Study of Wastewater Reclamation Using Backwashable Capillary Ultrafiltration And Encapsulated Reverse Osmosis Membrane Modules

by: Hydranautics 401 Jones Rd. Oceanside. CA 92054

Contract No. 1425-97-FC-81-30068

Water Treatment Technology Program Report No. 42

June 1999

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group

REPORT	DOCUMENTATION	PAGE	Form Approved OMB No. 0704-0188	
naintaining the data needed, and completing including suggestions for reducing this burden to	and reviewing the collection of information.' Se	end comments regarding this b te for information Operations a	eviewing instructions, searching existing deta sources, get ourden eatimate or any other aspect of this collection of in and Reports, 1216 Jefferson Davis Highway, Suit 1204 C 20503.	formation
I. AGENCY USE ONLY (Leave Blan	E AND DATES COVERED			
4. TITLE AND SUBTITLE Study of Wastewater Reclamati Capillary UF and Encapsulated		Final	5. FUNDING NUMBERS Assistance Agreement No.	
3. AUTHOR(S) Mark Wilf Steve Alt			1425-97-FC-81-30068	
7. PERFORMING ORGANIZATION N Hydranautics 401 Jones Rd. Oceanside CA 92054	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9, SPONSORING/MONITORING AG Bureau of Reclamation Denver Federal Center	ENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	<u> </u>
PO Box 25007 Denver CO 802250007			WTTP Report No. 42	
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY	STATEMENT		126. DISTRIBUTION CODE	
Available from the National Te 5285 Port Royal Road, Springf	echnical Information Service, Ope ield, Virginia 22161	rations Division,		
13. ABSTRACT (Meximum 200 wo	rds)			
not require a pressure vessel ho potential to provide more relia effectiveness of the encapsulated element integrity; fouling tenden parameters with respect to des of individual element integrity; configurations; a cleaning proced water is of good quality and ena	using. The encapsulated design el able retention of pathogens in red a design with respect to: retention cy of the encapsulated design and ign of commercial systems. Result Virus rejection tests resulted in S hure, after eight months of operation	liminates o-rings betw clamation of contamin of pathogens; reliabi d effectiveness of clear lts indicated: the encap S-log rejection; fouling n, resulted in complete ow fouling membrane	This configuration is self-encapsulated au veen the feed and permeate streams and h nated waters. This test program evalua ility and convenience of monitoring merr ning procedures; and optimization of ope psulated design enabled convenient mon g rates were low and comparable to sta e restoration of permeate flux; tertiary ef es can operate at high flux rate, provide s	as the ated the bran ratin nitorin ndar fluen
14. SUBJECT TERMS			15. NUMBER OF PAGES	
wastewater reclamation/ultrafile	tration/reverse osmosis/self-encap	sulated/pathogen/viru	16. PRICE CODE	
	18. SECURITY CLASSIFICATION	19. SECURITY CLAS	SIFICATION 20, LIMITATION OF ABS	
17. SECURITY CLASSIFICATION OF REPORT	OF THIS PAGE	OF ABSTRACT		STRACI

-

Study of Wastewater Reclamation Using Backwashable Capillary Ultrafiltration And Encapsulated Reverse Osmosis Membrane Modules

by: Hydranautics 401 Jones Rd. Oceanside, CA 92054

Contract No. 1425-97-FC-81-30068

Water Treatment Technology Program Report No. 42

June 1999

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Water Treatment Engineering and Research Group

Mission Statement

The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to tribes.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally sound manner in the interest of the American Public.

Disclaimer

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

The information contained in this report was developed for the Bureau of Reclamation: no warranty **as** to the accuracy, usefulness, or completeness is expressed or implied.

TABLE OF CONTENTS

2.1. Introduction 2 2.2. Conventional Pretreatment 3 2.3. Advanced Pretreatment 4 2.4. Spiral Wound RO Membrane Elements 6 3. Application Of RO Membranes For Pathogen Removal 8 3.1. The: Conventional Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 16 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 17 4.4.4. RO Membranes Performance Results 28 4.5.1. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membrane Elements 32 4.6. On-Line Integrity Test Of RO Membrane Elements 32 4.6. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Result	1. Executive Sun	nmary	1
2.1. Introduction 2 2.2. Conventional Pretreatment 3 2.3. Advanced Pretreatment 4 2.4. Spiral Wound RO Membrane Elements 6 3. Application Of RO Membranes For Pathogen Removal 8 3.1. The: Conventional Spiral Wound Configuration 8 3.1. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.2. RO Equipment 15 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 21 4.5. Virus Challenge Results 17 4.4.4. RO Membranes 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By Capillary UF Membranes 22 4.6.1 Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results			2
2.3. Advanced Pretreatment 4 2.4. Spiral Wound RO Membrane Elements 6 3. Application Of RO Membranes For Pathogen Removal 8 3.1. The: Conventional Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 21 4.5. Virus Retention By Capillary UF Membranes 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. On denormal Study 35 6.4.4.4. ROP Study 35 6.7 Bacteriological Tests 37 8. Flat Cell Results		duction	
2.4. Spiral Wound RO Membrane Elements 6 3. Application Of RO Membranes For Pathogen Removal 8 3.1. The: Conventional Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By Capillary UF Membranes 22 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Untegrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Specification Sheet Of Ultrafiltration Capillary Elements 38 <	2.2. Con		
3. Application Of RO Membranes For Pathogen Removal 8 3.1. The: Conventional Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 28 4.5.1. Integrity Test Of UF Membrane Elements 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 6.7. Bacteriological Tests 36 7.8 Flat Cell Results 36 8.9 SEM And EDX Tests 36 9.10. Summary And Co			
31. The: Conventional Spiral Wound Configuration 8 3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 16 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membrane Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membrane Elements 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 39 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 <td>2.4. Spira</td> <td>1 Wound RO Membrane Elements</td> <td></td>	2.4. Spira	1 Wound RO Membrane Elements	
3.2. The: Encapsulated Spiral Wound Configuration 8 4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 28 4.5.1. Integrity Test Of UF Membrane Elements 32 4.6. On-Line Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 39 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Acknowledgements <t< td=""><td>3. Application Of</td><td>f RO Membranes For Pathogen Removal</td><td></td></t<>	3. Application Of	f RO Membranes For Pathogen Removal	
4. Experimental Results 11 4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membrane Performance Results 17 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Test Of UF Membrane Elements 32 4.6. On-Line Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 2. Perferences 44 3. Appendixes 41 4. Initial Test Results Of LFC1 Elements 43	3.1. The:	Conventional Spiral Wound Configuration	
4.1. Membrane Preparation And Element Rolling 11 4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 17 4.4.4. RO Membranes Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By Copillary UF Membranes 28 4.5.1. Integrity Determination 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Integrity Results 36 7. Bacteriological Tests 39 9. SEM And EDX rests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 41 14. Initial Test Results Of LFC1 Elements			-
4.2. Nominal Element Performance And Integrity Testing 11 4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membrane Performance Results 17 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membrane Performance Results 17 4.5.1. Virus Challenge Results 28 4.5.2. Virus Retention By Capillary UF Membranes 28 4.5.1. Virus Retention By RO Membranes 21 4.6.0n-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 9. SEM And EDX Tests 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References <td></td> <td></td> <td></td>			
4.3. Test Site Description 11 4.4. Operating Parameters And Results 15 4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 16 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 17 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 28 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 28 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Integrity Test Of RO Membrane Elements 32 4.6.4. Integrity Test Of RO Membrane Elements 32 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References .44 13. Appendixes .41 <			
4.4. Operating Parameters And Results 15 4.4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 17 4.4.4. RO Membranes Performance Results 11 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 6. RO Membrane Cleaning Study 35 6. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Appendixes 44 15. Operation Se			
4.1. Capillary UF Equipment 15 4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 18 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.6. On-Line Integrity Determination 32 4.6. On-Line Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 8. Flat Cell Results 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Appendixes 44 15. Specification Sheet Of Ultrafiltration Capillary Elements<			
4.4.2. RO Equipment 16 4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membranes Performance Results 17 4.4.4. RO Membranes Performance Results 11 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 28 4.6. On-Line Integrity Determination 32 4.6. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Appendixes 44 15. Appendixes 44 16. Microbiological Determination Report 44 17. Appendixes			
4.4.3. UF Membrane Performance Results 17 4.4.4. RO Membrane Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6.0n-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 7. Bacteriological Tests 38 9 SEM And EDX Tests 39 10. Summary And Conclusions 41 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Appendixes 44 15. Operation Sequence Of Capillary UF System 45 16. Microbiological Determination Report 45 17. Microbiological Determination Report 45 18. Report Of SEM And EDX Results 16			
4.4.4. RO Membranes Performance Results 21 4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Determination 32 4.6. On-Line Integrity Determination 32 4.6. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 43 12. References 44 13. Appendixes 43 A. Initial Test Results Of LFC1 Elements 43 12. References 44 13. Appendixes 44 14. Operation Sequence Of Capillary UF System 44 15. Membrane Autopsy Report 43 16. Microbiological Determination Report 44 17. Appendixes 44 18. MS2 Virus			
4.5. Virus Challenge Results 28 4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 39 10. Summary And Conclusions			
4.5.1. Virus Retention By Capillary UF Membranes 28 4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Determination 32 4.6. On-Line Integrity Test Of UF Membrane Elements 32 4.6.1. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Integrity Test Of RO Membrane Elements 32 4.6.4. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 7. Bacteriological Tests 38 9. SEM And EDX Tests 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 43 11. Acknowledgements 43 12. References 44 13. Appendixes 44 14. Appendixes 44 15. Specification Sheet Of Ultrafiltration Capillary Elements 44 16. Operation Sequence Of Capillary UF System 44 17. Membrane Autopsy Report 44 18. Membrane Autopsy Report 45 19. Microbiological Determination Report	4.4	4.4. RO Membranes Performance Results	
4.5.2. Virus Retention By RO Membranes 32 4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 4.6.3. Integrity Test Of RO Membrane Elements 32 4.6.4. Integrity Test Of RO Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 7. Bacteriological Tests 38 9. SEM And EDX Tests 39 10. Summary And Conclusions	4.5. Virus	s Challenge Results	. 28
4.6. On-Line Integrity Determination 32 4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 36 8. Flat Cell Results 37 8. Flat Cell Results 39 10. Summary And Conclusions 43 11. Acknowledgements 43 12. References 44 13. Appendixes 44 13. Appendixes 44 13. Appendixes 44 14. Operation Sequence Of Capillary UF System 44 15. Membrane Autopsy Report 43 16. Microbiological Determination Report 44 17. Report Of SEM And EDX Results 10			
4.6.1. Integrity Test Of UF Membrane Elements 32 4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions			
4.6.2. Integrity Test Of RO Membrane Elements 32 5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 43 11. Acknowledgements 43 12. References			-
5. RO Membrane Cleaning Study 35 6. RO Membrane Autopsy Results 36 7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions 39 11. Acknowledgements 43 12. References			
 6. RO Membrane Autopsy Results 7. Bacteriological Tests 8. Flat Cell Results 9. SEM And EDX Tests 9. Summary And Conclusions 9. Summary And Conclusions 9. Sefferences 9. Attack 9. A Initial Test Results Of LFC1 Elements 9. Specification Sheet Of Ultrafiltration Capillary Elements C. Pilot System Process And Instrumentation Diagram D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 			
7. Bacteriological Tests 37 8. Flat Cell Results 38 9. SEM And EDX Tests 39 10. Summary And Conclusions			
 8. Flat Cell Results		1 2	
 9. SEM And EDX Tests			
 10. Summary And Conclusions			
 11. Acknowledgements			
 12. References			.+1 //3
 13. Appendixes A. Initial Test Results Of LFC1 Elements B. Specification Sheet Of Ultrafiltration Capillary Elements C. Pilot System Process And Instrumentation Diagram D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 			
 A. Initial Test Results Of LFC1 Elements B. Specification Sheet Of Ultrafiltration Capillary Elements C. Pilot System Process And Instrumentation Diagram D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 		•••••••••••••••••••••••••••••••••••••••	•
 B. Specification Sheet Of Ultrafiltration Capillary Elements C. Pilot System Process And Instrumentation Diagram D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 	••	uitial Test Results Of LEC1 Elements	
 C. Pilot System Process And Instrumentation Diagram D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 			
 D. Operation Sequence Of Capillary UF System E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 	1		
 E. MS2 Virus Challenge Protocol And Results F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 		-	
 F. Membrane Autopsy Report G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 			
 G. Microbiological Determination Report H. Flat Cell Results I. Report Of SEM And EDX Results 		C C	
H. Flat Cell ResultsI. Report Of SEM And EDX Results			
I. Report Of SEM And EDX Results		•	
1			
J. Sali I asqual vy aslewalci <u>Hyis</u> Raw Dala		an Pasqual Wastewater IMS Raw Data	

1. EXECUTIVE SUMMARY

Hydranautics has developed a new packaging configuration for spiral wound elements. This new configuration is self-encapsulated and does not require a pressure vessel housing, hence it has been dubbed the "free" style. For this study, Hydranautics encapsulated its new neutrally charged, <u>Low</u> Fouling Composite reverse osmosis (RO) membrane, LFC1. The free design eliminates o-rings seals between the feed and permeate streams, and therefore has the potential to provide more reliable retention of pathogens in reclamation of contaminated water sources.

The objective of this test program was to evaluate the effectiveness of the encapsulated element design with respect to;

- · Retention of pathogens
- · Reliability and convenience of monitoring membrane element integrity
- Fouling tendency of the new element configuration and the effectiveness of cleaning procedures.
- Optimization of operating parameters with respect to the design of commercial systems.

This work was conducted in cooperation with the San Diego Metropolitan Waste Department. The pilot unit was operated at the San **Pasqual** Aqua 200 Research Facility in Escondido, California.

Results obtained during the test program indicate the following:

- The encapsulated element design enables convenient monitoring of individual element integrity in field conditions.
- · Virus rejection tests indicate 5-log pathogen rejection by encapsulated elements.
- Fouling rates of encapsulated elements were low and comparable with fouling rates observed with the standard configuration elements operating in parallel.
- A simple cleaning procedure applied after eight months of operation consisting of the recirculation of an NaOH solution resulted in the complete restoration of permeate flux.
- Tertiary effluent water treated with HYDRAcapTM capillary ultrafiltration membrane is of good quality and enables stable operation of RO membranes.
 Low fouling membranes (LFC1) can operate at high flux rate, provide stable performance and low fouling rates in reclamation of municipal effluents.

2. BACKGROUND

2.1. IINTRODUCTION

The application of reverse osmosis technology for municipal wastewater reclamation traces back to the early stages of the commercialization of the RO process. It was soon realized that the application of membrane technology to the treatment of municipal effluent water represents a challenge due to the very high fouling potential of the water. Therefore, the development of an effective pretreatment process and the demonstration of performance stability was the main objective of the early studies (1, 2, 3, and 4). As early as the 1960's, the City of San Diego conducted the first testing program using RO technology for the reclamation of wastewater. This attempt was not successful due to severe membrane fouling (5). Since then, a number of field tests have been conducted at different sites, which has enabled the development of process parameters and system components used in commercial plants (6, 7, 8, 9).

The first large reverse osmosis plant operating on waste water began operation in the late 1970's as part of what is known as "Water Factory 21" in Orange County, California. This RO system has 5 MGD of product capacity and reduces the salinity of municipal wastewater after tertiary treatment. Product water is blended and then injected into local aquifers to prevent seawater intrusion (10, 11).

The next large RO system for water reclamation, the Arlington Desalter (12, 13), located in Riverside County, California, commenced operation in 1990. This system processes agricultural drainage water of about 1000 ppm TDS salinity, containing a high concentration of NO, (100 ppm) and SiO_2 (40 ppm). The plant produces 6 MGD of low salinity water by blending 4 MGD of RO permeate with 2 MGD of ground water. The blending ratio is determined by the limit of nitrate ion concentration in the blend water, which must be below 40 ppm (12). Today, a large number of new membrane projects for municipal waste water reclamation are under design or extensive pilot testing. In the majority, new, advanced membrane preformance and to improve the process economics.

2.2. CONVENTIONAL PRETREATMENT

The municipal effluent after secondary treatment contains high concentrations of colloidal particles, suspended solids and dissolved **organics**. The municipal treatment process usually includes biological treatment (activated sludge clarification) which results in a high level of **biological** activity in the effluent. This effluent has to be treated to reduce the concentration of colloidal and solid particles and to arrest biological activity prior to the RO.

A typical conventional pretreatment configuration is shown in Fig. 1, which outlines the tertiary pretreatment process applied currently at Water Factory 21. The current pretreatment process is a result of evolution, improvements and simplification of the original design (5). The pretreatment consists of flocculation, lime clarification, recarbonation with CO, settling, and slow gravity

filtration. Chlorination controls the biological activity. The lime clarification is a very effective process for improving feed water quality. However, it is expensive, requires large area and produces sludge:, which can present disposal problems. In some smaller systems the lime clarification and gravity filtration is replaced by in-line flocculation followed by two stage pressure filtration and cartridge filtration. Typically, this simplified pretreatment produces effluent of lower quality than the lime clarification process, but the equipment is significantly smaller and simpler to operate.

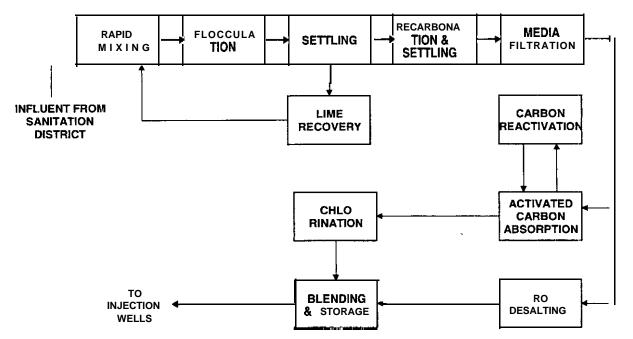


Figure l-Water factory 21 wastewater Reclamation system flow diagram

Water after conventional pretreatment has a high fouling potential for membranes. It is not uncommon for RO membranes in water reclamation applications to experience 25% - 30% per year average flux decline, even with frequent membrane cleanings.

2.3. ADVANCED PRETREATMENT

The benefit of membrane technology is the physically barrier layer between the feed and processed water streams. The use of this definite barrier in the RO pretreatment process has been proposed in the past (5). Ultrafiltration (UF) and microfiltration (MF) membranes have the ability to produce feed water of significantly better quality than the conventional pretreatment process based on lime clarification followed by media and cartridge filtration. However, the conventional, spiral wound configuration of ultrafiltration membrane elements is not suitable for the treatment of highly fouling wastewater. These UF elements could not operate at high permeate flux rates without severe fouling of the membrane surfaces and plugging of the feed channels. High cross flow feed velocities, required to reduce concentration polarization, resulted

in high power consumption. (Concentration polarization is the buildup of salt concentration at the membrane surface that hinders the diffusion of water and contributes to membrane fouling). Membrane cleaning, frequently required, was cumbersome and not very effective in restoring permeate flux.

The new microfiltration and ultrafiltration technology offered recently (14) is based on a fat capillary membrane configuration. The capillary bore is of 0.7 - 0.9 mm diameter. The outside diameter of the capillary is in the range of 1.3 - 1.9 mm. Membrane material can consist of polypropylene, sulfonated polyether sulfone or cellulose acetate polymer. In some capillary element design configurations the feed • permeate flow direction is outside-in (i.e. feed water flushes the outside of the capillary fiber, water permeates through the wall and is collected as a permeate inside the fiber). Other element configurations have an inside-out flow direction.

There are two common properties of the new commercial capillary equipment;

1. Frequent, short duration, automatically sequenced flushing (or backflushing in some models) of the capillary fibers, which clean the membrane surface and enable stable permeate flux rates with little off-line time.

2. The ability to operate at very low feed cross flow velocity, or even in a direct filtration flow (dead end) mode.

The off-line time due to pulse cleaning is very short, compared to the off-line time of conventional filters for filter backwashing. The frequent pulse cleaning of the capillary **membrane** results in stable permeate flux rates. Required feed water pressure is in the range of 1 to 2 bar. Operation at low feed pressure and low rate of feed cross flow or in a direct filtration mode results in high recovery rates and very low power consumption, about 0.4 kWh/kgallon (0.1 kWhr/m^3) of filtrate. The membrane type is either microfiltration (nominal pore size 0.2 micron) or ultrafiltration (molecular weight cut off 100,000 - 200,000 Dalton). The dimensions of the capillary ultrafiltration modules are in the range of 40° - 52° (100 - 130 cm) long and 8° - 13° (20 - 32 cm) in diameter. In actual field operation, a single module can produce 8,000 - 40,000 gallons per day (30 - 150 m³/day) of filtrate. Compared to conventional water treatment technology, the new process offers a modular design, high output capacity from a small footprint, no need for continuous handling and dosing of chemicals, and limited labor requirements. The major advantage, however is inherent to membrane technology: the existence of a membrane barrier between feed and permeate which enables a several log reduction of colloidal particles and pathogens.

This new capillary technology was developed initially for the treatment of potable water originating from surface sources. It has been extensively tested and a large number of systems, primarily utilizing microfiltration membranes, are already in operation. Following successful applications in potable water applications, the capillary technology was been tested as a potential pretreatment for RO systems operating on highly fouling water. One of the first targets was the RO processing of municipal effluents. The objectives were to replace the expensive and cumbersome conventional tertiary treatment and to increase the flux rate of the RO system. Field tests have been conducted for over three years now, and have confirmed the technological and

economic feasibility (14). The results are promising and large commercial installations are under consideration (14). Large capacity systems, combining capillary UF pretreatment with RO technology are currently being designed. The capital cost of the capillary membrane pretreatment is estimated to be similar to the cost of the extensive multistage conventional pretreatment usually required for RO reclamation of the municipal waste water. The use of capillary technology will simplify the pretreatment system and reduce the use of chemicals. The new capillary technology is capable of reliably producing RO feed water with a very low concentration of colloidal particles and bacteria.

The present offering of commercial capillary products for the treatment of municipal effluents is included in Table 1.

Manufacturer	Memcor	Zenon	Pall	Aquasource	Hydranautics
Membrane material	Polypropylene	Proprietary	Proprietary	Cellulose acetate	Modified polysulfone
Туре	MF	MF	UF	UF	UF
Configuration	Capillary	Capillary	Capillary	Capillary	Capillary
Nominal pore size/MWCO	0.2 micron	0.2 micron	13,000 Dalton	100,000 Dalton	100,000 - 200,000 Dalton
Fiber I.D.	0.3 mm	0.9 mm	0.8	0.94 mm	0.7mm
Fiber O.D.	0.7 mm	1.9 mm	1.4	1.3 mm	1.3 mm
Membrane area per module	22 m ² 233 ft ²	14 m ² 150 ft ²	7.5 m² 61 ft²	55.4 m ² 596 ft ²	25 m ² 270ft ²
Flow direction	out - in	out – in	out – in	in – out	in - out
Feed pressure range.	0.5 - 2 bar	< 0.5 bar vacuum	0.5 - 2 bar	0.5 - 2 bar	0.5 - 2 bar
Operation type	Dead end and cross flow	Immersed fibers	Cross flow	Partial cross flow	Dead end and cross flow
Capillary backflush	Compressed air backflush every 20min.	Filtrate backflush and air scouring	Filtrate backflush and air scouring	Filtrate backflush every 20 min.	Filtrate backflush every 20 - 30 min.
Typical module capacity	27 m³/d 7000 gpd	13 m³/d 3600 gpd	9.5 m³/d 2500 gpd	130 m³/d 36000 gpd	60 m³/d 16000 gpd

Table 1. Offering of commercial capillary MF-UF products for treatment of municipal

A comprehensive description of the field tests of the new technology conducted at the Orange County Water Factory 2 1 test facility has been published recently (15).

2.4. SPIRAL WOUND RO MEMBRANE ELEMENTS

The concept of the spiral wound membrane element device was introduced shortly after the invention of the hollow fiber configuration (16). In the spiral wound configuration, two flat sheets of membrane are separated with a permeate collector channel material to form a "leaf." This **assembly** is sealed on three sides with the fourth side left open for permeate to exit (Fig 2).

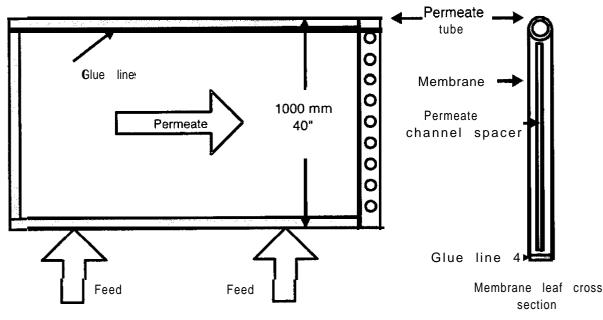


Figure 2-Conventional spiral wound module configuration

A feed/reject spacer material sheet is added to the leaf assembly. A number of these assemblies or leaves are wound around a central plastic permeate tube. The permeate tube is perforated and collects the permeate from the multiple leaf assembly. The typical industrial spiral wound membrane element is approximately 100 or 150 cm (40 or 60 inches) long and 10 or 20 cm (4 or 8 inches) in diameter. The feed/reject flow through the element is a straight **axial** path from the feed **end** to the opposite concentrate end, running parallel to the membrane surface. The feed/reject channel spacer induces turbulence and reduces concentration polarization, or buildup of salts at the membrane surface. Manufacturers specify reject flow requirements to control the concentration polarization by limiting permeate recovery rate per element to 10 • 20 percent. Therefore, the recovery rate is a function of the feed-reject path length. **In** order to operate at acceptable recoveries, spiral systems are usually staged with three to six membrane elements connected in series in a pressure tube (Fig. 3).

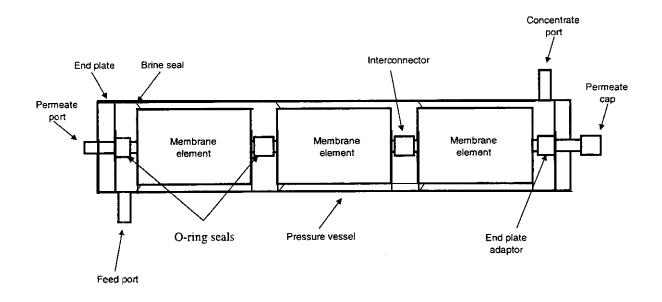


Figure 3-Pressure vessel with three membrane elements

The concentrate or reject stream from the first element becomes the feed to the following element, and so on for each element within the pressure tube. The reject stream from the last element exits the pressure tube as a concentrate. The permeate from each element enters the permeate collector tube and exits the vessel as a common permeate stream. A single pressure vessel with four to six membrane elements connected in series can be operated at up to 50-percent recovery under normal design conditions. The concentrate seal (similar to an o-ring) on the element feed end outer diameter prevents the feed/reject stream from bypassing the following element. Spiral wound elements are most commonly manufactured with flat sheet membrane of either a cellulose diacetate/triacetate (CA) blend or a thin film composite. A thin film composite membrane consists of a thin active layer of one polymer cast on a thicker supporting layer of a different polymer. The composite membranes usually exhibit higher rejection at lower operating pressures than the cellulose acetate blends. The composite membrane materials may be polyamide, polysulfone, polyurea, or other polymers. The spiral wound configuration of RO elements is the least affected by fouling by particulate matter in the feed water. Therefore, for the reclamation of highly fouling municipal effluents or polluted surface water, spiral wound RO elements are used almost exclusively.

3. APPLICATION OF RO MEMBRANES FOR PATHOGEN REMOVAL

3.1. THE CONVENTIONAL SPIRAL WOUND CONFIGURATION

RO membranes can be used to retain pathogens, which may be present in contaminated water source. The pores of the reverse osmosis membrane barrier layer are significantly smaller than the size of bacteria or viruses. However, there is always a possibility of permeate contamination by microbiological pollutants passing through structural defects. These defects may include:

- · Membrane imperfections (pinholes)
- · Damaged glue lines
- Damaged o-rings, which provide a separating seal between the feed and permeate streams. These o-rings are housed in the interconnectors that attach the permeate tubes of membranes in series together. O-rings are also present in the adapters that connect the first and last elements to the end plates of the pressure vessel. (Fig 3)

During the manufacturing process membrane elements undergo tests of structural integrity. The integrity tests include a bubble test (application of air pressure to the permeate side of membrane element), a vacuum test and the determination of salt rejection rate. After the elements are assembled into pressure vessels (which usually contain 6 - 7 elements connected in series), the determination of the integrity of individual elements is much more difficult. The tests which can be conducted while an element is installed in the system include probing of permeate conductivity and measurement of number of particles. Each of these is time consuming, and requires a significant level of expertise in the interpretation of the results. A bubble test or vacuum test cannot provide any meaningful indication of membrane integrity while elements are installed in a pressure tube. During the operation of the RO system, the feed water flow results in the creation of a significant axial force applied to the elements. This force can shift the elements back and forth inside the pressure vessel. This movement of elements may, in some cases, result in the breaking of the o-ring seals separating the feed and permeate streams. Large leaks can be easily identified by monitoring the permeate conductivity from individual pressure tubes. However small leaks, which can result in significant passage of pathogens, may remain undetected for some period of time.

3.2. THE ENCAPSULATED SPIRAL WOUND CONFIGURATION

The LFC1-FREE, or encapsulated element, is a new configuration, which consists of packaging a spiral wound membrane element into an individual pressure vessel. The schematic of the new configuration is shown in Fig. 4.

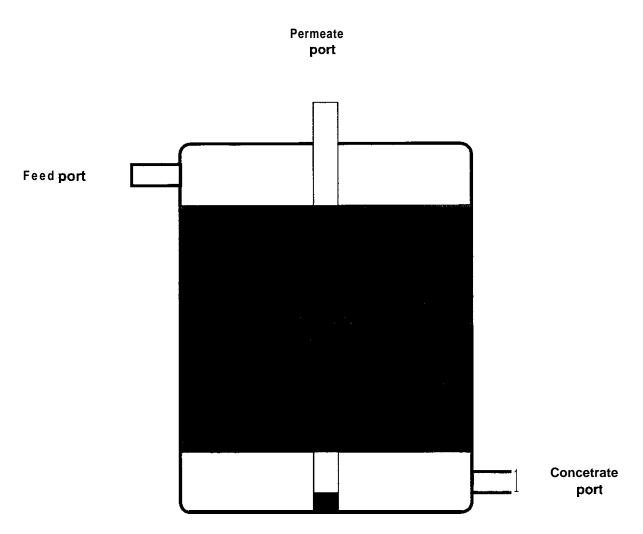


Figure 4-Encapsuled spiral wound element configuration

The encapsulation of individual elements has potential to be cost competitive with the conventional design of 6 -7 elements loaded into a single pressure vessel. The newer composite membrane technology provides membranes with high specific fluxes, allowing them to operate at low feed pressures typically below 200psi. Therefore, an inexpensive outer shell can be applied for element encapsulation.

The encapsulated element has advantages for applications where membrane barrier integrity is of special importance for the following reasons:

a) The encapsulated element configuration does not contain interconnector or adapter o-rings. This eliminates the possibility of leaks through the o-ring sealing surfaces.

b) The encapsulated elements are connected individually to a permeate manifold, allowing sampling to be taken from individual membranes. Therefore, any changes of permeate conductivity can be easily identified and localized.

c) The encapsulated elements allow for the possibility of continuous sampling of permeate from the permeate tubes while the elements are assembled into a system. This enables convenient determination of particle concentration in the permeate from a single element.

d) The encapsulated element configuration also enables the determination of element integrity. An in-situ vacuum test can be applied.

e) There is good probability that a meaningful, on line, bubble test (a permeate pressure holding test) can be developed for the encapsulated elements.

After the above listed advantages are demonstrated, engineering will be required to optimize the RO system design using encapsulated elements. The design should minimize the pressure drop which may be created in systems consisting of a number of encapsulated elements connected in series. In RO systems utilizing the conventional spiral wound configuration elements, the average apparent recovery rate per element is in the range of 6% - 10%. The low recovery rate per element is a result of the design requirement for sufficient cross flow feed velocity. This cross flow -velocity is required to reduce the concentration polarization at the membrane surface. In an RO system would be 14 to 18 elements. To apply a similar arrangement to an RO system utilizing encapsulated elements, the entry and exit pressure losses at the feed-concentrate ports must be minimized. Pressure drop in RO systems utilizing ultra-low pressure membranes may have a significant impact on performance.

4. EXPERIMENTAL RESULTS

4.1. MEMBRANE PREPARATION AND ELEMENT ROLLING

In order to assure good element integrity special precaution was observed during the preparation of materials for element construction. The flat sheet composite membrane was examined for the presence of surface defects. Double glue lines were applied to the "leaf" seals. A total of twelve 4" LFC1 elements were manufactured for this project; six elements in encapsulated configuration and six elements in standard configuration. Each element had four leaves and a nominal membrane area of 75 ft^2 .

4.2. NOMINAL ELEMENT PERFORMANCE AND INTEGRITY TESTING

Elements were tested at standard test conditions. The standard test conditions are:

Feed pressure	225 psi
Feed salinity	1500 ppm NaCl
Recovery rate	15%
Feed temperature	25°C

The elements produced permeate fluxes in the range of 22 - 26 gfd (gallons per square foot per day) and salt rejections between 99.5% - 99.6%.

After this testing a vacuum hold test was performed by applying -20.9 in. Hg to the permeate side of the elements. The membranes were then isolated, and the vacuum decay rate was measured for one minute. In general, a vacuum decay rate of less than 5 in Hg per minute is acceptable. The results of the initial test of the LFC1 elements are included in Appendix A.

4.3. TEST SITE DESCRIPTION

Operation of the pilot unit was conducted at the San Pasqual Aqua 2000 Research Facility in Escondido, **California**. The San Pasqual municipal wastewater is processed through water hyacinth secondary treatment. After secondary treatment the water maintains a high load of suspended solids, and the turbidity is in the range of 10 − 20 NTU. This secondary effluent is processed by coagulation with ferrous salts and media filtration. The quality of tertiary effluent is included in Table 2, and has an average turbidity of about 2 NTU. This water flows into a holding tank where it is pumped to the HYDRAcapTM capillary ultrafiltration unit. The ultrafiltration unit is equipped with two 8" HYDRAcapTM capillary elements. A specification sheet for the HYDRAcapTM operating on tertiary effluent is included in Table 2. The UF filtrate is pumped under pressure into two parallel manifolds of the RO unit. One manifold is connected to a pressure vessel housing three 4" LFC1 elements in standard spiral wound configuration. The other manifold is connected to three LFCI-FREE encapsulated elements

connected in series. Each encapsulated element has a sampling port to enable individual permeate sampling from each element, while the RO system is in operation. The same ports are used to conduct the in-situ vacuum hold test. The schematic of the system is included in Fig 5.

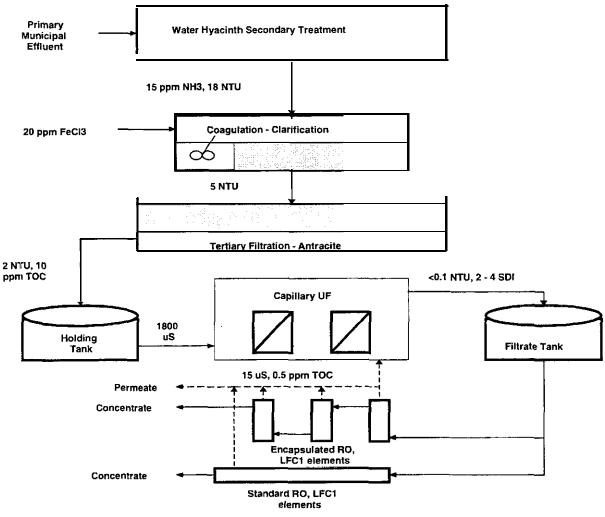


Figure S-Pilot Site at San Pasqual, California

A detailed process and instrumentation diagram (P&ID) of the test equipment is included in Appendix C. During the pilot testing period the water temperature fluctuated between $15^{\circ}C$ to $28^{\circ}C$ (Fig 6). Feed water conductivity fluctuated in the narrow range of 1500 - 1700 uS/cm (Fig. 7).

Parameter	UF In	fluent	UF Effluent		RO	RO permeate	
	Average	Range	Ave.	Ave. Range		Range	
ОН		7.3 - 7.5		7.4-8.1		5.7-6.4	
Turbidity, NTU	2	0.5-5.2	0.07	0.04-0.15	0.05	0.03-0.09	
Ammonia, ppm	12.2	1.8-21.7	12.3	1.3-20.0	0.3	0.01-l .o	
Nitrate, ppm	8.9	8.6-9.5	7.5	7.5-7.6	0.4	0.3-0.5	
Nitrite, ppm	8.6	8.6-8.7	5.9	5.9-5.9	0.18	0.18-0.18	
Nitrate, TKN,	12.7	7.1-18.2	12.6	8.8-I 8.0	0.29	0.12-0.64	
ppm							
Bromide, ppm	9.85	9.85-9.85	7.27	7.27-7.27	0.06	0.06-0.06	
Chloride, ppm	264.5	231-288	257	242-280	1.32	0.71-2.28	
Sulfate, ppm	298	247-339	291	241-321	0.4	0.3-I .4	
Sodium, ppm	204	193-214	204	191-221	5	5 - 9	
Silica, ppm	18	15-23	17	14-21	1	-	
Iron, ppm	0.25	0.093-	0.05	0.05-0.06	0.05	0.05-0.06	
		0.922					
Chromium, ppb	5	1.9-10.2	2.9	1.4 - 6.0	1.1	1 .0 - 1.6	
Calcium, ppm	74	74-74	79	72-83	1	-	
Magnesium, ppm	39	38-38	39	36-41	3	3 - 3	
Phosphorous,	13.8	4.7-25.4	7.4	3.6-17.8	0.08	0.01-0.46	
ppm							
TDS, ppm			1106	1000	12	1 0-23	
Hardness, ppm	389	330-427	395	347-448	5	5-6	
Alkalinity, ppm	170	135-205	175	152-204	7	5 - 19	
TOC, ppm	9.1	3.6 -	6.9	5.2 - 17.6	0.08		
		19.0					
UV-254	0.152	0.123-	0.121	0.106-	0.010	0.002-0.024	
		0.188		0.141			
HPLC, cfu/ml	22.1e4	1.6e4-	1.6	N D - 2 0	1.2	ND - 10	
		2.1e4					
Total coliforms	8000		ND		ND		
Total chlorine,	3.8	1 .o - 6.8	3.1	2.0 -3.9	3.5	2.0 - 5.2	
ppm							

Table 2. San Pasqual analytical results

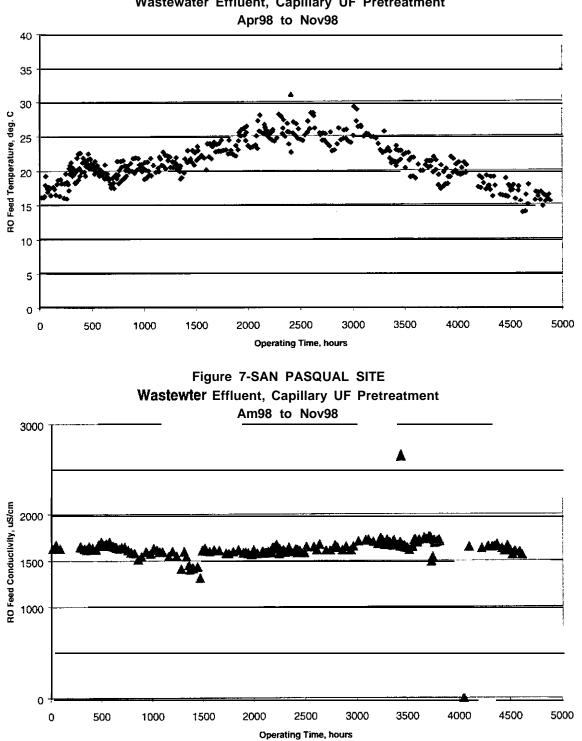


Figure 6-SAN PASQUAL SITE Wastewater Effluent, Capillary UF Pretreatment

4.4 OPERATING PARAMETERS AND RESULTS

4.4.1 CAPILLARY UF EQUIPMENT

The UF pilot unit consists of two 8" HYDRAcap[™] capillary ultrafiltration modules running in parallel. Flow through the capillaries is inside out, i.e., feed water enters the center of the capillary tubes and filters through the wall and is collected outside the fibers. The capillary material is Poly Ether Sulfone (PES). The UF unit runs in dead-end mode (no concentrate flow) with filtrate flow of 7 gpm (38 gfd) per element. Recovery is 100%. Here, recovery is synonymous with reverse osmosis technology and is equivalent to the Filtrate/Feed flow ratio as the unit is processing water. The conversion of feed water to filtrate is approximately 85%. Conversion considers that 15% of the filtrate is required for automatic backwash cycle. The unit also consists of one feed and one backwash pump, actuated valves, a control panel with a PLC to control backwash frequency and duration, a filtrate holding tank, a chlorine metering pump and a day storage tank. Flow and pressure are monitored with flow meters and pressure gauges. Two UF modules are needed to supply adequate flow to the RO units downstream.

the capillary UF pilot unit.				
Parameter	Value			
Number of capillary elements	2			
Total Filtrate flow rate	14 gpm			
Concentrate flow rate	0 gpm			
Recovery	100%			
Conversion	85%			
Filtrate flux	38 gfd			
Feed Pressure	20 psi			
Baseline TMP*	4-6 psi (~0.3) bar			

Table	3.	Representative operating parameters o	f
		the capillary UF pilot unit.	

*Trans Membrane Pressure is the difference between the feed/concentrate and filtrate pressures.

The unit is operated in the following sequence:

Filtration step-

Feed pressure is applied to the inside of capillaries. The system operates in a dead end mode (100% recovery rate), and all feed water is converted to filtrate. This steps lasts between 15 - 30 min.

Backwash cycle-

The backwash cycle is a sequence of short steps. Initially, the concentrate valve is opened for a period of about 8 seconds and the inside of the capillaries are flushed with feed water. Next the feed pressure is reduced to ambient and filtrate pressure is applied to the outside of capillaries for a period of about 20 sec. Filtrate water permeates through the capillary walls, dislodges the

foulants from the inside of the capillaries, and discharges them drain. During this step, chlorine is added to the filtrate at the level of about 20 ppm. The filtrate pressure is then reduced and the system stays idle (soak step) for about 20 seconds. The objective of the soak step is to allow the chlorine to oxidize the organic material deposited in the capillaries. After the soak step filtrate under pressure is again applied to the outside of the capillaries for a period of 12 seconds to rinse the chlorinated water from the system. The total time of the backwash cycle is about 60 sec. After the backwash the UF system is returned to normal operation. Periodically, when the TMP reaches 1.5 – 20 psi, the UF membranes are cleaned with 2% citric acid solution (low pH cleaning), followed with 0.5% NaOH solution (high pH cleaning). A detailed description of filtration, backwash and the cleaning procedure is included in Appendix D.

4.4.2. RO EQUIPMENT

The RO portion of the system contains two sets of three 4" membrane elements each operating in parallel. The membranes are Hydranautics new low fouling neutrally charged polyamide membrane (LFC1). One set of three membrane elements is housed in a standard pressure vessel. The other consists of three LFC1-Free membranes in a self-encapsulated configuration, i.e. stand alone membranes that do not require a pressure vessel. The encapsulated elements are also connected in series, i.e. concentrate outlet of one element is connected to the feed port of the next module. The permeate from all three encapsulated elements are combined together. However, the permeate line from each encapsulated membrane module can be individually accessed. Such a configuration provides the capability of in-situ integrity testing and individual permeate sampling for the membrane elements.

The filtrate from the UF system is collected in a tank and then fed to the RO membranes via two centrifugal pumps in series. The RO membranes further remove bacteria and viruses as well as dissolved solids. The instrumentation of the RO system includes a temperature gauge, permeate and concentrate rotameters, feed, concentrate and permeate pressure gauges. All conductivity readings of individual permeates are done by grab samples. A conductivity monitor of feed and combined permeate conductivity is included.

One of the objectives of the test program was to test the possibility of applying the encapsulated configuration to the design of commercial systems. For this reason, the encapsulated and standard configuration elements were operated in parallel at the same recovery and permeate flux rate. The summary of the RO unit operating conditions is given in Table 4.

Parameter				
Cumulative run time of the	0-2700	2700-3500	3500-4200	4200-4900
Recovery	40%	50%	60%	70%
Flux (gfd)	~11 _	~12	~13	16-20
Feed pressure (psi)	~80	~100	~160	~180

Table 4. Operating conditions of the RO unit

Analytical results for selected constituents are given in Table 2.

4.4.3. UF MEMBRANE PERFORMANCE RESULTS

The results of the HYDRAcap[™] capillary UF operation are summarized in Fig. 8 through 14. Two UF elements were operated in parallel, designated as elements A and B. Fig 8 and 9 show the trans membrane pressure (TMP), which had to be applied to maintain the design filtrate flow. The TMP is calculated by subtracting the filtrate pressure from the average feed -concentrate pressure.

 $TMP = 0.5 * (P_f + P_c) - P_p$

For the majority of the study, the TMP fluctuated between 4 - 12 psi. Some excursion of the TMP was experienced, mainly due to membrane fouling resulting from operating condition changes such as increased period between backwash operation (increased length of operating cycle) and increased permeate flux rate. Stable results were obtained with a filtrate flux rate at about 38 gfd between backwash intervals of 15 minutes. Both UF elements operated most of the time at flux rate of 38 gfd, (Fig 10 and 11) which corresponds to filtrate flow of 7 gpm per element (Fig 12). The filtrate turbidity was below 0.1 NTU while processing tertiary effluent of average turbidity of about 2 NTU (Fig 13 and 14). The silt density index (SDI) of the UP feed was unmeasurable. The SDI of the UP filtrate was in the range of 2 - 4. It is interesting that the HYDRAcapTM UF membrane had a marginal retention for dissolved organics. TOC reduction of about 20 % was obtained. The capillary UF membrane has a molecular weight cut off of about 150,000 Dalton, which provides insight on the size of the dissolved organic matter.

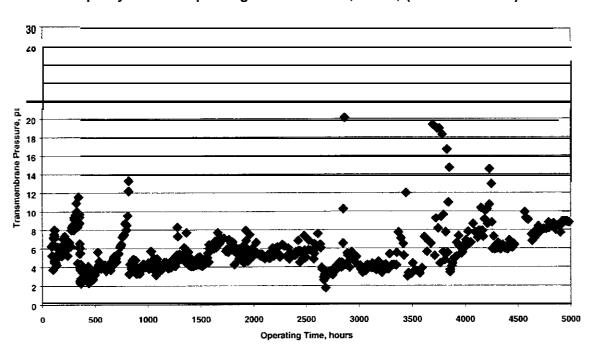


Figure E-SAN PASQUAL SITE, Capillary UF Unit Operating on Wastewater, UF-A, (Feb98 to Nov98)

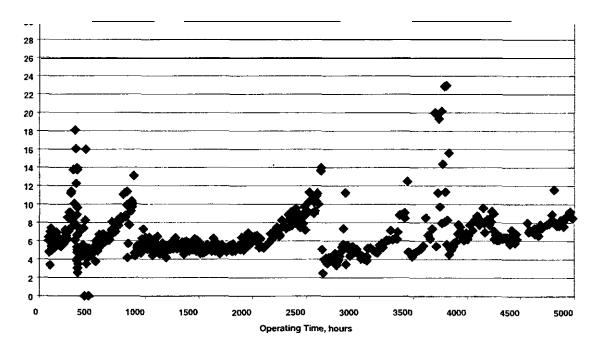
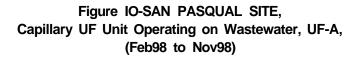
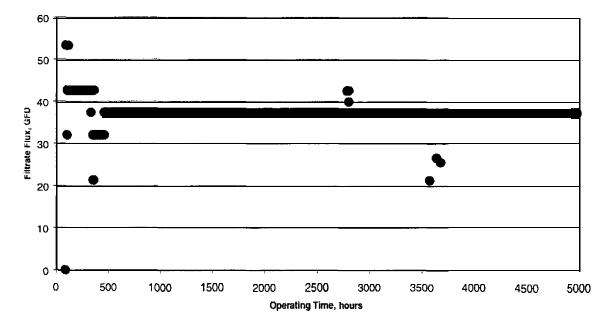




Figure 9-SAN PASQUAL SITE, Capillary UF Unit Operating on Wastewater, UF-B , (Feb98 to Nov98)

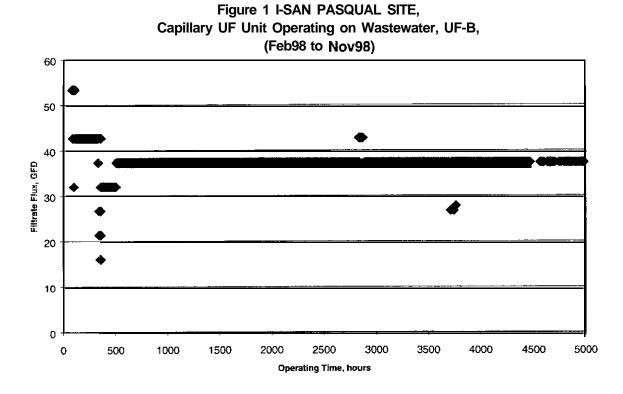
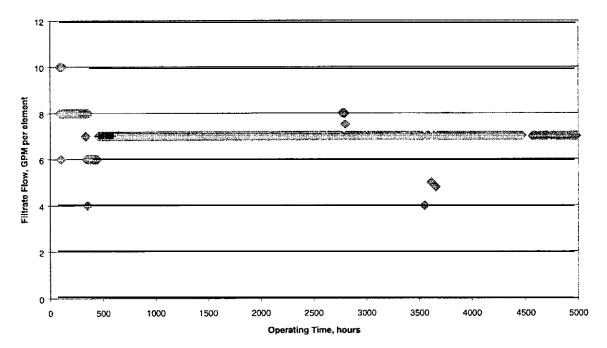
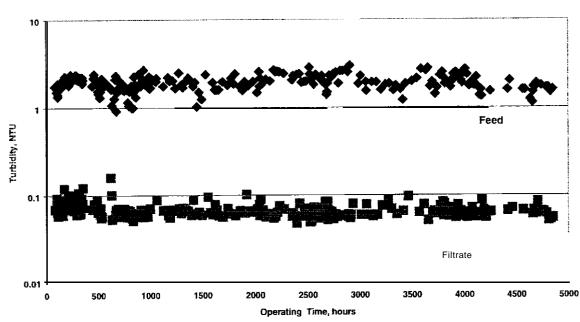
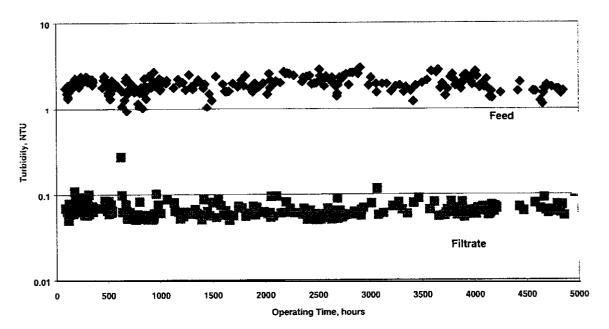
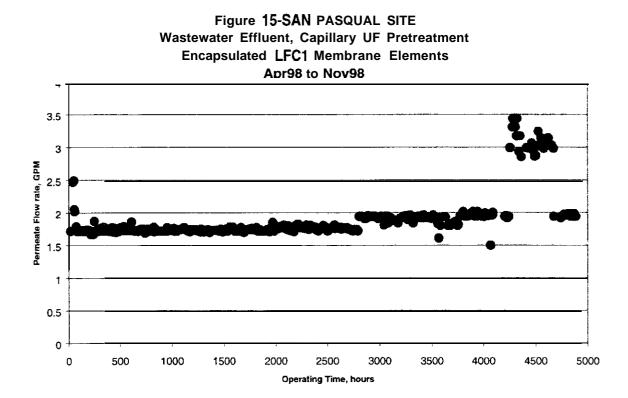
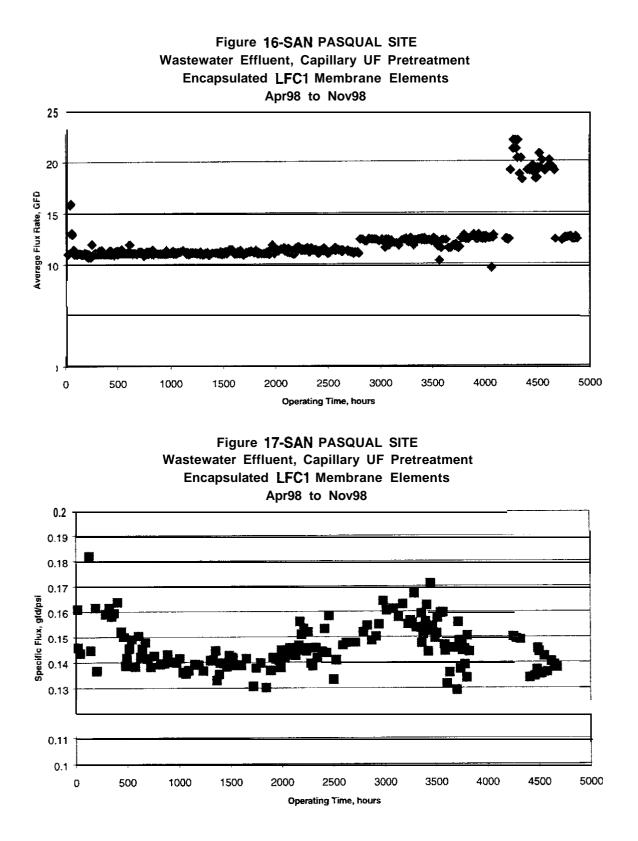



Figure 12-SAN PASQUAL SITE, Capillary UF Unit Operating on Wastewater, (Feb98 to Nov98)


Figure 13-SAN PASQUAL SITE Capillary UF Unit Operating on Waste Water Turbidity Reduction, UF - A


Figure 14-SAN PASQUAL SITE Capillary UF Unit Operating on Waste Water Turbidity Reduction, UF - B

4.4.4. RO MEMBRANES PERFORMANCE RESULTS

The results of the operation of the encapsulated and standard configuration LFC1 membrane elements are included in Fig. 15 – 21 and Fig. 22 – 28 respectively. The graphs include field data of permeate flow, average permeate flux, specific permeate flux (corrected for temperature and net driving pressure), permeate conductivity, salt rejection, recovery and feed pressure. Both the standard and encapsulated membrane elements operated at very similar conditions and exhibit similar performance. An important observation is related to the relative stability of the salt rejection, The feed water contains a high level of total chlorine (1 - 7 ppm) in the form of chloramines. The presence of chloramine prevents bacteria growth in the elements. The small decline of salt rejection, from 99.6 to 99.2, (Fig. 19 and 26) after eight months of field operation provides confirmation of previous findings that chloramines can be used to control biofouling in RO systems equipped with polyamide composite membranes. The LFC1 membranes operated at initial flux rate of 11 gfd, which was increased up to 16-20 gfd. The feed pressure remained stable (Fig. 21 & 28) and calculations of specific flux (Fig. 17 & 24) indicate very little decline of water permeability. The stability of specific flux is much higher than observed in the operation of the same type of membranes on conventionally pretreated municipal effluent. The typical RO membrane flux decline caused by fouling for conventionally pretreated efflent is in the range of 50 - 80%, and is quite common (16). This difference of fouling rates, in our opinion, is due to a significant reduction of colloidal particles by the HYDRAcapTM capillary membrane pretreatment

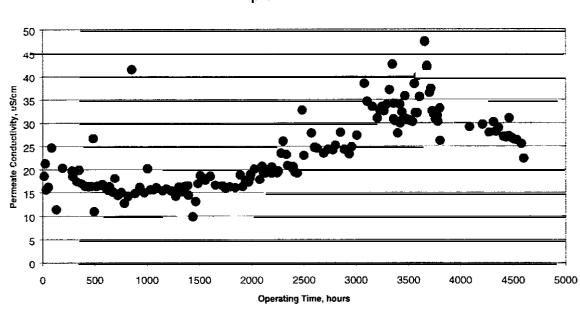
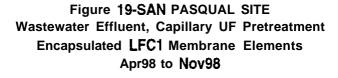
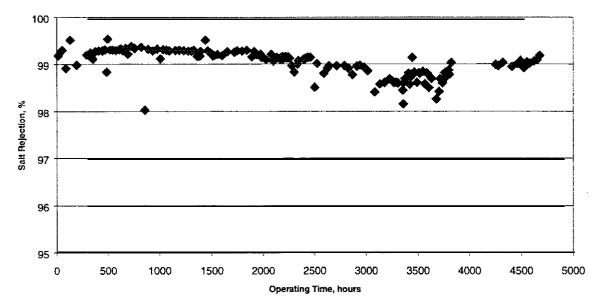




Figure I&SAN PASQUAL SITE Wastewater Effluent, Capillary UF Pretreatment Encapsulated LFC1 Membrane Elements Apr98 to Nov98

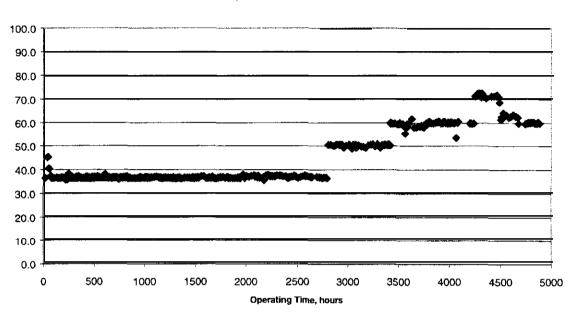
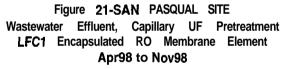
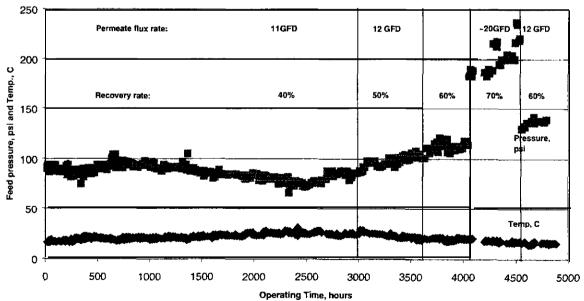




Figure 20-SAN PASQUAL SITE Wastewater Effluent, Capillary UF Pretreatment Encapsulated LFC1 Membrane Elements Apr98 to Nov 98

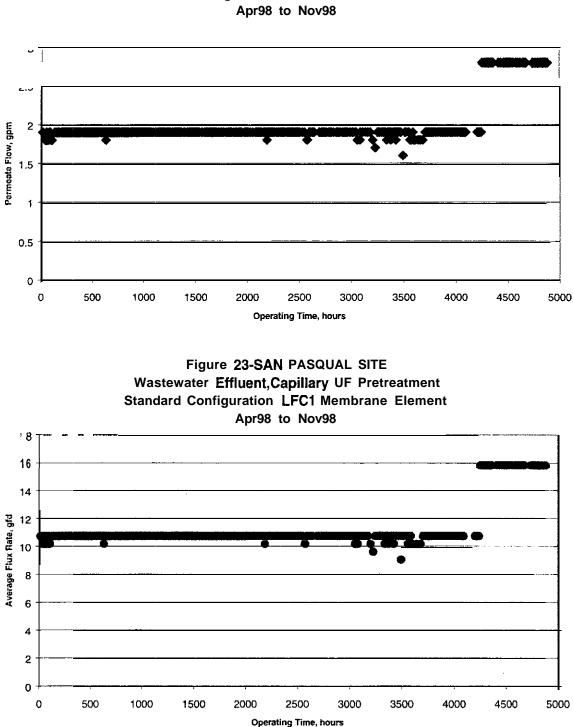
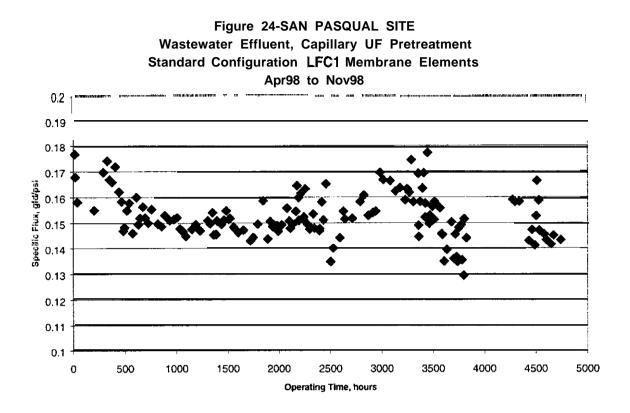
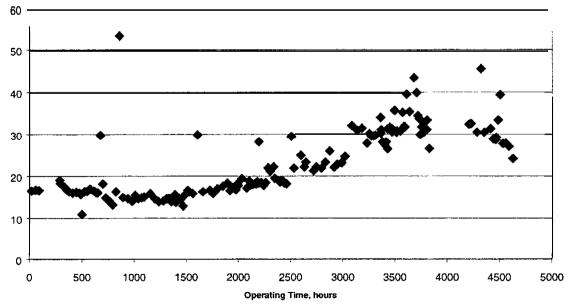
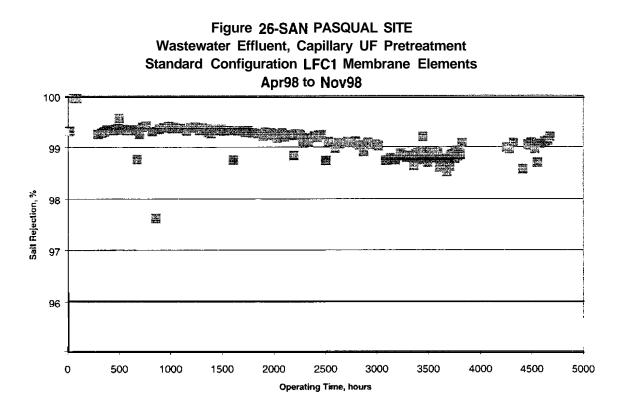
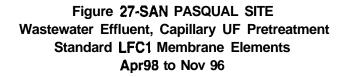
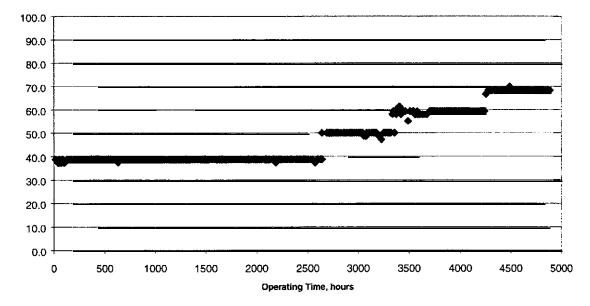
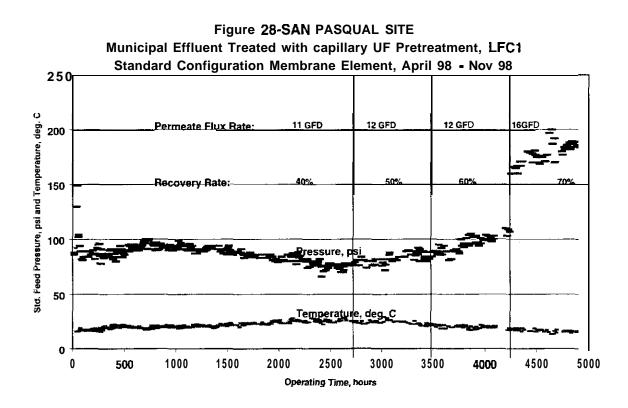


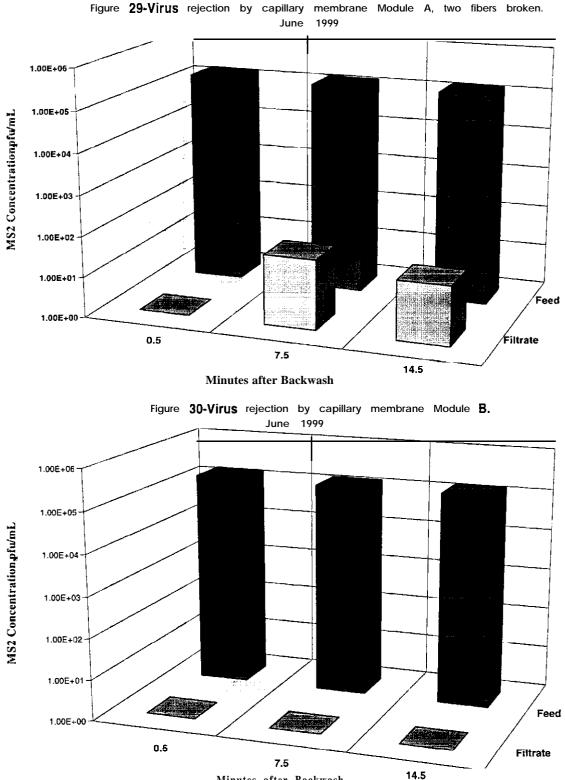
Figure 22-SAN PASQUAL SITE Wastewater Effluent, Capillary UF Pretreatment Standard Configuration LFC1Membrane Element Apr98 to Nov98

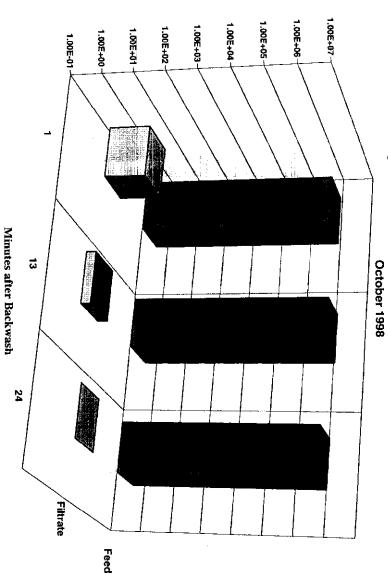

Figure 25-SAN PASQUAL SITE Wastewater Effluent, Capillary UF Pretreatment Standard Configuration LFC1 Membrane Elements Apr98 to Nov98

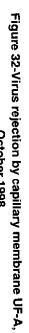


26


4.5. VIRUS CHALLENGE RESULTS

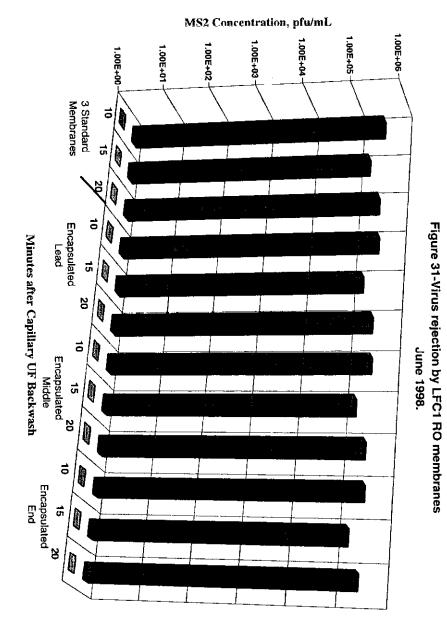
Virus retention tests of HYDRAcapTM UF and LFC 1 RO membrane elements were conducted on June 25, 1998 and October 23, 1998. Each test consisted of a separate seeding of feed water to both the UF unit and the RO unit with MS2 stock seeding solution. The concentration of MS2 virus in the feed water was in the range of 10^5 to 10' plaque forming units per ml (pfu/ml). Samples of UF filtrate and RO permeate were collected at the time intervals after the backwash of the capillary UF system. The details of the seeding protocol and the reports of each challenge test are included in Appendix E.


