

2006 ANNUAL TECHNICAL REPORT

Manhattan Plant Materials Center

Serving Kansas, Nebraska, northern Oklahoma, and northeastern Colorado

Notices

The Manhattan Plant Materials Center (PMC) Annual Technical Report is a report to the plant materials discipline and cooperating agencies. This is a preliminary report of results from various studies conducted by the PMC Center staff. Conclusions may change with continued investigations or upon further analysis. Written authorization must be obtained from the authors before publishing data from these reports. Contact the PMC Manager for more information, at 3800 South 20th Street, Manhattan, KS 66502, or (785)-539-8761. Refer to our website at http://Plant-Materials.nrcs.usda.gov/ for additional information about our program.

This report uses currently accepted scientific names as they appear in the PLANTS (Plant List of Accepted Nomenclature, Taxonomy, & Symbols) database where practical. PLANTS is maintained by the National Plant Data Collection Center. See their website at http://plants.usda.gov/. The Flora of the Great Plains, University Press of Kansas is the authority regarding the usage of common names.

Mention of trade and company names does not imply any guarantee, warranty, or endorsement by the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and does not imply its approval to the exclusion of other products that are also suitable.

Abbreviations of state names used in the text are according to <u>The Gregg Reference Manual</u> Fifth Edition. W.A. Sarin, McGraw-Hill Book Company 1977, with the exception of tables with space limitations where two letter postal designations are used.

<u>On the cover</u>: UL – Biological Science Technicians (BST) Jerry Longren and Don Garwood harvesting seed increase field of Echinacea; UR – compass plant; ML – spring color around PMC laboratory and greenhouse; MR – Jerry Longren, BST, innovating specialized harvesting equipment for PMC use; LL – Don Garwood, BST, rototilling foundation seed increase fields; LR –seed production on False indigo. Photography by John M. Row, PMC Specialist

The U. S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA's TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410, or call (202)-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.

UNITED STATES DEPARTMENT OF AGRICULTURE

NATURAL RESOURCES CONSERVATION SERVICE

MANHATTAN PLANT MATERIALS CENTER

2006 ANNUAL TECHNICAL REPORT

Plant Materials Center Advisory Committee

Harold L. Klaege, State Conservationist, Kansas Stephen K. Chick, State Conservationist, Nebraska Darrel Dominick, State Conservationist, Oklahoma Allen Green, State Conservationist, Colorado Jeff Burwell, State Resource Conservationist, Colorado Jimmy G. Ford, Acting State Resource Conservationist, Oklahoma James J. Krueger, State Resource Conservationist, Kansas Michael J. Kucera, State Resource Conservationist, Nebraska

National Program Leader

Robert T. Escheman

Central Region Plant Materials Specialist

Joel L. Douglas

Plant Materials Specialists

Mark A. Janzen, KS, NE, OK Patrick Davey, CO

Plant Materials Center Personnel

Richard L. Wynia, Manager John M. Row, PMC Specialist Robert Alan Shadow, Soil Conservationist Donald R. Garwood, Biological Science Technician Jerry D. Longren, Biological Science Technician Erma J. Leuthold, Clerk-Typist (PPT)

Seasonal Positions-Biological Science Aid (Plants)

Adam D. Knepper Joyce R. Meyer Lindsey J. Richardson Shane M. Rohde

Earth Team Volunteer

Dr. Wayne Geyer, Forester

CONTENTS

FOREWORD AND ACKNOWLEDGEMENTS	1
PROGRAM OVERVIEW	
INTRODUCTION	2
OUTREACH	3
COOPERATIVE EFFORTS	4
TECHNOLOGY TRANSFER	5
PLANT MATERIALS DEVELOPMENT FLOW CHART	8
SELECTION AND INITIAL INCREASE OF SUPERIOR PLANTS	9
REPORTS	
SEED AND PLANT PRODUCTION	11
DISTRIBUTION OF PLANT MATERIALS IN 2006	12
YEAR 2006 CLIMATOLOGICAL DATA FOR MANHATTAN, KANSAS	14
CLIMATIC SUMMARY 2006	15
STUDIES	16
STUDIES A. Advanced Evaluations	16 17
 A. Advanced Evaluations 1. Study No. 20A107T - Seed storage study 	17
 A. Advanced Evaluations 1. Study No. 20A107T - Seed storage study 2. Study No. 20A126L - Adaptation trials of superior grasses and forbs selected for 	17 17
 A. Advanced Evaluations 1. Study No. 20A107T - Seed storage study 2. Study No. 20A126L - Adaptation trials of superior grasses and forbs selected for advanced testing 	17 17 23
 A. Advanced Evaluations 1. Study No. 20A107T - Seed storage study 2. Study No. 20A126L - Adaptation trials of superior grasses and forbs selected for advanced testing 3. Study No. 20A127K - Evaluation of PMK-1 green ash for resistance to ash borers 4. Study No. 20A215H - Evaluation of little bluestem 	17 17 23 25
 A. Advanced Evaluations 1. Study No. 20A107T - Seed storage study 2. Study No. 20A126L - Adaptation trials of superior grasses and forbs selected for advanced testing 3. Study No. 20A127K - Evaluation of PMK-1 green ash for resistance to ash borers 4. Study No. 20A215H - Evaluation of little bluestem 5. Study No. KSPMC-P-0601-RA – Increasing seedling vigor and stand establishment 	17 17 23 25 26

2. Study No. 20C007Ta - Propagation of Mead's milkweed	29
 Study No. KSPMS-T-0001-CR - Conservation Field Trial: Revegetation of an exposed blue shale outcrop site in Jewell County, Kansas 	35
 Study No. KSPMC-T0501-RA - Longevity of native warm-season grass seed: storage viability vs. seedling vigor/stand establishment 	35
C. Initial Evaluations	40
1. Study No. 201003L - Evaluation of miscellaneous grasses	40
2. Study No. 20I010K - Evaluation of miscellaneous trees and shrubs	41
3. Study No. 201026K - Evaluation of hackberry	68
4. Study No. 201031K - Evaluation of Oriental arborvitae	69
5. Study No. 20I037K - Evaluation of selected common hackberry	70
6. Study No. 201038K - Bur oak seed source study	71
 Study No. 201039E - Evaluation of switchgrass germ plasm for rhizomatous characteristics 	72
8. Study No. 20I041K - Evaluation of Siberian elm	74
 Study No. 20I042E - Evaluation of false indigo for use in streambank stabilization, shoreline protection, and wetland restoration and enhancement 	82
 Study No. KSPMC - T 0502-RA - Laboratory evaluation of plant materials to determine seed analysis, germination, and propagation techniques 	95
11. Study No. KSPMS-T-0201-CR - Plant species for revegetation of natural and man-induced saline areas	99
MAPS	102
NOTES	112

FOREWORD AND ACKNOWLEDGEMENTS

The Manhattan Plant Materials Center (PMC) is a federally owned and operated facility under the administration of the Kansas State Office of the Natural Resources Conservation Service (NRCS). Conservation plant research underway at the PMC is directed by a PMC Long-Range Plan with guidance from a State Conservationist's Plant Materials Advisory Committee with representation from Kansas, Nebraska, Oklahoma, and Colorado. The PMC maintains cooperative agreements for plant testing and development with the Agricultural Experiment Stations (Kansas State University (KSU), University of Nebraska-Lincoln, and Oklahoma State University), Kansas Biological Survey, U. S. Department of Interior (USDI)-Fish & Wildlife Service, U. S. Department of Agriculture (USDA)-Agricultural Research Service, U. S. Army Fort Riley Military Reservation, U. S. Army Corps of Engineers, and Kansas Department of Wildlife and Parks.

The PMC was established in 1936 as a Soil Conservation Service nursery. It is located on a 169-acre irrigated farm in the Kansas River Valley, 10 miles west and south of Manhattan, Kansas. Initial and advanced evaluations of new plant materials, seed increase plantings of promising accessions, and foundation seed increases of released plant materials are located at this site. Field evaluation plantings are located off-Center at federal and state cooperator sites. Field plantings are located in the PMC's service area on conservation district cooperator sites.

The Center acknowledges the efforts of the following individuals who have contributed to the Center's accomplishments. Bobby Brown, Research Assistant, KSU Entomology Department, insect identification; Dr. Walter Fick, Agronomy Department, KSU; Dr. Wayne Geyer, Horticulture, Forestry and Recreation, KSU; Vernon Schaffer, Agronomy Department. It also recognizes the assistance of Mary Shaffer, Public Affairs Specialist, NRCS, Salina, Kansas. Assistance provided by these individuals is greatly appreciated.

INTRODUCTION

The purpose of the Manhattan PMC technical report is to inform the NRCS plant materials discipline, its cooperators, and others interested in plant materials work of progress and new developments.

Mission: The Mission of the NRCS Plant Materials Program

To develop and transfer plant materials and plant technology for the conservation of natural resources. In working with a broad range of plant species, including grasses, forbs, trees, and shrubs, the program seeks to address priority needs of field offices and land managers in both public and private sectors. Emphasis is focused on using native plants as a healthy way to solve conservation problems and protect ecosystems.

Objectives: The objectives of plant materials activities are to select and develop special and improved plants, and to determine reliable techniques for successfully establishing and maintaining plants for conservation uses. These uses include controlling soil erosion and improving soil on all lands. Finding suitable plants for stabilizing critical high-yielding sediment sources, including sand dunes, stream banks, and shorelines; windbreaks and shelterbelts; toxic or problem soils; improving forage quantity and quality for pasture and rangelands; wildlife food and cover; beautification; and recreation areas are of particular importance. Culturally significant plants, threatened and endangered species, and invasive species are also areas of concern.

Long-range Priorities: Each of the states served by the PMC has identified its plant material problems, needs, and priorities in its respective current state's long-range plant materials program. PMC activities are directed toward meeting the needs and priorities as set forth in the long-range plans of the four states.

The major priority items identified are:

1. Suitable plants and improved methods of establishment on critical areas for stabilization and erosion control; critical areas include saline and alkali areas, surface mine areas, stream bank and shoreline protection, road cuts and fills, blowout areas, etc.

2. Selected varieties of grasses and legumes for use in range seeding, interseeding, and pasture planting; including the development of techniques for production, re-establishment, and maintenance

3. Woody selections with superiority in hardiness and resistance to drought, heat, disease, and insects for use in field and farmstead windbreaks

4. Shrub species to supplement or replace those most commonly used for the shrub row in multiple-row windbreaks, for interplanting with trees in single-row windbreaks, and for specific needs in recreational developments

5. Shrubs, browse, and herbaceous plants to provide improved cover and food for upland game birds, waterfowl, and other wildlife species

6. Studies leading to improvements in cultural practices to improve plant establishment, maintenance, pest control, yield, harvest, and seed processing technology

Service Area: The PMC primarily serves Nebraska, Kansas, northern Oklahoma, and northeastern Colorado. The service area consists of an area with much diversity and is covered by five regions designated as:

Western Great Plains Range and Irrigated Central Great Plains Winter Wheat and Range Southwestern Prairies Cotton and Forage Central Feed Grains and Livestock East and Central Farming and Forest

Service Area Description: This area, in general, was originally native grass prairie. It is dissected by a number of major streams. Areas of timber follow the stream courses and extend to the slopes in the east where sufficient precipitation supports a mixed hardwood forest. Elevations range from 700 to 5000 feet. Annual precipitation rates vary from 42 inches in parts of Oklahoma and southeast Kansas to 12.7 inches at the other extreme in northeastern Colorado. Distribution of the rainfall is typical of a warm-season grassland climate with 75 percent of the total falling from April to September. Temperatures fluctuate widely and can be accompanied by high winds and long periods without effective precipitation. Soils vary widely from the clay pans of southeast Kansas and northeast Oklahoma to the loess-derived silt loams of the high plains and the sandhill region of northern Nebraska.

Location: The PMC is located in the Kansas River Valley, 10 miles west and south of Manhattan, Kansas, at an elevation of 1030 feet, longitude 96°37' and latitude 39°37'.

Facilities: The facility includes 169 acres of land, 10 buildings, 2 greenhouses, a lathhouse with walk-in cooler, and 4 irrigation wells. Portions of the land holdings are used by Kansas State University Agricultural Experiment Station under provisions of an annual working agreement.

Climate and Soils: The soils found on the PMC are Belvue silt loam (formerly Haynie very fine sandy loam), Eudora silt loam, Bourbonais-Bismarckgrove complex, Stonehouse-Eudora complex (formerly Carr-Sarpy complex), and Fluvents (formerly Sarpy loamy fine sand). The PMC is in Major Land Resource Area 76. Average annual precipitation is 34.8 inches. The average frost-free period is 178 days. Prevailing surface winds are southerly in the summer months and northerly in the winter months.

OUTREACH

Outreach activities consist of providing assistance to Native American Indian tribes of the Central Great Plains. The Manhattan PMC provides assistance in the collection and propagation of culturally significant plants. Such efforts result in the establishment of plant propagation nurseries, educational and ceremonial displays. Ethnobotanical information and plant descriptions may also be provided. In 2006 technical assistance was provide to the AiKiRuti healing garden in Winnebago, Nebraska. PMC staff provided switchgrass bundles and assistance with construction of a switchgrass arbor at Haskell Indian Nations University campus. See Technology Transfer, Page 6, for further information regarding outreach activities in 2006.

COOPERATIVE EFFORTS

The Manhattan PMC is involved in many collaborative efforts with cooperating universities, USDA-ARS, seedsmen, and nurserymen. The PMC, at a minimum provides seed for research and quite often technical assistance is provided. On-site studies include land for the study and in some cases labor and other PMC resources are provided. The following list is not comprehensive but captures many of the cooperative efforts the PMC was involved with in 2006.

Cooperator	Affiliation	Research Interest
Dr. Mike Casler	USDA-ARS-Dairy Forage Res. Cen Univ. of Wisconsin	Adaptation zones of switchgrass populations
Shauna Dendy	Kansas State Univ.	Rust in warm-season grasses
Phil Fay	Kansas State Univ.	Greenhouse studies of grasses
Dr. Steven Fransen	Washington State UnivProsser	Warm-season grass trials; grass-legume mixtures
Dr. Karen Garrett	Kansas State Univ.	Diseases of warm-season grasses
Dr. Wayne Geyer	Kansas State Univ.	Evaluation of green ash
Dr. Lawrence Hagen	USDA-ARS-Wind Erosion Res. Unit	Wind erosion effects
Ari Jumpponen	Kansas State Univ.	Warm-season grass endophytes
Steve Masterson	USDA-ARS-Univ. of Nebraska-Lincoln	Biochemistry of seed germination and seedling development in switchgrass
Dr. Rob Mitchell	USDA-ARS-Univ. of Nebraska-Lincoln	Interseeding legumes in grass swards
Dr. Joe Moyer	Kansas State Univ.	Warm-season grasses
Dr. Tim Springer	USDA-ARS-Southern Plains Res. Sta.	Tannin levels in roundhead lespedeza
Dr. Tim Springer	USDA-ARS-Southern Plains Res. Sta.	Big bluestem comparison trials
April Stahnke	South Dakota State Univ.	Native perennial sunflowers
Dr. Charles Taliaferro	Okla State Univ.	Upland switchgrass biomass
Dr. Kenneth Vogel	USDA-ARS-Univ. of Nebraska-Lincoln	Warm-season grasses
Becky White	Carson Engineering Center	Warm-season grasses - mine tailings
Gail Wilson	Kansas State Univ.	Warm-season grass C3-C4 evaluations

TECHNOLOGY TRANSFER

The dissemination of information resulting from plant materials work is in the form of presentations, tours, and printed materials. Printed materials include newsletters, release brochures, technical notes, planting guides, conservation plant fact sheets, national news articles, reports, etc. The following publications and events occurred in 2006. Author's given name reduced to initials following first appearance in this section of the annual technical report. Any deviation from this scheme indicates that the author's given name is not known.

Year 2006 publications and events.

Abstracts: Published in conference proceedings.

Propagation and establishment of Mead's milkweed. John M. Row and Richard L. Wynia. Ecology, evolution, and conservation of a rare prairie plant: Mead's milkweed (*Asclepias meadii*). Kansas Biological Survey and Univ. of Kansas Field Station and Ecological Reserves, Lawrence, Kans. Nov. 2006. 8p.

Viability of native forbs seed stored under two storage environments: Results following 26 years of storage. John M. Row and Richard L. Wynia. Abstracts, 20th North American Prairie Conference. Kearney, Nebr. Jul. 2006. 75p.

Brochures: Brochures produced by the plant materials program or co-authored with other units of government.

Planting Guide for Five Native Forbs Released for Conservation Use. Manhattan Plant Materials Center. Manhattan, Kans. Jan. 2006. Robert Alan Shadow. 2p.

Conference Room: The PMC conference room is utilized by federal, state, and local conservation agencies for meetings and training activities. Over 60 people used the facility this year for the following activities:

Kansas Section, Society for Range Management Kansas Water Office

Host: The PMC was host to the Regional Collegiate Soil Judging Contest, October 2-4, 2006.

Misc. Publications: Articles published in various organization's publications that do not fit in another category.

New Porthole Device Eases Inspection and Cleaning of Combines. *In:* Plant Solutions. Feb. 2006. R. A. Shadow and Jerry D. Longren. 2p.

Switchgrass Isn't Just for Growing Anymore. *In:* Plant Solutions. May 2006. J. Row and John Englert. 2p.

Newsletters: The Manhattan PMC publishes a quarterly newsletter that is distributed in the service area to all field locations. The newsletter has been published and distributed since 1994.

Plants for the Heartland. Jan. 2006. R. A. Shadow, R. L. Wynia, and J. M. Row. 4p.

Plants for the Heartland. Apr. 2006. J. M. Row and R. L. Wynia. 4p.

Plants for the Heartland. July 2006. J. M. Row, R. A. Shadow, and R. L. Wynia. 4p.

Plants for the Heartland. Oct. 2006. M. A. Janzen, J. M. Row, and R. L. Wynia. 4p.

Plant Fact Sheets: Plant Fact Sheets are produced for the PLANTS Database that benefit the Plant Materials Program and NRCS programs.

American Sloughgrass (*Beckmannia syzigachne*) Plant Fact Sheet. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. March 2006. R. L. Wynia. 2p.

Roundhead Lespedeza (*Lespedeza capitata*) Plant Fact Sheet. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. August 2006. R. L. Wynia and R. A. Shadow. 2p.

Smooth Oxeye (*Heliopsis helianthoides*) Plant Fact Sheet. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. 2006. R. A. Shadow. 2p.

Plant Guides: Plant Guides are produced for the PLANTS Database that benefit the Plant Materials Program and NRCS programs.

American Sloughgrass (*Beckmannia syzigachne*) Plant Guide. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. June 2006. R. L. Wynia. 4p.

Bluejoint Reedgrass (*Calamagrostis canadensis*) Plant Guide. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. March 2006. R. L. Wynia. 4p.

Prairie Sandreed (*Calamovilfa longifolia*) Plant Guide. PLANTS Database. USDA NRCS National Plant Data Center, Baton Rouge, LA. June 2006. Wayne Duckwitz and R. L. Wynia. 3p.

Posters: Posters are produced and/or presented by the PMC at various functions.

Viability of native forbs seed stored under two storage environments: Results following up to 26 years of storage. 20th North American Prairie Conference, July 26, 2006. Kearney, Nebr. J. M. Row.

Presentations: Presentations are made by PMC staff to update various groups about plant materials program activities and facilitate technology transfer.

Plant Materials Issues. Kansas NRCS Area Specialist's Meeting, Feb. 2, 2006. State Office, Salina, Kans. M. A. Janzen.

Plant Materials Information Program. Kansas NRCS Area 1, Feb. 9, 2006. Hays, Kans. M. A. Janzen.

Red River Prairie Cordgrass Production Experiences and Storage, Feb. 21, 2006. Omaha, Nebr. Nancy Jensen and R. L. Wynia.

Native American Plant Materials Program. To Bridge a Gap Conference, Mar. 2, 2006. Okmulgee, Okla. M. A. Janzen.

Plant Materials Program to Nine Tribal Chiefs. Inter-Tribal Plant Materials Program. June 21, 2006. Miami, Okla. M. A. Janzen.

Plant Materials Program/Seeding Specifications. Bermuda grass Field Day. Jul. 6, 2006. Independence, Kans. M. A. Janzen.

15th Annual ITAM Workshop. Aug. 7, 2006. Kansas State Univ. Union, Manhattan, Kans. R. L. Wynia and R. A. Shadow.

2006 ITAM Workshop. Aug. 7, 2006. Fort Riley Military Reservation, Fort Riley, Kans. R. L. Wynia and R. A. Shadow.

PM Program to Eight Native American Tribes. Tribal Environmental Group Plant Materials Meeting, Aug. 24, 2006. Miami, Okla. M. A. Janzen.

Update of Plant Materials Activities and Long-Range Plan Review. Nebraska Plant Materials Committee Meeting, Aug. 31, 2006. State Office, Lincoln, Nebr. M. A. Janzen.

Update of Center Activities. Nebraska Plant Materials Committee Meeting, Aug. 31, 2006. State Office, Lincoln, Nebr. R. L. Wynia.

State Conservationist's Plant Materials Advisory Committee Update. Fort Riley Military Reservation, Fort Riley, Kans. Sep. 12, 2006. R. L. Wynia and M. A. Janzen.

Propagation and establishment of Mead's milkweed at the Manhattan Plant Materials Center. Nov. 27, 2006. Univ. of Kansas, Lawrence, Kans. J. M. Row.

Reports: Annual and technical reports produced by PMC staff documenting plant materials activities for a given period of time.

