline \multirow[t]{5}{*}{Kalkaska----} & \multirow[t]{5}{*}{A} & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & |0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |2.0-7.0: & |3.0-7.0: & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & Moist & \multirow[t]{2}{*}{| Moist} & & & & \\
\hline & & & & \multirow[b]{2}{*}{10.0-7.0:} & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Waiska-------} & \multirow[t]{5}{*}{A} & & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & | Moist & | Moist & | Dry & | Dry & \multirow[t]{2}{*}{| Moist} & | Moist & \multirow[t]{2}{*}{Moist} & Moist \\
\hline & & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & --- & --- & |2.0-7.0: & |3.0-7.0: & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{| ---} \\
\hline & & & - & & & & & \multirow[t]{2}{*}{Moist} & | Moist & | --- & & --- & \\
\hline & & & & & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{176B:} \\
\hline \multirow[t]{5}{*}{Greenwood----} & \multirow[t]{3}{*}{A/D} & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Wet} & \multirow[t]{2}{*}{Wet} & | Wet & Wet & \multirow[t]{2}{*}{Wet} & \multirow[t]{2}{*}{Wet} & | Wet & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { 0.5-7.0: } \\
& \text { Wet }
\end{aligned}
\]} & \multirow[t]{2}{*}{Wet} & | Wet & Wet & \multirow[t]{2}{*}{Wet
\(\qquad\)} \\
\hline & & & & - & - & & & - & & & --- & --- & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Croswell-----} & \multirow[t]{3}{*}{A} & 10.0-5.0: & 10.0-5.0: & 10.0-2.5: & 10.0-2.0: & & & 0.0-1.5: & 10.0-2.5: & 10.0-3.0: & 10.0-3.0: & 10.0-2.5: & 0.0-3.0: \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 5.0-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Moist } \\
& \text { 5.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { 2.5-7.0: }
\end{aligned}
\]} & | Moist & | Moist & | Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\text { 1.5-4.5: }
\end{gathered}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dry } \\
\mid 2.5-5.0:
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { |3.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid \text { Moist } \\
& \mid 3.0-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { |2.5-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { |3.0-7.0: }
\end{aligned}
\]} \\
\hline & & & & & |2.0-7.0: & |2.0-7.0: & 3.5-7.0: & & & & & & \\
\hline & & Wet & \multirow[t]{2}{*}{| Wet} & | Wet & | Wet & | Wet & | Wet & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \mid 4.5-7.0 \text { : }
\end{aligned}
\]} & | Moist & \multirow[t]{2}{*}{Wet} & Wet & Wet & \[
\begin{aligned}
& \text { 3.0-7.0: } \\
& \text { | Wet }
\end{aligned}
\] \\
\hline & & \multirow[t]{2}{*}{---} & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 5.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} & & \multirow[t]{2}{*}{---} & \multicolumn{2}{|r|}{---} \\
\hline & & & \multirow[t]{2}{*}{---} & & & & & \[
\begin{aligned}
& \mid 4.5-7.0: \\
& \mid \text { Wet }
\end{aligned}
\] & & \multirow[t]{2}{*}{} & & & \\
\hline & & & & & & & & & & & | & & \\
\hline \multicolumn{14}{|l|}{177E: | | | | | |} \\
\hline Frohling- & \multirow[t]{3}{*}{B |} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-1.5: } \\
& \mid \text { Dry }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { |0.0-7.0: } \\
\mid \text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 0.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 0.0-7.0: \\
\left\lvert\, \begin{array}{c}
\text { Moist }
\end{array}\right. \\
\hline
\end{gathered}
\]} \\
\hline & & & | Moist & | Dry & & & & & \\
\hline & & --- & --- & --- & & -- & -- & |1.0-7.0: & |1.5-7.0: & | --- & --- & | --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 177F: & & & & & & & & & & & & & \\
\hline Frohling- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & \\
\hline & & | Moist & | Dry & | Dry & | Moist & | Moist & | Moist & Moist \\
\hline & & | --- & | --- & - & | --- & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 178D: & & 1 & & & & & & & & & & & \\
\hline Schweitzer- & B & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & |0.0-7.0: & |0.0-1.0: & |0.0-1.5: & |0.0-7.0: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & | Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & | --- & -- & - & --- & -- & --- & |1.0-7.0: & |1.5-7.0: & --- & -- & --- & | --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group | }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & | & & | & | & & & & & \\
\hline \multicolumn{14}{|l|}{180F:} \\
\hline \multirow[t]{5}{*}{Kalkaska-----} & \multirow[t]{5}{*}{A} & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & | Moist & Moist & | Moist & Moist & | Moist & | Dry & Dry & Moist & Moist & Moist & | Moist \\
\hline & & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & |2.0-7.0: & |3.0-7.0: & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} \\
\hline & & --- & & & & & & | Moist & Moist & & & & \\
\hline & & & & \multirow[b]{2}{*}{10.0-7.0:} & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Frohling-----} & \multirow[t]{5}{*}{B} & 0.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & \multirow[t]{3}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & Moist & Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & \multirow[t]{2}{*}{Moist} & | Moist \\
\hline & & & & | --- & | --- & --- & | --- & |1.0-7.0: & & & --- & & --- \\
\hline & & & & & & & & Moist & 1.5-7.0:
Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{181E:} \\
\hline \multirow[t]{5}{*}{Frohling-----} & \multirow[t]{2}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & Moist & | Moist & | Moist & | Dry & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & | Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 1.0-7.0: } \\
\text { Moist }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\mid 1.5-7.0: \\
\text { Moist }
\end{gathered}
\]} & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Tokiahok-----} & \multirow[t]{5}{*}{B |} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & \[
0.0-7.0:
\] & 10.0-2.0: & 10.0-3.0: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & | Moist & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \operatorname{Dry} \\
& \mid 2.0-7.0:
\end{aligned}
\]} & | Dry & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & |3.0-7.0: & & --- & \multicolumn{2}{|l|}{--- | ---} \\
\hline & & --- & \multirow[t]{2}{*}{} & & & & & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & \multirow[t]{2}{*}{| Moist} & - & & & \\
\hline & & & & & & & & Moist & & & & & \\
\hline \multicolumn{14}{|l|}{181F:} \\
\hline Frohling- & \multirow[t]{5}{*}{B} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & Moist & | Moist & | Dry & & | Moist & Moist & | Moist & | Moist \\
\hline & & & & --- & --- & --- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Tokiahok & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & | Moist \\
\hline & & --- & --- & --- & --- & --- & --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & | --- \\
\hline & 1 | & | & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 184C: & & & & & & & & & & & & & \\
\hline Dishno & c & |0.0-3.8: & & 0.0-2.0 & 0.0-1.0: & |0.0-1.5: & 10.0-3.8: & |0.0-1.0: & |0.0-1.5: & |0.0-3.0: & & |0.0-2.0 : & 10.0-3.8: \\
\hline & & Moist & | Dry & | Dry & | Moist & Moist & | Moist & Moist \\
\hline & & --- & --- & |2.0-3.8: & 1.0-3.8: & |1.5-3.8: & --- & |1.0-3.8: & |1.5-3.8: & |3.0-3.8: & |1.0-3.8: & |2.0-3.8: & --- \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & | Wet & Wet & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline Witbeck & B/D & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & |0.0-1.0: & 10.0-2.0: & |0.0-1.5: & 10.0-0.5: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Wet & Wet & | Wet & | Wet & Wet & | Moist & | Moist & | Moist & | Moist & Moist & Wet & Wet \\
\hline & & - -- & | --- & | --- & - & - & |0.5-7.0: & |1.0-7.0: & |2.0-7.0: & |1.5-7.0: & 0.5-7.0: & --- & --- \\
\hline & & & & & & & | Wet & | Wet & Wet & Wet & Wet & & \\
\hline & & | & & | & | & & & & & & & & \\
\hline Rock outcrop. & & | & | & | & | & & | & | & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued


Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \[
\begin{aligned}
& \mid \text { Hydro-| } \\
& \mid \text { logic } \\
& \text { |group }
\end{aligned}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline \multicolumn{14}{|l|}{194E:} \\
\hline \multirow[t]{5}{*}{Sporley-----} & \multirow[t]{5}{*}{B} & 10.0-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { |0.0-7.0: } \\
& \mid \text { Moist }
\end{aligned}
\]} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & |0.0-1.0: & 10.0-1.5: & |0.0-7.0: & 0.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & & Moist & Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & Moist & Moist \\
\hline & & --- & & & | --- & --- & \multirow[t]{2}{*}{---} & |1.0-7.0: & |1.5-7.0: & \multirow[t]{2}{*}{-- -} & --- & \multirow[t]{2}{*}{---} & --- \\
\hline & & & & & & & & | Moist & Moist & & & & \\
\hline & & & & | & & & & & & & & & \\
\hline \multicolumn{14}{|l|}{196E:} \\
\hline \multirow[t]{5}{*}{Frohling----} & \multirow[t]{5}{*}{-} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 0.0-7.0: & |0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & \multirow[t]{2}{*}{| Moist} & | Moist & | Moist & | Moist & | Moist & | Dry & & \multirow[t]{2}{*}{} & Moist & & Moist \\
\hline & & & & & & & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 1.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 1.5-7.0: \\
& \mid \text { Moist }
\end{aligned}
\]} & & \multirow[t]{2}{*}{| --} & \multirow[t]{2}{*}{--} & \multirow[t]{2}{*}{} \\
\hline & & & & & & & & & &  & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Onota-------} & \multirow[t]{5}{*}{| \({ }^{\text {B }}\)} & 10.0-1.8: & 10.0-1.8: & 10.0-1.8: & 0.0-1.8: & 10.0-1.8: & 10.0-1.8: & 0.0-1.0: & 10.0-1.5: & 10.0-1.8: & 0.0-1.8: & 0.0-1.8: & 10.0-1.8: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & Moist & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{Moist} & Moist & Moist & Moist \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & & & & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{---} & \multirow[t]{2}{*}{| ---} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & &  &  & & & & \\
\hline \multirow[t]{5}{*}{Tokiahok-----} & \multirow[t]{5}{*}{} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 0.0-3.0: & 10.0-7.0: & 10.0-7.0: & |0.0-7.0: & 0.0-7.0: \\
\hline & & \multirow[t]{2}{*}{| Moist} & \multirow[t]{2}{*}{Moist} & | Moist & | Moist & Moist & | Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Dry } \\
& 2.0-7.0:
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dry } \\
& \mid 3.0-7.0 \text { : }
\end{aligned}
\]} & \multirow[t]{2}{*}{| Moist} & Moist & Moist & Moist \\
\hline & & & & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{| ---} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{--} & & & & & \multicolumn{2}{|r|}{---} \\
\hline & & & \multirow[t]{2}{*}{} & & & & & \[
\begin{aligned}
& \mid 2.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & \[
\begin{aligned}
& \mid 3.0-7.0: \\
& \mid \text { Moist }
\end{aligned}
\] & | & | --- & & \\
\hline \multicolumn{14}{|l|}{\multirow[t]{2}{*}{197B: \(\mid\)}} \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Shoepac------} & \multirow[t]{5}{*}{c |} & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 10.0-2.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
0.0-7.0: \\
\text { Moist }
\end{gathered}\right.
\]} & 0.0-5.0: & 0.0-4.5: & \\
\hline & & \multirow[t]{2}{*}{| Moist} & Moist & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& \text { |2.0-7.0: }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Moist } \\
\mid 1.5-7.0 \text { : }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Moist } \\
& 2.0-7.0:
\end{aligned}
\]} & | Moist & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{gathered}
\text { Dry } \\
\text { 1.0-7.0: }
\end{gathered}\right.
\]} & Dry & & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { | Moist } \\
& \mid 5.0-7.0 \text { : }
\end{aligned}
\]} & | Moist & O.0-5.0:
| Moist \\
\hline & & & --- & & & & - & & |1.5-7.0: & --- & & |4.5-7.0: & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mid 5.0-7.0: \\
& \mid \text { Wet }
\end{aligned}
\]} \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & Moist & & Wet & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline Trenary- & B & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & |0.0-7.0: & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: \\
\hline & & Moist & | Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & - & -- & --- & -- & -- & --- & |1.0-7.0: & |1.5-7.0: & --- & --- & & \\
\hline & & & & & & & & | Moist & | Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline 198B: & & & & & & & & & & & & & \\
\hline Shoepac- & c & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & |0.0-1.5: & 10.0-2.0: & 10.0-7.0: & 10.0-1.0: & 10.0-1.5: & 10.0-7.0: & 10.0-5.0: & |0.0-4.5: & 0.0-5.0: \\
\hline & & Moist & Moist & | Moist & | Moist & Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & | Moist \\
\hline & & - & - & |2.0-7.0: & |1.5-7.0: & |2.0-7.0: & -- & |1.0-7.0: & |1.5-7.0: & --- & |5.0-7.0 : & |4.5-7.0 : & \\
\hline & & & & | Wet & | Wet & | Wet & & | Moist & | Moist & & Wet & | Wet & | Wet \\
\hline & & & & & & & & & & & & & \\
\hline Reade- & B & 0.0-2.3: & 10.0-2.3: & 10.0-2.0: & |0.0-1.0: & 10.0-1.5: & 10.0-2.3: & |0.0-1.0: & 10.0-1.5: & 10.0-2.3: & 0.0-1.0: & 10.0-2.0: & 10.0-2.3: \\
\hline & & Moist & Moist & | Moist & | Moist & | Moist & Moist & | Dry & | Dry & Moist & Moist & | Moist & Moist \\
\hline & & --- & --- & |2.0-2.3: & |1.0-2.3: & |1.5-2.3: & --- & |1.0-2.3: & |1.5-2.3: & --- & 1.0-2.3: & |2.0-2.3: & -- \\
\hline & & & & | Wet & | Wet & Wet & & | Moist & | Moist & & Wet & | Wet & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \begin{tabular}{l}
\(\mid\) \\
\(\mid\) Hydro- \\
\(\left|\begin{array}{l}\text { logic } \\
\text { |group }\end{array}\right|\) \\
\hline
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & | & | & | & & & & & & \\
\hline \multirow[t]{3}{*}{```
199.
