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A (PARTIALLY) MODEL-BASED LOOK AT JACKKNIFE
VARIANCE ESTIMATION WITH TWO-PHASE SAMPLES
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ABSTRACT

This paper focuseson a design-consistent regression estimator in which the “auxiliaries” are
estimated from a stratified cluster sample and the regression coefficients from an arbitrary
subsample of the original sample. The reweighted expansion estimator described in Stukel
and Kott (1997) is an example of such an estimator. Assuming that the target variable isa
linear function of the auxiliaries plus an error term, asymptotic properties for both this
estimator and the jackknife estimator of its mean squared error are developed. These
theoretical results are used to explain some of Stukel and Kott'sempirical findings, which
in turn shed light on the asymptotic underpinnings of the theoretical results.
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1. INTRODUCTION

This paper will focus on a two-phase design-
consistent regression estimator for the mean of a
single target variable computed in the following
manner: first, a vector of covariate means is
estimated from a stratified cluster sample; then, a
vector of regression coefficients relating the target
variable to the covariates at the element level is
estimated from an arbitrary subsample of the first-
phase sample. The estimator has the same form as
the conventional design-consistent regression
estimator for a population mean of atarget variable
except that a first-phase estimated mean for the
vector of covariatesisused in place of the population
mean for avector of auxiliary variables.

We will assume a model in which the target
variableis alinear function of the covariates plus an
error term. The two-phase regression estimator and
an expression for its variance under a combined
randomization (for the first phase) and model (for the
second phase) framework is discussed in Section 2.
A jackknife estimator for this variance is analyzed
in Section 3. Section 4 concentrates on the special
case of atwo-phase regressi on estimator i nprojection
form. Some empirical results for the weighted
expansion estimator partially published in Stukel and
Kott (1997) are reviewed in light of this analysis.
Other results from the same empirical study are

discussed in Section 5, which extends the theoretical
treatment in earlier sections to ratios of two-phase
regression estimators. Section 6 provides a more
general discussion.

2. NOTATION FOR THE TWO-PHASE
REGRESSION ESTIMATOR

We need quite a bit of notation. Let i denote an
element in the population of interest, j afirst-phase
primary sampling unit (PSU), and h (=1, ..., H) a
first-phase stratum. There are n,, sampled PSU’s in
stratum h and n sampled PSU’s overal. The
popul ation size (in number of elements) is M, while
the second-phase samplesizeism. Let S(hj) denote
the set of elements in PSU j of stratum h. Let S
denote the entire first-phase sample of elements (an
element isin the first-phase sample if it is contained
within a PSU in the first-phase sample).

Let w,; denote the first-phase expansion factor
for i; that is the inverse of the first-phase selection
probability of the PSU containing i. Let w, denote
the second-phase expansion factor for i: when
element i is in the second-phase sample, wy is the
inverse of the conditional probability of selecting i
for that phase (conditioned on the first-phase
sample); when i in not in the second-phase sample,
W, = 0.

The two-phase regression estimator for the



population mean y,= YMy,/M we will be addressing
here has the form:

t =3 sWyWay /M +
(XsWyxi/M = Y sWywyx; /M)b, (1)

where x; denotes arow vector of K covariates,
b = (T sCWiWaX;X /M) ¥ sCWoWox;'y; /M, (2)

and the ¢; are arbitrary constant.

In many applications, M is unknown.
Consequently, t in equation (1) is not a practical
estimator for apopulation mean. Observe, however,
that Mt is a practical estimator for a population total.
The two estimators have parallel properties. They
have identical relative biases and identical relative
mean squared errors. We focus hereontto simplify
the asymptotics.

If the ¢ in equation (2) have the form ¢, =
1/(x;A), where A is a column vector, then t can be put
in projection form:

tpros = (LsWixi/M)b
since

(XsWywyxi/M)b =
(X sWWox; /M) (L s CW W o, x; /M )_1
Y sCW W'y /M
(X sl Twywyx; IM) (Y s Wy WXi'x; /M )_1
Y sCW WXy /M
MY sCwWywox 'y /M = Y swywyy /M.

The reweighted expansion estimator in Kott ans
Stukel (1997) is in projection form as is the more
general two-phase regression estimator discussed
later in that paper.