4.5.1. VIRUS RETENTION BY CAPILLARY UF MEMBRANES


The results of the MS2 virus challenge test are included in Fig. 29 and 30 for the first seeding test (June 98) and Fig. 32 and 33 for the second seeding test (October 23). Fig. 29, which includes results for module A, indicates an increase of MS2 virus concentration in the second and third filtrate samples. The first result corresponds to 5.2 log removal immediately after backwash. The subsequent results correspond to only 3.4 - 3.7 log removal. These results are consistent with the particle count results for module A taken on the evening prior to the next day challenge test. The particle count results in the filtrate indicated a step increase in particle size over 2 urn. This is indicative of broken fibers. The bubble test of module A conducted after the virus challenge test confirmed the presence of two broken fibers. Plugging the broken fibers with plastic pins

repaired module A. The results for module B consistently indicated over 5 log virus removal (Fig. 30). The challenge test conducted on October 23 indicated 5 - 6 log virus removal for both UF modules (Fig. 32 & 33).

Minutes after Backwash



!

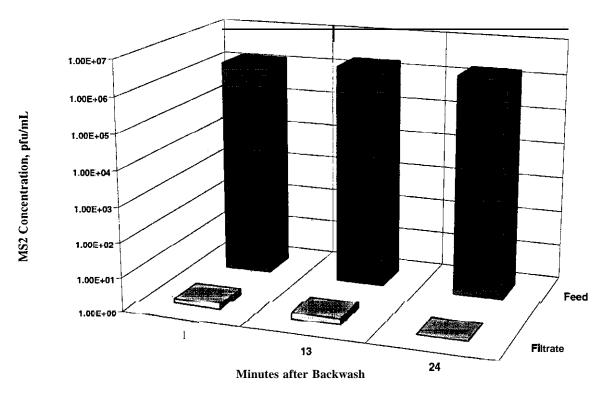
Ì

1

ł

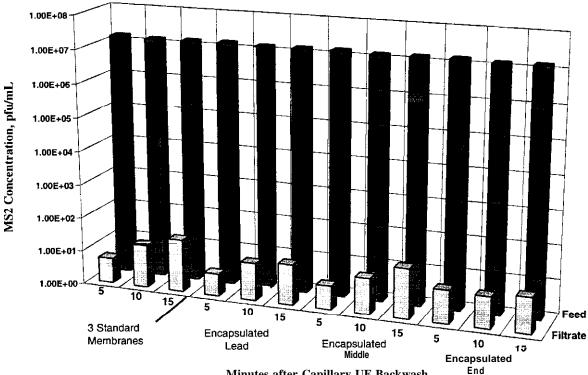
Ì

1


MS2 Concentration, pfu/mL

30

1


1

1

Figure 33-Virus rejection by capillary membranes. UF-B. October 1998

Figure 34-Virus rejection by RO membranes. October 1998

Minutes after Capillary UF Backwash

4.52. VIRUS RETENTION BY RO MEMBRANES

The virus challenge results are included in Fig. 3 1 (June 98) and Fig. 34 (October 98). The first seeding results (Fig. 3 1) indicate the same level of virus rejection of over 5 log for both membrane element configurations: standard and encapsulated. The second seeding results (Fig. 34) indicate overall higher virus rejection, up to 6.7 log. On the average the virus rejection by the encapsulated elements was slightly higher than that measured for the standard elements. During the first seeding, the concentration of the MS2 virus in the feed was about 10⁵ pfu/ml. The results of virus concentration in the permeate from all RO elements was less than 1 pfu/ml, practically below the detection limit. During the second seeding the concentration of MS2 virus in the feed was about 10⁷ pfu/ml. The virus concentration in the filtrate was in the range of 5 to 35 pfu/ml. It is very likely that the lower virus rejection results during the first challenge are the result of lower concentration of the MS2 virus in the feed water. In other words, the June test did not have enough virus in the feed water to show detectable virus in the RO permeate.

4.6. ON LINE INTEGRITY DETERMINATION

4.6.1. INTEGRITY TEST OF UF MEMBRANE ELEMENTS

Commercially applied methods of testing the integrity of capillary membrane elements include particle counting, particle monitoring, air pressure hold test, bubble release test, turbidity measurement, and sonic test (18, 19, 20). All the above methods are feasible for monitoring membrane integrity in small systems consisting of a limited number of membrane elements. However, only the particle counting, particle monitoring and turbidity measurements are continuous monitoring methods. The other methods can be applied only when the block or membrane module is taken off line. Turbidity monitoring can be useful in detecting only large leaks. In large capacity membrane treatment systems the particle counting and monitoring methods can only be effective if multiple sensors are applied. As described in a recent publication (19) the number of particle monitoring sensors per number of capillary modules depends on the sensitivity of apparatus and the concentration of particles in the feed water. Particle counters are relatively expensive and require a significant level of maintenance. Furthermore, after the existence of a leak in the UF/MF system has been established using either particle monitoring device, the module with compromised integrity has to be located in order to repair the broken fiber(s). Following the location of a leaking element, the leaking fiber(s) must be plugged or isolated. This can only be done off-line.

4.6.2. INTEGRITY TEST OF RO MEMBRANE ELEMENTS

The integrity of RO elements is determined by measuring salt passage, by a bubble test, or by a vacuum test. The salt passage determination is not very sensitive to small leaks. The other two tests are conducted on individual elements, and the elements must be outside the RO system. One of the objectives of this study was to test the advantage of the encapsulated configuration with respect to on-line determination of element integrity. As shown in the P&ID (Appendix C), the

permeate tube of each encapsulated element is connected individually to the permeate manifold. The permeate tube also consists of a side port with a valve, which can be connected to the vacuum line required for the vacuum test. The encapsulated elements are assembled vertically in the pilot unit. To conduct a vacuum integrity test the feed pump is stopped and water from the element is drained by opening the dram valves on the feed and permeate lines. When draining is completed both drain valves are closed. The permeate side port is connected to a vacuum pump and the permeate side of the membrane is evacuated to a stable vacuum of about 20 inches of mercury. The valve on the vacuum line is then closed and the vacuum decline is measured. If the vacuum is higher than 15 inches of mercury after one minute, the element has good integrity. Only the encapsulated elements can undergo this in-situ vacuum test. The same vacuum test was conducted on both standard and encapsulated elements before installation in the system. The vacuum test results are listed in Table 5. All results indicate good membrane barrier integrity.

Data				Element configuration			
Date	Element	Decline	Location	Element configuration			
0/11/00	S/N	"Hg/min	At San Desquel before install	Standard			
3/11/98	X01183	-1.20	At San Pasqual before install At San Pasqual before install	Standard			
	X01183	-1.40		Standard			
	X01184	-0.30	At San Pasqual before install	Standard			
	X01184	-0.20	At San Pasqual before install				
	X01181	-1	At San Pasqual before install	Standard			
	X01181	-0.30	At San Pasqual before install	Standard			
3/1/2/98	x01 190	-0.25	At San Pasqual before install	Self encapsulated			
	X01190	-0.30	At San Pasqual before install	Self encapsulated			
	X01 187	-0.25	At San Pasqual before install	Self encapsulated			
	X01 187	-0.20	At San Pasqual before install	Self encapsulated			
	X01 185	-0.15	At San Pasqual before install	Self encapsulated			
	X01 185	-0.10	At San Pasqual before install	Self encapsulated			
4/28/98	XO1185	-0.59	In situ post 400hours operation	Self encapsulated			
	XO1185	-0.59	In situ post 400hours operation	Self encapsulated			
	XO1185	-0.15	In situ post 400hours operation	Self encapsulated			
	X01185	-0.44	In situ post 400hours operation	Self encapsulated			
	XO1 185	-0.59	In situ post 400hours operation	Self encapsulated			
4/28/98	XO1190	-0.30	In situ post 400hours operation	Self encapsulated			
	XO1190	-0.15	In situ post 400hours operation	Self encapsulated			
	XO1190	-0.15	In situ post 400hours operation	Self encapsulated			
······································	XO1190	-0.06	In situ post 400hours operation	Self encapsulated			
	XO1190	-0.06	In situ post 400hours operation	Self encapsulated			
4/28/98	XO1 187	-2.66	In situ post 400hours operation	Self encapsulated			
	XO1187	-0.59	In situ post 400hours operation	Self encapsulated			
	XO1187	-0.30	In situ post 400ours operation	Self encapsulated			
	XO1187	-0.15	In situ posr 400 hours operation	Self encapsulated			
	XO1 187	-0.15	In situ post 400hours operation	Self encapsulated			
6/10/98	XO1185	-0.30	Pre MS2 challenge-I 900 hours	Self encapsulated			
	XO1185	-0.15	Pre MS2 challenae-1900 hours	Self encapsulated			
	XO1190	-0.89	Pre MS2 challenge-I 900 hours	Self encapsulated			
	XO1190	-0.59	Pre MS2 challenge-I 900 hours	Self encapsulated			
	XO1190	-0.30	Pre MS2 challenge-1900 hours	Self encapsulated			
	XO1190	-0.30	Pre MS2 challenge-1900 hours	Self encapsulated			
	XO1187	0.00	Pre MS2 challenge-1900 hours	Self encapsulated			
	XO1187	0.00	Pre MS2 challenge-1900 hours	Self encapsulated			

Table 5. Vacuum test results of standard and encapsulated elements

5. RO MEMBRANE CLEANING STUDY

The specific flux results included in Fig. 17 and 24 indicate some degree of permeability decline during field operation. After the completion of the field operation the LFC1 elements were returned to Hydranautics and tested at nominal test conditions. The test results confirmed that the encapsulated and standard configuration elements lost, an average of 10% and 20% of the initial flux respectively. The salt rejection results were about the same as the initial values. After the test, the lead elements from each group were put aside for autopsy including flat cell membrane testing and membrane surface analysis. The remaining two elements from each group were cleaned by applying 0.25% NaOH solution. After cleaning the elements were tested again. The test results are summarized in Table 6. High pH cleaning completely restored the flux to the initial values. However, the salt rejection was reduced to some extend. For the encapsulated elements the salt rejection was reduced from 99.5% to 99.4%, and the standard element salt rejection was reduced from 99.6% to 99.2% as a result of cleaning.

(April = November 1996).										
Position during test	Ex-Fa	ctory	After Ope	ration	After Cle	eaning				
operation										
	Rejection	Flux,	Rejection	Flux,	Rejection	Flux,				
	%	gpd	%	gpd	%	gpd				
&capsulated										
Element										
Configuration										
Lead	99.5	1629	99.6	1.512	Not	Not				
					cleaned	cleaned				
Middle	99.5	1629	99.6	1466	99.4	1788				
Tail	99.5	1684	99.6	1499	99.4	1788				
Average	99.5	1647	99.6	1492	99.4	1788				
Change %			+20	-9.4	-20	+8.5				
Standard Element										
Configuration										
Lead	99.6	1908	99.5	1629	Not	Not				
					cleaned	cleaned				
Middle	99.6	1908	99.6	1596	99.2	2317				
Tail	99.6	2082	99.6	1578	99.2	1708				
Average	99.6	1966	99.6	1601	99.2	2012				
_Change, %			0.0	-18.5	-100	+2.3				

Table 6. Performance change and cleaning results of the LFC1 membranes, San Pasqual (April – November 1998).

6. RO MEMBRANES AUTOPSY RESULTS

After cleaning, the tail elements, one from each group, were dye tested. After the dye test all elements were autopsied. The dye test consists of the operation of element at normal feed pressure with feed water containing dye (methyl violet). The objective of applying the dye test is to determine the presence of surface defects or leaks. After unrolling of dyed elements some minor surface defects were observed. No major leaks were found. On the membrane surface from ail elements a small amount of fouling deposit was found. No blockage of feed channels was observed. The report of autopsy results is included in Appendix F.

7. BACTERIOLOGICAL TESTS

Samples from the membrane surfaces were analyzed for the presence of bacteria. The feed water to the RO elements was treated with capillary UF membranes and a concentration of chloramines in the range of 1 - 7 ppm was maintained. The capillary membrane barrier prevented the majority of the bacteria from reaching the membrane elements and the presence of chloramines should have controled bacterial growth. Results of the tests indicated that some bacteria were present in the membrane elements. However, the presence of chloramines prevented growth, that would have affected element performance. No significant increase of pressure drop was observed. Results of the microbiological tests are included in Appendix G.

8. FLAT CELL RESULTS

After element autopsy, the membrane coupons were tested in flat cell apparatus. The results are summarized in Table 7. Table 7 also includes the element performance test results conducted before the autopsy. For comparison purposes, flat cell results of new LFC1 membrane are also included. Each result represents an average of six membrane samples. There is general agreement between element data and flat cell results. Some discrepancy can be expected due to membrane variability and the large difference of membrane area between the flat cells and elements. A listing of all flat cell results is included in Appendix H.

n		. Flat cell result									
Element	Element resu	ilts after field	Flat cell	results							
operation											
	Flux, gfd	Rej., %	Flux, gfd	Rej., %							
New membrane			22.9	98.9							
X0181 1	21.7	99.5	21.6	99.3							
x01 184 *	30.9	99.2	30.9	99.4							
X01183'	22.7	99.2	26.5	99.2							
X01 185	21.2	99.6	24.5	99.3							
x01190*	23.8	99.4	28.9	99.0							
X01187 *	23.5	99.4	24.5	99.6							

* Element has been cleaned before autopsy

9. SEM AND EDX TESTS

Samples of used membrane were examined using Scanning Electron Microscopy (SEM). The composition of the foulant layer was determined using X-ray Electron Diffraction (EDX). The results are included in Appendix I. The SEM pictures clearly indicate that the membrane surface contains bacteria and other fouling deposits. The EDX spectra enables a determination of the composition of fouling layer. The summary of EDX analysis for each element is included in Tables 8 through 13. For comparison each table includes the EDX spectra of a clean LFC1 membrane. The X-ray beam penetrates through the surface and reaches into the polysufone support layer of the membrane. The spectrum of a clean membrane sample shows the presence of carbon (about 63%), oxygen (about 16%) and sulfur (about 12%). The gold peak originates from the gold coating applied during sample preparation. Some of the spectra of membrane surfaces covered with a light deposit are similar to the spectra of the clean membrane (C, 0, S) but also include a small concentration of iron, silica and phosphorous. Some samples show the presence of chromium, origin of which is not clear at this time. The true composition of the foulant layer is determined by scraping the foulant from the membrane surface and analyzing it separately. These spectra (Table 8, scan #1), show the presence of organics and a high concentration of iron. The iron deposit originates most likely from the iron-based flocculant, FeC13, which is used in the tertiary treatment step of the feed water. The four membrane elements (SN # 01190, 01187, 01184, 01183) were cleaned only with a high pH solution of NaOH. The application of high pH cleaning solution is not effective in dissolving and removing iron deposits. It is important to note that the high pH cleaning restored the membrane flux completely despite the presence of foulant deposit clearly visible in the SEM pictures. It is possible that the cleaning operation increased the permeability of the fouling layer by removing organic material, which binds together colloidal particles.

Constituent of surface layer	Scan #1, foulant only	Scan #2, middle section	Scan #3, feed side	Control, clean
C	13.6	48.0	53.8	62.7
0	23.6	21.2	23.8	16.2
S	0.4	12.9	12.4	11.9
Fe	48.7	4.5	6.6	
Si	1.2	0.6	0.3	
Р	1.7			
Cr	1.5	0.15	0.22	

Table 8. Concentration of constituents	on membrane	surface,	element 01185.
--	-------------	----------	----------------

Table 9. Concentration o	f constituents	on membrane	surface,	element	01190.
--------------------------	----------------	-------------	----------	---------	--------

Constituent of surface layer	Scan # 1, foulant only	Scan # 2, feed side	Scan # 3, middle section	Control, clean
С	18.3	49.6	50.9	62.7
0	27.2	21.9	21.5	16.2
S	1.0	12.6	12.3	11.9
Fe	44.0	4.9	4.6	
Si	1	0.2	0.2	
P	0.6			

	Succentration of con	istituents on men	norane surface, eler	ment 01187.
Constituent of	Scan #1,	Scan # 2,	Scan #3,	Control, clean
surface layer	foulant only	feed side	middle section	LFC1 membr.
C	16.6	55.8	57.35	62.7
0	21 .0	19.7	18.7	16.2
S		11.8	12.3	11.9
Fe	45.5	2.7	2.3	
Si	1.8	0.3	0.3	
Р	0.8	0.1	0.22	

Table 10. Concentration of constituents on membrane surface, element 01187.

Table 11. Concentration of constituents on membrane surface, element 01181.

Constituent of surface layer	Scan # 1, heavy foulant layer	Scan #2, feed side	Scan # 3, concentrate side	Control, clean L FC1 membr.
С	66.4	62.5	62.7	62.7
0	23.8	15.2	15.49	16.2
S	3.5	11.86	11.8	11.9
Fe	0.35	0.25	0.25	
			0.12	

Table 12. Concentration of constituents on membrane surface, element 01184.

Constituent of surface layer	Scan #1, foulant only	Scan #2, feed side	Scan # 3, middle section	Control, clean
C	23.6	59.7	63.2	62.7
0	21.1	16.3	12.4	16.2
S	4.2	11 . 0	11.6	11.9
Fe	28.8	1.2		
Si	1.7	0.2	0.2	
Р	1.1			

Table 13. Concentration of constituents on membrane surface, element 01183.

Constituent of -surface layer	Scan # 1, middle section	Scan #2, heavy foulant	Scan #3, heavy foulant	Control, clean L FC1 membr.
С	63.5	33.0	14.5	62.7
0	12.03	24.4	29.8	16.2
S	12.1	3.29	0.4	11.9
Fe		21.3	40.3	
Si		1.8	1.9	
Р			0.6	
Cr		0.7	1.1	

10. SUMMARY AND CONCLUSIONS

The operation of the integrated membrane system (IMS), consisting of UF pretreatment followed by RO, confirmed that such a system configuration is very effective in providing stable performance in the reclamation of municipal effluents. The observed fouling rates of RO membranes were very low, in the range of 10 – 20%. Such fouling rates are significantly lower than those usually observed in other membrane systems operating in similar applications. In our opinion there are two reason for low fouling rates experienced during this study:

a) Use of membrane pretreatment reduces concentration of colloidal particles in the feed water. It is known (17) that the presence of colloidal particles in combination with high concentrations of organic matter forms ian impermeable layer on the membrane surface.

b) Another factor in reducing RO membrane water permeability is the adsorption of organics on the membrane surface (17). The LFC 1 membrane used in this study has a modified membrane surface, making it more hydrophilic than the conventional composite polyamide membrane material. The hydrophilic nature of the membrane potentially reduces the affinity and adsorption of hydrophobic organic material present in feed water. Furthermore, the bonds between deposited organics are not. very strong. The cleaning results demonstrate that the deposited organics are easily removed by the cleaning procedure.

The results of this work show that the encapsulated RO membrane elements can be configured into systems that operate similar to those designed around standard RO membranes. For applications where the barrier integrity is critical, the encapsulated elements offer some distinct advantages. The major advantage is the ability to perform an in-situ integrity test. Furthermore, the virus challenge results show slightly higher virus retention for encapsulated elements. Due to the small number of elements tested however, it is difficult to assess how meaningful these results actually are.

The instrumental analysis results (SEM and EDX) give some insight into the operation of IMS on municipal effluent. The important observations are:

a) The presence of chloramine enables control of biological activity and effectively prevents biofouling.

b) In this environment, (presence of chloramines in municipal effluent feed) the composite polyamide LFC1 membrane is sufficiently stable with respect to salt rejection.

c) In spite of UF membrane pretreatment, foulants did accumulate on the membrane surface. The EDX spectra enable foulant identification as being composed mainly of organic material, iron (probably mixed hydroxide form) and silica. The iron probably originates from iron salt flocculation in the tertiary treatment step. Silica could be introduced to the feed water from a fine dust deposit. There is also indication of presence of chromium of unknown origin.

During the latter period of the tests the LFC1 membrane elements operated at relatively high flux rates, without a noticeable increase of the fouling rate. If such high fouling rates could be sustained in long term operation they would have a significant impact on RO system costs for wastewater reclamation. It is prudent for further testing to confirm the feasibility of such a system design.

11. ACKNOWLEDGEMENTS

Hydranautics gratefully acknowledges the financial support provided for this work by the Bureau of Reclamation. Cooperation from the City of San Diego in providing a test site and operational support is also recognized. Specifically, Hydranautics would like to thank Daniel Smith and Jack Swerlein, the lead operators at the Aqua 2000 test facility. Hydranautics also appreciates the virus seeding studies and oversight by the Montgomery Watson Engineering Company.

12. REFERENCES

- 1. Water Renovation of Municipal Effluents by Reverse Osmosis, J. E. Curver, J. E. Beckman and E. Bevage, Report EPA 670/2-75-009, Prepared for National Environmental Research Center, General Atomic Company, March 1975.
- Control Of Fouling of Reverse Osmosis Membranes when Operating on Polluted Surface Water, J. E. Beckman, E. Bevage, J. E. Curver, I. Nusbaum, and S. S. Kremen, Office of Saline Water Report CA- 10488, Gulf Environmental System, February 197 1.
- 3. Application of Hyperfiltration to Treatment of Municipal Sewage Effluents, K. A. Kraus, Eater Pollution Research Series: 17030E OHO1/70, January 1970.
- 4. Evaluation of Membrane Processes and their Role in Wastewater Reclamation, Final Report of Contract for US Department of Interior OWRT, David Argo and Martin Rigby, November 30, 1981.
- 5. Municipal Wastewater Reclamation and Reverse Osmosis, Richard G. Sudak, William Dunivin and Martin G. Rigby, Proceedings of the National Water Supply Improvement Association 1990 Biennial Conference, Florida August 1990, p. 225.
- 6. Renovation of Municipal Waste Water by Reverse Osmosis, J. M. Smith, A. N. Masse and R. P. Mile, Water Pollution Research series: 17040-05/70, 1970.
- Study and Experiments in Waste Water Reclamation by Reverse Osmosis, I. Nusbaum, J. H. Sleigh and S. S. Kremen, Water Pollution Research Series 17040-05/70 (1970).
- Reverse Osmosis of Treated and Untreated Secondary Sewage Effluent, D. F. Boen and G. L. Johnson, Report to the Environmental Protection Agency, EPA-6702-74-74-007, September 1974.
- 9. Demineralization of Sand Filtered Secondary Effluent by Spiral Wound Reverse Osmosis Processes, C. Chen and R. P. Miele, Report to the Environmental Protection agency, EPA-60012-77-169, September 1977.
- 10. Evaluation of Membrane Processes and Their Role in Wastewater Reclamation, D. G. Argo et. al., Volume I, Report to US Department of Interior, Office of Water Research and Technology, November 1979.
- 11. Evaluation of Membrane Processes and Their Role in Wastewater Reclamation, D. G. Argo et. al., Volume III, Report to US Department of Interior, Office of Water Research and Technology, November 198 1.

- 12. W. Dunivin, P. Lange, R. Sudak and M. Wilf, "Reclamation of Ground water Using RO Technology", Proceedings of the IDA World Conference on Desalination and Water Reuse, Washington (August 1991).
- M. Wilf, P. Lange and P. Laverty, "Application of Reverse Osmosis Technology for Water Reclamation in Southern California", International Seminar on Efficient Water Reuse, Mexico City, Mexico (October 1991).
- 14. Membrane Process in Water Reuse, J. Lozier and R. Bergman, Proceedings of Water Reuse Symposium, Denver, Colorado 1994.
- 15 Pilot Testing of Microfiltration and Ultrafiltration Upstream of Reverse Osmosis During Reclamation of Municipal Wastewater, G. L. Leslie, W. R. Dunivin, P. Gabillet, S. R. Conklin, W. R. Mills and R. G. Sudak, Proceedings of ADA 1996 Biennial Conference, Monterey, California 1996.
- M. Wilf, "New Generation of Low Pressure High Salt Rejection Membranes", Proceedings of the 1996 Biennial Conference and Exposition, Monterey, California (August 1996).
- 17. M. Wilf, "Reduction of Membrane Fouling and Improving Elements Integrity in Municipal Wastewater Reclamation", Submitted for presentation to the IDA Conference, San Diego, CA, September 1999.
- 18. Erin C. Devitt and Mark R. Weisner, "Natural Organic Matter and Membrane Fouling", Proceeding of ADA Conference, Williamsburg, Virginian, August 1998, pp. 299.
- 19. "Membrane Prequalification Pilot Study", Final report prepared for the City of San Diego by Montgomery Watson (1998).
- 20. S. Adham et al, Low-pressure Membranes: Assessing Integrity, AWWA Journal, March 1995, pp: 62 75.
- 21. S. Panglish, et al, Monitoring the Integrity of Capillary Membranes by Particle Counters, Desalination 119 (1998) 65 72.
- 22. J. M. Laine et al, Acoustic Sensor: a Novel Technique for Low Pressure Membrane Integrity.

APPENDIX A

SPECIAL ESPA ELEMENT WET TEST DATA SHEET

1				<u>7761</u>							DATA S	HEET					
Dale:		2-19-9	98			(See Codes) <u>TEST CATEGORY CEODES</u> TEST				TE	ST COND	DITIONS					
Operator:		MIKE				CATE	ST GORY: CIALS	See PD TB 1020				See PD TB 1020					
Element T	Element Type: 4040-UHT-LFCI			Р													
ro / Di Ha	2O Cor	nd.:	0.74	u mhos		pH:	4.93										
Serial	Ves	RUN	pН	FE	ED	BRI	NE	PRO	DUCT	D	FEED	BRINE	FB %	PRODUCT	%	GPD	Sta
Number	#	#		Temp.	Cond.	Cond.	GPM	, Cond.	GPM	Р	NaCl	NaCl	NaCl	NaCl	REJ	ļ	•
X01179	1/1	1	7.0	19.0	2840	3370	9	20	1.1	14	1477.4	1615.2	1546.3	9.20	99.4	1,908	
X01180	1/2	1	7.0	19.0	2840	3370	9	17	1.1	14	1615.2	1753.1	1684.1	7.82	99.5	1,908	
X01181	2/1	1	7.0	19.0	2840	3490	9	· 14	1.1	13	1477.4	1646.4	1561.9	6.44	99.6	1,908	
X01182	2/2	1	7.0	19.0	2840	3490	9	18	1.1	13	1646.4	1815.5	1731.0	8.28	99.5	1,908	[
X01183	3/1	1	7.0	19.0	2840	3500	9	13	1.2	13	1477.4	1649.0	1563.2	5.98	99.6	2,082	Γ
X01184	3/2	1	7.0	19.0	2840	3500	9	15	1.1	13	1649.0	1820.7	1734.9	6.90	99.6	1,908	[
	4/1	1	7.0	19.0	2840					-	1477.4	#######	#######	#######	######	######	[
	4/2	1	7.0	19.0	2840					-	########	#######	######	#######	######	#######	
	1/1									-	########	#######	######	#######	######	#######	
	1/2									-	########	#######	######	#######	######	#######	
	2/1									-	#######	########	#######	#######	######	######	
	2/2									-	#######	#######	######	########	######	#######	
	3/1									-	########	########	######	########	######	######	<u> </u>
	3/2									-	########	########	######	########	#######	#######	
	4/1									-	########	#######	######	#######	######	#######	
	4/2									-		#######	######	########	######	#######	
								HOW M	ANY PA	SSED	:		AVERAG	E	· · · · · · · · · · · · · · · · · · ·		1
												AVERAGE	ALL	######	#######		

Status Codes: See PD TB 1020

ESPA ELEMEN' WET _____ DATA SHEET

Dale ↓		Ope	eralor 、	L		A ELE	Codes+)				DATA S			TEST	CON	DITIONS	
3/2/98 S. ALT			TEST CATEGORY: See PD TB 1020.			-	See PD TB 1020.										
						UNIE			Jee I	חטו	J 1020.			See	PUID	1020.	
Element T	ype:		FRE	÷													
RO / DI H₂0	Cond.	: 12	<u>ר ו</u>	ı mhos		рН: <u> </u>	•					1					
Serial Number	Ves #	RUN #	рH	FI Temp.	EED Cond.	BR Cond.	INE g p m	PRC Cond.	ODUCT GPM	A P	FEED NaCl	BRINE NaCl	FB % NaCi	PROD NaCl	% REJ	GPD	Stat
X01190	1/1	6.	51 2ª	, 8 3	2850	3160	9.0	16.0	\.0			ארו	1698	8	99.5	.1629	-
XOUSS	1/2	↓	4	21.8	2840	32 10	8.0	17.1	1.0	\downarrow	1572	שהרו	1675	8.3	99.5		V
KOUR	2/1	↓		23:0	2840	3200	8.7	18.0	1.1		1541	1736	1639	8.6	99.5	1684	1
Xonss	2/2	↓	↓	23.2	2350	3240	2:4	19.6	hil	+	1546	1758	1652	9,५	99,4	1684	
61189	3/1	↓ 			2940			20,5	0.9		1579	1679	1594	9,6	99.4	1337	
(01136	3/2	→	+		2870	32440	87	20.1	1.15	4	1486	2011	1595	9,3	97.4	1681	
	4/1	↓ 	• ↓	+	' ↓					l 			-				
	4/2	+	→	↓	↓	\downarrow	↓			\downarrow	NAC	ium nes	+				
	1/1												Mitha	RUM.	nht		
	1/2	+	↓	↓	<u> </u>	+	\downarrow	•		\downarrow	TEST MPA	41745 -	าย่า	-24.2	Smin		
	2/1	+	\downarrow	\downarrow	Ŧ						X01190		-214	-20,6	c		
	2/2	4	+	\downarrow	*	+	+			\downarrow	X01185		-71.0	_ <u>2</u> 2,2	10min		
	3/1	\downarrow	\downarrow	\downarrow	\downarrow						X01107		- 21.0	-70.4	Grain		
	3/2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow			\downarrow	X01133		-: \	20.0	Binin		
	4/1	\downarrow	\downarrow	\downarrow	\downarrow						X01139			-104			
	4/2	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	+			\downarrow	ci/1/0/		-21-7	-10.7	20 min		
,,	* S1	tatus	Code	s: See	PD TB '	1020.	I		HOW MA	NY PA			AVERA	f			
For8040 &				EJ % x				069 			1	I		t	 I]	

47

- 1

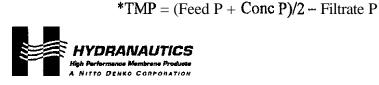
HYDRAcapTM Membrane

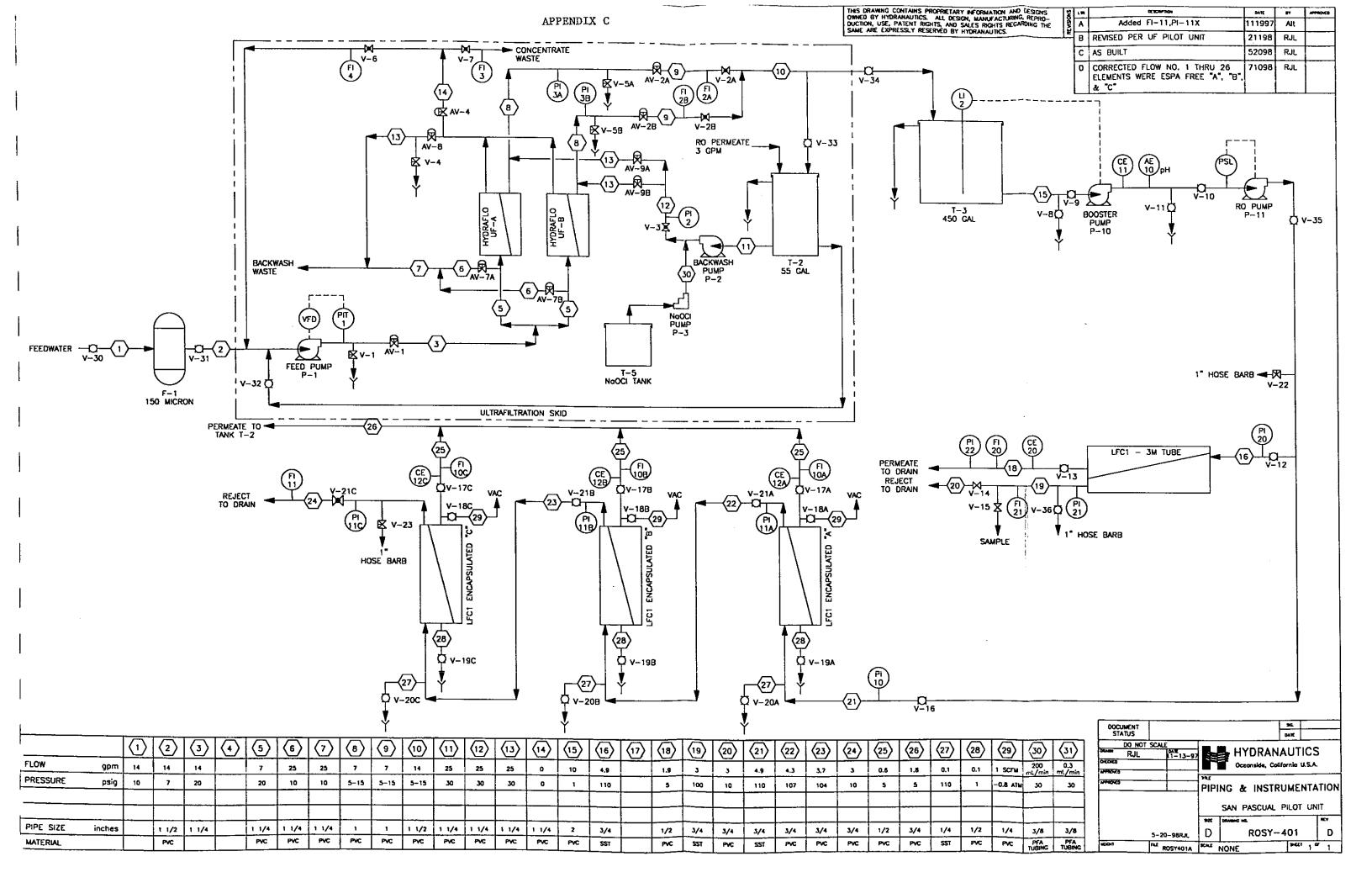
Configuration Membrane Polymer MWCO Nominal Membrane area Capillary ID/OD

Application Data: Typical filtrate flux range PH range Chlorine tolerance Peroxide tolerance Operating mode Maximum operating temperature *Transmembrane pressure (TMP) range

Typical Process Conditions Backwash pressure Backwash flow Backwash frequency Backwash duration

DisinfectionfrequencyDisinfectiondurationDisinfectionchemicals


Cleaning frequency Cleaning chemical types: Capillary Hydrophilic polyether sulfone 1 00,000- 150,000 Daltons 270 ft² (25 m²) 0.031" (0.8mm)/0.047" (1.2mm)


36-75 gfd (60-130L/m²•hr) 2-13 200 ppm 200 ppm cross-flow or dead-end (direct flow), backwashable 104°F (40°C) 4-22 **psig (28-150 kPa**

35 psig (240 kPa) 35 gpm (8m³/hr) 10-30 minutes 30-60 seconds

1-4x/hour -1 minute NaOCl (hypochlorite) and H_2O_2 (peroxide)

1-2/month Citric acid NaOH NaOH+EDTA

OPERATION SEQUENCE OF CAPILLARY UF SYSTEM

Normal Operation-Direct Flow

Direct flow is synonymous with "dead-end" flow, i.e. all feed water is forced through the membrane and exits as filtrate. This is equivalent to having no concentrate stream flow, and thus maximizes the recovery of the system. During normal operation, the feed pump is ON and the backwash and metering pump are OFF. Automatic valves AV-1, AV-2A, and AV-2B are OPEN, while AV-4, AV-7A, B, AV-8 and AV-9A, B are CLOSED. Globe valves on the individual filtrate lines control the amount of filtrate flow.

Normal Operation-Crossflow

This mode is the similar to a standard reverse osmosis system in that a concentrate stream allows continuous removal of rejected matter. In crossflow, AV-1, AV-2A,B. and AV-4 are OPEN. The concentrate stream is sent directly to drain.

Backwash

Backwash is necessary to remove the particulate matter that accumulates on the membrane surface. Each element is backwashed individually, and the sequence is the same for each. The backwash cycle is initiated and controlled by a timer in the PLC and consists of the following steps:

Fast Flush

Here the feed pump remains ON and ramps up to full capacity. All of the feed water is forced out the concentrate line in an effort to physically blow the particulate matter off the inner surface of the membranes. AV-1 and AV-8 are OPEN.

49

During the remainder of the backwash cycles, the feed pump is OFF and the backwash and metering pumps are ON. (The metering pump may only come on during selected cycles). The backwash pump produces -35gpm and runs at 25-35 psi depending upon the TMP.

Bottom Backwash

The backwash pump is initiated, and the feed pump shuts OFF. Backwash water is introduced into the filtrate side of the membranes and is removed out of the feed (bottom) end to drain. Valves AV-7A, and AV-QA, are OPEN. The chlorine feed pump is initiated and remains ON until the soak cycle.

Top 'Backwash

Similar to bottom backwash, but the water exits out the concentrate (top) line to drair. Valves AV-QA and AV-8 are OPEN.

Full Backwash

This is a combination *of* both top and bottom backwash. Backwash water *is* fed through the filtrate line and exits out both the concentrate and the feed lines to drain. This is the same as the final rinse cycle, only no chlorine is used in the final rinse.

Soak Cycle

Essentially, this is a pause where the chlorinated water has time to disinfect the membranes. All valves are CLOSED, and all pumps are OFF.

Flush

As previously mentioned, same as Full Backwash.

50

	Normal	Operation		Backwash				
	Direct Flow	Crossflow	Fast Flush	Bottom	Тор	<u>Full</u>	Soak	Flush
Feed Pump	On	On	On	Off	Off	Off	Off	Off
Backwash Pump	Off	Off	Off	On	On	On	Off	On
Chlorine Pump	Off	Off	Off	On	On	Off	Off	Off
		· · · · · · · · · · · ·						
AV-1	Open	Open	Open	Closed	Closed	Closed	Closed	Closed
AV-2A	Open	Open	Closed	Closed	Closed	Closed	Closed	Closed
AV-2B	Open	Open	Closed	Closed	Closed	Closed	Closed	Closed
AV-4	Closed	Open	Closed	Closed	Closed	Closed	Closed	Closed
AV-7A	Closed	Closed	Closed	Open	Closed	Open	Closed	Open
AV-7B	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed
AV-8	Closed	Closed	Open	Closed	Open	Ореп	Closed	Open
AV-9A	Closed	Closed	Closed	Open	Open	Open	Closed	Open
AV-9B	Closed	Closed	Closed	Closed	Closed	Closed	Closed	Closed

Table 1. UF pilot sequencing control

Note: All Valves are Normally Closed Except AV-1

Hydracap UF Cleaning Protocol:

Cleaning is necessary when the Trans Membrane Pressure (TMP) rises to ~15psi. The unit has been cleaned successfully by heating the following solutions to 38°C and recirculating them through the feed side of the membranes with the filtrate valves CLOSED for 1 hour each, followed by the filtrate valves partially OPEN for 15 minutes. This cleaning is done individually for each membrane, with a flow rate of 10gpm. The solutions are then backwashed to drain at the end of each cycle, followed by three backwashes with RO permeate water.

Solution I- 2% Citric Acid pH -2.2 Solution 2- 0.5% NaOH pH~12.0

Operating Hours	100-300	425-850	900-2800	2800-2865	2900-3350	3350+
Step in Cycle (seconds)						
Normal	900	900	900	1500	1500	1500
Backwash						
Fast Flush	5	5	9	9	9	9
Bottom*	7	7	7	7	7	7
Top*	7	7	7	7	7	7
Top/Bottom*	12	10	12	12	12	12
Soak	17	15	15	15	15	15
Final Flush – Top/Bottom	12	16	10	10	10	10
Total	60	60	60	60	60	60
"Denotes Chlorine addition						
NaOCI Concentration (ppm)	~100	~100	-25	~25	~25	~25
BW Pump Flow (gpm)	35	35	35	35	35	35
Forward Flush Flow (gpm)	40	40	40	40	40	40
Chlorine frequency	1:1	1:1	1:1	1:1	1:1	1:1
Total cycle time (sec)	960	960	960	1560	1560	1560
% Time-production	93.8%	93.8%	93.8%	96.2%	96.2%	96.2%
% Time-FF to drain	0.5%	0.5%	0.9%	0.6%		0.6%
% Time-BW to drain	4.0%	4.2%	3.8%	2.3%	2.3%	<u>2.3%</u>
% Time-Chlorine soak	1.8%	1.6%	1.6%	1.0%	1.0%	1.0%
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
			-			
ELOWS						
Filtrate Flow Rate (gpm)	8	.8	7	8	7	7
Concentrate Flow Rate (gpm)	0	1	0	0	0	0
Recovery	100%	89%	100%	100%	100%	100%
Production per cycle step (gallons)						
Filtrate flow	120.0	120.0	105.0	200.0	175.0	175.0
Concentrate Flow	0.0	-15.0	0.0	0.0	0.0	0.0
FF to Drain	-3.3	-3.3	-6.0	-6.0	-6.0	<u>-6.0</u>
BW to drain	-22.2	-23.3	-21.0	-21.0	-21.0	-21.0
Net:	94.5	78.3	78.0	173.0	148.0	148.0
% production -Conversion	79%	65%	74%	87%	85%	85%
Backwash source	RO Per	RO Per	RO Perm		*····*	UF Filt
pH 2.5 Backwash frequency	none	none	1/day	1/day	1/day	1/day

Table 2- Hydracap UF Backwash conditions and Net water production

TECHNICAL MEMORANDUM

MONTGOMERY WATSON

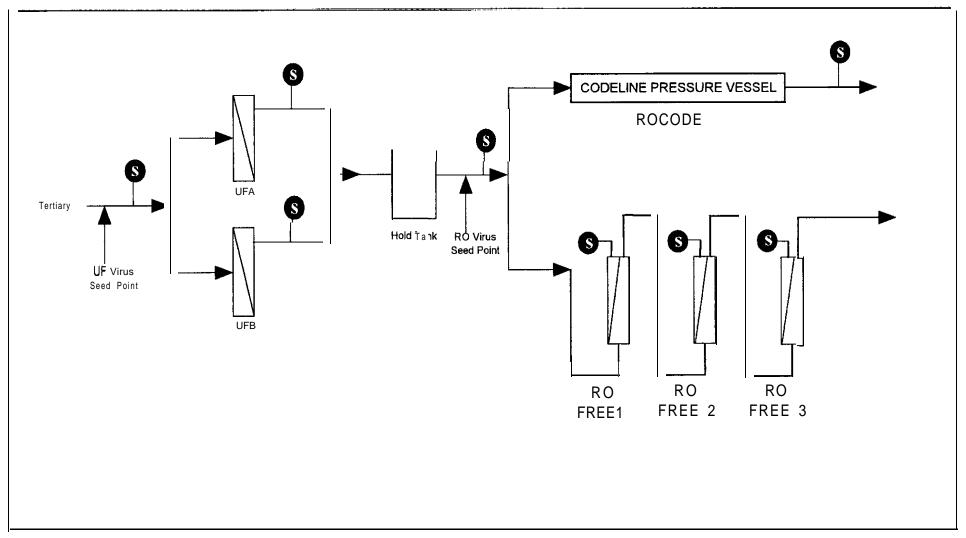
To:	Mark Wilf and Steve Ah	Date:	June 25, 1998
From:	Samer Adham, Ph.D.		
Prepared by:	Lina Boulos	Client:	Hydranautics
Subject:	Results of MS2 Challenge Experiments on	UF and RO	Sheets

INTRODUCTION

On June 6 1998, Montgomery Watson was retained to conduct MS2 virus challenge experiments on two UF membranes, mounted in parallel, three RO modules, mounted in series in a pressure vessel, and three non-contained RO modules, mounted in series. These membranes were operated by Hydranautics, as part of a project funded by the Bureau of Reclamation.

MATERIALS AND METHODS

Membranes


Figure 1 provides a schematic of the treatment train employed.

Two different UF membranes were evaluated in the study: UFA and UFB Both membranes are hollow fiber in configuration with 150,000 molecular weight cut-off (≈ 0.01 to 0.02 micron, pore size range).

Two RO systems were also challenged in the study. The **first** system consisted of three **non**contained RO modules (**ROFREE 1**, **2**, and **3**). The second system consisted of a pressure vessel containing three RO elements.

Challenge Microorganism

MS2 bacterial virus was employed as the model virus for the microbial challenge studies. It is recommended by the EPA for such challenge experiments because it is similar in size (0.025 pm), shape (icosahedron) and nucleic acid (RNA) to polio virus and hepatitis. In addition, this virus is not a pathogen which minimizes the risk of infection to system operators and can be safely discharged into the waste stream **after** chlorination.

Figure 1: Schematic of Treatment Train

Seeding Protocol

Microbial challenge tests were conducted on each treatment process separately. This was done to allow better evaluation of the log removals achieved by each process. The challenge experiments were conducted in reverse order of the treatment train to avoid potential carry over contamination. Therefore, virus testing was conducted on the RO systems before the UF systems.

For the UF membranes experiments, the MS2 stock seeding solution was initially prepared in a seeding tank using a certain volume of UF permeate. The seed solution was then dosed continuously to the feed of each UF system to get a steady feed concentration. Since the membranes are backwashed every 15 minutes, three samples were collected from the feed line and three samples were collected from the permeate line (beginning, middle, and end of the filtration cycle), that is, after 0.5, 7.5 and 14.5 minutes. The MS2 feed-stock solution concentration was monitored at the start and end of the experiment. All samples were collected as grab samples and assayed by the Applied Research Department Laboratory within 24 hours from the time of sample collection.

For the RO seeding experiments, the MS2 phage seeding solution was initially prepared in a seeding tank using a certain volume of the UF permeate. Seeding experiments were conducted on all of the RO membrane systems connected to the UF units. In these experiments, the seed solution was dosed continuously to the RO influent line (MF or UF permeate) to get a steady concentration. A stabilization period of approximately 10 minutes was allowed, after which sample collection began. Three samples were collected from the RO feed line and three samples were collected from the permeate line of each of the RO systems (after 10, 15 and 20 minutes). The MS2 feed-stock was also monitored at the beginning and the end of the experiment to verify the consistency of the MS2 seed concentration. All samples were collected from each stream at matching time intervals, All samples were collected as grab samples and assayed by the Applied Research Laboratory within 24 hours from the time of sample collection.

Bacterial Virus Assay

MS2 samples were assayed by the agar overlay technique described by Adams' (1959) with some modifications. Host cultures of *E. coli* were grown on the day of the assay in TYE broth at 37°C under aerated conditions for 5 to 6 hours and dispensed in 20 mL aliquots in sterile dropper bottles. Just prior to use, 1.0 mL of 0.1 M sterile CaCl₂ solution was added to the dropper bottle. After the MS2 samples were serially diluted in 0.001 M phosphate-saline buffer (PBS), 0.1 mL was added to 2 mL of TYE soft agar, which was maintained at 46 to 48°C. Three to four drops of the host *E. coli* were added, and then the soft agar was mixed gently and poured on a TYE hard agar petri dish. After the soft agar solidified, the petri dishes were incubated at 37°C for 24 hours, after which the plaques, which are clearings in the bacterial lawn, were counted. All dilutions were plated in duplicate. Results were expressed in plaque forming units pfu/mL.

¹ M.H. Adams. Bacteriophages. Interscience Publishers, New-York, 1959

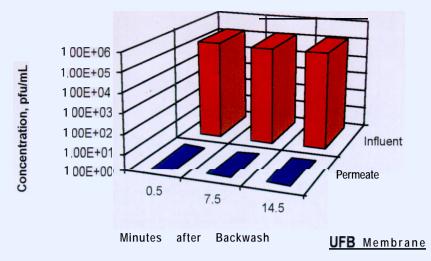


Figure 3 : Results of MS2 Virus Removal by UFB Membrane

Hydranautics RO Membranes

Table 2 summarizes the microbial seeding results from the RO membranes

Table 2: Virus Concentration in In	nfluent and Effluent	of the RO Membranes
------------------------------------	----------------------	---------------------

	Concentration (pfu/mL)								
Minutes	Influent	Permeate	Log Removal	Comments					
after									
Backwash									
10	3.20E+05	<]	> 5.5	ROCODE					
15	I.70E+05	<]	> 5.2	ROCODE					
20	2.95E+05	<1	> 5.5	ROCODE					
10	3 20E+05	<]	> 5.5	ROFREE 1					
15	1.70E+05	<]	> 5.2	ROFREE]					
20	2.95E+05	<]	> 5.5	ROFREE]					
10	3.20E+05	<1	> 5.5	ROFREE 2					
15	1 70E+05	<1	> 5.2	ROFREE 2					
20	2 95E+05	<]	> 5.5	ROFREE 2					
10	3 20E+05	<]	> 5.5	ROFREE 3					
15	I.70E+05	<]	> 5.2	ROFREE 3					
20	2.95E+05	<]	> 5.5	ROFREE 3					

The results are further plotted in Figure 4

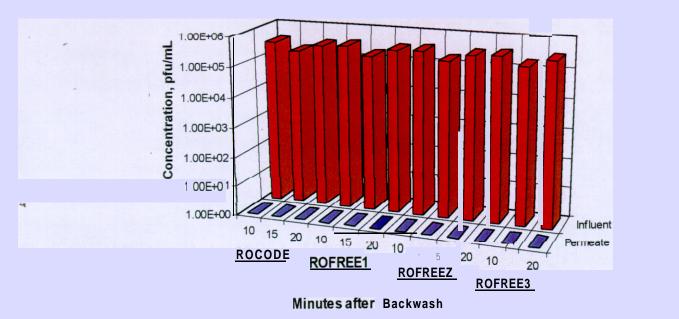


Figure 4: Results of MS2 Virus Removal by the RO Membranes

DISCUSSION AND RECOMMENDATIONS

Results from the UF seeding testing show that one membrane (UFB) achieved complete rejection of MS2 virus (UFB membrane was capable of removing 5.1 logs or more of MS2 virus). This is expected since the UF membrane pore size of 0.01 to 0.02 um is smaller than the MS2 virus size of 0.025 um. On the other hand, UFA membrane achieved only an average of 3.5 logs removal of virus after 7.5 minutes of seeding which demonstrates that some virus was able to pass through the membrane. While this result is surprising, it may be explained by the existence of some compromised fibers in the UFA module. This assumption was reaffirmed with higher particle counts (data not presented) measured in the permeate of the UFA membrane.

Results obtained from the RO seeding,testing show that each of the three RO membranes was capable of completely removing the MS2 virus, with a calculated log removal greater than 5.2. This was confirmed by the non-detect results measured in the permeate of each of the 'free' RO modules, and in the permeate of the combined permeate of the three RO modules mounted in the pressure vessel. These results demonstrate that no leaks were present from the membrane nor from the o-ring fittings and glue lines.

TECHNICAL MEMORANDUM

MONTGOMERY WATSON

To:	Mark Wii and Steve Ah	Date:	October 23, 1998		
From:	Samer Adham, Ph.D.				
Prepared by:	Lina Boulos	Client:	Hydranautics		
Subject:	Results of MS2 Challenge Experiments on UF and RO Sheets				

INTRODUCTION

On October 16 1998, Montgomery Watson was retained to conduct MS2 virus challenge experiments on two UF membranes, mounted in parallel, three RO modules, mounted in series in a pressure vessel, and three non-contained RO modules, mounted in series. These membranes were operated by Hydranautics, as part of a project funded by the Bureau of Reclamation.

MATERIALS AND METHODS

Membranes

Figure 1 provides a schematic of the treatment train employed.

Two different UF membranes were evaluated in the study: UFA and UFB. Both membranes are hollow fiber in configuration with 150,000 molecular weight cut-off (≈ 0.01 to 0.02 micron pore size range).

Two RO systems were also challenged in the study. The first system consisted of three noncontained RO modules (RO-FREE 1, 2, and 3). The second system consisted of a pressure vessel containing three RO elements.

Challenge Microorganism

MS2 bacterial virus was employed as the model virus for the microbial challenge studies. It is recommended by the EPA for such challenge experiments because it is similar in size (0.0'25 pm), shape (icosahedron) and nucleic acid (RNA) to polio virus and hepatitis. In addition, this virus is not a pathogen which minimizes the risk of infection to system operators and can be safely discharged into the waste stream after chlorination.

