While we're waiting ...

Please complete the:

Pre-test (blue)
Background information (pink)
Photo release (white) – Hand in

Put your name on a piece of paper to win one of the Giant *E. coli* Microbes

E. coli Monitoring in Streams by Volunteers

Barb Liukkonen, U of MN Eric O'Brien, Iowa DNR Jerry Iles, Ohio State University Kris Stepenuck, WI Extension & DNR Lois Wolfson, Michigan State University

Introduction & Project Summary

- Project funding and partners
- Kits evaluated
- Statistical analysis
- Using the data
- Recommendations

Citizens Monitoring Bacteria Oct 2003 – Sep 2007

- 6-state research and outreach project
 IN, IA, MI, MN, OH, WI
- Funding from CSREES
- Goal: to test accuracy, reliability, and user satisfaction with test kits

Project Partners

Volunteer Water Quality Monitoring

Water Action Volunteers

esources

Cooperative State Research, Education, and Extension Service

Project Team Members

Why research *E. coli* test kits with volunteers?

- Many kits available and being used
- No comparative, independent study
- Cost of lab analysis is high; access to certified labs is problematic
- Citizens are interested and knowledgeable
- Citizens want an <u>easy</u>, <u>reliable</u>, <u>inexpensive</u> test kit

2004 – Year 1

- 5 methods tested in Iowa and Indiana
 - Coliscan[®] Easy Gel (incubated)
 - Coliscan[®] Easy Gel (not incubated)
 - $3M^{TM} Petrifilm^{TM}$
 - Coliscan[®] MF Method Kit (IN only)
 - Colisure[®] Method with IDEXX Quanti-Tray/2000[™] (IA only)

Recommended the "best" kit from Year 1

Selected on the basis of:

- Accuracy
- Volunteer satisfaction
- Cost

Test Kits - Years 2 & 3

Coliscan Easygel-incubated

Used in MI, MN, OH, WI;

IA & IN continued others

3M Petrifilm -incubated

Each test costs about \$2

Consistent volunteer training

- 4-5 hour training, covering ...
 - Background, protocols, QA, practice preparing and interpreting plates
- Standardized curriculum and manual
- Evaluation and tracking
- Used same equipment and supplies

Photo by Wayne Goeke

Consistent volunteer training

- 4-5 hour training, cover
 - Background, protocols, QA, interpreting plates
- Standardized curriculu
- Evaluation and tracking
- Used same equipment a

Photo by Wayne Goek

A training manual for monitoring *E. coli*

2nd Edition

A regional partnership between IN, IA, MI, MN, OH and WI

Field Visits

- Sampled weekly, 1 or 2/month
- Recorded field conditions: stream level, weather, temps, T-Tube
- Collected one sample split into 2
 - 1 sample sent to certified lab
 - 1 tested at home
- Sample sent to lab on ice, within 24 hrs

Test kit procedures

- Samples plated asap
- Triplicate tests for each kit
- Incubated at 35°C
- Read at 24 and 48 hours

2004 - 2006 in 6 states

- 111 trained volunteers
- 100 stream & lake sites
- >3200 hours contributed
- 1290 samples collected
- 6000 replicates with test kits

So ... how well do they work?

Photo from Putting Green, 2005

m Rock

Data Analysis

• Evaluation of:

Threshold levels Petrifilm @24 hrs, 2006

Percent of samples with test kit and lab values **both** either above or below the 235cfu value

80.9% agreement

lab	< 235 cfu	> 235 cfu
kit		
< 235 cfu	64.6 %	6.1
>235 cfu	12.9	16.3

Threshold levels Petrifilm @24 hrs, 2006

Percent of samples with test kit and lab values **both** either above or below the 1000 cfu value

93.2 % agreement

lab	<1000	>1000
kit	cfu	cfu
<1000	89.8 %	4.1
cfu		
>1000	2.7	3.4
cfu		

Petrifilm vs lab results, all data

Volunteers ...

 Preferred Petrifilm (71%) - Ease of use, interpretation - Limitation of just 1 ml Contributed (on average): – Time - 35 hours - Direct expenses - \$15.25 – Mileage – 200 miles

Volunteers shared information

- 64% shared with neighbors and friends
- 30% with Lake or River Associations
- 24% with local resource managers
- 30% with elected officials
- 11% with state agencies
- 3 used the data to secure grant funding
- Helps target resources more effectively

What can the data be used for?