We assume the y; and x; are related by the
following model:

yi=xp +e, (3)

where E(e [{x,}), and E(eg,|{x}) =0 foriand g
from different PSU’s, while E(eg, |{ x,}) isbounded
other-wise.  This structure allows the elemental
errors—the g — within the same PSU to be correlated
in an arbitrary manner. It should be noted, however
that if the second-phase of sampling uses a clustered
selection process, and second-phase clusters cut
across first-phase PSU’s, elements from the same
second-phase cluster but different PSU’ s are assumed
not to have correlated errors.

For our purposes, the target of estimation, y,, is
virtually identical to Y™ x,B/M = xB. Asaresult, we

will treat x,B as the target of estimation from now
on.
The difference between tpro; and xf is

tpros — XoB = (X1 — Xg)B + x4(b - B),

where x; = Y sw;x; /M. The model mean squared
error of tpgrg; is then

Eel (toros ~ XoB)]? = [(x; ~ Xo)B]® + x;Var(b)x;".

The first term of this expression is the square of the
model bias of tpro; . The expectation of this term
with respect to randomization (i.e., its design
expectation) is the randomization variance of x,p.
For our purposes, then the randomization-model
variance of tpgo;iS

Vargu(tpro) = Vary(x,f) + x,Varg(b)x,,

wherethe subscript 1 denote randomi zation inference
with respect to the first phase of sampling. Theright
hand side of this expression differs from the model
expectation of the randomization mean squared of t
(or, equivalently, the randomization expectation of
the model mean squared error of t) in that the model
variance component, x,Varb)x,', isconditioned on
the realized first-phase sample.

When t in equation (1) cannot be put in
projection form, the situation is a bit messier. The
model variance of tisVar{e, + (x, - x,)b}, where
e, = Y sWywye /M, and x, is defined analogously.
The randomization component of the randomization-
model variance of t is the same as that of tpgg; (i.€.,
Var,(x,B)).

Let X35 = Ygr) WiXi/M: X = Yy WyWoXi /M
Yory = Lsr) WiWa¥i/M: = Yy CW1W2X;'Yi /M
€y = L) WaWa&/M; uy = Yoy GWyW,X'€ /M and
Zy; = Y sm) CWWaxixi/M.  Just as x, = ZHijzhj' let
q=Y"y i g (since the subscript 2 is not needed for
clarification, it has been suppressed). Define u and
Z analogously.

Now b = Zq and Varb) = Var(Zu) =
Z'E(uu)Zt=Y"y i Z'lE(uhjuhj')Z'l =
Y Y Var( Z'luhj). The model variance of t is thus

Vart) =Y ¥ Vare (ey + [xq - XZ]Z-luhj)
= Z Z Vare (ahj)l

where a; = €y + [X; - X,JZMuy.  FOr tppgy this
collapsesto ¥ ¥ Var, (x,Zuy).

The randomization component of the
randomization-model variance of tis



Vary(x,f) =Y ¥ Var(xyB).

We will assume either, 1, the first-phase sample was
drawn with replacement but that the population,
strata definitions, and design are such that an
element can almost never be selected more than
once, or, 2, the first-phase sample was drawn
without replacement but that the population, strata
definitions, and sample design are such that using
the with-replacement variance estimator has an
ignorably small bias.

If B wereknown, the standard with-replacement
variance estimator for Vary(x,f) is

var,(x,8) = Y7 (n,/[n,- 1]) [ Zj(xlhjﬁ)z -
( ijlhjﬁ)zlnh]-

We will call

vi(t) = vary(x,p) + ¥" Y Varday) (4

the ideal estimator for the randomization-model
variance of t; that is

Vargy () = Vary(x,p) +}" Y Varay).

3. THE JACKKNIFE VARIANCE
ESTIMATOR FOR't

Letfyy =f - (ny/[ny- ) (fy - Lgfag/Mn), where f has
alinear form such as 'y, x;, x,, €, q, u, or Z. The
expression f,, is called the hj’th jackknife replicate
of f.

Now t can be rendered as y, + (x; - x,)Z"q.
The hj’th jackknife replicate of t is

— -1
to = Yom) + Kagy ~ X)) Z ™ A iy

Thejackknife variance estimator for tis

vy (1) =Y [(n, - 1ing Y (e - 1%

To evaluate this variance estimator, we need
first evaluate the differences ty, - t:

te ~ t = XamB + €q) + (Xagy) — Xo)Zgw) Ay
- XB- ey (xg- Xz)Z_lq
= (&) — €2 + (Xqg) — XP ©)
+ (Sa) — Xom)Zgy) Uy~ (X1~ X)Z 7w

W e need some asymptotics to handle the Z-inverse
terms. We will assume that
expressions like fj; are O,(1/n), while fitself is no
more than Op(1). Infact, e and u are Ox(1//n), since
each are the sum of nindependent Oy(1/n) terms.

