Evaluating forage quality for lactating dairy cows

R.D. Shaver, D.J. Undersander, E.C. Schwab, P.C. Hoffman, J.G. Lauer, D.K. Combs, & J.G. Coors University of Wisconsin - Madison

NRC (2001) Dairy TDN of Forages

TDN 1-X = tdCP + (tdFA x 2.25) + tdNDF + tdNFC -7

Maturity Effects on Energy Content of Alfalfa

tdNDF

Digestible nutrients from NDF

DIG_{NDF, % DM} = (NDF, %DM x 48-h *in vitro* NDFD, %NDF)

in vitro NDFD vs NDF

NDF digestibility

NRC Dairy 2001:

.75 x (NDFn - Lignin) x [1 -(Lignin/NDFn) ^{0.667} or

48h in vitro assay NDF digestibility

IV48h Estimate of NDFD vs Lignin

NDF digestibility of forages

Legume silage/hay

Grass silage/hay

Corn silage

NDF digestibility, % of NDF

Typical Analysis* of Legume and Grass/Legume Forages

	CP	NDF	NDFD	Milk/ton
	%	%	% of NDF	Lb/tonDM
Average	19	43	53	3000
Range**				
Low Quality	10	60	30	1600
High Quality	30	30	70	3800

*Samples submitted to the UW Soil and Plant Analysis Lab at Marshfield for routine analysis ** Values are extremes for each parameter among all forages tested.

NDF Digestibility vs. DMI

Forage NDF intake set at 0.86% of BW
 NDF intake divided by NDF content to calculate forage DMI

 Adjusted +/- 0.374 lbs of DMI for each 1% unit change in NDFD above or below average NDFD

Change in forage DMI as NDFD changes in 20-30-40 alfalfa

Proposed Change in Relative Feed Value (dRFV)

	NDF	ADF	NDFD	dTDN	<u>dIntake</u>
Forage A	40	30	58	61.6	31.0
Forage B	40	30	36	53.6	22.8

	dRFV	old RFV
Forage A	151	152
Forage B	112	152

Comparing Current RFV to dRFV

Change in dRFV as NDFD changes in 20-30-40 alfalfa dRFV In vitro NDFD, % of NDF

NDFD Haycrop Forage - Status

NIR NDFD & its use in NE_L calculation available from commercial testing labs

- Marshfield lab performs wet chemistry 48-h NDFD & backs up NIR calibrations for WI labs
- Dairy One & Cumberland Valley perform wet chemistry 48-h NDFD
- Use of NDFD in RFV calculation being evaluated

NDFD

Wet Chem vs. NIR
Wet Chem back-up
Cost/Turn-Around vs. Accuracy
Comparison with NRC-01 values
Standard Hi-Lo NDFD samples
Within company, herd, year trends

How to use NDFD to adjust rations?

TDN

NDFD can be used directly in the NRC equation to adjust forage TDN

DMI

- NRC ration evaluator does not adjust intake due to fiber digestibility
- DMI changes .374 lb per unit change in NDFD

Base TMR		Suppose alfalfa composition changed
Item	Lb DM	to 20-30-40-36:
Alfalfa 20-30-40-58	25	
Corn silage	6	Impact:
HMC	20	TDN - 61.6 to 53.6
Protein/mineral/vit	7	
DMI	58	Action steps: Change alfalfa TDN in ration program via NDFD
NRC 2001 ration evaluation		
NE allowable milk, lb	93	Discount TMR intake
MP allowable milk, lb	110	.374(58-36) = 8 lb
NEl balance	- 5.6 Mcal	

Impact of NDFD

Item	Base TMR	Adjusted TMR
	20-30-40-58	20-30-40-36
Alfalfa	25	22
Corn silage	6	5
HMC	20	17
Protein/mineral/vit	7	6
DMI	58	50
NRC 2001 ration evaluation		
NE allowable milk, lb	95	83
MP allowable milk, lb	106	91
NEl balance, Mcal	- 4.7	-8.7

How to make up for forages with low NDF digestibility

Add grain?

Add digestible fiber source?

NDFD - Implications

•ADF eliminated

Grasses not unfairly penalized

Variance of forage quality is increased

Mature forages have very low energy contents

• Better linkage between quality and cow response

Use of NDF Digestibility Values

- Crop Comparisons
- Hybrid or Variety Comparisons
- Herd Diagnostics
- Energy Prediction
- Determination of Concentrate Type & Feeding Rates
- Determining Forage Prices

Factors Affecting NDF Digestibility

• Crop

Legume vs. Grass vs. Corn Silage

• Cutting

Spring vs. Summer vs. Fall

- Stage of Maturity
- Climatic Conditions Hot vs. Cool, Dry vs. Wet
- Interactions?
- Fermentation type, Heat damage, Spoilage
- Others?

Visit UW-Madison Dairy Science Department Website

http://www.wisc.edu/dysci/