    Udorthents, ash
```} & & & | & | & | & & , & & & , & | & & \\
\hline & & & | & | & | & & & & & & & & \\
\hline & & & | & | & | & & , & & & , & | & & \\
\hline 200A: & & & & , & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Charlevoix-----|} & \multirow[t]{7}{*}{B} & 0.0-1.5: & 10.0-1.5: & 10.0-1.5: & 10.0-1.0: & 10.0-0.5: & 10.0-2.0: & 10.0-2.5: & 10.0-0.5: & 10.0-2.5: & 10.0-1.5: & 0.0-1.0: & 10.0-1.0: \\
\hline & & Moist & | Dry & | Moist & | Moist & Moist & Moist \\
\hline & & 1.5-5.8: & |1.5-5.8: & |1.5-5.8: & |1.0-5.8: & 10.5-5.8: & |2.0-5.8: & | 2.5-5.8: & 10.5-4.0: & |2.5-5.8: & |1.5-5.8: & 1.0-5.8: & |1.0-5.8: \\
\hline & & Wet & Wet & | Wet & | Wet & Wet & Wet & Wet & | Moist & Wet & | Wet & Wet & Wet \\
\hline & & & --- & | --- & & --- & & --- & |4.0-5.8: & --- & | --- & --- & \\
\hline & & & & & & & & & Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Ensley---------|} & \multirow[t]{5}{*}{B/D} & 0.0-5.8: & 10.0-5.8: & 10.0-5.8: & 0.0-5.8: & 10.0-5.8: & 0.0-0.5: & 10.0-1.0: & 0.0-2.0: & 0.0-1.5: & 0.0-0.5: & 0.0-5.8: & 10.0-5.8: \\
\hline & & Wet & | Wet & Wet & | Wet & Wet & | Moist & | Moist & & & & Wet & \\
\hline & & & & & & & |0.5-5.8: & |1.0-5.8: & |2.0-5.8: & |1.5-5.8: & |0.5-5.8: & W & \\
\hline & & & & & & & Wet & Wet & Wet & | Wet & | Wet & & \\
\hline & & & & | & | & & & & & & & & \\
\hline 201B: & \multirow{6}{*}{D} & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Sauxhead--------|} & & |0.0-1.4: & 10.0-1.4: & 10.0-1.0: & |0.0-1.0: & 10.0-1.4: & 10.0-1.4: & 10.0-1.0: & 10.0-1.4: & 10.0-1.4: & |0.0-1.0: & 0.0-1.4: & \\
\hline & & Moist & | Dry & | Dry & | Moist & | Moist & Moist & | Moist \\
\hline & & | --- & | --- & |1.0-1.4: & |1.0-1.4: & --- & --- & |1.0-1.4: & | --- & | --- & |1.0-1.4: & --- & | --- \\
\hline & & & & | Wet & | Wet & & & Moist & & & Wet & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Jacobsville-----|} & \multirow[t]{5}{*}{D} & |0.0-2.1: & |0.0-2.1: & 10.0-2.1: & 10.0-2.1: & 10.0-2.1: & 10.0-0.5: & 10.0-1.5: & 10.0-2.0: & 10.0-1.0: & 10.0-2.1: & 0.0-2.1: & 10.0-2.1: \\
\hline & & Wet & | Wet & | Wet & | Wet & | Wet & Moist & | Moist & Moist & | Moist & | Wet & Wet & Wet \\
\hline & & | --- & | --- & | --- & | --- & - & |0.5-2.1: & |1.5-2.1: & |2.0-2.1: & |1.0-2.1: & --- & & --- \\
\hline & & & & & & & | Wet & Wet & | Wet & | Wet & & & \\
\hline & & & | & | & | & & & & & & & & \\
\hline 202B: & \multirow{6}{*}{D} & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Sauxhead-------|} & & |0.0-1.4: & |0.0-1.4: & 10.0-1.0: & |0.0-1.0: & & 10.0-1.4: & 10.0-1.0: & & |0.0-1.4: & 10.0-1.0: & & |0.0-1.4: \\
\hline & & Moist & | Moist & Dry & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & --- & | --- & |1.0-1.4: & |1.0-1.4: & | --- & --- & |1.0-1.4: & - & | --- & |1.0-1.4: & --- & | --- \\
\hline & & & & | Wet & | Wet & & & | Moist & & & | Wet & & \\
\hline & & & & & & & & & & & & & \\
\hline 203A: & \multirow{8}{*}{| B} & & & & & & & & & & & & \\
\hline \multirow[t]{7}{*}{Au Gres---------|} & & |0.0-1.5: & |0.0-1.5: & |0.0-1.5: & |0.0-1.0: & |0.0-0.5: & |0.0-1.0: & 10.0-2.0: & |0.0-0.5: & |0.0-2.0: & |0.0-1.0: & & 0.0-1.5: \\
\hline & & Moist & | Dry & | Moist & | Moist & | Moist & | Moist \\
\hline & & |1.5-7.0: & |1.5-7.0: & |1.5-7.0: & |1.0-7.0: & 10.5-7.0: & |1.0-7.0: & |2.0-7.0: & 10.5-3.0: & |2.0-7.0: & |1.0-7.0: & |1.0-7.0: & |1.5-7.0: \\
\hline & & | Wet & | Moist & | Wet & | Wet & | Wet & | Wet \\
\hline & & --- & --- & --- & --- & --- & --- & --- & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & & & & Wet & & & & \\
\hline & & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Deford---------} & \multirow[t]{5}{*}{A/D} & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-0.5: & 10.0-1.5: & 10.0-2.0: & |0.0-1.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: \\
\hline & & Wet & Wet & | Wet & | Wet & Wet & | Moist & | Moist & | Moist & | Moist & Wet & Wet & Wet \\
\hline & & - & - & | --- & --- & --- & |0.5-7.0: & |1.5-7.0: & |2.0-7.0: & |1.0-7.0: & - & --- & | --- \\
\hline & & & & & | & & Wet & Wet & Wet & | Wet & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 20.--Soil Moisture Status by Depth--Continued

Table 20.--Soil Moisture Status by Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & \begin{tabular}{l}
| Hydro- \\
|logic \\
|group
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline 209B: & & & & & 1 & 1 & & & & & & & \\
\hline Garlic & A & 10.0-7.0: & |0.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-3.0: & 10.0-7.0: & 10.0-7.0: & 10.0-7.0: & 0.0-7.0: \\
\hline & & Moist & Moist & Moist & Moist & Moist & Moist & & & Moist & Moist & Moist & Moist \\
\hline & & --- & -- & --- & | --- & | --- & | --- & | 2.0-7.0: & |3.0-7.0: & --- & --- & --- & --- \\
\hline & & & & & & | & & Moist & Moist & & & & \\
\hline & & & & & & & & & & & & & \\
\hline Fence- & B & 10.0-7.0: & 10.0-7.0: & 10.0-2.0: & 10.0-1.5: & 10.0-2.0: & 10.0-7.0: & 10.0-1.0: & & 10.0-7.0: & 10.0-5.0: & 10.0-4.5: & 10.0-5.0: \\
\hline & & Moist & Moist & Moist & Moist & | Moist & Moist & | Dry & Dry & Moist & Moist & Moist & | Moist \\
\hline & & --- & --- & |2.0-7.0: & |1.5-7.0: & |2.0-7.0: & --- & |1.0-7.0: & 1.5-7.0: & --- & |5.0-7.0: & 4.5-7.0: & | 5.0-7.0: \\
\hline & & & & Wet & Wet & | Wet & & Moist & Moist & & Wet & Wet & Wet \\
\hline & & & & & & & & & & & & & \\
\hline м-w. & & & & & | & | & & & & & & & \\
\hline Miscellaneous & & & & & | & | & & & & & & & \\
\hline water & & & & & & | & & & & & & & \\
\hline & & & & & | & | & & & & & & & \\
\hline w. & & & & & | & | & & & & & & & \\
\hline Water & & & & & | & | & & | & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol & January & February & March & April & May & June & July & August & September & October & November & December \\
\hline and & & & & & & | & & & & & , & \\
\hline \multicolumn{13}{|l|}{soil name} \\
\hline & & | & & & | & | & & & & & & \\
\hline \multicolumn{13}{|l|}{10B:} \\
\hline \multirow[t]{3}{*}{Grayling----
10D:} & | None & \multirow[t]{2}{*}{| None} & | None & None & | None & None \\
\hline & & & & & & & & & & & & \\
\hline & & | & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & & & & \\
\hline 10D:
Grayling & | None & & & & & & & & None & None & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{10E:} \\
\hline \multirow[t]{3}{*}{Grayling----
11C:} & | None & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} \\
\hline \multirow[t]{2}{*}{11C:
Deer Park} & | None & & & & & & & & & & & \\
\hline & & None & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{|} \\
\hline \multirow[t]{2}{*}{11D:
Deer Park-} & & \multirow[t]{2}{*}{None} & & & & & & & & & \multirow[b]{2}{*}{| None} & \\
\hline & | None & & None & \multirow[t]{2}{*}{| None} & | None & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{None} \\
\hline Deer Park------ | & & & \multirow[t]{2}{*}{} & & & & & & & & & \\
\hline \multirow[t]{2}{*}{12B:
Rubicon-----} & & & & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & & \multirow{3}{*}{None} \\
\hline & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & & & & & & & | None & \\
\hline \multirow[t]{2}{*}{12D:} & & & & & & & & & & & & \\
\hline & & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{3}{*}{None} \\
\hline \multirow[t]{3}{*}{Rubicon-----
12E:} & | None & & & & & & & & & & & \\
\hline & & , & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & | & & \\
\hline & & \multirow[t]{2}{*}{| None} & & & \multirow[b]{2}{*}{| None} & & & & & & & \multirow[t]{3}{*}{None} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Rubicon-------| \({ }^{\text {a }}\) None}} & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & | None & \\
\hline & & \multirow[t]{2}{*}{} & & & \multirow{4}{*}{| None} & & & & & & & \\
\hline \multirow[t]{2}{*}{12F:
Rubicon-} & & & & \multirow{3}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[t]{2}{*}{} & & \multirow{3}{*}{None} \\
\hline & | None & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & & & & & & & & | None & \\
\hline & & & & & & & & & & & & \\
\hline 13B: & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{2}{*}{Kalkaska} & & & & & & & & \multirow[t]{2}{*}{| None} & & & & \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{|} & & | None & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \\
\hline \multirow[t]{2}{*}{13D:
Kalkaska-} & & & & & & & & & & & & None \\
\hline & \multirow[t]{2}{*}{| None} & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & | None & | None & | None & None & \multirow[t]{2}{*}{| None} & | None & None \\
\hline & & & & & & & & & & & & \\
\hline 13E: & & & & & & & & & & & & \\
\hline Kalkaska-- & | None & None \\
\hline & & & & & & & & & & & & \\
\hline 13F: & & & & & & | & & & & & & \\
\hline Kalkaska- & | None & None \\
\hline & & & & & & & & & & & & \\
\hline 14B: & & & & & & & & & & & & \\
\hline Rousseau---- & | None & None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | | & & & | | & | & & & & & \\
\hline \multicolumn{13}{|l|}{24D:} \\
\hline Munising-- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{25B:} \\
\hline Munising- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Yalmer & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{25D:} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Munising---- \\
Yalmer
\end{tabular}} & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{26A:
Skanee} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} \\
\hline & None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{27:} & & & \multirow[b]{2}{*}{|Occasional} & \multirow[b]{2}{*}{|Frequent} & \multirow[b]{2}{*}{| Frequent} & \multirow[b]{2}{*}{|Occasional} & \multirow[b]{2}{*}{| None} & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| Frequent} & \multirow[b]{2}{*}{| Frequent} & \multirow[t]{2}{*}{} \\
\hline & None & \multirow[t]{5}{*}{None} & & & & & & \multirow[t]{5}{*}{| None} & & & & \\
\hline \multirow{4}{*}{Gay----------} & & & | Brief & & & | Brief & & & \multirow[t]{4}{*}{} & | Brief & | Brief & \multirow{4}{*}{| None} \\
\hline & & & Depth: & Depth: & | Depth: & | Depth: & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & 0.2 & & & & 0.2 & 0.2 & \\
\hline & & & & & & & | & & & & & \\
\hline 28B: & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{Keweenaw} & \multirow[t]{2}{*}{None} & & & & & & & & & & & \\
\hline & & | None & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{} & | None & None & \begin{tabular}{l}
None \\
|
\end{tabular} & | None & | None \\
\hline \multirow[t]{2}{*}{28D:
Keweenaw-----} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[t]{2}{*}{} & & & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{} \\
\hline & & & \multirow[t]{2}{*}{| None} & & None & | None & \multirow[t]{2}{*}{| None} & & & \multirow[t]{2}{*}{| None} & & \\
\hline \multirow[t]{2}{*}{28E:} & & & & | None & & & & & & & | None & | None \\
\hline & \multirow[t]{3}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow{3}{*}{| None} \\
\hline Keweenaw-------| & & & & & & \multirow[t]{2}{*}{| None} & & & \multirow[t]{2}{*}{| None} & & & \\
\hline & & & None & \multirow[t]{2}{*}{} & | None & & \multirow[t]{2}{*}{} & | None & & | None & | None & \\
\hline 29B: & & & \multirow[b]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & & \multirow[b]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{3}{*}{} \\
\hline \multirow[t]{2}{*}{Yalmer} & None & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{| None} & & & \multirow[t]{2}{*}{| None} & & | None & & & \\
\hline & & & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{} & \multirow{2}{*}{None} & & & & & \multirow[t]{2}{*}{} & \\
\hline \multirow[t]{2}{*}{29D:} & & & & \multirow[t]{2}{*}{| None} & & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & None \\
\hline & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & & & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} \\
\hline \multirow[b]{3}{*}{31D:
Trenary-----} & & & & | None & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow{3}{*}{| None} \\
\hline & None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{32A:} & & \multirow{3}{*}{| None} & \multirow[b]{3}{*}{| None} & \multirow[b]{3}{*}{None} & \multirow[b]{3}{*}{| None} & \multirow[b]{3}{*}{\begin{tabular}{l}
| None \\
|
\end{tabular}} & \multirow[b]{3}{*}{\begin{tabular}{l}
| None \\
|
\end{tabular}} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} \\
\hline & | None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol & January & February & March & April & May & June & July & August & |September & October & November & December \\
\hline and & & & & & & | & & & & & & \\
\hline soil name & & & & & , & | & & & & & & \\
\hline & & & & & | & | & & & & & & | \\
\hline \multicolumn{13}{|l|}{\(33:\)} \\
\hline \multirow[t]{5}{*}{Ensley------} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & |Occasional & Frequent & | Frequent & |Occasional| & None & | None & | None & Frequent & |Frequent & | None \\
\hline & & & | Brief & Long & | Long & | Brief & & & | & Brief & | Brief & \\
\hline & & & & Depth: & Depth: & \multirow[t]{2}{*}{| Depth:} & & & & Depth: & | Depth: & | \\
\hline & & & | \({ }^{\text {Depth: }}\) & 0.2 & 0.2 & & & & & \multirow[t]{2}{*}{0.2} & 0.2 & | \\
\hline & & & & & & & & & & & & | \\
\hline \multicolumn{13}{|l|}{34B:} \\
\hline \multirow[t]{3}{*}{Onaway------
34D:} & | None & | None & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline & \multicolumn{12}{|c|}{34D:} \\
\hline \multirow[t]{3}{*}{Onaway------
34 E :} & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} \\
\hline \multirow[t]{2}{*}{34 E :
Onaway-} & | None & None & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{35B:
Champion-} & & - & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{3}{*}{| None} \\
\hline & | None & \multirow[t]{2}{*}{| None} & & & & & & & & & & \\
\hline & & & & & None & & \multirow[t]{2}{*}{} & | & & - & , & \\
\hline \multirow[t]{3}{*}{35D:
Champion-------} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{3}{*}{| None} \\
\hline & & & & & & & | None & & & & & \\
\hline & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{,} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & \\
\hline \multirow[t]{2}{*}{36A:} & & \multirow[t]{2}{*}{|} & & & & & & & & & & \\
\hline & | None & & | None & \multirow[t]{2}{*}{| None} & | None & | None & \multirow[t]{2}{*}{| None} & | None & | None & | None & \multirow[t]{3}{*}{| None} & \multirow[t]{2}{*}{| None} \\
\hline \multirow[t]{2}{*}{Net-
37.} & & & & & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|Occasional} & \multirow[b]{2}{*}{Frequent} & \multirow[t]{2}{*}{| Frequent} & \multirow[b]{2}{*}{|Occasional|} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{Frequent} & & \multirow[b]{2}{*}{| None} \\
\hline \multirow[t]{5}{*}{Witbeck} & \multirow[t]{5}{*}{| None} & & & & & & & & & & & \\
\hline & & \multirow{4}{*}{| None} & \multirow[t]{3}{*}{\begin{tabular}{|l|}
|Occasional \\
\(\mid\) Brief \\
\(\mid\) \\
Depth: \\
\(\mid 0.2\)
\end{tabular}} & \multirow[t]{4}{*}{\(|\)\begin{tabular}{l}
Long \\
Depth: \\
0.2
\end{tabular}} & \multirow[t]{4}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Long } \\
& \text { Depth: } \\
& 0.2
\end{aligned}\right.
\]} & | Brief & \multirow{4}{*}{None} & \multirow{4}{*}{| None} & \multirow[t]{4}{*}{\({ }^{\text {| None }}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
Frequent \\
Brief \\
Depth: \\
0.2
\end{tabular}} & | Brief & \\
\hline & & & & & & | Depth: & & & & & Depth: & \\
\hline & & & & & & | 0.2 & & & & & 0.2 & \\
\hline & & & & & & & & & & & & \\
\hline 38B: & & & & & & & & & & & & \\
\hline Pence- & | None \\
\hline & & & & & & & & & & & & \\
\hline 38D: & & & & & & & & & & & & \\
\hline Pence-- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 38E: & & & & & & | & & & & & & \\
\hline Pence- & | None & None & | None \\
\hline & & & & & & \(\mid\) & & & & & & | \\
\hline 39B: & & & & & & & & & & & & \\
\hline Amasa- & | None \\
\hline & & & & & & & & & & & & \\
\hline 39D: & & & & & & & & & & & & \\
\hline Amasa---- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 39E: & & & & & & | & & & & & & \\
\hline Amasa------- & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued

Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{51:} \\
\hline \multirow[t]{6}{*}{Nahma-------} & \multirow[t]{6}{*}{None} & \multirow[t]{6}{*}{| None} & |Occasional| & |Frequent & Frequent & | Rare & | None & | None & | None & | Frequent & | Frequent & None \\
\hline & & & Brief & Long & | Long & Very & & & & Brief & Brief & \\
\hline & & & Depth: & Depth: & | Depth: & | brief & & & & Depth: & | Depth: & \\
\hline & & & 0.2 & 0.2 & | 0.2 & Depth: & & & & 0.2 & | 0.2 & \\
\hline & & & & & & 0.2 & & & & & & \\
\hline & & & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{52B: | |} \\
\hline \multirow[t]{2}{*}{Summerville-} & \multirow[t]{2}{*}{| None} & & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{55F:} \\
\hline \multirow[t]{3}{*}{Michigamme---
Rock outcrop.} & | None & \multirow[t]{2}{*}{| None} & | None & | None & | None & | None & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop. & & & & & & & & & & & & \\
\hline 56D: & & \multirow[b]{2}{*}{| None} \\
\hline Peshekee- & | None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 56E: & & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Peshekee---- \\
Rock outcrop.