Let f=f- ey = (Ma/[Ne = 1D (= LgTng/Mn),
so that

all the linear

Zy'=12-2"'=[z (1 - 2'2")]*
=(1+2'2 + 27202722 + O (1nd).

Plugging Z,, " and the definition of f into the left
hand side of equation (5) yields:

— j hj -1 (h
t(hj) -t = - Xl(hJ‘)B - ez( D _ (Xl - Xz)Z 1u(1)
S - ™)z - u®)
+(xq - X)ZZWZ u - u™] + Op(n»5/2)

- _ Xl(hj)B _ e2(hi) - (xq - xz)Z'lu(hj) (6)
_ {(Xl(hl) _ X2(hl)) - (xq - X2)Z'1Z(h')} Z'l[u _ u(hl)]
+0,(n*?).

Dropping terms of order 0x(n"*?), we have

t(hj) t= - Xl(hJ')B _ ez(hj) _ (xl _ x2)Z»lu(hj)
=~ x,00p - g™
= = {(M /[ - I(x4B - YgXangB/Nn)
+ (/- 1)@y - Ygang/Mw} - (7

So that

Ee[(t(hj) - t)z] b
[n/(n, - DIX (x1B - nglhgﬁ/nh)z +
[(1- 2/ngVargay) + Y Vardagini},
and

Edvi] = ZH[(nh - 1ing YEd (ty) - 1)
= var(x;p) + Y'Y, Var(ay).

Thislast near equality tellsusthat the jackknife
is a good estimator for the randomization-model
variance of t discussed in the last section. In fact,
incorporating someof the higher order terms dropped
from equation (6), we can conclude that

Edv )] = vary(x,p) + LY ; Var(a,) + O(1/n’)
= v,(t) + O(1/n?),

wherev/(t) istheideal varianceestimator defined in
equation (4). If we make the additional mild
assumptionsthat the sampling design and population
are such that v,(t) and Vargy(t) are O(1/n), then the
relative bias of the jackknife relative to the “gold
standard” of the ideal variance estimator is O(1/n).



4. THE JACKKNIFE FOR THE TWO-PHASE
REGRESSION ESTIMATOR
IN PROJECTION FORM

W hen the two-phase regression estimator can be put
in projection form; thatis, when ¢; = 1/(x;A) for some
vector A, equation (6) collapses to

— j -1, (hj

trypros = tpros = - Xl(h])ﬁ_ -x,Z 1““)_ )
(xl(hl) _ XlZ'll(hJ))Z'l[u Q)] ]
+ Oy(n®A). (6)

Thisisbecause A'cx;' = 1, so that x,Z %= ',
Auy = ey, and €,V = x,Z'u®™ . In addition,
AZy = Xgp, SO that x,W = x,Z71ZM,

Denote E(uyuy) by V. Recall that the u; are
independent and u™ =[n, /(n, - 1)1(uy - Yqup/ny
so that E(u®™u) = [n,/(n, - D](Vy; - Y Vig/Ny) and
EQ®u®") = [ny/(n, - DI? (Vi1 - 2/n] +
Yo Vig/NyY). From (6)), we have

Ed (tjpros - tero)] = (x,"B)? + Vafe(xlz__l“(hj))
+2(x," - x,272M)z"*
Eo[u - u®u®)zx;'
v (x,M- x,zZWyz "
Ee(uu’)Z'l(xl(hj) - x1Z'1Z(hj) )
+ O(n™?)

= (x,"B)* + Var(x,Z ™)
+2(x," - x,27ZMZ YN, /(n, - 1)
(Vij = Yo Vig/MZxy'
+ (x,™ - xlzlzd‘l))zl_(z Y VZ?!
(xl(hl) _ Xlz'lz(hl))'_

LettingV denote ¥ ¥ V,; and V®) denote
[nn /(N = DIV - Yg Vig/M), We can express the
expected val ue of thejackknife variance estimator for
tproy @5

Ee(Vyprog) =
vary(x,f) + Vary(x,Z'u) (8)
+2Y (Uny) ¥ (x," - x,272M)z2 v Oz 1y
+¥ ¥ ([ - ) (™ - x, 22z vz
o™~ x,Z 7y

The asymptotic bias of the jackknife is captured by
thelast two lines ontheleft hand side of equation (8).