2005 Annual Technical Report Manhattan Plant Materials Center, Manhattan, Kans. 108p.

2005 Progress Report of Activities Manhattan Plant Materials Center, Manhattan, Kans. 4p.

Training Sessions: The PMC staff puts on training sessions or takes part in training sessions to train staff, cooperators, and the general public about various aspects of the plant materials program.

Hazard Communications Standards. Kansas NRCS Area 3 DC Meeting. Feb. 8, 2006. Hutchinson Community College. R. L. Wynia. Trainees: 45

Plant Materials Program Overview. New Employee Training. Apr. 4, 2006. Broken Bow, Nebr. M. A. Janzen. Trainees: 40

Area 4 Kansas NRCS Soil Conservation Training Session, Manhattan PMC. May 3, 2006. R. L. Wynia and M. A. Janzen. Trainees: 15

Orientation for Biological Science Aids, Manhattan PMC. May 15, 2006. J. M. Row. Trainees: 4

Kansas NRCS Student Trainee Orientation Meeting. Manhattan PMC. June 6, 2006. R. L. Wynia and Cleveland Watts. Trainees: 16

Seed Quality. Bismarck PMC, Bismarck, N. Dak. Aug. 3, 2006. R. A. Shadow. Trainees: 25

NRCS Boot Camp. Aug. 24, 2006. Lied Center, Nebraska City, Nebr. R. L. Wynia. Trainees: 36

Poisonous Plants Power Point Presentation. Manhattan PMC. Sep. 11, 2006. J. M. Row. Trainees: 5

Tours: The PMC staff welcomes visitors and readily conducts tours. During calendar year 2006, more than 90 people visited the Center, of which 50 toured the Center. The following groups are representative of the yearly interest in the Manhattan Plant Materials Program:

Good Sam RV Club Tour Haskell Indian Nations University Interns Kansas NRCS Employees Kansas NRCS Student Trainees

PLANT MATERIALS DEVELOPMENT FLOW CHART

Assembly	Initial Evaluations	Initial Seed/ Plant Increase	Advanced Evaluations	Field Evaluation Plantings	Seed/Plant Increase	Field Plantings	Release
FORBS AND LI	<u>EGUMES</u>	Asclepias tuberosa (SI) Echinacea angustifolia Liatris punctata Silphium laciniatum (S)			Chamaecrista fasciculata	Liatris punctata	Chamaecrista fasciculata (F)
GRASSES AND	OGRASS-LIKE PLANT	<u>s</u>					
Redfieldia flexuosa Scirpus sp.	Panicum virgatum	Calamovilfa gigantea (F)	Panicum virgatum Schizachyrium scoparium		Bouteloua gracilis		Bouteloua Gracilis (F)
TREES AND SH	<u>HRUBS</u>						
	Amorpha fruticosa Celtis occidentalis Platycladus orientalis Quercus macrocarpa	Amorpha canescens (S) Ceanothus herbaceous Cotoneaster lucida (F) Prunus americana Cephalanthus occidentalis Salix exigua (S)	Fraxinus pennsylvanica (S)	Celtis occidentalis (S) Platycladus orientalis (S) Ulmus pumila (S) Ulmus parvifolia	Betula nigra Prunus angustifolia Ribes aureum var villosum	Betula nigra (T) Prunus americana (F) Prunus angustifolia Ribes aureum var villosum (F)	Prunus angustifolia (F)

Release Type: F-Formal SI-Source Identified S-Selected T-Tested

SELECTION AND INITIAL INCREASE OF SUPERIOR PLANTS

Initial increase is the production of seed or other propagules of potentially useful plants selected on the basis of initial or advanced evaluation for further evaluation or research. The following accessions are currently in the status of initial seed or plant increase.

Accession No.	PI No.	Common Name	Species	Study No.							
0040044	E4407E	lood plant	Amoraha agaggaga	20102211							
9049944	514675	lead plant	Amorpha canescens	201023H							
			sions 9013351, Comanche Co., Kans and 9017622, Saline Co., Kans.	.; 9013344,							
	421278	butterfly milkweed	Asclepias tuberosa	201009S							
ORIGIN/SOURC	E: Saunde	rs Co., Nebr.									
9034682 river birch Betula nigra											
9034682river birchBetula nigra201010KORIGIN/SOURCE: Houston Co., Minn.											
9050018		big sandreed	Calamovilfa gigantea	201032X							
Payne Co., Okla. Tex.; 9049764, R	ORIGIN/SOURCE: A polycross composed of accessions 9026760, Reno Co., Kans.; 9026777, Payne Co., Okla.; 9035891, Lipscomb Co., Tex.; 9042800, Garza Co., Tex.; 9042911, Winkler Co., Tex.; 9049764, Rice Co., Kans.; 9049765, Stafford Co., Kans.; 9049823, Stafford Co., Kans.; and 9049866, Comanche Co., Kans.										
9049952	514676	New Jersey tea	Ceanothus herbaceous var pubscens	201024H							
ORIGIN/SOURC 421286, Wabaun			sions 9013414, Osborne Co., Kans.; a	and PI-							
9050496		Common buttonbush	Cephalanthus occidentalis	201043E							
Miami Co., Kans. Co., Okla.; 90503 Kans.; 9050375,	ORIGIN/SOURCE: A polycross composed of accessions 9050287, Hodgeman Co., Kans.; 9050296, Miami Co., Kans.; 9050311, Douglas Co., Kans.; 9050323, Harvey Co., Kans.; 9050340, Cleveland Co., Okla.; 9050359, Harvey/Reno Co., Kans.; 9050360, Osage Co., Kans.; 9050371, Butler Co., Kans.; 9050375, Montgomery Co., Kans.; 9050389, Douglas Co., Kans.; 9050392, Johnston Co., Okla.; and 9050395, Logan Co., Okla.										
	325270		Cotoneaster lucidus	201033K							
ORIGIN/SOURC	E: USSR										
9023353		black samson	Echinacea angustifolia	201018S							
		ross composed of acces 2, Ellis Co., Kans.; PI-42	sions PI-421340, Butler Co., Kans.; P 1307, Noble Co., Okla.	I-421331,							

Selection and Initial Increase of Superior Plants (continued)

Accession No.	PI No.	Common Name	Species	Study No.								
		1										
9049894		dotted gayfeather	Liatris punctata	201022S								
	ORIGIN/SOURCE: A polycross composed of PI-421419, Woodson Co., Kans.; PI-421497, Lane Co., Kans.; and PI-421488, Rush Co., Kans.											
9049945	514677	American plum	Prunus americana	201028J								
ORIGIN/SOURCE: A polycross composed of accessions 9013483, Gove Co., Kans.; 9013498, Valley Co., Nebr.; 9013500, Valley Co., Nebr.; 9013515, Harlan Co., Nebr.; and 9013544, Kingman Co., Kans.												
9049970		Chickasaw plum	Prunus angustifolia	201029J								
Okla. 9050270 ORIGIN/SOURC	E: A polyc	buffalo currant	rfield Co., Okla.; and 9013548, Kingfis <i>Ribes aureum</i> var <i>villosum</i> sions 9049770, Morris Co., Kans.; 904	201036X								
Co., Kans.; 90498	806, Holt C	o., Nebr.; 9049810, She	ridan Co., Nebr.; and 9049884, Loup	Co., Nebr.								
9050135		sandbar willow	Salix exigua	201040E								
ORIGIN/SOURC	E: Brown (Co., Kans.										
9050148		sandbar willow	Salix exigua	201040E								
ORIGIN/SOURC	E: Sarpy C	Co., Nebr.										
	421557	compass plant	Silphium laciniatum	201020H								
ORIGIN/SOURC	E: Okmulg											

Cultivar	Genus/Species	Common Name	Origin	Class	Acres
		HERBACEOUS			
		Forbs			
Riley Germplasm	Chamaecrista fasciculata	showy partridge pea	Riley Co., Kans.	G2	0
Kaneb	Dalea purpurea	purple prairie clover	Riley Co., Kans.	FND	0.56
Reno Germplasm	Desmanthus illinoensis	Illinois bundleflower	Reno Co., Kans.	G2	0
9023353	Echinacea angustifolia	black sampson	,	SFP	0.17
Prairie Gold	Helianthus maximiliani	Maximilian sunflower	Kans.	FND	0.35
Midas	Heliopsis helianthoides var scabra	false sunflower	Kans.	FND	0.12
Kanoka	Lespedeza capitata	round-head lespedeza	Kans., Okla.	FND	0.28
9049894	Liatris punctata	dotted gayfeather	Kans.	G2	0.19
Eureka	Liatris pycnostachya	thickspike gay-feather	Kans.	FND	0.07
Sunglow	Ratibida pinnata	grayhead prairie	unknown	FND	0.24
oungiow	National pirmata	coneflower	unknown	TND	0.24
Nakan	Salvia azurea var grandiflora		Kono		0.22
Nekan	•	pitcher sage	Kans. Okmulaoo Co	FND G2	0.23 0.02
421557	Silphium laciniatum	compass plant	Okmulgee, Co.,	62	0.02
		Grasses	Okla.		
Kaw	Andropogon gerardii	big bluestem	Riley Co., Kans.	FND	1.0
Garden	Andropogon hallii	sand bluestem	Garden Co., Nebr.	SFP	0.57
El Reno	Bouteloua curtipendula		Canadian Co., Okla.	FND	0.84
		sideoats grama	Carladian Co., Okia.		
9050485 Daga ak a sa	Bouteloua gracilis	blue grama	N l = l=	SFP	1.37
Pronghorn	Calamovilfa longifolia	prairie sandreed	Nebr.	FND	0.75
9050018	Calamovilfa gigantea	giant sandreed	Kans., Okla., Tex.	SFP	0.85
Bend	Eragrostis trichodes	sand lovegrass	Kans., Okla.	FND	0.24
Blackwell	Panicum virgatum	switchgrass	Blackwell, Okla.	FND	1.23
Kanlow	Panicum virgatum	switchgrass	Wetumka, Okla.	FND	0.72
Barton	Pascopyrum smithii	western wheatgrass	Barton Co., Kans.	FND	1.0
Southwind	Phragmites australis	common reed	Kans., Okla.	FND	0.8
Aldous	Schizachyrium scoparium	little bluestem	Kansas Flinthills	FND	2.4
Cimarron	Schizachyrium scoparium	little bluestem	Kans., Okla.	FND	1.57
Cheyenne	Sorghastrum nutans	yellow Indian grass	Fort Supply, Okla.	SFP	0.35
Osage	Sorghastrum nutans	yellow Indian grass	Kans., Okla.	FND	1.0
Atkins Germplasm	Spartina pectinata	prairie cordgrass	Washington Co., Nebr.	G2	0.83
Pete	Tripsacum dactyloides	eastern gamagrass	Kans., Okla.	FND	1.0
		WOODY			
9049944	Amorpha canescens	lead plant	Kans., Okla.	G2	0.07
9034682	Betula nigra	river birch	Houston Co., Minn.	G2	0.15
9049952	Ceanothus herbaceous	New Jersey tea	Kans.	G2	0.10
	var pubscens	110W 001009 100	Rano.	52	0.11
325270	Cotoneaster lucidus		USSR	FND	0.05
Pink Lady	Euonymus bungeanum	winterberry	China	FND	0.03
9049945	Prunus americana	American plum	Kans., Nebr.	FND	0.05
9049970	Prunus angustifolia	Chickasaw plum	Kans., Okla.	FND	0.00
Lippert	Quercus macrocarpa	bur oak	Stillwater, Okla.	FND	0.02
Konza	Rhus aromatica var serotina	aromatic sumac	Kans.	FND	0.02
	Ribes aureum var villosum	buffalo currant		FND	
9050270			Kans., Nebr.		0.05
9050135	Salix exigua	sandbar willow	Brown Co., Kans.	G2	0.09
9050148	Salix exigua	sandbar willow	Sarpy Co., Nebr.	G2	0.11
9004450	Juglans microcarpa	little walnut	Beckham Co. & Washita Co., Okla.	SFP	0.1

SEED AND PLANT PRODUCTION

DISTRIBUTION OF PLANT MATERIALS IN 2006

The following table shows the distribution of plant materials from the Manhattan PMC. A total of 45 seed and plant orders were shipped to 14 states and 3 plant materials centers during the calendar year 2006. Over two thousand and ten pounds of seed, 439 rhizomes, and 70 plants were shipped to conservation districts, universities, federal and state agencies, and private entities. These materials were used in field trials, research, seed or plant increase and demonstration plantings and for educational purposes.

			_ Seed Orde	ers		Plant Orders	
State	Use	Number	Number of Packets	Bulk Pounds	Number	Number of Rhizomes	Number of Plants
Kansas	CD				2	427	
	CI	4		1,006.8			
	RC&D	1		87.7			
	RES	1		0.4			
Subtotal		6		1,094.9	2	427	
Nebraska	CI	2	1	45.0			
Nebraska	FA	2	1	4.1			
	OR	2	•	8.1			
Subtotal	•	6	2	57.2			
.		-					
Colorado	CI	2		34.2			
Missouri	CI	1		39.6			
Oklahoma	RES	2		2.8			
Texas	CI	3	40	401.8	4	40	
	Demo	1	12	0.1	1	12	
	PMC	1		1.3			
Cubtotol	RES	1 11	10	7.4	4	10	
Subtotal		11	12	487.2	1	12	
Other States	CD	1		19.2			
	CI	3		263.5			
	Demo	2		4.4			
	PMC	1		13.4			
	RES	5	2	39.3			
Subtotal		12	2	339.8			
Total		35	16	1,979.1	3	439	

Herbaceous Plant Materials

Legend: CD=Conservation Districts CI=Commercial Increase FA=Federal Agencies GPP=Germ plasm Preservation OR=Outreach PMC=Plant Materials Centers RC&D=Resource Conservation & Development RES=Research at public and private institutions

		See	d Orders		Plant Orders	
State	Use	Seed Orders	Bulk Pounds	Number	Number of Cuttings	Number of Plants
Kansas	CD			1		70
	RC&D	1	2.5			
	RES	1	0.9			
Subtotal		2	3.4	1		70
Missouri	RES	1	3.5			
Montana	CI	1	13.0			
Oklahoma	RC&D	1	11.0			
Texas	Demo	1	0.5			
Subtotal		4	28.0			
Total		6	31.4	1		70

Woody Plant Materials

YEAR 2006 CLIMATOLOGICAL DATA FOR MANHATTAN, KANSAS

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Avg Max	55.2	48.6	57.7	75.5	79.4	91.0	95.9	91.2	79.0	67.5	59.4	51.1	71.0
Avg Min	30.5	22.1	35.5	50.7	54.8	65.1	71.7	67.9	53.3	43.5	32.8	29.0	46.4
Avg Mean	42.8	35.4	46.6	63.2	67.1	78.0	83.8	79.5	66.2	55.5	46.1	40.1	58.7
High	70	84	80	92	98	100	108	109	95	97	84	63	
Low	20	0	22	32	41	50	56	51	41	23	19	8	
Min† < 10	0	2	0	0	0	0	0	0	0	0	1	1	4
Min† < 32	16	24	10	0	0	0	0	0	0	8	13	18	89
Max† > 90	0	0	0	3	6	15	23	16	2	2	0	0	67
Precip	0.50	0.01	2.93	3.46	2.85	1.44	4.10	10.91	1.99	1.95	0.11	1.57	31.82
PMC‡	-	-	2.68	2.88	2.19	1.71	3.41	9.79	2.06	2.38	0.04	-	-
Preci p†	4	5	11	9	11	12	10	14	9	7	4	6	102
Snow	1.2	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.2
Heat DD*	687	830	549	143	96	0	0	0	45	345	585	748	4027
Cool DD*	0	0	4	79	162	391	583	451	80	50	0	0	1798

2006 Data

Normal Values (1971-2000)

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Avg Max	39.5	46.8	57.5	67.9	77.5	87.1	92.5	90.8	82.1	70.7	54.5	42.9	67.5
Avg Min	16.1	21.5	31.4	42.2	52.5	62.3	67.3	65.1	55.5	43.2	30.2	19.9	42.3
Avg Mean	27.8	34.2	44.5	55.1	65.0	74.7	79.9	78.0	68.8	57.0	42.4	31.4	54.9
Precip	0.86	1.00	2.59	3.07	5.08	5.23	4.10	3.27	3.67	2.77	2.10	1.06	34.8
Snow	4.8	4.9	3.4	0.9	0.1	0	0	0	0	0.2	1	3.7	18.8
Heat DD*	1153	864	637	315	106	7	0	4	48	265	679	1042	5120
Cool DD*	0	0	0	17	106	298	461	405	163	15	0	0	1465

Departure From Normal

	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Avg Max	15.7	1.8	0.2	7.6	1.9	3.9	3.4	0.4	-3.1	-3.2	4.9	8.2	3.5
Avg Min	14.4	0.6	4.1	8.5	2.3	2.8	4.4	2.8	-2.2	0.3	2.6	9.1	4.1
Avg Mean	15.0	1.2	2.1	8.1	2.1	3.3	3.9	1.5	-2.6	-1.5	3.7	8.7	3.8
Precip	-0.36	-0.99	0.34	0.39	-2.23	-3.79	0	7.64	-1.68	-0.82	-1.99	0.51	-2.98
Snow	-3.6	-3.9	-3.4	-0.9	-0.1	0.0	0.0	0.0	0.0	-0.2	-1.0	-3.7	-16.8
Heat DD*	-466	-35	-88	-172	-11	-7	0	-4	-4	80	-94	-294	-1094
Cool DD*	0	0	4	62	56	93	122	46	-84	35	0	0	333

*Daily values were computed from mean temperatures. Each degree that a day's mean is below (or above) 65°F is counted for one heating (or cooling) degree day. † Number of days. ‡ Gauge in operation March 2 to November 28.

Official Recording Station, Manhattan, KS

CLIMATIC SUMMARY 2006

Temperature Extremes: 0°F Mid-February; 109°F in August

First Killing Frost: October 13th

Last Killing Frost: May 2nd

Number of Frost Free Days: 163

Temperature: The record high temperature of 70°F on January 7 set the tone for the month with an average temperature of 42.8°F. It was the warmest January on record. Despite record warmth on the 28th, the February average temperature fell in the middle of the range only 0.9 degrees warmer than average. Highs on the 28th were balanced by extremely cold temperatures during the middle of the month. March was slightly warmer than normal, mostly due to warmer than normal low temperatures; however, no records were set. The warmer than normal trend continued in April, with a new record high of 92 degrees on the 14th was part of the heat wave that left April almost 8 degrees warmer than normal. May was slightly cooler than normal. A record low of 28°F was set on May 2nd. This was the last of the extremely cold weather. The daily average high ran several degrees above normal. While there were several readings in the 90's, the century mark was not broken. June was the 20th warmest on record: however no new daily records were set. July was a study in contrasting temperatures with highs above 100° being replaced by highs in the 80's. However, despite the warm temperatures, no new record highs were set. A new record for a warm low was set on the 18th, when the temperature only dropped to 85° F. The trend continued in August with temperatures in the 100's in the beginning of the month and ending the month in the 70's. The month was slightly warmer than normal, though no records were set. September was cooler than normal. Despite the cold weather, no freezing temperatures were observed and no records were set. Despite a warm beginning, including a new record high on the first, October was cooler than normal. The first frost of the season occurred on October 13th, only two days earlier than normal. November was a wild month. Warm conditions through mid-month gave way to winter. Tornadoes in the vicinity, including Fort Riley and Keats gave way to temperatures in the teens with winds in excess of 30 mph and snow with true winter conditions arriving on the 27th. December was warmer than normal but no records were set.

Precipitation: Dry conditions prevailed in January with measurable precipitation on only 4 days. February was the 2nd driest, continuing the dry trend. The year was the 7th driest start since 1890. March was slightly wetter than normal. A lingering storm system starting on the 18th brought most of the moisture, but the heaviest single day event came on the 31st, when severe weather rolled through the area. April was wetter than normal, thanks to a wet start and a wet end of the month. The benefit was limited by the spotty distribution. May was much drier than normal, making the period March through May the driest since 1890. Despite having 16 days with precipitation, June ranked as the 8th driest on record. This was a sharp contrast to last June, which ranked as one of the 10th wettest on record. Not surprisingly, the dry weather was accompanied by warm temperatures. Rainfall was exactly normal for July, but the warmer than normal conditions resulted in high demand and an increase in drought stress in the area. August was the 3rd wettest on record. September was drier than normal with mostly light rains. Despite 10 days with rain, October was below normal for precipitation. Storms on October 26-27 brought welcome relief to the dry month which ended 0.82 inches drier than normal. The first snow fell on the 16th of November but melted on contact. December was wetter than normal, despite a dry start to the month. The month ended on a wintry note, as snow fell throughout the day on the 31st leaving 2.5 inches of snow on the ground to start the New Year.

STUDIES

Studies are planned and developed by the Plant Materials Center staff to solve high-priority problems identified in the Center's Long-Range Program. All PMC studies are listed as part of the National Plant Materials Program projects. Twenty studies were active in on-site and off-site (OS) trials in 2006 (Table 1.1). Details of active studies can be found on the subsequent pages.

Table 1.1. Status of studies conducted by PMC staff.

