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Executive Summary 
 

Wind is a clean, renewable resource that has become more popular in recent years as a result of 
numerous advances in technology and public awareness.  Wind energy is quickly becoming cost 
competitive with fossil fuels, but further reductions in the cost of wind energy are necessary 
before it can grow into a fully mature technology.  One reason for the higher-than-necessary cost 
of wind energy is uncertainty in the aerodynamic parameters, which leads to inefficient 
controllers.  This report explores an adaptive control technique designed to reduce the negative 
effects of this uncertainty. 

The primary focus of this work is a new adaptive controller that is designed to resemble the 
standard non-adaptive controller used by the wind industry for variable speed wind turbines 
below rated power.  This adaptive controller uses a simple, highly intuitive gain adaptation law 
designed to seek out the optimal gain for maximizing the turbine’s energy capture.  It is designed 
to work even in real, time-varying winds. 

The adaptive controller has been tested both in simulation and on a real turbine, with numerous 
experimental results provided in this work.  Simulations have considered the effects of erroneous 
wind measurements and time-varying turbine parameters, both of which are concerns on the real 
turbine.  The adaptive controller has been found to operate as desired under realistic operating 
conditions, and energy capture has increased on the real turbine as a result. 

Theoretical analyses of the standard and adaptive controllers were performed, as well, providing 
additional insight into the system.  Finally, a few extensions were made with the intent of making 
the adaptive control idea even more appealing in the commercial wind turbine market. 
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CHAPTER 1: Introduction 

Wind power was recognized as a valuable resource thousands of years before internal 
combustion engines and modern power plants were developed.  Long ago, for example, people 
built windmills for milling grain and installed sails on their boats in order to reduce human labor 
demands.  In recent decades, wind has experienced a resurgence in popularity by helping to meet 
the increasing energy consumption of a growing world population through the use of a 
renewable, non-polluting energy source. 

To be competitive in the electricity market, wind turbines must produce electricity at a cost 
comparable to that of fossil fuel technology.  Since the fuel (wind) is free, the major cost of wind 
energy comes from the initial capital outlay for the machine itself—roughly $1000 per kW of 
installed capacity—and , and the supporting infrastructure.  Relatively small costs are associated 
with operating and maintaining the turbine throughout its lifetime.  Therefore, technology 
advances that reduce the initial cost of the turbine or allow it to capture more energy during 
operation result in a cost of energy (COE) decrease.  Current wind technology produces power at 
3¢ to 5¢ per kWh and is rapidly becoming cost competitive with fossil fuel energy. 

All aspects of turbine design, construction, and operation are scrutinized in an attempt to 
decrease the COE.  For example, turbine designs have improved through the use of advanced 
materials for increased strength and durability.  Construction methods now incorporate strategies 
such as self-erecting tall towers and offshore ocean deployment.  Finally, computer simulation 
tools used to model aerodynamic loads and dynamic responses are becoming more adept at 
modeling real turbines, which allows for the development of more sophisticated control 
algorithms.  These sophisticated control algorithms aim to decrease the COE using a variety of 
techniques.  The focus of this report is the design of an adaptive controller to maximize energy 
capture at lower wind speeds. 

1.1 Wind Turbine Operation 

There are many different types of wind turbines in use around the world, used in diverse 
applications from powering small water pumps on remote ranches to producing bulk electric 
power for modern cities.  Capacity ratings vary from less than one kilowatt up to several 
megawatts; for example, a typical utility-scale turbine might generate up to 1.5 MW and sit atop 
a 80-meter tower.  There are two principal turbine architectures: horizontal axis and vertical axis.  
Horizontal axis wind turbines (HAWT), which have an axis of rotation that is parallel with the 
wind direction, are the most common.  The much less common vertical axis wind turbine 
(VAWT) spins like a top with an axis of rotation perpendicular to the wind.  HAWTs have been 
shown to be more cost effective than VAWTs because the ability to place the HAWT rotor on a 
very tall tower allows the turbine to operate in a better wind resource due to vertical wind sheer.  
In contrast, VAWTs are constrained to operate with one end of the rotor attached to the generator 
on the ground.  Modern HAWTs typically have two or three blades and can be either upwind 



 

 

 

2

machines, with the rotor spinning on the upwind side of the tower, or downwind machines.  
Figure 1-1 shows a two-bladed upwind HAWT and its major components. 

A typical modern wind turbine has one of two basic operating modes: constant or variable speed.  
The rotor of a constant speed turbine turns at a constant angular speed, often selected so that the 
generator has the same frequency as the power grid to which it is connected, regardless of wind 
speed fluctuations.  This approach can eliminate the need for expensive power electronics, but it 
constrains the rotor speed so that the turbine cannot operate at its peak aerodynamic efficiency in 
all wind speeds.  Thus, a constant speed turbine usually produces less power at low wind speeds 
than does a variable speed turbine, which is designed to operate at a rotor speed proportional to 
the wind speed (below its rated wind speed).  However, in order for a variable speed turbine to 
achieve its maximum power capture using standard controllers, complex aerodynamic properties 
must be well known; in practice, these uncertainties can easily lead to a variable speed turbine 
capturing even less power than a constant speed one in low winds.  Adaptive control can solve 
this problem, and the research presented in this paper develops an adaptive control approach. 

Most utility-scale turbines have three main active control actuation systems.  The first, a yaw 
drive, turns the nacelle and rotor so that the wind is normal to the rotor plane.  The yaw drive is 
intentionally very slow for large turbines in order to reduce gyroscopic loading.  Variable speed 
turbines can also use generator torque control, which effectively tells the generator how much 
torque to demand from the rotor  in order to optimize the rotor speed.  Finally, most modern 

 
Figure 1-1: Two-bladed upwind horizontal axis wind turbine components 
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turbines have active pitch control, in which either the entire blade or some section thereof can be 
rotated on demand.  Pitch control changes the aerodynamic loading by changing the angle of 
attack.  It can be either independent, in which each blade can be pitched separately from the 
others, or collective.  Both generator torque control and pitch control can be relatively fast and 
are thus suitable as actuators in modern control schemes. 

1.2 Regions of Control 

Variable speed wind turbines have three main regions of operation.  Figure 1-2 plots the power 
curves for the wind, an ideal (lossless) turbine, and an example variable speed wind turbine with 
a 43.3 m rotor diameter.  The three major control regions are labeled on the turbine’s power 
curve.  In this example, the turbine produces maximum power (800 kW) at a rated wind speed of 
about 14 m/s, and it has a maximum power coefficient Cpmax = 0.4.  Power coefficients are 
explained in more detail in Chapter 2. 

Region 1, the section of the solid curve located to the left of 5 m/s wind speed, includes the times 
when the turbine is not operating and when it is starting up.  In general, the region 1 control 
strategy involves monitoring the wind speed to determine whether it lies within the specifications 
for turbine operation and, if so, performing the necessary routines used in starting up the turbine.  
The use of modern control strategies is not usually critical in region 1. 

Region 2, shown by the cubic section of the solid curve (approximately 5 to 14 m/s wind 
speeds), is an operational mode in which it is desirable to capture as much power as possible 
from the wind.  Aerodynamic losses prevent the turbine from achieving its maximum theoretical 
power extraction from the wind, called the Betz Limit, but the goal is to approach the Betz Limit 
curve as closely as possible.  All three control strategies (yaw drive, generator torque, and blade 
pitch) may be used in this region; however, it is common to use only generator torque and yaw 
control for most of the time in region 2, keeping the blade pitch constant at an optimal value for 
peak energy extraction.  In general, the loads experienced by turbine components in region 2 are 
lower than those in region 3, and minimizing loads in this region is often not essential. 

Region 3 operation occurs above rated wind speed, i.e., the wind speed above which maximum 
peak power is produced.  The turbine must limit the fraction of the wind power captured so as 
not to exceed electrical and mechanical design loads.  Thus, the solid curve flattens to the 
turbine’s rated power, 800 kW, above the rated wind speed (approximately 14 m/s).  In region 3, 
a variable speed turbine often maintains a constant speed and constant, rated power, pitching its 
blades in order to shed additional power.  The industry standard control method is proportional-
integral-derivative (PID) control on the blade pitch, a simple but effective means for limiting 
speed and power.  Yaw control, generator torque, and blade pitch strategies can all be used to 
shed excess power and limit the turbine’s energy capture as well as to achieve other control 
objectives.  In this region, loads on components such as blades, drive shaft, and tower may 
become excessive and active control can be used to reduce vibrations.  Load reductions decrease 
the amount of material required, thereby reducing initial capital costs. 
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1.3 Previous Control Strategies 

Control of modern variable speed wind turbines presents numerous interesting challenges to 
design engineers.  Many researchers have developed methods for limiting power and speed in 
region 3 (e.g., Stol and Balas 2002), reducing loads (e.g., Eggers et al. 1998, Hand 2003, Wright 
2003), and using adaptive control to compensate for unknown and time-varying parameters (e.g., 
Bhowmik et al. 1999, Freeman and Balas 1999, Song et al. 2000). 

The design of advanced controls for wind turbines can be approached in the beginning from 
either a more theoretical or a more practical standpoint.  On the practical side, it is common for 
the turbine itself to be more accurately modeled but the controls results to be less advanced.  The 
theoretical standpoint, in contrast, may provide advanced control theory results but use a turbine 
model with additional simplifications.  Of course, these two approaches can come together, 
providing advanced controls results while being faithful to the highly nonlinear, time-varying 
characteristics of wind turbines.  Most research begins with one or the other of these two 
approaches, however. 

The theoretical approach to variable speed wind turbine control design is a valuable contribution 
to both the controls community and the wind research community.  Despite theoretical advances, 
however, the broader wind industry has for the most part continued to use the same simple 
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Figure 1-2: Steady-state power curves 
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control schemes that have been in use for decades.  Most of the published advanced control 
research relating to variable speed turbines begins with the theoretical approach and ends with 
simulation results. Sometimes the theoretical-to-practical approach leads to good results 
(Bossanyi 1987, 1989). Often, however, researchers who attempt implementation on a real 
turbine find that the turbine is so nonlinear and has so many unknowns that the simplifications 
used in the theoretical approach and simulations cause the theoretically designed controller to 
fail.  Most of these failures, of course, are not published. 

Classical techniques such as PID control of blade pitch are typically used to limit power and 
speed for turbines operating in region 3 (Bossanyi 1987, Hand and Balas 2000), and some sort of 
generator torque control is used in region 2 (Fingersh and Carlin 1998).  While the specific 
techniques used to control the most modern turbines are proprietary and typically unpublished, 
only recently have any turbine manufacturers incorporated aspects of the decades of advanced 
control research into their commercial turbine designs.  In part, this technology gap exists due to 
the risk adverse commercial practices of turbine developers and reflects the lack of theoretically 
derived controllers having been successfully tested and validated on real turbines operating in the 
field. 

Enslin and Van Wyk (1992) have tested a simple direct-speed control method on a real variable 
speed turbine with some promising results.  This method used a simple controller that 
incremented or decremented speed in response to changes in turbine power.  This research has 
since been enhanced by the use of adaptive control to account for turbine uncertainties 
(Bhowmik et al. 1999), although the adaptive controller has not been tested on a real field 
turbine.  Each of these controllers attempted to maximize the turbine’s power and efficiency. 

Unfortunately, not all turbines can be speed-controlled at the rapid rates required for the 
strategies in Bhowmik et al. (1999) and Enslin and Van Wyk (1992) to work.  In particular, 
turbines with large rotational inertias require relatively long time periods for changes in speed in 
comparison to the extremely short times required for changes in wind speed.  Because angular 
acceleration is proportional to net torque, the torque applied to the drive shaft during direct speed 
control of a large turbine may be higher than the design load for the shaft.  In summary, any 
controller that relies on a small turbine’s ability to accelerate or decelerate at very high rates in 
order to track wind speed changes might not be suitable for a large-scale turbine because the 
latter has a rotor inertia that is too large to allow those acceleration rates while remaining within 
safe shaft torque ranges.  Thus, a different type of adaptive control is necessary in order to 
achieve the control objectives in Bhowmik et al. (1999) and Enslin and Van Wyk (1992) for a 
large turbine. 

1.4 Scope and Outline 

The research presented in this report begins with a practical approach to variable speed wind 
turbine control.  Only after an intuitive idea is developed and tested both in simulation and on a 
real turbine are the theoretical aspects of the problem (stability and convergence) examined for a 
simplified system.  The research was motivated by the fact that the aerodynamic properties of 
wind turbines are poorly understood and the fact that this lack of understanding contributes to a 
significant increase in the cost of wind energy.  While several of the aforementioned papers 
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described adaptive control methods to deal with various turbine uncertainties, this report 
combines, for the first time, all of the following objectives: 

1. Develop an adaptive strategy for region 2 control to address the effects of 
aerodynamic uncertainty. 

2. Build from a control strategy that has been well-tested and used within the wind 
industry. 

3. Verify the operation of the adaptive controller using both simulations and 
experimentation on a real, mid-sized, variable speed turbine. 

4. Analyze both the original standard control and the new adaptive control from a 
theoretical stability viewpoint. 

The typical effect of aerodynamic uncertainty is to cause sub-optimal energy capture in region 2, 
but adaptive control can reduce or eliminate the effects of this uncertainty.  The cost of changing 
the control strategy on an existing turbine is very small when compared with the cost of the 
turbine, and increasing energy capture without adding expense will directly reduce the cost of 
wind energy. 

The fact that this research builds from a control strategy that has been well-tested and used 
within the industry is important because many of the implementation issues have already been 
worked out.  For example, the required actuators and many of the sensors are already in place on 
most commercial turbines, and their limitations are well known.  Also, this familiarity will lend 
the new control strategy credibility within the commercial turbine industry. 

In order for any new controller to be accepted, it must be verified using both simulations and 
experimentation on real turbines.  This research uses a mid-sized (600 kW) turbine, which is 
smaller than the most modern utility-scale turbines being produced but similar in size to many of 
those already in operation.  The size of the turbine is important because certain control objectives 
are much harder to meet on larger turbines, and every year the size of a “typical” utility scale 
turbine increases.   

Chapter 2 begins with a discussion of the standard region 2 control used for variable speed wind 
turbines.  It then describes some of the inherent problems in this control region and presents a 
basic adaptive control strategy designed to diminish those problems.   

Chapter 3 describes the development of the simulation tool, SimInt, that will be used to analyze 
the new adaptive controller.  This chapter includes a verification study in which the simulation 
results are compared with data from a real turbine.  Chapter 4 uses this simulation tool and 
another, SymDyn (Stol and Bir 2003), to demonstrate the proper operation of the adaptive 
controller. 

Field data collected on a real variable speed wind turbine are presented and analyzed in Chapter 
5.  The field data are intended to show two objectives: first, that the goal of increasing energy 
capture is met, and second, that no additional harm is caused to the turbine by the adaptive 
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strategy.  Some of the results presented in this chapter have been published by Johnson et al. 
(2004a) and accepted for publication (Johnson et al. 2004b). 

A theoretical analysis of the original and new control strategies is presented in Chapter 6, 
providing further insight into each controller.  Many of these results, along with the proof in 
Appendix B, have been submitted for publication, but a reference is not available at the time of 
publication of this report.  Chapter 7 goes on to extend the new adaptive controller to make it 
even more suitable for use on commercial turbines.  Conclusions and recommendations for 
future work are presented in Chapter 8. 

Chapter 1 has provided a background on wind turbines and a summary of the relevant previous 
control research in addition to defining the scope and outline of this research.  Chapter 2 will 
now explore two region 2 control strategies: the standard control and the adaptive control. 
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CHAPTER 2: Region 2 Control Strategies 

The primary objective in region 2 control is to maximize energy capture.  In general, the lower 
wind speeds in this region cause less stress on turbine components than the higher wind speeds 
of region 3, so it is generally not as important to use active control to reduce loads.  This chapter 
will begin with an explanation of the standard region 2 controller and its shortcomings and then 
introduce an adaptive controller designed to alleviate those shortcomings. 

2.1 Standard Region 2 Control 

 Region 2 control of a variable speed wind turbine is often accomplished by setting the control 
torque (i.e., generator torque) equal to a gain times the rotor speed squared: 

2ωτ Kc = , (2.1) 
 
where 

3
3 max

2
1

∗

=
λ

ρ pC
ARK . (2.2) 

 
Tip speed ratio (TSR) is defined as  

v
Rωλ = , (2.3) 

 
and Cp is a measure of the ratio of the rotor power to the power available in the wind: 

wind
p P

PC = , (2.4)  

 
where  

3

2
1 AvPwind ρ= . (2.5) 

 
In general, the power P in Equation 2.4 can be defined in different ways, which can result in 
slightly different interpretations of Cp; however, the most common definition considers P to be 
the aerodynamic rotor power: 

ωτ aeroP = , (2.6) 
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where τaero is the aerodynamic torque applied to the rotor by the wind and ω is the rotor angular 
speed.  The theoretical maximum power coefficient Cp attainable by an ideal turbine is called the 
Betz Limit and can easily be derived using the Actuator Disc Concept (see, for example, Burton 
et al. 2001).  The control law (Equation 2.1) is intended to keep the turbine operating at the peak 
of its Cp-TSR-Pitch surface.  Equation 2.4 shows that rotor power P increases with Cp, so 
operation at Cpmax is clearly desirable.  One turbine’s estimated Cp-TSR-Pitch surface, derived 
from a simulation, is shown in Figure 2-1.   

Figure 2-1 was created with the modeling software PROP (Walker and Wilson 1976), which uses 
blade-element-momentum theory (Burton et al. 2001).  The PROP simulation was performed to 
obtain the operating parameters for the Controls Advanced Research Turbine (CART).  The 
CART is a 600 kW, two-bladed, upwind turbine at the National Renewable Energy Laboratory’s 
(NREL) National Wind Technology Center (NWTC) and is the turbine test bed used in this 
research and for testing other advanced control algorithms.  It is equipped with many more 
sensors than would be found on a commercial turbine, including a meteorological (met) tower 
about two rotor diameters upwind in the prevailing wind direction.  This met tower has a number 
of weather-related sensors, including anemometers at hub height and at the heights of the blade 
tips when the rotor is oriented vertically.  As shown in Figure 2-1, it is possible—though 
undesirable for normal operation—for Cp to be negative; negative Cp corresponds to motoring 
operation.   

To study the dynamics of the system, consider a simple rigid body model of a wind turbine.  The 
equation relating net torque and angular acceleration is 
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Figure 2-1: Cp vs. TSR and pitch for Controls Advanced Research Turbine (CART) 
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( )caeroJ
ττω −=

1
& , (2.7) 

 
where 

( ) 2,
2
1 vARC qaero βλρτ =  (2.8) 

 
and 

( ) ( )
λ

βλ
βλ

,
, p

q

C
C = . (2.9) 

 
While very simple, this rigid body model is a fair approximation for the CART, which has a very 
rigid rotor.  Now, substitute Equations 2.8 and 2.1 into 2.7: 
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Then, simplify Equation 2.10 further with Equations 2.9 and 2.3: 

( )


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−= 3

*
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3
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2
1

λλ
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ωρω pp CC
AR

J
& . (2.11) 

 
Since J, ρ, A, R, and ω2 are all nonnegative, the sign of ω&  depends on the sign of the difference 
within the parentheses.  By definition, Cp § Cpmax.  Thus, when λ > λ*, ω&  will be negative, and 
the rotor will decelerate toward λ = λ* (since wind is constant in this example).  On the other 
hand, if λ < λ*, ω&  will be positive when 

3
3

*

max λ
λ

p
p

C
C ≥ .  (2.12) 

 
The curve  

33
3

*

max λλ
λ

F
C

C p
p ==   (2.13) 

 
is plotted as the dotted line in Figure 2-2, and the CART’s PROP-derived Cp-λ curve for a fixed 
pitch of -1± is the solid line.  Note that the solid line is simply a two-dimensional slice of Figure 
2-1.  Thus, the inequality in Equation 2.12 is satisfied for tip speed ratios ranging from about 3.3 
to 7.5.  So, as long as the CART has a tip speed ratio of 3.3 or greater, its standard control law 
(Equation 2.1) will cause its speed to approach the optimum tip speed ratio.   

