Recharge to Over-developed aquifers in Urban Environments of NCT-Delhi, India

Dr. S.B. Singh Ground Water Consultant Ex-Incharge, Delhi State, CGWB, MoWR

Profile-NCT Delhi

Name of State	Delhi
Number of District	9
No of Tehsils	27
Geographical Area	1483 Sq.Km.
Major Geological Formation	Soft Rock - Younger/Older Alluvium Hard Rock – Quartzites
Major Drainage System	Yamuna
Population (as per census 2001) Population Density	138.57 lakhs 9344 Per Sq.km. area
Existing Major / Medium Irrigation Projects	-
Normal Rainfall	611.8 mm
Range of Mean Daily Temperature	18-32 °C

PROJECTED WATER DEMANDS IN NCT, DELHI

	20	005	20	011	2021	
	Population (In Lakhs)	Water requirement MLD/ (MGD)	Population In Lakhs	Water requirement MLD/ (MGD)	Population In Lakhs	Water requireme nt MLD/ (MGD)
Drinking and domestic water requirements	163	3675.5 / (808)	205	4612.5/ (1014)	270	6075 / (1355)
Irrigational requirements		200 / (44)		200 / (44)		200 / (44)
Farm house uses		21.5 / (4.7)		21.5 */ (4.7)		21.5 */ (4.7)
Industrial requirements		43 /* (9.5)		43 /* (9.5)		43 /* (9.5)
Total		3940 / (866)		4877 / (1072)		6323 / (1389)

THE FUTURE WATER AVAILABILITY FROM ASSURED SOURCES

Withdrawal of water (MGD)	Source of Water	Treatment Plant		
210	Yamuna River	Wazirabad Water Treatment Plant		
		Chandrawal Water Treatment Plant		
240	Bhakra Storage and Western Yamuna	Hyderpur Water Treatment Plant		
	Canal	Nangloi Water Treatment Plant		
100	Upper Ganga Canal, U.P.	Bhagirathi Water Treatment Plant		
140	Water expected from Tehri Dam	Sonia Vihar Treatment plant		
20	Surface water	Delhi parallel branch (lining of canal of 102 km stretch)		
125	Ground Water	From the tubewells present in different parts of NCT, Delhi and tubewells recommended in Yamuna Flood plain areas (Dewatering and refilling of shallow aquifers)		
825		Total		

Depth to Bedrock

Location	Nature of bed rock	Depth to bed rock in m bgl
RML hospital	Quartzite	35.66
Lady Harding Hospital	Mica schist	42.00
Qudasia garden	Quartzite	23.16
Silver Jubilee Hospital	-do-	145.00
Irwin hospital		22.86
Vikas Bhawan		107.30
Ranbaxy Lab, Okhla		39.01
Yamunaotri, Okhla		27.00
Okhla Industrial area		46.93
West Patel Nagar		63.70
Malaria Instiute		24.38
Swiss Embassy		33.55
Australian high commission		30.48
DTC depot, Vinay Nagar		28.95
I.P. College, Alipur road		25.00

Geological section South District – NCT Delhi

Subsurface Geological Cross section Southwest District – NCT Delhi

Х

ELEVATION IN METRES LAMSL

X'

Rainfall and Evaporation Losses in NCT Delhi													
Month	Jan	Feb	Mar	Apr.	May	Jun	July	Aug	Sep	Oct	Nov.	Dec.	Annual
Rainfall (mm)	14.5	13.2	9.9	5.5	9.2	38.8	191.6	197.4	105.3	19.3	2.8	4.3	611.3
Rainy days	1.2	1.0	0.8	0.5	0.8	2.1	7.4	7.9	4.0	0.8	0.1	0.4	27.0
Evaporation (mm)	71	101	177	300	400	333	233	133	147	149	102	78	2224

Source: Indian Meteorological Department

Plate No. -

Ground Water User Map of NCT Delhi

		L	EGEND			
Rock Types	Wells feasible	e Rigs Depth suitable of Well		Discharge (lpm)	Suitable Artificial	
rjpes	& Exermation		(m)	. ,	Recharge Structures **	
Soft Rock	Tube Wells Yamuna Flood Plain	Reverse / Direct Rotary	25-65*	300-2400	Not Feasible	
Soft	Tube wells Younger Alluvium	Reverse /Direct Rotary	25-45*	300-1500	Shaft/Trench with recharge well, Recharge Pit with/without bore	
Soft Rock	Tube Wells Older Alluvium	Reverse / Direct Rotary	25-90*	120-600	Shaft/Trench with recharge well, Recharge Pit with/without bore	
Hard Rock	Tube Wells Quartzites	DTH / Rotary cum DTH	60-120*	90-240	Shaft/Trench with recharge well	
Depth to Water level in m (Pre- monsoon decadal mean, 1993-2002)		Electrical Cond (Micro mhos/c	luctivity m at 25° C) - 3000	Major river / Drain	Faults/Lineaments	
Fluoride > Permissible limit (1.5 ppm)		Nitrate > Permissible limit (100 ppm)		Iron > Permissible Limit (1.0 / * Fe	e ppm)	
State boundary		District boundary		Tehsil boundary	2	
District h	ead quarter	Over exploited	block ★	Area feasible for Artificial		

* Depth of the well is restricted to the availability of fresh water. ** Feasible in areas where depth to wate level is more than 8 m below ground level.