\end{tabular}} & \multirow[t]{2}{*}{None} & & & & & & & & & & & \\
\hline & & & & \multirow[t]{3}{*}{} & None \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{56F:
Peshekee---} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} \\
\hline & | None & & & & & & & & & & & \\
\hline \multirow{3}{*}{Rock outcrop.} & & \multirow[t]{2}{*}{} & - & \multirow[t]{3}{*}{None} & \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{None} & \multirow{2}{*}{|None} & \multirow[t]{3}{*}{} & | None & None & \multirow[t]{3}{*}{} & \multirow[t]{2}{*}{|} \\
\hline & \multirow[b]{2}{*}{} & & & & & & & & | & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{\[
57 \text { : }
\]} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{|Frequent} & \multirow[t]{2}{*}{|Frequent} & \multirow[t]{2}{*}{|Frequent} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & Frequent & \multirow[t]{2}{*}{Frequent} & \multirow[b]{2}{*}{| None} \\
\hline & & & & & & & & & & \multirow[t]{5}{*}{|Frequent
\(\mid\) Brief
| Depth:
| 0.5} & & \\
\hline \multirow[t]{4}{*}{Carbondale---} & \multirow[t]{4}{*}{None} & \multirow{4}{*}{| None} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Frequent \\
\(\mid\) Brief \\
\(\mid\) Depth: \\
\(\mid 0.5\)
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{|l|}
\(\mid\) Frequent \\
\(\mid\) Long \\
\(\mid\) Depth: \\
\(\mid\) \\
\(\mid\)
\end{tabular}} & \multirow[t]{4}{*}{\(\mid\) Frequent
\(\mid\) Long
Depth:
| 0.5} & \multirow[t]{4}{*}{|Frequent
\(\mid\) Brief
\(\mid\) Depth:
\(\mid 0.5\)} & \multirow{4}{*}{| None} & \multirow{4}{*}{None} & \multirow[t]{4}{*}{| None} & & \multirow[t]{4}{*}{\[
\begin{array}{|l}
\mid \text { Frequent } \\
\text { Brief } \\
\text { Depth: } \\
\text { | } \\
0.5
\end{array}
\]} & \multirow[t]{4}{*}{} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Tawas--------} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Frequent \\
\(\mid\) Brief \\
Depth: \\
\(\mid 0.5\)
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Frequent } \\
& \begin{array}{|l}
\text { Long } \\
\text { Depth: } \\
0.5 \\
\mid
\end{array}
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{|l|}
\(\mid\) Frequent \\
\(\mid\) Long \\
Depth: \\
D \\
| \\
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{|l}
\(\mid\) Frequent \\
\(\mid\) Brief \\
Depth: \\
\(\mid\) \\
\(\mid\) \\
\hline .5
\end{tabular}} & | None & None & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{\begin{tabular}{l}
|Frequent \\
Brief \\
Depth: \\
0.5
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{|l}
\(\mid\) Frequent \\
\(\mid\) Brief \\
\(\mid\) Depth: \\
\(\mid\) \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 58: & | & | & | & | & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{Frequent} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l|l}
Greenwood---- - & Frequent \\
& \(|\)\begin{tabular}{l}
Brief \\
\(\mid\)
\end{tabular} \\
& Depth: \\
& 0.5
\end{tabular}}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Frequent } \\
& \mid \text { Brief } \\
& \mid \text { Depth: } \\
& \mid 0.5
\end{aligned}
\]} & \multirow[t]{5}{*}{\(\mid\) Frequent
| Brief
Depth:
0.5} & \multirow[t]{5}{*}{\begin{tabular}{|l}
\(\mid\) Frequent \\
\(\mid\) Long \\
\(\mid\) Depth: \\
\(\mid\) \\
\(\mid\) \\
\(\mid\)
\end{tabular}} & & & & & | None & & & \\
\hline & & & & & \multirow[t]{4}{*}{\begin{tabular}{|l}
Frequent \\
Long \\
Depth: \\
1.0
\end{tabular}} & \multirow[t]{4}{*}{\[
\left\{\begin{array}{l}
\text { Brief } \\
\text { Depth: } \\
0.5
\end{array}\right.
\]} & & & & Brief & | Brief & | Brief \\
\hline & & & & & & & & & & Depth: & | Depth: & Depth: \\
\hline & & & & & & & & & & 0.5 & | 0.5 & 0.5 \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & January & February & March & April & May & June & July & August & September & October & November & December \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{\(58:\)} \\
\hline \multirow[t]{5}{*}{Dawson----------} & Frequent & | Frequent & Frequent & | Frequent & |Frequent & Frequent & | None & | None & None & Frequent & Frequent & Frequent \\
\hline & Brief & | Brief & Brief & Long & Long & Brief & & & & Brief & Brief & Brief \\
\hline & Depth: & Depth: & Depth: & Depth: & Depth: & Depth: & & & & Depth: & Depth: & Depth: \\
\hline & 0.5 & 0.5 & 0.5 & 1.0 & 1.0 & 0.5 & & & & 0.5 & 0.5 & 0.5 \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{59 :} \\
\hline \multirow[t]{5}{*}{Chippeny-------} & \multirow[t]{5}{*}{None} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Frequent } \\
& \left\lvert\, \begin{array}{l}
\text { Brief } \\
\text { Depth: } \\
\text { | } \\
0.5
\end{array}\right.
\end{aligned}
\]} & \multirow[t]{5}{*}{\(\mid\) Frequent
\(\mid\) Long
Depth:
| 0.5} & \multirow[t]{5}{*}{```
Frequent
 Long
 Depth:
 0.5
```} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { |Frequent } \\
& \text { | Brief } \\
& \text { Depth: } \\
& 0.5
\end{aligned}
\]} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{None} & \multirow[t]{5}{*}{None} & \multirow[t]{5}{*}{|Frequent
| Brief
Depth:
| 0.5} & \multirow[t]{5}{*}{\(\mid\) Frequent
\(\mid\) Brief
| Depth:
\(\mid 0.5\)} & \multirow[t]{5}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Nahma-----------} & \multirow[t]{6}{*}{None} & \multirow[t]{6}{*}{None |} & |Occasional| & Frequent & Frequent & |Rare & \multirow[t]{6}{*}{None} & \multirow[t]{7}{*}{| None} & \multirow[t]{7}{*}{None} & \multirow[t]{6}{*}{\begin{tabular}{|l|}
\(\mid\) Frequent \\
\(\mid\) Brief \\
Depth: \\
\(\mid 0.2\)
\end{tabular}} & \multirow[t]{2}{*}{|Frequent} & \multirow[t]{6}{*}{None} \\
\hline & & & Brief & & & & & & & & & \\
\hline & & & Depth: & D Depth: & Depth: & brief & & & & & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & Depth: & & & & & 0.2 & \\
\hline & & & & & & 0.2 & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 60: | & \(\mid\) | & \multirow[t]{2}{*}{|Frequent} & & & & & & & & & & \\
\hline \multirow[t]{4}{*}{Histosols-------} & \multirow[t]{4}{*}{\[
\begin{array}{|l|}
\mid \text { Frequent } \\
\mid \text { Very long } \\
\mid \text { Depth: } \\
\left\lvert\, \begin{array}{l}
\text { Dept }
\end{array}\right. \\
\hline
\end{array}
\]} & & Frequent | & |Frequent & Frequent & |Frequent | & |Frequent & Frequent & Frequent | & |Frequent & | Frequent & Frequent \\
\hline & & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\text { Very long } \\
\text { Depth: } \\
1.0
\end{array}
\]} & \begin{tabular}{l}
Very long \\
Depth:
\end{tabular} & Very long Depth: & Very long Depth: & Very long \({ }_{\text {Depth: }}\) & \[
\left\lvert\, \begin{aligned}
& \text { Very long } \\
& \text { Depth: }
\end{aligned}\right.
\] & Very long \({ }^{\text {Depth: }}\) & \begin{tabular}{l}
Very long| \\
Depth:
\end{tabular} & Very long Depth: & \begin{tabular}{l}
Very long \\
Depth:
\end{tabular} & \begin{tabular}{l}
Very long \\
Depth:
\end{tabular} \\
\hline & & & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] & \[
1.0
\] \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Aquents---------} & \multirow[t]{4}{*}{\(\mid\) Frequent
\(\mid\) Very long
| Depth:
\(\mid 1.0\)} & Frequent & |Frequent & | Frequent & Frequent & Frequent & |Frequent & Frequent & Frequent & |Frequent & \(\mid\) Frequent & | Frequent \\
\hline & & | Very long| & Very long| & | Very long| & Very long| & Very long & Very long| & Very long \\
\hline & & | Depth: | & Depth: | & Depth: | & Depth: | & Depth: & Depth: | & Depth: | & Depth: | & Depth: & Depth: & Depth: \\
\hline & & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 & \[
1.0
\] \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{61.} \\
\hline \multirow[t]{2}{*}{Pits, borrow} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 62B: & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{} & \multirow[t]{2}{*}{None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} & \multirow{3}{*}{| None} & \multirow{3}{*}{None} & \multirow{3}{*}{None} \\
\hline \multirow[t]{2}{*}{Udorthents-----} & None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Udipsamments----|} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & | None & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} \\
\hline & & & & \multirow[t]{2}{*}{} & & & & & & & & \\
\hline & & & | & & \multirow[t]{2}{*}{|} & i & \multirow[t]{2}{*}{\[
\mid
\]} & \multirow[t]{2}{*}{I} & i &  & i & \multirow[t]{2}{*}{|} \\
\hline \multirow[t]{2}{*}{Pits and Dumps} & \multirow[t]{2}{*}{\(1 \mid\)} & & & - & &  & & &  & - & - & \\
\hline & & & & & & & & & & & & \\
\hline 65B: & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{None} \\
\hline \multirow[t]{2}{*}{Udorthents} & & & & & & & & & & & & \\
\hline & None & \multirow[t]{3}{*}{|} & & & & & & & & & \multirow[t]{3}{*}{i} & | \\
\hline \multirow[t]{2}{*}{Urban land.} & \multirow[t]{2}{*}{i} & & & & & & & & & | & & | \\
\hline & & & & & & & & & &  & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued



Table 21.--Ponding Frequency, Duration, and Depth--Continued



Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & | & & & | & & & & & & & \\
\hline \multicolumn{13}{|l|}{90B:} \\
\hline Emmet- & | None \\
\hline & & & & & & & & & & & & \\
\hline Escanaba- & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{90D:} \\
\hline Emmet- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Escanaba-- & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{91B:} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Onaway--------- | None}} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Nadeau-} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{92A:
Ensley-} & & & & & & & & & & & & \\
\hline & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & |Occasional & |Frequent & |Frequent & |Occasional| & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & \multirow[t]{4}{*}{None} & |Frequent & |Frequent & \multirow[t]{4}{*}{None} \\
\hline & & & Brief & | Long & | Long & | Brief | & & & & Brief & | Brief & \\
\hline & & & Depth: & | Depth: & | Depth: & Depth: & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & 0.2 & & & & 0.2 & 0.2 & \\
\hline & & & & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & & \multirow[b]{2}{*}{| None} & & & \\
\hline \multirow[t]{2}{*}{Solona} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & & | None & | None & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{93:} \\
\hline \multirow[t]{5}{*}{Tawas-------} & \multirow[t]{5}{*}{None} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{\(\mid\) Frequent
\(\mid\) Brief
| Depth:
\(\mid 0.5\)} & \multirow[t]{5}{*}{| Frequent Long Depth: 0.5} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { | Frequent } \\
& \mid \text { Long } \\
& \mid \text { Depth: } \\
& 0.5
\end{aligned}
\]} & \multirow[t]{5}{*}{\begin{tabular}{l}
\(\mid\) Frequent \\
\(\mid\) Brief \\
Depth: \\
D \\
\hline
\end{tabular}} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{| None} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \mid \text { Frequent } \\
& \left\lvert\, \begin{array}{l}
\text { Brief } \\
\text { Depth: } \\
\mid \\
0.5
\end{array}\right.