For many applications, V will beroughly equal
to amultiple of Z. Observe that both x,™ and x,Z"
1ZM  have randomization expectations of
(asymptotically) zero, but that the former is often
likely to be a good less variable because it is based
on the entire first-phase sample. Consequently, in
many applications the contribution to the asymptotic

bias of the jackknife from first-phase stratum h —
roughly proportional to

(Iny, - 31/ny) x,Z2ZWZ2Z2M7 %, - will be negative
(positive) when n, is less (greater) than 3.

One popular example of the two-phase
regression estimator in projection form is the
reweighted expansion estimator for apopulation total
explored in Stukel and Kott (1997). For this
estimator x; is a vector of group membership
indicators, where the groups are mutually exclusive,
and all the ¢ are equal to 1. Consequently, the
components of Mx,; and Mx, are estimators of the
group population totals based on the first- and
second-phase samples respectively, Z is a diagonal
matrix with the same values of x,, and b isavector of
estimates of the group y-means based on the second-
phase sample.

The reweighted expansion estimator in Stukel
and Kott had the form Mt = Mx;b. They also
inves-tigated the double expansion estimator, which
had the form Mx,b.  Diane Stukel performed a
simulation in which, first, a with-replacement,
stratified, simple random sample of area clusters
(PSU’s) was drawn, then all the individuals from the
sampl ed clustered wererestratified into 5 age groups,
and awithout-replacement stratified, simple random
second-phase sample of individualswasdrawn. Two
PSU’s were sampled from each of the 18 first-phase
strata, while second-phase stratum sample sizes ran
from 5 to 50 individuals. Four thousand (4, 000)
simulations were conducted for each sample size.
For comparison purposes, completely-enumerated
first-phase samplewerealso simulated. Moredetails
on the data setand simulationsare provided in Stukel
and Kott (1997).

The results of this empirical analysis for the
variable“total employment” arepresentedin Table 1.
For the jackknife of the double expansion estimator,
the replicate ty, was set equal to y,y. A less
successful  alternative formulation discussed in
Stukel and Kott is not presented here. Note that
when the entire first-phase sample is enumerated the
reweighted and double expansion estimators are the
same.

The reweighted expansion estimator appears to
haveatrivial relative biaswhich increasesin absolute
value as the second-phase sample size decreases.
The double expansion estimator is unbiased. The
tiny relative biasesfor thisestimator inthe Tableare
due to the finite nature of the simulations.

The reweighted ex pansi on estimator ismodestly
more efficient (has |ess mean squared error) that the
corresponding double expansion estimator. The
efficiency gain appears to increase as the second-
phase sample size decreases.



The jackknife variance estimates for the
reweighted expans on estimators havesmall negative
biases, which were anticipated by the theory
developed

in this section. These biases tend to increase in
absolute value as the second-phase sample size
decreases. In theory, they should be an asymptotic
function of the first-stage sample size only. In
practice, the increasing relative variability of the Z;
within first-phase strata — and thus x,Z*Z™Wz'z®
Z'x,' (see equation (8) and the discussion following
it) — may be the determining factor. Note that the
components of the diagonal matrix MnZ,; are
estimators of the number of individuals within first-
phase stratum h from a particular age group (second-
phase stratum) based on the second-phase samplein
PSU j of stratum h. The smaller the second-phase
sample size, the more variable the Zy within strata
given fixed n;,

The jackknife variance estimatesfor the double
expansion estimatorshave astrong upward bias. Am
explanation for this can be found in Kott (1990),
where using the standard two-stage, with-
replacement variance estimator — equivalent to the
jackknife in this case — is shown to be biased

Table 2 presents the results of another set of
simulations conducted by Stukel using the same data,
first-phase strata, and second-phase sample design as
in Stukel and Kott, but with 70 first-phase sample
PSU’s (out of 220). In these new simulations, 8 of
the strata have 4 or more sampled PSU’s. The other
10 again have 2.

The absolute relative biases of the reweighted
expansion estimator is a bit larger in the new
simulations but are still small. Surprisingly, the
efficiencies of the estimators go down (except , of
course, when the whole first-phase sample is
enumerated).

