What's The Score? Considerations for Developing Metrics and Indices

Linda Green

Volunteer Water Quality Monitoring National Facilitation Project

USDA-CSREES National Water Conference, Sparks NV

February 6, 2008

Used with permission of presenters* at

Got Data? Cool Tools for Effective Data Management

Friday, November 16th, 2007 EPA New England Regional Laboratory 11 Technology Drive, North Chelmsford, MA

* In particular: Jerry Schoen, Sue Flint, Tony Williams

A few definitions...

Environmental Parameter

defining characteristic

•a measurement

•a test

Examples?

Temperature, pH, dissolved oxygen, nitrogen, phosphorus

Indicator

•measurable feature that provides *useful* evidence of system quality

•a sign, symptom or index of ...

provides evidence of something else

•Something used to show visually the condition of a system

Examples?

Housing starts, fecal coliform, percent impervious surface

Useful bacterial indicators

- Present whenever intestinal pathogens are present
- Alive longer than the hardiest intestinal pathogen
- Found in a warm-blooded animal's intestines
- Analyzed with an easy testing method
- Directly correlated with the degree of fecal contamination
- Useful in fresh and marine waters

Volunteer Estuary Monitoring: A Methods Manual http://www.epa.gov/owow/estuaries/monitor/documents/manual.pdf

A few more definitions...

Metric

- a standard of measurement
- a measure of (a biological) attribute.
- an attribute with empirical change in value along a gradient of human disturbance.
- data analysis summary

Examples?

Biological	Chemical	Physical
EPT % Sensitive Diatoms plant/animal condition	pH Temperature DO ppm or %Sat	(river) channel length, sinuosity (land use type) area, density

(Water Quality) Index

 An aggregated number used to judge condition (e.g. IBI, RBP, TSI, GDP)

A summary of large amounts of information

- simple terms (e.g., good, fair, poor)consistent
- easily understood by your audience (and you): consider the 3 P's

- Public,
- Policy makers,
- Politicians

Advantages of an index

Represent a number of variables in a single number,

 Combine various measurements in different measurement units in a single metric

 Convey relative differences in water quality between sites (or at one site) over time

Effective as a communication tool.

Disadvantages

Not always easy to understand its basis

- Effect of missing parameters
- Components & weighting can be judgmental

Talberth, Cobb and Slattery. The Genuine Progress Indicator 2006 http://www.rprogress.org/publications/2007/GPI%202006.pdf

Air Quality Index (AQI)

Air Quality Index Levels of Health Concern	Numerical Value	Meaning
Good	0-50	Air quality is considered satisfactory, and air pollution poses little or no risk.
Moderate	51-100	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.
Unhealthy for Sensitive Groups	101-150	Members of sensitive groups may experience health effects. The general public is not likely to be affected.
Unhealthy	151-200	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.
Very Unhealthy	201-300	Health alert: everyone may experience more serious health effects.
Hazardous	> 300	Health warnings of emergency conditions. The entire population is more likely to be affected.

AIRNOW

Quality of Air Means Quality of Life

http://airnow.gov/index.cfm?action=static.aqi

AQI caveats:

How AQI Calculated: Daily concentrations of major pollutants at many locations •ground-level ozone •particle pollution •carbon monoxide •sulfur dioxide •nitrogen dioxide formula used to convert raw values into numeric scale. 100 ~ air quality standard for that pollutant

Highest – rated pollutant becomes AQI for that day. E.g. ozone = 90, Sulfur dioxide = 68; AQI = 90.

Problems. If you are

•Sensitive to one type of pollution.

need to know where pollution types are coming from

Trophic State Indices

Attempt to provide a single quantitative index for the **purpose of classifying and ranking lakes, from standpoint of nutrient influence on water quality**.

Carlson TSI useful for

- comparing lakes within a region
- •assessing changes in trophic status over time.
 - •Scale is 0 to 100
 - •Higher values correspond to increased trophic state.
 - •10 unit increase = halving of Secchi depth & doubling of P concentration.