ANNUAL NET GROUND WATER AVAILABILITY AND ANNUAL GROSS GROUND WATER DRAFT (Ha m)

□ Net Ground Water availability ■ Gross Draft

Stage of Ground Water Development

Rain Water Harvesting and artificial recharge to ground water for sustainable development of Ground water resources

➤Though Delhi receives normal rainfall of 611.8 mm in 27 rainy days, most of which is going waste as runoff of about 193 MCM.

➢It is estimated that the total recharge from Rain water harvesting structures for entire NCT, Delhi is 1390 ha. M (0.139 Cu.m).

➤The task force constituted for implementation of rain water harvesting schemes in government buildings, colonies and parks has estimated that about 2.9 mcm rainfall recharge will take place, from the roof top rainwater harvesting structures constructed in Government buildings in NCT, Delhi during normal monsoon in a year. This will facilitate additional rise in ground water level to the tune of 0.5 m in alluvium areas and about 1.0 m in hard rock areas.

Construction of Check dams, Nala bunds and stream diversion channels for creating extra potentiality for ground water recharge

✓A total of 17 watersheds have been recognized in the ridge and adjoining areas having estimated runoff of 6.785 MCM in a normal rainfall.

 ✓ On-channel storage of storm water in Najafgarh, Mungeshpur, Bawana and Kushak-Barapullah will be the tune of about 122 MCM.

✓ Four check dams are constructed in JNU-IIT watershed and 2 nala bunds and 2 gabion structures and constructed in Kushk nala. 0.178 mcm of water is being recharge to ground water system in JNU-IIT water shed and 0.142 mcm water is being recharge through nala bunds in Kushak Nala.

FACTORS CONSIDERED FOR PREPARATION OF ARTIFICIAL RECHARGE SCHEMES

HYDROGEOLOGY

SOIL COVER

NATURE OF AQUIFER SYSTEM

DEPTH TO WATER LEVELS

CHEMICAL QUALITY OF GROUND WATER

AREA CONTRIBUTING RUNOFF

HOW MUCH IS THE AREA

LAND USE PATTERN

HYDROMETEOROLOGICAL CHARACTERS

HOW MUCH IS THE RAINFALL

PATTERN OF RAINFALL

NCT & NCR Delhi can be divided into Six Artificial Recharge Hydrogeological environments-

- 1. Newer alluvium with water levels more than 8 m
- 2. Older alluvium where water levels are 8 to 20 m with unsaturated zone of silty sand mixed with kankar
- 3. Older alluvium where water level is in between 20 to 40 m bgl
- 4. Older alluvium with water levels 40 to 60 m bgl
- 5. Hard rock at shallow depths under the alluvium of 10 to 15 m depth with water levels 30 to 40 m
- 6. Hard rock from surface itself and depth to water level is 30 to 50 m

District	Zone	Prominent areas of the zone	Generalized depth of recharge
outh	Zone-A	Tughlakabad, Pushp Vihar, Saket, Ladosarai, Sainik Farms, IGNOU area, Maidangarhi	weils 55 to 60 m
-	Zone-B	Chattarpur basin area and farm houses, Greater kailash-I & II, Nehru place, C.R. Park, Okhla Industrial Area	45 to 50 m
	Zone-C	Green park, Hauzkhas, NCERT campus, Lajpat Nagar, South Ext, Ashram Chowk, Friends colony, Defense colony, IIT area	30 to 35 m
outhwe	Zone-B	R.K.Puram, Vasant Vihar, Vasant Kunj, Samalkha, Mahipalpur, IGI Airport, Shankar Vihar, Daulakuan, Naraina	45 to 50 m
	Zone-D	Central and western part of Southwest district- Najafgarh, Jharodakalan, Dwarka, Palam	20 to 25 m
Vest	Zone-D	Uttamnagar, Janakpuri, Vikaspuri, Rajagarden, Nangloi, Paschim Vihar, Punjabi Bagh, Tilak Nagar, Mayapuri Industrial Area and Rural part of West district	20 to 25 m
lorthwe	Zone-D	Parts of Rohini, Pitampura, Narela, Singhola, Wazirpur Industria Area, Udyog Vihar Industrial Area	20 to 25 m
lorth	Zone-D	Anand parbat, Bara Hindu Rao area, Ghanta garh area	20 to 25 m
ental	Zone-C	Rajinder Nagar, Karol Bagh,	30 to 35 m
	Zone-D	Parts of Old City area	20 to 25 m
lew Delhi	Zone-C	Chanakyapuri, Nehru Park, Sardar Patel Marg, Saroji Nagar, Moti Bagh, AIIMS, Kidwai Nagar	30 to 35 m
	Zone-D	Cannaught Place, Presidents Estate, Parts of Lutyen's Delhi	20 to 25 m
ast	Zone-D	Kundli, Vasundhara Enclave, Gazipur Dairy farm, Parts of I.P. Extension	20 to 25 m
lortheas	At present, recommended	in this district artificial recharge to gro	ound water is not