When λ < 3.3, the requirement given by Equation 2.12 is no longer satisfied, and ω&  < 0.  In this 
case, the rotor speed would actually slow toward zero, and, by Equation 2.11, the turbine would 
remain stopped once ω = 0.  However, most turbines have other control mechanisms in place to 
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prevent this from occurring (otherwise, the turbines would never start in the first place).  The 
CART, for example, uses blade pitch to change the aerodynamic torque at low tip speed ratios. 
While the specific tip speed ratio numbers and control mechanisms are different for different 
turbines, the general idea of the dynamics presented here hold for all variable speed turbines. 

2.2 Standard Control Law Problems 

Unfortunately, modeling tools such as PROP are not perfectly accurate, and fixed controller 
designs based on these modeling tools are generally still sub-optimal.  Figure 2-3 presents a 
graphical depiction of how sub-optimal performance results in energy loss.   

If the dotted curve in Figure 2-3 is the actual Cp surface but the solid curve is the best guess 
made by the control engineer based on the modeling tools, the control torque τc will be designed 
to drive steady-state operation to the asterisk at the peak of the solid curve.  Since τc is directly 
proportional to Cpmax, as given in Equations 2.1 and 2.2, the net result is that the control torque 
will be higher than warranted by the dotted (real) curve.  Then, considering Equation 2.7 and for 
a given aerodynamic torque τaero, a higher control torque τc will result in a smaller acceleration.  
All else being equal, the end result of the discrepancy between the two curves will be that the 
turbine will operate at a slightly lower speed (and thus tip speed ratio) than if the solid curve 
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were correct.  For this example, steady-state operation will occur at the black circle on the dotted 
curve, which is lower than the real system’s best possible operating point, the asterisk on the 
dotted curve.  Note that true steady-state operation, as described above, occurs only with a 
constant wind, which is never the case in the field. 

Even if it could be assumed that the initially chosen gain K is optimal, wind turbine blades will 
change over time as a result of occurrences such as bug build-up and blade erosion, with the 
same net result as a sub-optimally chosen initial K.  Fingersh and Carlin (1998) studied the effect 
of error in λ* and Cpmax on energy loss for a Cp curve derived from the NREL Variable Speed 
Test Bed turbine data.  The NREL Variable Speed Test Bed turbine was a 20 kW, direct-drive 
turbine not directly related to the CART, but similar results would be expected on other variable 
speed turbines with similar Cp curves.  The study showed that a very common 5% error in the 
optimal tip speed ratio λ* alone can cause an energy loss of around 1% - 3% in region 2—a 
significant loss in this industry—for this particular turbine.  For example, a wind farm rated at 
100 MW and operating with a reasonable 35% capacity factor can produce about 307 GWh of 
energy in a given year.  If the cost of energy is $0.04 per kWh, each GWh is worth about 
$40,000, meaning that a 1% loss of energy on this wind farm is equivalent to a loss of $123,000 
per year. 
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2.3 Adaptive Control 

A simple, highly intuitive adaptive controller has been devised to address the problems with the 
standard control.  In region 2, the adaptive control is very similar to the non-adaptive case 
presented in Equations 2.1 and 2.2: 





≥

<
=

0,
0,0

2 ωωρ

ω
τ

Mc
. (2.14) 

 
The adaptive gain M incorporates all of the terms in the non-adaptive torque control gain K 
except the air density ρ;  ρ is kept separate because it is slowly time-varying (with changes in the 
weather) and completely uncontrollable.  M is adapted after a certain number n of time steps of 
operation in region 2; n is selected to be large enough to average out high frequency wind 
variations and the slowness of the turbine response under certain conditions.  Testing on the 
CART thus far indicates that the averaging period defined by n will need to be on the order of 
tens of minutes to hours.  The control law is split between positive and negative regions of ω 
because it is not desirable to apply control when the turbine is operating in reverse.  In fact, most 
turbines have separate control mechanisms to prevent reverse operation, and, except where 
specifically noted, this research assumes positive speed operation only. 

A simulation was conducted using a rigid body model relating net torque and angular 
acceleration as in Equation 2.7 and using Equation 2.14 for the control torque.  This simulation 
was run for 200 seconds with each of 26 different values of the gain M, and the turbine’s 
behavior for each of the 26 gain values was averaged in order to produce Figure 2-4.  The 
resulting curve led to the development of the gain adaptation law described next.  In Figure 2-4 
and throughout the report, M+ is the assumed optimal operating point based on the standard non-
adaptive torque control law coefficient K (Equation 2.2) and the PROP-derived Cp surface in 
Figure 2-1.  The notation M* will be used to denote the true (often unknown) optimal gain for a 
given turbine. 

The performance characteristic “fractional average power,” or Pfavg, is similar to the turbine’s 
power coefficient Cp and is defined as the ratio of the mean power captured to the mean wind 
power.  Depending on the choice of instruments used in the calculation (in particular, the choice 
of anemometer), Pfavg can be greater than the Betz Limit, so the Cp nomenclature has been 
avoided in order to prevent confusion.  Pfavg is computed as: 
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ωωωτ &JP ccap += . (2.17) 
 
The first term in Pcap is the generator power and the second is the kinetic power (i.e., the time 
derivative of the kinetic energy) of the rotor.  The yaw error factor (cos3(ψ)) in Equation 2.16 is 
a necessary component of the available power calculation because a yaw error can significantly 
reduce the amount of power that the turbine is physically able to capture.  While active control of 
the turbine’s yaw position is used in order to minimize the steady-state yaw error, that yaw 
control is not part of this research.  The reason for incorporating the cos3 factor into Equation 
2.16is so that slowness in the yaw control does not compromise the adaptive torque control by 
providing the gain adaptation law with an inaccurate measure of available wind power.  
Verification of the cos3 factor is discussed in Section 3.1.  In addition, Pcap is used in the 
calculation of Pfavg rather than the turbine power P given in Equation 2.6 because the sensor 
requirements are more reasonable, given the instrumentation normally available on an industrial 
turbine.  The two definitions of the turbine’s captured power are closely related, differing only 
by the inevitable mechanical losses in the turbine’s gearbox that make Pcap < P by a small 
amount.  Given that fact and the fact that Pwind ≥ Pwy, it is impossible to state definitively whether 
Pfavg < Cp as defined in (2.4) or vice versa at any given instant.  However, it can be stated that 
they are closely related. 
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The controller begins by changing M by some value ∆M.  At the end of the adaptation period, the 
controller evaluates the turbine’s performance.  If the fraction of the average power Pfavg is 
greater than the fractional mean power in the preceding adaptation period, the controller selects a 
new ∆M of the same sign as the previous one.  This process continues in the same manner until 
the fractional power is less than that of the preceding adaptation period.  At that point, the new 
∆M is calculated to have the opposite sign of the previous ∆M.  Eventually, M should converge 
toward M*, the turbine’s true optimal gain. 

The mathematical equations implementing this gain adaptation are 

( ) ( ) ( )kMnkMkM ∆+−= , (2.18) 
 

( ) ( )[ ] ( )[ ] ( ) 2/1
sgnsgn kPkPnkMkM favgfavgM ∆∆−∆=∆ ∆γ , (2.19) 

 
and 

( ) ( ) ( )nkPkPkP favgfavgfavg −−=∆ . (2.20) 
 
In Equation 2.19, the |∆Pfavg(k)|½ factor is an indicator of the closeness of M to the optimal 
operating point.  When M is such that operation is near the peak of the curve shown in Figure 
2-4, a given ∆M will cause a smaller |∆Pfavg| due to the flatter nature of the curve near its peak.  
Thus, ∆M will get smaller and smaller as the optimal point is approached.  The exponent ½ and 
the positive gain γ∆M were chosen based on empirical results in simulation.  Selection of γ∆M is 
addressed further in Section 4.3. 

Because the averaging period is on the order of hours, it may seem that this simple adaptation 
scheme is rather slow.  However, in the decades-long life of a wind turbine, several hours, days, 
or even weeks spent in identifying the optimal operating point are not significant in terms of 
power lost or time wasted.  In addition, the aerodynamic changes that occur to all turbine blades 
typically take place on an even slower time scale than that of the adaptive controller.  Thus, an 
adaptation period on the order of hours should not be a significant problem for a commercial 
turbine designer.   

One main difference between the adaptive control described in this research and some of the 
adaptive controllers developed in previous research is which parameters are assumed to be 
unknown.  In this research, the controller attempts to have the turbine power track the wind 
power but assumes Cpmax and λ* are unknown.  In contrast, previous adaptive controllers, such as 
those presented by Freeman and Balas (1999) and Song et al. (2000), force the turbine to track a 
desired rotor speed in region 2.  However, in order to develop a model for desired rotor speed, it 
is necessary to have some knowledge of the Cp surface, particularly Cpmax and λ*.  As discussed 
above, the fact that those two parameters are not well known is a major source of energy loss in 
region 2.  An additional difference among the various adaptive controllers is the lengthy 
averaging period used in this research, compared to the very short time periods used in previous 
adaptive controllers. 
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Now that an adaptive controller has been developed, the focus of Chapter 3 is to design the 
simulation tools that will be used to perform the first tests of the controller. 
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CHAPTER 3: Model Development 

Wind turbine modeling is an ever-developing field of research that has made great strides in 
recent years; however, there is much yet to be learned about complex turbine aerodynamics.  
Modeling tools such as SymDyn (Stol and Bir 2003) and FAST (Buhl et al. 2003) can be used to 
model numerous degrees of freedom (DOF) for a large variety of HAWTs and have undergone 
validation studies (Stol and Bir 2000, Buhl et al. 2001).  For example, each can be configured to 
allow for infinitely stiff or flexible drive trains, blades, and towers on two- or three-bladed 
upwind or downwind turbines.  Additional DOF include nacelle yaw position and rotor angular 
speed.  While the ability to model numerous DOF is crucial to many aspects of advanced turbine 
control research, it is not really necessary for the purposes of this research.  In fact, a simple 
model that can reasonably predict changes in turbine speed with respect to wind is sufficient for 
testing the gain adaptation law presented in Chapter 2.  The advantage of creating a simple 
model rather than using one of the previously validated codes lies in the fact that the simple 
model is able to run more quickly.  This chapter describes the model created for testing this 
research. 

3.1 Model Overview 

Matlab’s® modeling software, Simulink®, was used to model the turbine and controller system.  
The basic components of the system include the turbine model, the controller, and the wind 
input.  A simplified diagram of the Simulink model, hereafter referred to as the SimInt (Simple 
Integrator) model, is presented in Figure 3-1. 

Wind Aero. Torque

Nonlinear Aerodynamic Model

Wind

Measured
Wind Speed &
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Gain Adaptation Law

Figure 3-1: Block diagram of the SimInt Simulink model 
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The turbine controller is made up of two blocks.  The first, labeled Generator Torque Control, 
implements Equation 2.14.  The second, labeled Gain Adaptation Law, performs all of the 
calculations necessary to adapt the gain M (Equations 2.15–2.20).   

The turbine model also consists of two blocks.  The Linear Turbine Model block is simply an 
implementation of Equation 2.7 relating net torque to angular acceleration and then integrating 
acceleration to obtain angular velocity.  For a large turbine operating fairly efficiently, the effects 
of the rotor inertia are far more important from a modeling perspective than the effects of 
damping, so damping terms were neglected in this model.  The other part of the turbine model is 
the Nonlinear Aerodynamic Model, which uses a highly nonlinear look-up table to model the 
relationship between wind speed and the aerodynamic torque applied to the rotor, as given by 
Equation 2.8.  This look-up table is the major source of the discrepancies between the model’s 
rotor speed output and the CART’s measured speed for a given wind input, since it is the 
uncertainty in this table that has made this research necessary.  In fact, two different look-up 
tables have been used in these experiments.  The surfaces generated from these tables are plotted 
in Figure 3-2.  While the two surfaces are similar in shape, they clearly have distinct maxima and 
minima.  It is not known which surface more accurately represents the torque coefficient (Cq) 
surface for the real CART, which is why both have been used in various experiments. 

Either simulated or measured wind data can be used as input for the SimInt simulations, which 
operates at 100 Hz.  This frequency was selected to mimic the controller frequency on the real 
CART.  Although pitch control is not a part of this research, there is some pitch control 
implemented within the Nonlinear Aerodynamic Model subsystem in order to cause the model to 
operate as closely as possible to the real CART.  This block also contains the cos3 yaw error 
factor derived in Section 2.3 and obtained from the wind direction input. 

Yaw control is not a component of this research, which utilizes the existing yaw controller for 
the real CART experiments.  However, it is important to note that a turbine operating with non-
zero steady-state yaw error will generally capture less energy than one operating with zero yaw 
error.  When a turbine has non-zero yaw error, the velocity component of the wind normal to the 
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Figure 3-2: PROP- and SymDyn-generated torque coefficient (Cq) surfaces 
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rotor plane is less than the speed of the wind in the wind direction, which means that the actual 
wind available to power the turbine is less than the measured non-directional wind speed.  If the 
rotor acted as a solid disk and wind components parallel to the rotor plane did not have any effect 
on the rotor, the difference in power would be a factor of cos3(ψ), where ψ is the yaw error, as 
shown in Figure 3-3.  This cos3 factor is derived from the fact that the component of the wind 
velocity normal to the rotor plane has a magnitude that is scaled by the cosine of the yaw error 
angle from the magnitude of the wind speed, as shown in Figure 3-3.  The cube is a result of the 
fact that the power in the wind is a function of the cube of the wind speed. 

In reality, wind components parallel to the rotor plane do have an effect on the rotor, so the cos3 
simplification is not perfectly accurate.  However, some experiments have been performed to 
assess its accuracy, and good agreement has been found for small yaw errors up to about 20°.  
Figure 3-4 plots the decrease in available power for a given yaw error for two cases: the cos3 
approximation and real data collected from NREL’s Unsteady Aerodynamics experiment 
(Fingersh et al. 2001).  It should be noted that the Unsteady Aerodynamics experimental data, 
collected in a wind tunnel, give virtually identical results to a SymDyn simulation run with the 
CART’s parameters.  Thus, those simulation results are not plotted. 

Given that a properly operating turbine will have zero mean yaw error and that fluctuations in 
instantaneous wind direction (and thus yaw error) will be very similar from one adaptation 
period to the next, these small percentages will cause no more than a very small fraction of a 
percent difference in the calculation of Pwy for any two adaptation periods.  Thus, using the cos3 
approximation to the yaw error factor, rather than a simulation-generated curve requiring an 
additional look-up table, is not expected to cause problems for the gain adaptation law.  
Although inserting a look-up table into a simulation would not be a problem, it is desirable to 
minimize the use of such tables in the real CART’s controller.  In addition, since the CART is 
too large for its aerodynamic parameters to have been tested in a wind tunnel, there is no real 

 
Figure 3-3: Upwind HAWT operating with non-zero yaw error ψ (top view) 
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guarantee that using a table of simulation values or data collected from an experiment with 
another turbine will more accurately represent the CART’s aerodynamic behavior than the 
simple cos3 approximation. 

3.2 Model Validation 

Models can be validated in either of two ways: by comparing the model’s output to the output of 
an already validated model, or by comparing the model’s output to real turbine data.  Various 
degrees of accuracy are required for various applications.  For example, a model that will be used 
in the design of controls to dampen vibrations must be able to represent a turbine’s structural 
modes fairly accurately.  In the case of the SimInt model presented in this research, the model 
need not represent most CART DOF since it is only attempting to improve upon an existing 
region 2 controller that uses only the rotor speed DOF, ω.  In fact, even if the rotor speed in 
response to wind is not perfectly modeled in comparison to real data, the simulations can still be 
valid tests of the adaptation law.  This validity is due to the fact that the entire motivation behind 
the adaptive controller is that the turbine’s power and torque coefficients are not well 
determined, and a failure to model speed precisely is a result of those uncertainties.  Figure 3-5 
plots the rotor speed output of two simulations using real wind speed as an input as well as the 
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CART’s rotor speed data collected during the same time period.  The two simulations use the 
two torque coefficient surfaces in Figure 3-2. 

The rotor speed trends shown in Figure 3-5 are clearly similar between the SimInt simulations 
and data, though the specific magnitudes of the peaks and valleys are different.  Part of the 
problem lies in the uncertainty of the PROP- and SymDyn-generated Cq surfaces discussed 
before, and part lies in the difficulty of obtaining an accurate wind measurement.  In fact, the 
wind input data used to create Figure 3-5 was measured by an anemometer located at hub height 
(the height of the CART’s axis of rotation, 36.6 m) 2.0 rotor diameters upwind of the CART.  
Not only is there a poor correlation between the wind at the small anemometer and the wind over 
the whole rotor plane, but the wind also requires a finite nonzero time to travel the 86.6 m 
between the anemometer and the rotor.  The time values of the CART data in Figure 3-5 were 
shifted to account for the average time delay during the simulation, but it is still apparent that 
some of the peaks and valleys on the simulation curves occur at slightly different times than 
those on the CART data curve.   

Another validation test was performed by comparing the output of the SimInt model with the 
SymDyn-generated Cq surface to the output of a CART model in SymDyn itself.  Since the Cq 
surfaces are the same for these two models and there is no confusion over the wind 
measurement, it is expected that the outputs will be very close.  As shown in Figure 3-6, despite 
the different initial speeds provided to the two simulations, this is clearly the case. 

Chapter 3 has discussed the development and validation of the simulation tool SimInt.  The 
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simulation results presented in Figure 3-5 and Figure 3-6 demonstrate that the SimInt model 
represents the CART’s behavior accurately enough to begin simulations of the gain adaptation 
law.  Those simulations are described in Chapter 4. 
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CHAPTER 4: Simulation Results 

Chapter 4 presents a compilation of simulation results obtained while studying various aspects of 
the gain adaptation law described in Chapter 2.  Both the SimInt and SymDyn simulators were 
used in these experiments.  Section 4.1 addresses the question of what result is expected if the 
gain adaptation law is working properly.  Section 4.2 then shows the outputs of the baseline 
SimInt simulations, followed in Sections 4.3 and 4.4 by the results of simulations meant to test 
the turbine’s response to real-life problems such as inaccurate wind measurements and time-
varying parameters.  Finally, tests performed on the adaptive controller using SymDyn are 
described in Sections 4.5 and 4.6.   

4.1 Optimal Operating Point 

As explained in Chapter 1, the need for an adaptive controller for region 2 wind turbine control 
stems from the fact that the optimal operating point is unknown.  Since this uncertainty is mostly 
due to the fact that the Cp and Cq surfaces are not well known, and since these surfaces are well 
defined in simulations, it would seem that finding the optimal operating point for a simulation 
would be a simple task.  The control engineer simply plugs the known values of ρ, A, R3, Cpmax, 
and λ* into Equation 2.2 to find K, and the torque control law (Equation 2.1) causes the turbine 
to capture as much energy as possible.  Unfortunately, it has recently been determined (Johnson 
et al. 2004a) that a given turbine does not have one single optimal torque control gain for all 
wind conditions, so it is not quite that simple to achieve maximum energy capture, even in 
simulation. 