\end{aligned}
\]} & \multirow[t]{5}{*}{\(\mid\) Frequent
\(\mid\) Brief
\(\mid\) Depth:
\(\left.\left\lvert\, \begin{array}{l}\text { D } \\ \\ \hline\end{array}\right.\right) .5\)} & \multirow[t]{4}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Deford--} & \multirow[t]{6}{*}{None} & \multirow[t]{6}{*}{| None} & |Occasional| & |Frequent & |Frequent & & None & | None & None & & | Frequent & | None \\
\hline & & & Brief & | Long & | Long & | Very & & & & | Brief & | Brief & \\
\hline & & & Depth: & Depth: & Depth: & | brief & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & | 0.2 & | Depth: & & & & 0.2 & 0.2 & \\
\hline & & & & & & 0.2 & & & & & & \\
\hline & & & & & | & & & & & & & \\
\hline 94B: & & & & \multirow[t]{2}{*}{} & & & & & & & & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{Keweenaw} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \\
\hline & & & & | None & & & & & & & & None \\
\hline \multirow[t]{3}{*}{Kalkaska----
94D:} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
94D: \\
Keweenaw
\end{tabular}} & & | None & & & & & & & & & & \\
\hline & & & & \multirow[b]{3}{*}{| None} & \multirow[b]{3}{*}{| None} & \multirow[b]{3}{*}{| None} & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Kalkaska--------| None}} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued


Table 21.--Ponding Frequency, Duration, and Depth--Continued



Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Map symbol and soil name} & \multirow[t]{3}{*}{January} & \multirow[t]{3}{*}{February} & \multirow[t]{3}{*}{March} & \multirow[t]{3}{*}{April} & \multirow[t]{3}{*}{May} & \multirow[t]{3}{*}{June} & \multirow[t]{3}{*}{July} & \multirow[t]{3}{*}{August} & \multirow[t]{3}{*}{| September} & \multirow[t]{3}{*}{October} & \multirow[t]{3}{*}{November} & \multirow[t]{3}{*}{December} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & | & & | & | & & & & & & & \\
\hline \multicolumn{13}{|l|}{117B:} \\
\hline \multirow[t]{2}{*}{Fence} & | None \\
\hline & & & & & & & & & & & & \\
\hline 118A: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Croswell} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Deford-} & None & | None & |Occasional & | Frequent & |Frequent & & | None & | None & | None & |Frequent & & | None \\
\hline & & & | Brief & | Long & | Long & | Very & & & & | Brief & | Brief & \\
\hline & & | & Depth: & Depth: & | Depth: & brief & & & & Depth: & Depth: & \\
\hline & & | & 0.2 & 0.2 & 0.2 & Depth: & & & & 0.2 & 0.2 & \\
\hline & & | & & & & 0.2 & & & & & & \\
\hline & & | & & & & & & & & & & \\
\hline 119B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Yalmer--------} & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Kalkaska-} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 119D: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Yalmer} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Kalkaska-----} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 121B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Onota} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 122 : & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Pleine} & None & | None & |Occasional & |Frequent & |Frequent & |Occasional & | None & | None & | None & | Frequent & | Frequent & | None \\
\hline & & & Brief & | Long & | Long & Brief & & & & Brief & | Brief & \\
\hline & & & Depth: & Depth: & | Depth: & | Depth: & & & & Depth: & Depth: & \\
\hline & & | & 0.2 & 0.2 & | 0.2 & 0.2 & & & & 0.2 & 0.2 & \\
\hline & & | & & & & & & & & & & \\
\hline 123A: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tula-} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 124B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Gogebic} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Dishno} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 124D: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Gogebic} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}


Table 21.--Ponding Frequency, Duration, and Depth--Continued



Table 21.--Ponding Frequency, Duration, and Depth--Continued


Table 21.--Ponding Frequency, Duration, and Depth--Continued


Table 21.--Ponding Frequency, Duration, and Depth--Continued


Table 21.--Ponding Frequency, Duration, and Depth--Continued


Table 21.--Ponding Frequency, Duration, and Depth--Continued



Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular}} & \multirow[t]{3}{*}{January} & \multirow[t]{3}{*}{February} & \multirow[t]{3}{*}{March} & \multirow[t]{3}{*}{April} & \multirow[t]{3}{*}{May} & \multirow[t]{3}{*}{June} & \multirow[t]{3}{*}{July} & \multirow[t]{3}{*}{August} & \multirow[t]{3}{*}{| September} & \multirow[t]{3}{*}{October} & \multirow[t]{3}{*}{November} & \multirow[t]{3}{*}{December} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & | | & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{193E:} \\
\hline \multirow[t]{2}{*}{Frohling-------|} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 194E: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sporley--------|} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 196E: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling-------|} & None & | None & None & | None & | None & | None & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Onota-----------} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok--------|} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 197B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Shoepac--------|} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Trenary--------|} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 198B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Shoepac--------} & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Reade---------- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 199. & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Udorthents, ash} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 200A: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Charlevoix-----|} & None & | None & None & | None & | None & | None & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{5}{*}{Ensley---------|} & None & | None & & |Frequent & & & None & | None & | None & & & | None \\
\hline & & & | Brief & | Long & | Long & | Brief & & & & | Brief & Brief & \\
\hline & & & Depth: & Depth: & | Depth: & | Depth: & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & 0.2 & & & & 0.2 & 0.2 & \\
\hline & & & & & & & & & & & & \\
\hline 201B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sauxhead--------} & None & | None & None & | None & | None & | None & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{6}{*}{Jacobsville----|} & None & | None & |Occasional| & |Frequent & | Frequent & | Rare & None & | None & | None & | Frequent & |Frequent & | None \\
\hline & & & | Brief & | Long & | Long & | Very & & & & | Brief & | Brief & \\
\hline & & & Depth: & Depth: & | Depth: & brief & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & | Depth: & & & & 0.2 & 0.2 & \\
\hline & & & & & & 0.2 & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 21.--Ponding Frequency, Duration, and Depth--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\qquad\) & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & \(|\quad|\) & & & & & | & & & & \\
\hline 202B: & & & & & & & & & & & & \\
\hline Sauxhead-- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 203A: & & & & & & & & & & & & \\
\hline Au Gres----- & | None & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Deford- & | None & | None & |Occasional| & |Frequent & | Frequent & Rare & | None & | None & | None & |Frequent & |Frequent & | None \\
\hline & & & Brief | & | Long & | Long & Very & & & & | Brief & | Brief & \\
\hline & & & Depth: & Depth: & Depth: & brief & & & & Depth: & Depth: & \\
\hline & & & 0.2 & 0.2 & 0.2 & Depth: & & & & 0.2 & | 0.2 & \\
\hline & & & & & & 0.2 & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 204B: & & & & & & & & & & & & \\
\hline Gogebic----- & | None \\
\hline & & & & & & & & & & & & \\
\hline Tula-------- & | None \\
\hline & & & & & & & & & & & & \\
\hline 206B: & & & & & & & & & & & & \\
\hline Traunik- & | None \\
\hline & & & & & & & & & & & & \\
\hline 207D: & & & & & & & & & & & & \\
\hline Dishno- & | None & None \\
\hline & & & & & & & & & & & & \\
\hline Michigamme-- & | None \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop. & & & & & & & & & & & & \\
\hline & & & & | & & & & | & & & | & \\
\hline 208F: & & & & & & & & & & & & \\
\hline Keewaydin--- & | None \\
\hline & & & & & & & & & & & & \\
\hline Michigamme-- & | None \\
\hline & & & & & & & & | & & & | & \\
\hline 209B: & & & & & & & & & & & & \\
\hline Garlic----- & | None \\
\hline & & & & & & & & & & & & \\
\hline Fence- & | None \\
\hline & & & & & & & & & & & & \\
\hline M-W. & & & & & & & & & & & & \\
\hline Miscellaneous & | & & & | & & & & | & & & | & \\
\hline water & | & | & & & & & & | & & & | & \\
\hline & | & & & & & & & & & & | & \\
\hline w. & | & & & & & & & | & & & | & \\
\hline Water & | & & & & & & & | & & & | & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration
(See text for definitions of terms used in this table)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol and soil name & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & | & | & & & | & & & & & \\
\hline \multicolumn{13}{|l|}{10B:} \\
\hline \multirow[t]{3}{*}{Grayling----
10D:} & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & | None & | None & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & | None \\
\hline & & & & & & & & & & & & \\
\hline & & & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} \\
\hline \multirow[t]{2}{*}{10D:
Grayling} & | None & | None & & & & & & & & & & \\
\hline & & \multirow[t]{2}{*}{} & & & & & & & & & & \\
\hline 10E: & & & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} \\
\hline Grayling--- & | None & | None & & & & & & & & & & \\
\hline \multirow[b]{2}{*}{11C:} & & & \multirow[b]{3}{*}{None} & & & & & & & & & \\
\hline & & & & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{2}{*}{Deer Park--} & | None & \multirow[t]{2}{*}{None} & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{```
11D:
    Deer Park
```} & & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} \\
\hline & | None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{12B:
Rubicon-} & & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{3}{*}{| None} \\
\hline & | None & \multirow[t]{2}{*}{None} & & & & & & & & & & \\
\hline \multirow[b]{2}{*}{12D:} & & & & & & & & & & & & \\
\hline & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{2}{*}{Rubicon-------} & & & & & & & & & & & & \\
\hline & & & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & , & | None & | None & | None & | None & \\
\hline \multirow[t]{2}{*}{12E:
Rubicon} & & & & & & & | & & & & & \\
\hline & | None \\
\hline & & & & & & & & & & & & \\
\hline 12F: & & & & & & & & & & & & \\
\hline Rubicon- & | None \\
\hline & & & & & & & & & & & & \\
\hline 13B: & & & & & & & & & & & & \\
\hline Kalkaska-- & | None \\
\hline & & & & & & & & & & & & \\
\hline 13D: & & & & & & & & & & & & \\
\hline Kalkaska- & | None \\
\hline & & & & & & & & & & & & \\
\hline 13E: & & & & & & & & & & & & \\
\hline Kalkaska- & | None \\
\hline & & & & & & & & & & & & \\
\hline 13F: & & & & & & & & & & & & \\
\hline Kalkaska---- & | None \\
\hline & & & & & & & & & & & & \\
\hline 14B: & & & & & & & & & & & & \\
\hline Rousseau---- & | None \\
\hline & & & & & & & & & & & & \\
\hline 14D: & & & & & & & | & & & & & \\
\hline Rousseau- & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Map symbol } \\
\text { and } \\
\text { soil name } \\
\hline
\end{gathered}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & & | & & & | & & & & \\
\hline \multicolumn{13}{|l|}{15A:} \\
\hline \multirow[t]{2}{*}{Croswell-} & \multirow[t]{2}{*}{None} & | None & None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{16A:} \\
\hline Paquin--------- & \multirow[t]{2}{*}{None} & | None & \multirow[t]{2}{*}{| None} & None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{17A:} \\
\hline \multirow[t]{3}{*}{Au Gres-----
18:} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} \\
\hline \multirow[t]{2}{*}{18:} & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{19:} & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{None} \\
\hline & None & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline 20B: & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & \multirow{3}{*}{None} \\
\hline \multirow[t]{2}{*}{Rousseau} & & & & & & & & & & & \multirow[t]{2}{*}{| None} & \\
\hline & & | & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{} & | & & & \\
\hline \multirow[t]{2}{*}{Ocqueoc} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & & & & & & & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline 20D: & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{None} \\
\hline \multirow[t]{2}{*}{Rousseau---} & & & & & & & & & & & & \\
\hline & \multirow{3}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{\(\mid\) None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \\
\hline Ocqueoc & & & & \multirow[t]{2}{*}{| None} & & & & & & & & \multirow[t]{2}{*}{| None} \\
\hline & & , & & & & & & & & & & \\
\hline 20E: & \multirow[b]{2}{*}{None} & & & & & & & & & & & \\
\hline Rousseau--- & & | None \\
\hline & & & & & & & & & & & & \\
\hline Ocqueoc- & | None \\
\hline & & & & & & & & & & & & \\
\hline 22B: & & & & & & & & & & & & \\
\hline Alcona- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 24B: & & & & & & & & & & & & \\
\hline Munising-- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 24D: & & & & & & & & & & & & \\
\hline Munising- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 25B: & & & & & & & & & & & & \\
\hline Munising---- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Yalmer------- & & & & & & & & None & & & & \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Map symbol } \\
\text { and } \\
\text { soil name } \\
\hline
\end{gathered}
\] & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{125D:} \\
\hline \multirow[t]{3}{*}{Keweenaw----} & | None & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & | None & | None & \multirow[t]{2}{*}{None} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Kalkaska---- \\
Rock outcrop.
\end{tabular}} & & & & & & & & & & \multirow[t]{2}{*}{} & & \\
\hline & & | & & & & & & & & & & , \\
\hline Rock outcrop. & & & & | & & & & & & & & \\
\hline 125F: & & & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{None} \\
\hline \multirow[t]{2}{*}{Keweenaw} & | None & \multirow[t]{2}{*}{| None} & & & & & & \multirow[t]{2}{*}{| None} & & & \multirow[t]{2}{*}{| None} & \\
\hline & & & None & | & | & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{|} & & & | None & & | None \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Kalkaska---- \\
Rock outcrop.
\end{tabular}} & | None & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & & & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & | None & | None & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline 126B: & & & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{2}{*}{Sundog} & | None & \multirow[t]{2}{*}{| None} & & & & & & & & & & \\
\hline & & & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & & & & & & \\
\hline \multirow[t]{2}{*}{126D:
Sundog} & & \multirow[b]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & & & \multirow[b]{2}{*}{| None} \\
\hline & | None & & \multirow[t]{2}{*}{| None} & & \multirow[t]{2}{*}{| None} & | None & & & & & & \\
\hline \multirow[t]{2}{*}{126 E :} & & & & & & & & & & & & \\
\hline & & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} \\
\hline \multirow[t]{2}{*}{Sundog} & | None & & & & & & & & & & & \\
\hline & & & \multirow[t]{2}{*}{|} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{i} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow{2}{*}{| None} & | None & | None & | None & | None \\
\hline \multirow[t]{2}{*}{127B:
Sundog-} & & & & & & & & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & & \multirow[t]{3}{*}{\(\mid\) None} \\
\hline & | None & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & | None & & & | None & \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{127D:
Sundog} & & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} \\
\hline & | None & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{127F:} & & & \multirow[t]{2}{*}{} & & \\
\hline & & \multirow[b]{2}{*}{None} & & & & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & | None \\
\hline & & & & & & & & & & & & \\
\hline 128B: & & & & & & & & & & & & \\
\hline Kalkaska- & | None \\
\hline & & & & & & & & & & & & \\