BPCL Housing Complex, Noida Total Campus area:

14000 Sq.m

Average Annual rainfall 792.4 mm

Geological Formation-Newer alluvium (Yamuna Sand 0.00 to 18.75 Sand fine to medium grained 18.75 to 21.25 Clay hard and sticky 21.25 to 30.00 Sand fine to medium grained

Depth to Water Levels: 15-18 m bgl

Water available for recharge 4500 Cu.m **Recharge Structures Proposed** Trench with borewells-3 No. Pit with bore wells -5 No's

Cost of the Scheme 1.8 Lakhs

BHARAT PETROLEUM HOUSING COMPLEX SECTOR 56, NOIDA (LOCATION OF RECHARGE STRUCTURES) ROAD GATE)0 GATE BLOCK [1 LAWN -PARKING CHILDERN PARK VIII VI ASKET BALL 15 • DRIVE STROM DRAIN TRENCH WITH BORE WELL PIT WITH BORE 0

Fig. 1

(6WB/SUO/ND/DO No.114/2000

C3WB/SUG/ND/DO No.118/2000

Cost-benefit analysis of BPCL Project

- 1. Cost of recharging 1000 lts of water: Rs 2.00
- 2. Expected rise in water levels: 2 m per annum
- 3. There are two tubewells are present in the campus
- 4. Saving on energy if water level is raised for 1 m = 0.4 KWH
- 5. 12 hours pumping per day of each tubewell will save 1752 KWH@Rs 2.00 per KWH
- 6. Saving on Energy by the two tubewells: Rs 7000
- 7. Thus in 20 years period total saving will be Rs 140000
- Savings on increasing the pump capacity, delivery pipe etc 50,000
- 9. Thus recharge to ground water will be a boon to the people dependant on ground water

Shram Shakti Bhawan Project

- Total Campus area: 12000 Sq.m
- Roof top area 3110 Sq.m
- Geological formation Clay with kankar at shallow depths followed by silt with kankar
- Depth to water level: 9.5 m
- Expected runoff : 3325 Cu.m
- Recharge structures Recharge trenches with recharge wells-3
- Cost of recharging 1000 lts of water 4.8 rupees
- Rise in water levels in one monsoon period 1.10 m

ENGINEERING DESIGN OF TRENCH WITH RECHARGE WELL

For recharging the shallow as deeper aquifers, lateral trench of 1.5 to 3 m wide & 10 to 30 m long depending upon availability of water with one or more bore wells drives in it may be constructed. The lateral trench is back filled with boulders, gravels & coarse sand.

Approximate cost : Rs. 2000 – 4000 per m. run of trench Rs. 2000 – 35000 per recharge well

ARTIFICIAL RECHARGE TO GROUND WATER AT PRESIDENT'S ESTATE. NEW DELHI

SALIENT FEATURES

Campus area: 1.3 Sq.Km.
Source of water:Rain water & Swimming pool water

Av. Annual rainfall: 712.2 mm
Depth to water level: 6 – 13 m.bgl
Water available for recharge: 31300 cum from the Catchments area of 2,99,000 sq.m

•Recharge Structures:

Two existing DugWells One Recharge well One Recharge shaft Two Trenches with recharge wells

•Rise in Water Level during 2003: Maximum Rise upto 4 m

RECHARGE THROUGH DUG WELL

RAINWATER HARVESTING OF RUNOFF FROM FLYOVERS

Pond with Recharge well -1

Pit with Recharge well -3

Drain bed as Recharge Structure

Recharge Structure on the Drain Bed

Drain beds can also used for recharging purpose-These type structures can be constructed in the drain bed which is newly being constructed in Jaunapur farm hous areas Artificial Recharge Scheme in Vayusenabad, Air Force Station, Tughlkabad, New Delhi

✓ Total catchment area is 190000
 Sq.mts.

✓ Annual runoff is about 18190 Cu.mts

✓Complete runoff generated in the colony is being recharged through four recharge trenches with tubewells.

 ✓ During the monsoon season of 2002, the scheme was monitored and it is found that about 4 m rise in water levels in the colony.

✓ The discharge of tubewells present near the structures has increased to about 250 LPM from 100 LPM and sustained for 20 to 25 days

Recharge through abandoned handpumps or 4" dia shallow tubewells

Because of alarming rate of decline in water levels, the tubewells and hand pumps are being disused and new tubewells are being constructed.

The abandoned hand pumps and tubewells can be used for recharging purpose by diverting the rooftop water through a small filtration chamber.

The cost of converting the handpump and abandoned tubewells is very minimum and at individual level can be takenup.

CGWB has encouraged to construct cost efficient structures to a number of individuals eager to takeup RWH to arrest the declining ground water levels.

PERCOLATION PONDS WITH RECHARGE STRUCTURES (TRENCHES WITH TUBEWELLS)

The efficacy and feasibility of these structures is more in hard rock formation where the rocks are highly fractured and weathered. The percolation tanks with wells and shafts inside it are constructed to recharge aquifers.