The following simulation results show that using a gain K that is 1% to 20% smaller than that 
given by the standard control law (Equation 2.2) actually results in improved energy capture, 
depending on the turbulence in the wind.  The reason for this result is the fact that a turbine with 
high rotor inertia spends much of its region 2 operational time trying to regain the optimum tip 
speed ratio lost as a result of wind gusts and lulls; it simply cannot track wind speed perfectly.  
Since rotor inertia is included in the simulation, this result applies equally to simulations and real 
turbines.  Because the power in the wind is proportional to the cube of the wind speed, it is more 
important to track wind gusts than lulls.  This concept is explained further throughout this 
section.   

As shown in Figure 4-1, a turbine with a very low rotor inertia (J = 1000 kg∏m2) has a much 
different optimal operating point than one like the CART, with J = 388,500 kg∏m2.  In Figure 
4-1, “Nominal Power Capture” is the maximum power captured by the turbine with very low 
rotor inertia at K/M+ = 1.0, all other physical parameters used in the simulation being the same.  
In this plot, three different 100-Hz sampled wind data sets were scaled to have the same means 
(7.533 m/s) and used as inputs in simulations.  The curves were each created by simulating the 
CART’s behavior 24 times, with each simulation lasting one hour and having a different (fixed) 
value of the torque control gain, K.  The nominal value, M+, is given by  
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which is simply the equation for K (Equation 2.2) with the time-varying air density ρ removed.  
For the low rotor inertia (J = 1000) case, the power capture is virtually identical no matter which 
wind is used as input—the lines are indistinguishable on the scale of Figure 4-1.  However, there 
are noticeable differences in the three plots showing the normal inertia (J = 388,500) case.  In 
these simulations, optimum power capture (indicated by the stars) is achieved at anywhere from 
89% to 93% of the nominal optimal control torque gain M+.  According to these three curves, it 
is clear that captured power for this turbine model could be increased by 0.5% simply by 
reducing the gain K  by an average of 10% below the nominal value.  While 0.5% may not sound 
like an impressive number, the control modification required is so simple, costing nothing, that 
there is no question that this change is worthwhile in this case.  

Why does the optimum torque gain differ for different wind inputs?  Since the three curves from 
the low inertia simulations lie almost on top of each other and only the high inertia curves differ 
by wind input, it seems likely that the rotor inertia is the cause of the change in optimum gain 
from one wind speed to another.  A higher inertia will result in slower tracking of the optimal tip 
speed ratio λ* in response to wind gusts and lulls.  When characterizing the wind, turbulence 
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intensity is one measure used to describe the amount of “gustiness” in the wind.  It is usually 
defined as the standard deviation of the wind speed divided by the mean wind speed over 10 
minutes.  The following simulations, presented in Figure 4-2, show that the optimum operating 
point is closely related to a slightly modified measure of the wind’s turbulence intensity.  This 
modified one-hour turbulence intensity uses 60 minutes of data rather than 10 in the mean and 
standard deviation calculations.   

Figure 4-2 was created in a manner similar to that of Figure 4-1.  Two of the wind data sets used 
to create Figure 4-1 were slightly modified to create 15 different standard deviations per wind 
input, resulting in 15 different one-hour turbulence intensities.  The simulations were then run for 
each of these 15 one-hour turbulence intensities per wind data set, holding the mean wind speed 
constant throughout the experiment.  Each simulation was one hour long and used the normal 
inertia and other CART parameters.  As shown by the “Wind Data Set 2” curve, for high one-
hour turbulence intensities, the torque gain resulting in the greatest power capture can be nearly 
20% lower than the nominal value given by Equation 4.1. 

Similar simulations performed while varying the mean wind speed and holding the one-hour 
turbulence intensity constant showed that the mean wind speed does not significantly affect the 
optimum torque control gain.  Thus, it can be concluded that it is the standard deviation of the 
wind speed that forms the correlation between turbulence intensity and optimal torque control 
gain.  The fact that the two curves in Figure 4-2 do not lie on top of each other indicates that 
other wind characteristics also play a role.  For example, the Richardson number, a measure of 
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atmospheric stability, and other factors may also affect the optimum gain, but these are not 
investigated in this paper. 

Why is the optimal torque control gain lower for higher turbulence intensities?  Consider this 
example: imagine that the constant wind has a speed of 10 m/s, and the CART is operating in 
steady state with ω  = 3.46 rad/s (for a tip speed ratio of λ* = 7.5).  At some time, there is a step 
change in wind speed to 11 m/s, which causes the instantaneous tip speed ratio to drop to λ = 
6.82.  The torque control law (Equation 2.1) will cause the rotor to accelerate toward λ = 7.5, as 
described in Section 2.1, but in the meantime, the power loss is proportional to the cube of the 
wind speed, or 1331 (m/s)3, by Equation 2.5.  Similarly, if there is a step change in wind speed 
down to 9 m/s, the power loss is proportional to 93 = 729.  Compared to the 1000 (m/s)3 baseline, 
the step increase in wind speed results in a 33% gain in power available, whereas the step 
decrease results in only a 27% loss in available power.  Because of the cubic law relating wind 
speed and power (Equation 2.5), it is more important to regain the optimal tip speed ratio quickly 
following wind gusts than following lulls.  Since it is safe to assume that, in general, a given 
wind input will have a similar number of gusts and lulls, using a torque control gain that is 
slightly smaller than the one given by the standard gain K (Equation 2.2) is more likely to make 
the rotor acceleration (Equation 2.7) positive, which means the rotor will accelerate more easily 
in response to a gust. 

It is clear from Figure 4-2 that turbulence intensity has a significant effect on the optimal torque 
control gain K.  However, this experiment did not consider the effect of changes in mean wind 
speed on the optimal torque control gain.  Additional simulations have been performed for two 
cases: in the first, the turbulence intensity was held constant while the mean wind speed was 
varied, and in the second, the standard deviation of the wind speed was held constant while the 
mean wind speed was varied.  To clarify, in the first case, the standard deviation of wind speed 
was varied, while in the second, since standard deviation was constant, turbulence intensity was 
varied by definition.  In the first case, the optimal torque control gain changed only slightly 
(about 2% on average) over a 5 m/s to 12 m/s range of mean wind speeds (approximately the 
region 2 operational range for the CART).  In the second case, the optimal torque control gain 
varied by about 11% on average over the same range of mean wind speeds. 

Several researchers, including Casanova Alcalde and Freris (1982) and Pierce (1999), have 
published research describing the effect of mean wind speed on a turbine’s time constant.  The 
time constant is inversely proportional to the mean wind speed, so higher mean wind speeds 
result in smaller time constants.  Thus, under near constant wind conditions, a turbine that is 
disturbed by a 1 m/s step change in wind speed should regain its optimal tip speed ratio more 
quickly for a higher mean wind speed than for a lower.  As a result, one might argue that mean 
wind speed should have a significant effect on the optimal torque control gain.  However, a 
closer examination reveals that this analysis is consistent with the preceding analysis on the 
effects of turbulence intensity, since mean wind speed is a factor in turbulence intensity.  In fact, 
that 1 m/s step change would provide a higher turbulence intensity for the lower wind speeds 
than for the higher.  In effect, our simulation results show a “near cancellation effect” among the 
mean wind speed, standard deviation, and time constant as far as the optimal torque control gain 
is concerned.  The precise cause for this effect is beyond the scope of this research, but one 
possible explanation is that even though the optimal tip speed ratio is regained more quickly at 
higher wind speeds for a gust of a given size, proportionally sized gusts (i.e., turbulence intensity 
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held constant for all mean wind speeds) will result in larger deviations from optimal tip speed 
ratio and greater potential for energy loss due to the additional energy available at these higher 
wind speeds.  The 1%-3% deviation in optimal torque control gain K for different wind speeds 
with constant turbulence intensity is an area that deserves further study.  However, it is small 
compared to the 13%-18% deviation apparent in Figure 4-2 for changes in turbulence intensity 
and is not considered in the remainder of this paper. 

Since the adaptive controller can begin with any initial choice of M, it is not necessary to 
perform an independent study of turbulence intensity in order to achieve optimal operation.  The 
adaptive controller is able to take the turbulence intensity into account as the gain adaptation law 
adapts M over time, eventually seeking out the optimal point M*, assuming the turbulence 
intensity is somewhat consistent between adaptation periods.  However, in simulation results for 
which very turbulent winds are used as input, M is expected to adapt to a value 10% to 20% less 
than the standard value M+ given by Equation 4.1 when the Cq surface used in the simulation is 
the same as the one used to determine the parameters in Equation 4.1, i.e., the PROP-derived Cq 
surface.  When the simulation uses another Cq surface in the calculation of aerodynamic torque 
(Equation 2.8), M may adapt to an entirely different value, depending on the new surface’s 
parameters. 

4.2 SimInt Simulation Results 

The first simulations use a constant wind speed and constant, zero yaw error as the wind input.  
In this case, the turbulence intensity equals zero and the PROP-derived Cq surface is used, so M 
is expected to adapt to M+ exactly.  One of the simulation outputs, which used a constant wind 
input, is plotted in Figure 4-3, with simulation parameters listed in Table 4-1. 

 

Table 4-1. Simulation Parameters 
Parameter Value† 

J 388,500 kg∏m2

R 21.65 m 
M+ 174.48 m5/rad3

γ∆M 23.17 rad3/m5 
ρ 1.0 kg/m3 
fs 100 Hz 

 

                                                 
† These values are referenced to the high-speed shaft.  On the rotor side of the gearbox, M+ = 7530.41 m5/rad3. and 
γ∆M = 1000 rad3/m5.  
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Figure 4-3 uses an adaptation period of 20 minutes, meaning that n, the number of steps between 
adaptations, is equal to 120,000.  Clearly, the bulk of the changes in this particular case occur in 
the first dozen adaptation periods.  After that, the value of M oscillates near the expected value, 
M+.  Because the adaptation scheme uses only the most recent past value in addition to the 
current value of the adaptation parameters, these oscillations are not unexpected.  Chapter 7 will 
investigate incorporating additional past values to reduce the oscillations.  In Figure 4-3, both M 
and ∆M are normalized by M+ (Equation 4.1), which, according to Figure 2-1, is nominally the 
ideal value.   

When it comes to wind turbine control, showing that a controller works for a constant wind input 
provides very little information about whether it will work under a time-varying wind input, 
though a controller that fails under constant wind is very unlikely to succeed under varying 
winds.  Thus, the next step is to experiment with time-varying wind inputs.   

Figure 4-4 was created by a SimInt simulation that used measured wind speed data as the wind 
input to the simulation and the PROP-derived Cq surface.  After an initial step in the wrong 
direction—caused by the initial conditions provided to the simulation—it is clear in the top plot 
of Figure 4-4 that M converges toward a value of around 85% to 90% of M+.  In the process, the 
Pfavg curve appears to be seeking its maximum, discounting the first value, which was the 
unattainable initial guess provided by the control engineer. The turbulence at the NWTC during 
the winter wind season tends to be higher than the average at a typical wind site; thus, it is 
expected that using measured wind speeds will result in M converging to some value 
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approximately 15% lower than M+.  Further, it is clear that convergence under real wind input 
does not occur as quickly as it does with constant wind, though it seems that the system is stable 
in some sense.  It is also important to note that Figure 4-4 required the use of a much larger n 
than Figure 4-3 did, as a result of the time-varying wind input.  In the case of Figure 4-4, n = 
4,680,000, which translates to 13 hours.  All other parameters shown in Table 4-1 are the same 
for both simulations.  One final clarifying point remains to be made regarding Figure 4-4 and 
similar ones that follow.  Each value on the Fractional Mean Power curve is the Pfavg 
corresponding to the normalized M from the preceding time period.  Thus, the second value of 
Pfavg, 0.37, is the fractional mean power collected by the turbine during the first adaptation period 
when M = 1.5M+, which is computed at the end of the first time period.   

The important things to realize regarding the simulation outputs are that the final value of M 
appears to be close to the predicted optimal torque control gain value for the given turbulence 
intensity and that M appears to be stable if not convergent.  These two results suggest that the 
adaptive controller is working as desired.  The same data plotted as time-series in Figure 4-4 can 
be plotted against each other, as in Figure 4-5, rather than against time to help explain the 
oscillations that occur from about 150 to about 350 hours. 

Figure 4-5(a) contains all the Pfavg and M data used in the creation of Figure 4-4 and includes a 
best-fit quadratic and its equation.  The correlation in the data is high, with R2 = 0.997.  At this 
level, it appears that a 13-hour adaptation period is long enough to eliminate most of the negative 
effects of noise.  This noise is believed to be mostly a result of the difficulties in measuring the 
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wind hitting the rotor.  Figure 4-5(b) is simply a zoomed-in version of (a) in which the noise 
effects are much more obvious.  Though the data still follow the trend line, some data points are 
much farther away from it than others.  Based on numerous simulations, it has become clear that 
the longer the adaptation period, the more zoom is necessary in order to observe the effects of 
noise in the data.  Thus, when the adaptive gain M gets closer to its optimal value M*, longer 
adaptation periods might be necessary in order to achieve nicely convergent results. 

For simplicity and computational ease, the simulations used to create Figure 4-3 through Figure 
4-5 were performed assuming a zero yaw error.  However, experimentation on the real CART 
will not allow that simplification, so it becomes important to study the effects of yaw error on the 
simulation outputs.  Figure 4-6 shows a plot of simulation outputs for three cases: one with large 
yaw errors provided to the simulation, one with zero yaw errors, and one halfway between the 
two extremes.  For this simulation, the SymDyn-generated Cq surface was used, but M+ is still 
calculated from the PROP-generated surface.  The difference in Cq surfaces explains the lower 
normalized M values apparent in the upper plot.   

Figure 4-6 was created using three 44.5 hour simulations having the same wind speed input and 
the same initial conditions but different yaw error inputs.  The “Full Yaw Error” simulation 
involved very large yaw errors up to 79°, with a mean absolute value of about 10°.  Positive and 
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negative yaw errors of the same magnitude were assumed to be equivalent.  The adaptation 
period used for the simulations was four hours, or n = 1,440,000.  Note that the adaptation period 
consists only of times during which the turbine is operating in region 2; thus, when region 1 or 3 
operation occurs, the adaptation algorithm pauses and waits for the winds to increase or subside 
so region 2 operation can continue.  During the first five hours of the simulation, it is apparent 
that about an hour of region 1 or 3 operation occurred, since M adapted approximately five hours 
after the beginning of the simulation rather than four.  

As explained in Section 3.1 and shown in Figure 3-4, the cos3 yaw error factor approximation is 
only very good up to about 20° of yaw error.  Approximately 11% of the yaw error data used in 
the “Full Yaw Error” simulation exceeds this value, which means that the Pwy calculations given 
by Equation 2.16 will be less accurate for this simulation.  The “Half Yaw Error” simulation was 
run with the “Full Yaw Error” yaw error data scaled by one half, and only 0.4% of the yaw errors 
in this simulation exceed 20°.  As shown in Figure 4-6, the adaptations of M for the “Half Yaw 
Error” case closely resemble those in the “No Yaw Error” case, whereas those in the “Full Yaw 
Error Case” diverge more quickly.  From these simulations, it becomes clear that a real turbine 
using this gain adaptation law will require a fairly good yaw controller in order to prevent the 
yaw error from affecting the gain adaptation law.  However, it is not unreasonable to assume that 
the average magnitude of the yaw error will be less than 10° for a properly operating turbine. 
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In summary, simulations have shown that the gain adaptation law proposed in Chapter 2 will 
cause the adaptive gain to trend toward convergence, thereby maximizing the fractional average 
power captured by the turbine, assuming that the adaptation period is long enough and yaw 
control is adequate.  These simulations have also assumed that the wind measurement is accurate 
and the turbine parameters are constant.  The following sections present simulations to address 
the outcomes when these last two assumptions are invalid. 

4.3 Wind Measurement Problems  

Section 4.2 provides simulation results demonstrating that the gain adaptation law performed 
fairly well under the condition that the wind was measured correctly.  Since there is no assurance 
that this would be true for a real turbine, it is important to simulate the effects of inaccurate wind 
measurements. 

The wind measurement at any point will not be equal to the wind acting on the rotor blades in 
space or time.  Since it is impossible to obtain precise wind measurements, the question 
becomes: “What types of imprecisions will cause the adaptive controller to fail?”  Figure 4-7 
shows some simulation results that help to answer that question.  The upper plot shows the 
normalized adaptive gain M over time, while the lower plot shows the error between the true 
wind power and the erroneous wind power measurement for each case.  The root mean square 
(rms) wind power in each 44.5 hour simulation is 768 kW, and the power error in the “Offset 
Error” case was chosen to be equal to the rms value of the error in the “Noise Error” case, 54.3 
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kW, or 7.1% of the rms wind power.  The rms error in the “Slope Error” case is also 54.3 kW, 
which is achieved by setting the measured wind power equal to 92.9% of the actual wind power. 

In the interest of reducing computational time, the adaptation period used to run the simulations 
plotted in Figure 4-7 is three hours (n = 1,080,000) rather than 13 hours.  The gain adaptation 
law is not expected to cause convergence of M as well or as quickly when this shorter adaptation 
period is used, but it is sufficient for the purposes of this experiment.  In this case, the result of 
interest is the difference in adaptations of M among the four cases. 

These simulations were performed by corrupting the wind power calculation Pwy given by 
Equation 2.16.  In each case, the same wind speed input was provided to the aerodynamic torque 
calculation (Equation 2.8), but the calculated wind power was corrupted by band-limited white 
noise, by multiplying by a constant scaling factor, or by the addition of a constant offset, 
respectively.  In other words, the v used to calculate τaero (Equation 2.8) was the true wind speed, 
but the Pwy calculation (Equation 2.16) was corrupted.  The point of the experiment is to test 
whether M adapts to the same value when the wind measurement is corrupted. 

The important result of these experiments is that, if there is white noise in the wind speed 
measurement, the gain adaptation law performs as well as if there is no corruption of the wind 
measurement.  In fact, the two plots lie virtually on top of each other.  This result is to be 
expected: in the case of white noise, it is reasonable to expect that the mean value of the noise 
will be approximately zero over the length of the adaptation period, so each Pfavg (Equation 2.15) 
measurement will be similarly corrupted.  A similar explanation also holds for the case of the 
scaled wind speed measurement; in this case, the step size ∆M given by Equation 2.19 will 
simply be scaled by the same value as the wind speed measurement, leading to a slight mismatch 
in step size when compared with the “No Error” case but still converging to nearly the same 
value.  However, if there is an offset in the wind speed measurement, such as might occur with a 
miscalibrated anemometer, the gain adaptation law performs less well, with a noticeable 
difference occurring as early as the first adaptation.  Since an offset in the anemometer 
calibration would be relatively easy to detect (i.e., by checking to see if the instrument is reading 
some nonzero value in the absence of wind), it is reasonable to assume that this type of wind 
measurement corruption can be avoided.  Scaling and noise errors are much more likely to occur 
in the field. 