\hline Waiska----- & | None \\
\hline & & & & & & & & & & & & \\
\hline 128D: & & & & & & & & & & & & \\
\hline Kalkaska---- & | None \\
\hline & & & & & & & & & & & & \\
\hline Waiska------ & | None \\
\hline & & & & & & & & & & & & \\
\hline 128E: & & & & & & & & & & & & \\
\hline Kalkaska---- & | None \\
\hline & & & & & & & & & & & & \\
\hline Waiska--- & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular}} & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline \multicolumn{13}{|l|}{} \\
\hline & & | & & & | & | & & | & & & & \\
\hline \multicolumn{13}{|l|}{129C:} \\
\hline Kalkaska--- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Munising-- & | None \\
\hline & & & & & & & & & & & & \\
\hline 130A: & & & & & & & & & & & & \\
\hline Chabeneau-- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 131: & & & & & & & & & & & & \\
\hline Witbeck- & | None \\
\hline & & & & & & & & & & & & \\
\hline Cathro-- & | None \\
\hline & & & & & & & & & & & & \\
\hline 132. & & | & & & | & & & & & & & \\
\hline Slickens & & | & | & & | & | & & & & & & \\
\hline & & | & | & & | & | & & | & & & & \\
\hline 133B: & & & & & & & & & & & & \\
\hline Keewaydin- & | None \\
\hline & & & & & & & & & & & & \\
\hline Dishno- & | None \\
\hline & & & & & & & & & & & & \\
\hline 133D: & & & & & & & & & & & & \\
\hline Keewaydin--- & | None \\
\hline & & & & & & & & & & & & \\
\hline Dishno- & | None \\
\hline & & & & & & & & & & & & \\
\hline 134B: & & & & & & & & & & & & \\
\hline Keewaydin--- & | None \\
\hline & & & & & & & & & & & & \\
\hline 134D: & & & & & & & & & & & & \\
\hline Keewaydin--- & | None \\
\hline & & & & & & & & & & & & \\
\hline 134F: & & & & & & & & & & & & \\
\hline Keewaydin-- & | None \\
\hline & & & & & & & & & & & & \\
\hline 135A: & & & & & & & & & & & & \\
\hline Witbeck---- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Net------ & | None \\
\hline & & & & & & & & & & & & \\
\hline 136A: & & & & & & & & & & & & \\
\hline Minocqua---- & | None \\
\hline Minocqua & None & & & & & & & & & & & \\
\hline Channing---- & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

Table 22.--Flooding Frequency and Duration--Continued

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular}} & \multirow[t]{3}{*}{January} & \multirow[t]{3}{*}{February} & \multirow[t]{3}{*}{March} & \multirow[t]{3}{*}{April} & \multirow[t]{3}{*}{May} & \multirow[t]{3}{*}{June} & \multirow[t]{3}{*}{July} & \multirow[t]{3}{*}{August} & \multirow[t]{3}{*}{| September} & \multirow[t]{3}{*}{October} & \multirow[t]{3}{*}{November} & \multirow[t]{3}{*}{December} \\
\hline & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline & & & | & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{180E:} \\
\hline \multirow[t]{2}{*}{Kalkaska} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling-} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 180F: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Kalkaska------} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling------} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 181E: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok------} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 181F: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling-----} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok-} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 184C: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Dishno} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Witbeck------} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline 185B : & & & & | & & & & & & & & \\
\hline \multirow[t]{2}{*}{Northland-} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{187B:
Reade} & & & & & & & & & & & & \\
\hline & None & | None & None & | None & | None \\
\hline Reade- & & & & & & & & & & & & \\
\hline 190B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Emmet} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Cunard-} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 191B: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Nahma} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Sundell------} & None & | None & None & | None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline 193E: & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Frohling} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok-} & None & | None & None & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Map symbol \\
and \\
soil name
\end{tabular} & January & February & March & | April & May & June & July & August & | September & October & November & December \\
\hline & & & & | & & & & & & & & \\
\hline \multicolumn{13}{|l|}{194E:} \\
\hline \multirow[t]{2}{*}{Sporley--------|} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & | None & \multirow[t]{2}{*}{| None} & | None & | None \\
\hline & & & & & & & & & & & & \\
\hline \multicolumn{13}{|l|}{196E:} \\
\hline \multirow[t]{2}{*}{Frohling-------} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Onota----------} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Tokiahok-------} & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline 197B: | & & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} \\
\hline \multirow[t]{4}{*}{Shoepac---------
Trenary---------} & None & & & & & & & & & & & \\
\hline & \multirow[t]{3}{*}{} & & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{\(\mid\) None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \\
\hline & & | None & & & & & & & & & & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline 198B: & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} \\
\hline Shoepac---------| & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{Reade----------|} & & \multirow[b]{2}{*}{None} & & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{| None} & \multirow[b]{2}{*}{None} & \\
\hline & \multirow[t]{2}{*}{None} & & \multirow[t]{2}{*}{| None} & & & & & & & & & \multirow[t]{2}{*}{| None} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
199. \\
Udorthents, ash
\end{tabular}} & & & & | & & & & & & & & \\
\hline & & & & | & & & & & & & & \\
\hline & & & & | & & & & & & & | & \\
\hline 200A: & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{| None} & \multirow[t]{2}{*}{None} & & \multirow[t]{2}{*}{None} & & \multirow[b]{2}{*}{| None} \\
\hline Charlevoix----- & & & & & & & & & | None & & | None & \\
\hline \multirow[t]{3}{*}{Ensley---------|} & & \multirow[t]{2}{*}{None} & \multirow[t]{2}{*}{None} & \multirow[b]{2}{*}{| None} & \multirow[t]{2}{*}{} & \multirow[b]{3}{*}{| None} \\
\hline & \multirow[t]{2}{*}{None} & & & & & & & & & & & \\
\hline & & & \multirow[t]{2}{*}{} & & & & & & & \multirow[t]{2}{*}{} & None & \\
\hline 201B: & | & \multirow[t]{2}{*}{| None} & & \multirow[b]{2}{*}{| None} & \multirow{3}{*}{| None} & \multirow{3}{*}{| None} & & & & & & \multirow[t]{3}{*}{| None} \\
\hline Sauxhead-------- & \multirow[t]{2}{*}{\({ }^{\text {None }}\)} & & \multirow[t]{2}{*}{| None} & & & & | None & | None & | None & \multirow[t]{2}{*}{| None} & | None & \\
\hline \multirow[t]{3}{*}{Jacobsville----|} & & \multirow[t]{2}{*}{None} & & \multirow[t]{2}{*}{None} & & & \multirow[t]{2}{*}{| None} & \multirow[b]{2}{*}{None} & & & & \\
\hline & None & & \multirow[t]{2}{*}{| None} & & | None & \multirow[t]{2}{*}{| None} & & & | None & \multirow[t]{2}{*}{| None} & | None & \multirow[t]{2}{*}{None} \\
\hline & & & & & & & & & & & & \\
\hline 202B: & \multirow{3}{*}{- | None} & & & & & & & & & & & \\
\hline Sauxhead--------| & & | None \\
\hline & & & & & & & & & & & & \\
\hline 203A: & & & & & & & & & & & & \\
\hline Au Gres--------- & | None \\
\hline & & & & & & & & & & & & \\
\hline Deford---------- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 204B: & & & & & & & & & & & & \\
\hline Gogebic--------- & | None \\
\hline Tula------------ & & | None & & & & & & & & & & \\
\hline Tula------------ & None & | None & | None & | None & None & | None \\
\hline
\end{tabular}

Table 22.--Flooding Frequency and Duration--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Map symbol & January & February & March & April & May & June & July & August & | September & October & November & December \\
\hline and & , & & & & & June & & & & & & \\
\hline soil name & & | & | & & & | & & & & & & \\
\hline & & & & & & | & & & & & & \\
\hline 206B: & & & & & & & & & & & & \\
\hline Traunik- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 207D: & & & & & & & & & & & & \\
\hline Dishno- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Michigamme-- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Rock outcrop. & & & & & & & & & & & & \\
\hline & & & & & & | & & & & & & \\
\hline 208F: & & & & & & & & & & & & \\
\hline Keewaydin--- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Michigamme-- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline 209B: & & & & & & & & & & & & \\
\hline Garlic- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline Fence- & None & | None \\
\hline & & & & & & & & & & & & \\
\hline m-w. & & & & & & & & & & & & \\
\hline Miscellaneous & & & & & & & & & & & & | \\
\hline water & & & & & & & & & & & & \\
\hline & & & & & & | & & & & & & | \\
\hline w. & | & | & | & & & | & & & & & & \\
\hline Water & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features
(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated)

Table 23.--Soil Features--Continued

Table 23.--Soil Features--Continued

Table 23.--Soil Features--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{4}{|c|}{Restrictive layer} & \multirow[b]{2}{*}{Potential
for} & \multicolumn{2}{|l|}{Risk of corrosion} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Kind \(|\)\begin{tabular}{r|r}
Depth \\
\(\mid\) to top
\end{tabular}}} & \multirow[b]{2}{*}{Thickness} & \multirow[b]{2}{*}{Hardness} & & \multirow[t]{2}{*}{Uncoated steel} & \multirow[b]{2}{*}{| Concrete} \\
\hline & & & & & frost action & & \\
\hline \multirow[t]{2}{*}{} & Kind & \multirow[t]{2}{*}{In} & \multirow[t]{2}{*}{In |} & | & & & \\
\hline & & & & & & & \\
\hline 41A: & & & & & & & \\
\hline Channing------- & --- & - & --- & | --- & | High & | Moderate & | Moderate \\
\hline & & & & & & & \\
\hline 42 : & & & & & & & \\
\hline Minocqua-------- & --- & --- & --- | & -- & | High & | High & | High \\
\hline & & & & & & & \\
\hline 43B: & & & & & & & \\
\hline Karlin--------- & --- & --- & -- & --- & | Low & | Low & | High \\
\hline & & & & & & & \\
\hline 43D: & & & & & & & \\
\hline Karlin---------- & --- & --- & - & --- & | Low & | Low & | High \\
\hline & & & & & & & \\
\hline 44B: & & & & & & & \\
\hline Carlshend- & | Bedrock & 10-20 & 10-25 & | Strongly & | Moderate & | Low & Moderate \\
\hline & (paralithic) & & & | cemented & & & \\
\hline & & & & & & & \\
\hline & |Bedrock (lithic) & 20-35 & --- & | Indurated & & & \\
\hline & & & & & & & \\
\hline 45A : & & & & & & & \\
\hline Zeba- & |Bedrock (lithic) & 20-40 & --- & | Indurated & | High & | Moderate & | Moderate \\
\hline & & & & & & & \\
\hline & | Bedrock & 20-35 & 0-5 & | Moderately & & & \\
\hline & | (paralithic) & & & | cemented & & & \\
\hline & & & & & & & \\
\hline 46 : & & & & & & & \\
\hline Jacobsville- & |Bedrock (lithic) & 20-40 & --- & | Indurated & | High & \(\mid\) High & High \\
\hline Jacobsvile & (Bedrock (lithic) & & & Indurated & & & \\
\hline 48: & & & & & & & \\
\hline Burt & |Bedrock (lithic) & 10-20 & - & | Indurated & | Moderate & | High & High \\
\hline & & & & & & & \\
\hline 50A: & & & & & & & \\
\hline Sundell- & |Bedrock (lithic) & 20-40 & - & | Indurated & | High & | Moderate & | Low \\
\hline & & & & & & & \\
\hline 51: & & & & & & & \\
\hline Nahma & |Bedrock (lithic) & 20-40 & --- & | Indurated & | High & \(\mid\) High & Low \\
\hline & & & & & & & \\
\hline 52B: & & & & & & & \\
\hline Summerville--- & |Bedrock (lithic) & 10-20 & --- & | Indurated & | Moderate & | Low & | Low \\
\hline & & & & & & & \\
\hline 55F: & & & & & & & \\
\hline Michigamme- & |Bedrock (lithic) & 20-40 & - & | Indurated & | Moderate & | Low & | High \\
\hline - & & & & & & & \\
\hline Rock outcrop---- & |Bedrock (lithic) & 0-4 & --- & | Indurated & None & --- & --- \\
\hline & & & & & & & \\
\hline 56D: & & & & & & & \\
\hline Peshekee & |Bedrock (lithic) & 10-20 & --- & | Indurated & | Moderate & | Low & | High \\
\hline & & & & & & & \\
\hline Rock outcrop---- & |Bedrock (lithic) & 0-4 & --- & | Indurated & | None & --- & --- \\
\hline & & & & & & & | \\
\hline 56E: & & & & & & & \\
\hline Peshekee- & |Bedrock (lithic) & 10-20 & --- & | Indurated & Moderate & | Low & | High \\
\hline & & & & & & & \\
\hline Rock outcrop----- & |Bedrock (lithic) & 0-4 & --- & | Indurated & | None & --- & --- \\
\hline & & & & & & & \\
\hline 56F: & & & & & & & \\
\hline Peshekee-------- & |Bedrock (lithic) & 10-20 & --- & | Indurated & | Moderate & | Low & | High \\
\hline & & & & & & & \\
\hline Rock outcrop----- & |Bedrock (lithic) & 0-4 & --- & | Indurated & | None & --- & --- \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{4}{|c|}{Restrictive layer} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Potential } \\
& \text { for }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Risk of corrosion} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l|l}
| Depth \\
Kind & to top
\end{tabular}}} & \multirow[b]{2}{*}{Thickness} & \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{Uncoated steel} & \multirow[b]{2}{*}{Concrete} \\
\hline & & & & & |frost action| & & \\
\hline \multirow[t]{2}{*}{} & & \multirow[t]{2}{*}{In} & \multirow[t]{2}{*}{In} & Hardness & & \multirow[t]{2}{*}{} & , \\
\hline & & & & , & & & | \\
\hline 57 : & & & & & & & | \\
\hline Carbondale--------- & --- & --- & --- & --- & | High & \(\mid\) High & | Moderate \\
\hline & & & & & & & \\
\hline Tawas---------------- & --- & --- & --- & --- & | High & \(\mid\) High & | Moderate \\
\hline & & & & & & & \\
\hline 58: & & | & & & & & \\
\hline Greenwood----------- & --- & -- & --- & --- & | High & | High & | High \\
\hline & & & & & & & \\
\hline Dawson------------- & --- & --- & --- & --- & | High & \(\mid\) High & | High \\
\hline & & & & & & & \\
\hline \[
59 \text { : }
\] & & & & & & & \\
\hline Chippeny & Bedrock (lithic) & 20-51 & --- & Indurated & | High & \(\mid\) High & Moderate \\
\hline & (& & & & & & \\
\hline Nahma- & Bedrock (lithic) & 20-40 & --- & | Indurated & | High & \(\mid\) High & | Low \\
\hline & Bedrock (lithic) & & & & & & \\
\hline 60 : & & & & & & & \\
\hline Histosols----------- & --- & - & - & --- & | High & | High & | Moderate \\
\hline & & & & & & & \\
\hline Aquents------------ & --- & --- & --- & --- & | High & --- & --- \\
\hline & & & & & & & \\
\hline 61. & & | & & & & & | \\
\hline Pits, borrow & & & & & & & | \\
\hline & & & & & & & | \\
\hline 62B: & & | & & & & & | \\
\hline Udorthents. & & & & & & & | \\
\hline & & & & & & & | \\
\hline Udipsamments-------- & --- & | --- & --- & -- & | Low & | Low & | Moderate \\
\hline & & & & & & & , \\
\hline 64. & & & & & & & | \\
\hline Pits and Dumps & & & & & & & | \\
\hline & & & & & & & | \\
\hline 65B. & & & & & & & | \\
\hline Udorthents-Urban land & & & & & & & | \\
\hline & & & & & & & | \\
\hline 66B: & & & & & & & \\
\hline Udipsamments-------- & --- & --- & --- & --- & | Low & | Low & | Moderate \\
\hline & & & & & & & \\
\hline Urban land. & & & & & & & | \\
\hline & & & & & & & | \\
\hline 67B: & & & & & & & | \\
\hline Urban land. & & & & & & & | \\
\hline & & & & & & & | \\
\hline Rubicon------------- & --- & --- & --- & --- & | Low & | Low & High \\
\hline & & & & & & & \\
\hline 68 : & & & & & & & | \\
\hline Pits, quarries------ & Bedrock (lithic) & 0-4 & --- & Indurated & --- & --- & --- \\
\hline & & & & & & & | \\
\hline 69B: & & | & & & & & | \\
\hline Escanaba------------ & --- & --- & --- & --- & | Moderate & | Low & | Low \\
\hline & & & & & & & , \\
\hline 69D: & & I & & & & & | \\
\hline Escanaba------------ & --- & | --- & --- & --- & | Moderate & | Low & | Low \\
\hline & & & & & & & , \\
\hline 70B: & & , & & & & & \\
\hline Nadeau--------------- & --- & | --- & --- & | --- & | Moderate & | Low & | Low \\
\hline & & & & & & & | \\
\hline 70D: & & | & & & & & \\
\hline Nadeau--------------- & --- & --- & --- & --- & | Moderate & | Low & | Low \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{4}{|c|}{Restrictive layer} & \multirow[b]{2}{*}{Potential for} & \multicolumn{2}{|l|}{Risk of corrosion} \\
\hline & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Kind \begin{tabular}{l|l}
Depth \\
\(\mid\) to top
\end{tabular}}} & \multirow[b]{2}{*}{Thickness} & \multirow[b]{2}{*}{| Hardness} & & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline Uncoated \\
steel