Important to emphasize the continuum not compartmentalize

The Great North American Secchi Dip-in http://dipin.kent.edu/index.htm

Carlson TSI Formulae:

TSI = 9.81 Ln Chlorophyll a (ug/L) + 30.6 TSI = 14.42 Ln Total phosphorus (ug/L) + 4.15 TSI = 60 - 14.41 Ln Secchi disk (meters)

Because these are interrelated by linear regression models, any one of the variables can be used to derive a TSI score.

CHL>TP>Secchi

- For northern temperate lakes
- Lakes with few rooted aquatic plants
- Little non-algal turbidity

Does trophic state = water quality?

NO! Trophic state is based on an absolute scale, water quality describes a condition in relation to (human) needs and values

A list of possible changes that might be expected in a north temperate lake as the amount of algae changes along the trophic state gradient.

TSI	Chl (ug/L)	SD (m)	TP (ug/L)	Attributes	Water Supply	Fisheries & Recreation	
<30	<0.95	>8	<6	Oligotrophy: Clear water, oxygen throughout the year in the hypolimnion	Water may be suitable for an unfiltered water supply.	Salmonid fisheries dominate	
30-40	0.95- 2.6	8-4	6-12	Hypolimnia of shallower lakes may become anoxic		Salmonid fisheries in deep lakes only	
40-50	2.6-7.3	4-2	12-24	Mesotrophy: Water moderately clear; increasing probability of hypolimnetic anoxia during summer	Iron, manganese, taste, and odor problems worsen. Raw water turbidity requires filtration.	Hypolimnetic anoxia results in loss of salmonids. Walleye may predominate	
50-60	7.3-20	2-1	24-48	Eutrophy: Anoxic hypolimnia, macrophyte problems possible		Warm-water fisheries only. Bass may dominate.	
60-70	20-56	0.5-1	48-96	Blue-green algae dominate, algal scums and macrophyte problems	Episodes of severe taste and odor possible.	Nuisance macrophytes, algal scums, and low transparency may discourage swimming and boating.	
70-80	56-155	0.25- 0.5	96-192	Hypereutrophy: (light limited productivity). Dense algae and macrophytes			
>80	>155	<0.25	192-384	Algal scums, few macrophytes		Rough fish dominate; summer fish kills possible	

Multimetric Indices (IBI, RBP)

 integrate several biological metrics to indicate condition.
 designed to be sensitive to a range of physical, chemical, and biological stressors.
 are relatively easy to measure and interpret.

Indices - Multimetric approach

each metric is given a rating according to whether its value

•approximates,

deviates somewhat from, or

deviates strongly from

values measured in *least-disturbed ecosystems* of a particular type within a region.

These ratings (e.g., excellent, moderate, fair, and poor) can be used to make decisions about how well aquatic life is being supported by the water body.

To make multimetric biological indexes effective you must:

- Classify environments to define homogeneous sets within or across ecoregions (e.g., streams, lakes, or wetlands; large or small streams; warm-water or cold-water lakes; high- or low-gradient streams).
- Select measurable attributes that provide reliable and relevant signals about the biological effects of human activities.
- Develop sampling protocols and designs that ensure that those biological attributes are measured accurately and precisely.
- Devise analytical procedures to extract and understand relevant patterns in those data.
- **Communicate the results** to citizens and policymakers so that all concerned communities can contribute to environmental policy.

Multimetric Indices to Prepare and Analyze Data http://www.epa.gov/bioindicators/html/multimetric.html

Selecting/Creating metrics and indices

Good Metrics:

Sensitive to changePredictable, consistent

Metrics vary in their scale--they can be:

- integers
- percentages
- dimensionless numbers
- •qualitative observations (e.g. grassland vs. forest).

Translation into unitless scores must address this.

Standardization assumes that each metric
has the same value and importance (i.e., they are weighted the same), and that
a 50% change in one metric is of equal value to assessment as a 50% change in another.

Management is not too bright...

...and has the attention span of a hamster

Dr Peter G Stoks, RIWA/IAWR,stoks@riwa.org 2007 Enhancing the States' Lake Managment Programs 2006 NWQMC San Jose' CA

Lessons from the European Union

Compliance

above standard

0.8-1.0 of standard

below 0.8 of standard

Trend

uptrend

downtrend

no trend or not detectable

What it looks like

Ammonia in the Rhine 1972 – 2004

May 1999 Fecal Coliform Results

Organization for the Assabet River 9 Damonmill Square, Suite 1E Concord, MA 01742

Assabet River in Aug: Green but flowing

Nashoba Bk. in Aug: Cleaner but flowstressed (1.0 cfs)

StreamWatch Project

- Evaluate streamflow, water quality, and habitat availability.
- Communicate timely, accurate data.
- Raise awareness of the need to protect in-stream flows.