4.4 Time-Varying Parameters 

One other real-life problem that challenges turbine control design is time-varying aerodynamic 
parameters, specifically Cp, Cq, and λ.  The adaptive controller has been designed not only to 
determine the optimal operating point initially, but also to track the changes in these parameters 
over time and account for them in the control law.  Once again, several simulations were 
conducted in order to test the ability of the gain adaptation law to deal with these changes.  The 
first of these, plotted in Figure 4-8, uses the PROP-derived Cq surface with a constant wind input 
and assumes that there is a sudden step decrease in the turbine’s power coefficient Cp.  This sort 
of sudden change could occur if, for example, a blade were struck and damaged.  The simulation 
assumes that only the magnitude of Cp is affected but that the peak still occurs at λ*. 
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It is clear from Figure 4-8 that, for a step change in the turbine’s power coefficient and a constant 
wind speed input, the gain adaptation law works quite well.  In fact, the top plot shows that, after 
an initially very large step caused by the initial conditions, M adapts toward its optimal value, 
which is exactly M+ for this constant-wind simulation, which uses the PROP-derived Cq surface.  
Then, M oscillates around M+ with small steps until the parameter change occurs at 12.5 hours, 
after which it seeks the new value.  It is apparent that the 5% reduction in Cp leads directly to a 
5% reduction in M, which is expected because, for the zero turbulence intensity case, the optimal 
torque control gain is given by M+, which is directly proportional to Cp (Equation 4.1).   

Next, a variable wind speed input simulation was conducted for both step and ramp changes in 
the turbine’s power coefficient, this time using the SymDyn-generated Cq surface.  Figure 4-9 is 
a plot of this simulation’s output, which shows a total of four different parameter changes over 
more than 1200 hours of simulation time.  The nature of the changes is summarized in Table 4-2, 
followed by a more thorough explanation of the performance of the adaptive controller following 
each change. 

0 5 10 15 20 25
0.85
0.90
0.95
1.00
1.05
1.10

N
or

m
al

iz
ed

 M
(M

/M
+ )

0 5 10 15 20 25
0.30

0.35

0.40

0.45

Fr
ac

tio
na

l A
ve

ra
ge

Po
w

er

Time (hours)
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Table 4-2. Summary of Parameter Changes Used in Figure 4-9 Simulation 
Change Time 

(Hours) 
Description 

#1 150.17 Step change in τaero from 100% to 90% 
#2 356 Begin ramp change in τaero starting at 90% and with a slope of –0.11% 

per hour (–984.25% per year) 
#3 578.5 Begin ramp change in τaero starting at 75% and with a slope of +0.023% 

per hour (+196.85% per year) 
#4 890 Begin ramp change in τaero starting at 82% and with a slope of –

0.00013% per hour (–1.18% per year) 
 
In Figure 4-9, change #1 is a step decrease in aerodynamic torque just like the one used in the 
Figure 4-8 constant wind input simulation.  In the variable wind speed input case, note how the 
adaptive gain M was oscillating by small steps around its optimal value prior to the change, 
while the fractional average power also seemed to be seeking its maximum.  Then, the step 
decrease occurred, which caught the gain adaptation law by surprise, causing a significant step 
upward in the wrong direction.  This step in the wrong direction is a result of timing and chance: 
the previous adaptation was in the downward direction, so when the Cp surface was decreased 
suddenly in the middle of the adaptation period, the adaptive controller reacted as if the previous 
downward step were to blame and adjusted upward accordingly.  Of course, the significant 
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change in energy capture was caused by the external change, and it did not take long for the gain 
adaptation law to track the change and begin oscillating near the new optimum value.  It is also 
clear from the lower plot that the fractional average power is seeking a value 10% less than it 
was before the step change occurred. 

Once M seemed to be settling near its new optimal operating point, the system was perturbed 
again with a ramp change in aerodynamic torque beginning at the time marked “#2.”  The slope 
of this ramp is very large compared to what most turbines would be expected to endure—nearly 
1000% per year—particularly for such a long time period.  One situation that might cause such 
significant decreases in Cpmax would be ice build-up on the blades, but it is unlikely that an ice 
storm would continue for 200 hours or more.  In this case, the gain adaptation law did not 
perform as well as it did for the step change case.  During all of the adaptation periods, the 
turbine captured less energy than it had during the previous ones, which caused the adaptive gain 
to switch directions at every step.  The adaptive gain does decrease on average, as it should, but 
there does not appear to be any trend toward convergence of M to a steady-state value.  In fact, 
since the power coefficient Cp is rapidly decreasing, M should not be converging on one 
particular value but rather attempting to track the changes in Cp.   

Change #3 occurs shortly before 600 hours and signifies the end of the decreasing power 
coefficient.  At this time, a positive ramp was applied in the simulation with a smaller—but still 
relatively large—magnitude slope.  This type of slope might occur as the ice slowly melts from 
the blades in near-freezing temperatures.  In this case, because the power coefficient is constantly 
increasing, the gain adaptation law tends to keep adapting M in the same direction as the 
previous adaptation, erroneously responding as if the adaptation had caused the increased energy 
capture.  The direction of the adaptation changes only when M adapts far enough over the peak 
of the Cp curve that it causes a decrease in energy capture despite the constantly increasing 
power coefficient.  The Fractional Average Power plot reflects the steady increase in Cp.   

While the performance of the gain adaptation law following changes #2 and #3 is not superb, 
real turbines are unlikely to endure ramp changes with slopes of these magnitudes over such long 
time periods.  The more realistic scenario would be for the turbine to undergo a few hours of 
icing followed by melting, during which time the gain adaptation law might have trouble seeking 
its optimum value.  However, once the ice has melted, changes such as bug build-up and blade 
erosion will occur on a much slower time scale, better suited for the gain adaptation law.  The 
ramp change beginning at #4 is an example of a more realistic scenario in which the turbine 
undergoes a gradual decrease in power coefficient at a rate of about 1% per year.  During this 
time period, the gain adaptation law causes M to seek its new optimal value, which is changing 
on a time scale so much longer than the 13-hour adaptation period that M is once again able to 
approximate convergence by the end of the simulation.   

The variable speed wind input simulations demonstrate the gain adaptation law’s strengths and 
weaknesses.  The gain adaptation law performs well for discrete (sudden) changes in the 
turbine’s aerodynamic parameters and for those that show significant changes only over very 
long time scales relative to the adaptation period.  However, for situations in which the 
parameter changes are noticeable over a time scale similar to the adaptation period, the 
performance of the gain adaptation law is noticeably compromised.  Fortunately, these 
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moderately fast changes typically don’t go on for very long and don’t cause M to become 
unstable. 

4.5 Simulations Using SymDyn 

All of the previously described simulations were performed using SimInt, which, as explained 
earlier, includes only the rotor angular speed DOF and is thus capable of running more quickly 
than more complex simulation tools such as SymDyn and FAST.  However, for verification 
purposes, it is valuable to compare the gain adaptation law’s operation in SimInt with its 
operation in another, more well-known simulation tool.  The adaptive gain is not expected to 
adapt equally from one simulation tool to the next, since each has its own distinct turbine model.  
However, if each is modeling the same real turbine—in this case, the CART—the adaptive gain 
should adapt similarly in both SimInt and SymDyn.  This similarity is evident in Figure 4-10.  

Both the SimInt and SymDyn simulations were started at time 0 with the same initial values of 
M, ω, and most other parameters.  However, although the two turbine models were set up to have 
the same true optimal torque control gain M*, the Cp surfaces have peaks with different 
magnitudes; therefore, in order to cause the initial step to be approximately the same, the initial 
Pfavg values were the same percentage of maximum rather than the same absolute value.  The 
upper plot in Figure 4-10, showing normalized M, shows a reasonable amount of agreement.  
There is a time period between about 30 and 60 hours during which the adaptive gains M for 
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each simulation appear to diverge, but after that time they once again approach each other and 
remain close together from about 100 hours through the end of the simulation.  It is also clear 
from the lower plot that each simulation is adapting its gain M and seeking maximum power 
capture. 

Since SimInt simulations run approximately five times faster than SymDyn ones, the SymDyn 
simulation presented in Figure 4-10 was the only one performed as a verification of the gain 
adaptation law; after this experiment showed reasonable agreement between the two simulation 
tools, SimInt remained the simulation tool of choice for all further experiments designed to test 
the gain adaptation law.  However, unlike SimInt, SymDyn is capable of analyzing additional 
DOF besides generator speed.  Thus, the SymDyn simulation data were analyzed to determine 
whether the gain adaptation law might be likely to cause additional stress on the turbine.  This 
analysis is the topic of the next section. 

4.6 Simulated Stresses on Turbine Components 

In addition to generator speed, SymDyn is capable of simulating many other degrees of freedom, 
including drive shaft compliance angle, blade flap angles, tower twist angle, and tower side-to-
side and fore-aft angles.  The ability to model these DOF is a key to SymDyn’s usefulness in 
control design and testing.  In tests of the adaptive controller within SymDyn, the question to be 
answered is whether the adaptive generator torque controller (Equation 2.14) causes additional 
turbine transient stresses that are absent when the turbine is controlled by the standard non-
adaptive generator torque controller (Equation 2.1).  Long term, steady-state changes in loading 
are discussed further in Section 5.3 but are difficult to analyze over the time spans used in these 
simulations and will not be considered in this section.  However, there is a chance that an abrupt 
change in generator torque could excite an unknown number of modes each time an adaptation 
occurs.  Therefore, this section will focus on SymDyn data collected immediately before and 
after adaptations. 

It appears from the SymDyn experiments that most of the DOF mentioned above do not undergo 
much additional stress as a result of the adaptation of the torque control gain M.  The following 
three plots, Figure 4-11 through Figure 4-13, provide a sample of the experimental data 
consisting of three DOF (drive shaft torsion, blade flap bending, and tower side-to-side bending) 
for two different adaptations occurring during the SymDyn simulations plotted in Figure 4-10.  
Table 4-3 provides some information relevant to each case.  Each adaptation involves an upward 
change in M, though the direction of the change did not appear to affect the nature of the stresses 
for other adaptations examined.  In addition, both occurred at approximately the same rotor 
speed.  The maximum rotor speed for the CART is 4.37 rad/s, so 2.9 to 3.0 rad/s is well within 
region 2 operation.  Finally, Adaptation #4 occurs when the rotor is slowing down, while 
Adaptation #7 occurs while it is speeding up.  Rotor acceleration is closely related to wind 
acceleration, and, in general, higher winds cause more stress on turbine components. 
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Table 4-3. Selected Details Relevant to Figure 4-11 through Figure 4-13 
Adaptation Normalized M (M/M+) Rotor Speed Rotor Acceleration 

#4 0.67 to 0.82 2.9 rad/s < 0 
#7 0.84 to 0.96 3.0 rad/s > 0 

 
Of the DOF that SymDyn is capable of modeling, the drive shaft twist angle is the one most 
closely tied to the generator, since it connects the generator to the rotor.  Thus, the most 
significant effects of the torque control gain adaptation are expected to be seen in the shaft, and 
this is indeed the case.  Figure 4-11 is a plot of the shaft twist angle for the two adaptations.   

In the top plot of Figure 4-11, Adaptation #4, it is clear that the drive shaft experiences an 
undesirable response to the adaptation, which occurs at time 1084.51, marked by the vertical 
line.  However, there are several reasons why this response is not as worrisome as it first appears.  
First, the oscillations induced by the adaptation decrease within a few seconds, indicating that 
this is likely a stable mode.  Second, the maximum magnitude of the oscillations—about 0.3°—is 
still smaller than the oscillations apparent in the lower plot (Adaptation #7) even before the 
lower plot’s adaptation time, which indicates that the adaptation does not cause oscillations more 
severe than those produced by environmental variables.  Finally, in the simulation, the adaptation 
is modeled as occurring within one time step, or 0.01 seconds.  In the case of a real turbine, it is 
unlikely that it would be possible to change the generator torque that rapidly, so the real turbine’s 
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Figure 4-11: Drive shaft twist angle for two different adaptations 
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shaft would not see such a large step change at all.  Thus, the shaft twist angle oscillations are 
something to watch closely when implementing the adaptive controller on a real turbine, but do 
not represent a reason to decide against implementation. 

Figure 4-12 plots the flap angle of each blade for the 15 seconds before and after each 
adaptation.  “Flap” is the out-of-plane blade bending direction; for a horizontal axis turbine, flap 
bending typically occurs in the direction of the wind as the wind exerts a lift force on the blade.  
As is the case with Figure 4-11, it appears that the environmental conditions occurring during the 
time period around Adaptation #7 were more turbulent than those occurring around Adaptation 
#4, since the blade flap angles are larger and undergo more variation.  The blade flap angles 
plotted for Adaptation #7 do increase somewhat after the adaptation, but an increase in mean flap 
angle is to be expected for a faster spinning rotor.  Based on these representative plots, a sudden 
adaptation is not expected to cause undue stress on the blade flap bending.  It should be noted, 
however, that blade edge bending, which occurs in the rotor plane and is likely to be more 
sensitive to drive shaft twist angle oscillations, cannot be modeled in SymDyn. 

The final plots of note for these two adaptations, Figure 4-13, show the tower side-to-side 
bending angle.  It appears that the adaptation of the generator torque gain has no consistent effect 
on this mode, since in one case the oscillations continue to decrease in magnitude—a trend 
started before the adaptation—and in the other case they continue a trend of increasing in 
magnitude.  Environmental variables and rotor speed are the major driving factors for tower 
bending, since the first tower natural frequency occurs at a rotor speed well within region 2 
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(about 2.7 rad/s).   In fact, this rotor speed is reached during the last few seconds of the 
Adaptation #4 plot, which probably explains the increasing oscillations. 

In summary, of the DOF modeled in the SymDyn simulations, only drive shaft torsion appears to 
be excited by the adaptation of the gain in the adaptive controller, and this excitation is likely to 
be much less pronounced on a real turbine.  The other DOF modeled in simulation but not 
plotted (tower fore-aft angle and tower twist angle) show, like the tower side-to-side angle plots, 
no consistent response to the adaptations. 

The gain adaptation law has been tested thoroughly in simulation, using both the SimInt and 
SymDyn modeling tools.  The SimInt simulations have tested a number of areas of concern, 
including non-zero yaw error, inaccurate wind measurement, and changing parameters.  Outputs 
of the SimInt and SymDyn simulations have been compared and found to be similar, and the 
SymDyn outputs were examined for any new stresses in the turbine components.  The proposed 
gain adaptation law is now ready for testing on the real CART. 
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CHAPTER 5: Real CART Data 

The simulation results presented in Chapter 4 provide promising evidence that the adaptive 
controller will increase a turbine’s energy capture by adapting the torque control gain M toward 
its optimum value M*.  These are, however, only simple simulations of an extremely complex 
system.  In order to validate the gain adaptation law, it is useful to test its operation on a real 
turbine, because issues that might not arise in a simulation must be resolved before industry 
would be able to fully trust a new controller.  The CART is an invaluable tool for determining 
the benefit of this new adaptive controller to the turbine industry, and Chapter 5 analyzes the 
data collected while running the CART with the adaptive torque controller.  Section 5.1 
examines the adaptation history during these experiments.  Next, Section 5.2 demonstrates the 
increase in energy capture as a result of the gain adaptation law.  Finally, Sections 5.3 and 5.4 
examine the turbine’s dynamic response to the adaptation law (Equations 2.18 to 2.20) and the 
adaptive controller (Equation 2.14) compared with the standard, non-adaptive controller 
(Equation 2.1). 

5.1 Adaptation History 

Figure 5-1 shows data collected on the CART during approximately 10 months of operation 
under the adaptive controller (Equation 2.14).  The adaptation period used to collect the data 
plotted in the upper plot of Figure 5-1 is 10 minutes for the first 11 adaptations, 20 minutes for 
the next nine, 30 minutes for the following 51, 60 minutes for the next 10, and 180 minutes (n = 
360,000) for the final 13. 

During the time covered by Figure 5-1, numerous changes were made to the adaptive controller 
as minor errors were discovered.  In addition, several problems with sensors on the CART were 
discovered.  For example, the drop in M between about nine and 15 hours is partly the result of 
an erroneous wind direction sensor.  Each discontinuity in the upper plot of Figure 5-1 is the 
result of a restart in the gain adaptation law caused by either a change in the adaptation law or 
problems with faulty hardware.  Finally, in the interest of clarity, the time scale in Figure 5-1 
reflects only the time spent operating in region 2. 

These experimental data show that even the one-hour adaptation period used between 33 and 43 
hours is probably too short to result in convergence of M on a turbine as large as the CART.  
This result is consistent with the fact that a 13-hour adaptation period was used to obtain the 
degree of convergence evident in Figure 4-4.  However, the results of the experiments using a 
three-hour adaptation period, enlarged in the lower plot of Figure 5-1, are somewhat more 
promising.  Though the exact value of M* for the CART is unknown (the M+ = 174.456 used 
throughout this report is the value obtained via the PROP simulation plotted in Figure 2-1), the 
black line at M = 0.47 M+ in Figure 5-1 is believed to be close to the CART’s true optimal torque 
control gain M* based on other (constant-speed) experimental data.  This value and the data used 
to obtain it are discussed further by Fingersh and Johnson (2004).  Note that once the adaptation 
period was lengthened to three hours, the adaptive gain was never more than one step away from 
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this approximate optimal value; instead, the adaptive gain oscillated around that value with 
relatively small steps.  The fact that both the constant speed and adaptive control experiment data 
suggest a similar optimal torque gain M* provides validity to each experiment’s results. 

Although some of the oscillations in Figure 5-1 are larger than others, particularly the one at 
about 76 hours, it is believed that a longer adaptation period reduces their magnitudes and 
provides better convergence.  This belief has proven true in simulation.  However, given the time 
constraints on the use of the CART, which is a test bed for several ongoing experiments at any 
given time, it was not possible to use a significantly longer adaptation period (such as 13 hours). 

5.2 Energy Capture Using Adaptive Control 

While data showing the adaptive gain M approaching a steady-state value is a promising 
reassurance that the gain adaptation law is working properly, it is actually secondary to the 
underlying problem: maximizing energy capture.  In theory, the optimal M is the one that 
maximizes energy capture, so the question of whether M converges to its optimal value M* and 
the question of whether energy capture is maximized are one and the same.  Baseline power data 
from the CART running in variable speed mode with the standard controller (Equation 2.1) with 
gain K = 0.91M+ (Fingersh and Johnson 2004) are compared to power data with the CART 
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running with the adaptive controller (Equation 2.14) where 0.40M+ < M < 0.52M+ in Figure 5-2.  
The individual data points in Figure 5-2(a) are the averages of 10-minute data sets, while the 
curves in Figure 5-2(b) show the average values of the set of 10-minute averaged data contained 
in each 1 m/s wind speed bin.  Superimposed on the curves in Figure 5-2(b) are the vertical and 
horizontal standard error bars obtained by dividing the standard deviation of the data within each 
1 m/s bin by the square root of the number of points in each bin. 

While there is insufficient data available to show an increase in energy capture for one particular 
adaptive gain M, it is clear from Figure 5-2 that controlling the CART with M within the range of 
gains 0.40M+ < M < 0.52M+ does significantly increase energy capture for the CART, 
particularly in medium winds.  In high winds, both schemes use the same region 3 controller, so 
the two curves are expected to converge.  Table 5-1 summarizes the data plotted as solid lines in 
Figure 5-2.  For mid-range wind speeds, it appears that the adaptive controller causes the CART 
to capture between about 5% and 14% more energy than the standard controller does. 