The efficiency gains from using the reweighted
over the double expansion estimator are more
pronounced in the new simulations. a reasonable
explanation for this is that the precision of the
estimator x; is greatly improved by adding PSU'’s,
while the precision of x, — based a second-phase
sampl e that has not increased in size — is not.

The relative biases of the jackknife for the
rewei ghted expansi onestimator remain small but now
are not all negative. This may be due to those strata
with more than 3 sampled PSU'’s.

upward.
Table 1. Estimating Total Employment With a Two-PSU-Per-Stratum Design
Second-Phase Reweighted Expansion Estimator Double Expansion Estimator
Stratum
Sample Size % RelBiasof  Scaled RelBias of % RelBiasof Scaled RelBias of
Estimate M SE* Jackknife Estimate MSE*  Jackknife
All 0.04 100 0.94 0.04 100 0.94
50 0.14 183 -0.99 0.16 186 46.4
20 -0.30 323 -251 -0.01 360 68.2
10 -0.29 549 -5.81 0.03 632 78.2
5 -0.56 1002 -5.13 0.12 1171 86.2

Table 2. Estimating Total Employment With a Variable-PSU-Per-Stratum Design

Second-Phase

Reweighted Expansion Estimator

Double Expansion Estimator

Stratum
Sample Size % RelBiasof  Scaled RelBias of % RelBiasof Scaled RelBias of
Estimate MSE* Jackknife Estimate MSE* Jackknife
All 0.11 59 -1.94 0.11 59 -1.94
50 -0.15 186 -4.49 0.09 287 31.9
20 -1.12 366 -6.56 -0.34 620 41.1
10 -1.51 622 -6.03 -0.06 1197 41.6
5 -2.35 1088 3.57 0.14 2319 44.7

All results based on 4,000 simulations.

* Scaled so that original estimator based on the full first-phase sample has Variance (M SE) equal to 100.



There does not appear to be reductionsin
relative bias for a given second-phase sample size
fromincreasing number of PSU’s. One reason for
thismay bethereduced first-phase variance, which
— all other things being equal — increases the
potential contribution to relative biasfrom second-
phase variance estimation. Another possibility is
that the Z,; have become more variable as the same
second phase sample size isdistributed over move
PSU’s.

Finally, thejackknifesfor the double
expansion estimator have reduced, but still
unacceptably high, relative biases.

5. THE RATIO OF TWO-PHASE
REGRESION ESTIMATORS

Let us adopt the framework of Section 2 for two
variables of interest, y,!¥ and /. In particular for
k=1or2 lety/M=y"yK/mMm,

th = Y swyuwy MM +
(TsWyxi/M - ¥ swWywyx;/M)b,

and
b = (Zsciwliwzixi’xi/M)-l ZsCiWﬁWziXi'Yi[k]/M-

W e assume that each y isrelated to x; through the
model:
yl = xpi + el

where the g™ have mean zero and are uncorrelated
across PSU’ s and bounded within PSU’s. It is not
necessary for el and e/” to be uncorrelated.
We are interested in the properties of
r = 9/t as an estimator for y,M/y,?, which for
our purposes is indistinguishable from R =
xBM/xB?. Definey,asy™ - Ry, and define g,
analogously. Defining other terms from Section 2
as before based on y;, e, y?, and /¥ above, we
have

r-R= (") [xy(p" - RB™) + ¥ ¥ ay)
= (%1(x; - x)(B" - RB) + ¥ ¥ al.

Under the asymptotic assumptions
analogous to those in Section 3, we have

tx,pl7 = 1 - (x,p?)* L ¥ &, + 0 (1/n).

So that

Ed(r- R = (B A0, - x) (B - RB))?
+ YL Vaea}i+owm].  (9)

If the population and first-phase sampling design
are such that

Var{ (xB) Y[ (x; - x9) (B - RpA]} =
Var{ (xoB?) [ (x; - xo) (B - R)]}
[ 1+0(1/m)], (10)

then a reasonable expression for randomization-
model mean squared error of ris

MSEgu(r) = {(XOB[Z])_Zvarl[Xl(ﬁ[l] - Rﬁ[zl)]
+ (x,pA)?Y ¥ Vareagh[1 + 0(1/n)].

Using similar arguments, we can show
that the jackknife variance estimator based on the
jackknife replicates ry; = te;)%/ty;)@ has a model
expectation (given a realized sample)
asymptotically equal to

[x B 2var,[x,(B" - RB)] + (x,p1%)? L ¥ Varcay,

which isitself asymptotically close to

[xoB™] Avary[x,(B™ - RBA)] + (x;81%)? Y ¥ Vareay.