\end{tabular}} & \multirow[b]{2}{*}{Concrete} \\
\hline & & & & & |frost action| & & \\
\hline \multirow[t]{2}{*}{} & & In & In & | & & & \\
\hline & & & & | & & | & \\
\hline \multicolumn{8}{|l|}{71B:} \\
\hline \multirow[t]{2}{*}{Evart-} & - & --- & --- | & | & | Moderate & | High & | Low \\
\hline & & & & | & & & \\
\hline \multirow[t]{3}{*}{Pelkie------------
Sturgeon----------} & --- & - & --- & --- & | Low & | Low & | Moderate \\
\hline & & & & | & & & \\
\hline & --- & --- & --- & \(\mid\)--- & | High & | Moderate & | Moderate \\
\hline Surgeon & & & & & & & \\
\hline 72B: & & & & | & & & \\
\hline \multirow[t]{2}{*}{Emmet} & --- & --- & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & | & & & \\
\hline 72D: & & & & | & & & \\
\hline \multirow[t]{2}{*}{Emmet} & --- & --- & - & --- & | Moderate & | Low & Moderate \\
\hline & & & & 1 & & & \\
\hline 72E: & & & & | & & & \\
\hline \multirow[t]{2}{*}{Emmet} & --- & - & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & | & & & \\
\hline 73B: & & & & & & & \\
\hline \multirow[t]{3}{*}{Gogebic} & Fragipan & 15-30 & 20-50 & | Strongly & | Moderate & | Moderate & High \\
\hline & & & & | cemented & & & \\
\hline & & & & , & & & \\
\hline 73D: & & & & | & & & \\
\hline \multirow[t]{3}{*}{Gogebic} & Fragipan & 15-30 & 20-50 & |Strongly & | Moderate & | Moderate & High \\
\hline & & & & | cemented & & & \\
\hline & & & & ded & & & \\
\hline 74D: & & & & | | & & & \\
\hline \multirow[t]{3}{*}{Schweitzer} & Fragipan & 15-30 & 20-50 & & | Moderate & | Moderate & High \\
\hline & & & & | cemented & & & \\
\hline & & & & | & & & \\
\hline \multirow[t]{2}{*}{Michigamme---} & Bedrock (lithic) & 20-40 & --- & | Indurated & | Moderate & | Low & High \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & & & & \\
\hline & & & & & & & \\
\hline 74F: & & & & | & & & \\
\hline \multirow[t]{3}{*}{Schweitzer} & Fragipan & 15-30 & 20-50 & & | Moderate & | Moderate & High \\
\hline & & & & | cemented & & & \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Michigamme---} & Bedrock (lithic) & 20-40 & --- | & | Indurated & | Moderate & | Low & High \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Rock outcrop.} & & & & | & & & \\
\hline & & & & | & & & \\
\hline 76C: & & & & | & & & \\
\hline \multirow[t]{3}{*}{Garlic-----------------------} & --- & --- & --- | & --- & | Low & | Low & High \\
\hline & & & & & & & \\
\hline & - & --- & --- | & -- & | Moderate & | Low & Low \\
\hline \multirow[t]{2}{*}{Alcona-------------------} & & & & & & & \\
\hline & Ortstein & 6-12 & 10-20 & |Strongly cemented| & Low & | Low & Moderate \\
\hline & & & & & & & \\
\hline 76E: & & & & | & & & \\
\hline \multirow[t]{3}{*}{Garlic-----------------------} & --- & --- & --- & --- & | Low & | Low & High \\
\hline & & & & | & & & \\
\hline & --- & --- & --- & --- & | Moderate & | Low & | Low \\
\hline \multirow[t]{2}{*}{Alcona---------------------} & & & & & & & \\
\hline & Voelker---------------| \({ }^{\text {Ortstein }}\) & 6-12 & 10-20 & |Strongly cemented| & L Low & | Low & | Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{76F: | | | | | | | |} \\
\hline \multirow[t]{4}{*}{Garlic-----------------------} & --- & --- & --- & --- & | Low & | Low & \(\mid\) High \\
\hline & & & & | & & & \\
\hline & --- & | --- & --- & --- & | Moderate & | Low & | Low \\
\hline & & & & & & & \\
\hline \multirow[t]{2}{*}{Voelker-} & Ortstein & 6-12 & 10-20 & |Strongly cemented| & L Low & | Low & | Moderate \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features--Continued

Table 23.--Soil Features--Continued

Table 23.--Soil Features--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{4}{|c|}{Restrictive layer} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Potential } \\
& \text { for }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Risk of corrosion} \\
\hline & & Depth & & & & Uncoated & 1 \\
\hline & Kind & to top & |Thickness| & Hardness & |frost action| & steel & Concrete \\
\hline & & In & In & & & & | \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{94B:} \\
\hline Keweenaw-------- & --- & --- & -- & --- & | Low & Low & | Moderate \\
\hline & & & & & & & \\
\hline Kalkaska-------- & --- & --- & --- & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{94D:} \\
\hline Keweenaw-------- & --- & - & --- | & --- & | Low & Low & | Moderate \\
\hline & & & & & & & \\
\hline Kalkaska-------- & --- & - & --- & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{94E:} \\
\hline Keweenaw-------- & --- & --- & -- & --- & | Low & Low & | Moderate \\
\hline & & & & & & & \\
\hline Kalkaska--------- & --- & - & --- & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{95B:} \\
\hline Liminga--------- & --- & --- & --- | & --- & | Low & Low & | Moderate \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{95D:} \\
\hline Liminga-------- & - & --- & --- & --- & | Low & Low & Moderate \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{100E:} \\
\hline Sayner--------- & --- & --- & --- | & --- & | Low & Low & | Moderate \\
\hline & & & & & & & \\
\hline Rubicon--------- & --- & - & - & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{100F:} \\
\hline Sayner--------- & --- & --- & -- & --- & | Low & Low & | Moderate \\
\hline , & & & & & & & \\
\hline Rubicon-- & --- & --- & --- & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{103D:} \\
\hline Rubicon-------- & --- & --- & - & --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline Ocqueoc--------- & --- & --- & --- & | --- & | Low & Low & | Moderate \\
\hline - & & & & & & & \\
\hline Rock outcrop- & Bedrock (lithic) & 0-4 & --- & Indurated & | None & --- & --- \\
\hline & Bedrock (1ithic) & & & & & & | \\
\hline \multicolumn{8}{|l|}{104C:} \\
\hline Fence & --- & --- & --- & --- & | High & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{105C:} \\
\hline Munising-- & Fragipan & 15-24 & 25-50 & | Strongly & | Moderate & Low & | High \\
\hline Munising & Fragipan & & & | cemented & |roderate & & \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{106B:} \\
\hline Sagola----------- & --- & --- & --- & --- & | Moderate & Low & | Low \\
\hline & & & & & & & \\
\hline Rubicon--------- & --- & --- & --- & | --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{106D:} \\
\hline Sagola----------- & --- & --- & --- & --- & | Moderate & Low & | Low \\
\hline & & & & & & & \\
\hline Rubicon---------- & --- & --- & --- & | --- & | Low & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{107B:} \\
\hline Goodman--------- & --- & --- & --- & --- & | Moderate & Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Sundog---------------- ---}} & --- & --- | & --- & | Moderate & Low & | Moderate \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features--Continued

Table 23.--Soil Features--Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Map symbol and soil name} & \multicolumn{4}{|c|}{Restrictive layer} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Potential } \\
& \text { for }
\end{aligned}
\]} & \multicolumn{2}{|l|}{Risk of corrosion} \\
\hline & & Depth & & & & Uncoated & \\
\hline & Kind & | to top & |Thickness & Hardness & |frost action & steel & Concrete \\
\hline & & In & In & & & & | \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{112F:} \\
\hline Keewaydin------- & --- & --- & --- & --- & | Low & | Low & | Moderate \\
\hline & & & & & & & \\
\hline Michigamme--- & |Bedrock (lithic) & 20-40 & --- & | Indurated & | Moderate & | Low & | High \\
\hline & & & & & & & \\
\hline Rock outcrop- & |Bedrock (lithic) & 0-4 & --- & | Indurated & | None & --- & --- \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{113B:} \\
\hline Vanriper & --- & --- & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{113D:} \\
\hline Vanriper & --- & --- & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{113F:} \\
\hline Vanriper & --- & - & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114B :} \\
\hline Vanriper-------- & --- & --- & - & --- & | Moderate & | Low & | Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114D:} \\
\hline Vanriper----- & --- & - & --- & --- & | Moderate & | Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{114F:} \\
\hline Vanriper-------- & -- & --- & --- & --- & | Moderate & Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{117B:} \\
\hline Fence----------- & -- & --- & --- & --- & | High & | Low & High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{118A:} \\
\hline Croswell & --- & -- & --- & --- & | Low & | Low & Moderate \\
\hline & & & & & & & \\
\hline Deford---------- & -- & - & - & --- & | Moderate & Low & Moderate \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{119B:} \\
\hline Yalmer- & |Fragipan & 20-40 & 25-60 & & | Low & | Low & Moderate \\
\hline & & & & cemented & & & \\
\hline & & & & & & & \\
\hline Kalkaska-------- & -- & --- & --- & --- & | Low & | Low & High \\
\hline Kalkaska & & & & & & & \\
\hline \multicolumn{8}{|l|}{119D:} \\
\hline Yalmer- & | Fragipan & 20-40 & 25-60 & & | Low & | Low & Moderate \\
\hline & & & & cemented & & & \\
\hline & & & & & & & \\
\hline Kalkaska-------- & --- & - & --- & --- & | Low & | Low & | High \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{121B:} \\
\hline Onota & |Bedrock (lithic) & 20-40 & --- & | Indurated & | Moderate & | Low & Moderate \\
\hline & |Bedrock (lithic) & & & & & & \\
\hline \multicolumn{8}{|l|}{122:} \\
\hline Pleine---------- & --- & --- & --- & --- & | High & | High & | Moderate \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{123A:} \\
\hline Tula & | Fragipan & 15-30 & 15-40 & |Strongly & | High & | High & Moderate \\
\hline & & & & cemented & & & \\
\hline & & & & & & & | \\
\hline \multicolumn{8}{|l|}{124B :} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Gogebic \\
Dishno
\end{tabular}} & | Fragipan & 15-30 & 20-50 & \[
\begin{aligned}
& \mid \text { Strongly } \\
& \mid \text { cemented }
\end{aligned}
\] & | Moderate & | Moderate & | High \\
\hline & & & & cemented & & & \\
\hline & |Bedrock (lithic) & 40-60 & --- & Indurated & | Moderate & | Moderate & | High \\
\hline & & & & & & & \\
\hline
\end{tabular}

Table 23.--Soil Features--Continued

Table 23.--Soil Features-Continued

\begin{tabular}{|c|c|}
\hline Soil name & Family or higher taxonomic class \\
\hline & \\
\hline Alcona- & Coarse-loamy, mixed, active, frigid Alfic Haplorthods \\
\hline Amasa---------- & Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Typic Haplorthods \\
\hline Aquents------ & Aquents \\
\hline Au Gres-------- & Sandy, mixed, frigid Typic Endoaquods \\
\hline Buckroe-------- & Sandy-skeletal, mixed, frigid Lithic Udorthents \\
\hline Burt---------- & Siliceous, frigid Lithic Psammaquents \\
\hline Carbondale----- & Euic Hemic Borosaprists \\
\hline Carlshend------ & Loamy, mixed, superactive, frigid, shallow Oxyaquic Haplorthods \\
\hline Cathro--------- & Loamy, mixed, euic Terric Borosaprists \\
\hline Chabeneau----- & Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Oxyaquic Haplorthods \\
\hline Champion------- & Coarse-loamy, mixed, superactive, frigid Oxyaquic Fragiorthods \\
\hline Channing------ & Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Typic Endoaquods \\
\hline Charlevoix---- & Coarse-loamy, mixed, superactive, frigid Argic Endoaquods \\
\hline Chippeny-------- & Euic Lithic Borosaprists \\
\hline Chocolay------- & Loamy-skeletal, mixed, superactive, frigid Oxyaquic Haplorthods \\
\hline Croswell-------- & Sandy, mixed, frigid Oxyaquic Haplorthods \\
\hline Cunard-------- & Coarse-loamy, mixed, active, frigid Typic Eutroboralfs \\
\hline Dawson--------- & Sandy or sandy-skeletal, dysic Terric Borosaprists \\
\hline Deer Park------- & Mixed, frigid Spodic Udipsamments \\
\hline Deford--------- & Mixed, frigid Typic Psammaquents \\
\hline Dishno---------- & Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Oxyaquic Haplorthods \\
\hline Duel----------- & Sandy, mixed, frigid Entic Haplorthods \\
\hline Emmet--------- & Coarse-loamy, mixed, active, frigid Typic Eutroboralfs \\
\hline Ensley------- & Coarse-loamy, mixed, active, nonacid, frigid Aeric Endoaquents \\
\hline Escanaba------- & Sandy over loamy, mixed, superactive, frigid Alfic Haplorthods \\
\hline Evart---------- & Sandy, mixed, frigid Fluvaquentic Endoaquolls \\
\hline Farquar-------- & Sandy-skeletal, mixed, frigid Oxyaquic Haplorthods \\
\hline Fence---------- & Coarse-silty, mixed, superactive, frigid Alfic Oxyaquic Haplorthods \\
\hline Finch--------- & Sandy, mixed, frigid, ortstein Typic Duraquods \\
\hline Frohling------- & Coarse-loamy, mixed, active, frigid Alfic Fragiorthods \\
\hline Garlic--------- & Sandy, mixed, frigid, ortstein Typic Haplorthods \\
\hline Gay------------ & Coarse-loamy, mixed, active, nonacid, frigid Typic Epiaquepts \\
\hline Gogebic------- & Coarse-loamy, mixed, superactive, frigid Alfic Oxyaquic Fragiorthods \\
\hline Goodman------- & Coarse-loamy, mixed, superactive, frigid Alfic Haplorthods \\
\hline Grayling------ & Mixed, frigid Typic Udipsamments \\
\hline Greenwood---- & Dysic Typic Borohemists \\
\hline Histosols & Histosols \\
\hline Ishpeming------ & Sandy, mixed, frigid Entic Haplorthods \\
\hline Jacobsville----- & Coarse-loamy, mixed, active, nonacid, frigid Typic Endoaquepts \\
\hline Jeske & Siliceous, acid, frigid, shallow Typic Psammaquents \\
\hline Kalkaska & Sandy, mixed, frigid Typic Haplorthods \\
\hline Karlin- & Sandy, mixed, frigid Entic Haplorthods \\
\hline Keewaydin & Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, frigid Typic Haplorthods \\
\hline Keweenaw- & Sandy, mixed, frigid Alfic Haplorthods \\
\hline Kinross & Sandy, mixed, frigid Typic Endoaquods \\
\hline Liminga & Sandy, mixed, frigid Typic Haplorthods \\
\hline Mancelona & Sandy, mixed, frigid Alfic Haplorthods \\
\hline Mashek & |Coarse-loamy, mixed, active, frigid Oxyaquic Eutroboralfs \\
\hline Michigamme-- & |Coarse-loamy, mixed, superactive, frigid Typic Haplorthods \\
\hline Minocqua & |Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, nonacid, frigid Typic Endoaquepts \\
\hline Munising & Coarse-loamy, mixed, active, frigid Alfic Oxyaquic Fragiorthods \\
\hline Nadeau- & |Coarse-loamy, mixed, active, frigid Typic Eutroboralfs \\
\hline Nahma & |Coarse-loamy, mixed, active, nonacid, frigid Histic Humaquepts \\
\hline Net & |Coarse-loamy, mixed, superactive, frigid Typic Fragiaquods \\
\hline Northland--- & |Coarse-loamy, mixed, superactive Oxyaquic Eutroboralfs \\
\hline Ocqueoc & |Sandy over loamy, mixed, active, frigid Entic Haplorthods \\
\hline Onaway- & |Fine-loamy, mixed, superactive, frigid Typic Eutroboralfs \\
\hline Onota---------- & |Coarse-loamy, mixed, superactive, frigid Typic Haplorthods \\
\hline Paavola-------- & |Sandy-skeletal, mixed, frigid Oxyaquic Fragiorthods \\
\hline Paquin & |Sandy, mixed, frigid, ortstein Typic Durorthods \\
\hline Pelissie & |Sandy-skeletal, mixed, frigid Entic Haplorthods \\
\hline & \\
\hline
\end{tabular}

Table 24.--Classification of the Soils--Continued

\section*{Interpretive Groups}
(Dashes indicate that no interpretive group is assigned)

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow[t]{4}{*}{Land capability} & \multirow{4}{*}{\begin{tabular}{l}
Prime \\
farmland status
\end{tabular}} & \multirow{4}{*}{Woodland ordination symbol} & \multirow{4}{*}{Michigan
soil
management group} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & & \multirow[t]{2}{*}{Primary} & \multirow[t]{2}{*}{Secondary} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 18- & 6w & | Not prime & 2W & 5c-a & PCS & TMC-V \\
\hline \multirow[t]{2}{*}{Kinross} & & farmland & & & & \\
\hline & & & & & & \\
\hline 19-- & 5w & | Not prime & 4W & 5c & TMC & TTS \\
\hline \multirow[t]{2}{*}{Deford} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{20B----------------} & & | Not prime & & & AQVac & TMV \\
\hline & & | farmland & & & & \\
\hline & 3 s & & 5 S & 4a & & \\
\hline \multirow[t]{2}{*}{Ocqueoc} & 3 s & & 3 S & 4/2a & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{20D----------------
Rousseau----------} & & | Not prime & & & AQVac & TMV \\
\hline & & farmland & & & & \\
\hline & 4 e & & 5 S & 4 a & & \\
\hline \multirow[t]{3}{*}{Ocqueoc-------------------------------} & 4 e & & 3 S & 4/2a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AQVac & TMV \\
\hline 20E- & & farmland & & & & \\
\hline Rousseau- & 7 e & & 5 R & 4 a & & \\
\hline \multirow[t]{2}{*}{Ocqueoc} & 7 e & & 3R & 4/2a & & \\
\hline & & & & & & \\
\hline & 2 e & | Prime & 3L & 3a-s & ATD & TM \\
\hline \multirow[t]{2}{*}{Alcona} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow{3}{*}{Munising} & 2 e & & 3W & 3a-af & AtD & TM \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Munising