Table 5-1. Mean Equivalent Wind Speed and Mean Grid Power Data for Standard and Adaptive 
Controllers (0.40M+ < M < 0.52M+) 

Mean Equivalent Wind Speed 
(m/s) 

Mean Grid Power  
(kW) 

Wind 
Speed 
Range 
(m/s) 

Standard 
Controller 

Adaptive 
Controller 

Percent 
Increase 

Standard 
Controller 

Adaptive 
Controller 

Percent 
Increase 

(4.5,5.5) 5.24 5.18 -0.98 20.42 16.56 -18.90 
(5.5,6.5) 5.97 6.01 0.75 33.89 37.35 10.19 
(6.5,7.5) 6.95 7.06 1.60 70.84 79.08 11.63 
(7.5,8.5) 8.08 8.02 -0.79 109.99 122.45 11.33 
(8.5,9.5) 9.00 9.04 0.45 161.43 181.11 12.19 

(9.5,10.5) 9.90 9.92 0.19 216.97 247.92 14.27 
(10.5,11.5) 10.98 10.87 -0.96 287.39 312.91 8.88 
(11.5,12.5) 12.05 12.02 -0.27 388.43 407.80 4.99 
(12.5,13.5) 12.98 13.13 1.10 446.12 469.78 5.30 
(13.5,14.5) 13.89 13.94 0.38 488.93 514.05 5.14 
(14.5,15.5) 15.18 14.94 -1.58 544.52 538.57 -1.09 
(15.5,16.5) 15.93 16.16 1.41 558.80 564.02 0.93 
(16.5,17.5) 17.30 16.97 -1.97 587.00 585.49 -0.26 
(17.5,18.5) 17.87 18.20 1.81 586.65 583.02 -0.62 

 
Because wind power is a function of the cube of the wind speed (Equation 2.5), the mean 
equivalent wind speed is used in Table 5-1 and Figure 5-2 rather than the mean wind speed.  The 
mean equivalent wind speed, discussed further in Appendix A, is a measure of the constant wind 
speed that would provide the mean wind power calculated over the 10-minute averaging period.  
Since the mean equivalent wind speed in Table 5-1 for each controller was within about 2% over 
the wind speed range of 4.5 m/s to 18.5 m/s, it is reasonable to state that the wind power 
available to the standard and adaptive controllers was similar.  For mean equivalent wind speeds 
ranging from 5.5 to 14.5 m/s, there are at least 10 data sets within each 1 m/s range.   

Great care must be taken not to misinterpret the data provided in Table 5-1.  The only way to be 
certain about the improvement in energy capture caused by the adaptive controller is to run each 
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controller on the turbine with identical wind input, obviously an impossibility on a real turbine 
outside of a wind tunnel.  However, comparisons among turbines and controllers are frequently 
made by multiplying a turbine’s power curve by the probability of a certain wind speed 
occurring and thus calculating the expected energy.  This type of analysis was conducted for the 
CART’s standard and adaptive power curves (0.40M+ < M < 0.52M+) and is shown in Figure 
5-3.  The power curves were specified as being zero below 5 m/s (i.e., the “cut-in” wind speed) 
and rated power (600 kW) above 18 m/s (“rated” wind speed), with a polynomial best fit line 
applied to the data between 5 and 18 m/s.   

The two solid lines in Figure 5-3 show the expected hourly energy at each wind speed, assuming 
a Rayleigh wind distribution with a mean of 8 m/s.  For example, this Rayleigh distribution 
assumes that the wind speed will be between 10 m/s and 10.25 m/s 1.75% of the time, or 1.05 
minutes out of every hour.  In order to form the solid curves showing expected incremental 
energy, this probability was multiplied by the value of the standard and adaptive control power 
curves at this wind speed, with the result being the amount of energy (kWh) expected by the 
turbine due to wind speeds of 10 m/s to 10.25 m/s during any given hour.  The expected total 
annual energy, marked by the dotted curves, is simply the integral of the expected incremental 
energy and multiplied by the number of hours in a year.   

Table 5-2 shows the percent increase in annual energy obtained by using the adaptive controller 
rather than the standard for six different wind speeds.  Since 25 m/s is the cut-out wind speed, 
meaning that no additional energy is captured for wind speeds above 25 m/s, the conclusion is 
that the CART would capture 5.5% more energy under the adaptive control than under the 
standard control while operating at a site with a Raleigh wind distribution. 
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Table 5-2. Increase in Annual Energy Capture over Standard Controller for Adaptive Controller 
with 0.40M+ < M < 0.52M+  

Wind Speed
(m/s) 

Annual Energy: 
Standard Control (MWh)

Annual Energy: 
Adaptive Control (MWh) 

Percent 
Increase 

12 710.39 780.05 9.8 
14 1039.5 1123.7 8.1 
16 1289.9 1376.7 6.7 
18 1440.6 1526.9 6.0 
20 1517.5 1603.8 5.7 
25 1569.3 1655.5 5.5 

 

Since maximizing energy capture was the primary goal of this adaptive controller (Equation 
2.14), it seems that the controller has achieved its goal.  Unfortunately, it is impossible to tell 
exactly when a real turbine’s energy capture is maximized, as opposed to merely increased.  It is 
possible, however, to plot the computed fractional average power Pfavg (Equation 2.15) vs. the 
torque control gain M, fit a polynomial curve, and see where the peak of the curve occurs.  This 
is done in Figure 5-4, which includes only the 180-minute adaptation period data (i.e., the data 
plotted in the lower plot in Figure 5-1). 

Unfortunately, because of time constraints on using the CART for experimental testing and 
measurements, only these 13 data points were collected using the three-hour adaptation period, 
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and Figure 5-4 shows that there is still significant noise within the measurements.  This noise is 
mostly the result of the short (180-minute) adaptation period, which makes it difficult to obtain a 
high correlation between measured wind and wind hitting the CART’s rotor.  The peak of the 
best-fit curve occurs at M = 0.49M+, which is close to the value M = 0.47M+ computed from the 
constant speed CART data and plotted as the straight line in the lower plot of Figure 5-1. 

The data collected while running the CART with the adaptive controller (Equation 2.14) has 
shown an increase in energy capture.  All else being equal, an increase in energy capture by a 
given turbine will lead to a decrease in cost of energy.  However, any new control technique that 
requires a turbine to be structurally modified in a way that increases the cost of the turbine or 
shortens its life span may not reduce the cost of energy after all.  The next section examines the 
measured stresses on the CART, particularly those immediately before and after an adaptation of 
the torque control gain. 

5.3 Measured Stresses on Turbine Components 

The CART is outfitted with strain gauges, accelerometers, and other instruments that can be used 
to determine whether it is experiencing high loads.  In general, region 2 loads are smaller than 
region 3 loads because of the slower wind speed and turbine speed in region 2.  Thus, design 
loads, or loads that drive the turbine’s structural design, rarely occur completely within region 2 
(though some do occur in the transition between region 2 and region 3).  It is important to 
understand whether the adaptive controller (Equation 2.14) adds any stress to the turbine beyond 
that normally be expected for region 2 operation under the standard non-adaptive controller 
(Equation 2.1).  These additional loads could be of two types: transient or steady-state.  The 
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transient loads are those that occur over a short time period directly following and as a result of 
an adaptation of the adaptive gain M.  The long-term steady-state loads are those that would 
result from a change in the turbine’s operating point.  For example, if a lower adaptive torque 
gain M causes the rotor to spin more quickly and thus undergo more revolutions in a given time, 
the damage equivalent fatigue loads for blade edge bending might be expected to be higher, since 
the blades would experience more gravity loading cycles. 

Of these two types of loads, only the transient loads can be fairly attributed to the adaptive nature 
of the proposed adaptive controller (Equation 2.14).  While it is true that the adaptive controller 
could lead to steady-state operation that causes an increase in damage equivalent fatigue loads 
compared with those experienced with the standard non-adaptive controller (Equation 2.1), this 
increase would be due only to the fact that the standard controller failed to use the optimal gain K 
= M*.  This section will assume that the turbine was designed to withstand damage equivalent 
fatigue loads consistent with the use of the standard controller with gain K = M*, although, in 
practice, this design might not be possible since M* is likely unknown.  Thus, the loads of 
interest in this research are the transient loads that result directly from the adaptations of the 
adaptive controller.  This analysis is very similar to that conducted on the SymDyn simulation 
data in Section 4.6 except that here real CART data are the subject of the examination.  Once 
again, data collected 30 seconds before and after each of two adaptations are plotted, and a brief 
summary of the two selected adaptations appears in Table 5-3. 

Table 5-3. Selected Details Relevant to Figure 5-5 through Figure 5-8 
Adaptation Normalized M (M/M+) Rotor Speed Rotor Acceleration 

#6 0.47 to 0.41 3.6 rad/s < 0 
#12 0.38 to 0.46 4.1 rad/s < 0 

 
Figure 4-11 shows that, in simulation, the effect of an adaptation on the drive shaft twist angle is 
noticeable and possibly detrimental to the drive shaft.  Fortunately, the same effect is not seen in 
the real CART data, plotted in Figure 5-5 for two different adaptations.  The independent axes in 
Figure 5-5 show time in seconds after the respective data sets began rather than from some 
universal zero time. 

Based on the data plotted in Figure 5-5 and a review of other data immediately before and after 
other adaptations, it appears that the adaptations of the generator control torque gain do not have 
a detrimental effect on the drive shaft twist angle.  This result is likely due to two facts.  First, on 
the real CART, it is impossible to change the torque control gain instantaneously, and second, 
the torque control signal sent to the turbine is actually filtered with a one second time constant 
for the purpose of preventing undesirable transient loads.  Thus, even though the gain adaptation 
law causes the value of M to change instantaneously, it takes several seconds for the power 
electronics to catch up to the change.  This slow response can be credited for eliminating the 
ringing effect that was apparent in the simulation outputs (Figure 4-11).   

The CART also has blade and tower strain gauges that may reveal any transient effects of the 
adaptation on those structures.  Blade flap and edge bending moment are plotted in Figure 5-6 
and Figure 5-7, respectively, and tower side-to-side and fore-aft bending moment follow in 
Figure 5-8 and Figure 5-9. 
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Figure 5-5: Drive shaft twist angle for two different adaptations (real CART data) 
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Figure 5-6: Blade flap bending moment (real CART data) 
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It is difficult to tell from Figure 5-6 alone whether the adaptation of the torque control gain has a 
transient effect on blade flap bending.  Following Adaptation #6, it appears that there is an 
increase in the standard deviation of the bending moment of each blade; however, the deviation 
is reduced following Adaptation #12.  Based on the inconsistency of these results and the fact 
that the wind speed increases several seconds after Adaptation #6 and decreases following 
Adaptation #12, it is most likely that the adaptation had little or no effect on the blade flap 
bending.  Rather, the blades were responding to the increase and decrease in wind speed.  In 
Figure 5-7, it is clear that the adaptation has no transient effect on the blade edge bending 
moments, which are driven mainly by gravity and the acceleration and deceleration of the rotor. 

Data in Figure 5-8 and Figure 5-9 also suggest transient loads resulting from environmental 
effects rather than adaptation effects.  In each case, there is a slight increase in tower bending 
moment following Adaptation #6 and a slight decrease following Adaptation #12.  Since wind 
speed is known to affect tower bending, and since there are no consistent tower bending 
responses among all of the adaptations, it can be safely deduced that the adaptations of the torque 
gain will not have a detrimental effect on the tower bending moment. 
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Figure 5-7: Blade edge bending moment (real CART data) 
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Figure 5-8: Tower side-to-side bending moment (real CART data) 
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Figure 5-9: Tower fore-aft bending moment (real CART data) 
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The time series data plotted in Figure 5-6 through Figure 5-9 provide a partial picture of the 
transient effects of the adaptations on the CART.  However, more than 75 adaptations have 
occurred under the gain adaptation law (2.14) and it is simply impossible to plot time-series data 
for all of them.  Instead, the following figures plot some statistical data for the time periods 
immediately preceding and following an adaptation. 

Figure 5-10 plots the ratio of the standard deviation of the accelerometer data in three Cartesian 
coordinates in the 30 seconds before and after 18 of the adaptations.  These 18 adaptations were 
chosen from the 60 and 180 minute adaptation data, excluding those adaptations that occurred 
within the first or last 30 seconds of a data set.  Figure 5-10(a) uses the adaptation number as the 
independent axis, while Figure 5-10(b) uses the ratio of the value of M after the adaptation to the 
value of M before the adaptation.  From Figure 5-10(a) it is clear that, in general, the adaptation 
of the torque control gain does not have a significant short-term effect on the variation of the 
turbine’s accelerometer outputs (as measured by the standard deviation), since most of the ratios 
cluster around 1.0 (i.e., similar variation before and after the adaptation).  However, a trend 
becomes clear in Figure 5-10(b).  In this case, it becomes clear that when the adaptive gain M is 
decreased (Mk+1/Mk < 1.0), the variation in the accelerometer outputs goes up, whereas when M 
is increased, the variation goes down.  This result makes sense, since (all else being equal) a 
smaller M results in a smaller control torque (Equation 2.14) and thus a faster rotor speed 
(Equation 2.7), which tends to cause the turbine to shake more. 

Indeed, Figure 5-11 shows the relationship between rotor speed and the standard deviation of 
accelerometer data.  Clearly, when the rotor speed increases, as it does when M decreases, the 
accelerometers record larger variations in acceleration than prior to the increase in rotor speed.  
Thus, if M adapts downward from the initial guess M0, it is expected that the turbine will shake 
more than it would have had the standard non-adaptive controller been used throughout the 
turbine’s life.  However, this steady-state result is not the fault of the adaptive controller but 
rather of the initially inaccurate guess M0.  If the primary goal of region 2 operation were to 
minimize turbine shaking rather than to maximize energy capture, the problem would be easily 
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solved by stopping the turbine in this region. 

Examination of other CART data—including low speed shaft and high speed shaft torque 
transducer output, nacelle roll, pitch, and yaw accelerations, and electrical outputs—have found 
no cause for worry that the adaptive controller’s abrupt adaptations will harm the turbine.  In 
other words, the turbine’s loads under the adaptive controller (Equation 2.14) appear to be so 
similar to those under the standard non-adaptive controller (Equation 2.1) operating with K equal 
to the true optimal torque control gain M* that there should be no need to adjust the turbine 
design in any way in order to maintain a similar life span.  Thus, any increase in energy derived 
from the adaptive controller can be considered to be a direct decrease in the cost of wind energy, 
assuming the turbine was designed to withstand steady-state fatigue loads under the standard 
controller with K = M*. 
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Now that it has been determined that the adaptive controller does not appear to increase the 
stresses on the CART beyond those experienced under the non-adaptive control in region 2, there 
is one more area of operation to examine.  This area is the transition between region 2 and region 
3 control, an area that has been known to cause significant loading on commercial turbines. 

5.4 Region 2–3 Transition 

The distinct region 2 and region 3 control objectives lead to many turbines using separate control 
strategies in region 2 and region 3.  On many turbines, the strategy is as simple as switching from 
one controller to the other (e.g., constant-pitch, generator torque control in region 2 to constant-
torque, variable pitch control in region 3).  On the CART, both the pitch and generator torque 
control are technically “active” at all times, though they are designed so that the pitch reaches its 
constant saturated value in region 2, and the generator torque reaches its constant saturated value 
in region 3.  The transition between controllers can cause significant loading on a turbine’s 
mechanical and electrical components, with overspeed and overpower transients commonly seen 
in the industry (Eggers et al. 2002, Leith and Leithead 1997).  One example of a bad transition 
on the CART is plotted in Figure 5-12; an example of a good transition follows in Figure 5-13.  
For ease of comparison, both are plotted on the same scales.  In the bad transition example of 
Figure 5-12, the torque control gain was constant throughout the transition at 0.72M+, while in 
the good transition example of Figure 5-13 this gain was almost the same at 0.71M+.  Clearly, the 
torque control gain M is not the only factor affecting the smoothness of the transition. 
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Figure 5-12: Bad region 2 - region 3 transition on the CART 
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In Figure 5-12, there are large oscillations in many of the CART data channels, including the 
high speed shaft angular speed (rpm), the high speed shaft torque, the tower bending moments in 
two directions, and the two blade flap bending moments.  The horizontal line plotted in the HSS 
RPM subplot marks the transition between regions; region 3 operation occurs when the speed is 
above this line.  During the time period plotted, the turbine was switching between controllers as 
the speed moved above and below the transition speed.  These data are from one of the more 
extreme transitions the CART experienced during the variable speed adaptive controller testing.  
Fortunately, most transitions occur with much lighter loading on the turbine components, like the 
example plotted in Figure 5-13.   

Since the torque control gain M was almost identical between the two examples and the region 2 
control scheme was the same, the difference between the transitions is likely the result of 
atmospheric factors.  Indeed, the wind speed was very different between the two examples, as 
plotted in Figure 5-14.  In the first 10 seconds of the bad transition example, the wind speed rose 
from 12 m/s to 19 m/s, then dropped back down to about 15 m/s.  Such rapid fluctuations can 
cause high loading on the turbine.  By contrast, the wind speed measured during the good 
transition ranged from 11 m/s to 15 m/s over the 30-second period plotted.   

Note that the problem of the region 2 to region 3 transition on a variable speed turbine is not a 
standard control problem wherein a variable must move from one steady-state value to another 

0 10 20 30
1500

1600

1700

1800

1900

Time (seconds)

H
S

S
 R

PM

0 10 20 30
1500

2000

2500

3000

3500

4000

Time (seconds)

H
S

S
 T

or
qu

e 
(N

m
)

0 10 20 30
-2000

0

2000

4000

Time (seconds)To
w

er
 B

en
di

ng
 M

om
en

t (
kN

m
)

0 10 20 30
-200

0

200

400

600

800

Time (seconds)B
la

de
 F

la
p 

B
en

di
ng

 M
om

en
t (

kN
m

)
E/W
N/S

Blade 1
Blade 2

Figure 5-13: Good region 2 - region 3 transition on the CART 
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through a transient region.  When the wind speed is fluctuating right around the region 2–region 
3 transition region, it is desirable for the turbine to switch back and forth between control regions 
rather than for it to reach region 3 control and remain there.  Thus, it would be desirable to have 
a means of alleviating the loading problems that are caused by the controller. 

There are many possible solutions to the transition loading problem, and adaptive torque gain 
control is one option.  However, in order to derive the most benefit from an adaptive torque 
controller in the transition region, the controller must be able to adapt on a time scale similar to 
or shorter than the time usually spent in transition (seconds).  The adaptive torque gain controller 
proposed in this research, then, will not actively improve the transition.  However, it is not well 
understood whether the identification of the optimal torque control gain performed by the 
adaptive controller will have an unintentional effect on the transition region.  This is the question 
addressed in this section. 

If the use of the optimal torque control gain M in the region 2 control law were to have an effect 
on the transition loading, then there should be a correlation between the magnitude of the 
oscillations of some of the turbine components and the value of M.  One way to measure the 
magnitude of the oscillations is with the standard deviation.  In this study, 39 30-second 
transition periods were identified within the CART data that contained at least two seconds in 
region 2 within the first 20% (6 seconds) of the period and 10 seconds in region 3 within the last 
50% (15 seconds) of the period.  During the intermediate 30% (9 seconds), the turbine could be 
operating within any control region.  These specifications were chosen to ensure that the 
transitions being compared were similar in nature so that the statistical analysis would be valid.  
The values of the torque control gain varied from 0.31M+ to 1.00M+ among the 39 periods of the 
study.   