Study No.	Study Name	Location	Status	Start Date	End Date	Projec No.
20A107T	Seed storage study.	KSPMC	Active	1973	2020	RN 1.1
20A126L	Adaptation trials of superior grasses and forbs selected for advanced testing.	KSPMC	Active	1992	2050	NA 1.1
20A127K	Evaluation of PMK-1 and other <i>Fraxinus</i> pennsylvanica germ plasm for resistance to ash borers.	KSPMC	Active	1997	2010	CP 4.1
20A215H	Rrps of little bluestem (Schizachyrium scoparium).	KSPMC	Active	1992	2008	RN 1.1
20C006G	Evaluation of perennial cool-season forage grasses.	OS KS	Inactive	1996		PH 1.1
20C007Ta	Propagation of Mead's milkweed (Asclepias meadii).	KSPMC	Active	1996	2010	NA 1.1
20C007Tb	Propagation of earleaf gerardia (Agalinis auriculata).	KSPMC	Inactive	1996		NA 1.1
20C008L	Evaluation of plant materials for use in soil bioengineering techniques.	KSPMC	Inactive	1998		WA 3.
201003L	Evaluation of miscellaneous grasses.	KSPMC	Active	1970	2020	NA 1.1
201010K	Evaluation of miscellaneous trees and shrubs.	KSPMC	Active	1961	2050	CP 4.1
201026K	Evaluation of hackberry (<i>Celtis</i> sp.).	KSPMC/ OS KS	Active	1979	2006	CP 4.′
201031K	Evaluation of Oriental arborvitae (<i>Platycladus</i> orientalis).	KSPMC/ OS OK	Active	1979	2007	CP 4.
201037K	Evaluation of selected common hackberry (<i>C. occidentalis</i>).	KSPMC	Active	1988	2008	CP 4. ⁻
201038K	Bur oak seed source study.	KSPMC	Active	1991	2015	CP 4.′
201039E	Evaluation of switchgrass (<i>P. virgatum</i>) germplasm for rhizomatous characteristics.	KSPMC	Active	1992	2010	CP 4.
201041K	Evaluation of Siberian elm (Ulmus pumila).	OS CO/NE	Active	1997	2020	CP 4.1
201042E	Initial evaluation of indigobush (<i>Amorpha fruticosa</i>) for use in streambank stabilization, shoreline protection, and wetland restoration and enhancement.	KSPMC	Active	1997	2007	WQ 3.
KSPMS-T- 9902-OT	Assist Native American Tribes with the reestablishment of culturally significant plants.	OK, KS, NE	Active	1999	2020	
KSPMS-T- 0001-CR	Conservation field trial; reclamation of blue shale outcrop sites in Jewell County, Kansas.	OS KS	Active	2000	2010	ML 1.1
KSPMS-T- 0201-CR	Plant species for revegetation of natural and man- induced saline areas.	OS KS	Active	2002	2006	CP 3. ⁻
KSPMC-T- 0501-RA	Longevity of native warm-season grass seed: storage viability vs. seedling vigor/stand establishment.	KSPMC/ OS KS	Active	2005	2008	RA 1.′
KSPMC-T- 0502-RA	Laboratory evaluation of plant materials to determine seed analysis, germination, and propagation techniques.	KSPMC	Active	2004	2020	RA 1.′
KSPMC-P- 0601-RA	Increasing seedling vigor and stand establishment of big sandreed (<i>Calamovilfa gigantea</i>).	KSPMC	Active	2006		RA 1.′

A. Advanced Evaluations

1. Study No. 20A107T - Seed storage study.

Introduction: Long-term storage facilities can provide a source of valuable seed stocks without maintaining large numbers of plants for seed production. Bass (1980) underlined the importance of maintaining small samples of many kinds of seeds, indefinitely, for breeding purposes. Seeds stored in unheated buildings are, however, subject to wide fluctuations in temperature and humidity in eastern Kansas, where the average annual humidity ranges from 51 to 81 percent and average annual temperatures range from -9° to 33°C (16° to 92°F). Such conditions are detrimental to the longevity of grass seeds in storage (Priestly *et al.* 1985).

In 1973, the USDA-SCS built a seed storage facility to preserve valuable seed stocks at the PMC, Manhattan, Kansas. This facility is rodent proof and is temperature and humidity controlled. Although the storage requirements for many plant species are known, there is little information available documenting the benefits of a controlled versus an uncontrolled environment for storing native plant seeds in eastern Kansas. Harrington's (1959) rule of thumb is that the percent relative humidity (RH) + temperature in degrees Fahrenheit should not exceed 100 for safe seed storage. Rincker and Maguire (1979) and Rincker (1981) found that even after 14 years germination was greater than 80 percent for several grasses stored at 5°F (-15°C) and 60 percent RH (Ackigoz and Knowles 1983).

This study was set up initially to compare the viability and longevity of warm-season and cool-season grasses when the seed storage facility was newly constructed in 1973. Forbs and legumes were added to the study in 1979.

Objective: Evaluate how controlled temperature and humidity and uncontrolled (warehouse) conditions affect native plant seeds.

Procedure: Seeds of 21 plant species were assembled. Eighteen of the species were native, consisting of five forbs, two legumes, 11 warm season grasses, and one cool season grass. Three introduced cool season grasses were also included in the study.

Seed storage facilities consisted of a seed storage building with controlled environment and an uninsulated building (hereafter referred to as the warehouse) without a controlled environment. The warehouse was wood frame on a concrete slab with clapboard siding. The warehouse was subject to wide fluctuations in temperature and humidity. The seed storage building was of all metal construction and insulated throughout. The storage room itself was sealed to exclude outside air and humidity.

Temperature and humidity in the seed storage building were controlled by a UNA-DYN (Model A30T) two tower, desiccant bed dehumidifier and a standard air conditioning unit. Temperature controls were set to maintain 18.3°C (65°F) summer, 12.8°C (55°F) fall-spring, and –1.1° to 7.2°C (30° to 45°F) in the winter. Relative humidity was maintained between 10 to 20 percent. A hygro-thermograph was used to monitor temperature and humidity. Each seed lot was divided into two portions and placed in burlap and/or cotton duck bags for storage. One sack of each lot was placed in the warehouse in a steel drum to prevent rodent damage. Pest strips containing 2-2 dichlorovynyl dimethyl phosphate (Vapona) (20% active ingredient) were placed in each barrel for insect control. The second sack of each seed lot was placed on shelves inside the seed storage building. The initial purity and germination test and subsequent germination tests were conducted in accordance with the Association of Official Seed Analysts Rules for Seed Testing (Anonymous 1978). Samples (100 g) of all lots were taken annually thereafter and sent to the Kansas State Board of Agriculture Seed Laboratory through 1993 for standard germination tests. Kansas Crop Improvement Association conducted germination tests from 1994 to the present. Seed lots were removed from the study when germination test results for that lot dropped below 10 percent of the original test.

No testing was conducted for years 17 and 19 [therefore no data (ND)] in the grasses since year-to-year changes were slight in most cases. No testing was conducted in years 11 and 13 for the forbs. Later on, it was decided that it was not a good idea to skip a year of testing in case viability for a particular lot was declining, so testing was resumed on an annual basis. Testing was discontinued for the uncontrolled storage environment entries after 13 years for warm-season grasses, 7 years for cool season grasses, and after 6 years for most forbs. Testing was discontinued for cool-season grasses in a controlled storage environment following 27 years of study. Refer to Tables 1.2A and 1.2B for cool-season grass germination test results.

Potential Products: Information Technology

Progress or Status:

Warm-Season Grasses

Most of the warm-season chaffy grasses declined in germination this year. The viability of 'Kaw' big bluestem (Andropogon gerardii Vitman) dropped to its lowest point in 33 years of testing, down 20 percentage points from the previous year. While that is quite a drop it is too early to tell if that is the beginning of a trend or just an anomaly. 'Garden' sand bluestem (Andropogon hallii Hack.) dropped 8 percentage points to 49%, however, its lowest point 7 years ago was 37% viability. The viability of 'Osage' Indian grass [Sorghastrum nutans (L.) Nash] declined only one percentage point and still exceeds that of the original germination test. 'Aldous' little bluestem (Schizachyrium scoparium Michx.) was the only warm-season chaffy grass to rebound this year. A germination of 67% was the same as 2 years ago and 11 years ago. Among the non-chaffy warm-season grasses, the viability of 'El Reno sideoats grama (Bouteloua curtipendula Michx.) and buffalograss [Buchloë dactyloides (Nutt.) Engelm.], each increased by 2 percentage points over last year's test. The smooth seeded switchgrasses continue to maintain viability at acceptable levels. 'Kanlow' switchgrass (Panicum virgatum L.) a lowland-type of switchgrass, rebounded 15 percentage points over last year at 64% germination, which was just below the original test of 66%, 33 years ago. The viability of 'Blackwell' (P. virgatum L.) an upland-type of switchgrass remained steady with last year's test and was 4 points higher than the original test. 'Bend' sand lovegrass [Eragrostis trichodes (Nutt.) Wood] showed the best improvement of any of the non-chaffy grass entries with a 16 point increase over last year. 'Pete' eastern gamagrass [Tripsacum dactyloides (L.) L.] declined by 1 percentage point from last year but maintains a relatively steady level of viability that has been maintained over the last 5 years. Refer to Tables 1.1A and 1.1B for germination test results of warm-season grasses for the past 33 years.

Forbs

Three entries remain in the controlled storage environment test following 27 years of storage. One legume, 'Kaneb' purple prairie clover (*Dalea purpurea* Vent.), and two genera of the Asteraceae family, 'Prairie Gold' Maximilian sunflower (*Helianthus maximiliani* Schrad.) and 'Midas' false-sunflower [*Heliopsis helianthoides* (L.) Sweet var. *scabra* (Dun.) Fern.] continue to show viability (Tables 1.3A and 1.3B). 'Kanoka' round-head lespedeza (*Lespedeza capitata* Michx.), which was added to the study in 1980, continues to be viable following 21 years of storage in a controlled storage environment. Prairie Gold continued to rebound with an additional 5 point increase in germination from 2 years ago. The germination level for Midas has leveled out at 5 percent and will be dropped from the study. Both legumes, Kaneb purple prairie clover and round-head lespedeza declined from last year.

Interpreting the Results

If the data were plotted out, there are peaks, valleys, and plateaus associated with the data. The question that is often asked is, "how could this be"? We tend to think of viable seed as starting at some point and declining from there over time. While this is true it is not necessarily a straight line or even a nice gentle curve. Smoothing the data might help but the year-to-year fluctuations in the data are bothersome. How can you go from 37% viability for Garden sand bluestem in one year and 57% seven years later? Consider the variables that enter into play. It is impossible to uniformly mix the seed, especially that of a chaffy grass species. Next on the list is sampling. While uniform sampling is

attempted, it remains a variable since it is random from year-to-year. At this point one has a sample that gets sent in to a seed laboratory (hopefully the same lab as the previous year) for a germination test. A random portion of the sample is separated out and used for the test. Additional variables include any fluctuations in incubator settings from year-to-year, location (micro-climate) in the incubator year-to-year, and interpreting the results.

Literature Cited:

- Ackigoz, E. and R.P. Knowles. 1983. Long-term storage of grass seeds. Can. J. Plant Sci. 63:669-674.
- Bass, L.N. 1980. Seed viability during long-term storage. Hortic. Rev. 2:117-141.
- Harrington, J.F. 1959. Drying, storing, and packaging seed to maintain germination vigor. Seedsman's Digest 11(1): 16.
- Priestly, D.A., V.I. Cullinan, and J. Wolfe. 1985. Differences in seed longevity at the species level. J. Plant, Cell and Environ. 8(8): 557-562.

Rincker, C.M. 1981. Long-term subfreezing storage of forage crop seeds. Crop Sci. 21:424-427.

Rincker, C.M. and J.D. Maguire. 1979. Effect of seed storage on germination and forage production of seven grass cultivars. Crop Sci. 19:857-860.

Species	Entry	Storage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Andropogon gerardii	Kaw	Cont.	63	74	82	73	65	73	87	77	81	78	74	66	78	80	69	88	57
		Uncont.	63	77	68	77	65	62	42	29	13	1	ΤE						
Andropogon hallii	Garden	Cont.	74	80	77	79	81	81	86	70	87	78	81	78	85	71	70	88	79
		Uncont.	74	76	75	74	76	73	68	24	33	30	13	4	1	ΤE			
Bouteloua curtipendula	El Reno	Cont.	22	66	76	69	73	73	72	70	69	74	76	71	64	71	78	86	73
		Uncont.	22	72	74	79	74	68	66	64	45	31	24	5	ΤE				
Buchloe dactyloides	PMT-	Cont.	73	72	72	73	70	74	60	70	44	57	71	57	61	76	74	45	67
	1181	Uncont.	73	60	71	76	81	67	62	66	43	50	42	48	18	4	ΤE		
Eragrostis trichodes	Bend	Cont.	77	82	68	78	76	73	72	76	73	71	83	60	61	67	67	63	ND
		Uncont.	77	78	72	57	51	20	9	22	0	ΤE							
Panicum virgatum	Blackwell	Cont.	85	90	89	92	92	92	95	91	94	95	94	93	93	91	92	98	95
		Uncont.	85	91	91	90	92	81	84	81	80	71	62	43	25	10	ΤE		
Panicum virgatum	Kanlow	Cont.	66	70	70	72	74	68	67	73	72	70	77	74	61	65	67	68	65
		Uncont.	66	74	65	71	64	54	45	37	31	16	13	2	ΤE				
Schizachyrium scoparium	Aldous	Cont.	70	78	76	70	73	66	78	69	64	72	68	59	74	60	64	81	60
		Uncont.	70	71	76	67	63	54	44	36	22	12	6	4	6	ΤE			
Sorghastrum nutans	Osage	Cont.	75	64	78	75	71	74	84	72	79	69	76	63	74	59	67	88	70
		Uncont.	75	68	83	70	48	44	30	5	7	0	ΤE						
Spartina pectinata	PMK-	Cont.	67	75	68	60	48	55	54	56	24	11	51	46	64	45	48	38	24
	1800	Uncont.	67	63	34	0	ΤE												
Tripsacum dactyloides	Pete	Cont.	10	41	27	43	24	39	31	46	41	36	47	31	43	37	32	58	28
		Uncont.	10	50	40	46	35	40	17	26	24	4	ΤE						

Table 1.1A Germination test results for selected warm-season grasses over a period of years under controlled and uncontrolled storage environments.

Table 1.2A Germination test results for selected cool-season grasses over a period of years under controlled and uncontrolled storage environments.

Species	Entry	Storage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Thinopyrum ponticum	Jose	Cont.	89	91	94	98	94	95	93	92	91	85	80	89	78	73	50	61	36
		Uncont.	89	94	95	92	83	60	9	2	ΤE								
Bromus inermis	Elsberry	Cont.	ND	ND	ND	54	49	37	17	9	12	2							
	-	Uncont.	ND	ND	ND	54	21	8	3	ΤE									
Pascopyrum smithii	Barton	Cont.	10	46	59	75	81	84	79	75	55	64	49	72	65	55	75	52	84
		Uncont.	10	51	70	79	52	32	7	2	ΤE								
Phalaris arundinacea	loreed	Cont.	82	92	87	77	83	88	81	81	73	70	80	75	67	68	70	77	56
		Uncont.	82	88	77	70	52	16	1	ΤE									

environment.																			
Species	Entry	0	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
Andropogon gerardii	Kaw	63	ND	77	ND	60	68	61	70	40	45	40	52	39	41	30	36	47	27
Andropogon hallii	Garden	74	ND	88	ND	73	82	75	76	74	71	37	71	56	65	47	48	57	49
Bouteloua curtipendula	El Reno	22	ND	88	ND	75	79	69	67	70	68	74	66	64	69	62	68	60	62
Buchloe dactyloides	PMT-1181	73	ND	75	ND	61	69	75	72	45	67	67	60	72	71	66	49	57	59
Eragrostis trichodes	Bend	77	50	ND	70	55	ND	64	66	48	53	30	50	51	28	33	26	42	
Panicum virgatum	Blackwell	85	ND	96	ND	93	93	90	90	96	88	85	87	93	92	91	91	89	89
Panicum virgatum	Kanlow	66	ND	77	ND	73	59	63	69	66	79	57	64	63	71	58	66	49	64
Schizachyrium scoparium	Aldous	70	ND	65	ND	66	ND	67	68	61	76	62	72	64	70	61	67	63	67
Sorghastrum nutans	Osage	74	ND	78	ND	71	93	85	78	60	75	83	81	78	89	77	72	79	78
Spartina pectinata	PMK-1800	67	ND	17	ND	9	16	3	1	ΤE									
Tripsacum dactyloides	Pete	10	ND	47	ND	53	50	46	47	43	45	43	44	42	35	42	38	39	38

Table 1.1B Germination test results for selected warm-season grasses over a period of years under the controlled storage environment.

Table 1.2B Germination test results for selected cool-season grasses over a period of years under controlled storage environment.

Species	Entry	Storage	0	17	18	19	20	21	22	23	24	25	26	27	28
Thinopyrum ponticum	Jose	Cont.	89	ND	36	ND	14	7	7	TE					
Pascopyrum smithii	Barton	Cont.	10	ND	75	ND	67	18	18	14	9	4	ΤE		
Phalaris arundinacea	loreed	Cont.	82	ND	42	ND	41	31	23	22	15	16	8	2	TE

Species	Entry	Storage	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Dalea purpurea	Kaneb	Cont.	81	77	84	83	87	85	82	86	83	82	86	ND	86	ND	81	64	77
		Uncont.	81	83	83	77	79	82	75	59	39	20	18	ΤE					
Helianthus maximiliani	Prairie	Cont.	66	70	67	68	81	72	77	65	69	71	61	ND	62	ND	38	39	62
	Gold	Uncont.	66	65	57	36	38	1	ΤE										
Heliopsis helianthoides	Midas	Cont.	78	74	68	68	65	61	69	33	49	54	54	ND	39	ND	31	36	56
		Uncont.	78	65	65	56	51	40	6	ΤE									
Lespedeza capitata	9026784	Cont.	83	89	86	94	85	ND	88	ND	80	91	92	89	84	97	68	72	43
		Uncont.	83	83	30	32	ND	ND	15	ΤE									
Liatris pycnostachya	Eureka	Cont.	56	44	17	13	15	24	ND	6	15	11	10	ND	13	ND	11	3	3
		Uncont.	56	30	2	ΤE													
Ratibida pinnata	Sunglow	Cont.	82	89	81	82	79	70	68	62	60	55	39	ND	24	ND	6	11	11
	Ū	Uncont.	82	93	76	24	8	2	ΤE										
Salvia azurea var	Nekan	Cont.	30	33	37	26	29	33	26	21	22	19	11	ND	26	ND	23	4	21
grandiflora		Uncont.	30	30	14	14	6	5	ΤE										

Table 1.3A Germination test results for selected forbs over a period of years under controlled and uncontrolled storage environments.

Table 1.3B Germination test results for selected forbs over a period of years under the controlled storage environment.

Species	Entry	0	17	18	19	20	21	22	23	24	25	26	27
Dalea purpurea	Kaneb	81	71	85	68	54	60	96	76	67	63	77	68
Helianthus maximiliani	Prairie Gold	66	43	17	79	19	20	11	40	17	20	25	30
Heliopsis helianthoides	Midas	78	26	22	34	11	10	30	25	8	6	6	5
Lespedeza capitata	Kanoka	83	79	69	59	70	64						
Liatris pycnostachya	Eureka	56	0	ΤE									
Ratibida pinnata	Sunglow	82	4	ΤE									
Salvia azurea var grandiflora	Nekan	30	9	7	4	3	TE						

Tables Legend: Cont. = controlled; Uncont. = uncontrolled; ND = no data; TE = testing ended

2. Study No. 20A126L - Adaptation trials of superior grasses and forbs selected for advanced testing.

Introduction: Part of the release process for a superior plant material selected for release is to test the plant's area of adaptation. The Manhattan PMC is often called upon by other PMCs and other entities for the purpose of testing superior plants that they have selected for release.

Objective: The purpose of this study is to provide a standard means by which superior plants will be evaluated for adaptation.

Procedure: The superior plant will be established in 6.1 m (20 ft) rows with a 2.1 m (6 ft) spacing (unless otherwise specified) between rows. A known cultivar will be planted adjacent to the superior plant as a standard of comparison (if available) in a 3X replicated planting. Plantings are irrigated as needed during the initial growing season to aid establishment.

Evaluation Factors: Factors for evaluation will include plant vigor, stand, seed production, and resistance to disease, drought, and cold.

Potential Products: Information technology and cultivar release.

Progress or status: The following warm-season grasses are currently under test at the Manhattan PMC: Upland-type switchgrass (*Panicum virgatum* L.) and prairie sandreed [*Calamovilfa longifolia* (Hook.) Schribn.] which is part of an inter-center strain trial. Forbs that are currently under test are a number of tick-trefoils: Dillenius' tick-trefoil [*Desmodium glabellum* (Michx.)], Illinois tick-trefoil (*Desmodium illinoense* Gray), and panicledleaf tick-trefoil [*Desmodium paniculatum* (L.) DC.]; Penstemons: Cobaea penstemon, (*Penstemon cobaea* Nutt.), narrow beardtongue (*Penstemon angustifolius* Nutt. ex Pursh), and large beardtongue (*Penstemon grandiflorus* Nutt.).

a. Adaptation zones of switchgrass populations: Switchgrass as a species is broadly adapted to most of the latitudinal range of the lower 48 states (25 to 49 degrees North Latitude). It is thought that most switchgrass populations have northern or southern limits beyond which they are relatively unadapted. The purpose of this study is to answer some basic questions about geographic adaptation of six switchgrass populations. The objective is to determine the relative importance of latitudinal vs. longitudinal adaptation zones of switchgrass populations collected from native prairie remnants. Six switchgrass populations with little or no plant breeding history from Wisconsin south to Blackwell, Oklahoma, will be included in the study. This trial is in cooperation with Dr. Mike Casler, USDA-ARS Dairy Research Center, University of Wisconsin. It consists of four cultivars: 'Blackwell', 'Cave-in-Rock', 'Pathfinder', and 'Sunburst', and two experimental lines. It was planted June 19, 2001, at Manhattan in field D-2. Plots 1.2- x 7.6-m (4- x 25-ft) with six replications, solid seeded in a Latin square design with 0.3 m (1 ft) drill spacing on a Belvue silt loam soil.