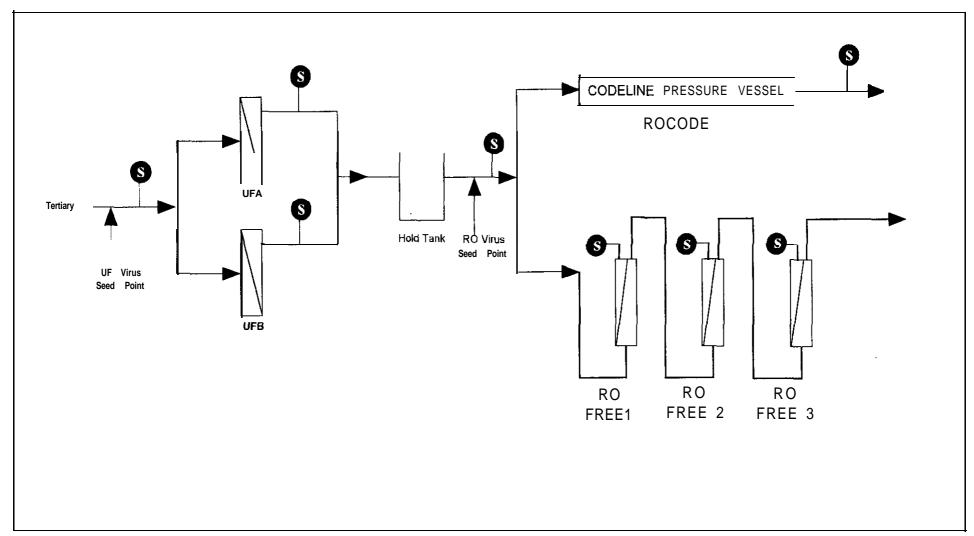


Figure 1: Schematic of Treatment Train

60

1

ł

Т

- -

Seeding Protocol

Microbial challenge tests were conducted on each treatment process separately. This was done to allow better evaluation of the log removals achieved by each process. The challenge experiments were conducted in reverse order of the treatment train to avoid potential carry over contamination. Therefore, virus testing was conducted on the RO systems before the UF systems.

For the UF membranes experiments, the MS2 stock seeding solution was initially prepared in a seeding tank using a certain volume of UF permeate. The seed solution was then dosed continuously to the feed of each UF system to get a steady feed concentration. A stabilization period of approximately 15 minutes was allowed, after which sample collection began. Since the membranes are backwashed every 25 minutes, three samples were collected from the feed line and three samples were collected from the permeate line (beginning, middle, and end of the filtration cycle), that is, after 1.0, 13 and 24 minutes. The MS2 feed-stock solution concentration was monitored at the start and end of the experiment. All samples were collected as grab samples and assayed by the Applied Research Department Laboratory within 24 hours from the time of sample collection.

For the RO seeding experiments, the MS2 phage seeding solution was initially prepared in a seeding tank using a certain **volume** of the UF permeate. Seeding experiments were conducted on all of the RO membrane systems connected to the UF units. In these experiments, the seed solution was dosed continuously to the RO **influent** line (MF or UF permeate) to get a steady concentration. A stabilization period of approximately 15 minutes was allowed, after which sample collection began. Three samples were collected from the RO feed line and three samples were collected from the permeate line of each of the RO systems (after 5, 10 and 15 minutes). The MS2 feed-stock was also monitored at the beginning and the end of the experiment to verify the consistency of the MS2 seed concentration. All samples were collected from each **stream** at matching time intervals. All samples were collected as grab samples and assayed by the Applied Research Laboratory within 24 hours from the time of sample collection.

Bacterial Virus Assay

MS2 samples were assayed by the agar overlay technique described by Adams' (1959) with some modifications. Host cultures of *E. coli* were grown on the day of the assay in TYE broth at 37°C under aerated conditions for 5 to 6 hours and dispensed in 20 mL aliquots in sterile dropper bottles. Just prior to use, 1.0 mL of 0.1 M sterile CaCl₂ solution was added to the dropper bottle. After the MS2 samples were serially diluted in 0.001 M phosphate-saline buffer (PBS), 0.1 mL was added to 2 mL of TYE soft agar, which was maintained at 46 to 48°C. Three to four drops of the host *E. coli* were added, and then the soft agar was mixed gently and poured on a TYE hard agar petri dish. After the soft agar solidified, the petri dishes were incubated at 37°C for 24 hours, after which the plaques, which are clearings in the bacterial lawn, were counted. All dilutions were plated in duplicate. Results were expressed in plaque forming units pfu/mL.

M.H. Adams. Bacteriophages. Interscience Publishers, New-York, 1959

RESULTS

Hydranautics UFA and UFB Membranes

Table I summarizes the microbial seeding results from the UF membranes.

Table 1: Virus Concentration in Influent and Effluent of UFA and UFB Membranes

	Concentration (pfu/mL)								
Minutes	Influent	Permeate	Log Removal	Comments					
after									
Backwash									
Ι	I.46E+06	1.90E+01	4.88	UFA					
13	I.90E+06	0.50E+00	6.58	UFA					
24	1.79E+06	<i< td=""><td>>6.25</td><td>UFA</td></i<>	>6.25	UFA					
Ι	I.46E+06	1.50E+00	5.99	UFB					
13	1.90E+06	I.50E+00	6.10	UFB					
24	I.79E+06	0.50E+00	6.55	UFB					

The results are further plotted in Figure 2.

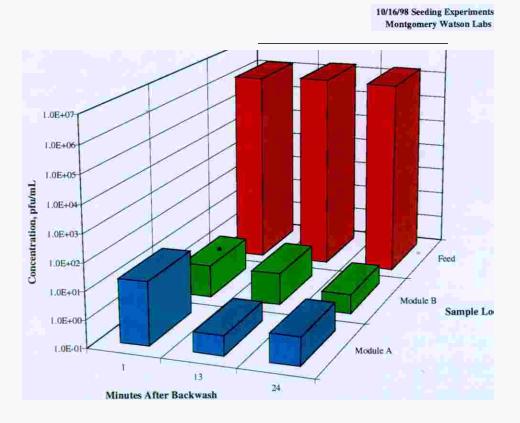


Figure 2: Results of MS2 Virus Removal by UFA and UFB Membranes

RESULTS

Hydranautics UFA and UFB Membranes

Table I summarizes the microbial seeding results from the UF membranes.

Table 1: Virus Concentration in Influent and Effluent of UFA and UFB Membranes

	Concentration (pfu/mL)								
Minutes	Influent	Permeate	Log Removal	Comments					
after									
Backwash									
1	I.46E+06	1.90E+01	4.88	UFA					
13	I.90E+06	0.50E+00	6.58	UFA					
24	I.79E+06	<i< td=""><td>>6.25</td><td>UFA</td></i<>	>6.25	UFA					
1	I.46E+06	1.50E+00	5.99	UFB					
13	1.90E+06	1.50E+00	6.10	UFB					
24	1.79E+06	0.50E+00	6.55	UFB					

The results are further plotted in Figure 2.

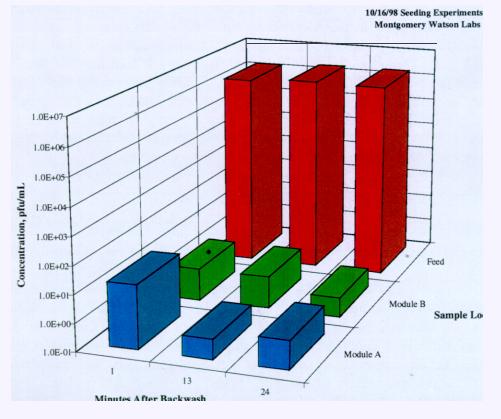


Figure 2: Results of MS2 Virus Removal by UFA and UFB Membranes

Hydranautics RO Membranes

Table 2 summarizes the microbial seeding results from the RO membranes.

Table 2: Virus Concentration in	Influent and Effluent of the RO Membranes
---------------------------------	---

<u> </u>	Concentrat	ion (pfu/mL)		
Minutes after Backwash	Influent	Permeate	Log Removal	Comments
5	1.51E+07	5.50E+00	6.44	RO-Vessel
10	1.38E+07	1.80E+01	5.88	RO-Vessel
15	1.45E+07	3.45E+01	5.62	RO-Vessel
5	1.51E+07	4.50E+00	6.52	ROFREE 1
10	1.38E+07	1.25E+01	6.04	ROFREE 1
15	1.45E+07	1.55E+01	5.97	ROFREE 1
5	1.51E+07	5.00E+00	6.48	ROFREE 2
10	1.38E+07	1.15E+01	6.08	ROFREE 2
15	1.45E+07	3.00E+00	6.68	ROFREE 2
5	1.51E+07	1.00E+01	6.18	ROFREE 3
10	1.38E+07	9.00E+00	6.18	ROFREE 3
15	1.45E+07	1.20E+01	6.08	ROFREE 3

The results are further plotted in Figure 3.

5

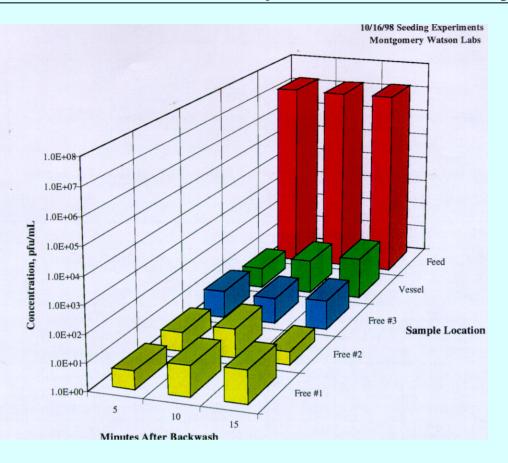


Figure 3: Results of MS2 Virus Removal by the RO Membranes

CONCLUSIONS

e *

Results from the UF seeding testing show that the UF membranes were very effective in removing MS2 virus (4.9 to 6.6 log removal). These results are expected from UF membranes. Some virus was recovered in the permeate which may be due to the pore size distribution of the membrane, which may include few pores that are larger than **virus** size of 0.025 μ m.

Results obtained from the RO seeding testing show significant removal of virus by **all** RO membranes (5.9 to 6.7 log removal). It appears that the RO Free membranes achieved slightly higher removal of virus as compared to the pressure vessel elements.

MONTGOMERY WATSON

BUREC Autopsy Findings Jan. 22, 1999

LFC1 -FREE's

Serial # X01 185 . Lead element . this element was not cleaned and not dyed

After deshelling the element, it was noticed that a green algae-like growth was present on one side of the unrolled element. It appears that the fiberglass shell is translucent enough to allow sunlight through, and that the side that was exposed to the sun had these algae present. A heavy orange **foulant** completely covered the membrane surfaces. This **foulant** was easily wiped away with a wet paper towel. After drying though, this **foulant** was very hard to remove. The glue lines were very large, which should be expected due to the fact that these elements were manufactured with double glue lines.

The approximate square footage of this element was 73 ft^2 . There were some glue drops present on the membrane surface which caused the membrane to delaminate upon unrolling the element. Several creases were found on the element, all of them running parallel to the core tube. There was a thin spattering of glue on one side of the tricot on one of the leaves.

Serial # X01 190 - Middle element - this element was cleaned and not dyed

A heavy orange **foulant** was covering the membrane surface. This **foulant** was easily wiped off with DI water and a wet paper towel, but once again was hard to remove after it had dried. One leaf was again found to have glue between the tricot and the back side of the substrate.

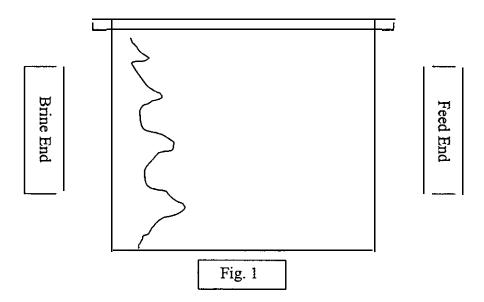
Serial # X01 187 - Tail element - this element was cleaned and was dyed

This element was covered with a heavy **foulant** that had been dyed purple by the dye test. Several creases were observed, some were small and others were larger. A very small amount of dye appeared to penetrate at some of the larger crease points. It was noticed that there was blistering on the side seal glue lines at the brine end of the element, but there was no indication of this blistering on the feed end side seal. In addition, the end seal had more blisters on the brine side with a gradual lessening of blisters toward the feed side. Heavy glue was observed on the back side of the tricot on one leaf.

4040-UHT- LFC1's

Serial # X01 181 • Lead element • this element was not cleaned and not dyed

This element had a light foulant covering the membrane surface. This foulant was easily rinsed away with DI water. One leaf had glue between the tricot and the back of the membrane. All glue lines appeared strong and intact.


Serial # X01 184 - Middle element - this element was cleaned and not dyed

A light foulant was observed in patches on the feed end of the element, but the rest of the membrane appeared very clean. Glue was found between the tricot and the back side of the membrane on one leaf. No creases found on this element. No unusual blistering found.

Serial # X01 183 - Tail element - this element was cleaned and was dyed

Blisters on the brine end side seals were noticed, but there were no blisters on the feed end side seals. The end seals had blisters, but the blisters lessened from the brine end toward the feed end. There were splotches of orange colored foulant present on the brine end of each leaf (see Fig.1). The spacing of these splotches indicate that they might be caused by the element sitting in a solution. These splotches were rinsed off relatively easily with DI water. It appeared that some of this orange colored foulant had passed into the permeate channel of one leaf, but this was determined to just be the same glue that was present in the permeate channels of one leaf in all the elements.

There were several creases present on the convex side of several of the leaves. There was an indication of very slight dye passage at these creases. All glue lines were very strong and intact. One leaf had lots of glue drops present on the membrane surface. This caused the membrane to delaminate as the element was unrolled. The measured membrane area was 76.7 square feet.

Summary

After a discussion with the production manager, it was determined that the most likely cause for the glue deposit found between the tricot and the back side of one membrane leaf in each element is that each packet was placed on a table that had not been cleaned of residual glue. This would explain why it was only on one leaf per element, and why it was between the tricot and the back side of the membrane.

Another finding is that it appears that the cleanings performed on the LFC1-FREE modules were not as effective as the cleanings performed on the 4040-UHT-LFC1 elements. This could be partly due to the fact that the inlet piping size for 4040-UHT-LFC1 vessel is 3/4" NPT while the inlet port on the LFC1-FREE module is only 1/2". This could mean that we had higher flow velocities for the 4040-UHT-LFC1 cleanings.

Creases that were found on the different elements were primarily on the convex: side. The blistering that was observed on the elements was most pronounced at the brine end of both tail elements.

The membrane area averaged about 76 square feet due to the fact that these elements were manufactured with double glue lines to prevent the chance of failure.

APPENDIX G

February 10, 1999

MEMORANDUM

TO : Mark Wilf

CC : K. Matsumoto. J. Tomaschke

FROM : Chris Gioe

SUBJECT : BuRec Microbiological Studies

Six different membrane samples in plastic bags were received on 1/21 and 1/22/99 from Keith Andes. Cultures were taken on each sample and colony counts were performed on the water in each plastic bag.

RODAC[™] contact plates were pressed directly onto the surface of each membrane, in several different areas, and Easicult **TTC** were dipped into the residual water. The Easicult **TTCs** and the RODAC plates were incubated and checked macroscopically at 24 hours and 48 hours. The organisms on the plates were gram-stained and plated to the appropriate medias, and identification studies were done on each organism isolated. The Easicult colony counts were recorded. Both RODAC plates and Easicult **TTCs** were held at room temperature for seven days for the possible growth of fungus and/or molds.

The following is a summary of bacteria identified and colony counts

Sample #	Colony Count	RODAC [™] Plates
X01181	10 ⁵ organisms/ml.	Heavy growth of:Psuedomonas cepaciaAlcaligenes denitrificans
X01183	10 ² organisms/ml.	Light growth of: • Pseudomonas putida • Staphylococcus sp. x2
X01184	10 ⁴ organisms/ml.	 Light to moderate growth of: Bacillus sp. Pseudomonas aeruginosa (classic) Pseudomonas aeruginosa (mucoid) Moraxella sp.
X01185	10 ⁵ organisms/ml.	Heavy growth of:Moraxella sp.Flavobacterium odoratum
X01187	10 ³ organisms/ml.	Light to moderate growth of:Pseudomonas aeruginosaPseudomonas sp.
X01190	10 ⁵ organisms/ml.	Heavy growth of:Bacillus sp.Moraxella sp.

$$10^2 - 1 0^3 = \text{light growth}$$

= light to moderate growth = moderate growth TO: D. R. Carlton

FROM: T. Tran

DATE.: 2/1/99

RE: Flat Cell Test Results of HYD-LFC-I-981201-A-VIRGIN-MEMBRANE.

Purpose: To verify membrane performance prior to rolling elements .

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH 7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCI in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

		(Virgin Mem	,	
KE:	SULTS:	_1500ррт-N	<u>aCl-150-p</u> sig	
	Coupon	_Flux(GFD)	% Rej	
	1	25.2	98.7	
	2	24.8	98.9	
	3	22.8	99.0	
	4	22.0	98.9	
	5	21.2	99.0	
	6	21.2	98.8	
	Avg	22.9	98.9	
	StD	1.8	0.1	

1500ppm-NaCI-225-psig		
Coupon	Flux(GFD)	% Rej
1	44.2	99.0
2	41.9	99.2
3	37.9	99.3
4	35.1	99.3
5	34.8	99.2
6	34.2	99.1
Avg	38.0	99.2
StD	4.2	0.1

(Virgin Memb-LFC-1)

cc: K. Andes, M. Wilf

tt..LFC-I-VIRGIN-MEMBRANE-R # 981201-A\test\990121.wg1

TO: D. R. Carlton

FROM: T. Tran

DATE: 1/29/99

RE: Flat Cell Test Results of HYD-4040-UHT-LFC-1-Element # X01 1 81.

Purpose: To verify membrane performance of elements dissected.

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCl in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

(X01181 -LFC-1)

(X01 181 - LFC-1)

RE	SULTS:	1500ppm-N	aCI-150-psi	g.
	Coupon	Flux(GFD)	% Rej	
	1	21 .o	99.4	
	2	23.7	99.4	
	3	21.8	99.1	
	4	20.2	99.6	
	5	23.3	99.3	
	6	19.7	99.1	
	Avg	21.6	99.3	
	StD	1.6	0.2	

1500ppm-NaCl-225-psig		
Coupon	Flux(GFD)	% Rej
1	33.4	99.5
2	36.8	99.5
3	34.5	99.3
4	33.4	99.6
5	37.3	99.4
6	31.7	99.3
Avg	34.5	99.4
StD	2.2	0.1

cc: K. Andes, M. Wilf

tt..4040-UHT-LFC-1-S\N X01181\test\990121.wq1

TO: D. R. Carlton

FROM: T. Tran

DATE:: 1/27/99

RE: Flat Cell Test Results of HYD-4040-UHT-LFC-1-Element # X01 183.

Purpose: To verify membrane performance of elements dissected .

Membrane source: Element from customer.part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, increase pressure to 225 psig and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH 7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCl in feed and permeates.

All values are means of 6 coupons (1 2 3 4 6 6 cut a cross in the sample).

(X01183-LFC-1)

(X01183-LFC-1)

1500nnm-NaCl-225-nsig

RES	SULTS:	1500ppm-N	laCI-150-ps	sig.
	Coupon	Flux(GFD)	% Rej	
	1	23.6	99.4	
	2	30.6	99.5	
	3	27.0	99.5	
	4	27.7	99.3,	
	5	27.2	99.2	
	6	22.7	98.6	-
	Avg	26.5	99.2	
	StD	2.7	0.3	ı

1500ppm-Maor-225-psig.		
Coupon	Flux(GFD)	% Rej
1	33.1	99.5
2	43.1	99.6
3	37.9	99.6
4	37.9	99.4
5	37.9	99.3
6	31.1	99.0
Avg	36.8	99.4
StD	4.2	0.2

cc: K. Andes, M. Wilf

tt..4040-UHT-LFC-1-S\N X01183\test\990121.wq1

printed/1/27/99

TO: D. R. Carlton

FROM: T. Tran

DATE: 1/29/99

RE: Flat Cell Test Results of HYD-4040-UHT-LFC-1-Element # X01 184.

Purpose: To verify membrane performance of elements dissected .

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, Increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH 7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCl in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

(X01184-LFC-1)

(X01184-LFC-1)

RES	SULTS:	1500ppm-NaCl-150-psig.		
	Coupon	_Flux(GFD)	% Rej	
	1	29.5	99.2	
	2	34.6	99.4	
	3	30.9	99.5	
	4	30.9	99.5	
	5	31.5	99.2	
	6	28.1	99.2	
	Avg	30.9	99.4	
	StD	2.2	0.2	

1500ppm-NaCl-225-psig.		
Coupon	Flux(GFD)	% Rej
1	42.0	99.3
2	48.7	99.5
3	44.2	99.6
4	43.1	99.5
5	44.6	99.4
6	40.1	99.3
Avg	43.8	99.4
StD	2.9	0.1

cc: K. Andes, M. Wilf

tt..4040-UHT-LFC-1-S\N X01184\test\990121 ""1

printed/1/29/99

TO: D. R. Carlton

FROM: T. Tran

DATE:: 2/1 /99

RE: Flat Cell Test Results of HYD-LFC-1 -FREE-Element # X01 185.

Purpose: To verify membrane performance of elements dissected .

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCl in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

(X01	185-L	.FC-1)
------	-------	--------

(X01185-LFC-1)

RE	ULTS:	1500ppm-N	<u>aCI-150-ps</u> i	g.
	Coupon	Flux(GFD)	% Rej	
	1	26.2	99.2	
	2	26.2	99.2	
	3	25.0	99.4	
	4	23.7	99.3	
	5	23.3	99.5	
	<u> </u>			
	A'StD	22.8 24.5 1.5	99.3 99.3 0.1	

1500ppm-NaCI-225-psig		
Coupon	Flux(GFD)	% Re
1	42.8	99.3
2	44.3	99.3
3	40.6	99.4
4	37.3	99.4
5	40.3	99.5
6	38.0	99.3
Avg	40.6	99.4
StD	2.7	0.1

cc: K. Andes, M. Wilf

tt..LFC-1 -FREE-S\N X01 185\test\990125.wq1

TO: D. R. Carlton

FROM: T. Tran

DATE: 2/1 /99

RE: Flat Cell Test Results of HYD-LFC-1 -FREE-Element # X01 187.

Purpose: To verify membrane performance of elements dissected.

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start test (at 150 PSIG). After reading, increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 psig, pH7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCl in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

RES	SULTS:	(X01187-LFC-1) 1500ppm-NaCl-150-p						
		Flux(GFD)	% Rej	- '9'				
	1	25.6	99.6					
	2	25.6	99.7					
	3	24.4	99.6					
	4	23.8	99.6					
	5	23.8	99.5					
	6	24.0	99.6					
	Avg	24.5	99.6					
	StD	0.9	0.1					

1500ppm-NaCl-225-psig.												
Coupon	Flux(GFD)	<u>% Rej</u>										
1	39.6	99.7										
2	40.3	39.8										
3	38.0	99.7										
4	35.4	39.7										
5	37.3	99.6										
6	36.9	39.7										
Avg	37.9	'99.7										
StD	1.8	0.1										

(X01187-LFC-1)

cc: K. Andes, M. Wilf

tt..LFC-1-FREE-S\N X01187\test\990125.wq1

TO: D. R. Carlton

FROM: T. Tran

DATE:: 2/1/99

RE: Flat Cell Test Results of HYD-LFC-1 -FREE-Element # X01 190.

Purpose: To verify membrane performance of elements dissected.

Membrane source: Element from customer; part of BUREC grant study (via K. Andes).

Start lest (at 150 PSIG). After reading, increase pressure to 225 PSIG and read again.

Flat Cell Test Conditions: 0.15 % NaCl, 150 and 225 pslg, pH7 Duration: 45 min.

Flux values are corrected to 75 Deg. F and reported as GFD.

% Rejection is based on ppm NaCI in feed and permeates.

All values are means of 6 coupons (1 2 3 4 5 6 cut a cross in the sample).

(X01190-LFC-1)

(X01190-LFC-1)

RE	SULTS:	1500ppm-l	NaCI-150-ps	ig.
	Coupon	Flux(GFD)	% Rej	
	1	31.9	99.0	
	2	33.7	98.9	
	3	29.8	99.1	
	4	26.2	98.8	
	5	26.5	98.7	
	6	25.4	99.4	
	Avg	28.9	99.0	
	StD	3.4	0.2	

1500ppm-NaCl-225-psig.											
Coupon	Flux(GFD)	% Rej									
1	51.4	99.0									
2	52.9	99.0									
3	47.0	99.1									
4	41.5	99.0									
5	43.3	98.9									
6	40.0	99.4									
Avg	46.0	99.1									
StD	5.3	0.2									

cc: K. Andes, M. Wilf

tt..LFC-1-FREE-S\N X01190\test\990125.wq1

Membrane ty	pe: LFs	1-98	1201-A	+- Viza	N	SUMP PARAMETERS TEST #1 TEST :						EST #2	
Sample arriva	al date:		-99			Fee	ed conductivity	y (μmho):	3000	None	e 300	trad.	
Test loop:		2						pH value:	6.0			97	
Routine test:							Feed tempera	ture (°C):	22	.19		-: 5	
Non-routine t	est:					Conversion factor:							
Operator:	_ 1	•					Test pressu	ıre (psig):	150 225			5	
Test#1	Date:	1-21.	99	Time: 13:	45	Duration:hrs _45			min Continuing: 🔀 Yes 🗌				
Sample ID					F	lux	Flux	Perm.	Co	nduct.	%	lons in	
or Station	Side	Cell #	ml	min		ctor	GFD	Cond.		. Factor	Rej.	Sump	
		1	617	6.0	22	.56	25:19	43	0:'4	687	98,67	·····	
		2	6.6	<u>├──</u> }	<u>}</u> }		24,72	35		ļ	98,92		
		3	6:05				22,75	33			98,98		
	 	4	5,85				22,00	35	_	[98.92		
		5	5,65	1 1		x	21,24	33			98.98	·····	
		6	5:65	4 <u></u>		·	21,24	40	•	<u> </u>	98.76		
Average \pm SD \rightarrow <u>ZZ</u> : <u>87</u> Average \pm SD \rightarrow <u>98</u> : <u>87</u>													
Further tests (treatments) on these coupons:													
(150PSIG) AFTER READED ON ABOVE INCREASE PRESS !! = 1 D T () A													
(225 PSig) AT 1440 AND ZEAD AGAIN AT 1520												• *	
LETTINAL INTERAD AGAM ALIDEU													
Test #2	Date: /	- 21-	üq	Time: [5]	45	Durat	lion:	hrs <u>45</u>		Continu	ing: Yes	K No	
Sample ID		- 21-		<u> </u>		lux	Flux	nrs <u>7.5.</u> Perm.		nduct	%	lons in	
or Station	Side	Cell #	ml	min	1	ctor	GFD	Cond.		. Factor	Rej.	Sump	
l 		ĺ	7.75	4.0	22.	82	44.21	32	0,2	4687	99.01		
	ļ	2	7:35				41.93	25			99,23		
		3	6.65	1			37,94	24			99,26		
F		4	6.15			 	35.09	24			99.26		
l		5	61			l 	34. 80	26			99.20		
-		6	6.0	\vee		<u> </u>	34:23	28		V	99.13		
	Average \pm SD \rightarrow 38:03 Average \pm SD \rightarrow 99:18												
Notes:													

(DCR8261)

Membrane ty	pe:4041	D-UHT	LFC1	SINXO	118	SUMP PARAMETERS TEST #1						TE	ST #2	
Sample arriva			21-99			Fee	ed conductivity	3000	wae	i :	30++	wall		
Test loop:	······	2					<u> </u>	pH value:		ΰZ		6.93		
Routine test:		<u></u>					Feed temperature (°C): ZZ:4					22,8		
Non-routine te	est:						Conversion factor:							
Operator:		TiT					Test pressure (psig): 1 50 225						5	
Test#1	Date: j	-21-4	79	Time: 11: 4	10 25	Durat		hrs <u>45</u> r	min	Continu	ing: X	Yes		
Sample ID`					Fl	ux	Flux	Perm.	Co	nduct.	%	T	lons in =	
or Station	Side	Cell #	ml	min		tor	GFD	Cond.	Conv	. Factor	Rej.		Sump	
	<u>1</u>		5:5	6.0	22	. 39	20,93	20	0.4	687	99:3	33		
		2	6.2	<u> </u>]		23,65	19	_		99.4	ËĹ L		
		3	5:65	<u> </u>			21,55	28		······	99,1	3		
		4	5.3				20.22	13			99.6	50		
		5	6:1				23.27	22			99.3	32		
	B	<i>\</i>	5:15	\checkmark	4		19.65	28	. 1	1	99.1	3		
				Avera	age ± S	$D \rightarrow$	21.55	Ave	rage ±	$SD \rightarrow$	991	33		
Further tests	(treatme	nts) on th	ese coupo	ons:									<u> </u>	
(150 251	ON A	FTen	TEN		n 1.	2016	E ÍNICE	TACE D	0 50	CORZ	- 00 7	1 Τζ)	
							TAIN AT			<u></u>		<u> </u>		
12234.2			<u> </u>			2]#<i>2/ų</i>_^							
Test #2	Date:	- 21-	99	Time: 13	40	Durat	ion:	hrs 45 1	min	Conti	nuing:		/es 🗙 No	
Sample ID	<u> </u>	İ.				ux	Flux	Perm. I	Con	duct.	<u> </u>	 	ions in	
or Station	Side	Cell	# r	nl min	Fa	actor	GFD	Cond.	Con	. Factor	Rej.		Sump	
	F	ļ_ !	5.9	4.0	22	62	33,36	17	Cet	4687	99,	47		
-		·Z	6.5				36,76	17			99.	47		
		3	6.1				34.50	24			99.3	26		
		4	5.9				33,36	12	1	[99;	63		
		5	6.6				37.32	20		1	99.	38		
	B	<u>(</u>	516	TI	-	V	31.67	24		$\overline{\mathbf{v}}$	94	26		
					ige ± S	$SD \rightarrow$	34.50	<u> </u>	rage ±	$SD \rightarrow$	99.	41		
Notes:				<u> </u>	<u> </u>									
		<u></u>			<u>.</u>	··					B ¹			
AT FM 21		Rev. B	<u> </u>	(DC	R8261)		78							

78

Membrane ty	pe: மற்ற	0-077	-(Fel	-SKX0	185	ા	IMP PARAMI	ETERS	<u> </u>	EST #1		TE	ST #2
Sample arriva	al date:	1 - 3	21-9	9		Fee	ed conductivity	y (µmho):	3000	INAL	ℓ 3	000	INTLEC
Test loop:	_1							pH value:	6.				i 6
Routine test:							Feed tempera	ture (°C):	22	-17	ZZ:5		
Non-routine te	est:						Conversion factor:						
Operator:							Test pressure (psig): 1 ST Z.Z.						25
Test#1	Date:	1-2	1-99	Time:	25 ' (1	Durat	uration: <u>m hrs i45</u> n Continuing:					′es	No
Sample ID or Station	Side	Cell #	ml	min	Fli		Flux GFD	Penn. Cond.		nduct. . Factor	% Rej.		lons in Sump
	F		512	5.0	22.		23,60	Zj		687	99,3	C	Oump
		2	6.75	1		<u> </u>	30.63	17		$\frac{2}{1}$	99,4		
		3	5:95				27.00	17			99,4		
		Uj	6;1				27.68	24			99.2		
	$\overline{\mathbf{v}}$	5	6.0				27.23	27			911	6	
	(J.	6	5.0	$\overline{\mathbf{v}}$		-	22,69	44	1.	V	98,6	14	
			<u> </u>	Avera	, age ± S	$D \rightarrow$	26.47		erage ±	SD →	99,2		
Further tests (treatments) on these coupons:													
(150 / 519)													
AFTER LEADED ON ABOVE, INCREASE PRESSURE UP TOM 225 PSIGAT. 1300, AND READ AGAIN AT 1345.													<u>, ig A ! -</u>
		<u>ux ay</u>	<u>~ 714</u>	#[!! \							······································		
					2 6	1 D			·				
Test #2	Date:	-21-	99	Time: 13	25	Durat		hrs <u>45</u>	min	Continu	ing: 🔄 Y	′es	X No
Sample ID	Cida	Call #			1	ux	Flux	Perm.		nduct. . Factor	%		lons in
or Station	Side 	Cell #	mi 5,8	min a D	1		GFD	Cond. 1:7			Rej.		Sump
	F			4.0	122	-12	· · · · · · · · · · · · · · · · · · ·	14	0.9	687	99.4	- 1	
		2	7155			··	43,07	<u> </u>			99.5	- 1	
		3 4	6.65	1 1			37.94	14			99:5		
		<u>ر</u> ح	6,65				37.94	19			99.4	I	
			6.65				31,09	23		*	99,2		
	B	6	5,45		age ± S		· · · · · · · · · · · · · · · · · · ·	34 Ave	erage ±	<u>r</u> SD \	+	5	
					-90 ± 1	-7	36.84		лаус I		99.3	<u> </u>	
Notes:													

Analytical 8	Testing	·	Membrane	Cell	Test	Data
--------------	---------	---	----------	------	------	------

Membrane ty	pe: <u>4</u> 04(1-0HT-	LFCL-S	WXCIIS	14	SL	IMP PARAME	TEST #1			TE	ST #2	
Sample arriva						Fee	ed conductivity	/ (µmho):	3000	rail	_	3000 Nacl	
Test loop:		1						pH value:		52			97
Routine test:							Feed temperature (°C): 23.0				Z3:0		
Non-routine te	est:					Conversion factor:							
Operator;		7.T				Test pressure (psig): 150				<u>.</u>		22	5
Test#1	Date:	1 - 2	5-99	Time: 7 /		Durati		hrs is 5		Continuing:		Yes	No
Sample ID			<u> </u>	· 7 ,	<u>55</u> Fl	ux	<u>m</u> Flux	Penn.	n Cond		9		lons in
or Station	Side	Cell #	ml	min	Fa	ctor	GFD	Cond.	Conv.	Factor	Re	ej.	Sump
	1		5:25	<u>4:0</u>	22	-49	29:52	27	0.4	687	99	:16	
		2	6.15				34,58	18				<u>, 44</u>	
		3	5,5				30.92	15			99	.54	
		4	5,5				30.92	17	_		99	,47	
	\mathbf{V}_{-}	5	5.6				31.49	25				:23	
	В	6	5.0	<u>+</u>	1	/	28:11	25	_ · \	/	99	,23	
				Avera	ige ± S	$SD \rightarrow$	30:92	Ave	erage ± \$	SD →	99	35	
Further tests	(treatmen	its) on th	ese coupo	ns:				<u> </u>					
(150 p	sig)	AFTE	RE	ADED	CN	ABO	VE INC	REAGE	PRG	56171	= V F	NT	
(150 psig) AFTER READED ON ABOVE INCREASE PRESSURE UP ATD (225 psig) AT 8:10, AND READ AGAIN AT 8:55													
, 							· ·						
Test #2	Date:	i 7 (5-99	Time: 7 (X (<u>70</u>	Durati	on:	hrs <u>45</u>		Continui	ing:	Yes	No
Sample ID			>-//	<u>X:</u> 4	<u>>></u> Fi	lux	Flux	Perm.	_min Con	duct.		6	lons in
or Station	Side	Cell #	ml	min		ctor	GFD	Cond.	1	Factor		ej.	Sump
	F		5.6	3.0	22	.49	41.98	24	0,4	687	991	Z6	
	<u> </u>	2	6.5				48.73	16		ĺ	99.	5i	
		3	519				44.23	13			99	60	
		4	5,75				43.11	15				<u>54</u>	
	\mathbf{Y}	5	5:95				44.61	19			99	41	
	3	6	5:35	\vee	7	/	40.11	22		<u> </u>	99	32	
				Avera	ige ± \$	SD →	43,79	Av	erage ±	$SD \rightarrow$	99	44	
Notes:	Notes:												
AT FM 21	21 F	Rev. B		(DC	R8261)	80						

Membrane type: $TEST #1$ $TEST #2$ Sample arrival date: $i - 2.2 - 9.9$ Feed conductivity (µmho): $3CCC Iracid$ $3occ Iracid$ Test loop: 2 pH value: $6 \cdot 9.7$ $6 \cdot 9.5$ Routine test:Feed temperature ('C): $2.3 \cdot 2$ $2.3 \cdot 5$ Non-routine test:Conversion factor: $Conversion factor:$ Derator: $T.T$ Test pressure (psig): $I CO$ $2.2 \leq 5$ Test #1Date: $1 - 2.5 - 9.9$ Time: $f: CC$ pH value: $6 \cdot 9.5$ Sample IDor StationSideCell #mlminFluxFluxPerm. Conduct.Conduct.% $f: S \cdot S S$ $S \cdot O$ $22 \cdot 36$ $26 \cdot 16$ $2 \leq 0.4687$ $99 \cdot 23$ $f: S \cdot S S = 0$ $22 \cdot 36$ $26 \cdot 16$ $2 \leq 0.4687$ $99 \cdot 23$ $f: S \cdot S S = 0$ $22 \cdot 36$ $26 \cdot 16$ $2 \leq 0.4687$ $99 \cdot 23$ $f: S \cdot S = 0$ $22 \cdot 36$ $26 \cdot 16$ $2 \leq 0.4687$ $99 \cdot 23$ $f: S \cdot S = 0$ $22 \cdot 36$ $26 \cdot 16$ $2 \leq 0.4687$ $99 \cdot 20$ $f: S \cdot S = 0$ $23 \cdot 37$ $22 \cdot 37$ $29 \cdot 32$ $f: S \cdot S = 0$ $23 \cdot 32 \cdot 2$ $99 \cdot 32$ $99 \cdot 41$ $f: S \cdot S = 0$ $23 \cdot 32 \cdot 12$ $23 \cdot 32 \cdot 12$ $99 \cdot 47$ $f: S \cdot S = 1$ $V = 5 \cdot 32$ $23 \cdot 32 \cdot 12$ $99 \cdot 47$ $f: S = 0 - 16 \cdot 51$ $V = 22 \cdot 31 \cdot 22$ $99 \cdot 32$ $f: S = 0 - 16 \cdot 51$ $V = 22 \cdot 31 \cdot 24$ $V = 99 \cdot 26$ $f: S = 0 - 16 \cdot 51$ $V = 22$												
Test loop: 2 pH value: 6.97 6.95 Routine test:Feed temperature ('C): 23.2 23.5 Non-routine test:Conversion factor:Ime: $\frac{1}{7}$: $\frac{CC}{55}$ Duration:Ime: $\frac{1}{7}$: $\frac{CC}{55}$ Duration:Test #1Date: $1-Z5-9.9$ Time: $\frac{1}{7}$: $\frac{CC}{55}$ Duration:Ime: $\frac{1}{7}$: $\frac{55}{55}$ Duration:Sample ID or StationSideCell #mlminFlux FactorFlux GFDPerm. Cond.Conduct. Conv. Factor $\frac{\%}{Rej}$ F 1.5 : $5:\sqrt{5}$: $22:\sqrt{3}$ $26:16$ $2:5$ 0.46 $99:20$ F 1.5 : $5:\sqrt{5}$: $22:\sqrt{4}$ 1.9 $99:41$ G $3.5:6$ $2:5.04$ 1.9 $99:41$ G $4:5:3$ $2:3.70$ $2:2$ $99:32$ G $5:\sqrt{5}$: $2:3.25$ 1.7 $99:47$ G $5:\sqrt{5}:\sqrt{5}:\sqrt{5}:\sqrt{5}:\sqrt{5}:\sqrt{5}:\sqrt{5}:5$												
Non-routinetest:Conversion factor: 2572 2073 Operator: $\overline{T,T}$ Test pressure (psig): $1 \le 0$ $2 \ge 5$ Test #1Date: $1 \le 2 \le 9$ $1 \le 0$ $2 \ge 5$ Date: $1 \le 2 \le 9$ Time: $\frac{1}{7} \le 5$ Duration:hrs $5 \le min$ Continuing: K YesSample ID or StationSideCell #mlminFluxFluxPerm. Cond.Conduct. $\frac{9}{6}$ lons in SumpF $3 \le 85$ $5 \cdot 0$ $22 \cdot 36$ $26 \cdot 16$ $2 \le 5$ $0 \cdot 4687$ $99 \cdot 23$ F $3 \le 85$ $22 \cdot 36$ $26 \cdot 16$ $2 \le 6$ $99 \cdot 23$ F $3 \le 85$ $22 \cdot 36$ $22 \cdot 16$ $29 \cdot 16$ Galarian $3 \le 16$ $2 \le .04$ $99 \cdot 20$ Galarian $4 \le 13$ $23 \cdot 25$ $1 \cdot 7$ $99 \cdot 47$ Galarian $4 \le 5 \cdot 1$ $4 \le 2 \cdot 16$ $22 \cdot 26 \cdot 16$ $99 \cdot 20$ Galarian $4 \le 5 \cdot 1$ $4 \le 2 \cdot 16$ $22 \cdot 26 \cdot 16$ $99 \cdot 26$												
Operator: $T_{\cdot}T_{\cdot}$ Test pressure (psig): $I \subseteq O$ $Z Z S$ Test #1Date: $I = Z S - q q$ Time: $f : C C$ Duration:hrs $S S$ minContinuing: K YesNoSample ID or StationSideCell #mlminFlux FactorFlux GFDPerm. Cond.Conduct. Conv. Factor%Ions in SumpF $i S : \overline{SS}$ $S : Q$ $Z 2 : 36$ $Z 6 : 16$ $Z S$ $C : 4687$ $Q 9 : 23$ $Q : 23$ F $i S : \overline{SS}$ $S : Q$ $Z 2 : 36$ $Z 6 : 16$ $Z S$ $Q : 4687$ $Q : 23$ F $i S : \overline{SS}$ $S : Q$ $Z 2 : 36$ $Z 6 : 16$ $Z G$ $Q : 23$ F $i S : \overline{SS}$ $Z 2 : 36$ $Z 6 : 16$ $Z G$ $Q : 23$ F $i S : \overline{SS}$ $Z 2 : 36$ $Z 2 : 70$ $Z 2$ $Q : 47$ F $i S : 1 S$ $Z 3 : 70$ $Z 2$ $Q : 47$ K $S : 1 K$ $Y = Z : 71$ 2.4 $Y = 99 : 47$												
Test #1 Date: $-ZS - 9 q$ Time: $7:C_{-55}^{+}$ Duration: hrs $S5 - min$ Continuing: X Yes No Sample ID or Station Side Cell # ml min Flux Flux Perm. Cond. Conduct. Conv. Factor % Ions in Sump F $:$												
Sample ID or Station Side Cell # ml min Flux Factor Flux GFD Perm. Cond. Conduct. Conv. Factor % Rej. Ions in Sump F $5:85$ 5.0 22.36 26.16 2.5 0.4687 99.23 I I $5:85$ 5.0 22.36 26.16 2.6 99.20 I I $5:85$ I 26.16 2.6 99.20 I I $5:85$ I 26.16 2.6 99.20 I I $5:85$ I 22.302 99.20 99.20 I I $5:33$ I 23.70 22.2 99.32 V $5:32$ I 23.25 1.7 99.47 V $5:5:1$ V Y $22:71$ 2.4 Y 99.26												
Sample ID or Station Side Cell # ml min Flux Factor Flux GFD Perm. Cond. Conduct. Conv. Factor % Rej. Ions in Sump F $5:85$ 5.0 22.36 26.16 2.5 0.4687 99.23 I I $5:85$ 5.0 22.36 26.16 2.6 99.20 I I $5:85$ I 26.16 2.6 99.20 I I $5:85$ I 26.16 2.6 99.20 I I $5:85$ I 22.302 99.20 99.20 I I $5:33$ I 23.70 22.2 99.32 V $5:32$ I 23.25 1.7 99.47 V $5:5:1$ V Y $22:71$ 2.4 Y 99.26												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
B 6 51 V Y 22.81 24 V 99.26												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
Average \pm SD \rightarrow 24.52 Average \pm SD \rightarrow 99.31												
Further tests (treatments) on these coupons:												
(150 PSIG! AFTER READED ON ABOVE, INCREASE PRESSURE UP1 TO												
(225PSig) AT 8:15. AND READ AGAIN AT 9:00												
$1 \text{ est } \#2 \qquad \text{Date:} 1 - 25 - 99 \qquad \text{Inne:} 9 \text{ for } \qquad \text{hrs } \underline{45} \text{ min} \qquad \text{Continuing:} \qquad \underline{1} \text{ Yes } \underline{X} \text{ No}$												
Sample ID Flux Flux Perm. Conduct. % Ions in or Station Side Cell # ml mín Factor GFD Cond. Conv. Factor Rej. Sump												
Average \pm SD \rightarrow $\underline{40, 57}$ Average \pm SD \rightarrow $\underline{99, 37}$												
lotes:												

AT FM 2121 Rev. **B**

(DCR8261)

Membrane ty	pe: SIN	K0118:	7- ĽF(EL-FRI	Æ	SUMP PARAMETERS TEST #1 TEST #2							
Sample arriva			Z-0			Fee	ed conductivity	/ (μmho):	300	that	L	3000	Nail
Test loop:		1						oH value:	7	:03		.7:1	
Routine test:							Feed tempera	ture (°C):	2	2:8	22:5		15
Non-routine te	est:						Conversion factor:						
Operator:		<u> </u>					Test pressure (psig): 50 ZZS						
Test #1	Date: j	-25-	.99	Time:	15 (D	Durat	Duration:hrs <u>45</u> min Continuing					Yes	No
Sample ID	Side	Cell#	ml	min	Fl	ux ctor	Flux GFD	Perm.		nduct. / Factor		%	lons in
or Station				min E D			· · · · · · · · · · · · · · · · · · ·	Cond.				lej.	Sump
	F		5:65	:	421	62	25.56	11	<u> </u>	1687		<u>, 63</u>	I
		23	5:65				25.56	13	+	+		.66	
		<u> </u>	5.4				24,43	12	+			<u>, 60</u> . 63	
		5	5,25	1			23,75	16	+			- 62 - 51	
	VB	6	5.3	V		,	23,98			$\overline{\mathbf{v}}$, <u>5</u> 7	
		9		Avera	ige ± S	$D \rightarrow$			age ±	$\frac{1}{\text{SD}} \rightarrow 1$, <u>51</u> 160	
Further tests	(tranima)	nte) on th			<u> </u>		- (13)		0			160	
	· 、						4						
(150 PSIG) AFTER READED ON A BOVE, INCREASE PRESCURE UP / TO													
(ZZSPEIG) AT 12: IUAND READ AGAIN AT 1255													
		· <u></u> · ·								<u> </u>			
Test #2	Date:	1-25	5-99	Time: 11:	55	Durat	ion:	hr <u>s 45</u> r	nin	Continu	ing:	Yes	X No
Sample ID			<u>_</u>		FI	ux	Flux	Perm.	Co	nduct.	1	%	lons in
or Station	Side	Cell #		min			GFD	Cond.		V. Factor	1	Rej.	Sump
	F		5:2	3:0	1 <u>77</u>	.82	39.55	10:0		4687		:69	
·····	┼╾╉──	2	5.3				40,32	8			99	7	
·····	┼╾╌┨╶──	3	5,0				38.03	10			1-1-1	169	
·····	┨──┨	5	4.65				35,37	13			1 1 1	172	
	L.	6	4.85			/	37,27 36,89	10		¥		, <u>60</u> ,69	······································
L	<u> </u>	<u> </u>			i age ± S	$SD \rightarrow$	37.91		rage ±	$SD \rightarrow$	1	<u>161</u>	
Notes:	<u> </u>						La ^{ma} di Laba	J			<u></u>	· ~ _	l
	···.						<u> </u>						
	<u>04</u> ⊢						82			. <u></u>			
AT FM 21	∠I ŀ	Rev. B		(DCI	R8261)		04						

Membrane ty	pe: SIN	XOIICX	10- LI	= <u>el</u> - F	REE	ા	JMP PARAM	TERS	J	EST #1	l TI	EST #2	
Sample arriva	al date:		Z-9			Fee	ed conductivity	y (µmho):	3000	war	L 3000	3000rall	
Test loop:		2		1			-	pH value:		.96		6,97	
Routine test:							Feed tempera	ture ("C):		3:1		3.7	
Non-routine to	est:					Conversion factor:							
Operator:	$\overline{1}$ $\overline{1}$ $\overline{1}$						Test pressu	ıre (psig):	150 ZZS				
Test#1	Date:	- 25	-99	Time: 11.	25 15	Durat		hrs 45	min	Continu	ing: X Yes	No	
Sample ID	0.1	0.11.4			Fl		Flux	Perm.		nduct.	%	lons in	
or Station	Side ⊊	Cell #		min	Fac		GFD	Cond.		Factor	Rej.	Sump	
	F	7	7.1	5.0	22;	43	31.85	34	0,/7	637	98.95		
		2	.7:5	1 1			33.65	36			98,89		
		3	6:65	1			29.83	30		 	99.07		
		4	5.85				26.24	39		<u> </u>	98:79		
	Ý	5	5.9				26,47	42			98.70		
	B	6	5:65	<u> </u>		<u> </u>	25:35	20		¥	99,38		
				Avera	iye ± 0	$SD \rightarrow [28, 90]$ Average $\pm SD \rightarrow [$				98:96			
Further tests	(treatmer	nts) on th	ese coupo	ons:									
lisopsi	n) AF	TER	READ	D ON	AB	eve	- INCR	EACE	07 <i>0</i>	ecen	EVD1 -	<u></u> רד	
(150 psig) AFTER READED ON ABUVE, INCREASE PRESSURE UP 1 TO (225 psig) AT 12:25AND READ AGAIN AT 1310.													
- <u>(</u>								····				<u> </u>	
											[_]	·	
				112	25	Durat	ion:			·		(
Test#2	Date:	- 2-5 -	94	lime:	<u>10</u>				min	Continu		X No	
Sample ID or Station	Side	Cell #	mi	min	Flu Fac		Flux GFD	Perm. Cond.		nduct. : Factor	% Rej.	lons in Sump	
	F	1	7.0		22	-	51.40	34.0	0.	4687	98,95	oump	
-	i i	Z	7.2		1	- -	52.87	31			99.04	······	
		3	6.4				47.00	Z-8	-	†	99.13	· · · · · · · · · · · · · · · · · · ·	
		Ÿ	5.65				41,49	33	-	1	98.98		
		5	5.9				43,33	36			98.89		
	B	ίφ	5.45		Y		40:02	18		V	99.44		
				Avera	ige ± S	$D \rightarrow$	46.02	Ave	erage ±	$SD \rightarrow$	99.07	-	
Notes:											^{ننگ} ی پرجر مدند اکار در ^{بر} کس م		
						<u> </u>			- · · · · · ·	·····			
					·		······						

REQUEST FOR SEM and EDAX TESTING

Initiator: Please answer the following to ensure a complete report.

Submitted by: KEITH ANDES Date: 1/20/99	LAB USE ONLY date received:
Check one: Original photos wanted.* 🔀 Copies OK.	1/20/98
RGA # if applicable:	received by:
Who: collected the sample?: KEITH ANDES	λR
should the report go to?: DR.WILF	nb ref#:
	log #:
What: membrane type?: LFC 1	
feed water?: WASTE WATER	
When: is the report needed?:	
was the membrane or element made?: FEB, 1998	·,
How long was it in use?: 6 MONTTS	
Where: Country, Company, City? SAN PAS QUAL, CA	}
Why: What question or problem is being studied?:	
PART OF BUREC GRANT STUDY	
- 6 SEPERATE SAMPLES -	
X01181 X01190	
X0/183	
X01184	
X01185	
X01187	
* High quality scanner photos are provided. If original photos are	e needed, the film
will be charged to your project.	

APPENDIX I

Log 99005

SEM REPORT

То	: K. Andes
From	: J. Rockoff
СС	: D. Canton, K. Matsumoto, M. Wilf
Date	: February 16, 1999

SUBJECT : FOULANT ON LFC1 MEMBRANE USED AT THE SAN PASQUAL WASTE WATER PLANT

PURPOSE :

This is part of the Bureau of Reclamation grant study, Fouling on 4040 LFC1 modules is being compared to fouling on 4040 standard elements before and after cleaning.

PROCEDURE:

These samples came from elements installed at the San Pasqual wastewater treatment plant. Standard 4040 elements were in one train in the orderX01181, X01184, and X01183. The LFC1 modules were in a train in the order X01 185, X01 190, and X01 187. The first elements in each train (X01 181 standard, and X01 185 module) were not cleaned prior to dissection. All others were cleaned prior to dissection. The last elements in each train (X01 183 standard, and X01 187 module) were also dye treated before dissection. Pieces were cut from these dissected elements, dried, mounted and gold coated for SEM. A sample of never-used, clean LFC1 was also mounted and gold coated for comparison.

RESULTS :

Part I : Clean LFC1

Photo

Description

1 LFC1 coating on ESPA membrane is shown at 10,000X.

EDX Scan # Description

1 This scan shows the elemental composition of the LFC1 membrane layer, and the polysulfone that is beneath and serves as the control. The sulfur is found only in the polysulfone layer. Scans of samples from previously used elements should be compared to this standard scan when one tries to determine **foulant** composition.

Part II : Standard 4040 s/n X01181

Photo: # Description

Bacteria are shown at 7,000X on this fine-grained foulant. Patches of yellow foulant covering a few percent of the surface were seen during dissection. The foulant came in the grid like pattern of the brine spacer. Bacteria were less numerous on most of this foulant.

2 A small piece of membrane taken from the feed side is seen at 10.000x.

3 A small piece of membrane taken from the brine side is shown at 10,000x.

4 Foulant described in photo #1. This piece was tilted to give an edge view of this ridge of foulant rising above the membrane surface.

EDX Scan # Description

1 This is a scan of the **foulant** that is on photos **#1** and **#4**. This **foulant** was almost entirely composed of carbon and oxygen. The sulfur content is low when compared to clean membrane. This shows that the **foulant** was thick enough to block some or all of the electron beam from reaching the polysulfone layer. Some of the carbon, oxygen and sulfur may have came from the membrane below the **foulant**. The iron content is much lower than that seen in **foulant** from the other five samples.

2 This scan shows membrane taken from the feed side. It has a composition very similar to clean LFC1. This feed side sample was collected in an area where **foulant** was not seen during dissection.

3 This scan shows membrane taken from the brine side. It has a composition very similar to clean LFC1.

Part III : Module s/n X01 185

Photo # Description

1 This photo shows the feed side of this sample at 100X. The vertical line on the left side of the photo is thicker foulant collected at a brine spacer line. When examined at higher magnification the LFC1 surface was not seen. The foulant covered the surface. Some bacteria were seen at higher magnification.

2 This photo shows a piece taken from the middle of this sample at 100X. The vertical band on the left side is thicker **foulant** collected along a brine spacer line. About 20% of the surface had LFC1 visible when examined at higher magnification.

EDX Scan # Description

1 This scan is of foulant from the feed side of the module which was collected with a scalpel. This technique produces a thicker foulant sample so that the membrane under the foulant is not scanned. This scan is high in iron, oxygen, and carbon. The chromium is notable since it may represent corrosion of steel somewhere in the system. Small amounts of silicon, aluminum, chlorine and sulfur were seen.

2 This is a scan of a spot like that seen on photo **#2**. The iron, oxygen, and chromium of the **foulant** are all higher than the clean LFC1. The **foulant** is thin enough to allow scanning of the polysulfone.

3 This is a scan of a spot from the feed side like that seen on photo #1. This shows more iron, oxygen and chromium foulant than scan #2. Sulfur and carbon from the polysulfone below the foulant are also seen.

Part IV : Standard 4040 s/n X01 184

Photo # Description

1 An isolated group of bacteria is shown at 7,000X. Bacteria were not easy to locate on this sample. The LFC1 surface is also shown.

2 This is an average looking spot found in the middle of the element. The LFC1 surface is exposed with little or no foulant. The magnification is 10,000X.

Photo # Description

3 This is a sample of the four-inch feed side strip which appeared fouled during dissection. The LFC1 surface is visible along the bottom of the photo. Thin foulant occurs over most of the photo.

EDX Scan # Description

1 Feed side foulant was collected with a scalpel to increase sample thickness. This foulant is high in iron and oxygen. The chromium is notable since it may represent corrosion of steel. Small amounts of aluminum, silicon, phosphorous, chlorine, potassium, calcium and copper were seen, The sulfur and carbon values are lower than seen on clean LFC1 It is not known what part of these values came from the foulant, and what part came from the materials below the foulant.

2 The feed side fouled strip was used for this scan. Low magnification was used to scan a larger area. The **foulant** was thin, so most of the material scanned. was below the **foulant**. Some iron, calcium, aluminum, and silicon from the **foulant** were seen.

3 A surface from the middle similar to photo **#2** was scanned. This sample had very little **foulant**. Traces of silicon and aluminum were seen.

Part V : Module s/n X01190

Photo

Description

1 This sample was taken from the middle of the element. Some LFC1 surface was seen when this sample was examined at higher magnification. More than 80% of the surface appeared covered with foulant when this was examined at higher magnification. The vertical band about a third of the way from the right side is thicker foulant collected along a brine spacer line. Bacteria were not found at higher magnification.

2 This sample was taken from the feed side. The vertical line is heavier foulant associated with a brine spacer mark. The foulant appeared thicker here than the foulant on the middle sample. Most of the LFC1 surface could not be seen due to the foulant coating. LFC1 coating was visible at higher magnification in small patches (<20% of the surface.

EDX Scan # Description

1 This **foulant** from the feed side was collected with a scalpel to make it thicker. It is high in iron, oxygen and carbon. The chromium is notable because it could have been produced by corrosion of steel. Small amounts of calcium, aluminum, silicon, phosphorus, and sulfur were seen.

2 This is a scan of a feed side region much like photo #2. The foulant is thin so the scan resembles clean LFC1 except for the iron and extra oxygen.

3 This is a scan of middle area much like photo **#1**. A little less foulant is seen than scan **#2**.

Part VI : Standard 4040 s/n X01183

Photo

Description

1 Mr. Leitz requested that a small black spot of loosely attached foulant be examined. This photo shows a piece of a diatom on this foulant at 6,000X.

2 This element was dye treated. Mr. Leitz suggested this spot of dye uptake be examined to determine the cause. This hole was found.

3 About 5% of this sample had rust colored **foulant** arranged in the grid pattern of the brine spacer. One of these lines of **foulant** is shown here at 400X.

4 This sample piece was collected from the middle of the membrane. LFC1 coating is seen. There appears to be little or no foulant.

EDX Scan # Description

1 This scan closely resembles clean LFC1. It was taken on the middle sample shown in photo #4.

EDX Scan # Description

2 This is a scan of the isolated spot of black **foulant** seen in photo **#1**. The **foulant** is high in iron, and oxygen. The chromium and manganese are notable since they may have come from corrosion of steel. Small amounts of calcium, aluminum, silicon, chlorine and copper were also seen. The sulfur and carbon could have come either from the **foulant** or the materials under it.

3 This is a scan of the rust colored **foulant** shown in photo **#3**. It is high in iron, oxygen, and carbon. Small amounts of silicon, phosphorous, sulfur, chlorine, calcium, chromium and copper were also seen. The chromium is notable since it may show corrosion of steel is occurring.