It is clear from Figure 5-15 that there is no statistically significant correlation between the value 
of the torque control gain M and the standard deviations of the blade flap and edge bending 
moments, tower bending moments, and accelerometer outputs in any direction.  Since these 

0 10 20 30
10

12

14

16

18

20

W
in

d 
Sp

ee
d 

(m
/s

)

Time (seconds)

Wind Speed for Bad Transition Example

0 10 20 30
10

12

14

16

18

20

W
in

d 
Sp

ee
d 

(m
/s

)

Time (seconds)

Wind Speed for Good Transition Example

Figure 5-14: Wind Speed for Bad and Good Transition Examples 



 

 

 

57

measurements are likely candidates for loading problems to appear, it seems unlikely that this 
adaptive controller (Equation 2.14) will have a significant effect on turbine loading during the 
transition between regions. 

Chapter 5 has examined the CART data obtained while running the adaptive controller (Equation 
2.14) and found some promising results.  The first of these results is that the gain adaptation law 
(Equations 2.18–2.20) causes the adaptive gain M to converge toward a steady-state value which 
is near its optimal value M* as computed from other data.  The second result is that the CART’s 
energy capture is increased when the turbine runs with an adaptive gain M in a narrow range 
around the estimated M*.  Third, the actual adaptation of the adaptive gain M does not appear to 
have a detrimental effect on the turbine.  All of these results are very promising for adaptive 
torque control of variable speed turbines.  Then, in a result that is neither positive nor negative, it 
was determined that the gain adaptation law has little or no effect on the transition between 
region 2 and region 3, a well-known trouble area for variable speed turbine control. 
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CHAPTER 6: Theoretical Analysis 

There are several stability questions to be addressed that can help to ensure safe and desired 
operation of a variable speed adaptive torque gain control law and also to provide further insight 
into the systems.  The first three questions relate to the stability properties of the turbine’s torque 
control law—a continuous-time problem on a rapid time scale.  First, the simple problem of the 
asymptotic stability of the equilibrium point ω = 0 in the absence of wind is addressed; the 
conclusion is that the standard region 2 controller causes the equilibrium point ω = 0 to be 
asymptotically stable.  A similar conclusion is reached in the case of a constant wind input.  
Next, the finite gain stability properties of the system from input (wind) to output (rotor speed) 
are examined.  All three of these stability results are proved under the assumption that the 
adaptive control gain M > 0 is constant; this is a valid assumption because the gain adaptation 
takes place discretely and on a time scale several orders of magnitude slower than that of the 
wind and rotor speed changes (many hours vs. seconds).  Simplified block diagrams for the 
systems are shown in Figure 6-1.  In Figure 6-1(a), the linear plant is simply as stated in 
Equation 2.7, and the nonlinear controller is as stated in Equation 2.14.   

The final stability question regards the convergence of the adaptive gain M  M* given the 
proposed gain adaptation law.  Figure 6-1(b) shows the simplified block diagram for this system, 
where the nonlinear plant is the turbine’s Pfavg vs. M~  relationship and the nonlinear controller is 
given by Equations 2.18–2.20.  One example of a Pfavg vs. M~  curve, shown in Figure 6-2, is 
based on SimInt simulations using the CART’s PROP-generated Cp surface.  The assumption in 
this section is that the Pfavg vs. M~  relationship on most modern turbines resembles this curve.  
This is a valid assumption because the shape of this curve is qualitatively based on the shape of 
the turbine’s Cp surface, and the shape of a Cp surface is qualitatively the same from turbine to 
turbine.  In all of these proofs the air density, ρ, is assumed to be a constant greater than zero.  In 
reality, changes in air density are small in magnitude. 

 
Figure 6-1:Simplified block diagrams (a) relating aerodynamic torque and rotor speed, and (b) gain 

adaptation law. 
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6.1 Asymptotic Stability of ω = 0 

Because wind turbines are designed to spin as freely as possible, the friction due to mechanical 
bearings, gear mesh, generator core losses, and air resistance during operation is very small.  
However, in the formal proof of the asymptotic stability of the equilibrium point ω = 0, the 
equation for ω&  (Equation 2.7) should be amended to include a frictional term b, where b > 0: 

( )ωττω bcaeroJ −−= 1& . (6.1) 
 
Now, given the equation for aerodynamic torque (Equation 2.8) and Equation 2.14, Equation 6.1 
can be expanded to 
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Theorem 1: The plant (Equation 6.1) and the nonlinear controller (Equation 2.14) have an 
asymptotically stable equilibrium point at ω = 0 when v = 0 and M is a constant greater than 
zero. 
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Figure 6-2: Fractional average power Pfavg vs. error in M 
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Proof: When v = 0, the first term in Equation 6.2 becomes zero.  In this case, the simple 
Lyapunov function candidate 2

2
1 ω=V  has the derivative 



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≥−−
<−

=
0,
0,
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ωωω
ωω

ρ
J
b

J

J
b

M
V& ,  

 
which is negative for all ω ≠ 0 and equals zero for ω = 0.  Thus, the equilibrium point ω = 0 is 
globally asymptotically stable.         � 

Note also that, when b is assumed to be zero, the equilibrium point is still stable in a global sense 
but no longer asymptotically stable for ω < 0.  The asymptotic stability still holds in a local sense 
for all ω ≥ 0. 

6.2 Asymptotic Stability of Rotor Speed with Constant, Positive Wind Input 

The next stability result to be addressed concerns whether or not the rotor speed ω converges to 
an equilibrium value under a constant, positive wind speed input.  While it is unreasonable to 
assume a constant wind speed in the field, it is still desirable to understand the system response 
under these controlled conditions.  Once again, the plant is given by (Equation 6.1) and the 
nonlinear controller is given by (Equation 2.14).  This analysis is similar to the example provided 
in Section 2.1 explaining the operation of the standard, non-adaptive region 2 controller.  
However, unlike the standard controller (Equation 2.1), the adaptive controller (Equation 2.14) 
does not assume perfect knowledge of the aerodynamic parameters Cpmax and λ*.  Thus, the cubic 
curve Fλ3 given in (Equation 2.13) and plotted in Figure 2-2 must be rewritten as follows: 

( )vbMG
vAR

bRvMC p ,,,3
2
1

23

λ
ρ

λλρ
=

+
= . (6.3) 

 
In (Equation 6.3), b is several orders of magnitude smaller than M*, so if it is assumed that M is 
within a neighborhood (say, an order of magnitude) of its true optimal value, the second term in 
the numerator of (Equation 6.3) is nearly zero in comparison.  Although this fact is not required 
for the following analysis, it simplifies the re-drawing of Figure 2-2 because the wind speed v 
and air density ρ both cancel out and Figure 2-2 can be re-drawn in Figure 6-3 for various M 
values independently of v and ρ.  When Figure 6-3 is plotted using representative values of ρ, v, 
and b, its qualitive nature does not change, and the new curves are indistinguishable from those 
plotted on the scale in use. 
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The first item of note apparent in Figure 6-3 compared to Figure 2-2 is that the cubic function no 
longer intersects  the CART’s Cp curve at its peak when M ≠ M*.  This is because optimal power 
capture cannot be achieved for M ≠ M*.  Let λ2 be defined as the intersection of G(λ,M) with the 
CART’s Cp vs. λ curve, Cp(λ), such that G(λ,M) > Cp(λ) for all λ > λ2., i.e., the highest value of 
λ for which the two curves intersect.  Let λ1 be defined as the next highest intersection point, i.e., 
the λ for which 0 < λ1 < λ2 and G(λ,M) < Cp(λ) for all λ1 < λ < λ2 and G(λ,M) > Cp(λ) for some 
λ < λ1 within a neighborhood of λ1.   For the dashed M = 0.7M* curve, these values correspond 
to λ1 = 3.1 and λ2 = 8.4.  The following theorem states that, for a constant wind input, the tip 
speed ratio will converge to the intersection of the two curves, λ2, as long as the initial tip speed 
ratio is greater than λ1. Assume λ1 > 0. 

Theorem 2: The plant (Equation 6.1) and the nonlinear controller (Equation 2.14) have a locally 
asymptotically stable equilibrium point at λ = λ2 when v and M are constants greater than zero.  
The domain of attraction is λ1 < λ < ∞. 

Proof: In the domain 0 < λ1 < λ < ∞, ω > 0 holds (since ω = λv/R).  Define λλλ −= 2
~ .  Now 

choose the Lyapunov function 2
2
1 ~λ=V .  For ω > 0,  

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

Tip Speed Ratio

C
p

CART Cp vs. TSR 

Cp = G(   , M)

M = 0.7M* 

λ 

Cp = G(   , M)

M = 1.3M* 

λ 

 
Figure 6-3: CART Cp and cubic for different M 
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( )( )λλρρλλ J
b
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2
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2
& . (6.4) 

 
Substitution of Cp / λ for Cq in (Equation 6.4) and a little algebra provides the result that 
( ) 0212

2
1 >−− λλρρ J

b
JRqJ vMvCAR  when λ1 < λ < λ2 (i.e., when G(λ,M) < Cp(λ)) and 

( ) 0212
2
1 <−− λλρρ J

b
JRqJ vMvCAR  when λ > λ2 causes G(λ,M) > Cp(λ).  Thus, 0<V&  for all λ1 

< λ < ∞ except λ = λ2, for which 0=V& .  This provides the result that the equilibrium point λ = 
λ2 is locally asymptotically stable in the domain λ1 < λ < ∞.    � 

Note that this proof of the convergence of λ to a specific value is equivalent to the convergence 
of ω to a specific value for a specific wind speed because ω = λv/R.  Also, note that when M = 
M*, the curves G(λ,M) > Cp(λ) intersect at (λ*,Cpmax) and therefore optimal power capture is 
achieved for the constant wind input case. 

While it is useful to understand the characteristics of the system when the wind input is constant, 
this unrealistic situation would only occur in a wind tunnel.  Thus, the behavior of the system 
when the wind input is not constant is the next item studied. 

6.3 Input-Output Stability 

The next question to be answered is that of input-output stability.  In reality, all wind turbines 
have a maximum safe operating speed, and some type of aerodynamic braking is usually used to 
prevent the turbine from operating at speeds that are above this maximum.  These aerodynamic 
controls can include actuators for changing the blade pitch, special tip devices called tip brakes, 
blade flaps or ailerons, or some other method.  However, it is still useful to examine whether the 
generator torque control would bound the turbine speed in some sense in the absence of these 
other controllers.   

Theorem 2: If Cq ≤ 1, the plant (Equation 6.1) and the nonlinear controller (Equation 2.14) is 
finite-gain L2 stable, where squared wind speed v2 is the input and rotor speed ω is the output. 

Proof: Passivity theory is used to answer this question.  Consider the kinetic energy of the rotor: 
½Jω2.  Now choose a positive definite function similar to the kinetic energy function: 

21 ωρ JV AR= , (6.5) 
 
where ρ >0 is once again considered to be a constant.  Now, in order for the system to be output 
strictly passive, the time derivative of Equation 6.5 must be less than or equal to the product of 
the input and output minus some positive constant times the square of the output (Khalil 2002).  
In this particular case, with v2 the input and ω the output, the requirement is 

22 δωω −≤ vV&  (6.6) 
 
for some δ > 0.  In fact, the time derivative of Equation 6.5 is  
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Let 

AR
b

ρδ
2
1= .  Then, since 3

2
1 ωAR
M  ≥ 0 for ω ≥ 0, the inequality in Equation 6.6 is satisfied 

whenever Cq ≤ 1.  If Cq ≤ 1, Lemma 6.5 in Khalil (2002) provides the conclusion that the wind 
turbine system, from v2 to ω, is finite-gain L2 stable.      � 

The condition Cq ≤ 1 is nearly always satisfied for modern turbines. The CART, for example, has 
an estimated Cqmax of approximately 0.06.  However, the motivation for the adaptive controller is 
that the Cp and Cq curves are unknown, so it would be nice to have a stability result independent 
of the assumption on Cq.  Indeed, since the Betz Limit states that the maximum possible Cp for 
any real turbine is 16/27, and the two curves are related by Equation 2.9, it can be guaranteed that 
Cq ≤ 1 for any λ ≥ 16/27.  Thus, the L2 stability result is valid ∀λ ≥ 16/27.  When λ ≤ 16/27, the 
question is simple, since by the definition of λ in Equation 2.3, it is known that R

v
R
v

27
16≤= λω .  

Thus, for finite λ, L∞ stability is given.  

6.4 Convergence Characteristics of the Gain Adaptation Algorithm 

Since the gain adaptation law performs no calculations during (k – n)nTs < t < knTs, Mk–1 can 
replace Mk–n without loss of generality. (The discrete time index k has been changed to a 
subscript for convenience.) A few assumptions are made:   

Assumption 1: M* is constant.  Although the turbine parameters (and thus the optimal gain M*) 
change with time, this is a valid simplification because the turbine’s physical changes are 
typically noticeable only over months or years, while the gain adaptation law has an adaptation 
period of less than a day.   

Assumption 2: The Pfavg vs. M~  curve has a shape similar to the one in Figure 6-2, at least in 
some local region around the optimal operating point.  This is generally assumed to be true for 
any modern turbine.  Specifically, the curve has a maximum at 0~ =M , is continuously 
differentiable, and is strictly monotonically increasing on 0~ <M  and strictly monotonically 
decreasing on 0~ >M .   

Assumption 3: The adaptive controller has been operating sufficiently long that the specifics of 
the initial conditions provided to the controller are no longer relevant.  If the initial conditions 
provided are M0, Pfavg0, ∆M0, and M1, then k > 2 is the time frame of interest.   

6.4.1 Types of Instability 

Begin the analysis by using intuition and considering the possible ways that the system could go 
unstable (i.e., | M~ | ∞→  as ∞→k ).  Clearly, one possibility is for | kM~ | > | 1

~
−kM | with either 

sgn( kM~ ) = 1 ∀k > 2 or sgn( kM~ ) = -1 ∀k > 2.  However, it is simple to show that this scenario 
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cannot occur with the gain adaptation law presented in Equations 2.18–2.20.  Indeed, the error 
M~  will never take more than one consecutive step in the wrong direction. 

Theorem 3: Given Assumption 1, the feedback system in Figure 6-1(b) with nonlinear controller 
(Equations 2.18 - 2.20) and the nonlinear plant given by Assumption 2, will never result in | 1

~
+kM | 

> | kM~ | > | 1
~

−kM | for sgn ( 1
~

+kM ) = sgn( kM~ ) = sgn( 1
~

−kM ) for any k >2. 

Proof: Before the proof is begun, it should be noted that, by Equation (2.15), Pfavg k+1 is the 
calculation performed at the end of the adaptation interval during which M = Mk; thus, Pfavg k+1 
corresponds to kM~ .   

Assume for simplicity that sgn( 1
~

−kM ) = sgn( kM~ ) = sgn( 1
~

+kM ) = 1.  (The case in which 
sgn( 1

~
−kM ) = sgn( kM~ ) = sgn( 1

~
+kM ) = -1 can be proven identically with the appropriate sign 

changes.)  Under this assumption, | 1
~

+kM | > | kM~ | > | 1
~

−kM | is equivalent to 1
~

+kM  > kM~  > 1
~

−kM .  
This sequence, which represents two consecutive steps away from 0~ =M , gives the following 
results: 

00~~
1 <∆⇒>∆−=− − kkkk MMMM . (6.8) 

 
00~~

111 <∆⇒>∆−=− +++ kkkk MMMM . (6.9) 
 
Further, since 1

~~
−> kk MM  in this scenario, it can be concluded that Pfavg k+1 < Pfavg k  due to the 

strictly monotonically decreasing nature of this side of the Pfavg vs. M~  curve.  Thus, by Equation 
2.20, 

0
1

<∆
+kfavgP . (6.10) 

 
Now, from Equation 6.8 and Equation 6.10 it is clear that sgn(∆Mk) = sgn(∆Pfavg k+1) = -1.  Thus, 
by Equation 2.19, sgn(∆Mk + 1) = 1.  This contradicts Equation 6.9, and the conclusion is that it is 
impossible for | 1

~
+kM | > | kM~ | > | 1

~
−kM | for sgn ( 1

~
+kM ) = sgn( kM~ ) = sgn( 1

~
−kM ) for any k > 2.  

Thus, it is impossible for the adaptive gain Mk to take two or more consecutive steps in the 
wrong direction for k > 2.         � 

Since Theorem 3 shows that it is impossible for the sign of the adaptation step to be incorrect for 
more than one consecutive step, intuition would state that the magnitude of the adaptation step—
specifically the gain γ∆M—is the critical factor in determining whether the gain adaptation law is 
stable.  Figure 6-4 gives an example of a situation in which the gain γ∆M was large enough to 
cause instability of M.  In this example, 

11
~~

−+ > kk MM , ∀k > 2 but 
kk MM ~~

1 >/+
, ∀k > 2. 
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6.4.2 Bounds on γ∆M Gain for Stability 

Since the type of instability shown in Figure 6-4 can occur whenever 1
~

−>∆ kk MM , it is logical 

to consider 

0~,~
11 ≠=∆ −− kkk MMM   (6.11) 

 
to be the critical case, which may be referred to as the marginal stability case.  What gain γ∆M 
makes Equation 6.11 true? For the symmetrical curve  

( ) 0
2

121
~~ αα +== −− kkk MyMy , (6.12) 

 
where α2 < 0 and α0 is any real number, γ∆M is simple to find.   

In the critical gain scenario of this example, the system is oscillating among the three points 
plotted in Figure 6-5.  If 1

~
−=∆ kk MM , then 0~ =kM  by Equation 2.18.   Also, substituting yk for 

Pfavgk in Equation 2.20 and considering the definition of ∆Mk (Equation 2.19), in this case the 
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Figure 6-4: Instability example 2 for gain adaptation algorithm 
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gain γ∆M is such that kk MM ∆=∆ +1 , so 11
~~

−+ −= kk MM .  Following the equations through one more 
step shows that, in this critical situation, 0~

2 =+kM  and the adaptive gain will oscillate among 
these three points.  Thus, an upper bound on the gain γ∆M for stability can be found by equating 

11
~~

+− −==∆ kkk MMM  (6.13) 
 
and solving for γ∆M in terms of α2.  Combining Equations 6.13, 2.19, and 6.12 and 0~ =kM  gives 
the requirement 

2

1
αγ ±=∆M . (6.14) 

 
Since γ∆M > 0, the positive value of (6.14) is chosen.  Thus, the gain adaptation law (Equations 
2.18–2.20) will not cause instability of kM~  on the curve (Equation 6.12) whenever 

2
1

20 −
∆ << αγ M .  In fact, since 2

1

2
−

∆ = αγ M  is the marginal stability case, 2
1

20 −
∆ << αγ M  will 

actually cause convergence of 0~ →M . 
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The rate of convergence of 0~ →M  is dependent on several factors, including the adaptation 
period, the size of γ∆M, and the shape of the Pfavg vs. M~  curve.  A longer adaptation period will 
likely slow the convergence overall but may reduce the number of adaptation steps required for 
M to come within a certain percent error from M*.  Based on simulation results, a longer 
adaptation period will also reduce the magnitude of the oscillations around 0~ =M , as well.  
Assuming that γ∆M is small enough for the gain adaptation law to be stable, the size of γ∆M also 
affects the rate of convergence towards 0~ =M .  A smaller γ∆M will result in a slower approach 
but smaller oscillations around 0~ =M .  Similarly, a system with a flatter Pfavg vs. M~  curve will 
experience a slower approach of 0~ →M  because its step sizes will be smaller but will also 
undergo smaller oscillations around 0~ =M . 