Seed was harvested from selected plots in 2006; however, the seed fill was so reduced that further seed harvest was suspended. Seed harvest will be attempted in subsequent years when the seed fill is determined to be of better quality and quantity.

b. Prairie sandreed: The plant materials specialist for Michigan requested that the Manhattan PMC participate in an inter-center strain trial to test the adaptation of a selection of prairie sandreed to our local climate. The Rose Lake PMC at East Lansing, Michigan, provided both plants and seed for the trial. Twelve plants of accession 9086408 were planted one foot apart in a rod row in Field B-3 at Manhattan. Refer to Study No. 201003L, page 34, for further information on spaced plants. Hulled seed was planted in 0.3-m (10 foot) rod rows spaced 0.18-m apart with 3 replications on May 26, 2005, with a Kinkaid Plot Planter. 'Pronghorn' prairie sandreed was planted as a standard of comparison. A stand of 91.1% was recorded on August 18 for accession 9086408.

c. Desmodium Species: The plant materials specialist for Michigan requested that the Manhattan PMC participate in an inter-center strain trial to test the adaptation of three Desmodium

selections to our local climate. The Rose Lake PMC at East Lansing, Michigan provided both plants and seed for the trial. The Manhattan PMC added two entries to the planting at Manhattan. One local collection and a collection from McPherson County, Kansas, were added to the trial that was established from seed. In all, five accessions were placed in the trial. Refer to Table 2.1, for a listing of the entries.

Accession	Cultivar	Species	Common Name
9005087	Marion	Desmodium glabellum	Dillenius' tick-trefoil
9013451	CNS	Desmodium illinoense	Illinois tick-trefoil
9050393	CNS	Desmodium sp.	tick-trefoil
9055415	Alcona	Desmodium glabellum	Dillenius' tick-trefoil
9055428	Grant	Desmodium paniculatum	panicledleaf tick-trefoil

Table 2.1 Five Desmodium seed colle	ections planted at Manhattan	, Kans., June 7, 2005.
-------------------------------------	------------------------------	------------------------

Seed was planted in 3.05 m (10 ft) rod rows spaced 1.52 m (5 ft)apart with 3 replications on May 26, 2005, with a Kinkaid Plot Planter. Plants were set out June 7, 2005, in rod rows with an in-row spacing of 45.7 cm (18 in) apart. Poor stands were obtained from seed even though it was scarified. The dry weather is thought to have been a factor in the lack of success in establishing a stand. Stand improved, for all the established entries, which ranged from 13.4 to 31.5 percent, Table 2.2. The increase in stand was due to increased canopy except for accession 9050393 where 12 new seedlings were established. The new seedlings were from seed that did not germinate the previous year. Grazed by herbivores skewed some of the plant growth data.

Table 2.2 Desmodium seeding trial percent stand and number of plants	
per accession at Manhattan, Kans.	

Accession	No. New Seedlings	Percent Stand	No. of Plants Evaluated	Total No. of Plants
9005087	0	29.2	7	11
9013451	0	0	0	0
9050393	12	31.5	4	8
9055415	0	13.4	3	5
9055428	0	19.9	7	10

The stand improved for all entries in the spaced plant nursery. Accession 9055428 performed best of the three entries, Table 2.3.

Accession	No. of Plants Surviving	Percent Stand	No. of Plants Blooming	Percent Bloom	Foliage Height*	Plant Height*	Plant Vigor
9005087	8	80.0	0	0	58.2	58.2	3
9055415	6	60.0	2	33.3	62.5	62.5	3.5
9055428	7	67.6	4	57.0	67.6	81.0	1.5

Table 2.3 Desmodium spaced plant growth data and percent stand at Manhattan,	Kans.
--	-------

*cm

d. Penstemon Species: Cobaea penstemon was a native forb of interest back in the 1970's when Accession 9004455 came into being with the pooling of seed collected from accessions PMK-1474 from Riley Co., Kansas and PMK-1983 from Osage Co., Oklahoma after a period of initial evaluation at Manhattan, Kansas. It is desirable to compare the performance of 9004455 with commercially available Cobaeas as well as other popular penstemon species. The accessions assembled, Table 2.4, for the trial were established as cone-tainer stock before planting them in a spaced plant nursery in field B-3 at the PMC. Enough plants were available to establish at least 2 replications of 5 plants each per accession, except for accession 9026604.

Accession	Species	Common Name	Origin
9026604	Penstemon angustifolius	narrow beardtongue	Garden Co., Nebr.
9004455	Penstemon cobaea	Cobaea penstemon	Riley Co., Kans. and Osage Co., Okla.
9050493	Penstemon cobaea	Cobaea penstemon	Taney and Ozark Counties, Mo.
9050491	Penstemon cobaea	Cobaea penstemon	Ozark Co., Mo.
9082707	Penstemon grandiflorus	large beardtongue	Lyman Co., S. Dak., Emmons, Grant and
	_		Ransom Counties, N. Dak., Polk Co., Minn.

 Table 2.4 Penstemon species planted at Manhattan, Kansas

The plots were successfully established with occasional watering during the initial year, 2005. Excellent stands were reported in 2006. Accession 9004455, faired well among the Cobaea entries. It was similar in plant growth and produced more flowering than the other 2 entries, Table 2.5.

Plant Symbol	Accession	No. of Plants Surviving	Percent Stand	No. of Plants Blooming	Percent Bloom	Foliage Height*	Plant Height*
PEAN	9026604	5	100	5	100	30.2	30.2
PECO	9004455	10	100	7	70	38.5	46.4
PECO	9050491	10	100	6	60	36.9	47.2
PECO	9050493	24	96	15	62.5	36.7	48.2
PEGR	9082707	25	100	16	64	43.5	75.5

Table 2.5 Penstemon spaced plant growth data and percent stand at Manhattan, Kans.

*cm

3. Study No. 20A127K - Evaluation of PMK-1 green ash for resistance to ash borers.

Introduction: Green ash (*Fraxinus pennsylvanica* Marsh.) was widely planted in the Northern Plains as a windbreak and landscape tree. Larval damage by the lilac (ash) borer, *Podosesia syringue*, and banded ash clearwing, *Podosesia aureocincta*, have severely reduced the use of green ash especially in the more southern portion of the tree's range. Larvae bore into the young tree trunk near the soil line, weakening the seedling so that they may break off in the wind. Tree borers are among the most difficult insect pests to control because the insects feed within the tree. Thus, pesticides are generally ineffective in controlling ash borers. Keeping trees healthy and growing vigorously helps to reduce or prevent borer attack.

Problem: The Manhattan PMC has germ plasm of green ash that has been tested as PMK-1 for several years. PMK-1 has not been formally tested to determine if it has ash borer resistance or if there are management methods in ash establishment that might limit or lessen ash borer damage to trees.

Objective: To test PMK-1 for borer resistance.

Procedure: Seeds of PMK-1 were pretreated and then stratified 60 days warm stratification at 20°C followed by a 60 day prechill at 4°C. At the end of pretreatment the seeds were placed on blotters in germination boxes and allowed to germinate in a plant growth chamber at 20°-30°C (night/day). The seedlings were transplanted to 656-ml (40 in³) "deep pot cells", later batches were transplanted to 164-ml (4 in³) Ray Leach "Cone-tainers"TM, and additional stratified seeds were direct seeded into cone-tainers. On September 27, 2001, 2-0 deep pot stock and cone-tainer stock were transplanted to 6 plots at the Kansas Crop Improvement Association (KCIA) headquarters in Manhattan, Kansas. The KCIA site was chosen because of a history with borer problems on green ash. The 2 tree plots consisted of 1 deep potted plant and 1 cone-tainer plant (designated A and B respectively) spaced 50 to 60 cm (19.7 to 23.6 in) apart on a Wymore silty clay loam soil. Six 2 tree plots at the Center were divided into 2 areas. One area was a compacted, rocky, old roadbed (critical area site designated CA) and the other site was the typical Belvue silt loam soil on the Center. All plantings were caged to reduce browse damage by herbivores.

Potential Products: Cultivar Release

25

Progress or Status: One tree was attacked by a lilac borer in the PMC CA plots. No borer activity was detected at the KCIA site. The only other borer activity was noted in the bur oak assembly at the PMC where green ash was planted as replacement trees.

Literature Cited:

Association of Official Seed Analysts. 1999. Rules for Testing Seeds. 126 p.

Young, J.A. and C.G. Young. 1992. Seeds of Woody Plants in North America. Dioscorides Press. Portland, Oreg. 407 p.

4. Study 20A215H - Evaluation of little bluestem.

Introduction: Little bluestem (*Schizachyrium scoparium* Michx.) is a native, warm-season, perennial bunchgrass with a deep, fibrous root system. It is widely distributed over much of North America extending from Quebec, Canada, and Maine west to Alberta, Canada, and Idaho, and southward to Arizona and Florida. It occurs with other tall-grass prairie species such as big bluestem, Indian grass, and switchgrass, in the Plains where moisture conditions are favorable. In the drier mixed-grass prairie, it is associated with blue grama, side-oats grama, green needlegrass, western wheatgrass, prairie sandreed, and needle-and-thread. It possesses moderate drought and shade tolerance. It also tolerates a wide range of soils with adequate soil moisture.

Problem: There is a need for an adapted cultivar of little bluestem for range seeding, critical area planting, recreational area development, and other conservation uses in western Kansas and Nebraska.

Objective: To utilize recurrent selection techniques to improve 421554, (PMK-1840) germ plasm and select a superior little bluestem cultivar for the Kansas/Nebraska Service Area.

Procedure: Flats of little bluestem were planted in the greenhouse in spring 1992. Seedlings were selected at the two-to-three leaf stage and transplanted to cone-tainers for continued development in the greenhouse. Seedlings were selected based on performance and root morphology. Criteria such as speed of germination, coleoptile length, and subcoleoptile internode root production were used to select seedlings in the greenhouse screening. Plants were transplanted to a 2- x 2-m (7- x 7-ft) spaced plant field nursery approximately six weeks later.

Evaluation Factors: Plants will be evaluated for vigor, forage production, flowering date, disease resistance, seed production, and seed size. A grid-type evaluation system will be used to make selections of plants for inclusion in a polycross nursery. Evaluations will be conducted for two to three years with 10 to 20 percent of the nursery plants selected. Seed from the selected plant polycross will be tested against standard varieties or used to begin another cycle of recurrent phenotypic selection.

Potential Products: Cultivar Release

Progress or Status: Seed was collected from plots this year.

5. Study No. KSPMC-P-0601-RA - Increasing seedling vigor and stand establishment of big sandreed [*Calamovilfa gigantea* (Nutt.)].

Introduction: Big sandreed [*Calamovilfa gigantea* (Nutt.)] is a tall, native, robust, rhizomatous, warmseason perennial grass. It is found growing on sandy hills, dunes, and along stream margins in southern Kansas, Oklahoma, from Texas to Arizona, and from Kansas to Utah.

Problem: The genus Calamovilfa in general has weak seedling vigor and trouble with stand establishment. To ensure a varieties success in the commercial market place it must have a certain level of seedling vigor and ability to form a productive stand in a reasonable length of time. Commercial seed producers will not tolerate or produce a cultivar with substandard vigor and slow establishment.

Objective: Improve stand establishment of big sandreed by selecting plants with improved seed production qualities.

Procedure: A bulk seed sample was first divided into three fractions based on weight (Heavy, Heavy 2X, and Heaviest) using a South Dakota Seed Blower, to determine which weight fraction had the best germination. An unsorted sample was kept as a control. Approximately one pound of seed was then blown on the South Dakota Seed Blower at full air strength on a full length column for one minute. To provide adequate separation, only 50 to 100 ml of seed was blown at a time. The light sample trapped at the top of the column was collected, labeled, and set aside. The heavier seed from the bottom of the column was also collected. A uniform sample was pulled from this material and labeled as the "Heavy" fraction. The rest of the heavy seed was run through the blower again at full air strength on a full length column for one minute. The seed from the top of the column was labeled and set aside. A uniform sample was pulled from the bottom of the column and labeled as the "Heavy 2X" fraction since it had been blown twice. The remaining seed from the bottom of the column was run through the Dakota Seed Blower again at full air power and full length column for one minute, but yielded little separation. The column was then shortened by removing the middle section, and the remaining seed was blown at full air power for one minute in the short column. A uniform sample of the seed remaining in the bottom of the blower was collected and labeled as the "Heaviest" fraction. Seed weights for each fraction, Unsorted, Heavy, Heavy 2X, and Heaviest were obtained on an analytical balance using 10 replications of 100 seeds.

Evaluating Factors: Seed size and speed of germination will be evaluated after every cycle of selection to assess improvements.

Potential Product: Technology Transfer and Cultivar Release

Progress or Status: The Unsorted sample had an average seed weight of .5091 g per 100 seeds. The Heavy fraction averaged .7005 g per 100 seed, and the Heavy 2X yielded .7508 g per 100 seeds. The Heaviest fraction tipped the scales at .8366 g per 100 seeds, Table 5.1.

Germination tests were conducted on each fraction. Eight replications of 100 seeds were used for each weight fraction, and were subjected to two treatments: cold stratification and no stratification. The cold stratification treatment consisted of placing the seeds on moistened germination paper in a germination box, and storing them at 4°C for 2 weeks before putting them in a germination chamber for one week at 24°C. The treatment receiving no stratification consisted of placing the seeds on moistened germination paper in a germination paper in a germination box, and placing them in the germinator at 24°C for one week. Since rapid establishment is one of the primary goals of this study, the germination tests were stopped after one week.

Germ

24.125

29.125

34.375

	Seed Weight (g)						
Rep	Unsorted	Heavy	Heavy 2X	Heaviest			
1	0.52	0.6939	0.7432	0.8437			
2	0.5067	0.7178	0.7426	0.8313			
3	0.5112	0.7052	0.7516	0.8436			
4	0.5006	0.6833	0.7503	0.8382			
5	0.5047	0.7198	0.7386	0.8478			
6	0.5103	0.6942	0.7465	0.8329			
7	0.5305	0.7057	0.748	0.8337			
8	0.4987	0.7012	0.772	0.8311			
9	0.5075	0.6894	0.7563	0.8177			
10	0.5009	0.6947	0.7592	0.8456			
Average	0.50911	0.70052	0.75083	0.83656			

Table 5.1 Seed weight results for Unsorted, Heavy, Heavy 2X, and Heaviest
seed fractions of big sandreed.

Data from this series of tests showed the unstratified, Heavy 2X seed to have the best germination. It yielded 43.875% compared to the unsorted, unstratified sample which was 29.125%. The Heavy 2X fraction showed the highest overall germination for the study, and was shown to be significantly different than the other fractions (P = .0000). The unstratified treatment also proved to be significantly different than the stratified treatment (P = .0112). It is interesting to note that germination results for the Heaviest sample, 19.375%, fell below that of the Unsorted, 24.125%, Table 5.2. The seed

	Unsorted	Unsorted					Heaviest	
Rep	Seed Unstratified	Seed Cold Stratified	Heavy Seed Unstratified	Heavy Seed Cold Stratified	Heavy 2X Unstratified	Heavy 2X Cold Stratified	Seed Unstratified	Heaviest Cold Stratified
1	29	29	21	32	46	40	17	15
2	30	32	35	43	48	30	15	17
3	16	20	32	24	47	37	22	13
4	25	27	40	32	44	32	27	14
5	28	27	34	14	54	37	21	16
6	19	33	42	24	39	30	14	6
7	23	35	33	26	33	36	14	13
8	23	30	38	26	40	36	25	17

Table 5.2 Germination test results for Unsorted, Heavy, Heavy 2X, and Heaviest seed fractions of big sandreed under cold stratified and unstratified conditions.

showed a drastic drop in germination between the Heavy 2X and the "Heaviest" sample. Since the "Heaviest" seed makes up a portion of the Heavy 2X sample, it is reasonable to assume that the Heavy 2X germination could be further increased by separating "Heaviest" fraction from it.

27.625

43.875

34.75

19.375

13.875

Two more separations were done on bulk samples to compare the percent of the Heavy 2X seed in the bulk sample. The first run yielded 51.15 g of Heavy 2X seed in a 383.80 gram sample. This ended up being 11.7% of the total seed in the sample. The second run yielded 41.28 g of Heavy 2X in a 382.69 gram sample. This gave 10.7% of the total sample as being Heavy 2X seed. Preliminary test appear to show that the Heavy 2X fraction roughly makes up 10% of seed in a bulk sample.

B. Cultural Evaluations and Special Studies

1. Study No. 20C006G - Evaluation of perennial cool-season forage grasses.

Introduction: Little information is available regarding the establishment, persistence, and management of adapted cool-season perennial grasses for use in MLRAs 72, 77, and 78. The use of adapted cool-season grasses can provide a livestock producer an option for lengthening the green grazing period. This study is being conducted in cooperation with Kansas State University's Agronomy Department.

Problem: The need exists to evaluate the adaptability and performance of cool-season perennial grass forage species for potential use in grazing strategies.

Objective: Evaluate various native and introduced cool-season perennial grasses for site adaptation and performance.

Procedure: Eleven different varieties of cool-season grasses (Table 1.1) were seeded in a randomized complete block design at three sites in Kansas: Clark, Phillips, and Wallace counties. Plots 1.5- x 6-m (5- x 20-ft), consisting of five rows spaced 0.3 m (1 ft) apart, were planted with a Kincaid Plot Planter. Each cultivar was replicated 4X.

Cultivar	Common Name	Species
'Hycrest'	crested wheatgrass	Agropyron cristatum
CNS	smooth bromegrass	Bromus inermis
'Jose'	tall wheatgrass	Thinopyrum ponticum
'Rush'	intermediate wheatgrass	Elytrigia intermedia
'Reliant'	intermediate wheatgrass	Elytrigia intermedia
'Slate'	intermediate wheatgrass	Elytrigia intermedia
'Barton'	western wheatgrass	Pascopyrum smithii
'Mankota'	Russian wild rye	Psathyrostachys juncea
'Bozoisky-Select'	Russian wild rye	Psathyrostachys juncea
'Manska'	pubescent intermediate wheatgrass	Thinopyrum intermedium
'Luna'	pubescent wheatgrass	Thinopyrum intermedium

Table 1.1	Cool-season g	ass varieties in	n trials at three	Kansas locations.
-----------	---------------	------------------	-------------------	-------------------

CNS=Cultivar Not Stated

Potential Products: Technology Transfer and Revision of FOTG

Evaluation Factors: All varieties will be evaluated for establishment, persistence, forage quantity, and quality.

Progress or Status: A site visit was conducted at the Wallace County plots. A broadcast seeding of an annual medic species was conducted in the fall of 2006 over half of the plot.

2. Study No. 20C007Ta - Propagation of Mead's milkweed.

Introduction: Mead's milkweed (*Asclepias meadii* Torr. *ex* Gray) is a federally-listed, threatened species. The Plant Materials Program Strategic Plan has identified the recovery of threatened species as an emerging regional and national resource need. This study was initiated in 1996 at the request of the Kansas Biological Survey, Lawrence, Kansas. Seeds were collected that year on the Rockefeller Native Prairie (RNP) near Lawrence. Germination studies were conducted on the few seeds that were available for collection. The initial seedlings obtained from the germination studies were transplanted to conetainers in 1997 and grown out in the greenhouse-lathhouse-complex; the first field planting that year was to a buffalo grass-tall grass (BG-TG) mixed prairie. In 1998 plantings were made in two additional field scenarios: Red Group and Yellow Group on the "Salac Prairie" on the PMC, and Blue Group and White

Group monoculture plantings on a tilled site on the PMC. The Blue Group plants were lifted and transplanted in a row 2.74 m (5.8 ft) from the White Group. The prairie plantings were made in open areas of the existing sod where maintenance consists of an annual spring burn. The monoculture plants receive some weed control and tillage of adjacent areas. The Salac Prairie evolved from a grass-forb seeding mixture study involving various species native to the central Great Plains Region. Established in 1973, it has been allowed to persist as a prairie since the time when that study was completed. The (BG-TG) mixed prairie evolved from a buffalo grass cultivar trial established in 1992. Grasses and forbs native to the local area began to invade the plots as the study ended. The prairie is currently dominated by Indian grass [*Sorghastrum nutans* (L.) Nash], Illinois bundleflower (*Desmanthus illinoensis* (Michx.) MacM. ex B.L. Robins. & Fern.] and round-head lespedeza (*Lespedeza capitata* Michx.).

Problem: The need exists to learn more about propagation requirements and establishment techniques. The information will lend itself to recovery efforts for the species.

Objectives: Collect enough seed from identified native populations to establish a maintenance population. The maintenance population will be used to conduct further research on germination requirements, seed storage, and cultural techniques. Monitor the established prairie and monoculture plantings throughout the growing season and collect growth measurements and reproductive data. Collect additional seeds from the RNP near Lawrence, Kansas. Obtain or collect seeds from other plant populations in eastern Kansas to compare performance with the Rockefeller collections.