Part VII : Module s/n X01 187

<u>Photo #</u>

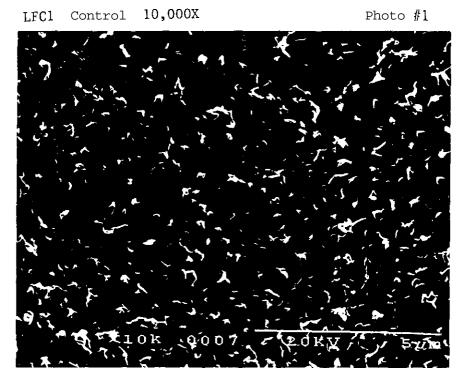
Description

1 The feed side and middle samples from this element both appeared very similar under SEM. Only the feed side was photographed. Most of this sample was covered with thin **foulant**. The magnification is 100X. A band of heavier **foulant** along the left side of this photo is associated with the brine spacer.

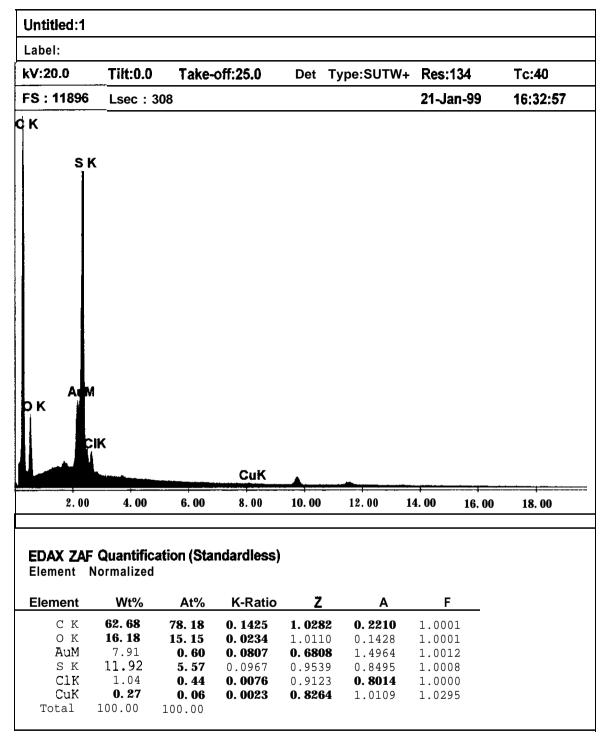
2 This shows some LFC1 surface visible behind the second zero of "XI 00" on photo #1. The magnification is 1,500X.

EDX Scan

Description


¹ This is a scan of **foulant** collected with a scalpel from the feed side. The **foulant** is high in iron, oxygen and carbon. The chromium is notable because it may show corrosion of steel occurred. Small amounts of aluminum, silicon, phosphorous and calcium were also seen.

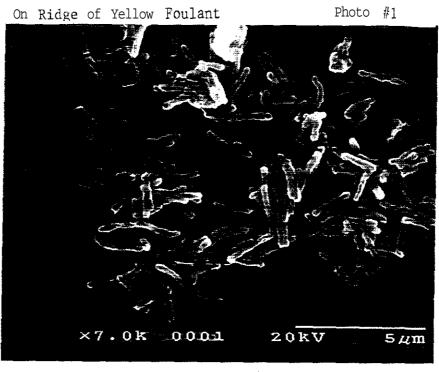
2 This is a scan of feed side **foulant** like that seen in photo **#3**. The composition is similar to clean LFC1. Foulant was thin allowing layers below the **foulant** to be scanned. Iron is the most significant **foulant** element seen.


3 This is a scan of a sample taken from the middle of the membrane. It is very similar to scan #2 except the iron content is a little lower.

DISCUSSION:

Iron, oxygen and carbon were the main constituents of the **foulant**. Chromium may indicate corrosion of steel is occurring. The feed side of most of these elements was more fouled than the brine side. This is unusual because solutes usually come out of solution a little more on the brine side where concentrations are higher. The cause of this is unknown. The elements and modules in each train position were compared. The elements all had less **foulant** than their corresponding module.

253-75-4



LFC1 Control Scan

P/B Bkgd Inte. Element Net Inte. Inte. Error С**К** ОК 0.64 218.78 0.39 343.05 45.21 5.20 0.89 8.70 AuM 59.46 18.79 0.85 3.16 251.76 17.35 0.37 14.51 SК ClK 18.69 16.26 1.80 1.15 CuK 1.21 5.25 11.94 0.23

LFC1 Control

.....

253-75-1 LFC1 Element # X01181

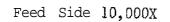
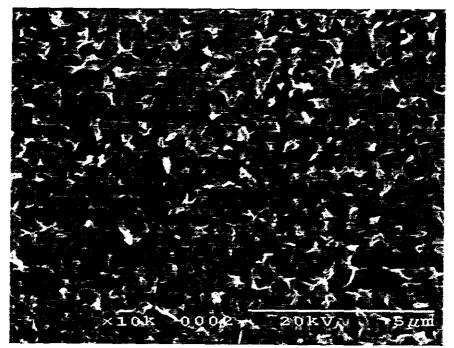
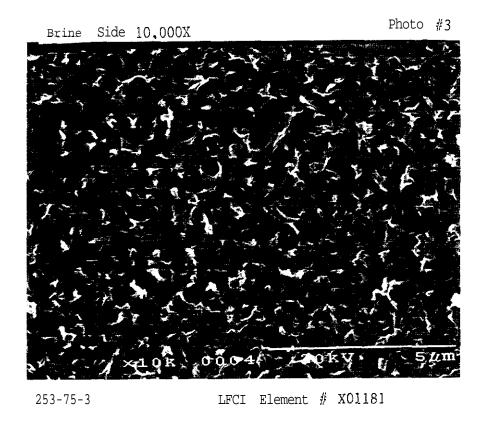




Photo #2

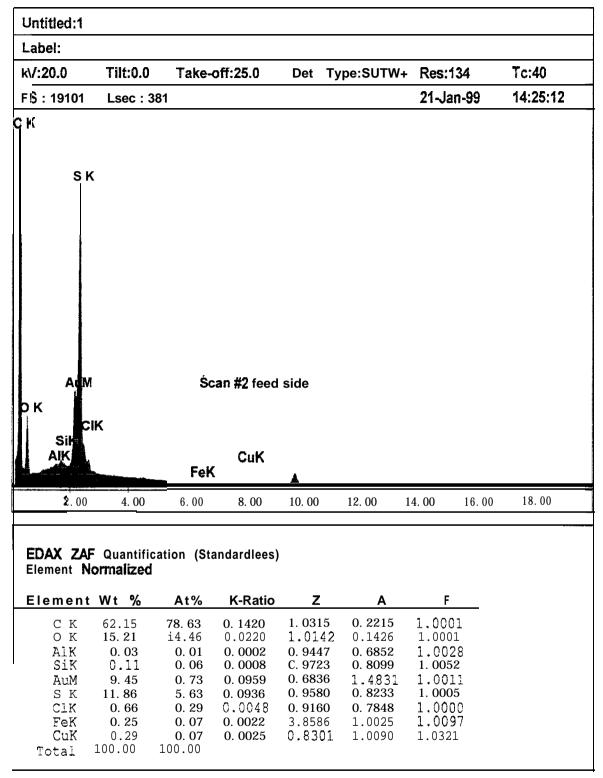
253-75-2 LFC1 Element # X01181

Foulant on Brine Spacer Tilted for Side View Photo # 4

253-75-5 LFC1 # X01181

					X01	181	Sca	n #1
Untitled:1								
Label:								
kV:20.0	Tilt:0.0	Take-of	f:25.0	Det Ty	pe:SUTW	+ Res:1	34	Tc:40
FS : 44960	Lsec : 46	8				21~Ja	n-99	14:06:45
Cli AuM DK SK SiK AlK NaK	K	FeK						

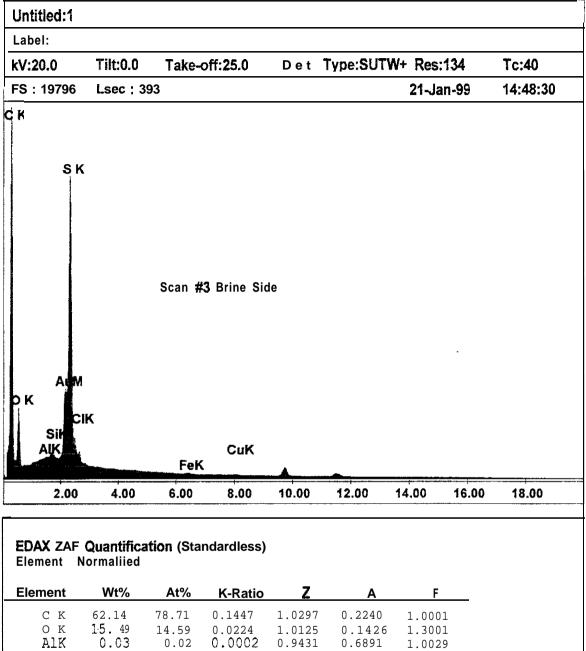
EDAXZAF Quantification (Standardless) Element Normalized


Element	Wt %	At %	K-Ratio	Z	Α	F
СК	66.40	76.75	0.2521	1.0170	0.3733	1.0002
ОК	23.80	20.65	0.0368	1.0000	0.1547	1.0000
NaK	0.40	0.24	0.0014	0.9362	0.3735	1.0003
AlK	0.06	0.03	0.0004	0.9317	0.6845	1.0011
SiK	0.20	0.10	0.0016	0.9590	0.8130	1.0020
AuM	4.52	0.32	0.0453	0.6717	1.4912	1.0034
S K	3.50	1.51	0.0295	0.9405	0.8952	1.0038
ClK	0.79	0.31	0.0065	0.8998	0.9135	1.0001
FeK	0.35	0.09	0.0030	0.8436	1.0208	1.0074
Total	100.00	100.00				

X01181 Scan #1

......

Element	Net Inte.	Bkgd inte.	inte. Error	P/B
СК	524. 68	0.48	0. 20	1098.08
ΟK	96. 50	4.88	<i>0. 48</i>	19. 79
NaK	5.66	16.85	3. 8 7	0. 34
AlK	1. 5 8	<i>27.</i> 86	15. 8 7	0.06
SiK	6 . 21	<i>20.</i> 36	<i>3.</i> 84	0. 30
AuM	45. 20	20. 09	0. 8 3	2. 25
SK	103. 98	18.85	0.49	5. 51
ClK	<i>21. 53</i>	18. 28	1.35	1. 18
FeK	<i>3. 62</i>	<i>1.12</i>	4. 30	0. 47



X01181 scan #2

.

-

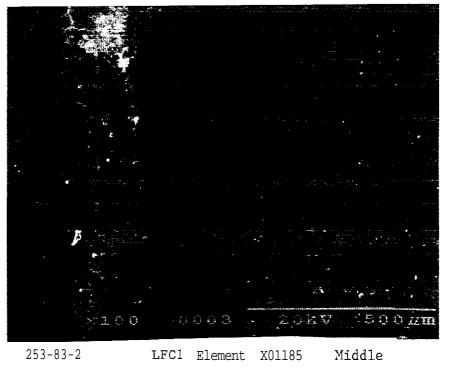
Element	Net Inte.	Bkgd Inte.	Inte. Error	P/B
CK	280.18	1.18	0. 31	238.19
0 K	54.66	13.42	0.76	5.24
AlK	0.65	29.49	43.08	0.02
SiK	3.16	26.05	8.77	0.12
AuM	90.82	25.36	0.61	3.58
SK	313. 20	23.68	0. 30	13. 22
ClK	15.05	22.72	2.09	0.66
FeK	2.52	9. 99	7.18	0. 25
CuK	1.70	7.83	9. 31	0. 22

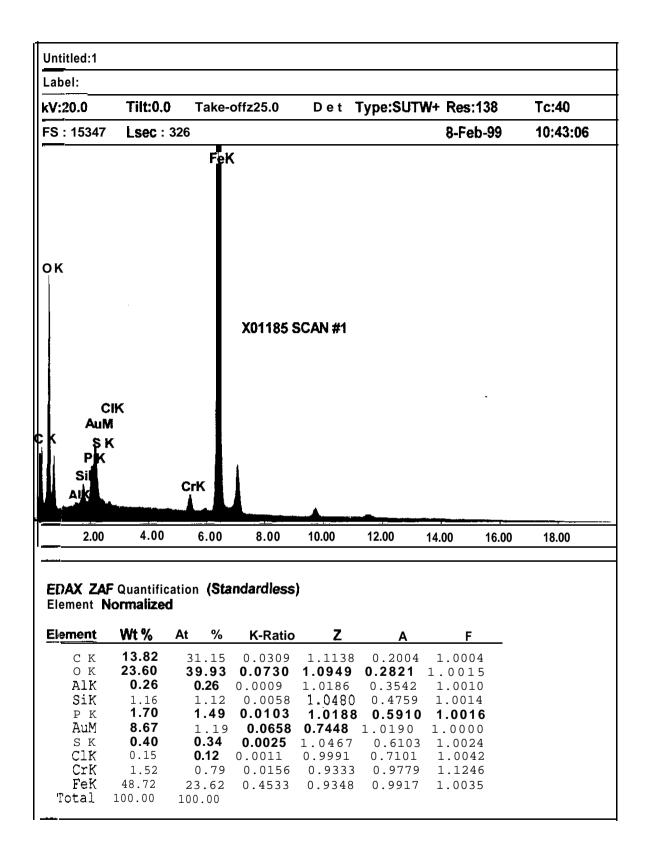
ΟK	15.49	14.59	0.0224	1.0125	0.1426	1.3001	
AlK	0.03	0.02	0.0002	0.9431	0.6891	1.0029	
SiK	0.12	0.06	0.0009	0.9707	0.8138	1.0053	
AuM	8.67	0.66	0.3881	0.6821	1.4881	1.0012	
S K	11.80	5.55	0.3943	0.9558	0.8356	1.0005	
ClK	0.66	0.28	0.0048	0.9140	0.7934	1.0000	
FeK	0.25	0.07	0.0022	0.8567	1.0042	1.0092	
CuK	0.24	0.06	0.0021	0.8281	1.0099	1.0308	
Total	100.00	100.00					

Scan

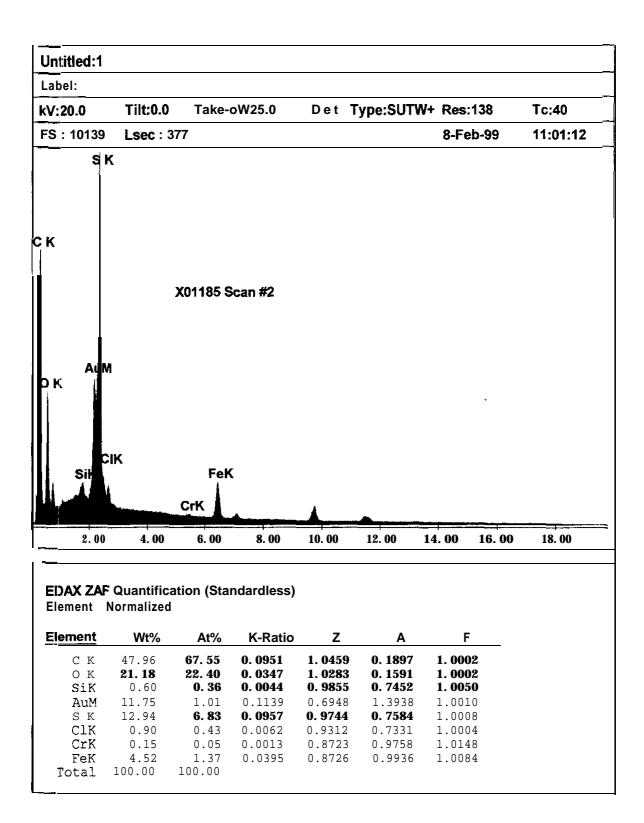

#3

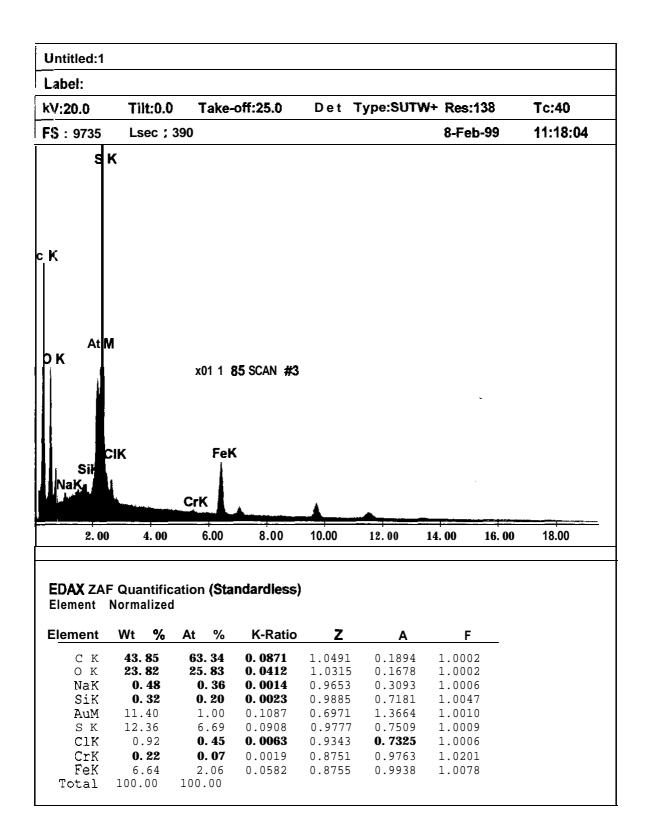
.


Element	Net Inte.	Bkgd Inte.	Inte. Error	P/B
СК	290.88	1.13	0.30	258.02
ŌК	56.65	9.85	0.74	5.75
AlK	0.80	29.38	34.92	0.33
SiK	3.64	26.16	7.66	0.14
AuM	85.04	25.82	0.63	3.29
SK	321.50	23.98	0.30	13.41
ClK	15.28	22.17	2.06	0.67
FeK	2.53	9.20	6.91	0.28
CuK	1.46	7.50	10.46	0.19

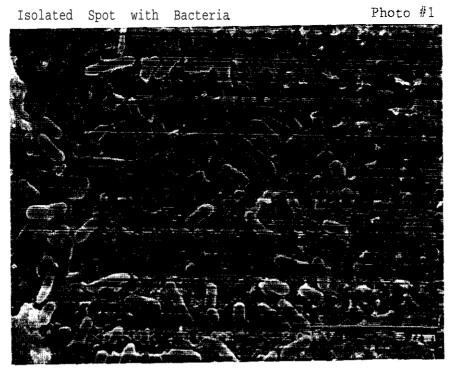

Photo #1

253-83-1 LFC1 Element X01185 Feed Side

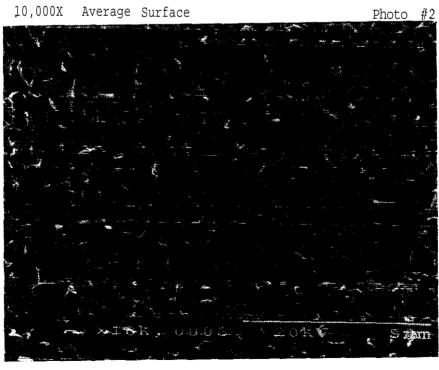

Photo # 2


X01185	Scan	#1

Element	Net Inte.	Bkgd Inte .	Inte. Error	P/B
СК	64. 50	0. 53	0.69	120.85
0 K	192.32	4.27	0.40	45.07
AlK	4.00	18.99	6.63	0. 21
SiK	23. 23	20. 13	1.57	1.15
РK	37.76	20.84	1.12	1.81
AuM	65.99	21.02	0.78	3.14
SK	9.01	23. 34	3.50	0.39
ClK	3.68	22.79	7.74	0. 16
CrK	25.43	18. 18	1.44	1.40
FeK	548.82	16.98	0. 24	32. 32


X01185 Scan #2

Element	Net Inte.	Bkgd Inte.	inte. Error	P/B
СК	126.06	0.41	0.46	309.27
OK	57.86	3.16	0.69	18.29
SiK	11.28	16.92	2.42	0.67
AuM	72.42	15.49	0.67	4.68
SK	214.99	16.11	0.36	13.34
ClK	13.03	14.49	2.07	0.90
CrK	1.36	8.64	11.96	0.16
FeK	30.31	7.02	1.04	4.32



X01185	Scan	#3
--------	------	----

Element	Net inte .	Bkgd Inte.	Inte. Error	P/B
СК	122.25	0.26	0.48	465.10
ΟK	72.91	1.76	0.63	41.43
NaK	3.93	13.70	5.71	0.29
SiK	6.19	20.58	4.41	0.30
AuM	73.20	18.49	0.70	3.96
SK	216.02	19.04	0.38	11.35
ClK	14.08	16.79	2.11	0.84
CrK	2.07	9.17	8.64	0.23
FeK	47.28	8.07	0.84	5.86

253-82-5 LFC1 Element # X01184

253-82-6 LFC1 Element X01184

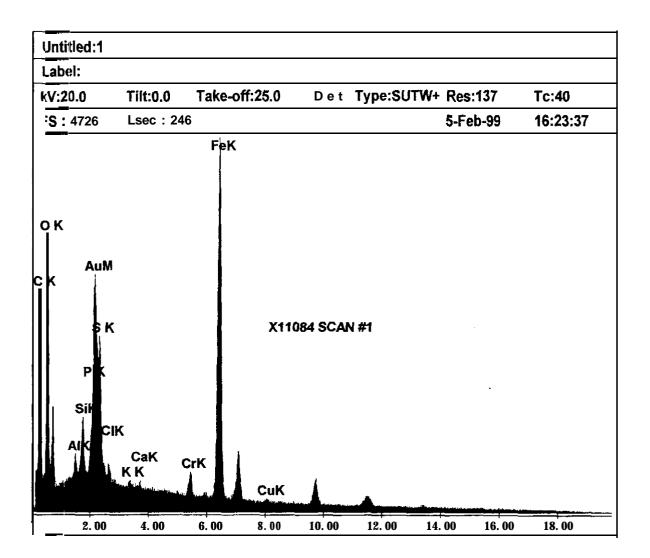
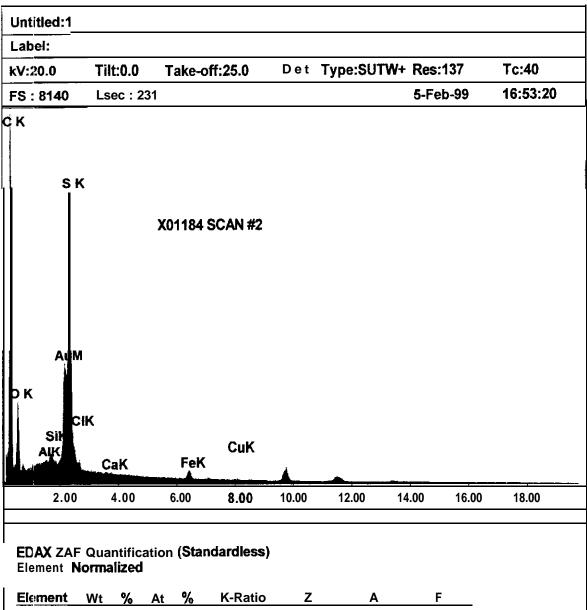
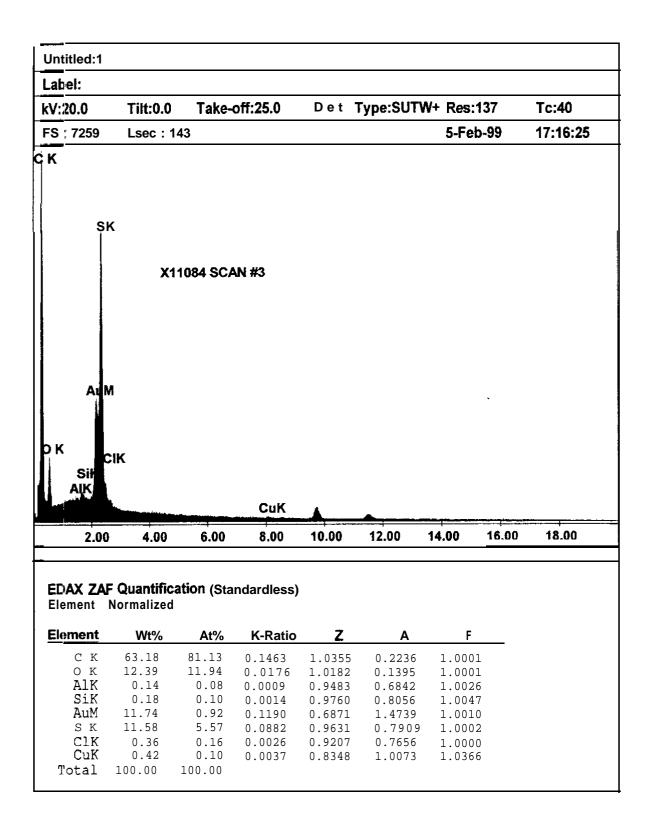


Photo #3


253-82-7

LFC1 Element X01184

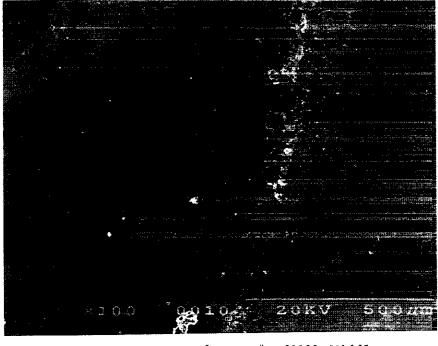
Element	Wt%	At%	K-Ratio	Z	Α	F
СК	23.59	46.78	0. 0490	1. 1002	0. 1889	1.0003
ΟK	21.07	31.38	0.0484	1.0815	0. 2122	1.0008
AlK	0.89	0. 79	0. 0038	1.0062	0. 4267	1.0015
SiK	1.71	1.45	0.0097	1.0354	0. 5490	1.0020
ΡK	1.14	0.88	0.0075	1.0068	0.6540	1.0029
AuM	15.83	1.91	0.1300	0.7361	1.1156	1.0003
S K	4.18	3.11	0. 0259	1.0345	0. 5983	1.0017
ClK	0.58	0. 39	0. 0039	0. 9873	0.6735	1.0024
ΚK	0.19	0. 12	0. 0015	0. 9886	0.7885	1.0066
CaK	0.19	0.12	0.0017	1.0108	0.8353	1.0104
CrK	1.28	0.59	0.0121	0.9222	0.9579	1.0629
FeK	28.83	12.30	0. 2629	0.9242	0.9795	1.0074
CuK	0.51	0.19	0.0044	0.8969	0.9574	1.0167
Total	100.00	100.00				
lement	Net inte). E	kgd Inte.	inte. I	Error	P/B
СК	71.44		0.48	0.	76	147.57
ΟK	88.86		3.27	0.	69	27.20
AlK	11.38		15.36	2.	90	0. 74.
SiK	27.30		15. 50	1.	53	1.76
ΡK	19.32		15.28	1.	94	1.26
AuM	90.96		15.11		72	6. 02
SK	64.06		16.23	0.	89	3.95
ClK	9.00		15.46		51	0.58
ΚK	2.97		14. 76		04	0. 20
CaK	3.01		13.62		63	0.22
CrK	13.67		11.17	2.	33	1.22
FeK	221.94		10.01	0.	44	22.18
CuK	2.23		7.73	0	01	0.29


EDAX ZAF Quantification (Standardless)

Element	Wt %	At %	K-Ratio	2	A	Г
СК	59.73	77.27	0.1403	1.0355	0.2269	1.0001
ОК	16.31	15.84	0.0243	1.0182	0.1461	1.0001
AlK	0.07	0.04	0.0004	0.9483	0.6654	1.0025
SiK	0.17	0.09	0.0013	0.9760	0.7910	1.0045
AuM	10.92	0.86	0.1094	0.6869	1.4582	1.0010
SK	10.99	5.32	0.0841	0.9628	0.7946	1.0003
CāK	0.37 0.04	0.16 0.02	0.0026 0.0003	0.9204 0.9477	0.7729 0.9007	1.0001 1.0006
FeK	1.22	0.34	0.0107	0.8627	1.0000	1.0099
CuK	0.20	0.05	0.0017	0.8344	1.0064	1.0330
Total	100.00	100.00				

X01184	Scan	#2

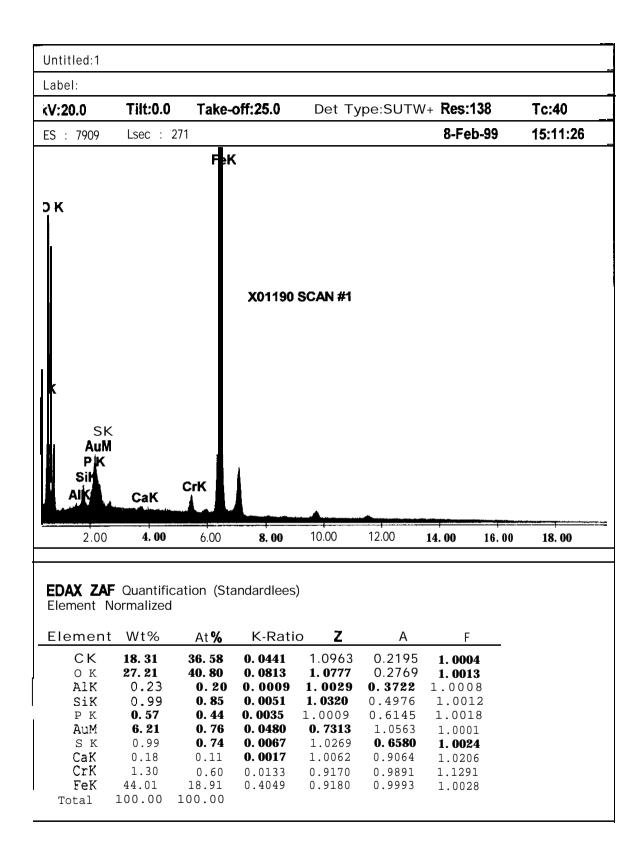
Element	Net Inte.	Bkgd Inte.	inte. Error	P/B
СК	218.78	0.72	0.44	303.80
ОК	47.66	5.10	1.00	9.35
AlK	1.31	21.03	23.68	0.06
SiK	3.99	19.97	8.06	0.20
AuM	81.88	17.79	0.80	4.60
SK	222.24	18.24	0.46	12.18
ClK	6.49	15.94	4.79	0.41
CaK	0.67	11.29	33.98	0.06
FeK	9.63	6.68	2.75	1.44
CuK	0.91	5.93	18.87	0.15



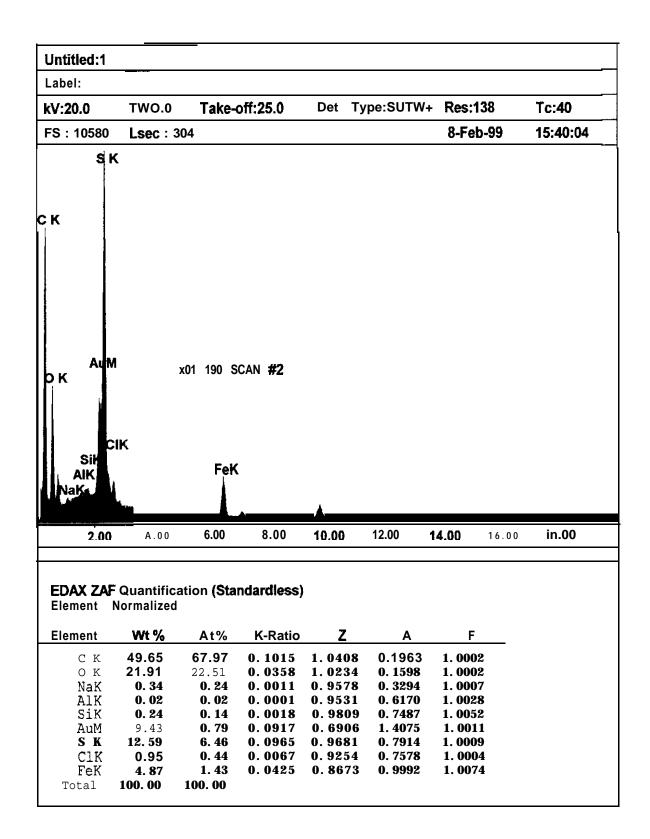
<u>n –</u>

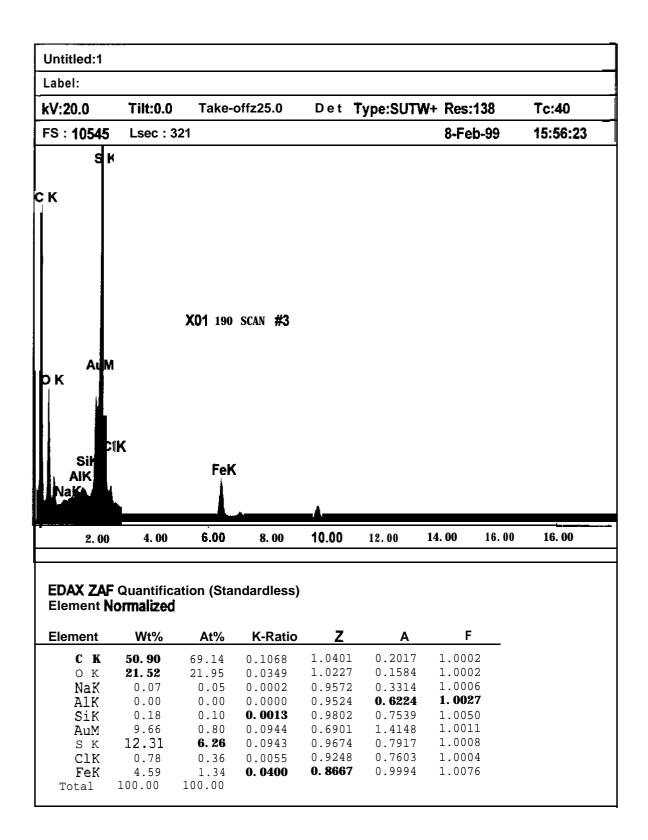
X01184 Scan #3

Element	Net Inte.	Bkgd Inte .	inte. Error	P/B
СК	313.94	2.09	0.47	149.96
ОК	47.53	13.15	1.37	3.62
AlK	3.97	28.79	12.04	0.14
SiK	5.93	27.72	8.17	0.21
AuM	122.56	24.83	0.83	4.94
SK	321.03	25.53	0.48	12.58
ClK	8.75	22.43	5.33	0.39
CuK	2.72	7.02	9.58	0.39

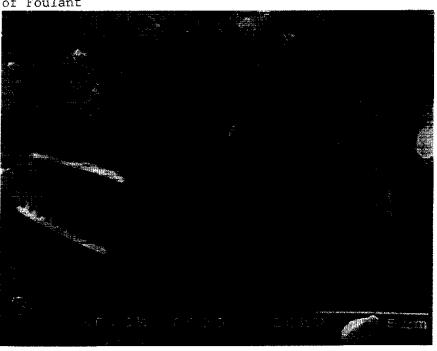


253-84-1 LFC1 Element # X01190 Middle




x01190 Scan #1

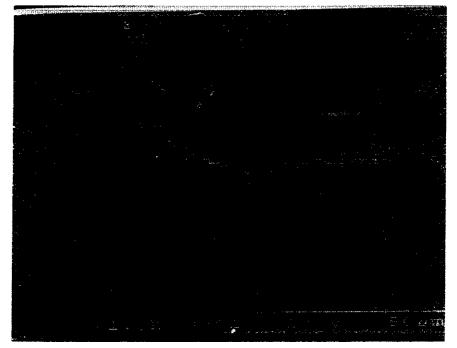
Element	Net Inte.	Bkgd Inte.	Inte. Error	P/B
СК	62.53	0.38	0.77	166.32
ΟK	145.28	2.33	0.51	62.46
AlK	2.41	11.87	9.31	0.21
SiK	13.92	12.16	2.23	1.14
РK	8.80	12.16	3.16	0.72
AuM	32.65	12.10	1.24	2.10
SK	16.14	13.14	2.04	1.23
CaK	2.95	11.98	7.96	0.25
CrK	14.63	11.39	2.12	1.28
FeK	332.64	9.83	0.34	33.85


X01190 Scan #2_

Element	Net Inte .	Bkgd Inte .	inte. Error	P/B
СК	173.07	0.54	0.44	319.81
ок	77.03	4.34	0.67	17.74
NaK	3.54	16.30	7.20	0.22
Alk	0.51	26.60	59.03	0.02
SiK	5.75	25.15	5.54	0.23
AuM	75.12	23.19	0.76	3.24
SK	279.25	23.58	0.36	11.84
CIK	18.15	20.28	1.96	0.89
FeK	42.01	8.92	0.97	4.71

x01190 Scan #3

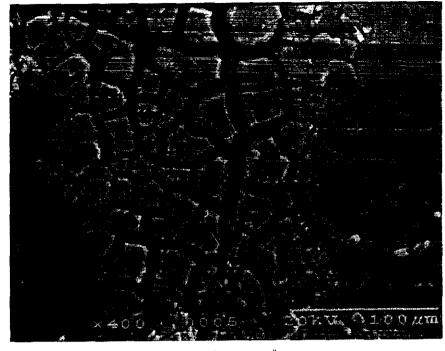
Element	Net Inte.	Bkgd inte.	Inte. Error	P/B
СК	174.83	0.44	0.42	400.98
ОК	71.93	3.25	0.67	22.10
NaK	0.68	16.83	34.39	0.04
AlK	0.00	26.80	0.00	0.00
SiK	4.21	24.65	7.12	0.17
AuM	74.19	20.97	0.73	3.54
SK	261.78	21.35	0.36	12.26
ClK	14.29	18.42	2.23	0.78
FeK	37.96	8.60	1.00	4.41



Isolated Diatom Piece on Isolated Black Spot Photo #1 of roulant

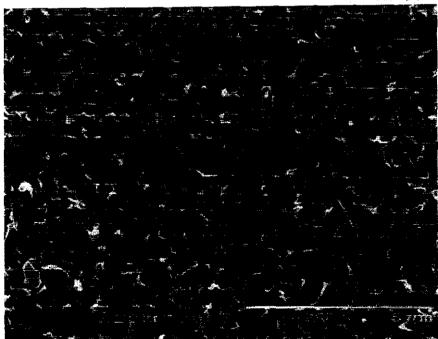
253-82-1

LFC1 Element # X01183

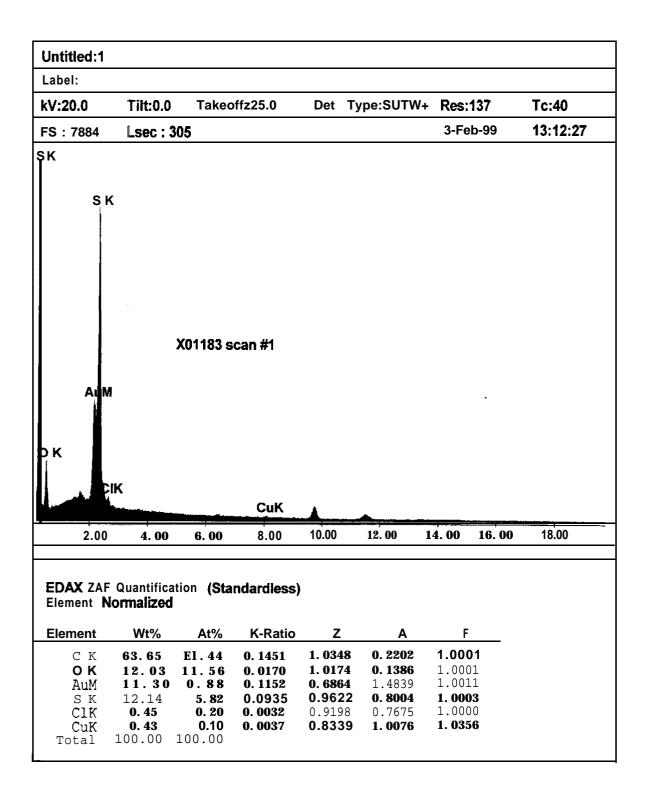

Photo #2

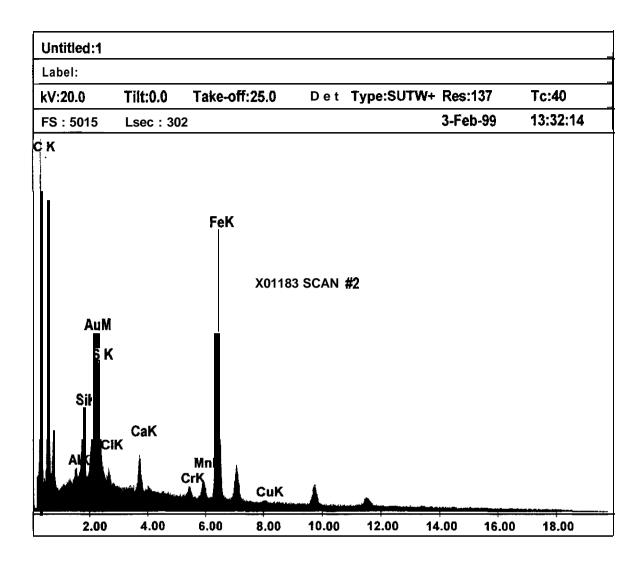
LFCl Element # X01183

253-82-2

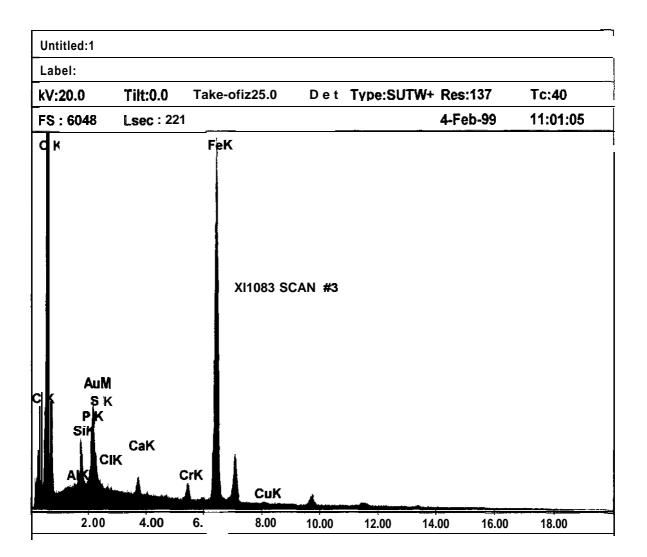


253-82-3


LFC1 Element # X01183

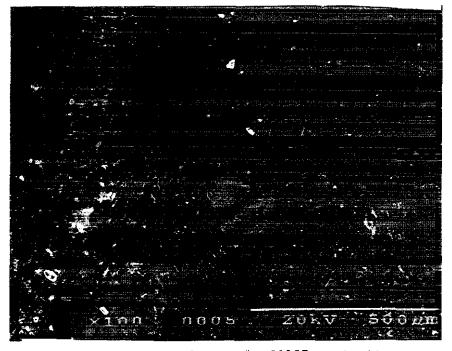

253-82-4

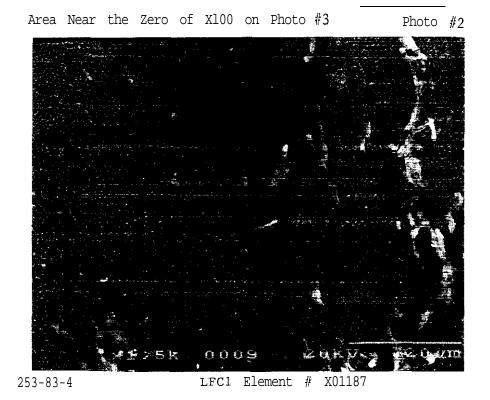
LFCl Element # X01183



X01183 Scan #1

Element	Net inte .	Bkgd inte.	Inte. Error	P/B
СК	158.81	0.83	0.46	190.26
ОК	23.41	5.01	1.30	4.67
AuM	60.55	12.58	0.81	4.81
SK	173.58	12.69	0.45	13.67
ClK	5.59	10.76	4.14	0.52
CuK	1.41	3.83	9.27	0.37


ement	Wt %	At%	K-Ratio	z	Α	F
C K AlK SiK AuM S K ClK CaK CrK FeK CuK Total	33.00 24.44 0.53 1.83 11.83 3.29 0.47 1.03 0.65 1.22 21.33 0.38 100.00	55.12 30.65 0.39 1.31 1.20 2.06 0.26 0.26 0.52 0.25 0.45 7.66 0.12 100.00	0.0808 0.0518 0.0024 0.0111 0.1002 0.0222 0.0033 0.0090 0.0060 0.0107 0.1916 0.0033	1.0743 1.0562 0.9831 1.0117 0.7160 1.0051 0.9600 0.9854 0.8981 0.8821 0.8891 0.8710	0.2278 0.2007 0.4682 0.5971 1.1831 0.6687 0.7393 0.8827 0.9759 0.9864 0.9924 0.9725	1.0003 1.0016 1.0013 1.0015 1.0003 1.0017 1.0025 1.0096 1.0564 1.0045 1.0069 1.0154
ement	Net inte	. Е	3kgd inte .	inte.	Error	P/B
C K AIK SiK AuM S K CIK CaK CrK FeK CuK	102.2582.686.3026.9960.8947.596.7414.255.959.12140.481.43		0.39 2.50 11.43 11.60 11.42 12.33 11.83 10.68 8.10 7.97 7.30 5.69	0. 3. 1. 0. 3. 2. 3. 2.	57 64 84 32 80 94 68 01 62 61 50 74	264.38 33.13 0.55 2.33 5.33 3.86 0.57 1.33 0.73 1.14 19.24 0.25


Element	Wt%	At %	K-Ratio	Z	Α	F
СК	14.48	30.20	0.0342	1.1023	0.2145	1.0004
ΟK	29.76	46.61	0.0896	1.0836	0.2774	1.0011
AlK	0.13	0.12	0.0005	1.0082	0.3748	1.0010
SiK	1.91	1.71	0.0099	1.0374	0.5004	1.0010
ΡK	0.60	0.49	0.0037	1.0077	0.6086	1.0015
AuM	10.06	1.28	0.0775	0.7366	1.0465	1.0001
S K	0.36	0.28	0.0023	1.0348	0.6190	1.0022
ClK	0.09	0.07	0.0007	0.9879	0.7184	1.0038
CaK	0.77	0.48	0.0069	1.0123	0.8793	1.0167
CrK	1.11	0.53	0.0110	0.9231	0.9759	1.1026
FeK	40.34	18.10	0.3716	0.9'246	0.9914	1.0049
CuK	0.39	0.15	0.0034	0.8964	0.9474	1.0095
Total	100.00	100.00				
lement	Net inte .	. E	Skgd Inte .	Inte. I	Error	P/B
СК	50.22		0.47	0.	95	107.85
0 77	165.53		2.89	0.	53	57.30
ОК			16.11	19.0	65	0.09
AlK	1.43		TO.TT			
	1.43 27.99		16.16		60	1.73
AlK SiK PK				1.	60 54	1.73 0.60
AlK SiK	27.99		16.16	1. 3. 1.	54 03	
AlK SiK PK AuM SK	27.99 9.57		16.16 15.81	1. 3. 1.	54	0.60
AlK SiK PK AuM	27.99 9.57 54.58		16.16 15.81 15.60 16.68 15.75	1. 3. 1.	54 03 58	0.60 3.50
AlK SiK PK AuM SK ClK ClK CaK	27.99 9.57 54.58 5.71 1.56 12.65		16.16 15.81 15.60 16.68	1. 3. 1. 5. 17.9 2.	54 03 58 94 68	0.60 3.50 0.34
AlK SiK PK AuM SK ClK CaK CrK	27.99 9.57 54.58 5.71 1.56		16.16 15.81 15.60 16.68 15.75 12.85 10.40	1. 3. 1. 5. 17.9 2.	54 03 58 94	0.60 3.50 0.34 0.10
AlK SiK PK AuM SK ClK CaK	27.99 9.57 54.58 5.71 1.56 12.65		16.16 15.81 15.60 16.68 15.75 12.85	1. 3. 1. 5. 17.9 2.	54 03 58 94 68 57	0.60 3.50 0.34 0.10 0.98

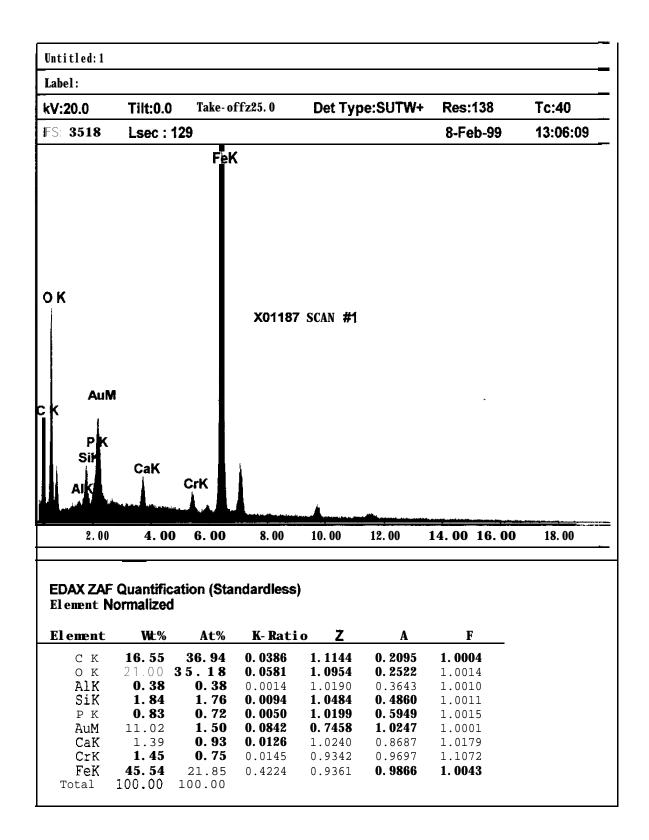
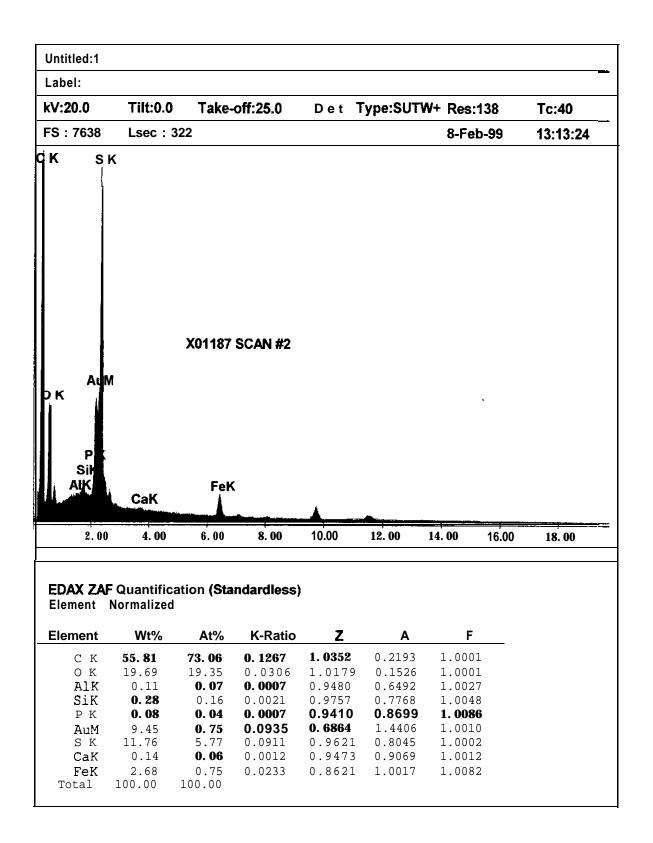
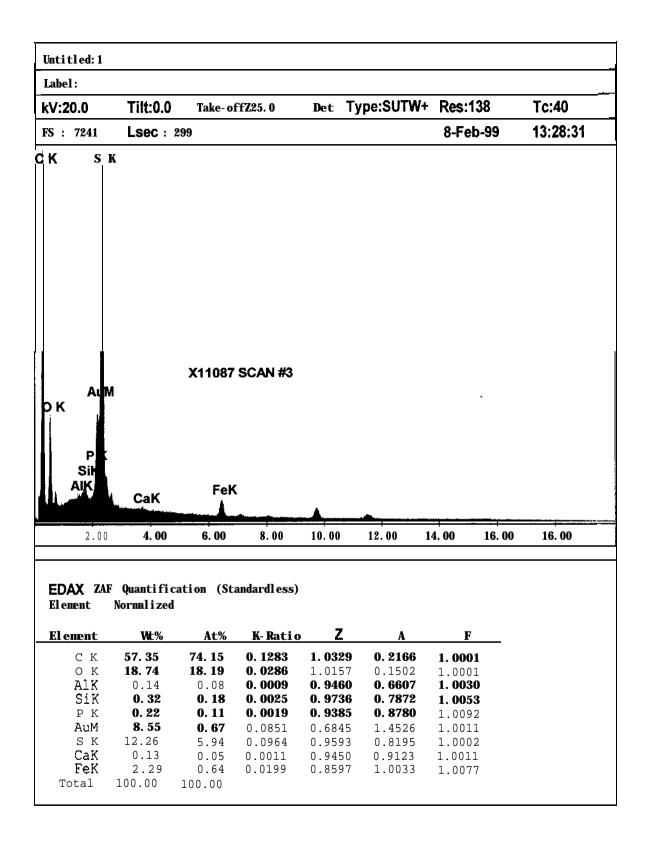

EDAX ZAF Quantification (Standardless)

Photo #1


253-83-3 LFC1 Element # X01187 Feed Side


X01187 Scan #1

Element	Net inte.	Bkgd Inte.	Inte. Error	P/B_
СК	49.10	0.52	1.26	94.97
ОК	92.99	2.41	0.92	38.63
AlK	3.65	11.49	9.36	0.32
SiK	22.91	12.01	2.27	1.91
РK	11.27	12.27	3.78	0.92
AuM	51.37	12.31	1.36	4.17
CaK	19.87	13.12	2.54	1.51
CrK	14.35	11.17	3.09	1.28
FeK	310.78	9.56	0.51	32.51

X01187 Scan #2

Element	Net Inte.	Bkgd Inte.	Inte. Error	P/B
СК	148.65	0.39	0.46	377.71
ОК	45.21	2.76	0.85	16.39
AlK	1.65	15.53	13.95	0.11
SiK	4.78	15.91	5.30	0.30
РK	1.40	15.28	16.27	0.09
AuM	52.68	14.60	0.87	3.61
SΚ	181.18	14.77	0.43	12.27
CaK	1.82	a.77	9.97	0.21
FeK	15.83	5.64	1.63	2.81

XUII8/ Scan #3	01187	Scan	#3
----------------	-------	------	----

C K148.250.500.48298.09O K41.623.370.9312.36AlK2.0314.4311.550.14SiK5.5613.804.570.40P K3.8012.776.190.30AuM47.2012.300.943.84S K188.7912.610.4314.97	Element	Net Inte.	Bkgd inte.	Inte. Error	P/B
Alk2.0314.4311.550.14SiK5.5613.804.570.40P K3.8012.776.190.30AuM47.2012.300.943.84	СК	148.25	0.50	0.48	298.09
SiK5.5613.804.570.40P K3.8012.776.190.30AuM47.2012.300.943.84	ОК	41.62	3.37	0.93	12.36
Р К 3.80 12.77 6.19 0.30 AuM 47.20 12.30 0.94 3.84	AlK	2.03	14.43	11.55	0.14
Aum 47.20 12.30 0.94 3.84	SiK	5.56	13.80	4.57	0.40
	РK	3.80	12.77	6.19	0.30
SK 188.79 12.61 0.43 14.97	AuM	47.20	12.30	0.94	3.84
	SK	188.79	12.61	0.43	14.97
CaK 1.57 8.99 11.99 0.17	CaK	1.57	8.99	11.99	0.17
FeK 13.29 4.98 1.86 2.67		13.29	4.98	1.86	2.67