Reporting Ranges

Index Score Ranges	Range Description	Stream Health Index Graphic
81-100	Excellent (optimal conditions)	Stream Health
61-80	Good (some effects observed)	Stream Health
41-60	Fair (light habitat impairment)	Stream Health
21-40	Poor (moderate habitat impairment)	Stream Health
1-20	Very Poor (severe habitat impairment)	Stream Health

	Danforth Brook Index Readings - Summer 2007																
		for the week ending															
	9-Jun	16- Jun	23- Jun	30- Jun	7- July	14- July	21- July	28- July	4- Aug	11- Aug	18- Aug	26- Aug	1- Sep	8- Sep	15- Sep	22- Sep	29- Sep
WQ	100	93	93	93	93	80	73	73	nr	nr	63	63	63	63	63	85	85
Flow	100	96	82	81	34	51	39	38	nr	nr	10	9	9	9	17	9	7
Habitat	100	85	65	65	40	70	50	50	nr	nr	20	15	15	15	35	10	5
Stream Health	100	91	78	78	46	65	50	50	nr	nr	18	15	15	15	29	13	9

Danforth Brook, Hudson, MA Stream Health and Streamflow - June to Sept 2007

Organization for the Assabet River

Upstream: 0.04 cfs

simple, short, educational...

The Buzzards Bay Health Index

Good to Excellent (65-100)

- Fair (35-65)
- Poor/Eutrophic Conditions (<35)

The Bay Health Index measures the relative health of each of Buzzards Bay's major harbors and coves. It does not include bacteria monitoring and is not an index of swimmability or shellfish bed status.

The Index is calculated from scores of mean summertime water clarity, phytoplankton pigments, organic nitrogen, inorganic nitrogen and the lowest 20% of dissolved oxygen concentrations. Central Buzzards Bay - which exhibits excellent water quality - would score close to 100 percent on the Index.

...show long-term ecological trends and as a method to improve the public and town elected officials understanding of local water quality

Parameter	Health Index Score					
	0 Point Value	100 Point Value				
Lowest 20 % Oxygen Saturation	40%	90%				
Transparency (Secchi)	0.6 meter	3.0 meter				
Chlorophyll	10.0 µg/L	3.0 µg/L				
DIN	.14 ppm	.014 ppm				
TON	.6 ppm	.28 ppm				

Westport East Branch - Inner

Maps, index color, pictures, text.

Poor Water Quality = Loss of eelgrass, fish habitat, species diversity.

Newspaper articles

Other reports, newsletters

THE COALITION FOR BUZZARDS BAY TATLE OF DATABAN TATLE OF DATABAN

Presenting Indices

Know your target audience

Expertise level Particular interest

Know your objectives

Personal: resource use Education Resource management/regulation Where to target resources Impaired waters designation TMDL development Etc.

A few general rules...

- The overall "score" is valuable,
- but make supporting detailed information accessible.
- Print score/color on web site home page, familiar icon/box (like weather info)
- Provide clickable links to more detailed information.

Create your own indices!

Jerry Schoen's examples.

Trout comfort zone (Combine DO, temperature, volume of lake containing suitable values. ... add duration/frequency of excursions?

Boating recreation index (Number of days when water levels, water quality, weather, etc. (absence of duckweed on lake surface, open channels) combine for "pleasant" boating experiences... add economic impact?)

•**Fishing recreation index** (Similar to boating - # of days when water levels, bug hatches, etc. afford quality fishing)

Beach closure days (see fishing, boating above... for added economic impact, consider extra weight for scores on holiday / high traffic periods).

•Water clarity / home value index (Combine Secchi disk data with real estate prices).

Thanks! Hope this is becoming more clear!

Applying knowledge to improve water quality Volunteer Water Quality Monitoring National Facilitation Project A Partnership of USDA CSRESS & Lond Grant Colleges and Universities