Procedure: A protocol was developed based on previous findings in this study to test additional seeds collected in 2003 on the RNP by Galen Pittman and the Goetz property by Jackie Goetz. Refer to the 2004 Annual Technical Report for details about the procedures that were used. In 2004, germination trials were conducted using stratified seed and various planting media and containers, Schedule 1-GT 2 and Schedule 2-GT 2. Containers used in the study were 50- x-150-mm peat pellets; 4 in³ and 10 in³ Ray Leach Single Cell cone-tainers containing PRO-MIX 'BX' growing medium or commercial topsoil, and 15 in³ plant bands containing PRO-MIX 'BX'. Plants produced in Germination Trial 2 (GT-2) were carried over in 2006 to determine ability to maintain the plants in the containers for an extended period.

Start Date	Date Out	Patch	Weeks	No.	Medium/			
			Stratification	Seeds	Container			
Feb 5	Apr 1	PMC	6-8	36	PRO-MIX 'BX'			
					in plant bands			
Feb 5	Apr 1	PMC	6-8	35	PRO-MIX 'BX'			
	-				in cone-tainers			
Feb 5	Apr 1	PMC	6-8	35	Commercial top soil in			
					cone-tainers			

Schedule 1-GT 2. Containers with growing medium.

Schedule 2-GT 2. Peat pellets and Cone-tainers.

Peat pellets.

Start Date	Date Out	Patch	Weeks	Seeds Per Rep	No. Reps.	No.
			Stratification			Seeds
Feb 4	Mar 17	PMC	6	32	2	64

Cone-tainers

Start Date	Date Out	Patch	Weeks	Seeds Per Rep	No. Reps.	No.
			Stratification			Seeds
Feb 4	Mar 17	PMC	6	22	2	44

Progress or Status: Established Field Plantings. The Yellow Group and Red Group plants rebounded after a poor showing last year due to freeze damage. Stands improved for both groups, the BG-TG mixed prairie was the only group to maintain its established stand of 100 percent, Table 2.1.

Group	Established	Spring Recovery	Established	Current	Change From
	Plants	-r 5 y	Stand	Stand	Previous Year
			%	%	%
Yellow	7	5	85.7	71.4	+28.5
Red	16	11	87.5	68.8	+25
White ¹	11	6	91.7	54.5	0
BG-TG	7	7	100.0	100	0
Prairie ² (all)	30	23	86.7	76.7	+20

Table 2.1 Spring recovery and percent stand of established plants by group.

Monoculture¹; Prairie² - Yellow, Red, BG-TG Groups;

Plants flowered in the Red, White, Blue, and BG-TG Groups this year. In all, five plants flowered, producing over 130 flowers; however, no follicles were produced. This was a first for Red Group with one plant flowering. Refer to Tables 2.2 to 2.4 for flower data for the BG-TG, White, and Blue groups.

Table 2.2 Summary of BG-TG mixed prairieflowering events.				
	May 5		May 31	
Plant	No. of	Buds/Umbel	Flowers/Umbel	
No.	Umbels			
2	1	15	PB	
4	4	14,?,?,?	10, 17, 21, 5	

PB=Past Bloom

Table 2.4Summary of Blue Groupmonoculture flowering events.

	May 5		May 31		
Plant	No. of	Buds/	Flowers/	Flowers	
No.	Umbels	Umbel	Umbel	Open	
7	1	19	17	17 PB	
10	1	17	18	18 PB	

tenth growing season, produced stems and leaves

Table 2.5 Summary of plant growth (length,
width, caliper) means for the Red Group
"Salac Prairie" nine year old plants

Salac Fraine nine year old plants.				
Date	5/5	5/31	5/31	
			Range	
No. of Plants	9	11		
No. of Stems	13	13		
Plant Length (cm)		26.0	5-35.8	
No. of stems sampled		13		
Leaf Width (mm)		4.2	2-21	
No. sampled		13		
Leaf Length (mm)		42.6	25-73	
No. sampled		13		
Stem Caliper (mm)		1.3	1-3	
No. sampled		13		

Table 2.3 Summary of White Groupmonoculture flowering events.				
	N	1ay 5	May 31	
Plant	No. of	Buds/Umbel	Flowers/Umbel	
No.	Umbels			
8	1	9	PB	
11	1	11	11	

Salac Prairie plants remained in a juvenile growth habit in their ninth growing season (Tables 2.5 and 2.6). They have yet to develop the type of stems and leaves capable of supporting an inflorescence, with one exception. A single plant produced an umbel with 8 buds. However, stem caliper has increased for many plants that did not flower. Plants in the BG-TG mixed prairie, in their

Table 2.6 Summary of plant growth (length,
width, caliper) means for the Yellow Group
"Salac Prairie" nine year old plants.

Date	5/5	5/31	5/31	
			Range	
No. of Plants	5	5		
No. of Stems	5	5		
Plant Length (cm)		28.8	24.7-34.6	
No. of stems sampled		5		
Leaf Width (mm)		2.6	2-4	
No. sampled		5		
Leaf Length (mm)		35.2	22-44	
No. sampled		5		
Stem Caliper (mm)		1.1	1-1.5	
No. sampled		5		

capable of supporting reproductive structures (Table 2.7). BG-TG plants were superior to plants in the other groups for the four plant characteristics measured. BG-TG plants averaged 7.5 cm greater plant length, leaf length by 3 mm, leaf width by 5 mm, and stem diameter by 0.3 mm, over than the top competitor. Maintenance on the monoculture sites was reduced to mowing and burning three years after establishment. This maintenance was performed prior to emergence of the milkweeds in the early spring. Due to the rhizomatous nature of milkweeds, maintenance was reduced to prevent disturbance of offshoots arising from the mother plants. As the intensity of maintenance on the White Group and Blue Group monoculture sites was reduced the dynamics of the sites changed. The monoculture sites were in transition to an early successional (ES) plant community as annual grasses and forbs, as well as perennials, began to compete with monoculture plants. The dominant plant competition currently consists of Illinois bundleflower, round-head lespedeza, showy partridge pea [Chamaecrista fasciculata (Michx.) Greene], Canada goldenrod (Solidago canadensis L.), little bluestem [Schizachyrium scoparium (Michx.) Nash], and sand dropseed [Sporobolus cryptandrus (Torr.) Gray]. Plant growth data for the Blue and White groups is summarized in Tables 2.8 and 2.9. In comparing growth data means for various plant parts, flowering plants were larger than non-flowering plants (Table 2.10). However, individual nonflowering plants (for example, 37.1 cm tall) exhibited greater size than individual flowering plants (for example, 15.2 cm tall), but flowering plants as a rule were greater in size.

Tall Grass (BG-TG) prairie ten year old plants.								
Date	5/5	5/31	5/31					
			Range					
No. of Plants	7	7						
No. of Stems	16	17						
Plant Length (cm)		36.3	20.3-56.5					
No. of stems sampled		17						
Leaf Width (mm)		18.9	5-50					
No. sampled		17						

66.1

17

2.9

17

49-90

1-5.8

Leaf Length (mm)

Stem Caliper (mm)

No. sampled

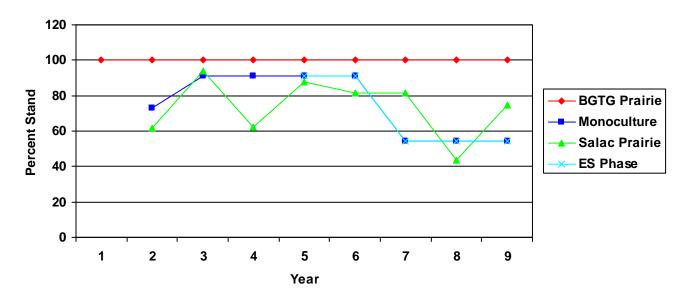
No. sampled

Table 2.7 Summary of plant growth (length,
width, caliper) means for the Buffalo Grass-
Tall Grass (BG-TG) prairie ten year old plants.

Table 2.9 Summary of plant growth (length,
width, caliper) means for the Blue Group nine
year old plants.

Date	5/5	5/31	5/31
			Range
No. of Plants	8	12	
No. of Stems	11	15	
Plant Length (cm)		24.0	7.1-37.1
No. of stems sampled		15	
Leaf Width (mm)		12.1	2-33
No. sampled		15	
Leaf Length (mm)		63.1	17-95
No. sampled		15	
Stem Caliper (mm)		2.5	1-6
No. sampled		15	

Table 2.8 Summary of plant growth (length, width, caliper) means for the White Group nine year old plants.


Date	5/5	5/31	5/31
			Range
No. of Plants	5	6	
No. of Stems	5	10	
Plant Length (cm)		26.5	1.7-63.0
No. of stems sampled		8	
Leaf Width (mm)		14.9	5-42
No. sampled		7	
Leaf Length (mm)		52.6	22-70
No. sampled		7	
Stem Caliper (mm)		1.4	1-6
No. sampled		8	

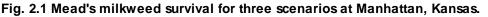

Sampled			Plant Samples		Leaf Samples			Stem Samples	
Group	No. Plants	No. Stems	No. Stems	Length (cm)	No.	Width (mm)	Length (mm)	No.	Caliper (mm)
White f*	2	2	2	47.3	2	32.0	65.0	2	4.5
White n**	6	8	6	19.6	5	8.0	47.6	6	1.8
Blue f*	2	2	2	34.2	2	31.5	85.0	2	5.5
Blue n**	10	16	13	22.4	13	9.1	59.7	13	2.1
Red f*	1	1	1	50.0	1	21.0	73.0	1	3.0
Red n**	11	12	12	27.7	12	2.8	40.1	12	1.2
BGTG f*	3	7	7	49.3	7	37.0	71.7	7	4.4
BGTG n**	4	9	10	27.2	10	8.0	62.4	10	1.9
All f*	8	12	12	42.8	12	33.9	92.8	12	4.5
All n**	31	45	41	24.8	50	5.4	42.4	41	1.7

Table 2.10 Size comparison of plant length, leaf width and length, and stem caliper of flowering and non-flowering Mead's milkweed plants at Manhattan. Kans. May 23, 2006.

f*=flowering; n**=non-flowering

<u>Reproduction vs. Establishment</u>. Long-lived native forbs are known to develop extensive root systems in their early years at the expense of top growth (Weaver 1968). It is thought that while BG-TG plants were accumulating resources below ground, monoculture plants allocated more of their energy to reproduction than to root system development. Note in Table 2.12, Eight year floral history of White Group plants, 2001-2004 energy was invested in production of flowers, follicles, and seeds. Since 2005 reproduction has declined as well as stand, Fig. 2.1. It is deduced that stand has decreased due to insufficient resources to sustain the life of the plant. Plant competition may also be a factor. However, stand was not impacted in BG-TG where competition was great and reproduction was occurring, Table 2.13. No root systems were examined in this study as the plant would have to be sacrificed.

	Growing Season								
No.	1999	2000	2001	2002	2003	2004	2005	2006	
Flowering Plants	1	3	7	4	6	9	2	2	
Umbels	1	5	15	11	14	10	3	2	
Buds		58	150	102	197	127	21	20	
Follicles	0	0	4	1	13	1	0	0	
Seeds	0	0	260	33	1050	*	0	0	
Buds/Umbel		11.6	10	9.3	14.1	12.7	7	10	

Table 2.12 Eight year floral history of White Group plants at Manhattan, Kansas.

* pod lost due to mechanical damage

Table 2.13 Floral history of BG-TG Group plants at Manhattan, Kansas.

	Growing Season									
No.	1998-2002	2003	2004	2005	2006					
Flowering	0	1*	2	0	3					
Plants										
Umbels	0	0	3	0	6					
Buds	0	0	45	0	85					
Follicles	0	0	0	0	0					
Seeds	0	0	0	0	0					
Buds/Umbel	0	0	15	0	14.2					

* plant with potential, growing point attacked by insect

<u>Containerized Stock</u>. There was a notable difference in plant growth among the various container and growth medium combinations, Table 2.3. The seedlings grown in peat pellets produced the most vigorous plants the first year. In the 2nd year the benefits of using peat pellets was apparent. Plants grown in peat pellets exceeded all container grown plants for all parameters measured, Table 2.14.

Table 2.14 Mead's milkweed plant growth comparison for different types of media and containers, three-year old plants.

Group	Container	Medium	Percent	No. Plants	Plant	No.	Leaf	Leaf	Stem
-			Survival	Sampled	Length	Leaves	Length	Width	Caliper
					(mm)		(mm)	(mm)	(mm)
А	Pellet	Peat	88.2	14	298.9	11.7	59.5	12.4	1.55
С	Large	Commercial		6	235.8	12.3	45.2	3.3	1.31
	Cone	Topsoil							
E	Large	Commercial		1	224.0	17.0	29.0	2.0	1.22
	Cone	Topsoil							
G	Large	Commercial		4	197.5	11.8	45.3	4.0	1.13
	Cone	Topsoil							
Н	Plant	PRO-MIX	100	4	278.3	13.8	54.0	7.0	1.35
	Band	'BX'							

Literature Cited:

- Betz, Robert F. 1989. Ecology of Mead's milkweed (*Asclepias meadii* Torrey). Proc. Eleventh North Amer. Prairie Conf. T.B. Bragg & J. Stubbendieck, eds. Univ. of Nebr. At Lincoln. p. 187-191.
- USDA NRCS 2004 Annual Technical Report Manhattan Plant Materials Center, Manhattan, Kans. 112p.

Weaver, J. E. 1968. Prairie Plants and Their Environment. Univ. of Nebr. Press. Lincoln & London. 276p.

3. Study No. KSPMS-T-0001-CR - Conservation Field Trial: Revegetation of an exposed blue shale outcrop site in Jewell County, Kansas.

Introduction: Past management and natural slumping has exposed raw shale areas ranging in size from 1 to 5 acres. The geology of the area is such that the underlying impervious shale layer conducts groundwater along its interface with the overlying soil. Where the shale outcrops on hillsides, natural springs occur. Slumping results where the overlaying soil on hillsides becomes saturated and subsequently moves. Once these areas are exposed, they are prone to water erosion, resulting in offsite deposition, which degrades the downslope plant communities. Because of the exposed shale, the quality of water flowing offsite is also a primary concern. The quality of the water flowing offsite is very acidic (pH 3-5) which also results in severe degradation of the downstream plant communities. This study is being conducted in cooperation with Kansas Department of Health and Environment and the Jewell County Conservation District.

Problem: The need exists to evaluate plant species for potential use for site revegetation and subsequent stabilization.

Objective: Evaluate common reed [*Phragmites australis* (Cav.) Trin. Ex Steud.] for establishment, survival, rate of spread, and stabilization potential on a typical blue shale site.

Procedure: One typical blue shale site was selected for the planting and evaluation of the adaptability and survival of common reed. Approximately 2,000 common reed sprigs were planted on April 18, 2000. The sprigs were hand planted within select reaches of the primary drainageways within the study area. Planting was restricted to those areas within the study area that appeared to have the greatest potential for supplemental moisture.

Potential Product: Technology Transfer

Evaluation Factors: The plantings will be monitored for establishment, survival, and spread. Evaluations will continue through 2010.

Progress or Status: No evaluations were conducted this year.

Literature Cited:

Reclamation of Drastically Disturbed lands, Schaller, F.W. and P. Sutton, 1978.

Soil Survey for Jewell County, Kansas. Published USDA Soil Conservation Service, 1981.

4. Study No. KSPMC-T0501-RA - Longevity of native warm-season grass seed: storage viability vs. seedling vigor/stand establishment.

Introduction: Native warm-season grass seeds can remain viable for long periods of time under certain storage conditions. Buffalo grass seeds found in the 25-year old sod of a sod house in western Kansas were still germinable. The Manhattan Plant Materials Center (PMC) built a seed storage facility in 1973, where temperature and humidity levels are controlled. This has enabled the PMC to store carry-over seed lots for extended periods of time. Controlled storage is necessary in cultivar development and to meet the fluctuating needs for foundation seed by the seed industry. Periodic seed tests have indicated good viability under standardized temperature and moisture conditions in laboratory tests. Although seedling vigor has been questioned, it has not been investigated. Growers have questioned their ability to obtain a stand with carry-over seed.

Objective: Plant seed of warm-season grass species from multiple harvest years in comparison trials to test the ability to establish an acceptable stand for seed production purposes

Procedure: Draw samples of seed lots stored at the PMC to retest their germinability in the seed lab. Plant seeds (30 PLS/ft) in a 3.0 m (10 ft) row, 1 row per plot with 3 replications at 2 locations using a Kinkaid Plot Planter with 2.5 cm depth bands. The number of seeds to plant per foot of row was determined by information contained in Table 4.2 and Table 4.5 for the corresponding year's trial. Evaluate for stand and maintain for two growing seasons. Management: fertilizer – none; irrigation – none; weed control – pre-emergent and post-emergent herbicides; and mowing may be used. Stand was determined by using the line intercept method.

Evaluating factors: Stand

Potential Products: Technology Transfer

Progress or Status: <u>2005 Trial</u>. Seed from 4 native, warm-season grass species from 3 crop years (Table 4.1) was planted according to the procedure described earlier. An additional crop year of sand bluestem was planted on the PMC, including a 1988 lot of hulled seed (naked caryopses) of sand bluestem. The planting was made on May 26, 2005, in Field B-3, on a Belvue silt loam soil (0-1 percent slope).

Table 4.1 Grass cultivar information for the 2005 warm-season grass trial.

Accession	Cultivar	Species	Common Name	Crop Years
421276	Kaw	Andropogon gerardii	big bluestem	1990, 1997, 2004
421277	Garden	Andropogon hallii	sand bluestem	1973, 1988, 1993, 2004
421553	Aldous	Schizachyrium scoparium	little bluestem	1973, 1990, 2003
421594	Osage	Sorghastrum nutans	Indian grass	1970, 1989, 2004

Cultivar	Crop	Purity	Standard	Dormant	Pure Live	Test	Estimated Seeds
	Year		Germination	Seed	Seed	Date	Per Foot of Row
			%	%	%		
Aldous	1973	85.06	66	1	56.99	12/31/04	52.6
Aldous	1990	96.94	79	4	80.46	2/15/05	37.3
Aldous	2003	76.27	34	3	28.22	2/14/05	106.3
Garden	1973	96.39	46	2	46.27	12/30/04	64.8
Garden*	1988				77.00		38.9
Garden	1988	88.19	76	1	67.91	3/24/05	44.2
Garden	1993	69.00	67	1	46.92	1/30/04	63.9
Garden	2004	89.52	72	1	65.35	2/1/05	45.9
Kaw	1990	96.40	89	1	86.76	3/24/05	34.6
Kaw	1997	96.37	77	3	77.10	3/24/05	38.9
Kaw	2004	88.16	76	1	67.88	1/6/05	44.2
Osage	1970	92.57	49	12	56.47	3/20/05	53.1
Osage	1989	93.73	57	7	59.99	2/3/05	50.0
Osage	2004	98.25	86	4	88.43	1/27/05	33.9

Table 4.2 Seed analysis information for crop years under test in 2005 trial.

*naked caryopses

Stand improved for all entries the second growing season. Stand more than doubled for over half of the entries. The increase in stand ranged from 148% to 259%. The smallest increases in stand occurred in entries that were most successful the initial growing season. Gains were noted in both basal growth and canopy. There were no significant differences in stand across seed ages for a species, Table 4.3. The only exception was a significant difference in stand for the 12-year old sand bluestem seed the initial year. Although the best stand of sand bluestem was obtained with the current year's seed, equally acceptable stands were obtained from the older age classes of seed with stands in the mid-to-upper 80s. Overall, the best stands were obtained with sand bluestem seed over any other species in the trial. Equally acceptable stands of big bluestem were obtained whether using one-year or eight-year old seed.

A better stand was obtained with naked caryopses in sand bluestem than with whole seed units of the same age (17-year old seed), however, there was no significant difference at P<0.05.

Table 4.3 Initial and second growing season stands for four warm-season grass cultivars for different age classes of seed planted May 26, 2005, Manhattan PMC, Manhattan, Kansas.

Species	Crop Year	Seed Age (Yrs)	\$	Stand (%)
			Initial Growing Season	Second Growing Season
big bluestem				
	2004	1	40 a ¹	81 a
	1997	8	41 a	81 a
	1990	15	35 a	68 a
% CV ²			30	14
Indian grass				
	2004	1	33 a	76 a
	1989	16	29 a	73 a
	1970	35	23 a	69 a
% CV			45	17
little bluestem				
	2003	2	35 a	63 a
	1990	15	26 a	76 a
	1973	32	23 a	55 a
% CV			46	27
sand bluestem				
	2004	1	63 a	92 a
	1993	12	50 b	84 a
	1988	17	60 ab	86 a
	1973	32	56 ab	88 a
% CV			10	5

¹Means in columns for a given species by growing season followed by the same letter are not significantly different at P<0.05

²Percent Coefficient of Variation

2006 Trial. Seed from 6 native, warm-season grass species from 3 crop years (Table 4.4) were planted according to the procedure described earlier. Exceptions were an additional crop year of sand bluestem, and there were only two crop years of little bluestem. The 1989 lot of sand bluestem was hulled seed. Plantings were made on May 19, 2006, in Field B-3, and June 7, 2006, in Field D-1, on a Belvue silt loam soil (0-1 percent slope).