	A	в	С	D	Ē	F	G	н	1	J	ĸ	L I	М	N	0	P	Q	R	S
4	Date	Hour	Conc Flow	Element A Feed Pal	A.Top.osi	Filtrate psi-A	ATMP	AFILGPM	GED	A GED/osi	B.Feed psi	B Top psi	Filtrate psi-B	BIME	B filt Gpm		B GFD/psl	RO Hour	
5	19-Feb-98	87.4	0	18,8	18.1	12.2	6.25	10	53.333333	13.762948	19.8	19	13	6.4	10	53.333333333	13.44037903		
6		88.8	0	19,1	18.3	12.4	6.3	10	53.333333	13.653718	19.8	19.1	13.4	6.05	10	53.33333333	14.21792162		
7		92.2	0	19.8	19.1	14.2	5.25	8	42.666667	13.10757	20.2	19.8	15.2	4.8	8	42.66666667	14.3364043		1
Fat	20-Feb-98	102	0	20	19.7	16.1	3.75	6	32	13.762948	21.1	19.3	16.8	3.4	6	32	15.1797222		
91		103.3	0	20.2	18.3	12.2	6,5	10	53.333333	13.233604	20	19.2	13.2	6.4	10	53.33333333	13.44037903		í
10		104.6	Ö	20.4	18.6	11.7	7.2	10	53,333333	11.947004	20.1	19.5	12.8	7	10	53.33333333	12.28834654		[
	23-Feb-98	111.5	0	20.6	18.9	11.6	7.1	10	53,333333	12.115271	19.8	19	12.5	6,9	10	53.33333333	12.46643852		
12	2010000	112.7	0	20.8	19.2	11.5	7.55		53,333333		19.5	18.7	11.7	7.4	10	53,33333333	11.62411159		
13		113.9	0	21	19.5	11.4	4.7	8	42.666667		20.5	19.9	14.8	5.4	8	42.66666667	12,74347049		
14		115.1	0	19.1	19.8	11.3	8.05	8	42.666667		19.5	18.8	11.0	7.35	8	42.66666667	9.362549745		
15		116.3	0	19.2	20.1	11.2	4.5	8	42.666667		19.9	19.7	14.8	5	8	42.66666667	13 76294812		
	24-Feb-98	117.5	0	19	18.2	11.5	7.35	8	42.666667		20.3	19.8	14.7	5.35	8	42.66666667	12.86256834		
	24+Fe0-30	118.7		18.9	17.9	10.4	8	8	42.666667		20.2	19.9	14.2	5.85	8	42.66666667	11.76320353		
17		120.3	0	19.5	18,9	14.5	4.7	8	42.666667		21.5	20.1	13.9	6,9	8	42.66666667	9.973150815		······································
18				18.9	18,1	13.5	5	8		13.762948	20.5	19.9	14.6	5.6	8	42.666666667	12.28934654		
19	05 5 4 00	122.1	0	19.1	18.9	13.5	4.5	8	42.666667		20.5	19.8	14.8	5.2	8	42.66666667	13,23360397		i
	25-Feb-98	125.1	0			14.9	4.5	- 8		16.191704	20.2	20.1	14.8	5.35	8	42.66666667	12,86256834		
21		<u>136</u> 138.1	_	19.5	18.8	14.9	4.25 6,1	8	42.666667		20.5	20.1	13.8	6.45	8	42.66666666	10.66895203		
22			0																
23		144,6	0	19.5	18.7	12.9	6.2	6	42.666667		20	19,3	14.4	5.25	8	42.66666666	13,10756964		
24	26-Feb-98	148.2	0	19.4	18.9	13.7	5,45	8	42.666667		20.1	19.9	14.6	5.4	8	42.66666667	12,74347049	_	
25		161.2	0	19.2	18.9	13,8	5.25	8	42.666667		20.9	20.1	14.2	6.3	8	42.66666667	10.9229747		<u> </u>
26		164.6	0	19,9	19.1	13.9	5.6	8	42.666667		20.9	20.2	13.6	6.95	8	42.66666667	9.901401529		
27	27-Feb-98	167.8	0	19.7	19	13.2	6,15	8		11.189389	20	19.5	13.5	6.25	8	42.66666667	11.0103585		
28		172.9	0	19	18.4	13.2	5,5	8	42.666667		20.9	20.1	14.1	6.4	8	42.66666667	10,75230322	L	· · · · · · · · · · · · · · · · · · ·
29		183	0	19.5	18.9	14	5.2	8	42.666667		21.1	20.2	14.5	6.15	8	42.66666667	11.18938872		Sy
30		192.4	0	19,9	19.1	13.1	6,4	8		10.752303	20	19.3	13,5	6.15	8	42.66666667	11.18938872		L
31		196.3	0	19,9	19.2	12.5	7.05	8	42.666667		20.5	20	14	6.25	8	42.66666667	11.0103585		
32	3-Mar-98	206.3	0	19.5	18.9	12.2	7	8	42.666667		19.9	19.1	14.1	5.4	8	42.66666667	#VALUEI		Unit Shuld
33		212.7	0	19.9	19.2	12.2	7.35	8	42.666667		20.5	20.1	14.8	5.5	8	42.66666667	12.51177102		
34		217.2	0	20,1	19.1	12.8	6.8	8	42.666667		20.1	19.9	14,2	5.8	8	42.66666667	11,86461045		
35		221.1	0	19	18.2	12.8	5.8	8	42.666667		19.9	19,1	13.3	6.2	8	42.66666667	11.09915171		
36	4-Mar-98	232.3	0	19.9	19.1	12.6	5.9	8	42.666667		19.9	19.1	13.8	5.7	8	42.66666667	12.07276151		1
37		240.2	Ö	19	18.5	13.5	5.25	8	42.666667	13.10757	20.2	19.8	13.8	6.2	8	42.66666667	11.09915171		
38		245,9	0	19.8	18.9	13.1	6.25	6	42.666667	11.010358	20.3	19.9	12.9	7.2	8	42.66666667	9.557602864		
39		249.8	0	19.1	18.8	12.2	6.75	8	42.666667	10.194776	20	19	12.6	6.9	8	42.66666667	9,973150815		
40	5-Mar-98	256.2	0	19.1	18.3	12	6.7	8	42.666667	10.270857	20	19.3	13.1	6,55	8	42.66666667	10,50606727		
41		264.6	0	18,9	18.2	12.2	6.35	8	42.666667	10.836967	20.2	20	13.9	6.2	8	42.66666666	11.09915171		
42		269.8	0	19,1	18.4	12.5	6.25	8	42.666667	11.010358	21.1	20.1	12	8.6	8	42.66666667	8.001714026		[
43		274.3	0	19.1	18.9	11	8	8	42.666667	8.6018426	19.9	19.2	12.5	7.05	8	42.66666667	9.760956117		· · · · · · · · · · · · · · · · · · ·
44	6-Mar-98	278.2	0	19	18.4	10.4	8.3	8	42.666667	8.2909326	20,1	19.9	10,9	9.1	8	42.66666667	7.562059409		
45		288,6	0	19.2	18.8	10.5	8,5	8	42.666667	8.0958518	20.1	19.9	10.9	9.1	8	42.66666667	7.562059409		
46	9-Mar-98	295.9	0	19.5	18.9	11.2	8	8	42.666667	8.6018426	20.5	19.5	8.8	11.2	8	42.66666667	6 144 17 327		
47		299,9	Ö	20	19.1	10.2	9.35	8	42.666667	7.3598653	19.9	19.5	8.3	11.4	8	42.66666667	6.036380757		
48		303.5	Ō	19	18.3	9.5	9.15	8	42.666667		19.9	19.1	12	7.5	8	42.66666667	9.17529875		(
49	10-Mar-98	312.6		19.2	18.8	9.3	9.7	8		7.0943032	20.5	20	11.5	8.75	8	42.66666667	7.864541786		
50		317.4	0	19,5	18.9	9.6	9.6	8	42.666667		20.4	20.1	6.5	13.75	8	42.66666667	#VALUE1		·
51	11-Mar-98	321.5	- Ö	19.2	18.9	8,1	10,95	8	42.666667		20.1	19.9	11,9	8.1	8	42.66666667	8,495646991		·
52		325.7	ŏ	19.1	18.8	8.9	10.05	8		6.8472379	20.1	20	10	10.05	8	42.666666667	6.847237873		
53		334.6		18.9	18.2	10.2	8.35	8	42.666667		21.5	20.7	3	10.00	8	42.555555557	3.8019193/2	├─── /	/
54		347.6	- Ŭ	19.5	19,1	9.5	9.8	0	42.000007		19.6	19.3	3.5	16.05	- 3	20.00000007	2.679701738	1	
55	 	343	ŏ	19.8	19.4	8	11.6	6		4,4492289	20.2	19.7	7.7	12,25	4	21.333333333	2.808764923	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
56		351.7	ŏ	19.5	19	13.1	6,15	4	21.333333		20.4	19.9	11.3	8.85	3	16	2.91587884		i
57		352.2	ŏ	19.2	18.9	10,3	8.75	8	42.666667		19.2	18.7	5	13.95	8	42.66666667	4,932956317		
58		352.2		20.2	19.4	10,3	9,4			5,4905378	20.1	19.6	12.2	7.65	5	26.66666667	5.622119332		i
59		353.2		19	18.5	9	9.75	4	21.333333		20.1	19.6	14.5	5.35	4	21.333333333	6,431284171		·····
_				19		12.2	9.75		42.665667		20.1	19.6	16	3.85	3		6.702734476		
60		353.7	0		18.5											16		···-	R
61		354.2	0	19.2	18.7	15	3,95	6	32	13.06609	20.5	20	6.5	13.75	6	32	3.753531307		
62		354.7	0	18.2	17.7	12.5	5.45	4	21.333333		21	20.5 20.5	11.1	9,65 6.55	5	26.66666667	4.456913253		
63		355.2		19.1	18.6	14.7	4.15	8	42.666567		21		14.2		4	21.33333333	5.253033635		
64		355.7	0	19.5	19	16.7	2.55	6	32	#VALUEI	21.5	21	16.5	4.75	3	16	#VALUE!	· · · · · · · · · · · · · · · · · · ·	After 0.25%
65	19-Mar-98	356.2	0	20	19.5	13.7	6.05	4	21.333333		20	19	12.8	6,7	8	42.66666667	10.27085681		
66	19 Mar-98	356.7	2	20	19.5	15.5	4.25	8	42.666667	16,191704	20.5	20	15.2	5.05	6	32	10.22001098		

	A	В	C	0	E	F	G	н		· · · · ·	ĸ	<u>l</u>	M	N	0	P	Q	R	s
4	Date	Hour		Element A Feed Psi		Ellizate psi-A	ATMP	AFILGEM	GED	A GED/Dai	B Feed psi	B Top osi	Fitrate psi-B	BTMP	B fill Gom	· · · · · · · · · · · · · · · · · · ·	B_GFD/psi	RO Hour	
67		357.2	2	20	19.5	17.4	2.35	6	32	21.962151	20,5	20	16.2	4.05	5	26,66666687	10.61955874		Re
68	20-Mar-98	357.7	2	19.1	18.6	13.3	5.55	6	32	9.2992893	21.1	20.6	17.8	3.05	4	21.3333333333	11.28110502	· · · · · · · · · · · · · · · · · · ·	· ····································
69	20-1481-90	358.2	2	19.2	18.7	15.2	3.75	6	32	13.762948	21	20.5	18.2	2.55	3	16	10.1198148		╬━╍╌╴╴╴╸━┙
70		360.9	2	19.7	19.2	17.2	2.25	6	32	22,938247	19,9	19.5	14.8	4.9	8	42,66666667	14.04382462		
71		361.9	2	19	18.5	14.4	4.35	6	32	#VALUEI	19.8	19.2	16	3.5	6	32	#VALUEI		Shut D
	21-Mar-98	365.4	2	19	18.2	15.8	2.8	6	32	18.43252	20.5	19.9	16.2	4	6	32	12.90276387	· · · · · · · · · · · · · · · · · · ·	0/0/0
72	21-Mar-90	375.4	_	19.8	18.9	15.9	3,45	6	32	#VALUE1	20.5	20	15.8	4,7	6	32	#VALUE!		Shut
		3/5.4	2	19.0	19.2	15.8	3.75	6	32	#VALUEI	20	19.5	15.5	4.25	6	32	#VALUE!		
74		384.4	2		18.2	15.6	3.55	6	32	14.538325	20.1	19.9	15.5	4.25	6	32	11.46912344		replace 50u
75				18.9	18.0	15	3,45	6	32	14.959726	20.2	20	15	5.1	6	32			<u>+</u>
76	27.11 65	389.3	2				3.3	6	32	15.639714	20.2	20	13.2	7.25	6	32	10.1198148		
77	25-Mar-98	399.7	<u>2</u>	19.5	18.5	15.7	3.3		32			19.3				32	7.118766271		
78		404.5	2	19.2	19	15.8		6		15.639714	20		15.2	4.45	6		11.59798999		
	lart @ 439.4	409	2	18.6	18.1	15	3.45	6	32	14.959726	20.2	19.4 20	14.2	5,6	6	32	9.216259905		U
80		415.4	2	19	18.2	15.2	3.4	6	32	#VALUEI	20.6	20	12.9			32	#VALUE1		by ph 11.7 recirc fo
81	31-Mar-98	422	2	19.7	19.1	15.5	3.9	6	32	13.233604	20.5		12	15?	6	32	#VALUE!		
82		430.3	2	19.5	18.5	16.5	2.5	6	32	20.644422	20.2	19.8	4	8.25	6	32	6.255885511		
83		433.5	2	19.9	18,9	15.3	4.1	6	32	12.588062	20.2	19.8	16.5	16	6	32	3.225690967		· · · · · · · · · · · · · · · · · · ·
84	1-Apr-98	439.8	2	19.2	19	16.8	2,3	6	32	22.439589	20.6	20	16.2	3.5	6	32	14.74601585		
85		441.7	2	19.5	19	16.8	2.45	6	32	21.065737	20.9	20.2	16,5	4.1	6	32	12.58806231		Pr
86		447.6	2	20	19.5	16,9	2.85	6	32	18.109142	21	20.2	15.8	4.05	6	32	12,74347049		L
87		458.3	2	19.8	19.2	16.2	3.3	7	37.333333		21.2	20.8	15.8	4.8	6	32	10.75230322	<u> </u>	1-
88		459.1	2	19.4	18.9	16.2	2.95	<u> </u>		#VALUE!	21	20.2	15.6	#REFI	6	32	#VALUEI		Unit S
89		465.5	2	20	19.2	16	3.6	7	37.333333		20	19.8	15.5	5.2	6	32	#VALUE!		Cast Iron p
90	2-Apr-98	474.2	2	20.1	19	16.1	3.45	7		#VALUE!	20.9	20.2	16	5	6	32	#VALUE!		New Cl
91		483.2	2	19.1	18.5	16.1	2.7	7		22.301073	21	20	15.8	4.4	6	32	11.72978533		
92		489.6	2	19,8	19.1	16.3	3,15	7		19.115206	20.1	19,5	14.8	4,55	6	32	11.34308911		<u>i</u>
93	3-Apr-98	499.5	2	19.9	19.1	16.3	3.2	7		18.816531	20.1	19.1	14.3	4.7	6	32	10.98107563		
94		503.4	2	18.9	18.2	15	3.55	7		16.96138	20	19.3	14.7	5	6	32	10.32221109		
95		508	2	19	18.2	15	3,6	7		16.725805	18,9	18.2	14,8	5,3	7	37.33333333	11.36092416		
96		522.6	2	19	19.2	15,1	4	7		15.053225	20.8	20.2	14.5	4.95	1	37.333333333	12.16422183		
97		526.5	2	20	19.7	14.2	5.65	7		10.65715	21	20.1	14.8	3.75	7	37.333333333	16.05677281		
98		531.6	2	19,8	19.1	15.2	4.25	7		14.167741	19.0	19.2	14.6	6	7	37.33333333	10.03548301		
99	5-Apr-98	538.9	2	19.8	19,1	14.8	4.65	7	37.333333		20.8	20	14.4	5.75	7	37.333333333	10.47180836		
100		546.7	2	18.9	18.2	14,5	4.05	7		14.867382	20.9	20,1	13.8	4,9	7	37.333333333	12.28834654		
101		553.5	2	19.2	18.9	15.2	3.85	7		15.639714	20	19.4	13.4	6	7	37.33333333	10.03548301		
102	6-Apr-98	562.6	2	19.5	19	15. 1	4.15	7		14.509132	20.1	19.8	13.9	6.7	7	37.333333333	8.986999708		
103		568.4	2	19.2	18.6	14.9	4	7		15.053225	21	20.1	15	6.3	7	37.333333333	9.557602864		
104		576.3	2	19.5	18.8	15.1	4.05	7		14.867382	20.1	19,4	13.8	6.05	7	37.333333333	9.952545132		
105	7-Apr-98	585.9	2	19,9	19.2	15,3	4.25	7		14.167741	20.1	1 9 .5	13.8	5,55	7	37.33333333	10.84917082		
106		592.8	2	19.1	18.2	14.5	4.15	7		14.509132	21	20.5	14	5,95	7	37.33333333	10.1198148		
107		596	2	19	18.2	14.8	3.8	7	37.333333	15.845499	20	19.2	13.8	6	77	37.33333333	10.03548301		
108	8-Apr-98	598.9	2	19.5	19	15	4.25	7		14.167741	20.5	19.9	14.2	6.75	7	37.333333333	8.92042934		
109		607.3	2	18.9	18.1	14.9	3,6	7		16.725805	20.5	20	14.2	5,8	7	37.33333333	10.38153415		
110		612.3	2	19.9	19.1	15.5	4	7		15.053225	19.9	19.1	13	6	7	37.333333333	10.03548301		
111	9-Apr-98	621	2	19.8	18.9	15.2	4.15	7		14.509132	20.1	19.8	13,8	6,05	7	37.33333333	9.952545132		
112		630.4	2	18.6	17.9	14	4.25	7		14.167741	20,9	20.2	14.5	6.5	7	37.33333333	9.263522776		
113		635.1	2	19,3	19	15	4.15	7		14.509132	20	19.3	13.3	6.15	7	37.33333333	9.790715129		
114	10-Apr-98	644.3	2	19.8	19.1	15.1	4.35	7		13.842046	19.8	19.2	12.9	6.05	7	37.33333333	9.952545132		1
115		650.6	2	18.2	17.8	14.3	3.7	7		16.273756	20.2	20	14	6,35	7	37.333333333	9.482346149		L.
116		654.6	2	18.9	18	13.9	4,55	7	37.333333	13.233604	20.3	20	13.6	6.6	7	37.333333333	9.123166371		
117		659.9	2	19,1	18.8	14.9	4.05	7		14.867382	20	19.3	12.9	6.1	7	37.333333333	9.870966893		
118	11-Apr-98	668.3	2	19.5	18.9	14.7	4.5	7		13.380644	20	19.4	12.5	6.55	7	37.333333333	9.192808862		1
119		674.6	2	18.9	18,1	14.1	4.4	7	37.333333	13.68475	20,5	19.9	12.1	6.75	7	37.333333333	8.92042934		
120		678.5	2	19.1	18.5	13.8	5	7	37.333333	12.04258	20,3	19.9	13	7.2	7	37.333333333	8.362902506		1
121		683,9	2	19.1	18.8	13.8	5.15	7	37.333333	11.691825	20	19.4	12.6	8.1	Ť	37.333333333	7.433691117		1
122	12-Apr-98	692.5	2	19.3	18.8	14.2	4.85	7	37,333333	12.415031	20.1	19.5	12.8	7.1	7	37.333333333	8.480689866		1
123		698.3	2	19.2	18.4	14.1	4.7	7		12.811255	20.1	19.8	12.5	7.1	7	37.33333333	8.480689866		<u>∤*</u>
124	—	702.3	2	19	18.4	13.8	4.9		37.333333		19.9	19.1	12.5	7	7	37,33333333	8.601842578		1
125		707.8	2	19.2	18.6	14.4	4.6		37.333333		19.9	19.1	11.9	7.45	7	37.33333333	8.082268194		<u>├</u> ·
	13-Apr-98	716.5	2	19.9	19.1	14.1	5.4	7	37.333333		20	19.5	11.8	7	7	37.333333333	8.601842578		+
127		723.6	2	18.9	18.1	13	5.5		37.333333		20.8	20	12.2	7.6	7	37.33333333	7.922749743		<u>∤</u>
128		727.1	2	19.2	18.5	13.4	5.45	7		11.046238	20.0	19.5	12.1	7.95	7	37.333333333	7.57394944	·	f
120		141.1	4	19.4	1	19,4		╘╾╌╬╌╌╼╉	0,000000	1.0402.30	20,1	13.0	16.1	1.00		41,00000000	1.01004044		<u> </u>

130 131	Date	Hour						Н			I K	1	M	N	0				
130 131 132 1	44 4 00	1,000	Conc Flow	Element A Feed Psi	A Top os	Ellicate psI-A	A TMP	A Filt GPM	GED	A GFD/osi	B Feed ps	8 Top psi	Filtrate psi-B	BITMP	8 filt Gom		B.GFD/pst	RO Hour	S
131 132 1	14-Apr-98	740.2	2	19.5	18.8	13	6.15	7	37.333333	9.7907151	20	19.2	11.2	8.2	7	37.333333333	7.343036347	Liv Hour	
132 1		746.1	2	18.9	18.1	12.2	6.3	7	37.333333	#VALUEI	20.8	20	11.8	7.7	7	37.33333333	#VALUE!		Shut Dow
		751.8	2	19.2	18.5	12.4	6,45	7	37.333333	9.335333	20.1	19.5	11.5	8.4	7	37.33333333	7.168202148		0101.004
133	15-Apr-98	763.4	2	19.8	18.9	12.1	7.25		37.333333		20	19,3	11.3	8.6	7	37.333333333	7.001499773		
		769.3	2	19.1	18.5	11.5	7.3	7	37.333333		20.6	20	12	8.3	7	37.333333333	7.25456603		
134		774.6	2	19.1	18.3	11.2	7.5	7	37.333333		21	20.5	9.7	8,35	7	37.333333333	7.211125515		
135		778.8	2	19.8	19	11.9	7.5		37.333333		19.9	19.1	8.3	8.4	7	37.333333333	7.168202148	······	
	16-Apr-98	787.5	2	19.8	19.2	10.8	8,7		37.333333		20,5	20	11.5	11.05	<u> </u>	37.33333333	5.449131045		
137		798.3	2	18.9	18.1	10.5	8		37.333333		21	20.2	12	11.2	7	37.33333333			·
138		803.9	2	19.8	19	10.9	8.5		37.333333		19.8	18	9	8.75	7		5.376151611		
	17-Apr-98	812.4	2	19.9	19.2	10	9.55		37.333333		19.9	19.2	8.2	8.6	7.	37,33333333	6.881474062		
140	31.3(000	821.1	2	18.5	17.5	5.8	12.2	7	37.3333333							37.33333333	7.001499773		
141		822.9	2	18.5	17.9	4.9	13.3				20.5	20.2	16.2	9.9	7	37.33333333	6.082110914		
142		627.8	2	19.8	19.1	16.2	3.25		37.333333		20.6	20	14.6	11.35	7	37.33333333	5.305101149		
	19 Acr 09	835.5	2	19.7	18.9				37.333333		19,7	18.9	11.5	4.15	/	37.333333333	14.50913206	· · · · · · · · · · · · · · · · · · ·	
144	18-Apr-98	841	2		17.5	15 13.5	4,3		37.333333		19.5	19	11,5	5.7	7	37.33333333	10.56366632		
				18.2			4.35		37.333333		20.6	19.9	11	7.8	7	37.33333333	7.719602314		
145	10 4 00	846.9	2	18.2	17.5	14	3.85		37.333333		19.8	18.9	9	7.75	7	37.33333333	7.7694062		
	19-Apr-98	858.2	0	19.8	19.1	14.7	4.75		37.333333		19.5	18.9	9.5	9.25	7	37.33333333	6.509502491		
147		865.4	0	18.2	17.3	12.9	4.85		37.333333		20.2	19.5	9.8	10.35	7	37.33333333	5.817671309		
148		869.4	0	18.1	17,5	13.5	4.3		37.333333		20	19.2	6.5	9.7	7	37.33333333	6.207515263		
149		874.8	0	19	18.5	14.1	4.65		37.333333		19.2	18.6	14.2	10.05	7	37.33333333	5.991333139		
	20-Apr-98	885.3	0	18.5	18	13.5	4.75		37.333333	12.6764	20.5	20	15.9	13,1	7	37.33333333	4.596404431		
	21-Apr-98	894.9	0	18.2	17.6	14.6	3,3		37.333333		20.6	20.1	15.5	4.7	7	37.33333333	12.8112549		i
152		898,6	0	19.5	19.5	16.2	3,3		37.333333		20	19.5	15	4.35	7	37.33333333	13.84204553		
	24-Apr-98	908,7	0	19.8	19.8	16.2	3.6		37,333333		20	19.5	14.5	4.85	7	37.33333333	12.41503053		
154		915.2	0	18.5	18,5	15.1	3.4		37.333333		20.9	20.1	15	4.75	7	37.33333333	12.67639959		
155		919.5	0	19	19	15.1	3.9		37.333333		20.4	20	15.1	5.25	7	37.33333333	11.46912344	0.8	
156		924.6	0	19.2	19.2	15.9	3.3	7	37.333333	18.246333	20	19.9	14.8	5.5	7	37.33333333	10.94779964	2	
157 2	25-Apr-98	930.2	0	19.1	19.1	15.3	3.8	7	37.333333	15.845499	20.9	20.2	15.2	5.1	7	37.33333333	11.8064506	3.7	
158		936.1	0	19.1	19.1	15.1	4	7	37.333333	15.053225	21	20.2	15	5.15	7	37.333333333	11.69182486	10.8	·
159		941.4	0	19.2	19.2	15.1	4.1	7	37.333333	9.9713862	19.9	19.3	14.9	5.35	7	37.33333333	7.64162305	25,7	
160 2	26-Apr-98	949.7	0	19.9	19.9	15.7	4.2	7	37.333333	9.6875549	20	19.5	14.2	5.8	7	37.33333333	7.265666143	26.3	
161		955.9	0	19.2	19.2	14.9	4.3	7	37.333333	9.5076008	20.5	20	14	4.7	7	37.33333333	8.698443259	30.5	
162		959.1	0	18.8	18.8	14.8	4	7	37.333333	9.6971519	20.8	20.1	15.1	5,55	7	37.33333333	6,98893829	34.5	·
163		965.2	0	19.1	19,1	14.8	4.3	7	37.333333	9.5076008	19.9	19.1	12.2	6.25	7	37.333333333	6.541229331	39.8	45.2
164 2	27-Apr-98	972.2	0	19.5	19.5	15.5	4	7	37.333333	10.171933	19,9	19.3	14.4	5.35	7	37.333333333	7.605183252	48.2	45.4
165		978.1	0	18.1	18.1	13.9	4.2	7	37.333333	9.3240964	20.2	20	14.4	7.3	7	37.33333333	5.364548599	54,5	40.6
166		982.3	0	18.8	18.5	14.5	4.15	7	37.333333	9.1477528	20.9	20.1	15.1	5.2	7	37.33333333	7.30061037	58.5	40.2
167		987.4	0	19.6	19.4	15.3	4.2	7	37.333333	9.4361877	19.8	19	13	5.7	7	37.33333333	6.952980439	72.5	37.4
168 2	28-Apr-98	994.9	0	19.9	19.9	15.9	4		37.333333		19.7	19.1	13.4	5.4	7	37.33333333	7.427487378	78.2	36.4
169		1000.7	0	18.5	18.5	14.2	4.3		37.333333		20.2	20	14,9	6.4	7	37.333333333	6.162968694	87.7	36.4
170		1006.2	0	18.9	16.6	14.4	4.45		37.333333		20.5	20.2	14.8	6	7	37.33333333	6.605331417	97.7	
171		1012.1	0	19.6	19.4	15.7	3.8		37.333333		20.1	19.9	14.9	5.2	7	37.333333333	7.605885161	106.7	36.4 36.4
172 2	29-Apr-98	1018.5	0	19.8	19.8	15.5	4.3		37.333333		20.2	20	13.9	5,55	7	37.33333333	7.106846782	131.4	36.6
173		1019.5	0	19,1	19.1	15	4,1		37.333333		20	19.8	13.5	5.1	7	37.33333333	7.789572987	143.2	
		1029.2	0	19,5	18.9	13.5	5.7		37.333333		20.1	19.9	14.2	6.2	7	37.333333333	6.531243086	143.2	36.4
175		1034.2	0	18.9	18.9	13.2	5.7		37.3333333		20.1	19.9	14.9	6.4	7	37.33333333	6,104331446		36.4
176		1038.3	ō	19.2	19.2	15	4.2		37.333333		20.1	19.9	14.8	5.8	7	37.33333333		167.2	36.4
177		1044.8	0	19.5	19.5	15.3	4.2		37.3333333	and the second se	21.2	20.9	14.9	5.0 5.1			6.639911699	178.7	36.7
		1052.7		19.2	19.2	15	4.2		37.3333333		20.1	19.8	15.5	5.1	7	37.33333333	7.977986353	192.2	36,6
179		1060	- <u></u>	19.1	19.1	14.2	4.9		37.3333333		20.1	20	15.5		,	37.33333333	7.38837602	201	36.6
160		1064.6	- 0	19.1	19.1	15.2	3.85		37.3333333					6.15	7	37.33333333	6.647590783	19	36.4
		1075.1		20	20	15.2	3.65	the second s			19.2	18.9	14.1	4.45	7	37.33333333	1.501076454	16.1	36.4
182		1075.1		18	20	16.5	3.5		37.333333		21.2	20.9	14,8	4.6	7	37.33333333	8.472708889	211.3	36.4
		1084	0	18	17.9				37.3333333		20	19.6	14.3	4.95	7	37.33333333	1.256084077	216,9	35.8
)-May-98					15.2	3.8		37.3333333		19.1	18.7	13.6	6.25	7	37.33333333	1.094617644	222.7	36.4
184		1087.7	0	19.9	19,9	15	4.9		37.333333		20.1	19.9	14.8	5.5	7	37.33333333	7.451001779	233.9	35.8
185		1092	0	17.9	17.9	14.1	3.8		37.333333		20.2	19.9	14.4	5.3	7	37.33333333	7.353671866	241.2	36.5
186		1097.9	0	20	20	16.1	3.9		37.333333		20.8	20	13.9	5.2	7	37.33333333	7.248452204	250.1	38.4
		1106.2	0	20.1	20	15.8	4.25		37.333333		22	21.8	16.9	5.65	7	37.33333333	7.270543423	261.2	36.3
188	_	1113.1	0	19.7	19.5	15.5	4.1		37.333333		22.2	22	17	6.5	7	37.33333333	5.967478078	264	36.4
189		1117.3	0	21	21	17.2	3.8		37.3333333		22.6	22.2	17.8	5	7	37.33333333	7.81354425	273,1	36.4
190		1121.4	0	21.2	21.2	17.2	4	7	37.333333	9.9792928	21.3	21	15.7	5.1	7	37.33333333	7.826896278	280.1	36.4

^	A	8	С	D	E	F	G	Н			ĸ		M	N	0	P	Q	R	<u>s</u>
	ate	Hour	Conc Flow			Filtrate psi-A	AIMP	A Fift GPM	GED	A GED/osi	B Feed psi		Elitrate osi-B	B.TMP	8 filt Gpm		B GFD/osi	RO Hour	
1 5-Ma	ay-98	1129.7	0	21.2	21.2	17.5	3.7	7			20.3	19.9	15.5	4.6	7	37.33333383	8.038723317	284.5	36.7
2		1136.9	0	19.2	19.2	15.2	4	7	37.333333		20	19.3	14.5	5.45	7	37.33333333	6.915954397	289.6	36.6
3		1140.3	Ő Ö	20	20	16.1	3,9	7	37.333333		20.1	19.9	14.9	4,6	7	37.33333333	7.962239298	290.9	36.4
4		1145.4	0	18,9	18.9	15	3,9	7_	37.333333		20,2	20	14.3	5.15	7	37.33333333	7.044237227	300.6	36.4
5 6-Ma	ay-98	1147.8	0	19.1	19.1	15	4.1	7	37.333333	9.1274797	21	20.2	15.5	5.1	7	37.33333333	7.337777786	306	36.6
6		1157.3	0	18.8	18.8	14.3	4.5	7	37.333333	8.4362609	21.1	20.8	15.5	5.8	7	37.33333333	6.545374815	314.3	36.4
7		1163.7	0	19.9	19.9	15.8	4.1	7	37,333333	9.0190554	21.1	20.9	15.6	5.1	7	37.333333333	7.250613188	321.1	37.1
		1173.7	0	20	20	15.5	4,5	7	37.333333		21,3	21	15.9	5.45	7	37.333333333	6.932503296	328.4	36.4
9		1177.8	0	20	20	15.9	4.1	7	37.333333		23	22.3	17.1	5.2	7	37.33333333	7 47719676	338.5	36.4
<u>a</u>		1182.8	- ē	20.2	20.2	16.1	4.1	7	37.333333		21.2	20.8	16.8	5.25	7	37.33333333	7.145183591	342.6	37.2
_		1188.5	<u> </u>	20.8	20.8	16.7	4.1	7	37.333333		20.0	20.1	14.9	5.55	7	37.33333333	7.005661829	350.1	36.7
1		1194.9		20.3	20.0	16.2	3.85	7	37.333333		20.1	19.9	15	4.2	7	37 33333333	8.494272028	360	36.4
2 8-Ma								 ; -		8.6407688	21.5	21.2		5.55	/ // // // // // // // // // // // // /	37,333333333			
3	+	1200.3	0	19.5	19.5	15.2	4.3	<u> </u>	37.3333333		21.5	20.3	16,2	5.55	<u>├</u> ─── / ───	37,333333333	6.694649698 7.702297571	366	36.7
14		1207	0	19.1				7											36,4
		1218.9	0	20.5	20.4	16.5	3.95	7	37.333333		22	21.5	16	5.15	7	37,333333333	6.828737894	373.4	36.4
6		1230.2	0	19.9	19.9	15.6	4.3	7	37.333333		20.5	20	14.6	5.1	7	37.33333333	7.250613188	383.1	36.4
17		1232.8	0	20.9	20.9	16.1	4.8	7	37.333333		22	21.5	16.1	5.75	7	37.33333333	6.602291118	388.1	36.4
8		1235.3	0	19.2	19.2	15	4.2	7	37.333333		21.5	21.2	15.8	5.45	7	37.33333333	6.437440183	392.2	36.4
		1243	0	21	21	16.2	4.8	7		7.7963889	21.8	21.2	16.1	5.65	7	37.33333333	6.623480834	406.7	36.4
0		1247.7	0	20.5	20.5	16	4.5	7	37.333333		21	20.5	15,6	5,55	7	37,333333333	6.536544454	413.1	36,4
Н		1254	0	19.4	19.4	15.1	4.3	7	37,333333	8.2967308	21.2	20.8	15.4	5,4	7	37,33333333	6.606656022	418.4	37.
2		1258.5	0	20.9	20,9	16.8	4.1	7	37.333333	9.1274797	21.2	20.8	15.4	5,15	7	37.333333333	7.266537225	429.5	36.
3 11-Ma	ay-98	1269,3	0	20.1	20.1	15.6	4,5	7	37.333333	8.0041422	21.2	20.9	15,4	5.6	7	37.33333333	6.431900003	431.5	37,
4		1273.7	0	20,1	20.1	15.6	4.5	7	37.333333	8.023295	20.9	20.2	14.2	5.6	7	37,333333333	6.447290628	438.3	36.4
5		1275.8	0	19.2	19.2	13,9	5.3	7	37.333333	7,162863	20.9	20.2	14.9	5,65	7	37.33333333	6.719145828	442	36.4
6		1279.3	ŏ	20.5	20.5	12.2	8.3	7		4.4233665	19.9	19.2	14.4	6.35	7	37.33333333	5.7817232	446.3	36.
7		1283.4	0	20.6	20.6	13.3	7.3	1 7	37.333333		19.9	19.3	14.3	5.65	7	37.333333333	6.451618551	452.2	36,3
		1293.5	- <u>0</u>	18.8	18.8	13.7	5.1	7	37.333333		20.9	20	14.9	5.15	7	37.33333333	6.977215195	460.5	36.2
				18.9	18.9	13.7	5.2	- '	37.3333333		20.8	20.1	15.1	5.3	7	37.333333333	6.635471727	467.6	36.4
19		1295.8			19.5	14.1	5.4	<u> </u>	37.3333333		20.0	19.9	14.4	5.55		37.333333333			
20		1299.3	0	19.5				<u> </u>									6.583579898	471.8	36.4
1		1303.8	0	20.5	20.5	15.5	5	7	37.333333		19.1	18.5	13.5	5.35	7	37.33333333	6.911799487	475.9	37.0
		1312.8	0	20	20	15	5	- '	37.333333		20	19.5	14.3	5.6	7	37.33333333	6.385948214	484.4	36,0
3		1322.2	0	18.9	18.9	14	4.9		37 333333		20.1	19.9	14.3	5.3	7	37.33333333	6.763562593	491.3	36.
4		1328,3	Ó	19	19	14	5	7	37.333333		21.5	20.9	16.2	5.45	7	37.33333333	6.688375195	494.8	36.
25		1336.7	0	19,1	19.1	14.2	4,9	7	37.333333		21.8	21.3	15.8	5.7	7	37.33333333	6.487390747	500	36.4
6 14-Ma		1341.3	0	21.1	21.1	16.1	5	7	37.333333		22	21.6	15.9	5	7	37.33333333	7.325260154	502	37.
7		1342.2	0	21.3	21.3	15.8	5.5	7	37.333333		22.8	22.2	17.3	5.75	7	37.33333333	6.354585815	511.7	36.
8		1343	0	21.8	21.8	15.7	6.1	7	37.333333	6.0764936	22	21.5	17.2	5.9	7	37.33333333	6.282476386	518.7	36.0
9		1350	0	21.8	21.8	17.2	4.6	7	37.333333	8.1939025	22.9	22.2	17.2	5.2	7	37.333333333	7.248452204	528.3	36.0
0 15-Ma	ay-98	1359.1	0	21.8	21.8	17	4.8	7	37.333333	7.5218391	22.2	21.9	16.2	4.55	Ť	37.33333333	7.935126927	533.5	37.4
1		1362.6	0	21.3	21.2	16.2	5.05	7	37.333333	7.3224014	21	20.2	15.5	5.35	7	37.33333333	6.911799487	537.4	37.1
2		1364.3	0	21.1	21.1	13.4	7.7	7	37.333333	4.8600866	21.7	21.2	15.5	5.85	7	37.333333333	6.397037045	543.1	36.
3		1371	0	19.9	19.9	15	4.9	7		7.5105701	21.3	21	16	5.1	7	37.33333333	7.216037957	549.6	36.
-	ay-98	1382.3	<u> </u>	20,5	20.4	14.8	5,65	7	37.333333		22.2	21.9	16.9	5,95	7	37.33333333	6.155680802	555.1	36.0
15		1387.6	- 0 -	20.2	20.2	16	4.2	7	37.333333		23.1	22.9	17.5	5.15	7	37.333333333	7.28392502	561	36.
6		1392.1	0	20.2	20.2	16.7	4.3	7	37.333333		22.2	21.8	16.2	5.15	····	37.333333333	7.371490083	573.6	36.
		1399.7		21.9	21.9	17	4.9	7		7.5827155	21	20.6	15.9	5.5	7	37.333333333	6.75551015	584.9	36.
				21.9	21.9	16.1	4.95	- / - -	37.3333333		22.5	20.0	16.9	5.8					
8		1404	0		19,9						22.5	22	16,9	5.8 4.9	7	37.33333333	6.452183916	590	36.
9		1408.3	0	19,9	22.1	15.8	4.1 4.6		37.333333		18,6		13	5.35	·····	37.33333333	7.729091894	597.7	36,
0		1413,2	0	22.1		17.5			37.333333			18.1			<u> </u>	37.33333333	7.011628757	608.8	38.
		1420.7	0	21.1	21.1	16.8	4.3	7	37.333333		21.3	20.9	15.8	5.15	<u> </u>	37.33333333	7.28392502	613.3	36.
2		1425.5	0	17.2	17.2	12.5	4.7	7	37.333333		21.5	21.2	16.2	5.35	7	37.33333333	7.164082655	624.1	
3		429.6		19	19	14.9	4.1	7	37.333333		21.5	21.1	15.8	5.3	7	37.33333333	6.89412612	628.5	36.0
4		1434.1	0	20	20	15.5	4,5	7		8.3559945	20.4	20	15.2	5.15	7	37.333333333	7.30135442	634,1	36.0
5 19-Ma		1441.4	0	19.5	19.5	14.9	4.6	7	37.333333		23.5	23.2	17.9	5.5	1	37.333333333	6.95206328	638.1	36.4
6	1	447.8	0	20.2	20.2	15.9	4.3	7	37.333333	8.7655701	22.5	22.2	16.1	5	7	37.33333333	7.538390293	643.7	36.0
7	ta	454.8	0	22.2	22.2	18	4.2	7	37.333333	8.9742742	20.6	20	15	5.45	7	37.33333333	6.915954397	649.7	36.0
8 20-Ma		462.1	0	21.2	21.2	16.5	4.7	7		8.1159728	21,2	20.7	15.3	6.25	7	37.33333333	6.103211566	654,1	36.0
9		467.9	ō	20	20	15.1	4.9	7	37.333333		20.2	20	15.2	5.3	7	37.33333333	7.266318463	663	36.6
0		469.2	0	19	19	14	5	7	37.333333		21.5	20.9	15.1	5.65		37.33333333	6.799921292	672.5	36,4
11		475.9	0	19.1	19.1	14.8	4,3	<u>├</u>	37.3333333		20.7	20.5	15.3	4.9		37.33333333	7.973004337	678.6	36.4
			-					┝──┶───┤				the second se							
21-Ma	iy-98 1	485.7	0	19.1	19.1	14.8	4.3	<u> </u>	37.333333	9.1947.596	21.2	20.9	16.2	6.1	i	37.33333333	6.481537893	687.2	36.

r1	A	β	c	D D	ε	F	G	Н	1	J	ĸ		M	N	0	Р	0	R	s
4	Date	Hour	Conc Flow	Element A Feed Psi	A Top psi	Filtrate Dal-A	ATMP	A FIIT GPM	GED	A GFD/psi	B Feed psi	B Top psi	Filtrate psi-8	<u>B.TMP</u>	8 filt Gom	_	B GFD/psi	RO Hour	
253		1491	0	19.4	19.4	14.3	5.1	7	37.333333	7.5332461	22.5	22	17.1	5.1	7	37.33333333	7.533246138		36.7
254		1496.1	0	20	20	16.8	4.2	7	37.333333	9.3240964	20.9	20.2	15.9	4.85	7	37.33333333	8.074475211	693.4	36.7
255	22-May-98	1504	0	20.2	20.2	15.8	4,4	7	37.333333	9.0072701	22.8	22	17.2	5.15	7	37.33333333	7.695531748		36.7
256		1513.7	0	19.9	19,9	15.B	4.1	7	37,333333		21.9	21.2	16	4.65	7	37.33333333	8.222870547	701	36.8
257	23 May-98	1524.2	0	21.2	21.1	16.9	4.25	7	37.333333		20.9	20.1	15.8	5.2	7	37.33333333	7.47719676	709.7	36,6
258		1530.2	0	20.5	20.4	15.8	4,65	7	37.333333		21.8	21.1	16.5	5.55	7	37.33333333	7.140898829	714.8	36.6
259		1535.2	0	19.5	19.5	15	4.5	7	37.333333		22	21.5	16.5	4.7	7	37,33333333	8.077271048	722.5	36.8
260		1538	0	21.1	21,1	16,8	4.3	7	37.333333		20.5	20	15.5	4.95	7	37.33333333	7.632756154	735.4	36.3
261	24-May-98	1545.4	0	21	21	16.2	4.8	7	37.333333		21.8	21.1	16.5	5.25	7	37.33333333	7.300541373	742.2	36.0
262		1551.2	0	19.2	19.1	14.2	4.95	7	37.333333		22	21.3	16.3 15.9	4.75	7	37.33333333	7.601016319	747	36.6
263		1554.2	0	20.1	20.1	<u>15.1</u> 14,9	5	7	37.3333333		21.2	19.8	15.9	4,95	7	37.33333333 37.333333333	7.651020258	760.7	36.4
264	25 11-1 22	1560.1 1566.9	0	20.1	20.1	14.9	5.5	7	37.333333		20	21.6	16.2	5.35	7	37.33333333	7.23188606	765.6	36.8
265 266	25-May-98	1566.9	0	18.9	18.8	14.0	4,55	7	37.3333333		21.9	21.0	15.9	4.9		37.333333333	7.368332146	779.7	36.4
267		1577	0 0	20.9	20.9	14.5	6,4		37.333333		20	19.4	14.3	5.6	7	37.333333333	6.893507212	785.2	36.4
268		1581	0	20.2	20.2	14.2	6	7	37.333333		20.5	20	14.9	5.6	7	37.33333333	6.571748854	789.9	36.8
	26-May-98	1591.9	0	18,9	18.8	12.8	6.05	7	37.333333		21	20.5	15.5	5.4	7	37.333333333	6.670118521	803.4	36.8
270	~o.uaj.00	1598	0	19.2	19,2	12.9	6.3	7		6.0837845	21.1	20.8	15.5	5.35	7	37.333333333	7.164082655	810.5	36.4
271		1602.1	0	19.9	19.9	13.9	6	7	37.333333		19.9	19.2	14.1	5.25	7	37.33333333	6.976438242	818.5	36.6
272	27-May-98	1609.3	ŏ	19,1	19.1	13	6.1	7	37.333333		19.5	19.3	14.5	5.45	7	37.33333333	6.833800589	826.8	37.2
273		1614.8	0	19.2	19.2	13	6.2	7	37.333333	6.1230926	20.2	20	15.2	5.45	7	37.33333333	6.965719986	833.5	36.3
274		1618.8	0	18.5	18.5	12.5	6	7	37.333333	6.1189904	21.9	21.2	16.2	4.9	7	37.33333333	7.49264129	842.5	36.7
275	ĺ	1622.3	0	19.2	19.2	13.2	6	7	37.333333	6.192551	21.2	20.2	15	4.9	7	37.33333333	7.582715474	853.9	36.6
276	28-May-98	1631	0	21.5	21.5	15.1	6.4	7	37.333333		21.9	21.1	15.2	5.35	7	37.33333333	6.994890974	856.6	36.6
277		1635.7	0	20	20	13.2	6.8	7	37.333333		22	21.8	16.9	5.7	7	37.33333333	6.379759545	874.2	36,4
278		1638.2	0	19,6	19.6	13.2	6.4	7	37.333333		12.2	11.9	6.9	6.3	7	37.33333333	5.925925926	886.5	36.4
279		1644.8	0	21.1	21.1	15	6.1	7		5.8625098	17.7	17.1	12.5	5	7	37.33333333	7.152261999	898.3	36.4
260	29-May-98	1652.3	0	11.5	11.5	5	6.5	7	37.333333		20	19.5	13.9 14.1	5,15	7	37.33333333	7.30135442 7.280804596	910.8 922.5	36.4
281		1652.8	0	16.9 19.5	16.9 19.5	10.5	6,4 7,7	7	37.333333		<u>19.9</u> 21.2	19.1 20.9	15.6	4.9 5.85		37.33333333 37.333333333	6.366532172	922.5	36.4 36.4
282 283	·	1659.7	0	19,5	19.5	12.2	8.9		37.3333333		19.2	18.9	13.6	5,4	7	37.33333333	6.622464814	946.9	36.4
284	30-May-98	1672.3	0	19.2	19.2	12.5	6.7	7	37.3333333		20.2	20	15.5	5.45	7	37.33333333	6.801212968	954.9	37.1
285	00-may-30	1677.9	0	18.1	18	11.5	6,55	7	37.333333		21.3	21.1	15.6	5.45	7	37.33333333	6.704379529	958.5	36.4
266	31-May-98	1695.6	0	20	20	13	7	7	37.333333		21.8	21.2	16.2	4.6	7	37.33333333	7,943232268	975.3	36.6
287	1-Jun-98	1716	0	20.1	20.1	13	7.1	7	37,333333		21	20.2	15.3	5.6	7	37.33333333	6.682619056	982.3	36.6
288	2-Jun-98	1735.1	Ö	20.5	20.5	14.8	5.7	7	37.333333	6.4073907	20.9	20.1	15.3	5.3	7	37.33333333	6.977005143	995.2	36,6
289		1743.6	0	19.6	19.4	13,6	5,9	7	37.333333		20	20	15.2	5.3	7	37.33333333	7.248972699	1005.8	36.8
290		1748	0	19.7	19.7	14	5.7	7	37.333333		21	20.3	15.4	5.2	7	37.33333333	6.976504177	1010	36.6
291	3-Jun-98	1758	0	19.5	19.5	13.9	5.6		37.333333		20.9	20.1	15.1	4.8	7	37.33333333	7.759211085	1020	37.0
292		1765.5	0	19.5	19,4	12.5	6.95	7	37.333333		21,5	21	16	5.25	7	37.33333333	7.283113913	1027.9	36.4
293	4-Jun-98	1778	0	19.9	19.9	13.1	6.8	7		5.3222384	21	20.8	15.6	5.4	7	37.33333333	6.70207801	1035.4	36,7
294		1783.1	0	20.1	20.1	13.5	6.6	7	37.333333		21.1	20.7	15.3	5.25	7	37.33333333	7.11111111	1043.9	36.7
295	5-Jun-98	1794.1	0	19,8	19.0 19.8	13.9 13.1	5.9 6.7	7	37.333333		22 20.7	21.5 20.3	16.8 15.6	5.3 5.6	7	37.33333333 37.333333333	7.145764204 6.385948214	1050.6	36.4
296 297		1799.6	0	19.6 20.8	20.6	13.1	6.2	7	37.3333333		20.7	20.3	13.6	3.0	7	37.33333333	7.669328066	1065	36.7
297 298	6-Jun-98	1805.2	0	19.2	19.1	14.5	4.25	7	37.3333333		20.8	20.3	15.3	4,9	7	37.333333333	7.474755259	1091.5	36.7
299	0-0011-00	1819.7		19.5	19.3	13.2	6.2	7	37.333333		21.2	21.1	16.2	5.7	7	37.333333333	6.581090149	1114.5	37.1
300	7-Jun-98	1834.9	0	19.5	19.5	14	5.5	7		6.7232959	21	20.3	15.3	5.2	7	37.333333333	7.111178319	1136.4	36.7
301		1840.8	0	20	19.9	14.3	5.85	7		6.6234808		21	15.8	4.95	7	37.33333333	7.560134689	1145	36.7
302	8-Jun-98	1858.7	ō	19.8	19.5	14.8	4.85	7	37.333333		21	21	15.6	5.35	7	37.33333333	6.652482024	1150.9	36.4
303		1861.9	0	19.9	19.8	13.9	5.95	7	37.333333	6.024686	20.8	20.4	15.4	5.25	7	37.33333333	6.827977475	1160	36.7
304	9-Jun-98	1876.8	0	19.5	19.5	13.8	5.7	7	37.333333		20	19,8	14.4	5.4	7	37.33333333	6.782648291	1170.9	36,3
305		1881.3	0	19.2	19.1	13.8	5,35	7		6.5421118		20	15	5.2	7	37.33333333	6.730826585	1165.2	36.7
306		1885.5	0	18.8	18.6	13.2	5.5	7	37.333333		19,9	19.7	14	5,5	7	37.33333333	6.67526224	1189.5	36.6
307		1889	0	19.1	19	13,3	5.75	7	37.333333		21	20.8	14.5	5.05	7	37.33333333	6.997327842	1202.5	36,7
308	10-Jun-98	1896.7	0	18.5	18.4	12.2	6.25	7	37.333333		20.1	20	14.5	5,8	7	37.33333333	6.390794944	1208	36.6
309		1901.9	0	19.8	19.5	14.5	5.15	7	37.333333		20.1	20	14.5	6,4	7	37.33333333	5.534540759	1225	36.6
310		1904.8	0	19,1	19	14.6	4.45	7	37.333333		20.9	20.5	15.7	5.55	7	37.33333333	6.489845048	1231.1	36.7
311	11-Jun-98	1912.5	Ō	19	18.9	13	5.95	7	37.333333		19.2	19	13.9	5,55	7	37.33333333	6.412752942	1248.1	36.4
312		1919.2	0	19.6	19.5	13.7	5,85	7	37.333333		20.2	20.1	13.8	5	<u>7</u>	37.33333333	7.377971012	1254.7	36.6
313	12-Jun-98	1920	0	19,1	19.1		5.1	7	37.333333		20.2	20.1	14.5	5.2	7	37.33333333	6.959850241	1275.1	36.3
314		1925.1	0	19	18.9	11	7.95	7	Lar.333333	4.6402333	20.9	20.2	14.0	6.35	<u> </u>	37.33333333	5.809425994	1279	36.8

	A	в	C	D	E	F	G	н	1	J	ĸ	L	м	N	0	P		R	s
4	Date	Hour	Conc Flow	Element A Feed Psi	A Top psi	Elitrate osl-A	ATMP	A FILL GPM	GED	A GED/osl	B Feed os	B Too osi	Elitrate psi-B	B.TMP	B fill Gpm	· · · · ·	B GFD/osi	RO Hour	
315		1927.4	0	19.1	19	12.2	6.85	7	37.333333	5,2960324	18,5	18	13	5.65	7	37.33333333	6,420853402	1296	36.3
316	13-Jun-98	1935.7	0	19.5	19.5	13.5	6	7	37.333333		20.2	20	14.5	5.75	7	37.33333333	6,415626967	1301	36.4
317		1942.7	0	17.1	17.1	12.5	4.6	7	37.333333		20	19.4	12.8	5.25	7	37.33333333	6,926596078	1305.9	36.3
318	14-Jun-98	1957	a	19.2	19,2	13.8	5.4	7	37.333333		20	19.5	14.1	5.6	7	37.33333333	6.370704021	1309.9	36,3
319	14-0011-00	1962.9	0	18.5	18.5	11	7.5	- 7	37.333333		20.5	20.5	14.5	6.9	7	37.333333333	5.333593273	1316.7	36,4
320	15-Jun-98	1980.1	ō	18.5	18.5	13.5	5		37.333333		20.5	20.1	14	5,65	7	37.333333333	6.591896143	1325	36.6
321	10-001-90	1986	0	19.5	19.5	13.5	6		37.333333		20.1	20.1	13.9	6	7	37.333333333	6.118990387	1328.1	36.6
322	16 1	2001.6	0	18.1	18.1	12.7	5,4		37.333333		20.1	20.1	14.2	6.3	7	37.333333333	5.827609892		
	16-Jun-98		0	18,9		13.2	5,7		37.3333333		22							1336.9	36.4
323 324		2006.3			18.9				37.333333			21.5 21	15.2	6.15	7	37.33333333	6.084986457	1344.2	36.7
		2011.7	0	19.9	19.9	14.2	5.7				21.3		15.1	6.35	7	37.333333333	5.823327127	1345.6	36.4
325	17-Jun-98	2023.6	0	20.8	20.5	14	6,65	7	37.333333		22	21.2	15	6.55	7	37.33333333	5.865580962	1351.4	36.3
326		2029.1	0	20	19,9	14.5	5.45		37.333333		21.8	21.5	15.4	6.05	. 7	37.33333333	6.068420218	1351.4	36.4
327	18-Jun-98	2042,5	0	20.9	20.9	15.5	5.4		37.333333		22	21.5	16	6.6	7	37.33333333	5.793386067	1363.4	36.2
328		2048	0	20.2	20,1	14.8	5.35		37.333333		21.8	21.2	16.2	6.25	77	37.33333333	6.016316042	1387.6	36,6
329		2054.2	0	20.8	20.4	15.2	5.4		37.333333		20.5	20.1	14.1	5.75	7	37.33333333	6.234240303	1394.2	36,6
330	19-Jun-98	2063.9	0	21.1	21.1	15,7	5.4		37.333333		23	22.6	16.5	5.3	7	37.333333333	6.844872022	1418.9	36.6
331		2070.7	Q	19.2	19.1	14	5,15		37.333333		22	21.8	16.5	6.2	7	37.33333333	5.618289682	1420.8	36.6
332		2075.4	0	21.5	21.3	16	5.4		37.333333		22.1	22	16,8	6.3	7	37.33333333	5,730925003	1437.7	36.6
333		2083.9	0	20.6	20.4	15.3	5.2		37.333333		22.3	22.2	16.7	5,4	7	37.33333333	6.638311434	1449,7	36.4
334	21-Jun-98	2106.1	0	20.8	20.6	15.8	4,9		37.333333		21.1	21	15.3	5.25	7	37.33333333	6.91006128	1463.2	36.4
335	22-Jun-98	2129.1	0	21	20,9	15.7	5.25		37.333333		21.8	21.5	15.8	5,55	7	37.33333333	6.276287573	1469,4	36.8
336	23-Jun-98	2146.2	0	20	19.9	15	4.95		37.333333		21	21	14.2	5.75	7	37.33333333	6.369791438	1484.7	36.3
337		2155.5	0	20.1	20	15.1	4.95	7	37.333333	7.0876867	19.5	19,1	13,1	5.85	7	37.33333333	5,997273333	1491	36.6
338	24-Jun-98	2169.7	Ö	19.5	19.5	13.8	5.7	7	37.333333	6,1404032	16.9	16.5	10.4	6,8	7	37.33333333	5.147102683	1498	36.7
339		2179	0	19.1	19	13	6.05	7	37.333333	5.9534942	20.2	20.1	13.8	6.2	7	37.333333333	5,609458067	1509	36.4
340	25-Jun-98	2189.6	0	15.9	15.8	10.7	5.15	7	37.333333	6.6674659	19.5	19.1	12.2	6.3	7	37.333333333	5,45038882	1517	36.8
341		2195.3	0	19	19.8	13.5	5,9	7	37.333333	5.9039654	18,1	17.9	11.2	6.35	7	37.33333333	5.485574178	1522.1	36.8
342		2200	0	18	17.9	12.2	5.75	7	37.333333	6.2193583	19.9	19.5	12.2	7.1	7	37.333333333	5.036804225	1531.8	36.4
343	26-Jun-98	2213.9	0	16.9	16.8	10.8	6.05		37.333333		20.1	19.9	12.8	6.8	7	37.33333333	5.208979537	1557	37.2
344	27-Jun-98	2227.2	0	18,5	18.2	12.2	6,15		37.333333		19.8	19.2	13	7.5	7	37.33333333	4,768174666	1583.1	37.2
345		2232.6	0	18.9	18,7	12.7	6,1		37,333333		20.1	20	13.4	7.2	7	37.33333333	5.17280739	1602.6	36.4
346	28-Jun-98	2249.7	0	18.2	18.1	13.1	5.05		37.333333		20.9	20.5	13.2	8,5	7	37.33333333	5,232422719	1613.1	36.4
347		2253.6	0	18.8	18.7	13.5	5.25	7	37.333333		19.5	19	11	6.65	7	37.33333333	5.351996816	1629.4	36.4
348	29-Jun-98	2271.1	0	19.5	19.3	13	6.4		37.333333		20.9	20.5	13	7.5	7	37.333333333	4.534766356	1636.3	36.8
349	20 001 00	2274.8	- ů	18	17.8	11.5	6.4		37.333333		22.5	22.2	15	8.25	7	37.33333333	4.345076575	1652	36.4
350	30-Jun-98	2291.8		19.6	19,3	13.2	6.25		37.333333		22.2	22	13.2	7.7	7	37.33333333	4,459409034	1658,8	36.6
351	1-Jul-98	2312.7	<u> </u>	21.1	21	15.9	5.15		37.333333		22.8	22.2	14.2	7.35	7	37.333333333	4.671761846	1664.8	37.1
352	2-Jul-98	2332.1		21	20.9	14.9	6.05		37,333333		21.1	20.9	13.4	8.9	<u> </u>	37.33333333	3.803209463	1679,7	
353	2-301-30	2341		21.1	20.3	16.2	4.85		37.333333		22.5	20.5	13.1	B.3		37.333333333	4.216903403		36.4
354		2344.7		20	19.9	15	4.95		37.3333333		22.5	22	13	7.6	7	37.333333333	4.485806654	<u>1694</u> 1701	36.2
355	3-Jul-98	2354.4	<u> </u>	20	20	14.9	5.1		37.333333		16.9	18.5	10.9	9.15	<u> </u>				36.3
356		2358.7	0	20	20.9	15.5	5,45		37,3333333		19	18.8	11.2	9.1	7	37.33333333 37.333333333	3.816037968	1720.5	36.7
357		2362.7	0	17.5	17.3	12.2	5.2		37.3333333		19.8	19.4	11	7.8				1724.4	36.6
358		2365.4	0	18	17.9	12.8	5,15		37.3333333		22.8	22.4	13.8	7.0	7	37.333333333 37.333333333	4.476506078	1744.8	36.8
359	4 141 00	2305.4	0	18.2	17.9	12.8	5.35		37.3333333		22.8	22.4			7			1749	36.7
	4-Jul-98	2396.2		21.2		12.8	_				20.3		12.2 .	8.6	7	37.33333333	4.050394887	1768.4	37.0
360	5-Jul-96				21.1		5.25		37.333333			20.1	11.2	8.8		37.33333333	3.94889132	1792	36.6
361	0.1.1.00	2399.8	0	20.5	20.4	14.8	5.65		37.333333		21.5	21.2	12.9	9.55	1	37.33333333	3.691324837	1814	37.1
362		2417.9	0	19	18.9	13,4	5,55		37.333333		21.9	21.6	12.8	9	7	37.33333333	3.734082	1824.3	36.4
363	7-Jul-98	2420	0	19.1	19	13.5	5,55		37.333333		22	21.8	13.8	8,45	7	37.33333333	4.161893509	1839.6	36.4
364		2425.2	0	20.9	20.8	14	6.85		37.333333		21	21	13.5	8.95	7	37.33333333	3.891999556	1844,2	36.7
365		2428.2	0	21	20.9	15.2	5,75		37.333333		20.8	20.3	12.3	8.1	7	37.33333333	4,362531556	1866.3	36.4
366	8-Jul-98	2441.4	0	19.5	19.5	15	4.5		37.333333		20.1	20	12.1	7,5	7	37.33333333	4.734109125	1687.8	36.4
367]	2444.3	0	19.1	19	13.3	5.75		37.333333		19.2	19	11.2	8.25	7	37.33333333	4.152179521	1891,4	36.4
368	86-Iut-6	2467	0	18,1	18	13,2	4.85		37.333333		23.2	23.1	13.4	7.95	7	37.33333333	4.371099826	1912.5	36,4
369		2470.0	0	17.2	17.1	12.2	4.95	7	37.333333	6.8054857	23,6	23.2	14.2	7.9	7	37.33333333	4.26419673	1915	36.7
370	10-Jul-98	2481.4	0	23	22.8	15.5	7.4	7	37.333333	4,4236121	23.1	22.9	15.8	9.75	7	37.33333333	3.357408168	1920.9	36.7
371		2485	0	22.2	22	16.3	5.8	7	37.333333	5.6981335	24.8	24.5	15.8	9.2	7	37.33333333	3.592301554	1924,5	36,7
372		2489	0	22.9	22.8	17.1	5.75		37.3333333		25.9	25.3	16.3	7.2	7	37.33333333	4,601146707	1939.5	36.3
373		2491.3	Ō	23.2	23.1	18.2	4.95		37.333333		26	25.5	15.5	8,85	7	37.33333333	3,663647089	1942.8	37.0
374	11-Jul-98	2500	Ŏ	24.1	24	19	5.05		37.333333		24.8	24.2	13.2	9.3	7	37.33333333	3.469748741	1968.4	38.1
375		2519.5	Ő	24.8	24.5	16.6	5.85		37.333333		26.1	25.8	15.5	10.25	;	37.33333333	3.224309688	1972.6	38.0
376		2524.6	0	23.2	23	16.2	6,9		37.333333		20	19.5	9.5	11.3	7	37.333333333		1985	
10		2024.0	<u> </u>	4.J.K			0.0		01.000000	002 1003	<u>20</u>	19.0	5,3	6.11		01.00000000	2,901104000	1992	36.4