Photo by Wayne Goeken, 2006

- Classroom education
- Volunteer knowledge
- Public awareness
- Local decision-making
- Targeting resources
- Assessing water quality
- Impaired waters -TMDLs

Conclusions

- Kits compared fairly well with lab analysis
- Kits are good for screening & targeting resources
- As much variability between labs as between test kits and labs
- Petrifilm and IDEXX essentially equal in performance
- Volunteers preferred Petrifilm & lower cost

www.usawaterquality.org/volunteer/Ecoli/

Citizens Monitoring Bacteria

4

٣

Bacteria 101 - Scope

- Bacteria as indicators
- Sources of fecal bacteria
- Health risks
- Standards for bacteria

Quick Review: Rules for Fecal Indicator Bacteria

- Bacteria from feces of warm-blooded animals
- Present in higher number than pathogens
- Nonpathogenic

Do not persist in the environment

E. coli are used as indicators because they:

- Indicate fecal contamination
- Suggest the presence of pathogens
- Are easy to collect and analyze
- Are relatively safe to handle and generally harmless

Indicator bacteria survival in environment

- Sunlight (UV radiation and white light) *can cause die off*
- Temperature *freezing destroys cells, but can survive at cold temps below the ice*
- In sediment may survive and thrive in bottom or bank sediments or at water interface in beach sand
- In algal mats *Cladophera, sun-dried, stored at 4*°*C 6 months*
- Water body conditions that enhance survival *low light penetration, high turbidity, low salinity, presence of elevated nutrients and organic matter*

Bacteria levels can be related to flow: *More runoff = Higher bacteria counts*

¹⁹⁹³

Persistence in the environment (Academy Creek–Brunswick, GA)

Condition

Enterococci Most Probable Number

Colony-forming units g⁻¹ of dried sediment

Moist sediment Dried 2 days and rewet 24 h after rewet

Dried 30 days and rewet 24 h after rewet

Dried 60 days and rewet 24 h after rewet 3,160 16,980 23,440 510 16,980

1,200 28,840

*Provided by Peter Hartel

Bacteria levels are affected by:

- Source and amount of loading
- Air and water temperature
- Rainfall and runoff

Sources of fecal bacteria

- Human sources anytime fecal matter reaches water there will be bacteria
 - Wastewater treatment inadequate or leaky septic systems or discharge from municipal systems
 - Swimming "accidents", diapers
 - Boat dumping, fish derbies, water recreation

Clear Lake, Iowa

Clear Lake Fluorometry - July 5, 2007

Clear Lake Fluorometry - September 17, 2007

More bacteria sources

- Animal sources
 - Livestock in streams, manure applied to fields, manure pits or lagoons
 - Wildlife geese, ducks, deer, etc.
 - Pets

Waterborne Illnesses

- Pathogens are disease causing microorganisms
- Three families cause illnesses (bacteria, viruses, and protozoans)
- Symptoms may be mild and confused with other diseases, so people may not realize that water made them sick

Keep in mind ...

- Not all bacteria present a health risk
- Most won't make you sick, but some may
- Low infectivity rates

Why not sample for pathogens?

- Few laboratories have the capacity
- It's expensive
- Takes a long time for analysis
- Requires a large volume of water
- Most tests identify only one pathogen
- Most polluted waters have few pathogenic organisms they are difficult to isolate and identify

"I adore the beauty and tranquillity of these raw-sewage days."

Current Monitoring Approach Leads to Errors

Courtesy Richard Whitman - USGS

Body contact standard

- Indicator of potential health risks from body contact
- Varies by state check YOUR state's standards
- EPA one time standard is 235 cfu per 100 ml for swimming beach advisories

Water Quality Guidelines-1986

Geometric Mean

Method recommended by EPA. Based on 5 samples collected over a 30-day period. Minimizes influence of a one-time high result.

Example: Sunshine Lake with bacteria readings of 5, 10, 120, 20, 2700

Average would be
$$= \frac{5 + 10 + 120 + 20 + 2700}{5} = 571$$

GM =
$$\sqrt[5]{5*10*120*20*2700} = 50$$