Thus, thejackknife provide areasonable esti mator
for the randomization-model variance of r.

Table 3 is based on the same set of
simulations as Table 1 from the | ast section. Here,
the employment rate, the ratio of total employment
to the total number of individualsin the workforce,
is the target of estimation.

Observe that the ratio of two double
expansion estimators is usually no less efficient
than the ratio of two reweighted expansion
estimators. Moreover, the jackknife provides
reasonable mean squared error estimates for both
the double and reweighted expansion estimators.
These two results have a simple explanation:

(B - RP?) in equations (9) and (10) must be
close to 0; that is, the employment rate must be
close to equal across second-phase strata. This
(near) equality (virtually) removes the
randomization component, which revolves around
the estimation of x, with either x, or x,, from the
mean squared errors of the two expansion
estimators. As a result, the jackknife need only
estimate the model variance of the two estimators,
which it does reasonably well in both cases. Its
negative bias for the double expansion estimator
can be shown to have an explanation analogous to
the reweighted expansion estimator for the



employment total.

The absolute relative biases for the
jackknife in Table 3 seem larger than those in
Table 1. This may be due to the (near)
disappearance of the randomization component of
mean squared error increasing the potential for
contribution to relative bias in variance estimation
from the second phase of sampling.

Table 4 returns to the data set, sampling
design, and target as Table 1. Now, however, two
new estimators are considered. Both divide the
first-phase strata into four post-strata. Two of
these post-stratacontain 2 strata, athird contains 4,
and the last 10.

W ithin each post-stratum, theratio of total
employment to total number of individualsis esti-
mated using the ratio of reweighted and double
expansion estimators, respectively (y is setto 0
when i is out of the post-stratum). Census counts
for the four post-strata are used to weight the
estimated ratios together. This produces
estimators that are usually more efficient than
anal ogousreweighted expand on estimators (except
when the second-phase sample size is 5 elements

per stratum).

The post-stratified estimators have more
noticeable, although still small, relative biases.
The post-stratified double expansion estimator is
less efficient than the post-stratified reweighted
expanson estimator and its jackknife variances
have pronounced upward bias. It seems that
within post-strata (B - Rp'@) is not close to 0;
that is, the ratio of total employment to total
number of individuals varies across second-phase
strata.

The absolute relative biases for the
jackknife of the post-sratified reweighted
expansion estimator are the largest we have seen
for reweighted estimators. Thisislikely due to the
small number of PSU’s within some post-stratum
ratios, which severely challenges a theoretica
result based on asymptotics.

Stukel conducted analogous simulations
to those summarized in Tables 3 and 4 based on 70
first-phase sample PSU’'s. They offer little
additional insight, however, and will not been
reviewed here.

Table 3. Estimating the Employment Rate With a Two-PSU-Per-Stratum Design

Second-Phase

Stratum
Sample Size % RelBiasof  Scaled RelBias of
Estimate M SE* Jackknife

All -0.09 100 2.08
50 -0.09 314 -3.53
20 -0.31 663 -3.45
10 -0.19 1261 -7.09

5 -0.26 2525 -6.55

Reweighted Expansion Estimator

Double Expansion Estimator

% RelBias of Scaled RelBias of
Estimate MSE*  Jackknife
-0.09 100 2.08
-0.08 314 -2.46
-0.27 662 -1.53
-0.12 1251 -5.21
-0.13 2516 -7.41

Table 4. Estimating Total Employment With a Two-PSU Per Design and a Post-stratified Estimator

Second-Phase

Stratum
Sample Size % RelBiasof  Scaled RelBias of
Estimate M SE* Jackknife

All 0.06 33 3.30
50 -0.08 117 4.88
20 -0.93 273 6.42
10 -1.96 522 12.03

5 -4.44 1101 9.20

Reweighted Expansion Estimator

Double Expansion Estimator

% RelBias of Scaled RelBias of
Estimate MSE*  Jackknife
0.06 33 3.30
-0.05 122 28.5
-0.71 284 32.0
-1.67 541 35.3
-3.98 1141 22.4

All results based on 4,000 simulations.

* Scaled so that original estimator based on the full first-phase sample has Variance (M SE) equal to 100.