—T	A	в	С	D	Ē	F	Ğ	Ĥ	1		ĸ	L	M	Ň	0	P	<u> </u>	R	s
4	Date	Hour	Conc Flow	Element A Feed Psi	A Too osi	Filtrate osl-A	AIMP	A Filt GPM	GED	A GED/psi	B Feed osi	B. Top psi	Fittrate osl-B	BIMP	B filt Gom		B GFD/osi	RO Hour	
377	13-Jul-98	2539.4	0	24.9	24.7	19	5.8	7		5.6439189	17.2	17	8.1	10.45	7	37.33333333	3,132510013	1989	37.4
378		2563.1	0	17.9	17.5	12.1	6,6	7		6.7210937	20	19.9	9.1	10.25	7	37.333333333	3,125670678	1993,3	36.8
379		2571.6	0	16,1	16	11.2	4.85	7	37.333333	7.0629858	20.8	20.2	11.2	9	7	37.33333333	3.806164561	2006	37.4
380	15-Jul-98	2579.8	0	19.9	19.5	13.2	6.5	7	37.333333	5.3079962	20	20	9.1	10.85	7	37.33333333	3.179905574	2027.4	37.0
381	16-Jul-98	2577	Ó	19.5	19.2	13.9	5,45	7	37.333333	6.3155255	20,7	20.1	9.2	9,3	7	37.33333333	3.701033787	2050.5	37.4
382	17-Jul-98	2593	Ö	19	19	12.9	6.1	7	37.333333		21.5	21.2	11.3	10.9	7	37,33333333	3.135202588	2077.6	37.6
383		2600.5	0	19.5	19.2	13.2	6.15	7	37.333333		21.8	21.5	8	11.2	7	37.33333333	2.957880026	2087.4	37.0
384	18-Jul-98	2611.7	0	20,9	20.7	13.2	7,6	7		4.5505986	21.1	20,9	7	10.05	7	37.33333333	3.441247146	2096.6	37.4
385		2632.8	0	21	20,9	14.5	6.45	7	37.333333		20	19.8	14.8	13.65	7	37.33333333	2,3026648	2099	37.2
386		2638.4	0	20	19.9	13.9	6.05	7	37.333333	5.3848977	23.4	23.2	20.8	14	7	37.33333333	2.327045071	2112	36.7
387	21-Jul-98	2647.5	0	18.8	18.5	14.7	3.95	7		7.8066115	20.2	20.1	16.2	5.1	7	37.33333333	6.046297147	2120.4	37.5
388	2. 44. 55	2653.1	0	24.9	24.8	21.1	3.75	7		8,7292612	20.2	20.2	16,2	2.5	7	37.33333333	13.09389185	2133.1	36.6
389	22-Jul-98	2665.5	0	19.2	19	16.2	2.9	7		11.341923	23	23	19.1	3,95	7	37.33333333	8.326981318	2157.1	36.4
390		2668.1	Ū	19.1	19.1	16.5	2.6	7	37.333333	12.263595	20	19.9	15.8	4	7	37.33333333	7.97133691	2163.5	36.4
391		2672.8		21.9	21.9	18.7	3,2	7		10.059885	19.2	19,1	15.1	3.9	7	37.33333333	8.254264942	2171	37.0
392	23-Jul-98	2683.6	0	17.3	17.2	15.5	1.75	7	37.333333	18.527587	19.2	19.1	15.2	4.15	7	37.333333333	7.812837768	2175	35.6
393		2687.8	0	18	17.9	14.5	3.45	7	37.333333	9.6023931	18.1	18	14.5	4.05	7	37.33333333	8.179816368	2189.1	37.1
394		2691.5	0	18	17.9	15	2.95	7		11.123071	19.6	19.4	15.6	3.95	7	37.33333333	8.307103596	2191.9	37.5
395		2694.7	0	17	16.9	13.8	3.15	7		10.36717	19.7	19,5	15,4	3,55	7	37.33333333	9.199038605	2196.5	37.4
396	24-Jui-98	2705.5	0	18.2	18.1	15	3.15	7		10.592584	20	19.9	16	3.9	7	37.33333333	8.555548583	2208.6	37.8
397		2708.8	Ō	18.2	18.1	15	3.15	7		10.391978	20.1	20	16,1	4.2	7	37.33333333	7.793983246	2213.3	37.2
398		2713	ō	18.6	18.5	15.1	3.45	7		9.4883274	20.2	20.1	16.3	3.95	7	37.33333333	8.287273325	2213.3	37.2
399	25-Jul-98	2715.3	0	18.9	18.8	15.6	3.25	7	37.333333	10.096326	19.5	19.2	15.1	3.95	7	37.333333333	8.307103596	2221.7	37.8
400		2725	0	19,1	19	15.6	3.45	7	37.333333	9.7410835	20.6	20.5	16.2	3.85	7	37.33333333	8.729022858	2233.4	37.2
401		2729	0	18.1	18	14.5	3.55	7	37.333333	9.1990386	19.1	19	15	4.25	7	37.333333333	7.683902835	2237.2	37.4
402	26-Jul-98	2747.2	0	19.1	19.1	15.6	3.5	7		9.2637934	20.1	20	15.4	4.35	7	37.33333333	7.453626836	2242	37.4
403		2750.8	0	17.7	17.6	14.5	3.15	7	37.333333	10.293104	19.6	19.5	15.2	4.05	7	37.33333333	8.005747342	2242	37.1
404	27-Jun-98	2768	0	18.9	18.8	14.9	3.95	7	37.333333	8.5488007	20.3	20.2	16.9	4.65	7	37.33333333	7.261884463	2255.6	37.1
405		2772	0	18.1	18	14.2	3.85	8	42.666667	10.023826	20.1	20	16.4	4.35	7	37.333333333	7.762704081	2255.6	37.4
406	28-Jul-98	2781.5	0	19.3	19.2	15.6	3,65	8	42.666667	10,44748	19.9	20	16.4	3,35	7	37.33333333	9.960190887	2280	37.0
407		2782.4	0	19	18.9	15.1	3.85	8	42.666667	9.9047538	19.7	20	16.4	3.65	7	37.33333333	9.141545061	2280	37.0
408	29-Jul-98	2793.2	0	18.9	18,8	14.8	4.05	8	42.666667	9.4156302	20.1	20	16.3	3.75	7	37.33333333	8.897770526	2280	37.2
409		2797.4	0	18.1	18	14.2	3.85	7.5	40	9.2857067	19.5	19.2	15.2	4.15	7	37.33333333	8.04015409	2280	37.4
410		2801.9	0	18.1	18	13.9	4.15	7	37.333333	7.4126518	19.2	19.1	15.2	3.95	7	37.33333333	7.787975983	2300.2	37.6
411	30-Jul-98	2813.6	0	18.8	18.6	14.2	4,5	7	37.333333	6.8853033	19.9	19.6	15.5	4,35	7	37.333333333	7.122727568	2321.3	37.5
412	31-Jul-98	2834.1	0	19	18.5	. 14.8	3.95	7	37.333333	8.3269813	20	19.5	14.4	5.35	7	37.33333333	6.147958169	2333.6	37.5
413		2836.2	0	19.2	18.8	14.5	4.5	7	37.333333	7.1708141	20.1	19.8	15	4.95	8	42.66666667	7.450196431	2338.1	37.5
414	1-Aug-98	2846.3	0	22	21.5	15.2	6.55	7	37.333333	4.767228	23	22.5	17.1	5.65	8	42.66666667	6.342623157	2343.6	37.5
415		2850.4	0	20.8	20	10.1	10.3	7	37.333333	3.2240318	21.9	21.2	14.2	7.35	8	42.66666667	5.163463948	2356.8	37.1
416	2-Aug-98	2864.7	0	22.2	22	2	20.1	7	37.333333	1.5787711	23.5	23	12	11.25	8	42.66666667	3.223700253	2380	37.2
417	3-Aug-98	2872	0	19.5	19	15	4.25	7	37.333333	7.6839028	20.5	20	16.8	3.45	8	42.66666667	10.81791703	2382,3	37.2
418		2867.7	Û	19.1	18.5	13.3	5,5	7	37,333333	6.1985692	20.1	19.8	14.4	5.55	7	37.33333333	6.142726229	2393.3	37.1
419		2892.5	0	19.6	19	14	5.25	7	37.333333	6.2351866	20.8	20,1	15.3	5.15	7	37.33333333	6.356258181	2397.8	36.6
420	5-Aug-98	2909.8	0	20	19.7	15.9	3,95	7	37.333333		21.2	20.9	16.7	4.35	7	37.333333333	8.06529862	2414.1	36.4
421		2915.4	0	18.2	17.8	13.2	4,8	7		5.9654272	19.2	18,8	14.5	4.5	7	37.33333333	6.363122308	2416	37.0
422	6-Aug-98	2929	0	14	13.5	8.1	5,65	7	37.333333		15	14,5	9.5	5.25	7	37.333333333	6.250106515	2433.5	37.0
423		2935.3	0	19.8	19.2	14.2	5,3	7		5.9588634	21	20.2	15.2	5.4	7	37.33333333	5.8485141	2438.5	37.1
424	7-Aug-98	2951.3	0	19.9	19.2	14.9	4.65	7	37.333333	7.1243562	21	20.5	16	4.75	7	37.33333333	6.974369746	2457.3	37.0
425	8-Aug-98	2973.5	0	19.5	19,1	14.2	5.1	7		6.2371044	20.5	20.1	15.2	5.1	7	37.33333333	6.237104442	2463.4	37.5
426		2991.3	0	19.5	19	15.1	4.15	7	37.333333		20.6	20.1	15.8	4.55	7	37.33333333	7.35087497	2478,4	37.2
427	10-Aug-98	3013	0	16.5	16	12.1	4.15	7		7.7941874	17.1	17	13	4,05	7	37.33333333	7.986636453	2485	36.8
428		3016.7	0	19	18.5	15	3.75	7	37.333333		20	19.9	15.5	4,45	7	37.333333333	7.534048046	2502.3	36.4
429	11-Aug-98	3032.8	0	20.4	20	16.8	3.4	7	37.333333	9.9079665	21.8	21.2	17.2	4.3	7	37.333333333	7.834221899	2528.2	36.8
430		3044.2	0	19.9	19.2	15.9	3.65	7		9.0545683	20.9	20.2	16.5	4.05	7	37.33333333	8.160289951	2546.3	37.1
431	12-Aug-98	3062.5	0	19.7	19.1	15.8	3.6	7	37.333333	9.0929805	20.6	20,1	16,1	4,25	7	37.333333333	7.702289326	2569.7	37.6
432		3065.9	Û	19.8	19.1	15,8	3,65	7	37.333333	8.6319412	20,6	20.1	16.1	4,35	7	37.33333333	7.242893183	2573.8	37.0
433		3068.2	0	19.9	19.3	15.8	3,8	7	37.333333	8.5120731	21	20.5	16.9	3,85	7	37.33333333	8.401526658	2591.2	37.2
_	13-Aug-98	3077.2	0	20.5	20	16	4.25	7	37.333333	7.2037203	21.5	21.1	16.1	5.2	7	37.33333333	5.887656007	2603.7	37.1
_		3100.8	0	20.1	19.8	15.8	4.15	7	37.333333	7.3773039	21.2	20.9	15.8	5.25	7	37.33333333	5.831583093	2623.8	37.1
	15-Aug-98		0	20.8	20	16.5	3.9	7	37.333333	7.850208	21.9	21.2	16.5	5.05	7	37.333333333	6.062536879	2627.4	36.8
437		3126.3	Ō	19.9	19.1	15,1	4.4	7		7.0249777	21	20.2	15.6	5	7	37.33333333	6.181980381	2629,7	37.1
	16-Aug-98		0	20.5	20	16.2	4.05	7		7.9675712	21.8	21.1	16.6	4.85	7	37.33333333	6.653332638	2639.4	37.1
سانتشنيه														· · · · · · · · · · · · · · · · · · ·	ليستحصب أستحص والمستحي				V 1.1

	A	B	С	D	E	F	G	н	1	J	к	L	M	N	0	P	Q	R	s l
4	Date	Hour	Conc Flow	Element A Feed Psl	A Top psi	Ellinate osi-A	AIMP	A Filt GPM	GFD	A GFD/psi	B Feed osl	B Top psi	Ellirate osl-B	BTMP	8 fill Gom		B.GED/osi	RO Hour	
439		3149.8	0	20	19.2	15.8	3.8	7	37.333333	8,4917535	21	20.5	15.9	4.85	7	37.333333333	6.653332638	2639.4	36.8
440	17-Aug-98	3163.9	0	19.9	19.1	15.8	3.7	7	37.333333	6.6683944	21	20.2	15.9	4,7	7	37,33333333	6.981501958	2687.3	37.1
441		3169.7	0	20	19.2	15.8	3.8	7	37.333333		21.1	20.5	15.8	5	7	37.333333333	6.60983486	2692.1	36.8
442	18-Aug-98	3185.6	0	20	19.2	15	4.6	7	37.333333	7.3232944	21	20.5	15.2	5.55	7	37.333333333	6.069757507	2711.8	36.8
443	19-Aug-98	3206.3	0	20.8	20	16.3	4.1	7	37.333333	8.0031852	22	21.3	15.9	5.75	7	37.333333333	5.706618992	2717.5	36.7
444		3215.6	0	19.9	19.5	16.3	3.4	7	37.333333	9.9079865	20.8	20.2	15.2	5.3	7	37.333333333	6.356066823	2733.6	36.7
445	20-Aug-98	3228.4	0	20.1	19.9	15.9	4.1	7	37.333333	8.0223357	21.5	21	15.5	5.75	7	37.333333333	5.720274123	2740	36.4
446		3249.7	0	20.2	20	15.8	4,3	7	37.333333	7.9094762	21.5	21.1	15.2	6,1	7	37.333333333	5.575532405	2757.1	36.7
447		3273.6	0	19,9	19.2	15.8	3.75	7	37.333333	9.1566532	21.1	20.7	14.8	6.1	7	37.333333333	5.629090093	2779.7	36,7
448		3268.6	0	20	19.2	14.2	5.4	7	37.333333	6.061987	21.2	20.9	13.9	7.15	7	37.333333333	4.578283865	2789.8	36.4
449	24-Aug-98	3305.2	0	22	21.4	17.5	4.2	7	37.333333	8.3135113	23.2	22.9	16.9	6.15	7	37.333333333	5.677519904	2803.7	50.5
450	25-Aug-98	3327.4	0	20.1	20	15.8	4.25	7	37.333333	8.1960932	21.8	21.2	15.2	6.3	7	37.333333333	5.529110481	2826.7	50.5
451		333.5	0	19.9	19.2	15,1	4,45	7	37.333333	7.6611529	21.2	20.8	14.9	6.1	7	37.333333333	5.588873864	2852.6	50.1
452	26-Aug-98	3349.7	0	20.1	19.9	15.8	4.2	7	37.333333	7.6830151	21.5	21.1	15.1	6.2	7	37.333333333	5.204623112	2869.2	50.1
453		3355.1	Q.	21.1	20.2	15.1	5.55	7	37.333333	6.0552681	22.1	21.9	15	7	7	37.333333333	4.800962572	2687.4	50.6
454	27-Aug-98	3371.2	0	19.5	19	11.5	7.75	7	37.333333	4.315675	21	20.5	11.9	8.85	7	37.333333333	3.779263403	2911.4	50.5
455	28-Aug-98	3394.4	0	19,2	18.8	11.9	7.1	7	37.333333		20.2	20	11.2	8.9	7	37.333333333	3.65178214	2918.1	50.5
456		3416.3	0	21.1	20.5	14.3	6.5	7	37.333333		22.3	21.9	13	9.1	7	37,33333333	3.675437485	2935.6	50.5
457	30-Aug-90	3422	0	20.2	19.9	14.8	5.25	7	37.333333		21.8	21.2	13	8.5	7	37.333333333	3.814503145	2941,5	50.5
458	31-Aug-98	3442.9	0	20	19.2	7.6	12	7	37.333333		21.3	20.9	8.6	12.5	7	37.333333333	2.70142102	2958.8	49.2
459	1-Sep-98	3454.1	0	19.9	19.3	16.6	3	7	37.333333		21.1	20.7	16.1	4.8	7	37.333333333	7.068658134	2984.1	50.1
460	2-Sep-98	3465.2	Ö	20.5	20	16.9	3.35	7	37.333333		22	21.2	16.8	4.8	7	37.333333333	6.901720061	3007.7	50.4
461	3-Sep-98	3487.7	Ō	20	19,5	16.5	3.25	7	37.333333		21.2	21	16.8	4.3	7	37.3333333333	6.96844123	3014.6	50.5
462	4-Sep-98	3504.4	0	21	19.8	16	4.4	7	37.333333	7.1605876	21	20.8	16.2	4.7	7	37.333333333	6.703528797	3037	49.9
463	5-Sep-98	3526.4	0	19.9	19.2	15.9	3.65	7	37.333333		20.9	20.3	15.8	4.8	7	37.333333333	6.302527004	3042.8	48.8
464	6-Sep-98	3550.6	0	19.3	19	15.6	3,55	4	21.333333		20.8	20.2	15.5	5	7	37.33333333	6.422957428	3054.8	50.5
465	7-Sep-98	3571.1	0	20	19,8	16.6	3.3	7	37.333333		21.2	20.9	15.9	5.15	7	37.333333333	6.206144613	3079.1	50.5
466	8-Sep-98	3591.7	0	20.2	20	16.2	3.9	7	37.333333	8.2345608	21.5	21.1	15.8	5.5	7	37.3333333333	5.839052207	3082.8	49.2
467	9-Sep-98	3615.1	0	22	21.5	14.5	7.25	5	26.666667	3.2716776	23.1	23	14.5	8.55	7	37.333333333	3.883921347	3106.6	50,3
468	10-Sep-98	3638.3	0	18,5	18	12.6	5.65	7	37.333333	5.8215179	19.8	19.1	12.8	6.65	7	37.333333333	4.946101685	3132.8	49.7
469	11-Sep-98	3657.1	0	19	18.5	12	6.75	4.8	25.6	3.3493619	20	19.5	13.5	6.25	7	37.33333333	5.275244974	3155.1	49.7
470	12-Sep-98	3676.1	0	20	19.5	13.2	6,55	7	37.333333	5.081983	21.1	20.8	13.6	7.35	7	37.333333333	4.528841963	3177.3	49.2
471	13-Sep-98	3697.1	0	25.2	25.1	5.8	19.35	7	37.333333	1.7202578	27.3	27.1	7.2	20	7	37.33333333	1.664349421	3202.7	50.3
472		3712.7	0	20.2	20	14.9	5.2	7	37.333333	6.4320156	21.3	21	15.7	5.45	5	26.66666667	4.383549294	3228.1	50.5
473		3724.8	0	21	20.5	11.5	9.25	7	37.333333	3.6856357	21	20.5	9.5	11.25	7	37.333333333	3.030411606	3248.5	50.6
474	15-Sep-98		0	20	19.9	1	18.95	7	37.333333	1.8361739	21.5	21.2	2	19.35	7	37.333333333	1.800175505	3268.2	49,9
475	16-Sep-98		0	19.9	19.4	11.5	8.15	7	37.333333		21	20.5	11	9.75	5	26.66666667	2.57026	3289.2	50.3
	17-Sep-98		0	20	19.9	1	18.95	7	37.333333		21.2	21.1	1	20.15	7	37.333333333	1.745310181	3291.4	50,8
	21-Sep-98		0	19.8	19.4	15.2	4.4	7	37.333333		21	20.5	12.8	7.95	5.2	27.733333333	3.05146905	3307.7	50.3
	21-Sep-98		0	19	18,2	9.2	9,4	7	37.333333		20	19.8	5.5	14.4	7	37.33333333	2.430576267	3320.7	49.2
	22-Sep-98		0	23.5	23.1	5	18,3	7	37.333333		25	24.5	1.9	22.85	7	37.333333333	1.528085226	3356.6	50.4
	22-Sep-98		0	20	19.8	14,3	5.6	7	37.333333		21.1	20.9	12.9	8.1	7	37.33333333	4.300419263	3336.5	50.4
	22-Sep-98		0	19.8	19,1	9.8	9,65	7	37.333333		20.9	20.2	9.2	11.35	7	37.33333333	3.047095491	3344.2	50,3
		3604.2	0	26.8	26.2	1.7	24.8	7	37.333333		28.1	27.8	5	22,95	7	37.3333333333	1.561955632	3359,4	50.3
		3810.4	0	21,1	20.8	16.2	4,75	7	37.333333		22.5	22	16.6	5.65	7	37.33333333	6.194743052	3361.3	50.5
		3816.5	0	21	20.5	13	7.75	7	37.333333		22.1	21.9	13.7	8,3	7	37.333333333	4.339595182	3374.2	50.5
		3830.8	0	21.1	20.8	4.3	16,65	7	37.333333		22.2	22	6.5	15.6	7	37.33333333	2.336643898	3375	50.5
		3833.7	0	19.7	19.2	13.9	5.55	7	37.333333		20.8	20,1	15.9	4.55	7	37.333333333	7.973147631	3397	50.3
		3642.3	0	19.1	18,5	7.8	11	7	37.333333		20.1	19.9	14.8	5.2	7	37.333333333	6.976504177	3400	50.6
488	30-Sep-98	3852.9	0	19.1	18.9	4.3	14.7		37.333333		20.2	20	15.1	5	7	37.33333333	7.255564344	3409.6	50.5
489		3857.9	0	20.6	20.1	16,9	3.45	7	37.333333		21.6	21.1	16.2	5,15	7	37.33333333	7.145979336	3421.1	50.3
490		3858.7	0	19.8	19.4	15.9	3.7	7	37.333333		20.6	20.1	15.2	5.15	7	37.33333333	6.667465935	3423.2	60.1
491		3873.2	0	21.2	21	17	4.1	7	37.333333		22.5	22	16.8	5.45	7	37.33333333	6.391448813	3423.9	59.6
492		3878.7	0	21.1	20.9	16.6	4.4	7	37.333333		22.5	22.1	16.5	5.8	7	37.33333333	6.254796848	3439.8	59.8
493		3895.7	0	19.1	18.9	14.1	4.9	7	37.333333		20.2	20	14.2	5,9	7	37.33333333	5.918092782	3445.7	59.6
494	3-Ocl-98	3899	0	<u>1</u> 9,1	18.9	14	5	7	37.333333		20.1	19.9	14.1	5.9	7	37.33333333	6.10485424	3464.1	59.8
495		3916.1	0	19.1	18.9	13.9	5.1	7	37.333333		20.1	19.9	13.2	6.8	7	37.33333333	5.134B15796	3467.7	59.8
496		3920.4	0	19.1	18,9	12.4	6.6	7	37.333333		20.1	19.9	12.2	7.8	7	37.33333333	4.541161648	3491.3	59,5
497		3937.2	0	18.9	18.2	11.2	7.35	7	37.333333		19.9	19.2	12	7.55	7	37.33333333	4.909484858	3508.9	59.5
498		3942.2	0	19	18.5	12,5	6.25	7	37.333333		20	19.9	12.9	7.05	7	37.33333333	5.000305276	3514.9	60.1
499		3966.4	0	18.6	18,1	12.9	5.45	7	37.333333		19.9	19.2	13.3	6.25	7	37.33333333	5.626880025	3540.8	59.6
500	6-Oct-98	3972.2	0	19.2	19	13.5	5,6	7	37.333333	6.4472906	20.2	20	14	6.1	7	37.33333333	5.918824183	3547	59.6

	A	в	C C	D	E	F	G	н	<u> </u>		к	1	M	I N	o	P			
4	Date	Hour	Conc Flow			Eiltrate osl-A		AFILGPM	GED	A GED/osi	B.Feed osl	B Top osi	Filtrate osl-B	BIMP		· · · · · · · · ·	Q	R	s
501	7-Oct-98	3981.8	0	19.8	19.2	13.2	6.3	7		6.0692616	20.8	20.1	13.8	6.65	<u>B fitt Gpm</u> 7	37.333333333	<u>B GFD/psi</u> 5.749826773	RO Hour	
502	7-Oct-98	3991.8	0	18,9	18.3	12.2	6.4	7	37.333333		20	19.8	13	6,9	7	37.333333333	5.18279855	3557.5	58.5
503	8-Oct-98	4006	0	18.2	18	11.2	6,9	7		5.5282713	18.9	18.5	12.5	6.2	7	37.333333333	6.152431014	3568 3583.6	55.3 58.1
504	8-Oct-98	4011.8	0	19.5	19	13	6.25	7	37.333333		20,9	20.1	13.9	6.8	7	37.333333333	5.418380302	3589.9	59.6
505	9-Ocl-98	4027.4	<u> </u>	19.5	19.1	11.5	7.8	7	37.333333		21	20.5	13	7.75		37.333333333	4.957361974	3606.8	59.6
506	10-Oct-98	4051.7	0	21	20.5	14.1	6.65	7		5.5077144	22.5	22	15.1	7.15	7	37.333333333	5.122559548	3633.1	
507	11-Oct-98	4072.7	0	20	19.5	11.1	8.65	7		4.3263199	21.1	20.5	12.5	8.3	7	37.333333333	4.508755025	3655.7	61.7
508	12-Oct-98	4093.8	ō	20	19.5	12	7.75	7	37.333333		21.1	20.8	12.2	8.75	7	37.333333333	4.276876196	3678.7	58,1
509		4116.1	0	21	20.5	13.6	7.15	7	37.333333		22.2	21.9	14.3	7.75	7	37.333333333	4.73728288	3702.8	58.1
510	13-Oct-98	4127.4	0	20.1	19,9	12.1	7,9	7	37.333333		21.2	21	13.1	8	7	37.333333333	4.523902657	3715	58,5
511	14-Oct-98	4138.5	0	20.1	19,9	12.1	7.9	7	37.333333		21.5	21	13.1	8.15	7	37.333333333	4.537193528		
512		4148.5	0	19.9	19.3	9.2	10.4	7		3.4799251	21	20.2	11	9.6	7	37.333333333	3.769918881	3727.1 3737.8	58.9
513	15-Ocl-98	4161.4	0	20	19.8	12	7.9	7	37.333333		21.2	20.9	13.1	7.95	7	37.333333333	4.640233341	3751,8	58.3 58.1
514	the second se	4167.2	0	19.5	19	12	7.25	7	37.333333		20.8	20,1	13.5	6.95	7	37.333333333	5.207369965	3758	58.3
515		4182.7	0	18.2	17.9	8.9	9,15	7	37.333333		19.5	19	11	8.25	7	37.333333333	4.557815183	3775.1	60.0
516		4168.5	0	19.1	18.9	8.9	10.1	7		3.5322715	20,5	20	11.9	8.35	7	37.33333333	4.272567966	3781.3	60.0
517	17-Oct-98	4209.4	Ū.	16.9	16.2	7.9	8,65	7	37.333333		18	17.5	10	7.75	7	37.333333333	4.817204301	3799.6	60.0
518	17-Oct-98	4205.7	0	18.5	18	8	10.25	7	37.333333		19.9	19.2	11.2	8.35	7	37.333333333	4.323931439	3803.3	60.0
519	18-Ocl-98	4227.4	0	20	19.5	9	10.75	7	37.333333		21.2	21	13	8,1	7	37.333333333	4.857881905	3823.5	59.9
520		4229.4	0	18.9	18.2	4	14,55	7	37.333333		20.5	20	11	9.25	7	37.333333333	4.104126911	3825.6	60.0
521	19-Oct-98	4247.6	0	20.1	20	7.1	12.95	7	37.333333		21,8	21.1	12.5	8.95	7	37.33333333	4,44937239	3845.3	59.9
522	19-Oct-98	4255.2	0	20	19.5	13.8	5.95	7	37.333333	6.1704105	21.2	20.8	14.8	6.2	7	37.33333333	5.9216036	3849.1	59.9
523	20-Oct-98	4269.1	0	21,2	20.9	14.8	7.3	7	37.333333		22.7	22.2	15.8	6.7	7	37.33333333	5.915222164	3864	60.1
524	20-Oct-98	4278.6	0	18.8	18.1	12.5	5,9	7	37.333333	6.3732161	20	19.9	13.8	6.1	7	37.33333333	6.16425824	3874.4	60.4
525	21-Oct-98	4292.1	0	19.5	19.1	12,9	6,4	7	37.333333		21	20.2	14	6.6	7	37.33333333	5.947713938	3889.1	60.4
526	21-Oct-98	4299.9	Ő	18.6	18.2	12.5	6	7	37.333333	6.192551	20	19.9	13.8	6.1	7	37.33333333	6.091033742	3898	60.7
527	22-Oct-98	4312.1	0	19.8	19.2	12.9	6.6	7	37.333333	5.9335159	21	20.4	414.2	6.5	7	37.33333333	6.024800735	3912	60,1
528	22-Oct-98	4318	0	18.9	18.3	12.2	6.4	7	37.333333	5.9744294	20	19.5	13.5	6.3	7	37.33333333	6.069261594	3917.9	59.9
529	23-Oct-98	4334	0	20	19.5	13.9	5.9	7	37.333333	6.480737	21.1	20,5	14.5	6.3	7	37.33333333	6.069261594	3936.9	59.9
530	23-Oct-98	4340.7	0	18.3	18	11.9	6.3	7	37.333333	5.662848	19.9	19.2	13.2	6.4	7	37.33333333	5.574366019	3944.9	60.7
531		4355.2	0	19.5	19.1	12.9	6.4	7	37.333333	5.8893674	20.9	20.2	14.1	6,4	7	37.33333333	5.889367416	3960.9	60.4
532	24-Oct-98	4358.8	0	18,5	18.1	12	6.3	7	37.333333		19.9	19.2	13.1	6.4	7	37.33333333	5.614477852	3965	60.0
533	25-Oct-98	4376	0	18.4	18	12	6.2	7	37.333333		19.9	19.2	13.1	6.4	7	37.33333333	5.847291674	3984.3	59.9
534	25-Oct-98	4381	0	19	18.5	128	6	7	37.333333		20.1	19.9	13.9	6.1	7	37.33333333	6.004311602	3990.5	60.4
535	26-Oct-26	4396.6	0	19.5	19	13.1	6.2	7	37.333333		2.8	20.2	14,1	6,4	. 7	37.33333333	5.917585981	4008,1	59.9
536	26-Oct-98	4403	0	18.6	18.1	12.5	5,9	7	37.333333		19.9	9.2	13.9	5.7	7	37.33333333	6.379759545	4015,6	60.5
537	27-Oct-98	4418.7	0	20.3	20	13.3	6.9	7	37.333333		22	21.5	14.6	7.2	7	37.33333333	5.272663045	4033.2	60.1
538	27-Oct-98	4428.8	0	20	19.9	13.8	6.2	7	37.333333		21.2	20.9	14.6	6.5	7	37.33333333	5.702555489	4044,7	60.0
539	28-Oci-98	4439	0	19.9	19.4	13.2	6.5	7	37.333333		21.2	20.8	14.6	6.4	7	37.33333333	5.903459838	4056.4	60.1
540	28-Oct-98	4448		19.5	19.1	13.2	6.1	7	37.333333		21	20.2	14.8	5.8	7	37.33333333	6.269763691	4066.7	53.6
541	29-Oct-98	4461.7		20	19.7	13.4	6.5	7	37.333333		21.2	20.8	14.2	6.8	7	37.33333333	5.542934039	4082.2	60.1
542	29-Oct-98	4467	0	19.2	19	12.7	6,4	7	37.3333333		20.4	20.1	14.1	6.2	7	37.33333333	5.9216036	4088.2	60.6
543 544		4565,9	0	20.5	20	10,3	9.95	7	37.3333333		21.8	21.2	13.5	8	7	37.33333333	4.953998563	4200.9	59.9
545	3-Nov-98 4-Nov-98	4578		20.5	20	11	9,3	7	37.333333		21.5	21	14.3	7	7	37.33333333	5.449296041	4211.3	60.0
545 546	4-Nov-98 5-Nov-98	4586	0	19.1	18.7	9.7	9.2	7	37.333333		20.1	19.8	12.7	7.2	7	37.33333333	5.517614199	4223.6	59.6
546		4598	0	19.1	18.7	9.8	9.1	7		4.2219292	20	19,8	12.8	7.1	7	37.33333333	5.411204972	4237.7	59.9
547		4251.9		19.3 18.9	18.8	10.2	8.8	7	37,333333		20.2	19.9	13	7.1	7	37.333333333	5.502495951	4251.9	71.4
549		4635.8	0	19.9	18.4 19.2	11.2	7.5 6.8	7.7	37.333333		20	19.8	12.5	7.4	7	37.33333333	5.3942123	4275.2	71.8
550	8-Nov-98	4651	0	19.8	19.2	12.0	7.3	7	37.333333 37.3333333		21.1 20.8	20.6	14.1	6.8	7	37.333333333	5.596178592	4280.6	72.6
551		4658.1	0	20	19.8	12.8	7.1	7	37.3333333			20.1	13.2	7.3	7	37.33333333	5.403150636	4297.9	72.6
552	9-Nov-98	4654.6	0	19.1	19.8	11.2	7.8	7			- 21.1	20.8	13.9	7,1		37.33333333	5.555352062	4304.8	71.8
553		4669.4		19.1	18.9	11.2	7.9	· · · · · ·	37.3333333		20.2 20.2	20	13	7.1	7	37.33333333	5.63558974	4314.8	70.9
60.4	10-Nov-98		0	22	21.7	13.8	8.1							6.6	7	37.33333333	5.793386067	4319.8	72.6
	10-Nov-98		0	19.9	19.1	11.1	8.4		37.3333333	5.0472449	23.2	22.9	<u> </u>	7,8 7.5		37.33333333 37.333333333		4338.8	70.9
	11-Nov-98		- 5-	19.9	19.2	11.9	7.7		37.3333333		21	20.2	13.4	7.5	7	37.333333333		4349.6	70.9
	13-Nov-98		ő	19,1	18.5	10.7	8.1		37.333333		20.2	19.8	12.2		7	37.33333333	5.259066619	4361,5	70.4
	14-Nov-98		ŏ l	18.8	18.2	10.7	8.1		37.3333333		19.9			7.8			5.216375692	4411.4	71.4
	15-Nov-98			19.2	18.7	10.4	8.8		37.3333333			19.1	11.6	7.9	7	37.33333333	5.162669668	4434.9	71.3
	15-Nov-98			19.2	18.7	9.5	8.8		37.3333333		20.3	19.9	11.2	8,9	7	37.33333333	4.593559923	4460.4	71.3
	16-Nov-98		0	19.5	17.4	10.8	8.5		37.3333333		19.4 20.6	18.6	10.8	8.3	7	37.33333333	4.628862085	4463.6	71.8
	16-Nov-98		ŏ	20.1	19.7	11.4	8.5			4.6292757	21.2	20 20.7	12.7 12.9	11.6	7	37.33333333	3.532802568	4482.3	71.0
المتت	- 107-90		<u> </u>	4V-1 [21.2	4.0.1	(4.7	8.1	7	37.33333333	4.857881905	4490	68,8

148-

	A	B	C	D	E	F	G	Н	1	J	ĸ	L	M	N	0	P	Q	8	S
4	Date	Hour	Conc Flow	Element A Feed Psi	A Top ps	Eltrate osl-A	AIMP	A Fill GPM		A GFD/osl	B Feed osl	B Too os	Filtrate osi-B	BIMP	B filt Gpm		B GFD/osl	RO Hour	
563	17-Nov-98	4832.7	0	19.2	18.9	10,8	8.3		37.333333		20.2	19.9	12.2	7.9	7	37.33333333	5.016707405	4502.7	61.5
564	17-Nov-98	4839.3	0	20.1	19,9	11.3	8.7		37.333333		21.7	21.1	13.7	7.7	7	37.333333333	5.206867252	4510.2	62.7
565		4853.9	0	21	20.5	12.4	8.4		37,333333		22.1	21.9	14.1	7.9	7	37.33333333	5.064897108	4527	64.3
566	18-Nov-98	4860.1	0	20.1	19,9	12	8	7	37.333333	4.9186054	21.5	21	13.6	7.7	7	37.333333333	5.110239407	4533.9	62,7
567	19-Nov-98	4877.5	0	20.1	19,9	11.5	8.5	7	37.333333	4.8559289	21,8	21.1	13.2	8,3	7	37.33333333	4.972939271	4553.8	63.6
568	20-Nov-98	4900.3	0	19.8	19.1	11.1	8.4	7	37.333333	4.7748133	21	20.1	12.5	8.1	7	37.33333333	4.951658252	4579.7	62.3
569	20-Nov-98	4903.1	0	19,9	19.2	11.9	7.7	7	37.333333	5.134724B	21.1	20,5	13.2	7.6	7	37.33333333	5.202286993	4582.9	62.4
570	21-Nov-98		0	21.3	20.9	12.2	8.9		37,333333		22.9	22.3	14	8,6	7	37.333333333	4.834000469	4601.9	62.7
571	22-Nov-98	4938.2	0	23	22.2	13.7	8.9		37.333333		24.2	23.7	15.3	8.7	7	37.33333333	4.976583229	4622,9	63.6
572	23-Nov-98	4959.9	0	23.3	22.2	13.7	8.9	7	37.333333	4.853137	24.8	24.1	15.3	9.2	7	37.33333333	4.69488256	4647.4	62.7
573	23-Nov-98	4966.3	0	21.6	21.1	12.5	8.9	7	37,333333	4.5716551	23.2	22.5	14.1	8.8	7	37.333333333	4.623605727	4654.3	62.7
574	24-Nov-98	4981	0	20.8	20.1	11.7	8.8	7	37.333333	4.7809289	22.1	21.5	13.2	8.6	7	37.333333333	4.892113308	4671.4	62.3
575	24-Nov-98	4985.5	0	19.9	19.2	10.8	8.6	7	37.333333	4.4607855	21.2	20.8	12.5	8.5	7	37.33333333	4.61822494	4676.7	59.9
576	27-Nov-98	5042.9	Û	21	20.5	11.2	9.6	7	37,333333	4.3201213	22.1	20.8	13.4	8,1	7	37.333333333	5.120143781	4742	59.6
577	27-Nov-98	5048.9	0	20	19.5	10.1	9.7	7	37.333333	4.154702	21.2	20.9	12.5	8.6	7	37.333333333	4.686117336	4748.8	59.9

•

	A	T	U U	V I	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al	AJ
4	Date	ROFIC	Free Feed psi	Inrsto 1 psi	jursto 2 ps	Free Rei psi	A Perm com	B Perm apm	C.Perm com						Std Perm com		Sid rei gom	
5	19-Feb-98														1			
6																		
7													L					
8	20-Feb-98	-										·						
9 10																		·
	23-Feb-98					<u>├</u>						<u> </u>						<u> </u>
12	23-160-30	<u> </u>			<u> </u>		 				· · · · · -						·	
13		System shut	down w/chlorine	in element F	B from 2/20	50m to 2/23 8	am										<u>├──</u> ──	
14														·······				
15																		
16	24-Feb-98																	[
17																		
18						<u> </u>					·····							l
19				·													<u></u>	
20	25-Feb-98					·					<u>-</u>							
21 22 23 24		Suptom Ch	l iutdown to uploa	ad HydroAc (12 in elemen	nt B correction										· · · · · · · ·		
23		oystem of	oloomin to opio	55 (J)UI 2404			,					<u>├</u>					<u> </u>	j -
24	26-Feb-98		·									<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
25																		·
25 26																		
27 İ	27-Feb-98																	
28																		
29 30		tem Shutdowr	n lo Redo iniet p	dumbing hos	e, replace P	T hose, replu	mb backwash	feed to hose (RO)									
30												<u> </u>						
31	<u></u>				<u> </u>									<u> </u>		··· <u> </u>		
32 33	3-M87-98	wn to collapse	c reed nose			Init Shuldown	and 300um st	rainer remove	3									
33								-*							···			
35			· · · ·						·	· · · · · · · · · · · · · · · · · · ·		<u> </u>						
36	4-Mar-98										·							
37					· · · · ·													
36 37 38 39																		
39																		· · · · · · · · · · · · · · · · · · ·
401	5-Mar-98																	
41 42																		
42																		
43 44	6-Mar-98											ļ				·····	·	
45	0-M91-30	- -						···			· · · · · · · · · · · · · · · · · · ·	<u> </u>						
45 46	9-Mar-98																	<u> </u>
47		Unit Shutdow	n to install 1-1/2	" 300um filte	н. 		·-··					<u> ···</u>	·				<u> </u>	
48																		
	10-Mar-98																1	· · · · · · · · · · · · · · · · · · ·
50			leaned thru Ba			aOH, 1% Citri	ic, 100ppm Na	OCL										
51	11-Mar-98		Shut U	nit down for c	Jeaning													
52 53		Clearik	ig consists again	n of cleaning	through bac	wash line												
53		· · · · · · · · · · · · · · · · · · ·	Initial	Data prior to	clean:		·											
54									~		·							
55 56		Allendhau	Old Clinicit And C	enk pH 3 C2			· · · · · ·								_			
56 57		AREF 1 DOUL	2% Cirtci Acid S	оак рн 2.06:														i
58			·		<u> </u>													
59	<u>-</u> <u> </u>																	
60		system to ch	eck backwash (rom the fee					·									
61		Initial Param	eters prior to Hi	oh oH clean			I		—	···				j				
62				5. p. 1 616411			·						├────				<u> </u>	
63				_						~								···· _ , ·
63 64		aOH 1 hour s	oak pH 12.3															
65 1	19-Mar-98																	
66	9-Mar-98							_								-··		
<u>~ </u>	- moi - 20	l											Lu					

r	A	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE	AF	AG	ALL	A1	A 1
4	Date	ROFAC	Free Feed ps				A Perm opm	8 Perm apm	C Perm onm	Total Flow					Std Perm gom	AH	Al Std sei see	AJ
67		Jumbed Syste	m and perform	ed recirculat	on cisaping	ope element	at a time			The set is a	··· ··	L'THAT DAT AND	CHUTCCU Dat			·	Std rei gom	
68	20-Mar-98		concentrate only					i					<u> </u>	i	· · · · · · · · · · · · · · · · · · ·			
69		Ba	ckwash after red	circ once the	n 3-4 with R	O water	1	i	<u> </u>			· · · ·						
70				1	Γ	1		······	· · · ·				<u> </u>	· · · · · · · · · · · · · · · · · · ·				
71		wn for Koch p	lumbing		<u> </u>		<u> </u>											
72	21-Mar-98					<u>†</u>												
73		wn-pump cav	diation			· · · · · · · · · · · · · · · · · · ·												
74		screen with 1	50um screen			1												
75					·							·					•• • • • • • • • • • • • • • • • • • • •	
76							· · · · · · · · · · · · · · · · · · ·				· · · · ·	h	[
77	25-Mar-98				k						····	<u> </u>						
78	20-148-00		wn due to foulir	a element B	<u>+</u>								ļi					
	ad @ 439 4		Dan Smith ph2									 	· · · · · · · · · · · · · · · · · · ·					
80	unt 13 400.4		ment (no backv										·					
81	31-Mar-98																	
82																		
82 83		nit cleaned as	nd element loc	ation switch	ed	1	l				· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·		
84	1-Apr-98		A≖X B=K		<u> </u>				1			ł	· · · · · · · · · · · ·					
85	··· T' ••	lem with back	washing eleme	nt B valve st	ickina	t		<u> </u>						┝╾┅╌╌-┨			· · · · · · · · · · · · · · · · · · ·	
86		Upped air a	pressure to 78p	si (from 60)														
87			ividually ph2 fol			1	1	1	1	.		t	i					· · · · · · · · · · · · · · · · · · ·
88		utdown at 459			1		1					[
89		mps removed.	SS inserted				1											
90 91	2-Apr-98	Injection valv	e/lubing												·			
91					t					· ···· ·	·							
1 92 1																		
93	3-Apr-98					1												
94						1					· · · · · · · · · · · · · · · · · · ·		·					
95																		
36																		
						i												
94 95 96 97						ł	1						1					
97 98			[]			ł <u></u>	ι			1								
97 98 99	5-Apr-98	ļ)				↓			1								
_98 _99 100	5-Apr-98)			₽ <u></u>	∮ 1											
_98 _99 100						ł <u></u>	<u> </u> 											
98 99 100 101 102	5-Apr-98 6-Apr-98						 								:			
98 99 100 101 102															:			
98 99 100 102 103	6-Apr-98																	
98 99 100 102 103																		
98 99 100 102 103	6-Apr-98																	
98 99 100 102 103	6-Apr-98 7-Apr-98																	
98 99 100 102 103	6-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109	6-Apr-98 7-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110	6-Apr-98 7-Apr-98 8-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112	6-Apr-98 7-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112	6-Apr-98 7-Apr-98 8-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112 113 114	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112 113 114	6-Apr-98 7-Apr-98 8-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98																	
98 999 1000 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98																	
98 99 100 102 103 104 105 106 107 108 109 110 110 110 110 111 112 113 114 115 116 117 118 119	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98																	
98 99 100 102 103 102 103 106 107 108 106 107 108 106 107 108 106 107 108 106 110 111 111 112 113 116 117 118 119 120	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98																	
98 99 1001 1022 103 104 105 106 107 108 109 109 109 109 109 109 109 109 109 109	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98																	
98 99 1002 1002 1002 1002 1002 1002 1002 1	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98																	
98 99 1001 102 103 104 105 106 107 108 106 107 108 106 107 108 109 110 111 111 112 113 114 115 116 117 118 119 120 121 121 122	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98																	
98 99 1001 102 103 104 105 106 107 108 106 107 108 106 107 108 109 110 111 111 112 113 114 115 116 117 118 119 120 121 121 122	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98																	Cha
98 99 1001 1001 1001 1001 1001 1001 1001	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98																	Cha
98 99 1001 1022 1033 104 1055 106 107 108 109 110 111 112 113 114 116 116 117 118 119 120 121 122 123 124	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98 12-Apr-98																	
98 99 1000 102 103 102 103 104 105 106 107 108 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 121 122 123 124 125 127	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98																	Cha
98 99 1001 1021 1022 1033 104 105 106 107 108 109 110 111 112 113 114 116 117 118 119 120 121 122 123 124	6-Apr-98 7-Apr-98 8-Apr-98 9-Apr-98 10-Apr-98 11-Apr-98 12-Apr-98																	Cha

	A	Т	<u> </u>	v	w	x	Ý	Z	AA	AB	AC	AD	AE	AF	AG	АН	AI	AJ
	Date	ROFAC	Free Feed psi	Inrsta 1 psi		Free Rel osl	A Perm gom	B Perm apm				=	SId Feed psi				Std rei gpm	
129	14-Apr-98														1			
130		to replumb dr	aln/fix leaks										1					
131																		
132	15-Apr-98																	
133																		
134																		
135														l				
136	16-Apr-98									· · · · · · · ·				L				
137																		
138	47 1 00		}											 			· · · · · · · · · · · · · · · · · · ·	
139	17-Apr-98																	
140													ļ	1				
141 142														 				
143	18-Apr-98																	
144	10-00-00			· · · ·											· · · · · · · · · · · · · · · · · · ·			
145			<u> </u>											<u> </u>				
146	19-Apr-98	· · · ·																
						F****	· · · · ·							•	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
149															ļ			
150	20-Apr-98													· · ·				
151 152	21-Apr-98											ļ						
153	24-Apr-98	l																
154	24-401-20																	
155													· · ·				· · · · · · · · · · · · · · · · · · ·	
156															2.7		2.7	50.0
	25-Apr-98														3		2	60.0
158															2.2		3	42.3
159		16,2													2.2		3	42.3
160	26-Apr-98	16.4													2		2.8	41.7
161		16.2													1.9		3	38.8
162		18.4													1.8		3	37.5
163		16.2	135	132	130	128	0,85	0.83	0.79	2.47	15.808	3	130	126	1.8	10.16470588	3	37.5
164	27-Apr-98	16.4	135	131	129	128	0.85	0.84	0.8	2.49	15.936	3	149	145	1.8	10.16470588	3	37.5
165		18	110	106	104	103	0.7	0.7	0.65	2.05	13,12	3	104	100	1.9	10.72941176	3	38.8
166 167		19.3 17.5	108 97	105 95	103 93	102 92	0.7	0.67	0.65	2.02	12.928 11.456	3	102 94	98 90	1.8	10.16470588 10.16470588	3	37.5
168	28-Apr-98	17.5	94	91	89	87	0.6	0.57	0.55	1.72	11.008	3	89	85	1.9	10.72941176	3	37.5
169	20-741-30	17.7	92	89	87	66	0.6	0.57	0.55	1.72	11.008	3	62	78	1.9	10.72941176	3	38.8
170		17.5	87	64	83	81	0.6	0.57	0.55	1.72	11.008	3	81	76	1.8	10.16470588	3	37.5
171		16.5	88	85	84	83	0.6	0.57	0.55	1.72	11.008	3	84	60	1.6	10.16470588	3	37.5
172	29-Apr-98	17.7	93	91	89	87	0.6	0.58	0.55	1.73	11.072	3	89	85	1.9	10.72941176	3	38.8
173		17.4	90	87	86	84	0.6	0.57	0.55	1.72	11.008	, 3	84	60	1.9	10.72941176	3	38.8
	30-Apr-98	16.6	88	86	84	83	0.6	0.57	0.55	1.72	11.008	3	84	79	1.9	10.72941176	3	38.8
175		18.1	93	90	88	67	0.6	0.57	0.55	1,72	11.008	3	89	85	1.9	10.72941176	3	38.8
176		18.7	92	69	87	86	0.61	0.58	0,55	1.74	11.136	3	86	82	1,9	10.72941176	3	38.8
177		16.4	91	89	86	85	0.6	0.58	0.55	1.73	11.072	3	87	84	1.9	10.72941176	3	38.8
178	1-May-98	18.8	94	92	90	69	0.6	0.58	0.55	1.73	11.072	3	90	86	1.9	10.72941176	3	38.8
179		16.2	68	86	84	82	0.6	0.57	0.55	1.72	11.008	3	88	84	1.9	10.72941176	3	38.8
160		92	87	85	83	82 84	0.6	0.57	0.55	1.72 1.72	11.008	3	86	82	1.9	10.72941176	3	38.8
181	2-May-98	18.2 95	90	87 85	85 84	0.6	0.6	0.57	0.55	1.67	11.008	3	86	82 82	1.9 1.9	10.72941176	3	38,6
	3-May-98	95 91	90 87	90	84 87	0.6 86	0.57	0.55	0.55	1.67	10.688	3	82	82 82	1,9 1.9	10.72941176 10.72941176	3	38.8
183	а-мау-эо	16.1	90	90 85	83	0.6	0.57	0.57	0.55	1.67	10.688	3	87	82	1.9	10.72941176	3	38.8 38.8
185		18.2	87	90	89	0.6	0.57	0.55	0.55	1.67	10.688	2.9	92	89	1.9	10.72941176	3	38.8
186		19.6	93	89	87	85	0.65	0.62	0.6	1.87	11.968	3	86	81	1.9	10.72941176	3	38.8
	4-May-98	18	92	89	87	86	0.65	0.57	0.54	1.71	10.944	3	96	93	1,9	10.72941176	3	38.8
168		18,4	90	87	85	83	0.6	0.57	0,55	1.72	11.008	3	85	81	1.9	10.72941176	3	38.8
189		18.1	84	82	80	78	0.6	0.57	0.55	1.72	11.008	3	78	74	1.9	10.72941176	3	38.8
190		17.2	94	92	89	87	0.6	0.57	0.55	1.72	11.008	3	91	87	1.9	10.72941176	3	38.8
انتتنا	1											-		<u> </u>			ĭi	00.0