Table 4.5 lists species, cultivar names, crop years, germination, purity, and test date information for each entry included in the plantings. With few exceptions, there was not a significant difference in stands produced by the youngest and oldest seed (Table 4.6). However, there was a significant difference in stand for big bluestem for all three age classes of seed for the May planting date. The current year's seed produced the best stand, however, only the 33-year old seed was significantly different in the June planting date. The best stand of little bluestem was from the 33-year old seed for both planting dates with only the May planting showing a significant difference. In the June planting, the best stands of Indian grass were from older age classes than from the current year's crop. Seed dormancy was a contributing factor that reduced stands for some entries. The current year's crop of Indian grass was impacted the

most with a higher degree of dormancy, where 53% of pure live seed was dormant (Table 4.5). Another factor that could contribute to a reduced stand is the distribution of pure live seed in the row. This is a bigger problem where a large number of seeds need to be planted to meet the 30 PLS seeding rate. In big bluestem both the youngest and oldest seed had some dormancy; however, the stand for the current year's crop was not impacted. Twice as many seed units of the 33-year old seed were required to meet the required seeding rate and stand was impacted. In most cases the later planting date produced the best stands. The best stands in the trial were obtained with side-oats grama and switchgrass for both planting dates (Table 4.6).

Kow			Crop Years
Kaw	Andropogon gerardii	big bluestem	1973, 1990, 2005
Garden	Andropogon hallii	sand bluestem	1973, 1989*, 1993, 2005
El Reno	Bouteloua curtipendula	side-oats grama	1973, 1993-1994, 2005
Blackwell	Panicum virgatum	switchgrass	1973, 1990, 2005
Aldous	Schizachyrium scoparium	little bluestem	1973, 2005
Osage	Sorghastrum nutans	Indian grass	1973, 1989, 2005
	Garden El Reno Blackwell Aldous	GardenAndropogon halliiEl RenoBouteloua curtipendulaBlackwellPanicum virgatumAldousSchizachyrium scopariumOsageSorghastrum nutans	GardenAndropogon halliisand bluestemEl RenoBouteloua curtipendulaside-oats gramaBlackwellPanicum virgatumswitchgrassAldousSchizachyrium scopariumlittle bluestemOsageSorghastrum nutansIndian grass

Table 4.4 Grass cultivar information	for the 2006 warm-season grass trials.
--------------------------------------	--

*naked caryopses

Table 4.5 Seed analysis information for crop years under test in 2006 trials.

Cultivar	Crop	Purity	Standard	Dormant	Pure Live	Test Date	Estimated
	Year	_	Germination	Seed	Seed		Seeding Rate:
							Seeds Per Foot of
			%	%	%		Row
Aldous	1973	85.06	57	6	53.59	1/04/06	56.0
Aldous	2005	98.36	63	13	74.75	12/30/05	40.1
Garden	1973	96.39	53	4	54.94	1/04/06	54.6
Garden*	1989	99.32	64	0	63.56	5/08/06	47.2
Garden	1993	69.00	60	1	42.09	4/26/06	71.3
Garden	2005	93.34	75	0	70.00	1/25/06	42.9
Kaw	1973	82.31	33	14	38.69	1/04/06	77.5
Kaw	1990	96.40	80	2	79.05	4/20/06	38.0
Kaw	2005	92.21	73	11	77.46	2/17/06	38.7
Osage	1973	87.39	70	9	69.04	1/04/06	43.5
Osage	1989	93.73	58	9	62.80	4/20/06	47.8
Osage	2005	99.05	33	53	85.18	5/10/06	35.2
Blackwell	1973	99.88	89	0	88.89	1/5/06	33.7
Blackwell	1990	99.29	69	0	68.51	4/20/06	43.8
Blackwell	2005	99.94	68	3	70.96	3/17/06	42.3
El Reno	1973	92.17	59	1	55.30	1/4/06	54.2
El Reno	93-94	99.21	82	0	81.35	5/8/06	36.9
El Reno	2005	96.26	55	5	57.76	1/24/06	51.9

*naked caryopses

Species	Crop Year	Seed Age (Yrs)	Stand (%)		
			Plantir	ng Date	
			May 19	June 7	
big bluestem	2005	4	80 a ¹	73 a	
	1990	1 16	62 b	66 a	
	1990	33	02 D 26 c	36 b	
$\alpha = \alpha v^2$	1973	33			
% CV ²			11	22	
Indian grass					
J	2005	1	57 a	37 b	
	1989	17	54 a	64 a	
	1973	33	43 a	69 a	
% CV			16	22	
little bluestem					
	2005	1	29 b	37 a	
	1973	33	49 a	57 a	
% CV			11	45	
side-oats grama					
	0005	4	00 -	00 - 1	
	2005	1	80 a	83 ab	
	1994-1993	12-13	75 a 70 -	77 b	
or ou	1973	33	72 a	<u>91 a</u>	
% CV			29	8	
sand bluestem					
	2005	1	64 a	71 a	
	1993	13	70 a	68 a	
	1973	33	57 a	50 a	
% CV			19	21	
switchgrass	0007	,	70		
	2005	1	76 a	84 ab	
	1990	16	64 a	74 b	
	1973	33	80 a	92 a	
% CV			15	9	

Table 4.6 Initial growing season stand for six warm-season grass cultivars for two planting dates and different age classes of seed in 2006, at Manhattan PMC, Manhattan, Kansas.

¹Means in columns for a given cultivar and planting date followed by the same letter are not significantly different at P<0.05 ²Percent Coefficient of Variation

C. Initial Evaluations

1. Study No. 201003L – Evaluation of miscellaneous grasses.

Introduction: This study serves as a clearinghouse for the evaluation of miscellaneous collections of grasses received by the Center that have potential for conservation use. These collections may be tested for adaptation to the local climate in a rod-row planting. Standards of comparison may be included, such as an existing cultivar that is available in the seed trade.

Objective: Provide a means to test plant materials where limited seed or plants are available.

Procedure: Plant seeds or plants in a 6.1 m (20 ft) rod row with a spacing of 2.2 m (6 ft) between rows, except where noted. A standard of comparison may also be planted.

Evaluating factors: Plant vigor, stand, seed production, growth factors, and resistance to disease, drought, and cold.

Potential Products: Cultivar Release and Technology Transfer

Progress or Status: Big bluestem (*Andropogon gerardii Vitman*), prairie sandreed, [*Calamovilfa longifolia* (Hook.) Scribn.], Canada wild rye [*Elymus canadensis* (L.)], riverbank wild rye [*E. riparius* (Wieg.)], sweetgrass, (*Hierochloë odorata* (L.) Beauv., and northern sweetgrass, [*Hierochloë odorata* (Schrank) Borbás spp. *artica* (J. Presl) G. Weim.], are species currently under test in this study. See Table 1.1 for evaluation data collected in 2006 for these grasses.

Big bluestem: Twelve plants of accession 9057029 were planted one foot apart in a rod row in Field B-3 at Manhattan PMC at the request of the Booneville Plant Materials Center, Booneville, Ark.

Prairie sandreed: The plant materials specialist for Michigan requested that the Manhattan PMC participate in an inter-center strain trial to test the adaptation of a selection of prairie sandreed to our local climate. The Rose Lake PMC at East Lansing, Michigan provided both plants and seed for the trial. Twelve plants of accession 9086408 were planted one foot apart in a rod row in Field B-3 at Manhattan.

Canada wild rye and riverbank wild rye: The plant materials specialist for Michigan requested that the Manhattan PMC participate in an inter-center strain trial to test the adaptation of accession 9084347, Icy blue Canada wild rye [*Elymus canadensis* (L.)] and accession 9086450, riverbank wild rye [*E. riparius* (Wieg.)]. Twenty plants of each accession were planted in rod rows May 24, 2006.

Accession	Species	Plant Height (cm)	Percent Stand
9057029	Andropogon gerardii	181	83
9086408	Calamovilfa longifolia	154	100
9084347	Elymus canadensis	67	85
9086450	E. riparius	37	95

Table 1.1 Evaluation data for miscellaneous grasses, 2006.

Sweetgrass Intercenter Strain Trial: Sweetgrass is a culturally significant plant to the American Indians with potential as a conservation plant and a plant community species for restorations. Five plant materials centers have been working with various strains of sweetgrass, Upper Colorado Environmental Plant Center, Meeker, Colo.; Manhattan Plant Materials Center, Manhattan, Kans.; Bridger Plant Materials Center, Bridger, Mont.; Roselake Plant Materials Center, East Lansing, Mich.; and Bismarck Plant Materials Center, Bismarck, N. Dak. In 2002, each Center shared some of its material with the other Centers to establish a comparison trial of the different strains of material. 'Radora', a release from South Dakota State University, was planted as a standard of comparison.

Ten plants of each line were spaced 0.7 m (2 ft) apart in rod rows in Field B-1 on a Belvue silt loam soil, June 2002, Table 1.1. Establishment was difficult due to hot dry weather at the time the plants were received. Establishment was also hampered by local herbivore activity. Radora was received late and did not establish. In 2003, replacement plants where available, were planted to fill in the missing spaces. The sweet grass trial was finalized in 2005. The plots remain to observe their continued spread, flowering, and seed production.

Plot	Source	Species	
Border	KSPMC	Hierochloë odorata	
9063128	NDPMC	Hierochloë odorata	
9050243	KSPMC	Hierochloë odorata	
9070988	COEPC	Hierochloë hirta	North
9063351	MTPMC	Hierochloë odorata	
9070255	MIPMC	Hierochloë hirta	
Radora	SDSU	Hierochloë odorata	
Border	KSPMC	Hierochloë odorata	

 Table 1.1 Sweetgrass Intercenter Strain Trial Plot Layout.

2. Study No. 201010K - Evaluation of miscellaneous trees and shrubs.

Introduction: Plantings of woody materials were initiated in 1961. Since that time plants have been added for evaluation with multiple objectives in mind. The evaluation of woody plant materials has been a cooperative effort between the PMC and interested parties in the Central Great Plains Region. These include: Kansas State University-Department of Horticulture and Forestry; the USDA-Agricultural Research Service (ARS) Plant Introduction System NC-7 Trials; and the State and Extension Foresters and NRCS staff foresters and biologists of Oklahoma, Nebraska, Kansas, and Colorado, and the Plains and Prairie Forestry Association (formerly the Great Plains Agricultural Council GP-13 Forestry Committee).

Problem: Adapted tree and shrub selections are needed to provide for windbreak, recreation, and multipurpose use in the High Plains region and provide multiple wildlife benefits throughout the four-state area.

Objectives: Identify superior specimens of shrubs and trees which have potential to solve conservation problems; produce or have produced, limited quantities of promising woody plants for field evaluation and field plantings; fulfill tree improvement committee efforts to find and test superior specimens and origins of woody plants; find a suitable replacement for the American and Siberian elms in Midwest urban conservation plantings; and develop and cooperatively release the best adapted cultivars for multiple uses in the area served by the PMC.

Procedure: Containerized or bare root stock is spaced 16 ft apart in rows spaced 16 ft apart. Drip irrigation is used to aid in establishment which may be needed for several years. In the miscellaneous woody tables, number planted (No. PLT) has been changed to number established (No. EST). The initial number of woody plants planted in a given plot is shown in parentheses where the number disagrees with the number established. This change results from the belief that a tree or shrub planted in a given year that does not recover the following spring did not establish. There may be a variety of reasons why the plant material failed to establish such as unfavorable environmental conditions in the initial growing season, planting stock in poor condition, predation, etc. Such conditions may not have any reflection on the plant material itself. It is possible that the plant material is simply not adapted to the site. However, in an initial evaluation, an attempt to reestablish the plant material should be made before declaring a plant material as not adapted to the site. Once woody stock has been established on site it can be evaluated for adaptation for a period of time, as much as 20 years or more for long-lived species. This change brings changes to the data in terms of survival ratings that were reported previously. In cases where it is clear that herbicides killed the plant, the survival rate is adjusted to compensate for such an intervention. This nursery is located primarily on a Belvue silt loam soil in fields F and G.

Potential Products: Information Technology and Cultivar Release

Progress or Status: The assembly consists of 137 accessions representing 90 species in 52 genera, of which 26 are named cultivars. Over 45 percent of the species are native to North America. The plant materials come from many sources such as other PMCs, NRCS field collections, and ARS collections: Wyoming Horticulture Station at Cheyenne, Wyoming; Southern Plains Research Station, Woodward, Oklahoma; and the North Central Regional Plant Introduction Station, Ames, Iowa.

Fifty-three accessions were evaluated this year. There were ten new acquisitions this year, Table 2.1, and five accessions were removed, refer to Table 2.3, for further information. Drought and wildlife pressures continue to impact the success of newly established woody entries in this study. Browsing and rubbing by deer has increased steadily over the past 8 to 9 years requiring year-round fencing of new plantings. Such fencing poses problems for plot maintenance.

Refer to Table 2.2, List of Miscellaneous Trees and Shrubs for further information regarding plot designations. Plot locations can be found in the map section at the end of this report, refer to Plot Map Figures 1.1 and 1.2, an x designates location of an existing plant in the plot. Plants removed at the end of the evaluation period are listed in Table 2.3. Evaluation data are presented in Table 2.4.

Species	Common Name	Accession Number	Origin/Source
Hydrangea arborescens	silver leaf hydrangea	9050498	/ARS-Ames, Iowa
Populus alba	white poplar	9050499	Kyonggi, South Korea /ARS-
			Ames, Iowa
Photinia melanocarpa	black chokeberry	9050500	/ARS-Ames, Iowa
Photinia melanocarpa	black chokeberry	323957	/NDPMC/PI Sta., Ames, Iowa
Carpinus caroliniana	American hornbeam	9050501	Johnson's Nursery, Inc. /ARS-
			Ames, Iowa
Forestiera neomexicana	stretchberry	9050502	/ARS-Ames, Iowa
Ulmus thomasii	rock elm	9050503	Dixon Co., Nebr. /ARS-Ames,
			lowa
Cupressus bakeri	Modoc cypress	9050504	Kansas Forest Service
Celtis occidentalis	common hackberry	9050497	Forrest Keeling Nursery
Celtis occidentalis	common hackberry	9066613	Oklahoma/KSPMC/NMPMC

ocation	Yr	Accn. No.	Cultivar	Genus/ Species	Common Name	Origin /Source
FRNo.)	Pltd	or PI No.		Block 1		
31 17 1-10	1976	9004450			little walnut	Washita & Beckman Co., Okla.
81 18 1-25	1976	9004450		Juglans microcarpa Taxodium distichum	baldcypress	/Commercial/KSU Ext. Forestry
01 10 1-20	1904			Block 2	baldcypress	Commercial/RSO Ext. Forestry
81 E 1-13	1990	483442	Flame	Acer ginnala	Amur maple	Eastern Asia /MOPMC
B1 E 14-35	1990	468117	Indigo	Cornus amomum	silky dogwood	Clinton Co., Mich. /MIPMC
B1 E 36-48	1990	478000	Midwest	Malus baccata mandshurica	Manchurian crab apple	Manchuria /NDPMC
31 2 1-10	1990	9012932	Midwest	Cotoneaster zabelli	cotoneaster	France
31 3 1-20	2006	9069052	Riverbend GP	Salix sp.	willow	/MIPMC
32 1 1	19	566824	Boomer	Quercus macrocarpa	bur oak	Custer Co., Okla. /KCPMC, Tex.
32 2 1	19	9004392	Lippert	Quercus macrocarpa	bur oak	Payne Co., Okla. /KSPMC
32 S	1930's	20-1303	сіррен	Syringa vulgaris	common lilac	
3 E1 1-23	1975	70314		Castanea mollisima	Chinese chestnut	/MDPMC
3 E2 1-31	1975	70314		Castanea mollisima	Chinese chestnut	/MDPMC
3 SE 17-26	1975	514275	Magenta	Malus sp.	Hybrid crabapple	Clinton Co., Mich. /MIPMC
3 SW 9-42	1977	483442	Flame	Acer ginnala	Amur maple	Eastern Asia /MOPMC
1 20 A-E	1961	9004302		Fraxinus pennsylvanica	green ash	Butler Co., Kans.
1 20 A-L	1961	9004302		Fraxinus pennsylvanica	green ash	Franklin Co., Kans.
3 W1 6-42	1967	20-1068		Juniperus chinensis phitzeriana	Phitzer juniper	/Riley Co., Kans.
3 W2	1968	9001209		Picea pungens	Colorado blue spruce	Forrest Keeling Nursery, Elsberry, Mo.
3 21 5-7	2001	9050416		Quercus prinoides	dwarf chinkapin oak	Salem, Nebr. /PI Sta., Ames, Iowa
.5 21 5-7	2001	9030410		Block 1	dwall chilikapili bak	Salem, Nebr. / FT Sta., Ames, Iowa
1 1 1-2	1985	9049957		Platanus occidentalis	sycamore	Brownville, Nebr. /UNL
1 1 10-19	1966	107630		Ligustrum vulgare	Chevenne European privet	/PI Sta., Ames, Iowa
1 2 1	1985	9049957		Platanus occidentalis	sycamore	Brownville, Nebr. /UNL
1 2 2-3	1985	9049956		Platanus occidentalis	sycamore	Burt Co., Nebr. /UNL
1 2 4	1985	9049957		Platanus occidentalis	sycamore	Brownville, Nebr. /UNL
1 2 5	1985	9049955		Platanus occidentalis	sycamore	Marysville, Kans. /UNL
1 3 1	1985	9049956		Platanus occidentalis	sycamore	Burt Co., Nebr. /UNL
1 3 2-3	1985	9049955		Platanus occidentalis	sycamore	Marysville, Kans. /UNL
1 3 4-5	1985	9049956		Platanus occidentalis	sycamore	Burt Co., Nebr. /UNL
1 4 3-5	1997	9050263		Celtis laevigata	sugarberry	Newark, Ohio /PI Sta., Ames, Iowa
1 5 1-10	1997	9050268		Sorbaria tomentosa	Lindley false spirea	Lublin, Poland /PI Sta., Ames, Iowa
1 6 1-10	1997	9050265		Sorbaria sorbifolia	Ural false spirea	North Korea /PI Sta., Ames, Iowa
1 7 1-10	1997	9050267		Sorbaria sp	false spirea	P R China /PI Sta., Ames, Iowa
1 8 1-10	1997	9050264		Sorbaria sorbifolia	Ural false spirea	Lublin, Poland /PI Sta., Ames, Iowa
1 9 1-10	1997	9050266		Sorbaria sorbifolia var. stellipila	Ural false spirea	South Korea /PI Sta., Ames, Iowa
1 11 2-11	1989	9055585	Redstone	Cornus mas	Cornelian cherry dogwood	Cen Europe /N.Y. /MOPMC
1 12 1-2	1984	325270		Cotoneaster lucida	cotoneaster	USSR /MDPMC
1 18 1-5	1990	477010		Ligustrum obtusifolium	border privet	/MIPMC /PI Sta., Ames, Iowa
1 19 1-5	2006	9050500	Iroquois Beauty	Photinia melanocarpa	black chokeberry	/PI Sta., Ames, Iowa
1 19 6-10	2006	323957		Photinia melanocarpa	black chokeberry	/NDPMC/PI Sta., Ames, Iowa
1 20 1-5	2003	9050482		Viburnum rufidulum	southern blackhaw	Holden Arboretum /PI Sta., Ames, Iowa
1 20 6-10	2003	9050483		Viburnum rufidulum	southern blackhaw	ISU Hort. Farm /PI Sta., Ames, Iowa
1 21 1-5	2001	9050417		Spiraea flexuosa		Northern Mongolia /PI Sta., Ames, Iowa
				Xanthoceras sorbilolium	vellowhorn	Northern China/PI Sta., Ames, Iowa
1 21 6-10	2001	9050418			VEIIOWIIOIII	NULLIETT CHILIA/FT Sta., ATTES, IUWA

Table 2.2 Study No. 201010K Initial Evaluation: List of Miscellaneous Trees and Shrubs, Manhattan, KS PMC 2006.