Munioler} & 4 e & & 3W & 3a-af & ATD & TM \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{25B-} & & | Not prime & & & ATD & TM \\
\hline & & | farmland & & & & \\
\hline Munising------- & 2 e & & 3W & 3a-af & & \\
\hline \multirow[t]{3}{*}{Yalmer------------} & 3 s & & 3 D & 4a-af & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD & TM \\
\hline 25D- & & farmland & & & & \\
\hline Munising- & 4 e & & 3W & 3a-af & & \\
\hline \multirow[t]{2}{*}{Yalmer--} & 4 e & & 3D & 4a-af & & \\
\hline & & & & & & \\
\hline 26A---- & 2w & | Not prime & 3W & \(3 \mathrm{~b}-\mathrm{af}\) & TMC-D & TMC \\
\hline \multirow[t]{2}{*}{Skanee} & & farmland & & & & \\
\hline & & & & & & \\
\hline 27-- & 6 s & | Not prime & 3W & 3 c & FI & TTS \\
\hline \multirow[t]{2}{*}{Gay} & & | farmland & & & & \\
\hline & & & & & & \\
\hline 28B------- & 3 e & | Not prime & 3A & 4a-a & ATD-D & TM \\
\hline \multirow[t]{2}{*}{Keweenaw} & & | farmland & & & & \\
\hline & & & & & & \\
\hline & 4 e & | Not prime & 3A & 4a-a & ATD-D & TM \\
\hline \multirow[t]{2}{*}{Keweenaw} & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{28E-------} & 7 e & | Not prime & 3R & 4a-a & ATD-D & TM \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 29B---- } \\
\text { Yalmer }
\end{gathered}
\]} & 3 s & | Not prime & 3D & 4a-af & ATD & TM \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{29D-----
Yalmer} & 4 e & | Not prime & 3D & 4a-af & ATD & TM \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Interpretive Groups--Continued

See footnote at end of table.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow{4}{*}{Land capability} & \multirow{4}{*}{Prime farmland status} & \multirow{4}{*}{Woodland ordination symbol} & \multirow{4}{*}{\begin{tabular}{l}
Michigan soil \\
management group
\end{tabular}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{} \\
\hline \multirow[t]{2}{*}{\[
59
\]} & & | Not prime & & & & \\
\hline & & farmland & & & & \\
\hline Chippeny-------------- & 7w & & 4W & M/RC & TTS & TTM \\
\hline Nahma------------------ & 5w & & 4W & 3/Rbc & TTM & FI \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{60------------------
Histosols and Aquents} & 6w & | Not prime & --- & --- & --- & --- \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline 61. & & & & & & \\
\hline \multirow[t]{2}{*}{Pits, borrow} & & & & & & \\
\hline & & & & & & \\
\hline 62B. & & & & & & \\
\hline \multirow[t]{2}{*}{Udorthents and Udipsamments} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[b]{2}{*}{64.} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Pits and Dumps} & & & & & & \\
\hline & & & & & & \\
\hline 65B. & & & & & & \\
\hline \multirow[t]{2}{*}{Udorthents-Urban land} & & & & & & \\
\hline & & & & & & \\
\hline 66B. & & & & & & \\
\hline \multirow[t]{2}{*}{Udipsamments-Urban land} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{67B---------------------} & & | Not prime & & & --- & --- \\
\hline & & farmland & & & & \\
\hline Urban land. & & & & & & \\
\hline \multirow[t]{2}{*}{Rubicon----------------} & 6 s & & 4 S & 5.3a & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{} & & & & & & \\
\hline & & & & & & \\
\hline \begin{tabular}{l}
68. \\
Pits, quarries
\end{tabular} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 69B------ } \\
\text { Escanaba }
\end{gathered}
\]} & 3 s & | Not prime & 3 S & 4/2a & Avo & ATD \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{69D----------------------
Escanaba} & 4 e & | Not prime & 3 S & 4/2a & Avo & ATD \\
\hline & & | farmland & & & & \\
\hline Escanaba & & & & & & \\
\hline \multirow[t]{2}{*}{70B----------------------
Nadeau} & 3 s & | Not prime & 3L & 3/5a & TM & Avo \\
\hline & & | farmland & & & & \\
\hline Nadeau & & & & & & \\
\hline \multirow[t]{2}{*}{70D----------------------
Nadeau} & 4 e & |Not prime & 3L & 3/5a & TM & AVo \\
\hline & & | farmland & & & & \\
\hline Nadeau & & & & & & \\
\hline \multirow[t]{2}{*}{71B---------------------} & & | Not prime & & & FMC & AVo-CI \\
\hline & & farmland & & & & \\
\hline Evart & 7w & & 2W & L-4c & & \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Pelkie \\
Sturgeon
\end{tabular}} & 4 s & & 3A & L-4a & & \\
\hline & 3w & & 3W & L-4c & & \\
\hline \multirow[t]{2}{*}{72B-----------------------|} & & & & & & \\
\hline & 2 e & | Prime & 3L & 3 a & Avo & AVo-A \\
\hline \multirow[t]{2}{*}{Emmet} & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{} & 4 e & | Not prime & 3L & 3 a & AVo & AVO-A \\
\hline & & | farmland & & & & \\
\hline Emmet & & & & & & \\
\hline
\end{tabular}

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow[t]{4}{*}{Land capability} & \multirow[b]{3}{*}{Prime farmland status} & \multirow[t]{3}{*}{Woodland ordination symbol} & \multirow[b]{2}{*}{Michigan soil} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & management group & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 72E------------- & 6 e & | Not prime & 3R & 3 a & Avo & AVO-A \\
\hline \multirow[t]{2}{*}{Emmet} & & farmland & & & & \\
\hline & & & & & & \\
\hline 73B--- & 6 s & | Not prime & 3W & 3a-af & ATD & Avo \\
\hline \multirow[t]{2}{*}{Gogebic} & & farmland & & & & \\
\hline & & & & & & \\
\hline 73D--- & 6 s & | Not prime & 3W & 3a-af & ATD & AVO \\
\hline \multirow[t]{2}{*}{Gogebic} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{74D----------------} & & | Not prime & & & ATD & Avo \\
\hline & & | farmland & & & & \\
\hline & 6 s & & 3 x & 3a-af & & \\
\hline Michigamme------- & 6 s & & 3 x & 3/Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & & & & ATD & Avo \\
\hline & & | farmland & & & & \\
\hline Schweitzer------- & 7s & & 3R & 3a-af & & \\
\hline Michigamme------ & 7 s & & 3R & 3/Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop-------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline 76C- & & | farmland & & & & \\
\hline Garlic-- & 6 s & & 3 S & 4 a & & \\
\hline Alcona-- & 3 e & & 3L & 3a-s & & \\
\hline \multirow[t]{3}{*}{Voelker-----------} & 6 s & & 3 S & 4/2a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline \multirow[t]{2}{*}{76E----------------} & & | farmland & & & & \\
\hline & 7 s & & 3R & 4a & & \\
\hline Alcona------------ & 6 e & & 3 R & 3a-s & & \\
\hline \multirow[t]{3}{*}{Voelker---------------------------} & 7s & & 3 R & 4/2a & & \\
\hline & & & & & & \\
\hline & & & & & ATD-D & TM \\
\hline \multirow[t]{2}{*}{76F---------------
Garlic------------} & & farmland & & & & \\
\hline & 7 s & & 3R & 4a & & \\
\hline Alcona---------- & 7 e & & 3 R & 3a-s & & \\
\hline \multirow[t]{3}{*}{Voelker----------------------------} & 7 s & & 3 R & 4/2a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline \multirow[t]{2}{*}{} & & | farmland & & & & \\
\hline & 6 s & & 3 S & 4 a & & \\
\hline Alcona----------- & 4 e & & 3L & 3a-s & & \\
\hline \multirow[t]{3}{*}{Voelker-----------------------------} & 7 s & & 3 S & 4/2a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline \multirow[t]{2}{*}{77E----------------------------} & & | farmland & & & & \\
\hline & 7 s & & 3 R & 4 a & & \\
\hline Alcona------------ & 7 e & & 3R & 3a-s & & \\
\hline \multirow[t]{2}{*}{Voelker-} & 7s & & 3R & 4/2a & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{78C-----------------} & & | Not prime & & & ATD-D & TM \\
\hline & & | farmland & & & & \\
\hline & 3 e & & 3A & 4a-a & & \\
\hline \multirow[t]{2}{*}{Kalkaska----------} & 6 s & | & 3 S & 5a & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Interpretive Groups--Continued

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow{4}{*}{Land capability} & \multirow{4}{*}{\begin{tabular}{l}
Prime \\
farmland status
\end{tabular}} & \multirow{4}{*}{Woodland ordination symbol} & \multirow[b]{2}{*}{Michigan soil} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & management group & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 87B- & 2 e & | Not prime & 3 D & 3/Ra & Avo & AVo-A \\
\hline \multirow[t]{2}{*}{Cunard} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{88-} & & | Not prime & & & TTM & FI \\
\hline & & farmland & & & & \\
\hline Cathro----------- & 6w & & 5W & M/3c & & \\
\hline \multirow[t]{3}{*}{Ensley------------} & 5w & & 3W & 3 c & & \\
\hline & & & & & & \\
\hline & & | Prime & & & Avo & TMC \\
\hline \multirow[t]{2}{*}{89B----------------} & & farmland* & & & & \\
\hline & 2 e & & 3L & 3 a & & \\
\hline \multirow[t]{3}{*}{Solona-----------------------------} & 2w & & 3W & 3 b & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & Avo & AVo-A \\
\hline \(90 \mathrm{~B}-\) & & farmland & & & & \\
\hline Emmet----------- & 2 e & & 3L & 3 a & & \\
\hline \multirow[t]{2}{*}{Escanaba-} & 3 s & & 3 S & 4 a & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{90D----------------} & & | Not prime & & & AVo & AVO-A \\
\hline & & | farmland & & & & \\
\hline & 4 e & & 3L & 3 a & & \\
\hline \multirow[t]{3}{*}{Escanaba---------------------------} & 4 e & & 3 S & 4 a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AVo & тM \\
\hline 91B- & & | farmland & & & & \\
\hline Onaway------------ & 2 e & & 3L & 2.5 a & & \\
\hline \multirow[t]{3}{*}{Nadeau------------} & 3 s & & 3L & 3/5a & & \\
\hline & & & & & & \\
\hline & & & & & FI & TMC \\
\hline \(92 \mathrm{~A}-\) & & | farmland* & & & & \\
\hline Ensley-- & 5w & & 3W & 3 c & & \\
\hline \multirow[t]{3}{*}{Solona------------} & 2w & & 3W & 3 b & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & TTS & PO \\
\hline \multirow[t]{2}{*}{93-----------------} & & farmland & & & & \\
\hline & 6w & & 5W & M/4c & & \\
\hline \multirow[t]{3}{*}{Deford------------} & 5w & & 4W & 5 c & & \\
\hline & & & & & & \\
\hline & & |Not prime & & & ATD-D & TM \\
\hline 94B----- & & farmland & & & & \\
\hline Keweenaw- & 3 e & & 3A & 4a-a & & \\
\hline \multirow[t]{2}{*}{Kalkaska-} & 4 s & & 3 S & 5a & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{94D-} & & | Not prime & & & ATD-D & TM \\
\hline & & | farmland & & & & \\
\hline Keweenaw-------- & & & 3A & 4a-a & & \\
\hline \multirow[t]{2}{*}{Kalkaska-} & 6 s & & 3 S & 5a & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{94E-} & & | Not prime & & & ATD-D & TM \\
\hline & & | farmland & & & & \\
\hline Keweenaw--------- & 7 e & & 3R & 4a-a & & \\
\hline \multirow[t]{2}{*}{Kalkaska---------} & 7s & & 3 R & 5a & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{95B------
Liminga} & 3 s & |Not prime & 3 S & 4 a & ATD-D & TM \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 95D------ } \\
\text { Liminga }
\end{gathered}
\]} & 3 e & |Not prime & 3 S & 4 a & ATD-D & TM \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow{4}{*}{Land capability} & \multirow{4}{*}{```
 Prime
farmland
 status
```} & \multirow{4}{*}{Woodland ordination symbol} & \multirow{4}{*}{```
    Michigan
        soil
management group
```} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline \multicolumn{2}{|l|}{\multirow{3}{*}{100E-------------------- |}} & & & & & \\
\hline & & Not prime & & & AQVac & TMV \\
\hline & & farmland & & & & \\
\hline Sayner----------- & 7 s & & 7 R & 4 a & & \\
\hline Rubicon---------- & 7 s & & 4 R & 5.3a & & \\
\hline \multirow[b]{3}{*}{100F---------------} & & & & & & \\
\hline & & Not prime & & & AQVac & TMV \\
\hline & & farmland & & & & \\
\hline Sayner & 7 s & & 7 R & 4 a & & \\
\hline \multirow[t]{2}{*}{Rubicon------------} & 7s & & 4 R & 5.3 a & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{103D---------------} & & Not prime & & & TMV & AQVac \\
\hline & & farmland & & & & \\
\hline Rubicon & 7 s & & 4S & 5.3a & & \\
\hline Ocqueoc---------- & \(7 e\) & & 3 S & 4/2a & & \\
\hline \multirow[t]{3}{*}{} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & 3 e & Not prime & 3 L & \(2.5 a\) & AVo & ATD \\
\hline \multirow[t]{2}{*}{Fence} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Munising} & 3 e & Not prime & 3W & 3a-af & ATD & TM \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{106B---------------} & & Not prime & & & AQVac & TMV \\
\hline & & farmland & & & & \\
\hline Sagola--- & 6 s & & 4L & 3 a & & \\
\hline \multirow[t]{3}{*}{} & 6 s & & 4 S & 5.3a & & \\
\hline & & & & & & \\
\hline & & Not prime & & & AQVac & TMV \\
\hline 106D--------------- & & farmland & & & & \\
\hline Sagola--------- & 6 s & & 4L & 3 a & & \\
\hline \multirow[t]{2}{*}{Rubicon-----------} & 7 s & & 4 S & 5.3 a & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{107B---------------} & & Not prime & & & ATD & TMV \\
\hline & & farmland & & & & \\
\hline Goodman---------- & 6 s & & 3L & 2.5a & & \\
\hline \multirow[t]{3}{*}{} & 6 s & & 3 L & 2.5/5a & & \\
\hline & & & & & & \\
\hline & & Not prime & & & ATD & TMV \\
\hline 107D--------------- & & farmland & & & & \\
\hline Goodman---------- & 6 s & & 3 L & 2.5 a & & \\
\hline \multirow[t]{3}{*}{} & 7 s & & 3L & 2.5/5a & & \\
\hline & & & & & & \\
\hline & & Not prime & & & ATD & TMV \\
\hline 107F--------------- & & farmland & & & & \\
\hline Goodman---------- & 7 s & & 3R & 2.5a & & \\
\hline \multirow[t]{3}{*}{} & 7 s & & 3R & 2.5/5a & & \\
\hline & & & & & & \\
\hline & & Not prime & & & Avo & ATD \\
\hline 108B--------------- & & farmland & & & & \\
\hline Goodman- & 6 s & & 3 L & 2.5a & & \\
\hline Sundog & 6 s & & 3 L & 2.5/5a & & \\
\hline \multirow[t]{2}{*}{Wabeno-------------} & 6 s & & 3W & 3a-af & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{108D---------------} & & Not prime & & & Avo & ATD \\
\hline & & farmland & & & & \\
\hline Goodman---------- & 6 s & & 3 L & 2.5a & & \\
\hline Sundog------------ & 7 s & & 3L & 2.5/5a & & \\
\hline \multirow[t]{2}{*}{Wabeno} & 6 s & & 3W & 3a-af & & \\
\hline & & & & & & \\
\hline
\end{tabular}

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow[t]{4}{*}{Land capability} & \multirow[t]{4}{*}{} & \multirow{4}{*}{Woodland ordination symbol} & \multirow{4}{*}{\[
\begin{gathered}
\text { Michigan } \\
\text { soil } \\
\text { management group }
\end{gathered}
\]} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{109B---------------
Rubicon-----------} & & | Not prime & & & AQVac & QAE \\
\hline & & farmland & & & & \\
\hline & 7s & & 4 S & 5.3 a & & \\
\hline \multirow[t]{3}{*}{Keweenaw--------------------------} & 7s & & 2A & 4a-a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AQVac & QAE \\
\hline \multirow[t]{2}{*}{109D---------------------------
Rubicon----} & & farmland & & & & \\
\hline & 7 s & & 4 S & 5.3a & & \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & 7s & & 2A & 4a-a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AQVac & QAE \\
\hline \multirow[t]{2}{*}{\(109 \mathrm{~F}-\)--------------
Rubicon-----------} & & farmland & & & & \\
\hline & 7s & & 4 R & 5.3 a & & \\
\hline \multirow[t]{3}{*}{Keweenaw----------} & 7s & & 2R & 4a-a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AQVac & TMV \\
\hline \multirow[t]{2}{*}{110B---------------
Nadeau------------} & & farmland & & & & \\
\hline & 3 s & & 3L & 3/5a & & \\
\hline \multirow[t]{3}{*}{Mancelona---------
110D---------------} & 3 s & & 3A & 4 a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AQVac & TMV \\
\hline \multirow[t]{2}{*}{110D---------------
Nadeau------------} & & farmland & & & & \\
\hline & 4 e & & 3L & 3/5a & & \\
\hline \multirow[t]{3}{*}{Mancelona---------} & 4 e & & 3A & 4 a & & \\
\hline & & & & & & \\
\hline & 6 s & | Not prime & 4 S & \(5.7 a\) & PVD & PVC \\
\hline \multirow[t]{2}{*}{Grayling} & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{112D---------------} & & | Not prime & & & AtD & TMV \\
\hline & & | farmland & & & & \\
\hline & 7 s & & 3 x & 3/5a & & \\
\hline Michigamme-------- & 6 s & & 3 x & 3/Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & & & & Atd & TMV \\
\hline 112F-- & & | farmland & & & & \\
\hline Keewaydin- & 7 s & & 3R & 3/5a & & \\
\hline Michigamme-- & 7 s & & 3R & 3/Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & 7s & | Not prime & 3 x & Ga & Atd & Avo \\
\hline \multirow[t]{2}{*}{Vanriper} & & farmland & & & & \\
\hline & & & & & & \\
\hline 113D--- & 7s & | Not prime & 3 x & Ga & AtD & Avo \\
\hline \multirow[t]{2}{*}{Vanriper} & & farmland & & & & \\
\hline & & & & & & \\
\hline 113F---- & 7s & | Not prime & 3 R & Ga & ATD & Avo \\
\hline \multirow[t]{2}{*}{Vanriper} & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow{3}{*}{Vanriper} & 7s & | Not prime & 3 x & Ga & ATD & Avo \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{114D---------
Vanriper} & 7s & & 3 x & Ga & AtD & Avo \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{114F---------------
Vanriper} & 7 s & | Not prime & 3R & Ga & Atd & Avo \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

See footnote at end of table.