I Dir. Bissing Bissin		Ä	т	U	v V	w -	x	Y	z	AA	AB	AC	AD	AE	AF	AG	AH	AI	ĀJ
101 640 8.3 62 6.4 6.3 6.7 7.7 <th7.7< th=""> <th7.7< th=""> <th7.7< th=""></th7.7<></th7.7<></th7.7<>	4		ROFC		inrsta 1 ost														AJ
183 494 40 44 10 69 64 630 645 757 1077 3 67 64 75 1077 3 930 113 64/27 63 10 44 13 41 64 637 122 1107 3 64 67 130 75 130 130 164 10 107 3 64 10 107 3 64 10 107 3 10 107 10 107 10 107 10 107 10 107 10 107 10 107 10 107 10 107 10 107 10 107 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.136</td> <td></td> <td></td> <td></td> <td>And the second second</td> <td>10.72941176</td> <td></td> <td>38.8</td>												11.136				And the second second	10.72941176		38.8
Tel: N32 62 63 77 76 0.55 772 11026 3 65 78 16 6 077811176 5 785 100 253 64 253 103 104 1042 3 66 62 105 037811176 3 884 101 253 64 75 75 65 75 10 75 353 102 253 64 75 65 85												11.072	3						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														87	83	1.9	10.72941176	3	38,8
Integra 193 64 81 79 70 0.66 0.57 1.72 11668 3 64 79 16 0.75841176 3 381 100 17492 103 67 0.53 0.55														¥				3	38.8
171 20.4 63 60 76 76 0.62 64 635 77 11.20 3 84 79 10 10 107281170 5 363 101 102 97 64 63 0.62 0.5 0.64 173 11.200 3 65 60 10 107281170 5 363 103 97 64 65 172 11.08 3 64 79 153 63 65 65 172 11.08 3 64 79 153 65 63 65 65 65 65 65 65 65 65<		6-May-98											-						
102 204 0.5 0.5 0.52 172 1700 3 N 000 100 0.7 0.53 0.7													<u> </u>						
103 07 08 03 07 08 02 13 08 02 13 07291116 3 283 030 090 08 68 63 0.02 0.03		7 1 (00																	
250 19.8 69 68 64 63 66 77 11.78 3 66 72 11.9 67.241176 3 38.8 253 446.98 65 65 61 65 67.241176 3 38.8 253 446.98 65 65 61 65 61.741176 3 38.8 253 447.78 65 64 62 62.9 62.9 11.068 3 67 67 13 67.7241176 3 38.8 254 447.78 64 65 62 62.9 62.9 11.068 3 64 67 14 67.7241176 3 38.8 252 22.3 75 73 71 64 64 64 65		7-мәу-эө																	
2D1 (16.3) 07 65 6.6 6.69 0.56 1.74 (11.96) 3 66 61 19 0.7281170 3 58.8 226 44/26 83 65 64 63 0.57 0.58 177 11.068 3 64 61 19 0.7281170 3 85.8 226 44/3 64 61 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 67 64 64 64 64 65 65 64 65 65 64 65 65 66 65 66 67 67 64 65 64 65 64 65 66 67 67 67 67 67 68 63 65 67 67 67 68 63 65 65 66 67 67 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
D20 EV926 C10 EV9 EV1 EV92 EV2 EV92 Total Transmission Total Transmission <thtotal th="" transmission<=""> Total Transmissi</thtotal>																			
202 48 44 63 64 0.56 0.55 0.56 1.100 3 67 64 1.0 10.72641176 3 186 205 9469 22.4 64 64 10 0.0 0.0 11.000 3 61 10 10.72641176 3 360 205 943 66 64 91 0.0 0.0 0.057 0.253 172 11.006 3 67 70 10 10.72641176 3 358 202 11.3 68 66 64 45 60 0.07 0.58 172 11.006 3 67 71 10 10.72641176 3 388 213 68 68 69 65 63 63 63 172 11.006 3 60 76 10 10.72641176 3 388 214 11.6 62 65 64 65 64 10		8-May-98											_					The second second second second second second second second second second second second second second second se	
Date HB7 48 68 64 62 0.65 0.87 0.12 11.006 3 91 97 1.3 10.75841176 3 58.8 0.05 0.13 16 68 11 10.00 3 68 10 10.75841176 3 58.8 0.05 0.13 10 68 68 68 10 10.75841176 3 58.8 0.05 0.13 10 68 68 66 65 0.3 0.5 0.5 10.00 3 69 64 10 10.75841176 3 58.9 0.05 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.15 0.25 0.25			20.2	86	84	83							3						
250 20.4 66 64 61 0.57 0.55 172 11006 3 67 62 15 16 (72) 13 88 207 113 68 66 64 62 0.66 0.57 0.55 172 11006 3 60 66 16 072941176 3 93.6 201 10409/69 65 64 62 0.55 172 11006 3 62 77 16 072941176 3 93.6 211 103 66 65 64 0.57 0.54 172 11006 3 67 64 13 1072941176 3 93.6 211 103 64 103 64 10 1072941176 3 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6 93.6	204				66			0.6	0.57	0.55	1.72	11.008	3	91	87			3	
257 19.3 66 64 52 0.57 0.55 172 11.000 3 90 66 19 0.72811176 3 35.8 263 14.007 16.8 86 85 83 0.6 0.57 0.55 172 11.000 3 67 64 15 10.72811176 3 88.8 260 16.007 95 62 0.6 0.57 0.55 177 11.000 3 67 64 15 10.72811176 3 88.8 211 15.9 65 83 85 64 0.6 0.57 0.54 177 11.924 3 88.8 84 15 0.72841176 3 58.6 214 15.6 63 85 77 65.8 0.52 0.54 1.72 11.006 3 64 60 16 0.72841176 3 58.6 214 21.6 61 60 64 0.6		9-May-98									1.72	11.008	3	84	79	1.9	10.72941176		
228 228 72 73 71 69 0.6 0.57 0.58 172 11.008 3. 82 77 19 10.72941178 3 38.8 201 0.4 9.8 68 65 65 0.57 0.55 17.2 11.008 3 60 66 18 10.72941176 3 38.8 210 0.80 67 65 0.72 0.55 17.72 11.008 3 60 66 18 10.72941176 3 38.8 213 18.9 65 83 80 0.79 0.52 0.75 17.2 11.006 3 84 79 1.9 10.72941176 3 38.8 214 68 83 81 60 0.6 0.57 0.55 17.2 11.005 3 64 60 1.6 10.72941178 3 38.6 214 14.4096 21.6 61 90 67 65 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>82</td> <td>1,9</td> <td>10.72941176</td> <td>3</td> <td>38.8</td>													-		82	1,9	10.72941176	3	38.8
2019 10.00													-					3	
210 312 90 87 85 84 0.57 0.55 17.7 11.000 3 90 86 1.0 1.02341176 5 38.6 211 1.1409.9 1.9 0.75 0.52 0.77 11.309.4 3 88 64 1.9 10.7241178 3 36.8 211 1.001.9 0.01 0.57 0.54 1.77 11.309.4 3 88 64 1.9 1.07241178 3 36.8 214 0.0 0.7 0.55 1.77 11.306 3 64 0.7 1.9 1.07241178 3 36.8 214 0.37 84 65 0.6 0.57 1.55 1.72 11.056 3 64 0.7 1.302 3 64 0.7 1.302 3 64 0.7 1.302 3 66 1.3 10.7241178 3 30.8 214 0.7 0.84 0.55 0.55																			
211 21.9 62 60 77 76 0.82 0.82 0.85 1.77 11.328 3 60 76 19 10.72941176 3 53.6 213 11.149,e98 21.4 68 63 60 0.57 0.52 1.77 11.322 3 64 79 1.072941176 3 39.6 213 11.149,e98 65 63 65 0.57 0.55 1.77 11.020 3 64 79 1.072941176 3 38.8 214 214 68 63 65 0.57 0.55 1.72 11.006 3 91 67 10.72941176 3 38.8 213 214 214 0.87 0.55 1.74 11.039 3 94 60 1.9 10.72941176 3 38.8 214 21.4 81 68 64 0.6 0.57 0.55 1.72 11.006 3 91		10-May-98											-						
217 19.9 87 85 83 62 0.6 0.57 0.54 177 11.328 3 86 19 107291176 3 368 214 214 86 63 61 00 0.67 0.55 1.77 11.328 3 84 79 15 107291176 3 358 216 19.3 90 87 85 84 0.6 0.7 0.55 1.72 11.069 3 64 70 107291176 3 358 216 19.3 90 87 48 0.6 0.57 0.55 1.72 11.069 3 64 10 107291176 3 308 216 1249 96 64 44 0.6 0.57 0.55 1.72 11.006 3 94 65 19 107291176 3 358 221 3449 96 95 1.6 107291176 3 35																			
213 11.489/98 214 85 83 86 79 1.62 1.72 11.226 3 84 79 1.9 1.022841176 3 886 214 19.3 80 67 85 84 0.6 0.57 0.55 1.72 11.068 3 84 80 1.73 10.068 3 64 64 1.0 0.72841176 3 35.8 215 1.0 80 67 86 64 0.6 0.57 0.55 1.72 11.068 3 66 64 1.0 0.72841176 3 35.8 216 22.5 1 99 96 64 0.0 0.57 0.55 1.72 11.068 3 91 67 1.9 10.72841176 3 35.8 22 2.2 2.0 9.9 96 64 94 0.0 0.57 0.55 1.72 11.068 3 91 67 19 10.72841176 3 35.8 22 2.2 2.0.4 85 65 65 65																			
214 214 86 83 81 90 0.6 0.57 0.58 1.72 11.006 3 94 80 1.9 0.72941176 3 38.6 215 11.3 80 67 84 83 0.6 0.57 0.58 1.72 11.006 3 91 67 1.9 10.72941176 3 36.6 211 2.46 0.0 67 84 0.8 0.55 1.72 11.006 3 94 40 1.7241176 3 36.6 211 2.449 90 67 68 0.5 0.55 1.72 11.006 3 94 60 1.8 0.72841176 3 38.8 221 2.44 95 65 64 0.6 0.55 1.72 11.006 3 67 1.8 10.72841176 3 38.8 221 1.4497.9 84 82 80 0.6 0.55 1.72 11.006		11-May-98																	
113 90 97 95 94 0.7 0.57 0.57 1.72 11.008 3 91 97 19 107.2941176 3 356 217 21 90 87 65 0.42 0.55 1.72 11.008 3 91 96 1.8 107.2941176 3 356 217 21.6 91 90 67 65 0.6 0.55 1.72 11.008 3 94 90 15 107.2941176 3 38.8 218 22.5 61 88 66 66 0.6 0.57 0.58 1.72 11.008 3 90 66 1.9 107.2941176 3 38.8 22.1 23.9 65 65 64 0.6 0.57 0.53 1.72 11.008 3 90 66 1.6 10.72941176 3 36.6 22.1 21.7 65 64 0.5 0.55																			
211 207 89 97 84 63 0.67 0.57 1.72 11.08 3 99 64 1.6 10.7241178 3 30.6 217 21 90 67 65 0.6 0.55 0.74 11.138 3 91 66 1.6 10.7241178 3 38.8 216 22.5 61 69 66 0.6 0.57 0.55 1.72 11.008 3 90 66 1.9 10.7241178 3 38.8 220 20.4 65 65 63 3 0.61 0.53 1.72 11.008 3 91 67 19 10.7241176 3 36.8 221 1.4449 64 0.6 0.57 0.55 172 11.028 3 80 1.6 10.7241176 3 36.8 221 1.4449 20.8 65 63 62 0.6 0.57 0.55 172	215			90		85	84	0.6											
1216 1216 91 90 97 85 0.6 0.55 0.75 1.7 10.86 3 94 90 1.9 10.72241176 3 39.8 221 20.3 69 66 64 44 0.6 0.57 0.55 1.72 11.006 3 91 87 1.9 10.72241176 3 36.6 221 20.4 66 65 83 83 0.61 0.6 0.55 1.76 11.068 3 91 87 1.9 10.72941176 3 36.8 221 1.4 85 63 64 0.6 0.57 0.55 1.72 11.008 3 66 1.9 10.72941176 3 36.8 223 2.1 86 63 64 0.6 0.57 0.55 1.72 11.008 3 66 81 10.72941176 3 36.8 224 2.0 66 65 83													3	69	84				
219 22.5 91 89 86 0.6 0.57 0.55 1.72 11.006 3 90 86 18 10.7281176 3 36.3 221 20.4 85 85 83 0.61 0.6 0.55 1.76 11.264 3 89 85 1.9 10.7281176 3 39.8 221 3.439.8 21.8 8.65 85 81 0.6 0.58 1.73 11.072 3 94 80 1.9 10.7281176 3 39.6 223 21.1 86 84 62 60 0.6 0.57 0.55 1.72 11.006 3 66 1.9 10.7281176 3 38.6 224 2.0 86 64 63 80 0.6 0.57 0.55 1.72 11.008 3 86 19 10.7281176 3 38.6 225 2.0.4 87 66 64 63															86	1.9	10.72941176	3	38.8
		12-May-98																	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																			
222 13 85 83 81 0 64 82 90 19 1072941176 3 907 223 21.7 96 64 62 90 65 17.2 11.006 3 67 63 19 1072941176 3 36.8 224 21 90 67 65 63 0.57 0.55 1.72 11.006 3 90 86 19 10.72941176 3 36.8 226 20.4 87 65 83 80 0.51 0.52 1.72 11.006 3 66 83 19 10.72941176 3 36.8 221 20.9 86 65 83 80 0.55 1.73 11.072 3 80 86 19 10.72941176 3 36.8 222 19.6 60 87 86 84 0.6 0.55 1.73 11.072 3 89 85				and the second sec														-	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3.May.OR																	
224 21 90 97 85 64 0.6 0.57 0.55 1.72 11009 3 90 86 19 10.72941176 3 38.5 226 14.May-98 20.8 66 64 83 60 0.61 0.6 0.58 1.77 11320 3 86 67 1.9 10.72941176 3 38.6 228 20.3 60 67 88 64 0.6 0.58 0.55 1.73 11072 3 89 84 1.0 10.72941176 3 38.6 229 19.6 60 67 85 44 0.6 0.58 0.55 1.73 11.072 3 89 65 1.9 10.72941176 3 38.6 230 15.449.80 21.4 80 65 65 0.61 0.6 0.57 1.73 11.072 3 89 59 1.9 10.72941176 3 38.6 <t <="" td=""><td></td><td>10-100 J-30</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>		10-100 J-30																	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																			
2261 14May-98 20.8 86 84 83 80 0.61 0.68 0.55 1.77 11.320 3 66 63 1.9 10.72941176 3 36.8 222 20.3 90 97 68 84 0.6 0.58 0.55 1.73 11.072 3 90 86 19 10.72941176 3 38.6 228 19.6 90 87 68 64 0.6 0.58 1.73 11.072 3 90 86 19 10.72941176 3 38.6 230 15.May-96 21.4 90 86 85 0.61 0.66 0.57 17.9 11.456 3 89 85 1.9 10.72941176 3 38.6 231 20.4 90 97 65 91 10.72941176 3 36.6 232 12.6 67 67 16.2 0.55 1.77 11.373 38.9			20,4	87	85		82	0.6	0.57	0.55									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	226 1	4-May-98	20.8	86	84	83	80	0.61	0.6	0.56	1.77		3						
128 90 87 85 94 0.6 0.58 0.55 17.3 11.072 3 89 85 1.9 10.72941176 3 30.8 230 15-May-98 21.4 90 86 85 0.62 0.6 0.57 1.79 11.456 3 89 85 1.9 10.72941176 3 38.8 231 20.4 90 87 65 85 0.61 0.58 1.73 11.072 3 95 91 10.72941176 3 38.8 233 20.6 91 89 86 0.55 1.74 11.136 3 89 66 1.9 10.72941176 3 38.8 234 19.8 94 91 89 96 1.9 10.72941176 3 38.8 235 19.8 94 91 89 96 91 10.72941176 3 38.8 236 19.8 92 90<				and the second sec								11.072	3	89	64	1.9			
120 15 May 98 21 4 90 98 85 0.82 0.87 1.79 11 486 3 99 85 1.9 10.72941176 3 38.8 231 20.4 90 87 85 90 0.7 85 96 0.8 1.77 11.328 3 90 87 1.9 10.72941176 3 38.8 232 19.9 94 92 90 90 0.6 0.56 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 233 20.6 91 86 86 0.61 0.55 1.75 11.2 3 94 90 10.72941176 3 38.8 235 19.8 94 91 69 0.61 0.58 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.8 94 92 90 87																	10.72941176	3	38.8
231 20.4 90 87 85 85 0.6 0.6 0.6 0.6 1.77 11.328 3 90 87 1.9 10.72941176 3 38.8 232 19.9 94 92 90 90 0.6 0.58 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 233 20.6 91 88 86 0.61 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 235 19.8 94 91 99 86 0.6 0.58 1.75 11.2 3 94 90 1.9 10.72941176 3 38.8 235 19.8 92 90 87 0.61 0.58 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 236 19.4 94 92																		-	38.8
232 19.9 94 92 90 0.6 0.58 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 233 20.6 91 88 86 0.61 0.59 0.55 1.74 11.136 3 89 86 1.9 10.72941176 3 38.8 233 20.6 91 89 96 0.61 0.59 0.55 1.75 11.2 3 94 90 1.9 10.72941176 3 38.8 235 19.8 94 91 89 86 0.6 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.9 94 92 90 86 0.6 0.56 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 239 19.4 94 91 89 86		5-May-98																	
233 20.6 91 88 86 0.61 0.55 1.74 11.136 3 89 86 1.9 10.72941176 3 38.8 234 16-May-38 20.8 93 91 89 66 0.61 0.59 0.55 1.75 11.2 3 94 90 1.9 10.72941176 3 36.8 235 19.3 92 90 87 85 0.6 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.3 92 90 87 65 0.6 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 238 19.4 94 91 89 86 0.6 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 239 19.4 94 91 89 <td></td> <td> </td> <td></td>		 																	
234 16-May-98 20.8 93 91 89 89 0.61 0.55 0.55 1.75 11.2 3 94 90 1.9 10.72941176 3 36.6 235 19.6 94 91 89 88 0.6 0.58 0.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.3 92 90 87 85 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.9 94 92 89 88 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 239 19.4 94 91 89 88 0.6 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 241 19.8<																			
235 19.6 94 91 89 88 0.6 0.58 0.73 11.072 3 94 90 1.9 10.72941176 3 38.8 236 19.3 92 90 87 85 0.6 0.58 0.73 11.072 3 92 89 1.9 10.72941176 3 38.8 237 17.4May-98 202 92 90 88 67 0.61 0.58 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 238 19.9 94 92 89 88 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 239 19.4 94 91 89 88 0.6 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 240 19.8 90<		6-May-98																-	
236 19.3 92 90 87 85 0.6 0.56 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 237 17.May-98 20.2 92 80 88 67 0.61 0.58 0.55 1.74 11.136 3 92 89 1.9 10.72941176 3 38.8 238 19.9 94 92 89 88 0.6 0.58 0.55 1.73 11.072 3 94 90 19.9 10.72941176 3 38.8 239 19.4 94 91 88 0.6 0.58 0.55 1.73 11.072 3 94 90 19.9 10.72941176 3 38.8 240 19.8 90 88 86 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 241 18.9 <																			
237 17-May-98 20.2 92 90 86 67 0.61 0.58 0.55 1.74 11.136 3 92 89 1.9 10.72941176 3 36.6 238 19.9 94 92 89 88 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.6 239 19.4 94 91 89 88 0.6 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.6 240 19.8 90 88 86 84 0.65 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 241 19.4 94 91 89 87 65 0.6 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.6 243 20.9	236																		
238 19.9 94 92 89 88 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 239 19.4 94 91 89 88 0.6 0.58 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 240 19.8 90 88 86 84 0.65 0.52 0.59 1.86 11.9072 3 94 90 1.9 10.72941176 3 38.8 241 18.May-98 19.8 92 89 86 85 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 242 18.9 91 89 87 85 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8	237 1	7-May-98					67			0.55			_						
239 19.4 94 91 89 88 0.6 0.58 0.55 1.73 11.072 3 95 91 1.9 10.72941176 3 38.8 240 19.8 90 88 86 84 0.65 0.62 0.59 1.86 11.904 3 90 86 1.9 10.72941176 3 38.8 241 18.4 91 89 87 85 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 38.8 242 18.9 91 89 87 85 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 243 20.9 91 88 86 0.6 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 244 19.7 93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.072</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												11.072	3						
19.8 90 88 86 84 0.65 0.62 0.59 1.86 11.904 3 90 86 1.9 10.72941176 3 38.8 241 18.49/98 19.8 92 89 86 85 0.6 0.58 0.55 1.73 11.072 3 94 90 1.9 10.72941176 3 36.8 242 18.9 91 89 87 85 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 243 20.9 91 88 86 84 0.6 0.58 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 244 19.7 93 90 88 86 0.5 0.55 1.73 11.072 3 94 91 1.9 10.72941176 3 38.8 244 19.															91				
242 18.9 91 89 87 85 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 243 20.9 91 88 86 84 0.6 0.58 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 244 19.7 93 90 86 86 0.6 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 244 19.7 93 90 86 86 0.6 0.55 1.73 11.072 3 94 90 1.8 10.16470588 3 38.8 245 19.May-98 19 93 90 86 85 83 0.6 0.55 1.73 11.072 3 90 67 1.9 10.72941176 3 38.8 247 19.6																		3	
243 20.9 91 88 86 84 0.6 0.58 0.55 1.73 11.072 3 92 89 1.9 10.72941176 3 38.8 244 19.7 93 90 88 86 0.6 0.58 0.55 1.73 11.072 3 94 90 1.8 10.16470588 3 37.5 245 19.May.98 19 93 90 86 0.6 0.57 0.55 1.73 11.072 3 94 90 1.8 10.16470588 3 38.8 246 19.6 89 86 85 83 0.6 0.56 1.73 11.072 3 90 67 1.9 10.72941176 3 38.8 247 19.6 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20.May-96 <		8-May-98											_		- + -				
244 19.7 93 90 86 86 0.6 0.58 0.55 1.73 11.072 3 94 90 1.8 10.16470588 3 37.5 245 19.May-99 19 93 90 89 86 0.6 0.57 0.55 1.72 11.008 3 94 91 1.9 10.72941176 3 38.8 246 19.6 89 86 85 63 0.6 0.58 0.55 1.73 11.072 3 90 67 1.9 10.72941176 3 38.8 247 19.6 92 90 88 66 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20-May-98 19.1 94 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 <																			
245 19 93 90 89 86 0.6 0.57 0.55 1.72 11.008 3 94 91 1.9 10.72941176 3 38.8 246 19.6 89 86 85 83 0.6 0.58 0.55 1.73 11.072 3 90 67 1.9 10.72941176 3 38.8 247 19.6 92 90 88 86 0.6 0.58 0.55 1.73 11.072 3 93 90 19 10.72941176 3 38.8 247 19.6 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20-May-96 19.1 94 92 90 88 0.6 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 249 18.7<																			
246 19.6 89 86 85 83 0.6 0.58 1.73 11.072 3 90 67 1.9 10.72941176 3 38.8 247 19.6 92 90 88 86 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20.May-98 19.1 94 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20.May-98 19.1 94 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 249 18.7 93 91 88 86 0.6 0.55 1.73 11.072 3 92 88 1.9 10.72941176 3 38.8 250 <t< td=""><td>245 40</td><td>9.May 09</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	245 40	9.May 09																	
247 19.6 92 90 88 66 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 248 20.May-98 19.1 94 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 249 18.7 93 91 88 86 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 249 18.7 93 91 88 86 0.6 0.58 0.55 1.73 11.072 3 92 88 1.9 10.72941176 3 38.8 250 18.8 94 92 90 89 0.6 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72941176 3 38.8																			
248 20-May-98 19.1 94 92 90 88 0.6 0.58 0.55 1.73 11.072 3 93 90 1.9 10.72941176 3 38.8 249 18.7 93 91 88 86 0.6 0.58 0.55 1.73 11.072 3 92 88 1.9 10.72941176 3 38.8 250 18.8 94 92 90 89 0.6 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72941176 3 38.8 250 18.8 94 92 90 89 0.6 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72941176 3 38.8 251 18.1 95 93 90 89 0.6 0.57 0.55 1.72 11.008 3 95 92 1.9 10.72941176 3 38.8																			
249 18.7 93 91 88 86 0.6 0.58 0.55 1.73 11.072 3 92 88 1.9 10.72941176 3 38.8 250 18.8 94 92 90 89 0.6 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72941176 3 38.8 250 18.8 94 92 90 89 0.6 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72941176 3 38.8 251 18.1 95 93 90 89 0.6 0.57 0.55 1.72 11.008 3 95 92 1.9 10.72941176 3 38.8		0-May-98											_						
250 18.8 94 92 90 89 0.8 0.57 0.55 1.72 11.008 3 94 90 1.9 10.72841176 3 38.8 251 18.1 95 93 90 89 0.6 0.57 0.55 1.72 11.008 3 95 92 1.9 10.72941176 3 38.8									· · · · · · · · · · · · · · · · · · ·										
251 18.1 95 93 90 89 0.6 0.57 0.55 1.72 11.008 3 95 92 1.9 10.72941176 3 38.8	250																		
	251		18.1	95	93	90	89	0.6	0.57	0.55	1.72								
	252 21	1 May 99	17.6	100	98	96	. 94	0.61	0.58	0.55		11,136	3						

· ...

· • · • •

	A	Ť	U	V	W	Х	Ý	Z	AA	AB	AC	AD	AE	AF	AG	AH I	Al	AJ
4	Date	RO Fd C	Free Feed psi	inrsta 1 psi	ltrsta 2 psi	Eree Rei psi	A Perm gom	B Perm opm	C Perm gom	Total Flow		Free Rel gom	Std Feed osi	Std Rei osl	Std Perm dom		Std rej opm	
253		18,8	100	98	96	95	0,6	0,59	0.55	1.74	11.136	3	97	94	1.9	10.72941176	3	38.8
254		18	101	98	96	96	0.6	0.59	0.55	1.74	11.136	3	99	96	1.9	10.72941176	3	38.8
255	22-May-98	17,5	104	101	100	100	0.6	0.59	0,55	1.74	11.136	3	100	97	1.9	10.72941176	3	38.8
256		19	101	98	96	96	0.61	0.59	0.55	1.75	11.2	3	97	94	1.9	10,72941176	3	38.8
257	23-May-98	18.3	103	101	99	99	0.6	0.58	0.55	1.73	11.072	3	100	97	1.9	10.72941176	3	38.6
258		17.5	104	101	99	99	0.6	0.58	0.55	1.73	11.072	3	100	98	1.9	10.72941176	3	38,8
259		19.3	91	88	86	85	0.61	0.59	0.55	1.75	11.2	3	91	87	1.9	10.72941176	3	38.8
260		19.5	97	95	92	91	0.59	0.58	0.54	1.71	10.944	3	99	95	1.9	10.72941176	3	38.8
261	24-May-98	18.9	98	96	94	92	0.59	0.56	0.54	1.69	10.816	3	100	97	1.9	10.72941176	3	38.8
262		21.4	96 07	94	91	90	0.6	0.58	0.55	1.73	11.072	3	96	92	1.9	10.72941176	3	38.8
263 264		19.4 18.2	95 95	92 93	90 91	89 89	0.6	0.57	0.55	1.72	11.008	3	96	93	1.9	10.72941176	3	38.8
_	25 Mar 08		93	90	68	87	0.55	0.59	0.55	<u>1.72</u> 1.75	11.008	3	96	92	1.9	10.72941176	3	38.8
265 266	25-May-98	20.1	93 97	94	92	90	0.6	0.59	0.55	1.73	11.2	3	91	88	1.9	10.72941176	3	38,8
267		21.4	97	94	93	91	0.6	0.57	0.55	1.72	11.008 11.008	3	95 97	92 94	1.9 1.9	10.72941176	3	36.8
268		20,6	96	94	91	90	0.61	0.59	0.55	1.72	11.000	3	94	89	1.9	10.72941176	3	38.8 38.8
269	26-May-98	20.6	91	89	67	85	0.61	0.59	0.55	1.75	11.2	3	94	86	1.9	10.72941176	3	38.8
270		18.9	98	95	93	91	0.6	0.53	0.55	1.72	11.008	3	97	94	1.9	10.72941176	3	38.8
271	·	20.8	95	93	90	88	0.6	0.58	0.55	1.73	11.072	3	91	87	1.9	10.72941176	3 3	38.8
272	27-May-98	20.1	94	91	69	87	0.62	0.6	0.56	1.78	11.392	3	90	86	1.9	10.72941176	3	38.8
273		19.3	97	94	92	90	0.6	0.57	0.54	1.71	10.944	3	96	92	1.9	10.72941176	3	38.8
274		20.7	94	92	90	88	0.61	0.58	0.55	1.74	11.136	3	91	87	1.9	10.72941176	3	38.8
275		20.2	95	93	90	89	0.6	0.58	0.55	1.73	11.072	3	94	90	1.9	10.72941176	3	38.8
276	28-May-98	19.9	97	95	93	91	0.6	0.58	0.55	1,73	11.072	3	96	93	1.9	10.72941176	3	38.8
277		21.1	94	91	89	87	0.6	0.57	0.55	1.72	11.008	3	93	90	1.9	10.72941176	3	38.8
278		20	94	92	90	88	0.6	0.57	0.55	1.72	11.008	3	94	90	1.9	10.72941176	3	38.8
279		21.8	96	93	90	89	0.6	0.57	0,55	1.72	11.008	3	94	90	1.9	10.72941176	3	38.8
280	29-May-98	19.7	94	92	90	88	0.6	0.57	0.55	1.72	11.008	3	92	90	1.9	10.72941176	3	38.6
281		21.9	95	93	90	89	0.6	0.57	0.55	1.72	11.008	3	94	91	1.9	10.72941176	3	38,8
282		20.1	92	89	87	85	0.6	0.57	0.55	1.72	11.008	3	90	87	1.9	10.72941176	3	38.8
283		21.8	94	91	89	87	0.6	0.57	0.55	1.72	11.008	3	95	92	1.9	10.72941176	3	38.8
284	30-May-98	20.3	92	90	87	85	0.62	0.6	0.55	1.77	11.328	3	90	87	1.9	10.72941176	3	38.8
285	74 14-1 00	20.9	93	90	89	86	0.6	0.57	0.55	1.72	11.008	3	94	90	1.9	10.72941176	3	38.8
286	31-May-98 1-Jun-98	20.9 19.9	92 94	89 92	86 90	85 88	0.6	0.58	0.55	1.73	11.072 11.072	3	90 93	87	1.9	10.72941176	3	38.8
288	2-Jun-98	20.4	94	92	89	87	0.6	0.58	0.55	1.73	11.072	3	93	90	<u>1.9</u> 1.9	10.72941176	3	38.8
269	2-30/1-30	18.8	94	91	89	87	0.61	0.59	0.55	1,75	11.2	3	92	89	1.9	10.72941176	3	38.8 38.8
290		21.2	95	93	90	88	0.6	0.58	0.55	1.73	11.072	3	94	91	1.9	10.72941176	3	38.8
291	3-Jun-98	20.1	94	91	89	86	0.61	0.6	0.55	1.76	11.264	3	93	90	1.9	10.72941176	3	38.8
292		19	98	95	93	91	0.6	0.57	0.55	1.72	11.008	3	99	95	1.9	10.72941176	3	38.8
293	4-Jun-98	21.3	95	92	89	88	0.61	0.58	0.55	1.74	11.136	3	91	88	1.9	10.72941176	3	38.8
294		20	97	93	90	89	0.61	0.56	0.55	1.74	11.136	3	95	91	1.9	10.72941176	3	38.8
295	5-Jun-98	19.4	94	95	92	90	0.6	0.57	0.55	1.72	11.008	3	97	93	1.9	10.72941176	3	38.8
296		21.8	95	91	69	88	0.61	0.58	0.55	1.74	11.138	3	91	88	1.9	10.72941176	3	38.8
297		19.3	96	93	91	90	0.6	0.59	0.55	1.74	11.136	, 3	94	91	1.9	10.72941176	3	38.8
298	6-Jun-98	20.8	92	94	91	90	0.61	0.59	0.55	1.75	11.2	3	95	92	1.9	10.72941176	3	38.8
299		19.8	97	90	88	86	0.62	0.6	0.55	1.77	11.328	3	90	87	1.9	10.72941176	3	38.8
300	7-Jun-98	20.4	96	94	92	90	0.6	0.59	0.55	1.74	11.136	3	96	93	1.9	10.72941176	3	38.8
301		19.9	96	93	91	89	0.6	0.59	0.55	1.74	11.136	3	92	89	1.9	10.72941176	3	38.8
302	8-Jun-98	22	96	94	92	90	0.6	0.57	0.55	1.72	11.008	3	94	90	1.9	10.72941176	3	38.8
303		21.7	91	93	92	90	0.61	0.58	0.55	1.74	11.136	3	94	91	1.9	10.72941176	3	38.8
304	9-Jun-98	20.8	90	89	86	90	0.6	0.57	0.54	1.71	10.944	3	91	89	1,9	10.72941176	3	38.8
305 106		22.7	90	87	85	83	0.61	0.58	0.55	1.74	11.136	3	87	84	1.9	10.72941176	3	38.8
		20,7	91	88	86	85	0.6	0.58	0.55	1.73	11.072	3	90	87	1.9	10.72941176	3	39.8
307	10 10 00	22.3	88	89	86	85	0.6	0.59	0.55	1.74	11,136	3	90	88	1.9	10.72941176	3	38.8
808	10-Jun-98	20.3	94	86	84	83 88	0.6	0.58	0.55	1.73	11.072	3	87	84	1.9	10.72941176	3	38.8
309 310		22.2	92	91 90	90	86	0.6	0.58	0.55	1.73	11.072	3	91	89	1.9	10.72941176	3	38.8
311	11-Jun-98	21.5	93 91	90	88	86	0.6	0.58	0.55	1.74	11.136	3	69	86 89	1.9	10.72941176	3	38.8
312	11-3011-88	20.5	90	90	86	85	0.6	0.57	0.55	1.72	11.008	3	91 89		1,9	10.72941176	3	36.8
	12-Jun-98	20.5	90	88	86	85	0.6	0.50	0.55	1.73	10.944	3	<u>89</u> 91	85	1,9 1,9	10.72941176	3	38.8
313	·*-JUI1-30	21.3	91 92	68	86	85	0.61	0.59	0.55	1.71	10.944	3	91 89			10.72941176	3	38.8
		20.5	92	00	00	00	0.01	0.09	0.00	1.75	11.2	3	08	86	1.9	10.72941176	3	38.8

1 1	—	A		Ú		w T	x	Y	Z	AÁ	AB	AC	AD	AE	AF	ĀĞ	AH	Al	AJ 7
313 324 325 92 92 93	A	Date	ROFAC	-	Inrsta 1 psi			A Perm gom											
337 1.00 9.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.944</td> <td></td> <td></td> <td></td> <td></td> <td>10.72941176</td> <td></td> <td>38.8</td>												10.944					10.72941176		38.8
371 97 40 40 40 41 10 98 90 10 97 90		13-Jun-98						0.6		0.54		11.008	3	90	87	1.9	10.72941176	3	38.6
101 203 92 00 82 64 65 112 11.00 12 11.00 10 10 10.2841178 13 93 94 91 10 10.2841178 13 93 10 10 10 10.2841178 13 13 10 10 10.2841178 13 13 10 10 10.2841178 13 13 10 10 10.2841178 13 13 10 10 10.2841178 13 13 10 10 10.2841178 13 13 13 10 10 10.2841178 13 13 13 14 10 10.2841178 13 13 13 14 10 10.2241178 13 <td></td> <td></td> <td>21.1</td> <td>92</td> <td>90</td> <td>88</td> <td>86</td> <td>0.6</td> <td>0.57</td> <td>0.54</td> <td>1.71</td> <td>10.944</td> <td>3</td> <td>93</td> <td>90</td> <td>1.9</td> <td>10.72941176</td> <td>3</td> <td>38.8</td>			21.1	92	90	88	86	0.6	0.57	0.54	1.71	10.944	3	93	90	1.9	10.72941176	3	38.8
Norm Pair Pi Di Di <th< td=""><td>318</td><td>14-Jun-98</td><td>21.9</td><td>92</td><td>89</td><td>87</td><td>86</td><td>0.6</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td>3</td><td></td></th<>	318	14-Jun-98	21.9	92	89	87	86	0.6					3					3	
257 677 677 677 677 677 670 7 1002 3 61 69 19 107241176 3 838 237 60 637 637 630 637 630 92 69 19 10 612241176 3 338 238 60 63 637 638 64 171 1002 3 62 69 19 10/2241178 3 338 237 60 68 64 63 657 658 172 1034 3 62 69 19 10/2241178 3 388 238 7 60 68 68 65 656 173 1102 3 81 69 19 10/2241178 3 836 239 71 64 97 66 64 646 646 173 11022 3 81 69 19 10/2241176 3	319		20,6	92	90	88													
222 16.2 193 <td>320</td> <td>15-Jun-98</td> <td>20.1</td> <td>91</td> <td></td>	320	15-Jun-98	20.1	91															
132 163 67 00 7 88 0.58 0.54 174 11.108 3 84 69 1.9 10.7241176 3 38.1 137 17.000 10 69 69 68 60 0.58 0.54 172 11.064 3 62 69 19 10.7241176 3 38.3 138 16 19 17 10.8 3 14.8 19 10.7241176 3 38.3 138 16 17 10.8 3 14.8 19 10.7241176 3 38.3 10.8 10.8 10.8 10.8 10.8 11.8 11.18 11.					88														
120 120 <td></td> <td>16-Jun-98</td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td>		16-Jun-98				· · · · · · · · · · · · · · · · · · ·													
122 17.2 16.0 16.0 16.0 17.1 10.04 2 17.0 10.72 17.0 10.72 17.0 10.72 17.0 10.72 17.0 10.72 17.0 10.72 10.70 10.72															_				
32 33 34 35 35 36 36 37 90 3 90 10 107281176 3 38.0 33 10 64 64 60 94 0.50 0.55 17 10.08 3 91 68 10 007281176 3 88.0 33 10 64 65 0.56 0.56 173 11072 3 94 61 10 007281176 3 88.0 331 122 90 86 0.50 0.56 0.55 173 11072 3 94 61 10 007281176 3 38.0 332 124 44 61 64 97 0.56 0.55 173 11072 3 97 64 130 107281176 3 30.0 333 254.06 86 84 85 0.55 173 11072 3 96 65 130 1072																			
123 123 124 124 124 124 127 1202 3 91 92 91 92 191 125	· · · ·	17-Jun-98																	
138 147 147 147 147 149 158 157 1102 35 44 151 152 153						· · · · · · · · · · · · · · · · · · ·													
329 217 94 94 96 0.6 0.58 0.58 0.73 11.02 3 91 89 16 0.57241176 3 368 331 21.2 62 64 68 65 1.73 11.02 3 94 61 13 0.7241176 3 858 0.38 0.38 1.73 11.02 3 94 61 13 0.7241176 3 858 0.38 1.73 11.02 3 94 61 13 0.7241176 3 858 0.38 1.74 11.08 3 97 44 19 0.7241176 3 30.8		18-Jun-98																_	
333 B C 90 98 96 0.65 1.73 1.172 3 94 91 1.9 10.72941176 3 38.8 333 22.0 94 91 90 90 60 6.5 0.55 1.73 11.972 3 80 91 1.8 10.72941170 3 38.8 333 27.7 60 60 84 46 6.6 6.57 0.55 1.73 11.972 3 80 18.0 10.72941170 3 38.8 333 23.40.83 22.9 105 103 100 90 6.8 1.75 11.71 11.97 3 80 98 1.93 10.72941170 3 38.9 333 23.40.84 22.9 10.9 6.8 0.68 0.19 1.71 11.97 3 80 98 1.9 10.72941170 3 38.9 337 22.0 87 98 98 <td< td=""><td></td><td></td><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>					<u> </u>														
339 72.0 94 90 90 96 0.58 1.73 11072 3 94 91 1.8 1072841176 3 38.8 338 0.444 91 64 67 6.6 0.55 1.73 11072 3 89 1.8 10.72541176 3 38.8 338 0.444 64 67 6.6 0.57 0.55 1.72 11008 3 81 88 1.8 10.72541176 3 38.8 338 0.544 1.75 11008 3 87 84 1.9 10.72541176 3 38.8 338 0.544 0.57 0.54 1.73 11072 3 60 19 10.72541176 3 38.8 338 0.444,084 22.6 9 1.8 10.72541176 3 38.8 338 0.444,084 22.6 9 1.8 10.72341176 3 38.8 38.8 38.8 <td< td=""><td></td><td>10 km 04</td><td>and the second second second second second second second second second second second second second second second</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		10 km 04	and the second second second second second second second second second second second second second second second																
332 21.4 94. 94. 97 0.68 0.69 177 11072 3 99 65 1.9 10.7281176 3 36.6 333 0.468 917 86 86 84 0.6 0.57 0.57 1107 3 91 95 1.9 10.7281176 3 36.6 333 0.468 92 86 94 95 0.65 1.77 11072 3 99 95 1.9 10.7281176 3 36.3 333 0.468 96 96 1.9 0.7281176 3 36.3 333 0.468 1.6 0.6 0.55 1.77 11.072 3 90 96 1.9 10.7281176 3 38.8 333 0.468 96 65 0.65 1.78 11.028 3 90 96 1.9 10.7281176 3 38.8 334 0.468 0.6 0.67 </td <td></td> <td>13-3011-30</td> <td></td>		13-3011-30																	
333 DisAppedi 217 90 98 85 44 0.63 0.67 0.55 172 11.008 3 91 98 11.5 10.72841178 3 38.8 313 21.55.66 105 105 105 105 105 107 64 19 10.72841178 3 88.8 318 23.40.48 22.5 105 105 105 107541178 3 88.9 318 23.40.48 22.7 88 89 93 15 107541178 3 89.9 318 24.10.48 89 98 65 0.55 172 11.36 3 89.8 31 10.72841178 3 38.8 310 23.11 89 88 64 0.61 0.62 0.55 172 11.36 3 89 63 19 10.72841178 3 38.8 310 23.15 86 64 64 0.61 0.62 0.55 175 11.20 3 64 63 19 10.72841178																			
312 1212 120 1212 120 121 100 121 1000 121 1000 100		20-Jun-98																	
338 22.4																			
337 22.6 89 66 64 63 0.5 0.55 1.73 11.072 3 90 96 1.5 10.72841176 3 38.8. 338 24.1.6 91 89 86 65 0.6 0.65 1.74 11.068 3 52.3 85 1.9 10.72841176 3 38.8. 338 21.6 91 86 65 0.6 0.65 1.72 11.068 3 52.3 86 1.9 10.72841176 3 38.8. 341 21.0 91 86 64 62 0.6 0.65 1.72 11.068 3 66 1.9 10.72841176 3 38.6 341 27.0.98 86 64 62 64 0.62 0.6 0.54 1.72 11.068 3 65 1.9 10.72841176 3 38.8 341 22.0 66 0.52 0.52 0.56 1.72					103	100	99	0.61	0.59	0.55	1.75	11.2	3	87	84	1.9	10.72941176	3	38.8
338 24.098 21.5 91 85 85 0.61 0.58 0.57 0.75 1.72 11.00e 3 92 69 1,3 10.72241178 3 38.8 309 21.5 91 89 66 0.67 0.55 1.72 11.2 3 84 63 19 10.72241176 3 38.8 301 22.3 87 84 63 61 0.651 0.55 1.72 11.2 3 88 84 19 10.7241176 3 38.8 342 21.6 88 84 42 0.6 0.65 0.55 1.72 11.002 3 88 41 10.7241176 3 38.8 342 21.6 88 84 63 64 63 65 </td <td></td> <td></td> <td></td> <td>88</td> <td>86</td> <td>84</td> <td>83</td> <td>0.6</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>86</td> <td></td> <td></td> <td>3</td> <td></td>				88	86	84	83	0.6					3		86			3	
339 21.6 91 98 65 0.6 0.57 0.55 1.72 11.00 3 92 89 1.9 10.72941176 3 38.6 326 75.568 87 84 63 0.61 0.59 0.55 1.75 112 3 64 83 1.9 10.72941176 3 38.6 341 22.8 87 84 63 81 0.61 0.55 1.72 11.20 3 66 61 1.9 10.72941176 3 38.6 442 21.468 64 62 0.6 0.55 1.72 11.000 3 69 61 1.9 10.72941176 3 38.6 442 21.468 64 62 0.6 0.65 1.72 11.000 3 69 65 10.72941176 3 38.6 442 21.468 63 62 0.6 0.65 1.75 11.22 3 69	337		22.6	89	86	84	83	0.6	0.58				3						
320 25.058. 23.5 97 94 93 1.9 10.72941176 3 38.8. 341 32.9 7 94 83 51 0.61 0.55 1.75 11.2 3 84 82 1.9 10.72941176 3 38.8 342 7 84 83 81 0.62 0.65 1.72 11.00 3 80 64 1.9 10.72941176 3 38.8 344 72.068 84 62 6.6 0.65 1.78 11.392 3 68 64 1.9 10.72941176 3 38.8 38.8 38.8 38.9 39.9 65 1.9 10.72941176 3 38.8		24-Jun-98																	
341 229 97 84 83 81 0.61 0.59 0.55 1.75 11.2 3 86 64 15 10.72941176 3 38.8 343 25.468 84 85 81 0.62 0.5 0.55 1.72 11.392 3 86 61 1.9 10.72941176 3 30.8 343 25.468 86 84 82 0.6 0.58 0.78 11.392 3 86 61 1.9 10.72941176 3 30.8 344 20.1 86 86 85 1.2 0.6 0.58 0.54 1.72 11.008 3 89 65 1.3 10.72941176 3 38.8 347 22.2 88 84 80 65 1.3 10.72941176 3 38.8 346 21.7 88 85 1.9 10.72941176 3 38.8 350 30.0																			
322 213 89 66 94 62 0.6 0.57 0.55 1.72 11.006 3 90 86 81 1.9 10.7241176 3 38.6 344 72.0m-50 21.1 86 84 62 61 0.62 0.6 0.58 1.76 11.382 3 86 81 1.9 10.7241176 3 38.8 344 72.0m-50 88 86 83 82 0.6 0.56 0.54 1.72 11.006 3 89 65 1.9 10.7241176 3 38.8 346 72.0m-50 88 86 83 81 0.61 0.55 0.55 1.75 11.2 3 91 67 11.3 0.7244176 3 38.8 346 21.7 65 81 77 0.61 0.57 0.55 1.77 11.050 3 86 63 1.9 0.7244176 3 38.8		25-Jun-98																	
343 28.2 97 841 69.2 0.6 0.52 0.6 0.58 1.76 11.392 3 86 611 1.9 10.72841176 3 38.8 448 20.1 68 69 1.71																			
344 21.1 86 84 92 81 0.62 0.68 6.78 11.392 3 88 94 1.9 10.72841176 3 38.8 346 72.01 68 85 83 82 0.6 0.56 0.544 1.72 11.008 3 89 85 1.9 10.72841176 3 38.8 347 22 69 65 63 82 0.6 0.55 1.72 11.008 3 89 85 1.9 10.72841176 3 38.8 348 23.4m 98 23.5 83 80 77 0.61 0.57 0.54 1.72 11.008 3 89 82 1.9 10.72841176 3 38.8 350 30.0m-98 23.5 86 83 80 77 0.61 0.57 0.55 1.77 11.328 39 79 1.9 10.72841176 3 38.8 351 3																		-	
346 921 68 86 63 52 0.6 0.56 0.54 1.72 11.008 3 89 65 1.9 10.72941176 3 38.8 347 22 68 65 63 52 0.6 0.56 0.54 1.72 11.008 3 68 65 1.9 10.72941176 3 38.8 347 22 68 84 63 61 0.61 0.57 0.54 1.72 11.008 3 88 65 1.9 10.72941176 3 38.8 336 2.17 85 83 61 79 0.61 0.57 0.55 1.77 11.028 3 83 79 1.9 10.72941176 3 38.8 331 1.4.468 23.5 85 83 61 0.6 0.57 0.55 1.77 11.28 3 83 79 1.9 10.72941176 3 38.8 333 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																			
366 25.0 68 63 62 0.6 0.58 0.54 1.72 11.008 3 68 65 1.9 10.72941176 3 38.8 347 22 68 65 63 62 0.6 0.58 0.54 1.72 11.008 3 68 65 1.9 10.72941176 3 38.8 348 25.0m-96 23.5 65 63 60 77 0.61 0.57 0.55 1.72 11.008 3 67 1.9 10.72941176 3 38.8 350 30.0m-96 23.5 65 63 61 0.67 0.55 1.72 11.028 3 63 79 1.0 10.72941176 3 38.8 351 1.468 64 64 0.63 0.55 1.77 11.028 3 64 19 10.72941176 3 38.8 353 2.266 64 61 0.6 0.55 1.72 11.008 3 64 19 10.72941176 3 38.8 </td <td></td> <td>27-Jun-98</td> <td></td>		27-Jun-98																	
347 22 88 65 83 82 0.6 0.58 1.72 11.008 3 88 85 1.9 10.7241176 3 38.8 346 23.7 83 61 79 77 0.61 0.57 0.54 1.72 11008 3 87 80 1.9 10.7241176 3 38.8 350 30.50 85 63 80 79 0.61 0.57 0.55 1.77 11.328 3 83 79 1.9 10.7241176 3 38.8 351 1.4/48 2.5 86 63 81 60 0.57 0.55 1.77 11.308 3 87 79 1.9 10.7241176 3 38.8 353 2.4/46 81 60 77 76 0.6 0.59 1.71 10.98 3 84 19 10.72941176 3 38.8 354 2.2.8 81 60		00 100 00																	
288 294 88 84 83 81 0.61 0.57 0.56 1.75 11.2 3 91 67 19 10.72241176 3 38.8 365 30.1n.08 23.5 86 63 80 79 0.61 0.57 0.55 1.73 11.072 3 66 82. 1.9 10.72241176 3 38.8 336 1.04.48 23.5 86 63.3 61 60 0.57 0.55 1.77 11.328 3 83 79 19 10.72241176 3 38.8 337 2.24.7 86 64 61 60 0.56 0.56 1.71 10.88 3 64 62 1.9 10.72241176 3 36.8 333 2.24.7 86 64 61 60 0.56 0.56 1.71 10.84 3 64 1.9 10.72241176 3 36.8 334 2.2.8 80 78 76 0.6 0.56 1.74 11.36 3 64 <		20-301-98																	
319 217 83 81 79 77 0.61 0.57 0.54 1.72 11.008 3 97 80 1.9 10.72941176 3 38.8 353 1.3.4.98 23.5 86 83 80 79 0.61 0.57 0.55 1.77 11.328 3 83 79 1.9 10.72941176 3 38.8 333 2.2.7 86 84 81 0.6 0.57 0.55 1.72 11.008 3 87 24 1.9 10.72941176 3 38.8 333 2.2.7 86 84 61 0.6 0.56 0.54 1.7 10.084 3 84 1.9 10.72941176 3 38.8 354 40.2 81 80 76 0.6 0.56 1.74 11.195 3 84 1.9 10.72941176 3 38.8 355 34.1.48 83 80 79	in the second	29. Jun. 98				the second second second second second second second second second second second second second second second s													
325 325 85 83 80 79 0.61 0.57 0.55 1.73 11.072 3 86 82 1.9 10.72241176 3 38.8 335 325 23.04.88 23.5 85 85 81 80.6 0.55 1.77 11.328 3 83 79 1.9 10.72241176 3 38.8 335 22.04.88 24.1 87 84 1.9 10.72241176 3 38.8 335 3.22.8 61 80 77 76 0.6 0.55 1.71 10.08 3 85 61 1.9 10.72941176 3 38.8 336 22.8 62 80 76 0.6 0.59 0.55 1.74 11.092.3 84 79 1.9 10.72941176 3 38.8 336 22.8 62 63 81 80 0.6 0.59 0.55 1.74 11.135 3 84 79 1.9 10.72941176 3 38.8 36.8 36.8 36.8	-	28-3011-30																	
351 -1,4/-88 23.5 96 63 61 0.6 0.65 1.77 11.328 3 63 79 1.9 10.72941176 3 38.6 352 2.14.96 22.7 86 84 81 80 0.75 0.55 1.72 11.008 3 67 64 19 10.72941176 3 38.6 353 -23.6 81 80 77 76 0.6 0.55 1.71 10.88 3 65 91 1.9 10.72941176 3 38.6 354 -23.6 81 80 77 76 0.6 0.55 1.74 11.036 3 64 19 10.72941176 3 38.6 355 -23.9 85 83 81 80 0.6 0.55 1.73 11.072 3 84 19 10.72941176 3 38.8 356 -24.4 83 80 77 0.6 0.55 1.74 11.135 3 86 62 1.9 10.72941176 3		30-Jun-98											3				the second second second second second second second second second second second second second second second se		
352 23.14.89 24.1 87 85 83 0.6 0.57 0.57 0.55 1.72 11.008 3 87 84 19. 10.72941176 3 38.8 353 23.7 86 84 81 80 0.6 0.56 0.55 1.71 10.08 3 84 80 19. 10.72941176 3 38.8 353 3.14.69 22.8 82 80 78 76 0.6 0.59 0.55 1.74 11.136 3 84 19. 10.72941176 3 38.8 356 22.8 82 80 78 76 0.6 0.59 0.55 1.73 11.072 3 88 84 19. 10.72941176 3 38.8 357 22.8 84 83 80 79 0.61 0.59 0.55 1.74 11.36 3 84 79 19. 10.72941176 3 38.8 358 22.4 85 82 80 78.6 0.55 1.74 <					63					0.55		11.328	3	83	79	1.9		3	38.8
333 22.7 66 84 61 80 0.6 0.58 0.54 1.7 10.84 3 64 60 1.9 10.72941176 3 38.8 335 -23.8 61 80 77 76 0.6 0.56 1.71 10.3944 3 65 61 1.9 10.72941176 3 38.8 335 -23.9 85 83 81 80 0.6 0.56 1.73 11.024 3 84 79 1.9 10.72941176 3 36.8 356 22.8 84 83 80 79 0.61 0.59 0.55 1.74 11.136 3 84 1.9 10.72941176 3 38.8 356 22.4 85 83 80 76 0.6 0.55 1.73 11.072 3 86 82 1.9 10.72941176 3 38.8 363 -1.9 83 6.6 83	352			87	85	83	81	0.6	0.57	0.55	1.72	11.008	3	87	84	1.9	10.72941176	3	38.8
353 3-Jul-68 22.8 82 80 76 0.8 0.59 0.55 1.74 11.136 3 84 79 1.9 10.72941176 3 38.8 356 22.9 85 83 81 80 0.6 0.55 1.73 11.072 3 88 84 1.9 10.72941176 3 38.8 357 22.8 84 85 83 80 79 0.6 0.55 1.75 11.2 3 84 79 1.9 10.72941176 3 38.8 358 24.4 85 83 80 79 0.6 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 356 -1.04.8 23 85 83 80 78 0.62 0.59 0.55 1.73 11.072 3 86 622 1.9 10.72941176 3 38.8 361 22.4 84 81 60 78 0.62 0.57 0.55 1.72 11.0	353		22.7	86	84	81		0.6					3				10.72941176	3	
356 23.9 95 83 81 90 0.6 0.58 1.73 11.072 3 88 84 1.9 10.72941176 3 38.8 367 22.8 84 83 80 79 0.61 0.59 0.55 1.74 11.136 3 86 62 1.9 10.72941176 3 38.8 358 24.4 85 83 80 79 0.6 0.55 1.74 11.136 3 86 62 1.9 10.72941176 3 38.8 358 2.44 85 83 80 78 0.6 0.55 1.73 11.072 3 86 82 1.9 10.72941176 3 38.8 361 2.24 84 81 80 78 0.62 0.6 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 362 -Jul-96 22.4 84 <td></td> <td></td> <td></td> <td></td> <td>80</td> <td></td>					80														
357 22.8 94 83 90 79 0.61 0.59 0.55 1.75 11.2 3 84 79 1.9 10.72941176 3 38.8 336 24.4 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 66 62 1.9 10.72941176 3 38.8 350 J.UI-98 2.2 96 86 84 83 0.62 0.59 0.55 1.76 11.264 3 84 79 1.9 10.72941176 3 38.8 360 22.4 84 81 80 78 0.6 0.57 0.55 1.77 11.328 3 83 78 1.9 10.72941176 3 38.8 361 22.4 84 81 80 79 0.6 0.57 0.55 1.72 11.008 3 85 31.9 10.72941176 3 38.8 36.8		3-Jul-98											· · · · · · · · · · · · · · · · · · ·				<u> </u>		
358 24.4 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 356 4.Jul-98 22.9 89 86 84 83 0.62 0.59 0.55 1.76 11.264 3 84 79 1.9 10.72941176 3 38.8 360 5.41.98 23 85 83 80 78 1.9 10.72941176 3 38.8 361 22.4 84 81 80 78 0.62 0.6 0.55 1.77 11.328 3 83 7.8 1.9 10.72941176 3 38.8 362 6.Jul-98 22.4 84 81 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 365 22.9 85 82 80 79 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
359 4.Jul-98 22.9 89 86 84 93 0.62 0.59 0.55 1.76 11.264 ,3 84 79 1.9 10.72941176 3 38.8 360 5.Jul-98 23 85 83 80 78 0.6 0.55 1.77 11.328 3 86 82 1.9 10.72941176 3 38.8 361 22.4 84 81 60 78 0.62 0.6 0.55 1.77 11.328 3 86 82 1.9 10.72941176 3 38.8 362 6.Jul-98 24.4 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 364 22.9 85 62 60 78 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 22.3 84 81 79 77 0.6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
360 5.Jul-38 23 85 83 80 78 0.6 0.58 0.55 1.73 11.072 3 86 822 1.9 10.72941176 3 38.8 361 22.4 84 81 90 78 0.62 0.6 0.55 1.77 11.328 3 83 78 1.9 10.72941176 3 38.8 361 22.4 84 81 90 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 362 5.Jul-38 22.9 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 365 22.9 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 <t< td=""><td></td><td>4 1.4 66</td><td>and the second se</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ž</td><td></td></t<>		4 1.4 66	and the second se															ž	
361 22.4 84 81 80 78 0.62 0.6 0.55 1.77 11.328 3 83 78 1.9 10.72941176 3 38.8 362 6-Jul-98 24.4 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 363 7-Jul-96 22.5 85 63 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 364 22.9 85 62 80 78 0.6 0.57 0.55 1.74 11.36 3 86 83 1.9 10.72941176 3 38.8 366 22.3 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																			
362 6-Jul-98 24.4 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 363 7-Jul-96 22.5 85 63 60 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 364 22.9 85 82 80 78 0.6 0.57 0.55 1.74 11.136 3 86 83 1.9 10.72941176 3 38.8 366 22.3 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 8-Jul-88 22.1 84 81 79 0.6 0.57 0.55 1.72 11.008 3 85 81 1.9 10.72941176 3		5-Jul-98				the second second second second second second second second second second second second second second second s													
363 7-Jul-98 22.5 85 83 80 79 0.6 0.57 0.55 1.72 11.008 3 86 83 1.9 10.72941176 3 38.8 364 22.9 85 82 80 78 0.8 0.59 0.55 1.74 11.136 3 86 83 1.9 10.72941176 3 38.8 365 22.3 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 8-Jul-98 22.1 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 8-Jul-98 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 82 1.9 10.72941176 3 38.8 369 9-Jul-98 23.6 85 83 80		8 14 00																	
364 22.9 85 82 80 78 0.6 0.59 0.55 1.74 11.136 3 86 83 1.9 10.72941176 3 38.8 365 22.3 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 8.4u+98 22.1 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 367 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 82 1.9 10.72941176 3 38.8 368 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 82 1.9 10.72941176 3 38.8													1						
366 22.3 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 366 8.4ul-98 22.1 84 81 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 367 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 368 23.0 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 85 81 1.9 10.72941176 3 38.8 369 24.3 85 83 80 80 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.J		1-001-90																_	
366 8-Jul-98 22.1 84 61 79 77 0.6 0.57 0.55 1.72 11.008 3 83 79 1.9 10.72941176 3 38.8 367 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 62 1.9 10.72941176 3 38.8 367 23.6 85 62 80 79 0.6 0.57 0.55 1.72 11.008 3 86 62 1.9 10.72941176 3 38.8 369 24.3 85 83 80 60 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 84 1.9 10.72941176 3 38.8 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>and the second se</td> <td></td>								and the second se											
367 23.6 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 86 82 1.9 10.72941176 3 38.8 368 9-Jul-98 23 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 85 81 1.9 10.72941176 3 38.8 369 24.3 85 83 80 80 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 372 25 84 81 80 79 <td< td=""><td></td><td>8-Jul-98</td><td></td><td></td><td></td><td></td><td></td><td>the second second second second second second second second second second second second second second second se</td><td></td><td></td><td></td><td>and the second second second second second second second second second second second second second second second</td><td></td><td></td><td></td><td></td><td>the second second second second second second second second second second second second second second second s</td><td></td><td></td></td<>		8-Jul-98						the second second second second second second second second second second second second second second second se				and the second second second second second second second second second second second second second second second					the second second second second second second second second second second second second second second second s		
368 9-Jul-98 23 85 82 80 79 0.6 0.57 0.55 1.72 11.008 3 85 81 1.9 10.72941176 3 38.8 369 24.3 85 83 80 80 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 84 1.9 10.72941176 3 38.8 371 25.1 84 81 80 78 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 372 25.9 84 82 80 79 <													3		82				
388 24.3 85 83 80 60 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 82 1.9 10.72941176 3 38.8 370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 84 1.9 10.72941176 3 38.8 371 25.1 84 81 80 78 0.6 0.57 0.54 1.71 11.944 3 84 79 1.9 10.72941176 3 38.8 372 25.9 84 82 80 79 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 373 25.9 84 81 79 7 0.62		9-Jul-98											3						
370 10.Jul-98 25.5 85 83 80 79 0.6 0.59 0.55 1.74 11.136 3 86 84 1.9 10.72941176 3 38.8 371 25.1 84 81 80 78 0.6 0.59 0.55 1.74 11.136 3 86 84 1.9 10.72941176 3 38.8 372 25 84 62 80 79 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 372 25 84 62 80 79 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 373 25.9 84 81 79 77 0.62 0.59 0.55 1.76 11.264 3 81 76 1.9 10.72941176 3 38.8 <	369			and the second se									3					3	
371 25.1 84 81 80 78 0.6 0.59 0.55 1.74 11.136 3 84 79 1.9 10.72941176 3 38.8 372 25 84 82 80 79 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 373 25.9 84 81 79 77 0.62 0.59 0.55 1.76 11.264 3 84 79 1.9 10.72941176 3 38.8 373 25.9 84 81 79 77 0.62 0.59 0.55 1.76 11.264 3 81 76 1.9 10.72941176 3 38.8 374 11.30+38 26.1 83 80 78 76 0.65 0.62 0.58 1.85 11.84 3 80 75 1.9 10.72941176 3 38.8	370	10-Jul-98					79		0.59		1.74	11.136	3	86	84	1.9	10.72941176	3	38.8
372 25 84 82 80 79 0.6 0.57 0.54 1.71 10.944 3 84 79 1.9 10.72941176 3 38.8 373 25.9 84 81 79 77 0.62 0.59 0.55 1.76 11.264 3 81 76 1.9 10.72941176 3 38.8 373 25.9 84 81 79 77 0.62 0.59 0.55 1.76 11.264 3 81 76 1.9 10.72941176 3 38.8 374 11-Jul-98 26.1 83 80 78 76 0.65 0.62 0.58 185 11.84 3 80 75 1.9 10.72941176 3 38.8 375 12-Jul-98 25.1 83 80 78 77 0.65 0.61 0.56 1.84 11.776 3 82 77 1.9 10.72941176 3	371		25.1		81		78	0.6					3			1.9		3	
373 25.9 84 81 79 77 0.62 0.59 0.65 1.76 11.264 3 81 76 1.9 10.72941176 3 38.8 374 11-Jul-98 26.1 83 80 78 76 0.65 0.62 0.58 1.85 11.84 3 80 75 1.9 10.72941176 3 38.8 375 12-Jul-98 25.1 83 80 78 77 0.65 0.61 0.59 1.84 11.776 3 82 77 1.9 10.72941176 3 38.8	372		25	84	82	80		0.6											
375 12-Jul-98 25.1 83 80 78 77 0.65 0.61 0.58 1.84 11.776 3 82 77 1.9 10.72941176 3 39.8	373			84	81														
	374	11-Jul-98				78									<u> </u>				
24.3 81 78 76 75 0.6 0.57 0.55 1.72 11.008 3 81 76 1.9 10.72941176 3 38.8	375	12-Jul-98		and the second se											the second second second second second second second second second second second second second second second s				
	376		24.3	81	78	76	75	0.6	0.57	0.55	1.72	11.008	3	81	76	1.9	10.72941176	3	38.8