Table 2.2 Stud	y No. 201010K	Initial Evaluation:	List of Miscellaneous	Trees and Shrubs,	Manhattan	Kans. PMC 2006	(continued).
----------------	---------------	---------------------	-----------------------	-------------------	-----------	----------------	--------------

	ו	Yr	Accn. No.	Cultivar	scellaneous Trees and Shrubs, Manhatta Genus/ Species	Common Name	Origin /Source
	No.)	Pltd	or PI No.				- 0
		2002	9050426		Cornus sanguinea	bloodtwig dogwood	Iowa /PI Sta., Ames, Iowa
1 23		2002	9050427		Cotinus coggygria	smokebush	Iowa /PI Sta., Ames, Iowa
	6-10	2006	9050498		Hydrangea arborescens radiata	silver leaf hydrangea	/PI Sta., Ames, Iowa
1 24	1-5	2002	9050429		Sorbus aucuparia	mountain ash	Iowa /PI Sta., Ames, Iowa
	6-10	2002	9050430		Sorbus torminalis	wild service tree	Iowa /PI Sta., Ames, Iowa
1 25		2002	9050431		Shepherdia argentea	silver buffaloberry	Iowa /PI Sta., Ames, Iowa
	6-10	2002	9050432		Sorbus torminalis	wild service tree	Iowa /PI Sta., Ames, Iowa
1 26		1985	9050007		Syringa vulgaris	common lilac	Phillips Co., Kans.
-	-				Block 2		
24	1-10	1967	9006095	McDermand	Pyrus ussuriensis	Harbin pear	Morden, Manitoba, Can. /NDPMC
27	1-6	1998	various		Castanea mollissima	Chinese chestnut	/MDPMC
28	1-6	1998	various		Castanea mollissima	Chinese chestnut	/MDPMC
	1-6	1998	various		Castanea mollissima	Chinese chestnut	/MDPMC
2 10	1-4	1989	9050011		Diospyros virginiana	common persimmon	Iowa /PI Sta., Ames, Iowa
2 24		1973	9006225		Syringa pekinensis	Pekin lilac	/NDPMC
2 24		1973	9034667		Forsythia europaea X ovata	early forsythia hybrid	/PI Sta., Ames, Iowa
					Block 3		· · ·
	1-11	1967	9001069		Quercus palustris	pin oak	/Manhattan Nurs., Manhattan, Kans.
33	1-5	2002	486339	Dynasty	Ulmus parvifolia	lace-bark elm	Iowa /PI Sta., Ames, Iowa
35	1-5	1969	9004305		Fraxinus pennsylvanica	green ash	Butler Co., Kans.
37	1	2003	9050478	Varen	Betula papyrifera	paper birch	NDSU /PI Sta., Ames, Iowa
37	2-4	2006	9050499		Populus alba	white poplar	South Korea/PI Sta., Ames, Iowa
37	6-10	2003	9050481		Tilia cordata	littleleaf linden	Ukraine /PI Sta., Ames, Iowa
38	1-5	2003	9050479		Carpinus betulus	European hornbeam	Ukraine /PI Sta., Ames, Iowa
	6-10	2003	9050480		Carpinus betulus	European hornbeam	Ukraine /PI Sta., Ames, Iowa
	1-10	1971	9034682		Betula nigra	river birch	Houston Co., MN /PI Sta., Ames, Iowa
3 12		2006	9050497		Celtis occidentalis	common hackberry	Forest Keeling Nurs., Elsberry, Mo.
	1-10	2006	9066615		Celtis occidentalis	common hackberry	Oklahoma/KSPMC/NMPMC
3 14		2006	9050501	J. N. Select	Carpinus caroliniana	American hornbeam	Minn., Wis./PI Sta., Ames, Iowa
	6-10	2006	9050503		Ulmus thomasii	rock elm	Dixon Co., Nebr./PI Sta., Ames, Iowa
	1-10	2006	9050502		Foresteria pubescens var pubescens	stretchberry	/PI Sta., Ames, Iowa
	1-10	1971	9004302		Fraxinus pennsylvanica	green ash	Butler Co., Kans.
3 19	-	1971	341756	Groeneveld	Ulmus X hollandica	Holland elm hybrid	/PI Sta., Ames, Iowa
	6-10	1973	265620	Hessei	Fraxinus excelsior	European ash	W. Germany /PI Sta., Ames, Iowa
3 20		1972	9034674		Quercus sp.	Swedish hybrid oak	/UNL /PI Sta., Ames, Iowa
	6-10	1972	9017646		Quercus robur	English oak	/ISU Hort Farm /PI Sta., Ames, Iowa
		1990	9050022		Quercus phellos	willow oak	TN /PI Sta., Ames, Iowa
3 22		1972	9004392	Lippert	Quercus macrocarpa	bur oak	Payne Co., Okla.
3 23		1973	434253	Athens	Quercus acutissima	sawtooth oak	/GAPMC
<u> </u>		1010	101200		Block 4		
4 1	9-10	1968	9004461	Woodward	Platycladus orientalis	Oriental arborvitae	/Okla. State Nurs., Norman, Okla.
	6-10	1972	9004434		Platycladus orientalis	Oriental arborvitae	/Deuel Co., Nebr. /PI Sta., Cheyenne, Wyo.
-	10-11	1973	323932	Emerald Sea	Juniperus conferta	shore juniper	/MDPMC
4 10		2005	9050495		Cupressus arizonica	Arizona cypress	/Lawyer Nurs., Plains, Mont.
	9-13	1975	9004334		Juniperus sp.	columnar juniper	Custer Co., Nebr. /PI Sta., Cheyenne, Wyo.
4 10					, ,	<i>i</i> .	
4 10 4 11	1-10	2006	9050504		Cupressus bakeri	Modoc cypress	/Lawyer Nurs., Plains, Mont.

					ellaneous Trees and Shrubs, Manha		
Location (F R		Yr	Accn. No.	Cultivar	Genus/ Species	Common Name	Origin /Source
	<u>NO.)</u> 1-6	Pltd 1976	or PI No. 343949		Dipup autopatria	Soota nina	Ankara, Turkey /MDPMC
	-				Pinus sylvestris	Scots pine	
4 19		1976	343948		Pinus sylvestris	Scots pine	Ankara, Turkey /MDPMC
4 20		1974	9034668		Picea abies	Norway spruce	/Griffith St. Nurs., Wisconsin Rapids, Wis.
4 21		1973	9004363		Pinus strobiformis	Mexican white pine	Lincoln Co., NM /Rky Mtn Exp Sta., Nebr.
-4 22		1973	9004364		Pinus nigra	Austrian pine	N. Turkey /Rky Mtn Exp Sta., Nebr.
4 25	8-17	1973	9034669		Pinus heldreichii	Heldreich pine	Yugoslavia /Rky Mtn Exp Sta., Nebr.
					Block 1		
	<i>N</i> '-В	1991	250278	Elsmo	Ulmus parvifolia	lace-bark elm	Rochester, N.Y. /MOPMC
	C-E	1974	9004437		Ulmus parvifolia	lace-bark elm	Woodward /SO, Okla.
	N'-Z'	1991	250278	Elsmo	Ulmus parvifolia	lace-bark elm	Rochester, N.Y. /MOPMC
; 2 <i>1</i>	A-E	1963	9004439		<i>Ulmus</i> sp.	Offerle elm	Edwards Co., Kans.
3 I	B-E	1963	9013711		Ulmus parvifolia	Chinese elm	/ARS, Woodward, Okla.
3 I	F-J	1963	9004256		Celtis occidentalis	common hackberry	Pottawatamie Co., Kans.
	A-E	1963	9004440		<i>Ulmus</i> sp.	hybrid elm	/KSU Horticulture Farm
	F-J	1963	9004255		Celtis occidentalis	common hackberry	Central Oklahoma
	F-J	1963	9034679		Carya illinoensis	pecan	/KSU Forestry, Kans.
10 I	F-J	1963	9034680		Carya illinoensis	, pecan	/KSU Forestry, Kans.
	K-O	1963	9004329		Juniperus virginiana	eastern red cedar	/KSU Forestry, Kans.
	K-0	1963	9004333		Juniperus virginiana	eastern red cedar	Harper Co., Okla.
	K-0	1963	9004332		Juniperus virginiana glauca	silver eastern red cedar	/USDA-ARS, Woodward, Okla.
	K-0	1963	9034671		Pinus ponderosa	ponderosa pine	/KSU Forestry, Kans.
-	K-O	1963	9013469		Pinus nigra	Austrian pine	/KSU Forestry, Kans.
; 15 l	-	1964	9034673		Quercus acutissima	sawtooth oak	/GAPMC, Americus
, 10 (0-1	1304	5054075		Block 2	Sawtooth bak	/GAI MO, Americas
62 16 ·	1-8	1976	9004462	Sapparo Autumn	Ulmus sp.	elm	/Univ. of Wis./PI Sta. Ames, Iowa
2 10	10	1070	0004402	Gold	Cinido Sp.	Cim	
G2 17 ·	1-3	1977	9004312	Cold	Juglans nigra	black walnut	Doniphan Co., Kans.
G2 23 6		1981	9030309		Aesculus glabra	Ohio buckeye	/PI Sta. Ames, Iowa
G2 24 6		1981	9030308	Royal Red	Acer plantanoides	Norway maple	/PI Sta. Ames, Iowa
	01	1001	000000	Royantoa	Block 3	Hornay maple	
3 16 ⁻	1-8	1976	9008245		Quercus acutissima	sawtooth oak	/KCPMC, Tex.
G3 18		1976	9004392		Quercus macrocarpa	bur oak	City Park, Stillwater, Okla.
G3 19 7	-	1976	9034858		Castanea crenata	chestnut hybrid	MOPMC
			0001000		Block 1	onoounat nyona	
IQ1 1 1	1	1966	9050506		Nyssa sylvatica	black gum	/Forrest Keeling Nursery, Elsberry, Mo.
IQ1 1 2					Carva illinoensis	pecan	0 1 1
IQ1 1 3		1963	9050509		Pseudotsuga menziesii	Douglas fir	MOPMC
IQ1 1 4		1968	9001209		Picea pungens	Colorado blue spruce	/Forest Keeling Nursery, Elsberry, Mo.
IQ1 2 1		1983	9005161		Crataegus phaenopyrum	Washington hawthorn	DuPage Co., III. /MOPMC
IQ1 2 2		1977	514275	Magenta	Malus sp.	hybrid crabapple	Clinton Co., Mich. /MIPMC;
IQ1 2 3		1964	9050507	magonia	Pinus edulis	pinyon pine	/ARS, Woodward, Okla.
IQ1 2 4		1968	9001209		Picea pungens	Colorado blue spruce	/Forest Keeling Nursery, Elsberry, Mo.
		1966	9050505		Tilia X euchlora	Redmond Crimean linden	/Plumfield Nursery, Fremont, Nebr.
		1966	9030989				/ iumileiu nuisery, riemonii, nebi.
HQ1 3 1		1902	9030989		Forsythia ovata	early forsythia	
HQ1 4 1		1000	0040704				
HQ1 4 1 HQ1 4 2	2	1988	9049784	Dive Oter	Ribes odoratum	buffalo currant	Dickinson Co., Kans.
	2 1-4	1988 1982	9049784 9030990	Blue Star	Ribes odoratum Juniperus squamata Yucca glauca	buffalo currant blue star juniper soapweed	Dickinson Co., Kans. Holland /PI Sta., Ames, Iowa

Table 2.2 Study No. 201010K Initial Evaluation: List of Miscellaneous Trees and Shrubs, Manhattan, Kans. PMC 2006 (continued).

Location	Yr	Accn. No.	Cultivar	Genus/ Species	Common Name	Origin /Source
(F R No.)	Pltd	or PI No.				
HQ1 7 1	1984	20-1846		Picea abies	Norway spruce	/Griffith State Nursery, Wisconsin Rapids, Wis.
HQ1 7 2	1964	9004392	Lippert	Quercus macrocarpa	bur oak	Payne Co., OK
HQ1 8 1		9050508		Caragana boisii	Siberian pea shrub	/ARS Hort. Sta., Cheyenne, Wyo.
HQ1 8 2		483442	Flame	Acer ginnala	Amur maple	Eastern Asia /MOPMC
HQ1 8 3	1977	9004363		Pinus strobiformis	Mexican white pine	Lincoln Co., NM /Rky Mtn Exp Sta., Nebr.
HQ1 9 1	1988			Cerus canadensis	red bud	Riley Co., Kans.
HQ1 9 2	1967	9001069		Quercus palustris	pin oak	/Manhattan Nursery, Manhattan, Kans.
				Block 2		
HQ2 1 1-15				Crataegus phaenopyrum	Washington hawthorn	/Lawyer Nursery, Plains, Mont.
HQ2 2 1-15		113095	Centennial	Cotoneaster integerrimus	cotoneaster	China /NDPMC
HQ2 2 2-14		540442	Regal	Prunus tenella	dwarf flowering almond	/NDPMC
HQ2 2 16	1976	9050510		Syringa oblata dilatate	Korean early lilac	/ARS Hort. Sta., Cheyenne, Wyo.
HQ2 3 1	1977	421614		Ulmus davidiana var japonica	Japanese elm	/ARS Nursery Crops Res. Lab., Delaware, Ohio
HQ2 3 2				Pinus ponderosa	ponderosa pine	
HQ2 3 3		516476	Redstone	Cornus mas	Cornelian cherry dogwood	Asia /MOPMC
HQ2 3 4-15				Syringa vulgaris	common lilac	
HQ2 3 16	1976	9050511		Spiraea sargentiana	Sargent spirea	/ARS Hort. Sta., Cheyenne, Wyo.
HQ2 3 17	1992			Quercus robur	English oak	III. /McKendree College
HQ2 3 18	1992	9004392	Lippert	Quercus macrocarpa	bur oak	Payne Co., Okla. /KSPMC
HQ2 3 19	1977	514275	Magenta	<i>Malus</i> sp.	hybrid crab apple	Clinton Co., Mich. /MIPMC
HQ2 4 1-6	1992			Pyracantha	firethorn	Blueville Nursery, Manhattan, Kans.
HQ2 4 7	1992	483442	Flame	Acer ginnala	Amur maple	E. Asia /MOPMC
HQ2 4 8	1992	478000	Midwest	Malus baccata mandshurica	Manchurian crab apple	Asia /Canada/NDPMC
HQ2 4 9	1966	9034666		Euonymus atropurpureus	wahoo	Riley Co., Kans.
P 21 1-6	2001	9050416		Quercus prinoides	dwarf chinkapin oak	Salem, Nebr. /PI Sta. Ames, Iowa
P 22 1-5	2001	566597	Patriot	<i>Ulmus</i> hybrid	elm	US Nat'l Arboretum /PI Sta., Ames, Iowa
P/S 1-6, 8-10	1977	399400		Pinus nigra	Austrian pine	Yugoslavia /PI Sta., Ames, Iowa
P/S 7, 11-30	1981	9034670		Pinus nigra	Austrian pine	/KSU Forestry
PQ/S 31-50	1977	399402		Pinus sylvestris	Scots pine	Yugoslavia /PI Sta., Ames, Iowa
P/W 1	1966	9050512		Liquidambar styraciflua	American sweetgum	/Forest Keeling Nursery, Elsberry, Mo.
P/W 2	1965	9050514		Juniperus virginiana canaerti	Canert juniper	/Nelson Nursery, Enid, Okla.
P/W 3	1966	9050513		Juniperus horizontalis glauca	blue creeping juniper	/MIPMC
P/W 4	1966	9000399		Quercus rubra	northern red oak	Eureka, Kans.
P/W 5-6	1971	9001455	Emerald	Fraxinus sp.	ash	Marshall Nursery, Arlington, Nebr.
Q/S 51-70	1977	399403		Pinus sylvestris	Scots pine	Yugoslavia /PI Sta., Ames, Iowa
Q/S 71-90	1977	399404		Pinus sylvestris	Scots pine	Yugoslavia /PI Sta., Ames, Iowa

Table 2.2 Study No. 201010K Initial Evaluation: List of Miscellaneous Trees and Shrubs, Manhattan, Kans. PMC 2006 (continued).

Location	Yr	Accn. No.	Cultivar	Genus/ Species	Common Name	Origin/ Source
(FRNo.)	Pltd	or PI No.				
C1 W 1-23	1973	40-57		Juniperus scopulorum columnaris	Rky. Mtn. columnar juniper	Okla. Panhandle/SW Kans. /ARS, Woodward, Okla
C2 W 1-65	1973	40-57		Juniperus scopulorum columnaris	Rky. Mtn. columnar juniper	Okla. Panhandle/SW Kans. /ARS, Woodward, Okla
F1 19 1-5	2001	9050413		Genista tinctoria	common woadwaxen	Okhtyrka, Ukraine /PI Sta, Ames, Iowa
-1 19 6-10	2001	9050412		Genista tinctoria	common woadwaxen	Klishchevka, Ukraine /PI Sta., Ames, Iowa
F1 23 6-10	2002	9050428		Deutzia glabrata	smooth Deutzia	Iowa /PI Sta., Ames, Iowa
F4 10 1-7	2005	9050495		Cupressus arizonica	Arizona cypress	Lawyer Nursery, Plains, Mont. /KSU State and
						Extension Forestrv

Table 2.3 Study No. 201010K Initial Evaluation: List of Miscellaneous Trees and Shrubs Removed, Manhattan, Kans. PMC 2006.

Refer to page 67, legend for miscellaneous woody plant evaluations.

Plot Location	PLT SYM	Accession Number	Species Origin/Source	YR PLT	YR REC	NO. EST	NO. SRV	PCT SRV	VI	DI	IN	CAN COV	PLT HGT	PLT DBH	Plot Remarks
B1 3 1-20	SALIX	9069052	willow	06	06	7	7	100				30	55	DBH	
			<i>Salix</i> sp. /MIPMC			(20)									
C1 20 A-E	FRPE	9004302	green ash <i>Fraxinus pennsylvanica</i>	61	70 74	5	5 5	100 100	2 3			605 658	798 1054	17 20	
			Butler Co., Kans.		78		5	100	3			650	1150	20	
					79 83		5 5	100 100	3 3	4	3	800 800	1150 1175	27	
					85		4	80	3	4	4	000	1219	28	
					86		4	80	5	5		975	-	29	
					88		4	80	1	_		933		34	
					90 93		4 4	80 80	3	5			1372	36	
					93 05		4	80 80					1411	30	
					06		4	80						41	
C1 21 A-E	FRPE	9004304	green ash	61	70	5	5	100	1			566	833	17	
			Fraxinus pennsylvanica		74		5	100	3			622	1041	21	
			Franklin Co., Kans.		78		5	100	3			800	1100		
					79 83		5 5	100 100	1 3	4	3	800 900	1100 1310	30	
					85		5	100	3	4	5	900	1280	30	
					86		5	100	6			762			
					88		5	100	2			733		33	
					90		5	100	1	1			4000	20	
					93 05		5 4	100 80					1292 1416	36	
					06		4	80					1410	44	
	01100	0050440					-								
E3 21 5-7 P21 1-6	QUPR	9050416	dwarf chinkapin oak Q <i>uercus prinoides</i>	01	01 02	9	9 8	100 89	6	7	5	26	23 31		Leaf cutter bee damage
			/PI Sta., Ámes, Iowa		03		8	89				42	41		Ū.
					04		8	89				67	66		Some deer browse
					05 06		8 8	89 89		1	4	93 109	83 109		No. – 7 severe MD; No. – 6 DD
F1 11-2;	PLOC	9049957	Platanus occidentalis	85	85	4	4	100	3		2	89	178		
21,4	I'LOU	3043337	Brownville, Nebr./ UNL	00	86	4	4	100	4	4	2	260	240		
, .			,		87	4	4	100	5	-		442	487	6	
					88	4	4	100	3	3	3	553	615	10	
					89	4	4	100	5	5		587	714	13	
					95	4	4	100					1213	27	

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans.

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
F1 2 2-3; 3 1,4-5	PLOC	9049956	Platanus occidentalis Burt Co., Nebr./ UNL	85	85 86 87 88 89 95 04	5 5 5 5 5 5 5 5	5 5 5 5 5 5 5 5 5 5	100 100 100 100 100 100 100	3 2 3 2 4	4 3 5	2	93 176 401 505 545	189 290 492 607 707 1225 1625	6 10 12 25 31	
F1 25; 32-3	PLOC	9049955	Platanus occidentalis Marysville, Kans. /UNL	85	85 86 87 88 89 95 04	3 3 3 3 3 3 3	3 3 3 3 3 3 3	100 100 100 100 100 100 100	2 1 3 2 4	4 3 5	2	102 200 453 557 608	183 310 512 615 723 1304 1787	7 11 14 30 39	
F1 1 10-19	LIVU	107630	Cheyenne European privet <i>Ligustrum vulgare</i> PMC, Bismarck, N. Dak.	66	70 71 73 74 75 76 78 79 87 95 98 00	10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50 50 50 50 50 50 50 50 50 50 50 50	1 1 5 5 3 1 4			290 320 411 490 506 650 600 630	320 396 503 620 650 650 500 300 332 351 366		
F1 4 3-5	CELA	9050263	sugarberry <i>Celtis laevigata</i> /PI Sta., Ames, Iowa	97	97 99 00 01 02 06	3	3 3 3 3 3 3	100 100 100 100 100 100	5 1 4	1	3	509	107 337 465 558 593 908	18	
F1 5 1-10	SOTO7	9050268	Lindley false spiraea <i>Sorbaria tomentosa</i> Poland/PI Sta., Ames, Iowa	97	97 99 00 01 02	10	10 10 10 10 10	100 100 100 100 100	2 7 9 5			228 216	145 148 153 147		20% die back; few flowers
F1 6 1-10	SOSO2	9050265	Ural false spiraea <i>Sorbaria sorbifolia</i> North Korea/PI Sta., Ames, Iowa	97	97 99 00 01 02	10	10 10 10 10 10	100 100 100 100 100	3 2 3 6			185 228	153 155 171 150		40% die back; heavy flowering

IN CAN PLT PLT Plot Remarks Plot PLT Accession Species YR YR NO. NO. PCT VI DI REC EST SRV SRV COV HGT DBH SYM Number Origin/Source PLT Location SOSO2 F1 7 1-10 Ural false spiraea Insect damage Sorbaria sorbifolia China/PI Sta., Ames, Iowa 50% die back; heavy flowering F1 8 1-10 SORBA false spiraea Wind damage Sorbaria sp. Poland/PI Sta., Ames, Iowa No. 3 – winter injury 15% die back; mod. flowering F1 9 1-10 SOSOS Ural false spiraea Sorbaria sorbifolia var. stellipila South Korea/PI Sta., Ames, Iowa 30% die back; mod. flowering F1 11 1-11 COMA21 Cornelian cherry dogwood Cornus mas 1,4-5 – frost damage, some die back C. Europe /N.Y. /MOPMC 2-11 good fruiting; 1 - herbicide damage All but 2 with good fruit production F1 18 1-5 LIOB border privet Ligustrum obtusifolium MIPMC /PI Sta., Ames, lowa Excellent fruit production F1 19 1-5 PHME13 black chokeberry Photinia melanocarpa /PI Sta., Ames, Iowa F1 19 6-10 PHME13 black chokeberry Photinia melanocarpa /NDPMC F1 20 1-5 VIRU southern blackhaw Viburnum rufidulum /PI Sta., Ames, Iowa

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans, (continued)