6.4.3 Asymmetric Pfavg vs. M~  Curves 

Since the requirement on γ∆M is dependent on the magnitude |α2|, any γ∆M chosen for a specific 
curve will also guarantee convergence of Mk on a shallower curve (i.e., one with a smaller |α2|) 
since that curve would have a larger allowable γ∆M by Equation 6.14.  A similar result can be 
stated for an asymmetric curve: if the gain γ∆M is chosen to guarantee convergence based on the 
slope of the steeper side of the curve, it would guarantee convergence over the entire curve, since 
the step sizes ∆Mk calculated on the shallower side of the curve would be smaller in magnitude 
than those on the steeper side for a given ∆Mk-1.  Thus, for any turbine Pfavg vs. M~  curve, there 
exists a γ∆M that guarantees convergence of the adaptive gain Mk, and this γ∆M depends on the 
steepness of the Pfavg vs. M~  curve.  

Unfortunately, the Pfavg vs. M~  curve is not explicitly known for any turbine.  In practice it is 
necessary to approximate the shape and slope of the curve for a given turbine.  A more 
conservative selection of γ∆M is then likely to result in stability (and convergence), but will also 
result in smaller step sizes and thus slower convergence.   

An example of the selection of γ∆M for the CART is provided in Figure 6-6.  The y curve is 
chosen to fit snugly inside the Pfavg curve while satisfying y < Pfavg; in this case, α2 = -0.00001. 
Thus, the maximum allowable γ∆M for “guaranteed” stability is 316.  The gain used in testing on 
the actual CART (before this stability analysis was performed) was γ∆M = 100.  This γ∆M = 100 
value was determined empirically from simulations and early hardware testing.  While actual 
turbine results indicate stable performance of the adaptive control law, this stability analysis 
provides further reassurance and guidelines in choosing γ∆M. 

A formal proof of the stability of the feedback system given by Figure 6-1(b) is provided in 
Appendix B with one modification: Equation 2.19 is replaced by   

( ) ( )[ ] ( )

( )[ ] ( )[ ] ( )kPkPnkM

kPnkMkM

favgfavgM

favgM

∆∆−∆=

∆−∆=∆

∆

∆

sgnsgn

sgn

γ

γ
, (6.15) 
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which is identical except for the square root.  An argument is presented in Remark 2 following 
the proof as to the why the modified proof is still relevant. 
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CHAPTER 7: Extensions to Original Gain Adaptation Law 

Experimentally demonstrating that the adaptive control law (Equation 2.14) has increased energy 
capture compared to the original non-adaptive law (Equation 2.1) on the CART is very 
promising, but there are still some negative aspects of Equations 2.14 and 2.18–2.20 and the 
ways in which they were implemented that make them less desirable to a commercial turbine 
designer.  The biggest of these is likely the fact that an upwind anemometer was used for the Pwy 
calculation (Equation 2.16), since this anemometer would likely be unavailable on a commercial 
machine.  In addition, the fact that the proposed gain adaptation law (Equations 2.18–2.20) 
incorporates only one past value into its calculations makes it more oscillatory and more prone to 
measurement and sensor errors than, for example, a filtered law might be.  This chapter 
addresses these two concerns by making extensions on the gain adaptation law (Equations 2.18–
2.20). 

7.1 Use of Nacelle Anemometer 

The earliest adaptive control tests performed on the CART actually used the nacelle anemometer 
rather than the anemometer on the met tower (the “upwind anemometer”) for the calculation of 
Pwy (Equation 2.16).  However, the sensor was changed after it was determined that Pfavg 
(Equation 2.15) values were higher than the Betz Limit, which was known to be impossible.  
Although the aerodynamics behind the rotor and around the nacelle are very complicated while 
the turbine is operating, it was then believed that the major errors in the nacelle anemometer 
wind speed measurements are caused by the well known axial induction factor.  The axial 
induction factor is a measure of the slowing of the wind from the upwind, or free-stream, 
velocity to the velocity at the rotor plane (Manwell et al. 2002).  The effect of the axial induction 
factor is that, for a given upwind wind speed, a faster spinning rotor (i.e., higher tip speed ratio) 
results in slower wind downwind of the rotor.  Thus, the measured Pwy actually appears lower 
than the true available wind power, and the value of Pfavg is misleadingly larger.  As the adaptive 
gain M decreased at each adaptation step, the average tip speed ratio increased; Pfavg became 
even larger, as a result, it was thought, of the axial induction factor; and an undesirable positive 
feedback loop formed.  For this reason, the use of the nacelle anemometer was abandoned early 
in the testing.  Figure 7-1 shows the CART and the general locations of the anemometers, with 
the upwind anemometer on the met tower upwind of the turbine and the nacelle anemometer on 
top of the nacelle at the back end. 

Later experimental results, however, necessitated a re-evaluation of this early conclusion.  First, 
the 10-minute adaptation periods used in the earliest experiments were found to be not nearly 
long enough to provide a good correlation between measured wind speed at either anemometer 
and the wind hitting the rotor plane.  Thus, some of the effects believed to be the result of the 
axial induction factor may have been merely the result of this poor correlation.  Second, further 
data analysis revealed that the CART’s true optimal M was far below (around 47%, as discussed 
in Section 5.1) the originally estimated value M+, so the fact that M kept adapting down in early 
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experiments may not have been attributable to the axial induction factor at all.  In fact, the use of 
the nacelle anemometer for the wind speed measurement may have given better results than were 
recognized at the time.  However, the fact remains that the wind is slowed by the rotor, and, as a 
result, using the nacelle anemometer in the Pwy calculation does cause the calculated Pfavg to be 
higher than the Betz Limit.  The question addressed in this section is whether this slowing factor 
causes problems for the gain adaptation law, or whether it is consistent enough over the 
operating range that it can simply be viewed as a constant multiplying factor in the calculations.  
If it is like a constant multiplying factor, then the “Slope Error” simulations performed in Section 
4.3 suggest that it should not cause significant problems for the gain adaptation law. 

7.1.1 CART Adaptations Using the Nacelle Anemometer 

In fact, the adaptive gain M seems to converge nearly as well when the nacelle anemometer is 
used for the wind speed measurement as when the upwind anemometer is used, as shown in 
Figure 7-2.  The CART’s estimated optimal value of M, M* (Section 5.1), is plotted as the solid 
horizontal line, and the 180-minute adaptations using the upwind and nacelle anemometers are 
plotted for comparison.  One difference between the two plots is that, at 21 hours, the nacelle 
anemometer M takes a second step in the wrong direction (assuming the horizontal solid line is 
the true M*).  The reason for this, and for the general oscillatory nature of both curves, is 
assumed to be the shorter-than-optimal adaptation period.  However, both curves show general 
agreement on the approximate optimal value of M, and it is hoped that future testing with longer 
adaptation periods will show even better convergence properties. 

 
Figure 7-1: CART (a) operating at the NWTC with upwind met tower shown, and (b) 

close-up view showing the nacelle anemometer 
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Figure 5-4 shows a plot of the fractional average power Pfavg vs. normalized M, including the 
best-fit quadratic, obtained from running the CART using the upwind anemometer.  In this 
figure, the power values were mostly close to the Cpmax predicted from data analysis (Cpmax ≅ 
0.41).  However, the presence of the slowing factor is clear in a similar plot, Figure 7-3, created 
using the nacelle anemometer data.  In this plot, half of the data lie above the Betz Limit, which 
means that there must be an error in either the wind power Pwy (Equation 2.16) or the turbine 
captured power Pcap (Equation 2.17) measurement.  Even the data that lie below the Betz Limit 
are unreasonably high for a real turbine, and certainly too high for the CART, given the 
knowledge obtained from much of the other data collected in various experiments.  However, the 
peak of the best fit curve occurs at M = 0.50M+, which is very close to the peak of the best fit 
curve of Figure 5-4 (M = 0.49M+).  Since the adaptive controller cares only where the peak of the 
Pfavg vs. M~  curve occurs and not its actual magnitude, these data support the idea that the nacelle 
anemometer is a valid instrument to use in the CART’s gain adaptation law calculations. 

7.1.2 Effects of Tip Speed Ratio on Axial Induction Factor 

Since it appears that the adaptive controller treats the CART’s nacelle wind speed measurement 
as being some constant multiple of the upwind wind speed measurement, it seems likely that 
there would be a high correlation between the two measurements.  Randall et al. (2002) 
examined experimental data and derived best-fit lines for the relationship between upwind and 
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nacelle wind speed on several different turbines.  Smaïli and Masson (2003) also addressed this 
question for one particular turbine, deriving some relevant equations and finding correlations 
between the two measurements based on experimental data.  They found that the relationship 
between the two wind speed measurements varies with blade pitch angle and is dependent on the 
shape of the nacelle.  In fact, common sense dictates that the geometry of the nacelle and blades 
and the precise location of the nacelle anemometer all play an important role in determining this 
relationship.  Thus, the specific equations in Smaïli and Masson (2003) are not expected to hold 
for the CART’s upwind and nacelle wind speed relationship.  Note especially that the 
instantaneous correlation between the two measurements will be poor, since there is a time delay 
of several seconds between the two sensors; averages over time periods significantly longer than 
that delay, however, should show a correlation. 

Figure 7-4 shows a plot of about 350 10-minute wind speed averages.  The best fit line is 
superimposed on the data and shows a high correlation (R2 = 0.98) between the two.  The 
equation of the best fit line is vn = 0.8543vu - 0.04720, where vn is the wind speed measured by 
the nacelle anemometer and vu is the wind speed measured by the upwind anemometer. 

Figure 7-4 includes data for M having a range of 0.27M+ to 1.42M+.  Thus, it does not provide 
any information regarding how the relationship between the two measurements of wind speeds 
varies with tip speed ratio or axial induction factor.  However, it does provide support for the 
idea that the gain adaptation law works when the nacelle anemometer is used because the nacelle 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64
Fr

ac
tio

na
l A

ve
ra

ge
 P

ow
er

 P
fa

vg

Normalized M (M/M+)

Data
Best Fit Curve

Betz Limit 

 
Figure 7-3: Fractional average power Pfavg vs. normalized M 
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wind speed measurement is very close to a scaled version of the “true” (upwind) wind speed 
measurement.  There is an offset of 0.05 m/s present in the equation, but this value is small (less 
than 1%) compared with normal operating wind speeds of 8-9 m/s.  Since wind power Pwy 
(Equation 2.16) is a cubic rather than linear function of wind speed, the exact percentage error in 
Pwy caused by this offset error in the wind speed measurement is not consistent from one wind 
data set to another.  However, for one 2-hour wind data set used as an input in this report, the 
0.05 m/s offset in wind speed corresponds to a 1.3% error in the wind power measurement.  For 
comparison, the offset error simulated in Section 4.3 was about 7% of the power calculation.  
Thus, the wind measurement offset error that results from using the nacelle anemometer may 
cause small problems for the gain adaptation law but it is small compared to the offset that 
caused such significant problems in Section 4.3.  The scaling factor of 0.8543 is a much larger 
percentage of the wind speed, but this type of error (constant slope error) is handled much more 
easily by the gain adaptation law (Equations 2.18–2.20), as discussed in Section 4.3. 

The question, then, becomes whether the “constant” scaling factor observed in Figure 7-4 is truly 
constant or whether it depends on the tip speed ratio.  Figure 7-5 shows the same data presented 
in Figure 7-4 divided into six different plots based on the mean tip speed ratio λ for each data set.  
Once again, the best fit line is superimposed over the data in each plot.  The y-intercept on each 
plot is very close to zero, and the slopes appear to be very similar.  The relevant data for each 
subplot are listed in Table 7-1, where the coefficients a and b are from the equation vn = avu + b.  
From the table, it is apparent that the slopes of each best-fit line are close (within about 5%) and, 
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Figure 7-4: Relationship between nacelle and upwind wind speed measurements 
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more importantly, that there is no clear trend relating the slopes and the tip speed ratio intervals 
to which they correspond.  Thus, it seems that the axial induction factor does not play as large a 
role on the CART as originally believed, which may be because the CART’s blades taper to 
ellipses near their roots rather than retaining a good airfoil shape.  In any case, the nacelle 
anemometer should provide a valid measurement to use in the CART’s gain adaptation law. 

Table 7-1. Relevant Data for Figure 7-5 
Plot # of Points Range of λ a b R2 
(a) 22 (0.0,6.5] 0.86605 -0.13357 0.98646 
(b) 90 (6.5,7.5] 0.89567 -0.51903 0.98214 
(c) 129 (7.5,8.5] 0.85451 -0.13552 0.97966 
(d) 85 (8.5,9.5] 0.85262 0.0004371 0.96954 
(e) 35 (9.5,10.5] 0.88175 -0.020186 0.96728 
(f) 9 (10.5,∞) 0.87757 0.13417 0.95346 

 
7.1.3 Simulations of Axial Induction Factor 

Although the data presented above show that the axial induction factor does not prevent the use 
of the nacelle anemometer for this adaptive controller on the CART, it cannot be concluded that 
the same result holds for all turbines.  Since no other real turbines were available for this test, 
simulations were performed to assess the effect of the axial induction factor on a turbine with a 
strong correlation between axial induction factor and tip speed ratio.  In fact, this relationship 
was obtained from the earlier PROP analysis of the CART, but this research has already shown 
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Figure 7-5: 10-minute averages of nacelle vs. upwind wind speed for various tip speed 
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that the PROP-derived data do not closely resemble data for the CART.  Thus, these axial 
induction factor simulations can be considered to represent a separate turbine. 

The axial induction factor causes the wind speed at the rotor to be slower than the upwind, or 
free-stream, wind.  The relationship between the two wind speeds is given by 

( )avvr −= ∞ 1 , (7.1) 
 
where vr is the wind speed at the rotor and v∞ is the free-stream wind speed.  For the purposes of 
these simulations, vr is assumed to be equal to the wind speed measured by the nacelle 
anemometer, vn.  If the axial induction factor a were constant for a given turbine, using vn 
(equivalently, vr in Equation 7.1) in the gain adaptation law’s calculation of Pwy (Equation 2.16) 
would simply result in a slope error on the wind power measurement.  As discussed in Section 
4.3, this slope error is not likely to result in a change of the convergence properties of the gain 
adaptation law, though it might change the step size and thus the rate of convergence.  However, 
in this simulation a is not constant but instead varies nonlinearly with tip speed ratio λ.  Before 
performing the axial induction factor simulations, this relationship must be established. 

The relationship between axial induction factor and tip speed ratio is nonlinear and poorly 
defined.  The aerodynamics behind the relationship are very complex and are outside the scope 
of this research, but may be studied further in Manwell et al. (2002) and other wind energy 
textbooks.  The PROP simulations provide an estimate of the CART’s relationship between tip 
speed ratio and thrust coefficient, CT; this simulated relationship is plotted in Figure 7-6(a).  The 
thrust coefficient describes the ratio of the thrust force on the turbine and the dynamic force 
applied, similarly in nature to the power and torque coefficients Cp and Cq discussed previously.  
Wind turbine aerodynamic theory (Manwell et al. 2002) can then be used to relate axial 
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induction factor a and thrust coefficient CT as follows: 

( )( )





>−−+
≤−−

=
96.0,889.06427.00203.0143.0
96.0,1

1
2
1

2
1

TTF

TT

CC
CC

a , (7.2) 

 
where F is a correction factor depending on the radial distance from the axis of rotation and other 
factors and is assumed to be equal to 1.0 for these simulations.  The first term in a is derived 
using blade element momentum theory for a non-rotating wake and the second is commonly 
known as Glauert’s empirical relationship.  Figure 7-6(b) combines Equation 7.2 and the PROP-
derived relationship of CT and λ shown in Figure 7-6(a) to determine the a – λ relationship used 
in the simulations in this section. 

Now that the a – λ relationship has been established, the simulations follow in a straightforward 
manner.  The SimInt model used for the Chapter 4 simulations and shown in Figure 3-1 is 
modified slightly by Equation 7.1 so that the nacelle (rotor plane) wind speed is used in the Pwy 
(Equation 2.16) calculations, effectively resulting in a variable slope error on the measured wind 
speed.  The PROP-derived Cq surface is used in the simulation, so a properly functioning gain 
adaptation law should cause M to converge to some value within the range (0.8M+,1.0M+), 
depending on the turbulence intensity of the wind input.  The adaptation period is three hours 
rather than 13 in order to reduce the simulation time and because the longer time period is not 
necessary in order to observe the expected results.  The simulation results are plotted in Figure 
7-7 and Figure 7-8. 

Figure 7-7 shows exactly the undesirable effects of axial induction factor that were expected.  
After the first step up due to initial conditions, the adaptive gain M proceeds to adapt down for 
the remainder of the simulation as the fractional average power Pfavg rises.  Unfortunately, this 
rise is not a real effect, but rather the effect of the variable slope error on the wind measurement.  
Note that the fractional average power is always greater than one in the lower plot.  This 
impossible result—in which the turbine produces more energy than it extracts from the wind—is 
due to the slope error on the wind power measurement given by Equation 7.1. 

Figure 7-8 shows the time series plots of axial induction factor and tip speed ratio during the 
simulation and the best fit lines for each.  Clearly, both a and λ rise throughout the simulation.  
The reason for the increase in λ is the decrease in M, which for a given wind speed causes higher 
rotor accelerations by Equation 2.7 and thus higher tip speed ratios.  As the tip speed ratio 
increases, the axial induction factor increases by Figure 7-6(b), which then causes the measured 
wind speed vn = vr to decrease by Equation 7.1.  This slower measured wind speed causes Pwy 
(Equation 2.16) to appear falsely lower, which then causes Pfavg (Equation 2.15) to appear falsely 
larger at the next adaptation step, which in turn causes M to continue to adapt in the same 
downward direction by Equations 2.18–2.20.  This positive feedback loop will continue 
indefinitely unless external controls are in place to prevent M from leaving a certain range, for 
example. 

This section has provided conflicting information in the form of real turbine data showing that 
the axial induction factor does not cause improper adaptations when the nacelle anemometer is 
used for wind speed measurements and simulation data showing that it does cause improper 
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adaptations.  These conflicting data lead to the conclusion that the decision on whether or not to 
use the nacelle anemometer or upwind anemometer for the wind measurement is turbine-
dependent because of the differences in various turbines’ blade and nacelle geometry and nacelle 
anemometer location. 

The use of the nacelle anemometer rather than the upwind anemometer for measuring the wind 
speed would make it easier to implement the adaptive controller (Equation 2.14) on a 
commercial wind farm.  However, it does little to address the highly oscillatory behavior of the 
gain adaptation algorithm or the lengthy adaptation period required for good results.  Filtering 
the original gain adaptation law might provide improvements in these two areas, and a new 
filtered law is the topic of Section 7.2. 

The use of the nacelle anemometer rather than the upwind anemometer for measuring the wind 
speed would make it easier to implement the adaptive controller (Equation 2.14) on a 
commercial wind farm.  However, it does little to address the highly oscillatory behavior of the 
gain adaptation algorithm or the lengthy adaptation period required for good results.  Filtering 
the original gain adaptation law might provide improvements in these two areas, and a new 
filtered law is the topic of Section 7.2. 
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7.2 Filtered Gain Adaptation Law 

Filtering the very basic gain adaptation law (Equation 2.18) might help reduce the oscillations in 
M as it converges.  The modified gain adaptation law is of the form 

( ) ( ) ( ) ( ) ( )121 1021 −∆+∆+−+−= kMbkMbkMckMckM , (7.3) 
 
where c = [c1, c2] and b =  [b0, b1] are constant coefficients chosen for the desired transient and 
convergence properties.  Taking the z-transform of Equation 7.3 gives the result 

( )
( ) 21

2
1

2
0

czcz
zbzb

zM
zM

−−
+

=
∆

, (7.4) 

 
which has poles at ( )2

2
112

1 4ccc +± .  If c1 + c2 = 1 is constrained (so that in a sense the overall 
magnitude of M remains unchanged from the original law (Equation 2.18), the poles of Equation 
7.4 are located at (c1-1, 1).  In general, locating a pole on the unit circle gives only marginal 
stability, but in this case, the goal is not to reject disturbances in ∆M but rather to reject 
disturbances in atmospheric factors such as wind speed and direction.  Since the equations 
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relating M and these atmospheric factors are nonlinear, it is impossible to use the z-transform to 
place these poles as desired.  In this case, intuition and simulations were used in order to choose 
the values of b and c.   