	A	Ť	U	v	w	x	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
	Date	ROFdC	Free Feed ps	Inrsta 1 osi	ltrsta 2 osi	Free Rel psi	A Perm com	B Perm com	C Perm com	Total Flow		Free Rei gom			Std Perm gpm		Std rej gpm	
377	13-Jul-98	25.5	81	78	76	75	0.64	0.6	0.55	1.79	11.456	3	81	76	1.9	10.72941176	3	38.6
378	14-Jul-98	26.4	80	77	75	73	0.62	0.58	0.55	1.75	11.2	3	79	74	1.9	10.72941176	3	38.8
379		23.6	83	80	79	77	0.62	0,6	0.57	1.79	11.456	3	80	76	1.9	10.72941176	3	38.8
380	15-Jul-98	23.3	84	82	80	78	0.62	0.59	0.55	1.76	11.264	3	84	80	1.9	10.72941176	3	38.8
381	16-Jul-98	23.4	84	81	79	78	0.63	0.6	0.56	1.79	11.456	3	81	76	1.9	10.72941176	3	38.8
382	17-Jul-98	23.7	81	79	77	76	0.64	0.61	0,56	1.81	11.584	3	80	75	1.9	10.72941176	3	38.8
383		25	84	61	79	78	0.62	0.59	0.55	1.76	11.264	3	86	81	1.9	10.72941176	3	38.8
384	18-Jul-98	23.2	86	84	81	80	0.63	0.6	0.56	1.79	11.456	3	86	81	1.9	10.72941176	3	38.8
385	19-Jul-98	27.2	86	84	82	80	0.63	0.6	0.55	1.78	11.392	3	86	82	1.9	10.72941176	3	38.8
386	04 14 00	25.7	85	82	80 79	79 78	0.61	0.58	0.55	1.74 1.8	<u>11.136</u> 11.52	3	85	80 79	1.9	10.72941176	3	38.8
387 388	21-Jul-98	28 25.5	84 85	<u>81</u> 83	81	76	0.64	0.58	0.55	1.8	11.072	3	84 87	84	<u>1.9</u> 1.9	10.72941176 10.72941176	3	38.8 38.8
389	22-Jul-98	25.3	79	76	73	71	0.6	0.57	0.55	1.72	11.008	3	80	73	1.9	10.72941176	3	38.8
390	22-001-50	26.6	79	76	74	72	0.6	0.57	0.55	1.72	11,008	3	80	74	1.9	10.72941176	3	38.8
391		26.2	78	76	74	72	0.62	0.59	0.55	1.76	11,264	3	77	70	1.9	10.72941176	3	38,8
392	23-Jul-98	25.9	80	77	74	73	0.6	0.57	0.54	1.71	10.944	3.1	86	81	1.9	10,72941176	3	38.8
393		25	84	61	79	77	0.63	0.59	0.55	1.77,	11.328	3	88	81	1.8	10.16470568	3	37.5
394		25.4	83	60	78	76	0.64	0.6	0.56	1.8	11.52	3	84	77	1.9	10.72941176	3	38.8
395		25.6	80	76	74	72	0.64	0.6	0.55	1.79	11.456	3	83	76	1.9	10.72941176	3	38.8
396	24-Jul-98	24.7	80	78	75	74	0,65	0,61	0,56	1.82	11.648	3	85	78	1.9	10.72941176	3	38.8
397		25.5	82	79	77	75	0.63	0.6	0.55	1.78	11.392	3	80	75	1.9	10,72941176	3	38.8
398		25.5	82	79	77	76	0.63	0.6	0.55	1.78	11.392	3	80	74	1.9	10,72941176	3	38.8
399	25-Jul-98	25.4	81	78	76	75	0.65	0.61	0.56	1.82	11.648	3	60	75	1.9	10.72941176	3	38.8
400		24,4	82	79	77	76	0.63	0.6	0.55	1.78	11.392	3	82	77	1.9	10.72941176	3	38.8
401	25 64 05	25.6 25.9	81 81	79 78	76 76	75 75	0.64	0.6	0.55	<u>1.79</u> 1,79	<u>11.456</u> 11.456	3	80 81	75	1,9 1,9	10.72941176	3	38.8 38.8
402	26-Jul-98	25.9	82	78	76	75	0.64	0.59	0.55	1.79	11.456	3	82	70	1.9	10.72941176	3 3	38.8
	27-Jun-98	20.9	80	78	75	74	0.63	0.59	0.55	1.77	11.328	3	80	74	1.9	10.72941176	3	38.8
405	27-3017-30	24.2	80	77	75	74	0.64	0.6	0.55	1.79	11.456	3	80	74	1.9	10.72941176	3	38.8
406	28-Jul-98	24.7	81	79	77	76	0.62	0,59	0,55	1.76	11.264	3	62	77	1.9	10.72941176	3	38.8
407		24.7	61	79	77	75	0.62	0.59	0.55	1.76	11.264	3	81	75	1.9	10.72941176	3	38.8
408	29-Jul-98	24.7	81	79	76	75	0.63	0.6	0.55	1,70	11,392	3	80	75	1.9	10.72941176	3	38,8
409		24.7	75	72	70	68	0.64	0.6	0.55	1.79	11.456	3	74	67	1.9	10.72941176	3	38.8
410		28.1	76	74	71	70	0.65	0,6	0.56	1.81	11.584	3	75	69	1.9	10.72941176	3	38.8
411	30-Jul-98	27.8	78	75	73	72	0.62	0.58	0.54	1.74	11.136	2.9	80	76	1.9	10.72941176	3	38.8
	31-Jul-98	25.3	81	78	76	75	0.64	0,6	0.56	1.8	11.52	3	78	71	1.9	10.72941176	3	38.8
413		26.1	77	74	72	70	0.65	0.6	0.55	1.8	11.52	3	76	70	1.9	10.72941176	3	38.8
414	1-Aug-98	27.3 24.9	78 76	76 74	74 72	72	0.64	0.6	0.56	1.8	11.52 11.328	3	80 76	76 69	1.9 1.9	10.72941176	3	38.8 38.6
	2.Aug-98	24.9	76 79	74	74	70	0.63	0.59	0.55	1.78	11.328	3	78	74	1.9	10.72941176	3	38.8
417	3-Aug-98	25.6	61	79	76	75	0.63	0.6	0.55	1.78	11.392	3	80	76	1.9	10.72941176	3	38.8
and the second se	4-Aug-98	23.8	80	77	75	74	0.63	0.59	0.55	1.77	11.328	3	76	70	1.9	10.72941176	3	38.8
419	.,	25.5	62	80	77	76	0.61	0.58	0.54	1.73	11.072	3	82	78	1.9	10.72941176	3	38.8
420	5-Aug-98	22.6	66	63	61	60	0,6	0,57	0.55	1.72	11.008	3	66	57	1.9	10.72941176	3	38.8
421		31.1	75	72	70	68	0.63	0.58	0.55	1.76	11.264	3	75	69	1.9	10.72941176	3	38.8
422	6-Aug-98	25.4	73	70	68	66	0.62	0.59	0.55	1.76	11.264	3	71	64	1.9	10.72941176	3	38.8
423		27	76	73	71	69	0.63	0.59	0.55	1.77	11.328	3	76	71	1.9	10.72941176	3	38,8
	7-Aug-98	25	73	70	78	67	0.63	0.58	0.55	1.76	11.264	3	72	66	1.9	10.72941176	3	38.8
	8-Aug-98	26.7	75	73	70	68	0.64	0.6	0.56	1.8	11.52	3	76	71	1.9	10.72941176	3	38.8
426	9-Aug-98	24.6	78	75	73	71	0.64	0.59	0.55	1.78	11.392	3	74	69	1.9	10.72941176	3	38.8
	10-Aug-98	26	76	74	71	70	0.61	0.59	0.55	1.75	11.2	3	78	73	1.9	10.72941176	3	38,8
428	11 41- 00	24.5	76	74 74	72	70	0.6	0.57	0.55	1.72 1.75	11.008 11.2	3	78	73	1.9 1.9	10.72941176	3	38.8
429 430	11-Aug-98	24.3 25.1	77	74	70	71	0.62	0.58	0.55	1.75	11.2	3	76	71		10.72941176	3	38.8 38.8
	12-Aug-98	25.1	76	75	70	70	0.63	0.59	0.55	1.01	11.326	3	76	66	<u>1.9</u> 1.8	10.72941176	3	38.8
432	12-Aug-30	25.5	76	74	71	69	0.64	0.58	0.57	1.76	11.264	3	77	70	1.8	10.16470588	3	37.5
433		27.3	78	70	68	66	0.64	0.58	0.55	1.78	11.392	3	73	65	1.0	10.104/0588	3	37.5
	13-Aug-98	20	73	70	68	67	0.63	0.59	0.55	1.77	11.328	3	70	62	1.9	10.72941176	3	38.8
	14-Aug-98	28.3	72	70	67	66	0.63	0.59	0.55	1.77	11.328		70	62	1.9	10.72941176	3	38.8
	15-Aug-98	28.3	73	70	67	66	0.62	0.56	0.55	1.75	11.2	3	72	65	1.9	10.72941176	3	38.8
437		27.9	74	72	69	67	0.62	0.6	0,55	1.77	11.328	3	75	69	1.9	10.72941176	3	38.8
	16-Aug-98	26.1	76	74	73	71	0.63	0.59	0.55	1.77	11.328	3	76	70	1.9	10.72941176	3	38.8
· · · ·					/													

156

	A	÷.	<u> </u>		w	× –		Z	AA	AB	AC	AD	AE	AF	AG	АН	Al	LA I
4	Date	RO Fd C	Free Feed psi	inrsig 1 psi	ltrsta 2 psi	Free Rei osi	A Perm com		C Perm com	Total Flow			Std Feed psi	Std Rel psi			Std rei gom	
439		26.1	78	76	73	71	0.62	0.58	0.55	1.75	11.2	3	78	72	1.9	10.72941176	1.9	50.0
440	17-Aug-98	25.4	76	74	72	70	0.63	0.59	0.55	1.77	11.328	3	76	69	1.9	10.72941176	1.9	50.0
441		25.1	77	75	73	71	0.62	0.58	0.55	1.75	11.2	3	77	71	1.9	10.72941176	1.9	50.0
442	18-Aug-98	24.3	77	74	72	70	0.62	0.58	0.55	1.75	11.2	3	76	69	1,9	10.72941176	1.9	50,0
443	19-Aug-98	25.4	77	75	73	71	0.61	0.58	0.55	1.74	11.136	3	78	72	1.9	10.72941176	1.9	50.0
444		24.3	76	74	72	70	0.61	0.58	0.55	1.74	11,136	3	76	69	1.9	10.72941176	1.9	50.0
445	20-Aug-98	25.3	78	76	74	72	0.6	0.57	0.55	1.72	11.008	3	79	74	1.9	10.72941176	1.9	50.0
446	21-Aug-98	23.9	79	77	75	74	0.61	0.58	0.55	1.74	11.136	3	81	76	1.9	10.72941176	1.9	50.0
447	22-Aug-98	23.5	76	73	70	69	0.61	0.58	0.55	1.74	11.136	3	76	70	1.9	10.72941176	1.9	50.0
448	23-Aug-98	25.5	80	78	76	75	0.6	0.57	0.55	1.72	11.008	3	81	76	1.9	10.72941176	1.9	50.0
449	24-Aug-98	22.8	88	86	85	85	0.69	0.65	0.6	1.94	12.416	1.9	84	79	1.9	10.72941176	1.9	50.0
450	25-Aug-98	22.9	87	85	83	82	0.69	0.65	0.8	1.94	12.416	1.9	81	77	1.9	10.72941176	1.9	50.0
451		23.8	83	82	80	79	0.68	0.64	0.59	1.91	12.224	1.9	74	69	1,9	10.72941176	1.9	50.0
452	26-Aug-98	26.1	85	83	81	80	0.68	0.64	0.59	1.91	12.224 12.48	1.9	80	77	<u>1.9</u> 1.9	10.72941176 10.72941176	<u>1.9</u> 1.9	<u>50.0</u> 50.0
453		24.4	88	86	85	84			0.61	1.95 1.94		1.9	76	71	1.9		1.9	50.0
454	27-Aug-98	24.6	83	81	80	79	0.69	0.65	0.6	1.94	12.416	1.9	80	77	1.9	10.72941176		50.0
455	28-Aug-98	25.8	85	83	81	80 80	0.69	0.65	0.6	1.94	12.416 12.416	1,9	77	74	1.9	10.72941176 10.72941176	1.9	50.0
456	29-Aug-98	24.6 25 P	85 86	83 85	82	80	0.69	0.65	0.6	1.94	12.416	1.9	82	80	1.9	10.72941176	1.9	50.0
457	30-Aug-98	25.9 24.2	80	86	85	82	0.69	0.65	0.6	1.94	12.416	2	82	79	1.9	10.72941176	1.9	50.0
459	1-Sep-98	24	68	86	85	84	0.68	0.64	0.59	1.91	12.224	1.9	82	78	1.9	10.72941176	1.9	50.0
460	2-Sep-96	25	84	83	81	80	0.69	0.64	0.6	1.93	12.352	1,9	76	69	1.9	10.72941176	1.9	50.0
461	3-Sep-98	29.2	88	87	85	84	0.69	0.65	0.6	1.94	12.416	1.9	79	74	1.9	10.72941176	1.9	50.0
462	4-Sep-98	27.1	79	77	76	75	0.68	0.63	0.58	1.89	12.096	1.9	72	67	1.9	10.72941176	1.9	50.0
463	5-Sep-98	28.8	81	80	78	78	0.65	0.6	0.56	1.81	11.584	1.9	77	73	1.9	10.72941176	1.9	50.0
464	6-Sep-98	26.3	82	80	79	78	0.69	0.65	0.6	1.94	12.416	1.9	82	78	1.8	10.16470588	1.9	48.6
465	7-Sep-98	26.5	84	82	81	80	0.69	0.65	0.6	1.94	12.416	1.9	86	82	1.8	10.16470588	1,9	48.6
466	8-Sep-98	26.3	86	85	83	82	0.65	0.62	0.57	1.84	11.776	1.9	88	83	1.9	10.72941176	1.9	50.0
467	9-Sep-98	24.9	86	84	83	82	0.68	0.64	0.6	1.92	12.288	1.9	80	76	1,9	10.72941176	1.9	50.0
468	10-Sep-98	25.3	88	87	85	84	0.67	0.63	0.58	1.88	12.032	1.9	82	78	1.9	10.72941176	1.9	50.0
469	11-Sep-98	25.2	87	86	84	83	0.66	0.63	0.59	1.88	12.032	1.9	81	77	1.9	10.72941176	1.9	50.0
470	12-Sep-98	24.0	88	86	85	84	0.65	0.61	0.58	1.84	11.776	1.9	84	79	1.9	10.72941176	1.9	50.0
471	13-Sep-98	24.8	92	90	89	88	0.68	0.64	0.6	1.92	12.288	1.9	84	80	1.8	10.16470588	1.9	48.6
472		24.6	92	90	88	87	0.69	0.65	0.6	1.94	12.416	1.9	84	80	1.7	9.6	1.9	47.2
473	14-Sep-98	23,8	97	95	94	93	0.69	0.65	0.61	1.95	12.48	1.9	89	86	1.9	10.72941176	1.9	50.0
474	15-Sep-98	22.9	98	96	95	94	0.67	0.63	0.59	1.89	12.096	1.9	90 89	87 86	1.9 1.9	10.72941176	1.9	50.0 50.0
475	16-Sep-98	22.6 22.5	98 96	96	94	93	0.68	0.64	0.62	1.92	12.266	1.9	86	82	1.9	10.72941176	1.9	50.0
477	17-Sep-98 21-Sep-98	22.5	98	96	94	94	0.69	0.64	0.62	1.92	12.288	1.9	89	86	1.9	10.72941176	1.9	50.0
478	21-Sep-98	23.6	93	91	90	69	0.63	0.62	0.59	1.64	11.776	1.9	81	78	1.9	10.72941176	1.9	50.0
479	22-Sep-98	22.0	92	90	88	87	0.69	0.64	0.6	1.93	12.352	1.9	86	83	1.9	10.72941176	1.9	50.0
480	22-Sep-98	22.9	93	91	90	89	0.69	0.64	0.6	1.93	12.352	1.9	85	82	1.8	10.16470588	1.3	58.1
481	22-Sep-98	23.2	95	93	92	91	0.68	0.64	0.6	1.92	12.288	1.9	88	85	1.9	10.72941176	1.3	59,4
482	23-Sep-98	21.7	95	93	91	91	0.68	0.64	0.6	1.92	12.288	1.9	89	86	1.9	10.72941176	1.3	59.4
483	24-Sep-98	22.7	101	99	98	97	0.69	0.65	0.6	1.94	12.416	1.9	92	69	1.9	10.72941176	1.3	59.4
484	24-Sep-98	21.5	96	94	93	92	0.69	0.65	0,6	1.94	12,416	1.9	80	78	1.8	10.16470588	1.3	58.1
485	25-Sep-98	21	96	94	93	92	0.69	0.65	0.6	1,94	12.416	1.9	91	89	1.9	10.72941176	1.3	59.4
486	28-Sep-98	21.2	101	99	97	96	0.68	0.64	0.6	1.92	12.288	1.9	89	86	1.9	10.72941176	1.3	59.4
487	29-Sep-98	21.2	100	9 8	96	95	0.69	0.65	0.61	1.95	12.48	1.9	68	86	1.9	10.72941176	1.2	61.3
488	30-Sep-98	21.2	100	99	97	96	0.69	0.65	0.6	1.94	12,416	1.9	89	86	1.9	10.72941176	1,2	61.3
489	1-Oct-98	20.6	92	89	88	87	0.68	0.64	0.6	1.92	12.288	1.9	• 83	81	1.8	10.16470588	1.3	56,1
490	1-Oct-98	23.5	96	95	94	93	0.7	0.66	0.6	1.96	12.544	1.3	81	79	1.8	10.16470588	1.3	58.1
491	2-Oct-98	22.9	98	96	95	94	0.69	0.65	0.58	1.92	12.288	1.3	84	82	1.9	10.72941176	1.3	59,4
492	2-Oct-98	21.2	95	93	92	91	0.69	0.65	0.59	1.93	12.352	1.3	80	79	1.9	10.72941176	1.3	59.4
493	3-Oct-98	22.8	98	96	95	94	0.68	0.65	0.59	1.92	12.288	1.3	84 82	82	1.9 1.9	10.72941176	1.3	59.4
494	3-Oct-98	21.5	97	95	94 99	93	0.69	0.65	0.59	1.93	12.352	1.3	88	80	1.9		1.3	<u>59.4</u> 59.4
495	4-Oct-98	22.8	101	100		98	0.69	0.65	0.59		12.352		84	85		10.72941176	1.3	
496	4-Oct-98	22.2	100	99	98	96	0.69	0.64	0.58	<u>1.91</u> 1.91	12.224	<u>1.3</u> 1.3	89	81	<u>1.6</u> 1,9	9.035294118	1.3	55.2 59.4
497	5-Oct-98	20.3	103	102	101 99	101			0.59	1.91		1.3	89		1.9			59.4
498	5-Oct-98	22.4	101	100	99	98	0.69	0.64	0.53	1.96	12.544 12.288	1.3	66	86 82	1.9 1.9	10.72941176	1.3	59.4
499	6-Oct-98	22.5	99	97	96	95 92	0.69	0.64	0.59	1.92	12.288	1.3	89	88	1.9	10.72941176	1.3	59.4 59.4
500	6-Oct-98	21.4	99	98	- 34	32	0.03	L	0.08	1	1 12.200	····	<u> </u>		L	10.12341110	1.3	05.4

	т	υ	V	w	x	Y	z	AA	AB	AC	AD	ÄË	AF	AG	АН	AI	ÂJ
4 Date	RO Fd C	Free Feed osi		ltrsta 2 psi	Free Rei psi	A Perm com	8 Perm apm	C Perm opm	Total Flow		Free Rei com			Std Perm com		Std rei com	
501 7-Oct-98	19	104	103	102	101	0.65	0.62	0.56	1.83	11.712	1.3	95	94	1.8	10.16470588	1.3	58.1
502 7-Oct-98	21.8	99	95	92	91	0.6	0.54	0.47	1.61	10.304	1.3	68	84	1.8	10.16470588	1.3	58.1
503 8-Oct-98	19.1	102	101	100	99	0.65	0.6	0.55	1.8	11.52	1.3	92	91	1.9	10.72941176	1.3	59,4
504 8-Oct-98	21.8	100	99	98	97	0.69	0.64	0.59	1.92	12.288	1,3	86	84	1.8	10.16470588	1.3	58.1
505 9-Oct-98	18.8	106	104	101	100	0.69	0.65	0.59	1.93	12.352	1.3	94	92	1.8	10.16470588	1.3	58.1
506 10-Oct-98	20.8	103	102	101	100	0.69	0.65	0.59	1.93	12.352	1.2	89	87	1.8	10.16470588	1.3	58.1
507 11-Oct-98	19.9	104	103	102	101	0.65	0.6	0.55	1.8	11.52	1.3	81	80	1.8	10.16470588	1.3	58.1
508 12-Oct-98	19.9	108	106	106	105	0.65	0.6	0.55	1.8	11.52	1.3	82	91	1.8	10.16470588	1.3	58.1
509 13-Oct-98	20.7	102	100	99	98	0.65	0.62	0.57	1.84	11.776	1.3	90	89	1.9	10.72941176	1.3	59.4
510 13-Oct-98	21.3	105	104	103	102	0.65	0.62	0.56	1.83	11.712		89 91	88 90	1.9 1.9	10.72941176	1.3	59.4 59.4
511 14-Oct-98	20,4	104	102	101	100	0.65	0.62	0.58	1.86	11.904 11.648	1,3 1,3	89	86	1.9	10.72941176	1.3	59,4
512 14-Oct-98 513 15-Oct-98	21.3 20.5	102	99	98	97	0.65	0.6	0.55	1.8	11.52	1.3	89	88	1.9	10.72941176	1.3	59.4
513 15-Oct-98 514 15-Oct-98	20.5	101	99	98	97	0.65	0.62	0.55	1.82	11.648	1.3	87	86	1.9	10.72941176	1.3	59.4
515 16-Oct-98	19.7	111	109	108	107	0.03	0.65	0.6	1.95	12.48	1.3	100	99	1.9	10.72941176	1.3	59.4
516 16-Oct-98	21.9	106	105	104	103	0.7	0,65	0.6	1.95	12.48	1.3	94	91	1.9	10.72941176	1.3	59.4
517 17-Oct-98	20	111	110	109	108	0.7	0.65	0.6	1.95	12.48	1,3	96	95	1,9	10.72941176	1.3	59.4
518 17-Oct-98	21.4	110	108	107	106	0.72	0.67	0.62	2.01	12.864	1.3	93	90	1.9	10.72941176	1.3	59.4
519 18-Oct-98	17.8	115	114	113	112	0.69	0.65	0.6	1.94	12.416	1.3	101	100	1.9	10.72941176	1.3	59.4
520 18-Oct-98	19.3	114	112	111	110	0,7	0.65	0.6	1.95	12.48	1.3	96	95	1.9	10.72941176	1.3	59.4
521 19-Oct-98	17.3	117	115	115	114	0.69	0.65	0.6	1.94	12.416	1.3	104	103	1.9	10.72941176	1.3	59.4
522 19-Oct-98	20.7	107	106	105	105	0,69	0.65	0.6	1.94	12.416	1.3	94	92	1.9	10,72941176	1.3	59.4
523 20-Ocl-98	17.5	121	119	116	118	0.7	0.66	0.6	1.96	12.544	1.3	105	104	1.9	10.72941176	1.3	59.4
524 20-Oct-98	19.7	115	113	112	<u>111</u> 115	0.7	0.66	0.62	1,98	12.672	1.3 1,3	96	95 101	1.9	10.72941176	<u>1.3</u> 1.3	59.4 59.4
525 21-Oct-98	17,9 20,2	118	116 111	115	109	0.7	0.60	0.62	1.98	12.864	1.3	102 96	95	1.9	10.72941176	1.3	59.4 59,4
526 21-Ocl-98 527 22-Ocl-98	20.2	113	116	115	115	0.72	0.65	0.62	1.96	12.004	1.3	103	102	1.9	10.72941176	1.3	59.4 59.4
528 22-Oct-98	10	120	118	117	116	0.69	0.65	0.6	1.94	12.416	1.3	97	95	1.9	10.72941176	1.3	59.4
529 23-Oct-98	19	120	118	117	116	0.69	0.65	0.6	1.94	12.416	1.3	97	95	1.9	10.72941176	1.3	59.4
530 23-Oct-98	21.9	107	105	104	104	0.72	0,66	0.63	2.01	12.864	1.3	94	92	1.9	10.72941176	1.3	59,4
531 24-Oct-98	19.6	113	111	110	109	0.7	0.66	0,62	1.98	12.672	1.3	101	100	1.9	10.72941176	1.3	59.4
532 24-Oct-98	21.6	106	104	103	102	0.7	0.65	0.6	1.95	12.48	1.3	96	94	1.9	10.72941176	1.3	59.4
533 25-Oct-98	19.9	110	108	107	106	0.69	0.65	0.6	1.94	12.416	1.3	100	99	1.9	10.72941176	1.3	59.4
534 25-Oct-98	20.8	109	107	106	105	0.7	0.66	0.62	1.98	12.672	1.3	99	97	1.9	10.72941176	1.3	59.4
535 26-Ocl-26	19.4	111	110	109	108	0.69	0.65	0.6	1.94	12.416	1,3	104	102	1.9	10.72941176	1.3	59,4
536 26-Oct-98	21.1	109	107	106	105	0.68	0.68	0.63	1.99	12.736	1.3	100	98	1.9	10.72941176	1.3	59.4
537 27-Oct-98	19.3	113	111	110	109	0.7	0.65	0.61	1.96	12.544	1.3	103	101	1.9	10.72941176	1.3	59.4
538 27-Oct-98	20.3	110	108	107	106	0.7	0.65	0.6	1,95	12.48	1.3	100	99 100	1.9 1.9	10.72941176	1.3	59.4
539 28-Oct-98	19.5	<u>112</u> 110	111 108	110	109	0.7	0.65	0.62	1,96 1.5	12.544 9.6	1.3	98	96	1.9	10.72941176	1.3	59.4 59.4
540 28-Oct-98	21.1 19.6	110	110	107	108	0.2	0.66	0.6	1.96	12.544	1.3	103	101	1.9	10.72941176	1.3	59.4
541 29-Oct-98 542 29-Oct-98	20,7	112	109	109	108	0.7	0.66	0.63	2	12.544	1.3	103	99	1.9	10.72941176	1.3	59.4
542 29-00-98	17.5	118	105	116	115	0.69	0.65	0.6	1.94	12.416	1.3	110	108	1.9	10.72941176	1.3	59.4
544 3-Nov-98	19.1	115	113	112	111	0.7	0.65	0.6	1,95	12.48	1.3	103	101	1.9	10.72941176	1.3	59.4
545 4-Nov-98	17.4	118	117	116	115	0.68	0.64	0,6	1.92	12.288	1.3	109	107	1.9	10.72941176	1.3	59.4
546 5-Nov-98	18.8	114	111	110	109	0.69	0.65	0.6	1.94	12.416	1.3	107	105	1,9	10.72941176	1.3	59.4
547 6-Nov-98	18.1	183	181	180	179	1.05	1	0,94	2.99	19.136	1.2	160	158	2.8	15.81176471	1.4	66.7
548 7-Nov-98	17.2	190	187	186	185	1.4	0,99	0.92	3.31	21.184	1.3	166	164	2.8	15.81176471	1.3	68.3
549 7-Nov-98	19.2	183	180	179	178	1.5	1	0,94	3.44	22.016	1,3	160	157	2.8	15.81176471	1.3	68.3
550 8-Nov-98	17.7	189	186	165	184	1.5	1	0.94	3.44	22.016	1.3	165	163	2.8	15.81176471	1.3	68.3
551 8-Nov-98	17.7	187	185	184	183	1.4	0.99	0.92	3.31	21.184	1.3	165	163	2.8	15.81176471	1.3	68,3
552 9-Nov-98	17.1	187	184	183	182	1.3	0,97	0,9	3.17	20,288	1.3	167	165	2.8	15.81176471	1.3	68.3
553 9-Nov-98	19	183	180	178	177	1.5	1	0.94	3.44	22.016	1.3	160	158	2.8	15.81176471	1.3	68.3
554 10-Nov-98	16.2	190	188	186	185	1.03	0.98	0.92	2.93	18.752	1.2	171	170	2.8	15.81176471	1.3	68.3
555 10-Nov-98	19	186	184	182	181	1.3	0,97	0.9	3,17 2,85	20.288	1.3	167	166	2.8	15.81176471	1.3	68.3
556 11-Nov-98	17.7	189 216	187 213	185 212		1	0.95	0.9	2.85	18.24 19.136	1.2	1/1	1/0	2.8	15.81176471 15.81176471	1.3 1.3	68.3 68.3
557 13-Nov-98 558 14-Nov-98	16.4 16.3	216	213	1212	211	1.05	1	0.94	2.99	19.130	1.2	179	179	2.8	15.81176471	1.3	68.3
558 14-Nov-98 559 15-Nov-98	16.3	216	213	212	211	1.05	1	0.93	2.98	19.072	1.2	178	176	2.8	15.81176471	1.3	68.3
560 15-Nov-98	16.2	210	213	208	207	1.08	1.02	0.92	3.06	19.072	1.2	170	168	2.8	15.81176471	1.3	68.3
561 16-Nov-98	16.1	213	215	214	213	1.05	0.99	0.9	2.94	18.816	1.2	181	180	2.8	15.81176471	1.3	68.3
562 16-Nov-98	17.8	195	191	189	187	1.05	0,95	0.91	2.86	18.304	1.3	177	175	2.8	15.81176471	1.2	70.0
1-2-1 10-101-00 1			, ,		L	·		· ····					• • • • • • • • • • • • • • • • • • • •				

158

	A	Т	U I	V I	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH I	Al	AJ
4	Date			<u>Inrsta 1 psi</u>	Itrstg 2 psi	Free Rei psi	<u>A Perm gorn</u>	B Perm gom	C Perm gom	Total Flow		Free Rel com	Std Feed osi	Std Rei psi	Std Perm com		Std rei opm	
563	17-Nov-98	17.5	195	191	189	188	1	0.95	0.92	2.87	18.368	1.8	175	173	2.8	15.81176471	1.3	68.3
564	17-Nov-98		200	197	194	193	1.05	1	0.97	3.02	19.328	1.8	170	167	2.8	15.81176471	1.3	68.3
565	18-Nov-98	17.1	205	202	200	199	1.3	0.99	0.95	3.24	20.736	1.8	176	175	2.8	15.81176471	1.3	68.3
566	18-Nov-98	17.8	200	197	193	192	1.05	1	0.97	3.02	19.328	1.8	169	167	2.8	15.81176471	1.3	68.3
567	19-Nov-98	15,8	204	200	198	196	1.2	0.99	0.95	3.14	20.096	1.8	175	173	2.8	15.81176471	1.3	68.3
568	20-Nov-98	17	201	197	195	193	1,04	0.99	0.95	2.98	19.072	1.8	171	169	2.8	15.81176471	1.3	68.3
569	20-Nov-98	17.6	200	196	193	192	1.04	1	0.95	2,99	19.136	1.8	171	169	2.8	15.81176471	1.3	68.3
570	21-Nov-98	15.5	217	213	211	109	1.05	1	0.98	3.03	19.392	1.8	177	176	2.8	15.81176471	1.3	68.3
571	22-Nov-98	13.8	237	233	230	229	1.05	1.1	0.99	3,14	20.096	1.8	197	196	2.8	15.81176471	1.3	68.3
572	23-Nov-98	13.9	235	232	229	228	1.05	1	0.98	3.03	19.392	1.8	200	197	2.8	15.81176471	1.3	68.3
573	23-Nov-98	16.4	219	215	213	212	1.05	1	0.98	3.03	19.392	1.8	187	185	2,8	15.81176471	1.3	68.3
574	24-Nov-98	15	221	218	215	214	1.03	0,99	0.96	2.98	19.072	1.8	192	190	2.8	15.81176471	1.3	68.3
575	24-Nov-98	17.9	130	128	127	126	0.69	0,65	0.6	1.94	12.416	1.3	170	168	2.8	15.81176471	1.3	68,3
	27-Nov-98	15.6	133	131	130	129	0.68	0.64	0.6	1.92	12.288	1.3	180	178	2.8	15.81176471	1.3	68.3
577	27-Nov-98	16.8	132	130	129	128	0.69	0.65	0.6	1.94	12.416	1.3	177	175	2.8	15.81176471	1.3	68.3

- T	<u>A</u>	AK	AL	AM	AN
4	Date	Comments		UF Feed off	
5	19-Feb-98	15min d2every, soak every2, Cl2pmp 30%			1.74
6					1.74
7					
8	20-Feb-98				
9					1.66
10					1.51
11	23-Feb-98	Increased Cl2 pump to 50%	_		1.52
12		0.6ppm Cl2 in permeate tank			1.67
13					
14		ci2 dose to 40% backwash soak to 17sec	_ _		1.33
15			1		1.4
16	24-Feb-98	· · · · · · · · · · · · · · · · · · ·	.l		1.78
17			+		1.78
18	ł-		.	7.60	1.66
19	00 F - 1 00		-{	7.56	1.57 1.67
20	25-Feb-98			· · · ·	1.92
21				<u> </u>	1.92
24	26-Feb-98		1	1	
24 25	20.1.60.30				1.82
25		· · · · • • • • • • • • • • • • • • • •		7.64	1.78
20 27	27-Feb-98		+	1,04	2
28	21-1-60-90	Changed Cl2 to 50%	+	7.6	1.92
20		Changeo Ciz to 50 %	+	1.0	1.52
31			1	/.61	2.11
**	0.14-1.00		+		
34.1	-		1	r	2.06
34				7.6	2.06
35	A-Mar-99			7.6	2.06 1.8
35 36	4-Mar-98	· · · · · · · · · · · · · · · · · · ·		7.6	1.8
35 36 37	4-Mar-98			7.6	
35 36 37 38	4-Mar-98			7.6	1.8 2.37
35 36 37 38 39		Food CI2 Shopp Elitrate collection freed/20 Appro			1.8 2.37 2.16
35 36 37 38 39 40	4-Mar-98 5-Mar-98	Feed Cl2 68ppm Flitrate collection freect2=0.4ppm		7.6	1.8 2.37 2.16 2.02
35 36 37 38 39 40 41		Feed Cl2 66ppm Filtrate collection freect2=0.4ppm			1.8 2.37 2.16 2.02 2.23
35 36 37 38 39 40 41 42		Feed Cl2 66ppm Filtrate collection freect2=0.4ppm			1.8 2.37 2.16 2.02 2.23 2.16
35 36 37 38 39 40 41 42 43	5-Mar-98	Feed Cl2 66ppm Flitrate collection freect2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23
35 36 37 38 39 40 41 42 43 44		Feed Cl2 68ppm Filtrate collection freect2=0.4ppm			1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15
35 36 37 38 39 40 41 42 43 44 45	5-Mar-98	Feed Cl2 68ppm Flitrate collection freect2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36
35 36 37 38 39 40 41 42 43 44 45 46	5-Mar-98	Feed Cl2 66ppm Filtrate collection freect2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.28
35 36 37 38 39 40 41 44 45 44 45 46 47	5-Mar-98	Feed Cl2 66ppm Filtrate collection freeci2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.36 2.28 2.33
35 36 37 38 39 40 41 42 43 44 45 445 445 445 445 445 445	5-Mar-98 6-Mar-98 9-Mar-98	Feed Ci2 66ppm Filtrate collection freeci2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.28 2.33 2.07
35 36 37 38 39 40 41 42 43 44 45 445 445 445 445 448 449	5-Mar-98	Feed Cl2 68ppm Filtrate collection freeci2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.23 2.15 2.36 2.28 2.33 2.07 2.08
35 36 37 38 39 40 41 42 43 44 45 445 445 445 445 445 445 550	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed Cl2 66ppm Flitrate collection freect2=0.4ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.33 2.35 2.36 2.33 2.07 2.08 2.09
35 36 37 38 39 40 41 42 43 44 45 443 445 445 445 445 445 50 50 51	5-Mar-98 6-Mar-98 9-Mar-98			7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1
35 36 37 38 39 40 41 42 44 44 44 44 44 44 44 44 50 50 51 52	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.16 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21
35 36 37 38 39 40 40 41 42 43 44 44 45 44 44 50 50 51 52 53	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 46 44 45 46 44 50 51 551 551 551 553	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21
335 336 337 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 445 445 446 47 48 49 50 51 52 53 54 55 56 57 58	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.06 2.21 1.9
35 36 37 38 39 40 41 42 44 44 44 44 44 44 44 44 44 44 50 50 51 52 53 53 55 55 55 55 55 55 55 55 55 55 55	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 44 44 44 50 51 52 53 54 55 56 57 58 59 60	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 46 47 48 44 44 50 51 55 55 55 55 55 55 55 55 55 55 55 55	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 46 47 48 44 44 50 51 55 55 55 55 55 55 55 55 55 55 55 55	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 44 44 45 44 44 50 51 55 51 55 55 55 55 55 55 55 55 55 55	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21
35 36 37 38 39 40 41 42 43 44 45 46 47 48 44 45 55 55 55 55 55 55 55 55 55 55 55	5-Mar-98 6-Mar-98 9-Mar-98 10-Mar-98	Feed cl2>50ppm post filters 42ppm filtrate tank 0.15ppm		7.64	1.8 2.37 2.16 2.02 2.23 2.15 2.36 2.28 2.33 2.07 2.08 2.09 2.1 2.21 2.21 2.21 2.21 2.21 2.21 2.21

...

	A	AK	AL	AM	AN
4	Date	Comments		UF Feed oH	UF Feed NTU
67					
68	20-Mar-98				
69					
70					
71	Öf Max 00				
72	21-Mar-98				
74					
75					
76					
77	25-Mar-98				
78					
79	lart @ 439.4				
80					
81	31-Mar-98				
82					
83	4 4 00				
84 85	1-Apr-98				
86					1.78
87					
88		······································			2.17
89					2.4
90	2-Apr-98				
91					
92				7.53	2.08
93	3-Apr-98				1.82
94					1.54
95					1.45
96				7.56	1.31
97 98		<u> </u>			1.53 1.91
99	5-Apr-98				2.14
100	3-Api-30				2.14
101					
102	6-Apr-98				
103					1.8
104					1.93
105	7-Apr-98				
106					
107	.				
108	8-Apr-98				
109 110					
111	9-Apr-98				1.74
112					1.62
113				7.4	1.02
114	10-Apr-98				
115					
116					
117					1.27
118	11-Apr-98			7.25	2.1
119		Cl2 pump at 40% Feed =36ppm cl2		7,48	2.31
120		effluent =8ppm?		7.25	0.92
121		tank=0.35ppmfree, 5.5 ppm total?			1.49
122	12-Apr-98				1.54
123		ged backwash Sequence to decrease cl2 in the filtrate collection t	ank	7.04	1,68
124		sequence now 5,7,7, 12 -10, 17 -15, 12 -16		7.61	1.63
125 126	13-Apr-98	fast flush, btm,top,both,soak,rinse		7.34	2.04
120	12-Whi-aq				1,85
128	· · · · · · · · · · · ·				1.85
127					1.00

	A	AK	ÂĹ	AM	ÂN
4	Date	Comments		UF Feed pH	UF Feed NTU
129	14-Apr-98	Debris found in 150um strainer include worms			1.87
130				7.51	1.66
131					1.57
132	15-Apr-98				
133					Powe
134			Shut Dow	n to Replumb	CI2 dosing to
135					1.61
136	16-Apr-98	bkwsh tnk free cl2=0.21, tot=3.26		7.49	1.15
137		filtrate coll tank free cl2=0.24 tot=5.2			1.06
138					1.54
139	17-Apr-98	bkwsh tnk free cl2=0.20 tot=2.3			
140		filtrate col tank free cl2=0.15 tot=4.0		· · · · · · · · · · · · · · · · · · ·	1.78
141				7.45	
142	40.4 00	checked cl2 dos 55ml/24sec 138ppml		7.45	1
143 144	18-Apr-98	decrease cl2 from 48% to 40%			1.49
144				7.37	2.25
145	19-Apr-98	l		1.51	1.84
147	19-rupi-30			7.52	1.32
148		Noticed that Conc flowmeter and check valve			1.64
149		in K elemat conc turning brown, but not			
150	20-Apr-98	other check valve			
151	21-Apr-98				2.41
152					2.33
153	24-Apr-98				1,81
154					1.77
155				7.57	1.8
156					1.98
157	25-Apr-98				2.02
158				5.81	2.1
159	00.1-00			7.61	2.69
160 161	26-Apr-98			7.36	1.89 1.85
162		Particle Monitoring Data Indicating		7.57	1.85
163		B (K) element is leaking		7.01	2
164	27-Apr-98	D (IV) CIESTICIA IS ICONING		7.52	1.78
165				7.36	1.87
166					1.81
167		Unit Sh	utdown and (Cleaned	1.99
168	28-Apr-98				2.26
169				7,41	1.65
170					1.7
171				1.71	
172	29-Apr-98		7.51	1.51	└────┦
173	20 1 00			1.99	
174 175	30-Apr-98	a 124ppm totcl2 in, 36ppm out b 96ppm in, 3ppm out			2.08
175		During backwas	h other ele	1.97	├
176		Dunny backwas	7.57	1.87	├─── ┤
178	1-May-98	rises as if water is flowing	1.01	1.00	2
179	1.0039-00	Cl2 Injection valve is not working			1.99
180		Changed Backwash cl2 pump from 40 to 33%		7.52	2.16
181	2-May-98	Verified that bkwsh fd valves closing totally			Unit Shutdown
182		bkwsh a fd p=25psl, 29gpm			New K elemen
183	3-May-98	bkwsh b fd p=32psi, 20gpm			ent location sw
184		DID NOT PLUG BYPASS TUBES IN K-Fast Flush			A=K B=X
185		system bkwsh flow=320pm, 19-22psi w/BLANKS	Unit Sh	uldown and	
186		bkwsh 29gpm, 23psi upon startup			
187	4-May-98	Decreased cl2 to 13% ~25ppm			
188		BKWH now 5 9.7.7.10.15.4612			
190		Particla count chowing good integrity both			
190		Removed globe valve in bkwsh fd 34 gpm, 30?psl			

	A	AK	AL	AM	AN
4	Dale	Comments	[UF Feed pH	UF Feed NTU
191	5 May-98	confirmed bkwsh cl2 28ppm free		7.54	1.76
192					
193			UnUn	it shuldown a	nd bkwsh glob
194			· · ·		
196	0-14107-30				
197		Tertiary Filter and Storage Tank			
198	7-May-98	cleaned/chlorinated somewhere in here	1	7.38	2.21
199					
200		1st mnl lowpH bkwsh			
201		Atmp= 5.5-4.9 Btmp=6.6-6.5	ļ	7.57	2
202	8-May-98				
203 204		2nd manual low pH bkwsh			
205	9-May-98	A tmp= 4.6-4.8 B tmp=5.9-5.5		7.58	2.03
206					
207					
208		3rd manual low pH bkwsh			
209		A tmp= 4.2-4.0 8 tmp=5.8-4.8		7.53	1.66
210 211		4th manual low pH bkwsh			
212					
213		· · · ·	<u> </u>		
214	- 1	5th manual low pH bkwsh			
215				7.47	2.49
216		system ERROR-PLC no longer controlling fd pressure			
217	12-May-98				
218 219	12-May-90			7.51	1.8
220		<u>, , , , , , , , , , , , , , , , , , , </u>			
221					
222	13-May-98			7.36	1.7
223					
224				7.41	1.92
225	14-May-98				
227					
228				7.34	2.01
229					
230	15-May-98	Any of the following leading to longer run			
231		low pH Backwash			
232 233		tank/teriary filters cleaned week of 4/27-5/1		7.6	2.18
233	16-May-98	lower cl2 dose			
235		Another low pH backwash	· · · ·		
236				7.55	1.99
237	17-May-98				
238					
239		Low pH backwash]
240	19 Mer 02	tmp a 4.3-4.2 b 5.6 5.0		7.54	1.75
241 242	18-May-98	LOST TOUCHPANE			
243		Low pH bkwsh		7.37	1.95
244		Imp a 4.8 3.9 b 5.8 5.0			
245	19-May-98				
246		Low pH bkwsh		7.32	1.03
247		tmp a 4.5 4.3 b 5.5 5.3			
248	20-May-98				
249				2.00	
250 251		l au ph backwarb		7.36	1.5
251	21-May-98	Low ph backwash tmp a 5.3-5.0 b 6.3-6.2	<u> </u>		
202	4 i * May*30	ano a 5.5*5.0 0 6.3*6.2	1		

	A	AK	AL	AM	ÂN
4	Date	Comments		UE Feed pH	UF Feed NTU
253					
254		Reloaded MT200 software		7.46	1.25
255 256		low ph a 5.2 5.4 b 5.3 6 RO shutdown-broken valve	-		
250		NO SILIDOWIT-DIOKEN V8/VE	·		
258	23-1189-50		-		·
259	· · ·			7.52	2.38
260		· · · · · · · · · · · · · · · · · · ·		1.02	2.50
261	24-May-98				
262		System run for 3.5hours w/o any backwash RO			
263				7.45	
264		Low pH Backwash			
	25-May-98	tmp a 5.5-6.1 b 5.8-5.9	_		
266					
267	·····			7.47	
268	00.11	FIXED BACKWASH BOTH ELEMENTS			
	26-May-98	NOW EQUAL			
270		Low pH backwash		- 7.2	
272	27-May-98	Imp a 5.6-4.6 b 6.0-5.0 TOUCHPANEL DOWN AGAIN		7.3	1.94
273	21-4107-00	Low ph backwash			
274		tmp a 4.9-4.5 5.5-5.2			
275				7.28	1.6
	28-May-98				
277	······				· · · ·
278		Low pH backwash		7.26	1.59
279		a tmp 4.7-5.1 b 5.4-5.0			-
280	29-Məy-98				
281					
282				7.47	1.6
283					
284	30-May-98				
285 286	24 11- 02				
286		Low pH backwash		7.42	1.97
288	1-Jun-98 2-Jun-98	a imp5-4.8 b 4.7-4.8			
289	2-301-80	Low pH backwash		7.4	1.0
290		a tmp 5.1-4.8 b 5.1-5.1			1.0
291	3-Jun-98	Reloaded MT200 Software Again	-{}		
292		Added Second Dosing Pump to System			
293	4-Jun-98	Low pH backwash once per day pH ~2.7		7.41	2.15
294		0.1% Citric Acid pumped in			
295	5-Jun-98	Ci2 now w/LMI 25-30ppm free in feed			
296				7.3	1.86
297					
298	6-Jun-98			7.32	2.42
299			_		
300 301	7-Jun-98	······			
301	8-Jun-98	······································	-	7.32	4 74
303	0.001-00	Verified Ci2 in bkwsh feed =30ppm		. 1.32	1.74
304	9-Jun-98	max stroke and frequency	-		
305		that shore and nedecity			
306		• · · · · · · · · · · · · · · · · · · ·	- !	7.47	1.57
307			· · · · ·		
308	10-Jun-98				
309			1		
310			1	7.57	1.97
311	11-Jun-98				
312			1		
313	12-Jun-98			7.7	1.72
314					

.

4	A	AK	AL	AM	AN
	Date	Comments	1	UF Feed off	UE Feed NTL
315					
316	13-Jun-98	Feed Pump VFD low?	- T		
317		Manual low pH backwash		7,57	1.78
318	14-Jun-98	a tmp 7-6 b 6.05-5.2		1,01	1.10
319	14 0011-00		+		
320	15-Jun-98				
321	10-30/9-30			7,49	1.96
322	16-Jun-98	·····		/,47	1.80
	10-2011-30	Checked hunch all ok	+		
323		Checked bwash,cl2 ok			
324					
325	17-Jun-98			7.51	1.48
326			<u> </u>		_
327	18-Jun-98			7.54	2.55
328				7.57	1.75
329				7.67	2.15
330	19-Jun-98				
331					
332				7,44	1.89
	20-Jun-98				
334	21-Jun-98		1	7.6	2.1
335	22-Jun-98		T		
336	23-Jun-98		1	7.39	2.01
337		· · · · · · · · · · · · · · · · · · ·	1	1	
338	24-Jun-98		1		
339	1	··· ···	1	7.41	2.68
340	25-Jun-98		1		
341		• • • •		7.47	2.55
342					E.00
343	26-Jun-98			7.48	2.59
344	27-Jun-98	Check Integrity Particle Counts look good			2.00
345	21 0011 00	Moved RO sample locations		7.26	2.54
346	28-Jun-98	Probing Study on LFC1 3M looks uniform	+	1.20	2.04
347	20.0011-00	Virus Challenge-UF and RO	<u> </u>	- 	
348	29-Jun-98	Overnite, K (A) membrane increase in particle			
349	23-3011-30	Overnite. K IA/ methorate increase in particle		7.36	2.42
350	30-Jun-98		·	- 1.30	2.43
351	1-Jul-98				
352	2-Jul-98	Personal me	<u>l</u>		
552	2-00-30				
262			Indianes-N	2 leaks, X good	
			andranes-K	Unit Shuldowr	lo Integrity t
353 354	2 1-1 02		Andrailes-K	Unit Shuldowr	lo Integrity t
354 355	3-Jul-98		anibrailes-K	Unit Shutdowr 7.44	lo Integrity to 2.05
354 355 356	3-Jul-98_			Unit Shuldowr	lo Integrity t
354 355 356 357	3-Jul-98			Unit Shutdowr 7.44	2.05
354 355 356 357 358				Unit Shuldowr	lo Integrity t
354 355 356 357 358 359	4-Jul-98			Unit Shuldowr 7.44 7.4	2.05 2.3
354 355 356 357 358 359 360				Unit Shutdowr 7.44	2.05
354 355 356 357 358 359 360 361	4-Jul-98 5-Jul-98			Unit Shuldowr 7.44 7.4	2.05 2.3
354 355 356 357 358 359 360 361 362	4-Jul-98 5-Jul-98 6-Jul-98			Unit Shuldowr 7.44 7.4	2.05 2.3
354 355 356 357 358 359 360 361 362 363	4-Jul-98 5-Jul-98			Unit Shuldowr 7.44 7.4	2.05 2.3
354 355 356 357 358 359 360 361	4-Jul-98 5-Jul-98 6-Jul-98			Unit Shuldowr 7.44 7.4	2.05
354 355 356 357 358 359 360 361 362 363 364	4-Jul-98 5-Jul-98 6-Jul-98			Unit Shutdowr 7.44 7.4 7.26	2.05 2.3 2.35
354 355 356 357 358 359 360 361 362 363 364 364	4-Jul-98 5-Jul-98 6-Jul-98			Unit Shutdowr 7.44 7.4 7.26	2.05 2.3 2.3
354 355 356 357 358 359 360 361 362 363 364 365 366	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98			Unit Shutdowr 7.44 7.4 7.26 7.26 7.36	2.05 2.3 2.3 2.35 2.41
354 355 356 357 358 359 360 361 362 363 364 865 366 367	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98			Unit Shutdowr 7.44 7.4 7.26	2.05 2.3 2.3
354 355 356 357 358 359 360 361 362 363 364 465 366 366 366 366 366 366	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98			Unit Shutdown 7.44 7.4 7.26 7.26 7.36 7.26	2.05 2.3 2.3 2.35 2.41 1.93
354 355 356 357 358 359 360 361 362 363 364 365 366 366 366 366 366 366 366 366 366	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98 9-Jul-98			Unit Shutdowr 7.44 7.4 7.26 7.26 7.36	2.05 2.3 2.3 2.35 2.41
354 355 356 357 358 359 360 361 362 360 361 362 366 365 366 366 366 366 366 366 366 366	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98			Unit Shutdown 7.44 7.4 7.26 7.26 7.36 7.26	2.05 2.3 2.3 2.35 2.41 1.93
354 355 356 357 358 359 360 361 362 363 364 365 366 366 366 366 366 366 366 366 366	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98 9-Jul-98			Unit Shutdowr 7.44 7.4 7.26 7.26 7.36 7.26 7.26 7.49	2.05 2.3 2.35 2.41 1.93 1.97
354 355 356 357 358 359 360 361 363 363 363 363 363 364 365 366 366 366 366 366 366 366 367 368 366 367 368 369 370 371 372	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98 9-Jul-98			Unit Shutdown 7.44 7.4 7.26 7.26 7.36 7.26	2.05 2.3 2.3 2.35 2.41 1.93
354 3355 356 357 358 359 360 361 362 363 364 165 366 166 166 166 166 166 166 166 166 170 171 172	4-Jul-98 5-Jul-98 7-Jul-98 8-Jul-98 8-Jul-98 9-Jul-98 10-Jul-98			Unit Shutdowr 7.44 7.4 7.26 7.26 7.36 7.26 7.26 7.49	2.05 2.3 2.35 2.41 1.93 1.97
354 355 356 357 358 359 360 361 362 363 364 865 364 865 166 167 868 166 167 168 166 167 77 172 73 74	4-Jul-98 5-Jul-98 6-Jul-98 7-Jul-98 8-Jul-98 9-Jul-98 10-Jul-98 11-Jul-98			Unit Shutdown	2.05 2.3 2.3 2.35 2.41 1.93 1.97
354 3355 356 357 358 359 360 361 362 363 364 465 366 366 366 366 366 366 366 366 366 3	4-Jul-98 5-Jul-98 7-Jul-98 8-Jul-98 8-Jul-98 9-Jul-98 10-Jul-98			Unit Shutdowr 7.44 7.4 7.26 7.26 7.36 7.26 7.26 7.49	2.05 2.3 2.35 2.41 1.93 1.97

	A	AK		M	AN
4	Date	Comments		Habe	UF.Feed NTU
377	13-Jul-98			48	2.07
378	14-Jul-98	Switched from Citric Acid to HCI in BW		.3	1.83
379	14-00-00	pH 2.7	<u> </u>		
380	15-Jul-98	pit2.,		.61	2.37
381	16-Jui-98	······			
382	17-Jul-98		7	.44	2.28
383	11-001-00	· · · · · · · · · · · · · · · · · · ·		····	
384	18-Jul-98				
385	19-Jul-98	B membrane failed coliform challenge?	7	36	2.04
386	13-301-00	B membrano lakee coment enantinget		34	2.3
387	21-Jul-98				
388	21-5050		7	33	2
389	22-Jul-98				
390	22-30-30			.32	1.84
391					· ····
392	23-Jul-98		7	.39	1.4
393			7	.37	1.5
394				.46	1.88
395					
396	24-Jul-98	Removed membranes, neither had leaks,			
397			7.	.49	2.31
398					
399	25-Jul-98				
400					
401				.4	2.21
402	26-Jul-98	but neither h	ield va 7	.38	2.4
403					
404	27-Jun-98	Shut D	own to Integri	ty Test	Modules-no le
405			7.	.47	2.5
406	28-Jul-98				
407					
408	29-Jul-98				4.00
409				.41	1.89
410				.61	
411	30-Jul-98			.01	2.6
412	31-Jul-98	Both membranes failed coliform challenge		.64	2.6
413	4 4			.04	2.0
414	1-Aug-98				
415 416	2 440 08				
410	2-Aug-98 3-Aug-98			.37	2.64
418	4-Aug-98			.38	2.53
419	4-149-20			.36	2.88
420	5-Aug-98	System Cleaned		.47	2.99
421	0,.09.00				
422	6-Aug-98				
423					
424	7-Aug-98	Shut Down	and Cleaned		
425	8-Aug-98				
426	9-Aug-98		6	.79	1.86
427	10-Aug-98				2.3
428					
429	11-Aug-98				
430					
431	12-Aug-98		7	.21	1.95
432			_		
433			7	'.4	1.55
434	13-Aug-98				
435	14-Aug-98				
436	15-Aug-98		7	41	1,94
437					
	16-Aug-98				
438	TERMI #80				

	A	АК	AL	AM I	AN
4	Dale	Comments		UE PARD DM	CF read NTU
439					
440	17-Aug-98			7,51	1.94
441					
442	18-Aug-98				
443	19-Aug-98			7.37	1.59
444		Replaced Solenoid, ycheck on B			
445	20-Aug-98	Removed membranes			
446	21-Aug-98	A >4ieaks, replaced		7.41	1.82
447	22-Aug-98	B 2 leaks repaired			
448	23-Aug-98	BW every 25 min 9,7,7,10,15,10		7.46	1.87
449		Increased flow to 6gpm			
450		restarted BW evey 25 min (same)		7.37	1.57
451		7gpm/membrane			
452	26-Aug-98			7.42	1,78
453					
454	27-Aug-98				
455	28-Aug-98			7.49	1.61
456	29-Aug-98			7.5	1.22
457	30-Aug-98				
458				7,49	1.86
459	1-Sep-98				
460	2-Sep-98		Shut	Down and Cle	eaned
461	3-Sep-98				
462	4-Sep-98			7.49	1.99
463	5-Sep-98				
464	6-Sep-98			7.48	2.14
465	7-Sep-98				
466	8-Sep-98			7.45	2.72
467	9-Sep-98				
468	10-Sep-98			7.46	2.62
469	11-Sep-98			7.42	2.81
470	12-Sep-98			7.31	1.73
471	13-Sep-98			7.49	1.96
472					
473	14-Sep-98			7.42	1.42
474	15-Sep-98				
475	16-Sep-98	Free cl2 In RO feed ~0.3ppm (chloramines?)		7.57	1.69
476	17-Sep-98	Free cl2 in backwash feed 17ppm			
477	21-Sep-98	shut down at 1100 to repair UF leak			
478	21-Sep- <u>98</u>			7.33	2.31
479	22-Sep-98	RO FROM 40 TO 50% RECOVERY		7.57	2.29
480	22-Sep-98			7.49	2.51
461	22-Sep-98				
482				7.39	2.17
18 3	24-Sep-98				
484				7.45	1.86
185	25-Sep-98	USING UF FILTRATE IN THE BACKWASH			
186				7.43	1.97
187	29-Sep-98			7.32	1.89
188	30-Sep-96			· ···· · · ·	
189	1-Oct-98		1	7.33	1.89
iġó	1-Oct-98	Power out		7.32	1.89
91	2-Oct-98			7.32	1.7
92	2-Oct-98	Restarted with UF Filtrate ~8ppm free ci2 in BW		7.44	2.01
93	3-Oct-98	cl2 evert BW	· · · · · · ·	7.42	2.02
94	3-Oct-98			7.41	2.38
195	4-Oct-98				
96	4-Ocl-98			7.4	2.49
97	5-Oct-98	Sbut	own and Cle		
	5-Oct-98			7.26	2.19
198					
198 199	6-0d-98			7.45	2.34

,

	A	AK	AL	AM	AN
		Comments		UF Feed pH	UF Feed NTU
	Date	Continents		7.28	
501	7-Oct-98	Devie die Olivie Divi		1.20	1.9 2.54
502	7-Oct-98	Periodic Citric BW		7.5	2.54
503	8-Oct-98	in		7.29	2.46
504	8-Oct-98	here			
505	9-Oct-98			7.3	2.37
506	10-Ocl-98		<u> </u>	7,33	1.76
507	11-Oct-98	Restarted with 8ppm Free ci2 in BW every 9bw	ļ	7.46	1.95
508	12-Oct-98	Post Citric BW flow 39gpm, FF flow 38gpm		7.42	1.79
509	13-Oct-98	High pH solution (urned brown		7.52	2.21
510	13-Oct-98	2 day soak with -40ppm NaOCi		7.42	1.74
511	14-Oct-98	Backwash with RO permeate, ci2~8ppm every BW		7.44	1.67
512	14-Oct-98	Shut	Down and Cl	7.52	1.37
513	15-Oct-98			7.33	1.6
514	15-Oct-98			7.46	1.34
515	16-Oct-98		Shut	Down and Cl	eaned
516	16-Oct-98	7-8ppm total Cl2 in BW			
517	17-Oct-98				
518	17-Oct-98	Replaced old style B membrane with bypass	<u> </u>	L	i
519	18-Oct-98	Shut	Down and Cl		
520	18-Oct-98			Down and Cl	
521	19-Oct-98		Down and Cl	restored-2d	ay soak in cl2
522	19-Oct-98	Now both A and B new bypass membranes		L	
523	20-Oct-98	INCREASED RO RECOVERY TO 60%	d, Replaced	B membrane	(leaking)
524	20-Oct-98	BW every 25min 9,7,7,10,15,12 SAME			
525	21-Oct-98	-25ppm cl2 every BW		L	L
526	21-Oct-98	Shut Down and C	leaned, Repla	aced A memb	rane
527	22-Oct-98				
528	22-Oct-98				
529	23-Oct-98				
530	23-Oct-98				
531	24-Oct-98				
532	24-Oct-98				
533	25-Oct-98				
534	25-Oct-98				
535	26-Oct-26				
536	26-Oct-98			7.47	
537	27-Oci-98				1.6
538	27-Ocl-98			7.44	
539	28-Oct-98				2.03
540	28-Oct-98	Acid Pump left on again			
541	29-Ocl-98	Low pH backwash pH 2.6-Increased acid			
542	29-Ocl-98			7.43	
543	3-Nov-98	Lowered low pH backwash to 2.1	· · · · ·	7.05	1.6
544	3-Nov-98			7.35	1.59
545	4-Nov-98			7.97	1.09
546	5-Nov-98			7,37	1.53
547	6-Nov-98	increased recovery on RO		7.4	1.53
548	7-Nov-98	VIRUS CHALLENGE#2		7.4	L
549	7-Nov-98	No Cl2 on UF			1.24
550	8-Nov-98			7,4	L
551	8-Nov-98			7,35	1.14
552	9-Nov-98			7.36	1.51
553	9-Nov-98			7.35	1.72
554	10-Nov-98			7.32	1.7
555	10-Nov-98	Unit Cleaned			1.89
556	11-Nov-98			7.4	
557	13-Nov-98			L	1.78
558	14-Nov-98			7.37	
559	15-Nov-98				1.68
560	15-Nov-98			7.36	
561	16-Nov-98				1.68
562	16-Nov-98	Inreased free conc flow from 1.2 to 1.8 GPM		7,34	

	A	AK	AL	AM	AN
4	Date	Comments		UF Feed pH	UE Feed NTU
563	17-Nov-98				1.5
564	17-Nov-98			7.37	
565	18-Nov-98			1	1.61
566	18-Nov-98			1	
567	19-Nov-98				
568	20-Nov-96		·····		
569	20-Nov-98				
570	21-Nov-98				
571	22-Nov-98				
572	23-Nov-98			1	
573	23-Nov-98		1		
574	24-Nov-98				
575	24-Nov-98				
576	27-Nov-98		1	·	
577	27-Nov-98				