Interpretive Groups--Continued

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow[t]{4}{*}{Land capability} & \multirow{4}{*}{Prime farmland status} & \multirow[t]{3}{*}{Woodland ordination symbol} & \multirow[b]{2}{*}{Michigan soil} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & management group & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline 127B-------------- & 6s & | Not prime & 3L & 2.5/5a & ATD & -- \\
\hline \multirow[t]{2}{*}{Sundog} & & farmland & & & & \\
\hline & & & & & & \\
\hline 127D------------- & 7s & | Not prime & 3L & 2.5/5a & ATD & --- \\
\hline \multirow[t]{2}{*}{Sundog} & & | farmland & & & & \\
\hline & & & & & & \\
\hline 127F--- & 7s & | Not prime & 3R & 2.5/5a & ATD & --- \\
\hline \multirow[t]{2}{*}{Sundog} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{128B---------------} & & | Not prime & & & ATD-D & TM \\
\hline & & | farmland & & & & \\
\hline & 4 s & & 3 S & 5a & & \\
\hline \multirow[t]{3}{*}{Waiska------------} & 6 s & & 3A & Ga & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline 128D-- & & | farmland & & & & \\
\hline Kalkaska-- & 6 s & & 3 S & 5a & & \\
\hline \multirow[t]{3}{*}{Waiska-----------------------------} & 6 s & & 3A & Ga & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & TM \\
\hline 128E- & & | farmland & & & & \\
\hline Kalkaska---------- & 7s & & 3 R & 5 a & & \\
\hline \multirow[t]{2}{*}{Waiska-} & 6 s & & 3 R & Ga & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{} & & | Not prime & & & ATD & --- \\
\hline & & | farmland & & & & \\
\hline & 6 s & & 3 S & 5a & & \\
\hline \multirow[t]{2}{*}{Munising-} & 3 e & & 3W & 3a-af & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 130A------ } \\
\text { Chabeneau }
\end{gathered}
\]} & 3 s & & 3L & 3/5a & TMC-V & TMV \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{131-} & & | Not prime & & & TTS & FI \\
\hline & & | farmland & & & & \\
\hline Witbeck- & 7 s & & 3W & 3 c & & \\
\hline \multirow[t]{3}{*}{Cathro------------
132.} & 7s & & 5W & M/3c & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Slickens} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{133B---------------} & & & & & ATD & TMV \\
\hline & & | farmland & & & & \\
\hline & 6 s & & 3L & 3/5a & & \\
\hline \multirow[t]{3}{*}{Dishno------------} & 6 s & & 3W & 3 a & & \\
\hline & & | & & & & \\
\hline & & | Not prime & & & AtD & TMV \\
\hline \multirow[t]{2}{*}{133D---------------
Keewaydin---------} & & | farmland & & & & \\
\hline & 6 s & & 3L & 3/5a & & \\
\hline \multirow[t]{3}{*}{Dishno------------} & 6 s & & 3W & 3 a & & \\
\hline & & & & & & \\
\hline & & | Not prime & 3L & 3/5a & AtD & --- \\
\hline \multirow[t]{2}{*}{Keewaydin} & 6 s & | farmland & & & & \\
\hline & & & & & & \\
\hline 134D--------------- & & | Not prime & 3 L & 3/5a & ATD & --- \\
\hline \multirow[t]{2}{*}{Keewaydin} & 6 s & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
134 \mathrm{~F}-----\mathbf{-} \\
\text { Keewaydin }
\end{gathered}
\]} & 7 s & | Not prime & 3R & 3/5a & ATD & --- \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow{4}{*}{Land capability} & \multirow{4}{*}{\begin{tabular}{l}
Prime \\
farmland status
\end{tabular}} & \multirow{4}{*}{Woodland ordination symbol} & \multirow[b]{3}{*}{Michigan
soil
management group} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Habitat type}} \\
\hline & & & & & & \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{135A---------------
Witbeck-----------} & & | Not prime & & & TTS & TMC-D \\
\hline & & farmland & & & & \\
\hline & 7 s & & 3 x & 3 c & & \\
\hline \multirow[t]{3}{*}{Net-----------------------------} & 7 s & & 3 x & 3b-af & & \\
\hline & & & & & & \\
\hline & & | Prime & & & TMC-v & PCS \\
\hline 136A-- & & farmland* & & & & \\
\hline Minocqua- & 6w & & 3W & 2.5/5c & & \\
\hline \multirow[t]{3}{*}{Channing-------------------------} & 3w & & 2W & \(5 \mathrm{~b}-\mathrm{h}\) & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD & TMV \\
\hline \multirow[t]{2}{*}{137D--------------
Keewaydin--------} & & farmland & & & & \\
\hline & 7 s & & 3L & 3/5a & & \\
\hline \multirow[t]{3}{*}{Sundog---------------------------} & 7 s & & 3 L & 2.5/5a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD & TMV \\
\hline 137F- & & | farmland & & & & \\
\hline Keewaydin-------- & 7 s & & 3 R & 3/5a & & \\
\hline \multirow[t]{3}{*}{Sundog----------------------------} & 7s & & 3R & 2.5/5a & & \\
\hline & & & & & & \\
\hline & & & & & TMV & --- \\
\hline \multirow[t]{2}{*}{138D--------------
Sundog------------} & & farmland & & & & \\
\hline & 7s & & 2x & 2.5/5a & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & TMV & --- \\
\hline \multirow[t]{2}{*}{138F---------------
Sundog------------} & & farmland & & & & \\
\hline & 7 s & & 2R & 2.5/5a & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & 7s & & 2x & 2.5/5a & TMV & --- \\
\hline \multirow[t]{2}{*}{Sundog} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { 139D--- } \\
\text { Sundog }
\end{gathered}
\]} & 7s & | Not prime & 2 x & 2.5/5a & TMV & --- \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{140B---------------
Champion----------} & & | Not prime & & & AtD & --- \\
\hline & & farmland & & & & \\
\hline & 5 s & & 3W & 3a-af & & \\
\hline \multirow[t]{3}{*}{Dishno------------} & 6 s & & 3W & 3 a & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD & --- \\
\hline 140D---- & & farmland & & & & \\
\hline Champion--------- & 6 s & & 3W & 3a-af & & \\
\hline \multirow[t]{3}{*}{Dishno------------} & 6 s & & 3W & 3 a & & \\
\hline & & & & & & \\
\hline & & Not prime & & & AQVac & TMV \\
\hline 141D--- & & farmland & & & & \\
\hline & 7 s & & 8 F & Ga & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & 6 s & | Not prime & 8 F & Ga & AQVac & TMV \\
\hline \multirow[t]{2}{*}{Pelissier} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { 142D------ } \\
\text { Pelissier }
\end{gathered}
\]} & 6 s & | Not prime & 8F & Ga & AQVac & TMV \\
\hline & & farmland & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

Interpretive Groups--Continued

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Soil name and map symbol} & \multirow[t]{4}{*}{Land capability} & \multirow{4}{*}{Prime farmland status} & \multirow{4}{*}{Woodland ordination symbol} & \multirow[b]{3}{*}{Michigan
soil
management group} & \multicolumn{2}{|r|}{Habitat type} \\
\hline & & & & & & \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{172F------------------------} & & | Not prime & & & ATD & --- \\
\hline & & farmland & & & & \\
\hline & 7s & & 3R & Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & . & & & & \\
\hline & 6 s & | Not prime & 3A & 4a-a & AQVac & --- \\
\hline \multirow[t]{2}{*}{Pence} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{Pence} & 7s & | Not prime & 3A & 4a-a & AQVac & -- \\
\hline & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{174D-} & & | Not prime & & & ATD & TMV \\
\hline & & | farmland & & & & \\
\hline Yalmer- & 3 e & & 3 D & 4a-af & & \\
\hline Rubicon--- & 6 s & & 4 S & 5.3a & & \\
\hline \multirow[t]{2}{*}{Urban land.} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{175E-------------------------} & & | Not prime & & & ATD-D & --- \\
\hline & & farmland & & & & \\
\hline & 7s & & 3R & 5a & & \\
\hline \multirow[t]{3}{*}{Waiska----------------------------} & 6 s & & 3 R & Ga & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & -- \\
\hline 175F- & & farmland & & & & \\
\hline Kalkaska-- & 7 s & & 3R & 5a & & \\
\hline \multirow[t]{3}{*}{Waiska-----------------------------} & 6 s & & 3R & Ga & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & & \\
\hline 176B-- & & farmland & & & & \\
\hline Greenwood--------- & 7w & & 2W & Mc-a & PCS & --- \\
\hline \multirow[t]{3}{*}{Croswell----------} & 4 s & & 5 S & 5a & TMC-V & --- \\
\hline & & & & & & \\
\hline & 6 e & | Not prime & 3 R & 3a-af & ATD & --- \\
\hline \multirow[t]{2}{*}{Frohling} & & farmland & & & & \\
\hline & & & & & & \\
\hline 177F-- & 7 e & | Not prime & 3R & 3a-af & ATD & --- \\
\hline \multirow[t]{2}{*}{Frohling} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{178D----------------------} & & | Not prime & & & & \\
\hline & & farmland & & & & \\
\hline & 7 s & & 3D & 3a-af & ATD & --- \\
\hline Kalkaska---------- & 6 s & & 3 S & 5a & ATD-D & --- \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{178F--------------
Schweitzer--------} & & | farmland & & & & \\
\hline & 7s & & 3 R & 3a-af & ATD & -- \\
\hline & 7 s & & 3 R & 5 a & ATD-D & --- \\
\hline \multirow[t]{3}{*}{Rock outcrop------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & AtD & Avo \\
\hline 179E-- & & | farmland & & & & \\
\hline Schweitzer-------- & 7 s & & 3 R & 3a-af & & \\
\hline \multirow[t]{3}{*}{Michigamme--------} & 7s & & 3 R & 3/Ra & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & ATD \\
\hline 180E-------------- & & farmland & & & & \\
\hline Kalkaska---------- & 7 s & & 3R & 5a & & \\
\hline \multirow[t]{2}{*}{Frohling-} & 6 e & & 3 R & 3a-af & & \\
\hline & & & & & & \\
\hline
\end{tabular}

See footnote at end of table.

Interpretive Groups--Continued

See footnote at end of table.

Interpretive Groups--Continued
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Soil name and map symbol} & \multirow{3}{*}{Land capability} & \multirow{3}{*}{Prime farmland status} & \multirow{3}{*}{Woodland ordination symbol} & \multirow[b]{2}{*}{Michigan
soil
management group} & \multicolumn{2}{|r|}{Habitat type} \\
\hline & & & & & Primary & Secondary \\
\hline & & & & & & \\
\hline \multirow{3}{*}{198B----------------} & & & & & & \\
\hline & & | Prime & & & Avo & AVo-A \\
\hline & & farmland*| & & & & \\
\hline Shoepac- & 3 s & & 3W & 3 a & & \\
\hline \multirow[t]{3}{*}{Reade-------------
199.} & 3 s & & 3D & 3/Ra & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{Udorthents, ash} & & & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{2}{*}{200A--} & & | Prime & & & & \\
\hline & & farmland*| & & & & \\
\hline Charlevoix-------- & 2w & & 3W & 3b & TMC & --- \\
\hline \multirow[t]{3}{*}{Ensley----------------------------} & 5w & & 3W & 3 c & FI & --- \\
\hline & & & & & & \\
\hline & & | Not prime & & & & \\
\hline \multirow[t]{2}{*}{201B---------------} & & farmland | & & & & \\
\hline & 7s & & 3D & Ra & ATD & --- \\
\hline \multirow[t]{3}{*}{Jacobsville-------} & 6 s & & 2W & M/RC & TTS & FI \\
\hline & & & & & & \\
\hline & 7s & | Not prime & 3D & Ra & ATD & --- \\
\hline \multirow[t]{2}{*}{Sauxhead} & & | farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{203A----------------------------} & & | Not prime & & & & \\
\hline & & farmland & & & & \\
\hline & 4w & & 6W & 5b & TMC & --- \\
\hline \multirow[t]{3}{*}{Deford-------------------------------} & 5w & & 4W & 5 c & TTS & --- \\
\hline & & & & & & \\
\hline & & | Not prime & & & & \\
\hline 204B-- & & farmland & & & & \\
\hline Gogebic---------- & 6 s & & 3W & 3a-af & ATD & Avo \\
\hline \multirow[t]{3}{*}{Tula---------------} & 7 s & & 3W & 3 b & TMC & AVo-CI \\
\hline & & & & & & \\
\hline & \(6 s\) & | Not prime & 3L & 3/5a & Avo & --- \\
\hline \multirow[t]{2}{*}{Traunik} & & farmland & & & & \\
\hline & & & & & & \\
\hline \multirow[t]{3}{*}{207D----------------------------} & & | Not prime & & & ATD & TMV \\
\hline & & farmland & & & & \\
\hline & 6 s & & 3 x & 3 a & & \\
\hline Michigamme-- & 7 s & & 3 x & 3/Ra & & \\
\hline \multirow[t]{3}{*}{Rock outcrop-------} & 8 & & --- & --- & & \\
\hline & & & & & & \\
\hline & & |Not prime & & & ATD & TMV \\
\hline \multirow[t]{2}{*}{} & & farmland & & & & \\
\hline & 7 s & & 3R & 3/5a & & \\
\hline \multirow[t]{3}{*}{Michigamme---------} & 7 s & & 3 R & 3/Ra & & \\
\hline & & & & & & \\
\hline & & | Not prime & & & ATD-D & AtD \\
\hline \multirow[t]{2}{*}{209B----------------------------} & & farmland & & & & \\
\hline & 4 s & & 3 S & 4 a & & \\
\hline \multirow[t]{2}{*}{Fence--------------} & 2 e & & 3L & 2.5a & & \\
\hline & & & & & & \\
\hline m-w. & & & & & & \\
\hline \multirow[t]{2}{*}{Miscellaneous water} & & & & & & \\
\hline & & & & & & \\
\hline w. & & & & & & \\
\hline \multirow[t]{2}{*}{Water} & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
* Where drained.

\section*{NRCS Accessibility Statement}

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC @ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.```

[^0]: Depth class: Very deep
 Permeability: Udorthents—moderate or moderately slow; Udipsamments—rapid Available water capacity: Udorthents—moderate; Udipsamments—low
 Drainage class: Udorthents—well drained; Udipsamments—excessively drained Surface runoff class: Slow
 Flooding: None
 Content of organic matter: Low
 Hazard of water erosion: Slight
 Hazard of soil blowing: Udorthents—slight; Udipsamments—severe

[^1]: Depth class: Very deep
 Permeability: Rapid
 Available water capacity: Sayner—very low; Rubicon—low
 Drainage class: Excessively drained
 Surface runoff class: Slow
 Flooding: None
 Content of organic matter: Low
 Hazard of water erosion: Off-road-moderate; on roads and trails-severe
 Hazard of soil blowing: Sayner-moderate; Rubicon-severe

[^2]: Depth class: Very deep
 Permeability: Rapid
 Available water capacity: Low
 Drainage class: Croswell—moderately well drained; Deford—poorly drained
 Surface runoff class: Croswell—very slow; Deford—very slow or ponded
 Flooding: None
 Content of organic matter: Croswell—low; Deford—high
 Hazard of water erosion: Slight
 Hazard of soil blowing: Croswell—severe; Deford—moderate

[^3]: Setting
 Landform: Depressions and drainageways on disintegration moraines and bedrockcontrolled moraines
 Shape of areas: Elongated or irregular
 Size of areas: 5 to 125 acres

[^4]: Setting
 Landform: Moderately sloping to steep areas on till-floored lake plains and dissected moraines
 Distinctive landscape features: Dissected uplands with ridgetops that are moderately sloping and are 25 to 200 feet wide. The ravines are dominantly parallel, are 10 to 30 feet deep and 20 to 100 feet wide, and have moderately steep or steep side slopes. The ravine bottoms are 5 to 30 feet wide. Some have seasonal streams.