The first simulations used constant wind speed as the input and Equation 7.3 as the gain 
adaptation law, with the rest of the system being identical to those used in the original gain 
adaptation law in Chapter 2.  The SymDyn-generated Cq surface was used in the τaero calculation 
(Equation 2.8).  These results are plotted in Figure 7-9, with each curve normalized to M+ as 
usual.  

Based on the simulation results plotted in Figure 7-9, it seems that the best filter, marked with 
stars, has coefficients b = [1.0, 0.0] and c = [0.75, 0.25].  This curve has no overshoot—ignoring 
the initial step forced upon all six simulations—and converges to the same final value as the 
original curve (plotted as the solid line).  However, intuitively it seems that it would be nice to 
have a filter on the ∆M term, as well (i.e., b1 ≠ 0), since this value is highly subject to wind 
disturbances.  Of course, wind disturbances are not present in a constant-wind input simulation, 
so the value of the b1 term is not apparent.  In any case, the best of the three filters with nonzero 
b1 is the curve marked with diamonds and having coefficients b = [0.9, 0.1] and c = [0.75, 0.25].  
The best filtered gain adaptation laws were next tested with real wind data as input and compared 
with the original.  These results are plotted in Figure 7-10. 

In the first 90 hours, there is very little difference between the curves showing the filtered gain 
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adaptation law outputs, and it is promising that both approach nearly identical final values at the 
end of 130 hours of simulation.  Also, neither experiences the same overshoot apparent in the no 
filter case between 26 and 65 hours.  Because of the time constraints on CART testing, further 
simulation studies could not be performed before a decision had to be made about which set of 
filter coefficients to use on the CART.  Therefore, the intuitively preferred “Filter 2” was chosen 
and testing commenced.  Unfortunately, several sensor problems and component failures that 
occurred during the time the filtered gain adaptation law was being tested on the CART 
prevented the controller from obtaining enough accurate measurements that a conclusion could 
be drawn as to its effectiveness.  Obtaining more data using this algorithm thus is one of the 
recommendations for future work. 

Filtering the gain adaptation law with a well-chosen filter can provide superior results in terms of 
the convergence properties of M in simulation.  Some of the filters tested in simulation were 
found to be superior to the original, unfiltered gain adaptation law.  Unfortunately, no real CART 
data are available to support the simulation conclusions. 
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CHAPTER 8: Conclusions and Future Recommendations 

A new adaptive control strategy has been proposed, tested, and analyzed in this research.  The 
new controller is designed to reduce the energy loss that results from uncertainty in a turbine’s 
aerodynamic parameters.  Specifically, the new adaptive control strategy replaces the constant 
gain torque controller commonly used by the wind industry in generator torque control with a 
new adaptive gain, using measurements of turbine power and wind power as the basis for the 
gain adaptation law.   

Because the new adaptive controller described in Chapters 2 through 6 keeps the same structure 
as the standard generator torque controller in region 2 or subrated operation, it is already familiar 
to the wind turbine industry.  This familiarity should make it easier to implement the new 
adaptive controller commercially, since many of the controller implementation issues have 
already been worked out. 

Two different simulators have been used to examine the operation of the new gain adaptation 
law: SimInt and SymDyn.  SimInt is a new tool designed specifically for this research that has 
limited applicability to other problems.  Specifically, SimInt is capable of simulating only the 
rotor angular speed and requires the production of a nonlinear Cq surface for the desired turbine 
via a separate simulator.  Because of its simplicity, however, SimInt can run very quickly 
compared to other simulation tools.  SymDyn, on the other hand, is capable of simulating 10-11 
degrees of freedom (depending on the number of blades) but is about five times slower than 
SimInt.  These two independent simulation tools have produced similar results when provided 
with the same initial conditions, lending credibility to each other and to the assertion that the new 
adaptive controller and gain adaptation law perform as desired.  Simulations have been 
performed assuming perfect and imperfect wind input measurements and constant and time-
varying turbine aerodynamic parameters.  In general, the adaptive controller has been shown in 
simulation to operate as desired when provided with realistic operating conditions and without 
causing harm to the turbine. 

In addition to these simulations, tests have been performed on a real, mid-sized turbine to verify 
the effectiveness of the adaptive controller.  From these experiments it was determined that the 
aerodynamic properties of this research turbine were not well known, and a significant increase 
in energy capture was achieved by using the adaptive controller.  This result lends credence to 
the idea that this adaptive control could provide significant benefits to the commercial turbine 
industry, since it is reasonable to assume that the aerodynamic properties of this research turbine 
have been studied more extensively than those of many commercial turbines.  Additionally, 
despite the fact that the adaptation period of the real turbine’s gain adaptation law was 
significantly shorter than those used in the simulations, the adaptive gain did converge toward 
what is believed to be the optimal value for the turbine. 

Concurrently with the real turbine experiments and simulations, a stability analysis was 
performed on the standard and adaptive control laws.  The analysis showed theoretically that the 
standard law does achieve some desired stability results.  Also, the gain adaptation law does 
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appear to cause the adaptive gain to converge toward the optimal value assuming that the gain 
within the gain adaptation law is small enough, and a technique was presented for finding that 
small enough gain.  A more formal proof of the stability of a very similar gain adaptation law 
was developed; it is presented in Appendix B.   

Finally, two extensions to the adaptive controller were proposed and tested.  The first, which 
entailed the use of the nacelle anemometer rather than the upwind meteorological tower 
anemometer in the wind speed measurement, was a simple change that makes it even easier to 
implement this adaptive controller on a commercial turbine.  Secondly, a filtering rule was 
proposed and tested in simulation to reduce the overshoot and oscillatory behavior of the 
adaptive gain as it converges toward its optimal value.   

In summary, the research described in this report has achieved the following: 

• Development of a new adaptive control law to increase region 2 energy capture on 
variable speed turbines 

• Verification of the new adaptive controller in simulation and testing to demonstrate 
effectiveness and safety 

• Theoretical analysis of the standard non-adaptive controller and the new adaptive 
controller to support simulation and testing results and provide further insight into the 
problem 

• Extension of the new adaptive controller to make it more appealing to the commercial 
wind turbine industry. 

Recommendations for future work along this line of research lie mainly within the area of 
additional real turbine testing.  Not only should the adaptation period be extended significantly in 
an attempt to improve the convergence properties of the adaptive gain, but the adaptive 
controller should also be run for a long enough time period that its effectiveness at tracking 
aerodynamic properties over long time periods can be evaluated.  Unfortunately, testing time on 
real wind turbines is limited, and the latter experiment could take years to perform. 

In addition to the real turbine testing, more work will be done on the proof of stability and 
convergence of the gain adaptation law.  A more formal, thorough proof will help to make the 
adaptive controller more acceptable within the wind industry. 
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APPENDIX A: Mean Equivalent Wind Speed 

It is common practice within the wind industry to create plots showing mean power versus mean 
wind speed over some averaging period in order to assess the performance of a turbine.  
However, this practice can be somewhat misleading due to the fact that the power available in 
the wind is a function of the cube of the wind speed, and the mean of a cubic function is not 
equivalent to the cube of the mean.  Thus, comparing two turbines or controllers based on mean 
wind speed may not provide a truly accurate picture of the situation.  Consider the following 
example, detailed in Table A-1 and plotted in Figure A-1. Air density ρ is set equal to 1.0 for 
simplicity.  The wind speed is assumed to be constant over the ranges (0,3], (3,7], and (7,10] 
minutes with the mean values listed. 

If a given turbine with a constant power coefficient Cp were run for each of these two 10-minute 
periods, it would capture more energy during the period called Case 1 simply because more 
energy was available.  However, the two periods have identical mean wind speeds, so an analysis 
considering only mean wind speed might infer that the power coefficient Cp must have changed 
from one period to the next.  Thus, this work plots power versus mean equivalent wind speed 
rather than mean wind speed.  Mean equivalent wind speed is defined as 
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 Figure A-1: Mean equivalent wind speed example 
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In the example described above, there is about a 3% difference between the wind power per unit 
area from Case 1 to Case 2.  Whether or not this is a significant difference depends on the 
application.  In some cases, it may be perfectly reasonable to use mean wind speed rather than 
mean equivalent wind speed in an analysis.  The CART’s adaptive control low speed shaft power 
data for 0.40M+ < M < 0.52M+ is plotted versus mean wind speed and mean equivalent wind 
speed in Figure A-2. 

Since none of the 10-minute data sets collected while running the CART experienced constant 
winds, the mean equivalent wind speeds are expected to be slightly higher than the mean wind 
speeds, which is clearly the case in Figure A-2. 
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 Figure A-2: Mean low speed shaft power versus mean wind speed and mean 
equivalent wind speed 
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Table A-1. Mean Equivalent Wind Speed and Mean Wind Speed Example 
Case 1 Case 2 

Time Range 
(minutes) Mean Wind 

Speed (m/s) 

Mean Power 
(2.5) per Unit 
Area: Pwind/A 

(kW/m2) 

Mean Wind 
Speed (m/s) 

Mean Power 
(2.5) per Unit 
Area: Pwind/A 

(kW/m2) 
(0,3] 7 171.5 8 256.0 
(3,7] 8 256.0 8 256.0 

(7,10] 9 364.5 8 256.0 
(0,10] 8 263.2 8 256.0 
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APPENDIX B: Stability Analysis for Gain Adaptation Law 

The question of the convergence of M  M* was addressed in Section 6.4 but not proven 
formally.  This appendix provides a formal stability (though not convergence) analysis for a 
similar system in which the equation for ∆M (Equation 2.19) is replaced by (Equation 6.15). 

Many stability results for time-varying nonlinear feedback systems were first proposed by Zames 
(1966a, 1966b).  These were later expanded by Safonov (1980).  The proof in this appendix is 
based on the sector stability criterion given by Theorem 2.2 in (Safonov 1980), hereafter referred 
to as Safonov’s Theorem 2.2.  This theorem applies to the two subsystem feedback system given 
in Figure B-1(a), where d1 and d2 are disturbance inputs to each subsystem.  The disturbances in 
this proof can be considered to enter the subsystems additively, as shown in Figure B-1(b). 

Safonov’s Theorem 2.2 incorporates a functional F operating on the signals eXx∈  and eYy ∈ , 
where Xe and Ye are extended normed spaces.  F defines an inner product on x and y as follows: 

( )
t

xFyFxFyFtyxF 22211211 ,,, ++≡ , (B.1) 
 
where t denotes a truncation defined by the usual truncation operator; F110 = F120 = F210 = F220 
= 0; F11, F21: Ye  Le; and F12, F22: Xe  Ye.  In this definition, Le is an extended inner product 
space.  For Safonov’s Theorem 2.2, the sector of F is defined using the inner product (Equation 
B.1): 

sector ( ) ( ) ( ){ }TttyxFYXyxF ee ∈∀≤×∈≡ 0,,, . (B.2) 

 
 Figure B-1: Feedback systems considered by Safonov: (a) general case, and (b) 

specific case with disturbances entering additively 
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In Equation B.2, for the purposes of this analysis, T is considered to be the time T = [0,∞).  Now, 
Safonov’s Theorem 2.2 requires the following: 

1. F is as given in Equation B.1 and F11, F12, F21, and F22 have finite incremental gain 

2. the mappings d1 into S1(d1) and d2 into S2(d2) are bounded about S1(0) and S2(0) 

3. S1
-1(0) is strictly inside sector(F) and S2 is outside sector(F) 

 
Safonov’s Theorem 2.2 concludes that, given (1. – 3.), the system given by Figure B-1(a) is 
closed-loop bounded.  In simple terms, Safonov’s requirement for stability of the closed loop 
system given in Figure B-1(a) is that the inverse of the graph of S1 be strictly inside a given 
sector(F) and the graph of S2 be outside sector(F).  A two-dimensional interpretation of this 
requirement is provided in Figure B-2.  In this example, the graphs of two fictitious operators S1 
and S2 are shown along with a sector(F).  In this example, the graph of S2 lies outside of 
sector(F) and the graph of the inverse of S1 lies strictly inside sector(F).  Thus, the closed-loop 
system in this example is stable. 

Now Zames’s and Safonov’s results can be applied to the wind turbine’s modified adaptive 
controller with gain adaptation law given by Equation 6.15.  First, decompose the system given 
by Equations 2.18, 2.20, and 6.15 into the block diagram in Figure B-3.  

The nonlinearity N2 captures the relationship between M~  and fractional mean power Pfavg.  

Sector F 

S 2 

S (    )1 
-1 

 
 Figure B-2: Stability of example feedback system using Safonov’s sector method 
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Denote 

N1(x) ≡ γ∆M sgn(x)| x | = γ∆M x 
 
N3(x,y) ≡ xy 
 
N4(x) ≡ sgn(x). 
 
Let uk be the input to S21.  The output of S21 is given by )(2 kk uNy = .  Let p* denote the minimal 
slope of N2 in the domain of interest and let p* denote its maximal slope; without loss of 
generality, let p* = -p*.  Effectively, the nonlinearity defined by S21 is the slope of a line segment 
connecting two points on the nonlinearity N2.  Let the output of the linear block H2, which 
corresponds to M~ , be called v, and the output of the nonlinear block N2 , or Pfavg, be called w.  
The following relationships can be easily verified: 

vk = vk-1 – uk, = ∑
=

−
k

i
iu

0
 

 
wk = N2(vk) = N2(vk-1 – uk), 
 
yk = wk – wk-1 , 
 
where y, the output of S21, corresponds to ∆Pfavg, and u, the input to S21, corresponds to ∆M.  
Thus, 

( ) ( ) ( )12122 −− −−== kkkkk vNuvNuNy . (B.3) 
 

 
 Figure B-3: Adaptive control feedback system 
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describes the relationship between u and y in the nonlinearity S21.  For any given vk-1 in the 
domain of interest, the relationship given by Equation B.3 is simply the slope of the line segment 
connecting the points (vk-1, N2(vk-1)) and (vk-1 - uk, N2(vk-1 - uk)), as shown in Figure B-4.  While 
the magnitude and sign of this slope for a given input uk vary depending on vk-1, the slope 
nevertheless is bounded by the maximal and minimal slope of the nonlinearity N2 as long as the 
points (vk-1, N2(vk-1)) and (vk-1 - uk, N2(vk-1 - uk)) are within the domain of interest.  Note that when 
uk ∈ L∞ e, so is vk since the gain of H2 is bounded (finite) when operating on an extended normed 
space. 

Now, let x be the input to the subsystem S22, or equivalently the input to S2.  Then, the 
relationship between x and u is given by  

uk = (xk)(sgn(uk-1)), 
 
and the relationship from x to y by 

( ) ( ) ( )







−−






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−−= ∑∑

−

=
−

−

=
−−

1

1
12

1

1
112 sgnsgnsgn

k

i
ii

k

i
iikkk uxNuxuxNy , (B.4) 

 
which is qualitatively similar to Equation B.3 and can be pictured in the same manner with the 
appropriate replacements of signal names.  Now, in order to use Safonov’s Theorem 2.2 to prove 
stability of this system, the functional F must be selected to give the proper sector results.  In this 
case, let Xe and Ye be the extended normed space L∞ e and let the components of F be the gains 

F11 = F21 = 1, F12 = p*, and F22 = -p*.  Thus, requirement (1.) is satisfied.  Similarly, if the 
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 Figure B-4: Relationship between u and y within the subsystem S21 
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disturbance inputs are additive as in Figure B-1(b), (2.) is satisfied automatically.  Then, only 
requirement (3.) remains to be shown. 

Define the inner product in the usual way for discrete time systems, i.e.,  

∑
−

=

=
1

1
,

t

i
iit

yxyx . 

 

Also, let ( )∑
−

=
−=

1

1
1sgn

k

i
iik uxz .  Then, the operator F gives the following inner product for this 

system: 
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Now, given the maximal and minimal slope of the nonlinearity N2, it is known that  

( )( ) ( ) *212 sgn
p

x
zNzuxN

k

kkkk <
−−−− − ,  

 
where kx  can replace ( )1sgn −− kk ux  for simplicity in the denominator because the slope of the 
line segment connecting the two points is bounded by the same value (p*) regardless of whether 
the input x is positive or negative.  Thus, 

( )( ) ( )[ ] ( ) 0sgn 2*2
212 <−−−−− − pxzNzuxN kkkkk , 

 
for all k, with the result that the sum given by Equation B.5 is less than or equal to zero for all t.  
This result proves, by definition, that the subsystem S2 lies inside the sector([-p*, p*]).  To use the 
notation in Safonov’s Theorem 2.2, let sector(F) be the complement of sector([-p*, p*]), which 
may be written sector([p*,-p*]), as shown in Figure B-5.  Thus, S2 lies outside the sector(F).  
Also, note that the subsystem S1 is a positive memoryless linear operator with gain γ∆M; the graph 
of S1 is simply a line through the origin having slope equal to γ∆M.  Thus, the graph of the inverse 
of S1 is a line through the origin having slope equal to 1/γ∆M.  By requirement (3.) of Safonov’s 
Theorem 2.2, the closed-loop system is stable if this line with slope 1/γ∆M lies strictly inside the 
sector(F), or equivalently the sector([p*,-p*]).  In other words, γ∆M must be chosen such that γ∆M 
< 1/p*; if this inequality holds, then the system given in Figure B-3 is closed-loop bounded. 
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Remark 1: A stable system may still be obtained by replacing the term |∆P(k)| with the more 
aggressive term |∆P(k)|½ . Note that, with such an update, the subsystem S1 is no longer a 
memoryless linear operator with gain γ∆M but rather a memoryless monotonically increasing 
positive nonlinearity with graph bounded by the sector([0,∞)). If it can be shown that the 
magnitude of the open loop gain is less than unity, stability of the system is established by 
Theorem 1 in (Zames 1966a); equivalently, the circle criterion and related multiplier theory 
techniques can also be used to establish the stability.  Future work will include a rigorous proof, 
but, roughly speaking, the proof will show that the gain of S2 is arbitrarily small around the 
operating point (∆P,∆M) = (0,0) since the gain of S1 is arbitrarily large in its neighborhood.  The 
gain of S2 may allowed to be relatively high in the region where |∆P| is large since the gain of S1 
is very small for large |∆P|. 

Remark 2: Effectively, the stability analysis problem was posed, for the |∆P| update case, as the 
stability analysis of a feedback interconnection having a linear time invariant (LTI) system in the 
feedforward path and a sector nonlinearity in the feedback path.  A family of stable controller 
gain adaptations may be obtained by using the standard positivity preserving multipliers in 
conjunction with the first order accumulator and difference operators.  In this manner it is also 
possible to compensate for plant uncertainties effectively. 
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 Figure B-5: Stability of the closed-loop system in Figure B-3 using Safonov’s sector 

method 
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