6. DISCUSSION

Kott and Stukel (1997) shows that the jackknife
provides an asymptotically unbiased estimator for
the randomization mean squared error of thetwo-
phase design-consistent regression estimator, at
least in projectionform, when, 1, the second phase
of sampling is stratified, simple random sampling
at the element level, and 2, the covariates in the
regression estimator includeindicator variablesfor
all the second-phase strata.

By invoking the usual linear model, we
saw here that even without those two restrictive
conditions, the jackknife provides an
asymptotically unbiased estimator of what we
called the randomization-model variance; that is,
the model variance of the two-phase design-
consistent regression estimator plus the
randomization expectation of its squared model
bias. The lone non-asymptotic restriction needed
is that the element errors be uncorrelated across
PSU’s.

The randomization-model variance of a
two-phase design-consistent regression estimator is
related to more conventional measuresof accuracy
in the following manner. The randomization
expectation of the randomization-model variance
is the randomization expectation of the model
mean squared error or, equivalently, the model
expectation of the randomization mean squared
error.

The subject of the variance of the
jackknife has not yet been addressed. Employing
equation (7), thejackknife variance estimator for
the two-phase regression estimator can be
expressed as

vt =x" i (/[ = ID{(x1yB - LgXangB/np) +
( ahj - Zg‘r’lhg/nh)}2

=YY (/= (X3P — YgXangh/ny)?
+ ZHZJ (N /[Ny - 1])( ay - Zgahg/nh)z
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Let up call the expressionsin thelast threelines of
equation (12), a, B, and 2C, respectively . Even
allowingthe simplifying assumptionsthat E(AC) =
E(BC) = Cov(a, B) = 0 and Var(C) = E(AB), we
haveVar[v(t)] =Var(a) + Var(B) + 6Var(C). This
expressionisdifficult to analyzewithout specifying
a model for x;, which is beyond the scope of this

analysis.

Recall that with the Stukel and Kott data,
the randomization-model variance of employment
rate estimator virtually had no randomization
component. As a result, the variance of the
jackknife is, for all intents and purposes, the
variance of B. Since the relative variance of B
tends to increase as the second-phase sample size
decreases, it is not surprising that Stukel and Kott
found that the coefficient of variation (CV) of the
jackknife of the ratio of two reweighted expansion
estimators increased as the second-phase sample
size per stratum decreased. With 50 individuals
per stratum the CV was 59.2%, with 20 individuals
65.7%, with 10 individuals 74.2%, and with 5
individuals per stratum 103.1%. The number are
quite similar for theratio of two double expansion
estimators and for the set of simulations with 72
PSU’s.

One surprising result in Stukel and K ott
wasthe 78.4% CV for the jackknife when the first-
phase sample was completely enumerated. This
may be due to theimpact on variance estimation of
with-replacement first-phase sampling. If the same
PSU was selected twice in a stratum, that stratum
only contributed to the variance estimate when the
first-phase samplewasnot completely enumerated.
Thisislikely the cause of therelative instability of
the jackknife for the fully-enumerated first-phase
sample. When Stukel increased the number of
PSU’sto 72, the CV shrunk to 30.4% for the fully-
enumerated first-phase sample, whilestayingin the
samegeneral neighorhoodfor the other sub-sample
sizes.

This begs the question: if Stuckel's
simulations contained double-hits of some PSU'’s,
why do her results have any relevance to the
analysis in the text, which assumed away such a
possiblity? Thereason they are relevant isbecause
the likelihood of double-hits at the element level
for the subsampling simulations is very small.
Hence, the model-based portion of the analysisin
thetext appliesaslongasweassumeindependence
(or near independence) of the element errors, the g,
across elements in the same PSU.

It isasmple matter to extend the analysis
in the text to an estimator similar to t in equation
(1) but with a more complex covariate mean
estimator than x; = Y swy;x;/M. For example, the
estimator x; may itself be a multi-phase design-
consistent estimator. It may also incorporate
auxiliary variables whose population means are
known and do not have to be estimated. For
example, a better use of the post-stratum
population sizes in the Stukel and K ott datawould



have been in the estimation of Mx;, the vector of
age group population totals (i.e., second-phase
strata) based on the first-phase sample.

The randomi zation variance of x,f3, akey
component of the randomi zati on-model variance of
t, may itself bereplaced by a randomization-model
variance or even by amodel variance; for example,
by assuming the Mx; are have a common mean
withinfirst-phase strataand are uncorrelated across
PSU’s.
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