Plot	PLT	Accession	Species	YR	YR REC	NO. EST	NO. SRV	PCT	VI	DI	IN	CAN	PLT HGT	PLT DBH	Plot Remarks
ocation 1 20 6-10	SYM VIRU	Number 9050483	Origin/Source southern blackhaw Viburnum rufidulum /PI Sta., Ames, Iowa	<u>PLT</u> 03	03 04 05 06	5	5 5 5 5 5 5	SRV 100 100 100 100	6 5			COV 36 33 47	44 46 69 84	DBH	
-1 21 1-5	SPFL9	9050417	<i>Spiraea flexuosa /</i> PI Sta., Ames, Iowa	01	01 02 03 04 05 06	5	5 5 5 4 3	100 100 100 100 80 60	2 6 5 6	6	2	56 42 49 44 48 64	78 49 64 58 53 73		Weed comp; leaf cutter bee damag Heavy deer browse Fall flowers – 3 plants No. 5 - gone
51 21 6-10	XASO3	9050418	yellowhorn <i>Xanthoceras sorbifolium</i> /PI Sta., Ames, Iowa	01	01 02 03 04 05 06	5	5 5 5 5 5 5 5	100 100 100 100 100 100	3 4 4 5	7 2	3 1	34 39 81 93 117 177	60 56 89 105 134 178		Weed comp; leaf cutter bee damage Medium deer browse 5 – die back; recovered summer
-1 22 1-5	COSA81	9050425	bloodtwig dogwood <i>Cornus sanguinea</i> /PI Sta., Ames, Iowa	02	02 03 04 05 06	5	5 5 5 5 5 5	100 100 100 100 100	4 3 6	4	4 8 7	27 69 170 260 297	80 106 148 198 224		Heavy browse 3 – tip breakage – boring insect Second flush - flowering/fruiting-Se
-1 22 6-10	COSA81	9050426	bloodtwig dogwood <i>Cornus sanguinea</i> /PI Sta., Ames, Iowa	02	02 03 04 05 06	5	5 5 5 5 5 5	100 100 100 100 100	3 6 3	6	5 5 4	42 74 181 241 259	57 81 169 212 226		Medium browse Second flush - flowering/fruiting-Se
⁻ 1 23 1-5	COCO10	9050427	smokebush <i>Cotinus coggygria</i> /PI Sta., Ames, Iowa	02	02 03 04 05 06	5	5 5 5 5 5 5	100 100 100 100 100	2 1 4	3	2	50 92 137 185 243	84 151 219 258 307		Slight browse
F1 23 6-10	HYAR6	9050498	silver leaf hydrangea <i>Hydrangea arborescens radiata</i> /PI Sta., Ames, Iowa	06	06	5	5	100				15	36		
F1 24 1-5	SOAU	9050429	mountain ash <i>Sorbus aucuparia</i> /PI Sta., Ames, Iowa	02	02 03 04 05 06	5	5 3 2 2 2	100 60 40 40 40	6 5 3	7	4	20 39 53 88 123	46 93 120 180 238		Browse Deer damage

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV			<u> </u>	COV	HGT	DBH	Drawa
F1 24 6-10	SOTO8	9050430	wild service tree	02	02	5	5	100	5	5	6	16	61		Browse
			Sorbus torminalis		03		5	100	6	~	~	21	68		O statled by deep
			/PI Sta., Ames, Iowa		04		5	100	3	6	6	17	92		2 – girdled by deer
					05		5	100				28	139		
					06		5	100				40	180		
F1 25 1-3	SHAR	9050431	silver buffaloberry	02	02	2	2	100	6	6	7	14	61		Browse
			Shepherdia argentea		03		2	100	3			31	104		
			/PI Sta., Ames, Iowa		04		2	100	5			82	176		Mechanical damage
					05	1	1	100				117	211		No. 1 – Disked out.
					06	(2)	1	100				146	268		
F1 25 6-10	SOTO8	9050432	wild service tree	02	02	4	4	100	7	1	2	16	47		Browse
1 1 20 0 10	00100	0000102	Sorbus torminalis	02	03	•	4	100	8	•	-	23	39		No. 9 – replanted
			/PI Sta., Ames, Iowa		04		3	60	5	5	5	17	60		3 – deer damage
					05		3	60	Ũ	Ŭ	Ŭ	25	104		e deel damage
					06		3	60				36	144		
F1 26 1-6	SYVU	0050007	common lilac	05	04	e	e	100							Transplanted from Field C
F126 1-6	5100	9050007		85	91	6	6	100				400	404		Transplanted from Field G
			Syringa vulgaris		92		6	100				106	121		Powdery mildew
			Phillips Co., Kans.		93		6	100				152	150		No. 6 – leaves dried up early
					94		6	100					400		Mildew
					95 05		5 5	83 83					186 252		
					00		5	00					202		
F2 4 1-10	PYUS2	9006095	Harbin pear	67	70	10	10	100	3			210	238		
			Pyrus ussuriensis		71		10	100	3			213	322		
			Morden, Manitoba, Can.		73		10	100	3						
			/PMC, ND		74		10	100	3			488	533		
					75		10	100	3			549	610		
					76		10	100	3			640	732		
					78		10	100	3			670	750		
					79		10	100	~		•	770	770		
					83		10	100	3	4	3	1000	825		
					88		10	100	2	2	3	1280	880		.
					93		9	90					1045	24	Good fruit production; No. 6 – wind
					96		9	90	1				1119	<u>.</u>	damage
					01		8	80	4				974	24	
F2 10 1-4	DIVI5	9050011	common persimmon	89	89	4	4	100	9	3		3	13		
			Diospyros virginiana		90		4	100	1			22	45		
			/PI Sta., Ames, Iowa		91		4	100				29	68		
					92		4	100				70	129		
					93		4	100		3	5	125	203		
					98		4	100				345	476		Mean shoot growth – 42-cm
					99		4	100					605		No. 1-2 – herbicide damage
					03		4	100					605		No. 1 – a resprout; fruit amount - 5

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
F2 23 1-5	SYPE2	9006225	Pekin lilac Syringa pekinensis /PMC, ND	73	73 74 75 76 78 79 83 93 02	5	5555555555	100 100 100 100 100 100 100 100	3 3 3 3 1 1	3	2	78 157 210 310 440 440 700	70 130 230 315 400 500 610 665 768		
F2 23 6-10	FORSY	9034667	early forsythia hybrid Forsythia europaea X ovata /PI Sta., Ames, Iowa	73	73 74 75 76 77 78 79 83 93 02	5	5 5 5 5 5 5 5 5 5 5	100 100 100 100 100 100 100 100 100	1 3 3 3 1 1	2	2	88 116 142 180 210 315 300 470	73 143 189 201 215 255 300 350 350 305		
F3 2 1-11	QUPA2	9001069	pin oak <i>Quercus palustris</i> Manhattan Nurs., Manhattan, Kans.	67	70 71 74 75 76 78 01	11	9 9 9 9 8 8	82 82 82 82 82 73 73	3 5 5			290 457 488 670 800	332 518 700 762 960 1334	37	
F3 3 2-6	ULPA	486339	lace-bark elm <i>Ulmus parvifolia</i> /PI Sta., Ames, Iowa	02	02 03 04 05 06	3 5	3 5 5 5 5	100 100 100 100 100	4 2	1 2	3 2	19 30 73 123	58 78 163 250 317		Added 2 new plants Good clean foliage

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
ocation	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
351-5	FRPE	9004305	green ash	69	69	5	5	100	1						
			Fraxinus pennsylvania		71		5	100	2			213	271		
			Butler Co., Kans.		72		5	100	1			335	355		
					73		5	100	1			259	419		
					74		5	100	1			335	518		
					75		5	100	1			365	580		Abundant fruiting
					76		5	100	1			488	610		Moderate fruiting
					80		5	100	1			730	950		
					82		5	100	2			800	1100		
					83		5	100	2	4	5	900	1075		
					89		5	100	2	4			1099		No. 1 – blown down 6/03 - rot
					90		4	80	2	5					
					03		4	80					1178	33	
							-								
3 7 1-5	BEPA	9050478	paper birch	03	03	5	5	100					147		
371	22.7	5000110	Betula papyrifera	00	04	U U	1	20	6	5	3	86	173		
0 / 1			W. North Dakota /PI Sta.,		05		1	20	U	0	0	82	188		
			Ames, Iowa		06		1	20				02	191		Deer damage
			Ames, Iowa		00		1	20					131		Deel damage
3 7 2-4	POAL7	9050499	white poplar	06	06	3	3	100					168		No. 2 – deer damage
			Populus alba												
			South Korea/PI Sta.,												
			Ames, Iowa												
	TIOOO	0050404		00	00	0	0	400				00	40		
3 7 6-10	TICO2	9050481	littleleaf linden	03	03	2	2	100	_		_	20	40		
			Tilia cordata		04		1	50	5	4	5	51	67		
			Ukraine /PI Sta., Ames,		05		1	50				83	110		
			Iowa		06		1	50					167		
3 8 1-5	CABE8	9050479	European hornbeam	03	03	5	5	100				22	67		
5 6 1-5	CABLO	9030479	Carpinus betulus	03	03	5	5	100	4	4	5	38	83		
					04		4		4	4	5	58	104		
			Ukraine /PI Sta., Ames,					80 80				00			
			Iowa		06		4	80					156		
3 8 6-10	CABE8	9050480	European hornbeam	03	03	3	3	100				28	62		
	2.220	5000.00	Carpinus betulus		04	Ŭ	3	100	5	4	3	32	61		
			Ukraine /PI Sta., Ames,		04		3	100	Ũ	•	Ŭ	43	73		
			lowa		05		3	100				-10	90		
			IUWA		00		0	100					50		
3 12 1-10	CEOC	9050497	common hackberry	06	06	10	10	100					78		
			Celtis occidentalis												
			Forest Keeling Nurs.,												
			Elsberry, Mo.												

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species Origin/Source	YR	YR REC	NO. EST	NO. SRV	PCT	VI	DI	IN	CAN COV	PLT HGT	PLT DBH	Plot Remarks
Location F3 13 1-10	SYM CEOC	Number 9066615	Common hackberry Celtis occidentalis Oklahoma /KSPMC/NMPMC	<u>PLT</u> 06	06	<u>ESI</u> 10	<u> </u>	<u>SRV</u> 100				00	116	DRH	
F3 14 1-5	CACA18	9050501	American hornbeam <i>Carpinus caroliniana</i> Minn., Wisc./PI Sta., Ames, Iowa	06	06	5	5	100					60		
F3 14 6-10	ULTH	9050503	rock elm <i>Ulmus thomasii</i> Dixon Co., Nebr./PI Sta., Ames, Iowa	06	06	5	5	100					69		
-3 15 1-10	FOPOP	9050502	stretchberry Foresteria pubescens var pubescens /PI Sta., Ames, Iowa	06	06	10	10	100					92		
-3 18 1-10	FRPE	9004302	green ash <i>Fraxinus pennsylvanica</i> Butler Co., Kans.	71	75 76 78 86 87 88 90 95 05	10	10 10 10 10 10 10 10 9 8	100 100 100 100 100 100 100 90 80	1 1 5 2 4	3 2		305 396 475 732 798	457 518 670 1200 1043 1173 1236		N0. 1 - dead
-3 19 1-5	ULMUS	341756	Holland elm hybrid <i>Ulmus X hollandica</i> /PI Sta., Ames, Iowa	71	75 76 77 78 79 86 95 05	5	4 4 4 4 3 3	80 80 80 80 80 80 60 60	5 5 3 3 5			225 290 335 390 400 457	430 470 500 550 650 1200 1104 1214		No. 1 – top dead
F3 19 6-10	FREX80	265620	European ash <i>Fraxinus excelsior</i> W. Germany /PI Sta., Ames, Iowa	73	73 74 75 76 77 78 79 96	5	5 5 5 5 5 5 5 5 4	100 100 100 100 100 100 100 80	5 5 3 1			30 61 104 155 244 260 347	174 226 310 350 457 490 536 664	24	No. 4 – A sucker

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
ocation	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
3 20 1-5	QUERC	9034674	Swedish hybrid oak	72	72	5	5	100	3			9	37		
			Quercus sp.		73		5	100	3			27	61		
			UNL /PI Sta., Ames, Iowa		74		5	100	3			52	113		
					75		5	100	5			132	192		
					76		5	100	5			183	275		
					77		5	100	5			250	350		
					78		5	100	5			290	430		
					79		5	100	5			350	500		
					83		5	100	3	6	4	500	650	15	
					88		5	100	3	3	3	661			
					89		5	100					873		
					90		5	100	4	8	9				
					93		5	100					897	23	No. 3 – top out
					96		5	100	8				941		
					01		5	100					1000	29	
					06		5	100					1200	28	
3 20 6-10	QURO2	9017646	English oak	72	72	4	4	100	2			15	73		
5 20 0-10	QURUZ	9017040	Quercus robur.	12	72	4 (5)	4 4	100	3 5			15 61	107		
					73	(5)	4	100				94			
			ISU Hort Farm /PI Sta.,				4 4	100	3			94 138	183 295		
			Ames, Iowa		75				5						
					76		4	100	5			195	365		
					77		4	100	5			220	435		
					78		4	100	5			270	525		
					79		4	100	3			350	600	40	
					83		4	100	1	1	1	600	780	18	
					88		4	100	2		9	740	000	25	
					89		4	100	2	1	9		909		
					90		4	100	3				054	00	No. 0. too dood
					96		4	100	5				951	32	No. 6 – top dead
					01		4	100					984		
					06		4	100					1123	32	
3 21 6-10	QUPH	9050022	willow oak	90	90	5	5	100		2	3	22	32		
			Quercus phellos		91		4	80				21	34		Severe deer browse
			TN /PI Sta., Ames, Iowa		92		4	80				52	81		
			,,		93		4	80				97	151		No. 9 – small
					94		4	80	4			137	241	1	No. 9 – winter injury
					98		3	60						-	1 dead, mechanical
					99		3	60					363		
					04		3	60					504		

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
F3 22 6-10	QUMA2	9004392	bur oak	72	72	5	5	100 100	5 3			17	26 125		
			<i>Quercus macrocarpa</i> Payne Co., Okla.		73 74		5 5	100	3 3			82 76	125		
			Payne Co., Okia.		74 75		ວ 5	100	3 3			160	300		
					76		5	100	3			240	365		
					78		5	100	3			330	512		
					79		5	100	1			425	600		
					81		5	100	1		8	800	670	18	
					83		5	100	1	6	1	000	840	25	
					85		5	100	1	Ũ	•		980	_0	
					89		5	100	1				980	29	
					90		5	100	1					-	
					93		5	100	1				1021	32	
					96		5	100	1				1112		
					01		5	100	1				1171	36	
F3 23 1-10	QUAC80	434253	sawtooth oak	73	73		10	100	3			64	66		
F3 23 1-10	QUACOU	434233	Quercus acutissima	15	74		10	100	3			111	137		
			/PMC, GA		75		10	100	3			200	270		
			/1 MO, OA		76		10	100	3			275	305		
					78		10	100	3			400	550		
					79		10	100	3			450	650		
					83		10	100	1	3	3	650	800	20	
					89		10	100	3		1		951		
					93		10	100					959	43	No. 8 - suckers
					02		10	100					1230	30	
F4 1 6-10	PLOR80	9004461	Oriental arborvitae	68	75	5	5	100	3			396	427		
		200.101	Platycladus orientalis		76	•	5	100	3			396	457		
			Okla. State Nurs., Norman,		78		5	100	3			600	550		
			Okla.		79		5	100	5			600	640		
					83		5	100	3	3	4	700	620		
					93		5	100					820		
					96										Removed all but No. 10
F4 3 6-10	PLOR80	9004434	Oriental arborvitae	72	75		5	100	F			115	175		
F4 3 0-10	FLUKOU	9004434	Platycladus orientalis	12	75 76		5 5	100	5 5			115	250		
			Deuel Co., Nebr. /PI Sta.,		78		5 4	80	5			270	400		
			Cheyenne, Wyo.		78		4	80 80	5			320	400		
			oncychine, wyo.		83		4	80	4	5	4	550	575		
					96		4	80	-	0	-	000	796		
					00			00							

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs. Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
F4 510-11	JUCO12	323932	shore juniper	73	75	7	7	100	5			100	25		
			Juniperus conferta		76	(9)	7	100	3			160	25		
			NPMC, Beltsville, Md.		78		7	100	3			170	40		
					79		7	100	3	_	_	245	50		
					83		7	100	2	3	3	400	50		
					93		7	100					59		
					02		7	100	3	5			46		
F4 10 1-7	CUAR	9050495	Arizona cypress	05	05	7	7	100					84		
			Cupressus arizonica		06		0	0							Not adapted
			/Lawyer Nurs., Plains,												
			Mont.												
F4 10 9-13	JUNIP	9004334	columnar juniper	75	78	5	5	100	5			60	175		
			Juniperus sp		79	Ũ	5	100	5			70	220		
			Custer Co., Nebr. /PI Sta.,		83		5	100	3	5	3	160	430		Cedar-Apple rust
			Cheyenne, Wyo.		99		5	100	-	-	-		963		
			· · · ·		04		5	100					1060		
F4 11 1-10	CUBA	9050504	Modoc cypress	06	06	10	10	100				17	35		
	000/	0000001	Cupressus bakeri	00	00	10	10	100					00		
			/Lawyer Nurs., Plains,												
			Mont.												
E4 47 4 40	TUOOO	477044	a sufficiency of the second sur-	00	00	40	40	400	-	-	0	47	70		
F4 17 1-10	THOC2	477011	northern white cedar	82	83	10	10	100	5	5	3	47	73		
			Thuja occidentalis		96		10	100	3				472		
			MIPMC, E. Lansing, Mich.												
F4 18 1-6	PISY	343949	Scots pine	76	76	(9)	4		7			20	15		
			Pinus sylvestris		77	6	6	100	5			40	30		
			NPMC, Beltsville, Md.		78		6	100	5			50	45		
			-, , -		79		6	100	3			85	65		
					83		6	100	2	3	3	230	210	4	
					95		6	100	_	-	-		745	-	
					00		6	100					1027		
					05		6	100							
F4 19 7-9	PISY	343948	Scots pine	76	76	(0)	1		7			30	15		
1-10 1-0	1151	545340	Pinus sylvestris	70	70	(9) 3	3	100	7			20	20		
			NPMC, Beltsville, Md.		78	3	3	100	7			20 35	20 32		
			NI WO, DEILSVIIIE, WU.		78 79		3	100	5			40	52 60		
							ა ი		5 3	3	2	40 215		2	
					83		3	100	3	3	3		185	2	
					86 05		3	100				340	370		
					95 00		3 3	100 100					691 924		
					00		3 3	100					924		No. 9 - 90% dead
					00		5								

Table 2.4 Study No 2010	10K Initial Evaluation:	Miscellaneous trees and shrubs.	. Manhattan. Kans.	(continued)
-------------------------	-------------------------	---------------------------------	--------------------	-------------

Plot Location	PLT SYM	Accession Number	Species Origin/Source	YR PLT	YR REC	NO. EST	NO. SRV	PCT SRV	VI	DI	IN	CAN COV	PLT HGT	PLT DBH	Plot Remarks
4 20/ 1-10	PIAB	9034668	Norway spruce	74	74	10	10	100	5			23	27	υвп	
420/1110	IIAD	3034000	Picea abies	74	75	10	10	100	5			25	40		
			Griffith State Nurs.,		76		10	100	5			40	60		
			Wisconsin Rapids, Wis.		77		10	100	3			60	75		
					78		10	100	3			80	100		
					79		10	100	3			110	120		
					83		10	100	4			230	240	4	
					94		10	100	1				642		
					98		10	100					832		
					02		8	80							
					03		8	80					932		
4 21/ 1-10	PIST3	9004363	Mexican white pine	73	74	10	10	100	5						
			Pinus strobiformis		75		10	100	3			50	60		
			Lincoln Co. NM /Rky Mtn		76		10	100	3			75	95		
			Exp Sta., Nebr.		78		9	90	3			140	120		
					79		9	90	3			150	160	7	
					83 93		9 9	90 90	2			350	340 677	7 15	
					93 02		8	90 80					985	15	
	D 11	0004004	.			10	-		•			70			
4 22/ 1-10	PINI	9004364	Austrian pine	73	75	10	10	100	3 3			70	75 110		
			<i>Pinus nigra N. Turkey</i> /Rky Mtn Exp		76 78		10 10	100 100	3 3			120 190	195		
			Sta., Nebr.		78		10	100	3			200	220		
					83		10	100	1			430	465	15	
					93		10	100	•			400	843	23	No. 10 – disease resistant
					02		10	100					1112	20	
4 25/ 8-20	PSME	9034669	Heldreich pine	73	73	13	13	100	7						
			Pinus leucodermis		74	(20)	10	77	7						
			Yugoslavia /Rky Mtn Exp		75	()	8	61	7			10	15		
			Sta., Nebr.		76		8	61	5			20	25		
					78		7	54	7			27	33		
					79		7	54	7			27	35		
					83		6	46	7			70	85		
					93		6	46					258	_	
					03		5	38					494	8	
GA 1 1-4	ULPA	250278	Chinese elm	91	91	10	10	100				14	53		
2 1-4			Ulmus parvifolia		92		10	100					59		
6 1/ A-B			Rochester, N.Y./MOPMC		93		10	100	~			60	96		Development
					94		10	100	2			84	113		Deer browse
					95 05		10	100					138	4.4	1 destroyed by deer, heavy brows
					05		10	100					742	11	

Plot	PLT	Accession	Species	YR	YR REC	NO. EST	NO. SRV	PCT SRV	VI	DI	IN	CAN COV	PLT HGT	PLT DBH	Plot Remarks
Location G 1/ B-E	SYM ULPA	Number 9004437	Origin/Source Chinese elm	PLT 74	77	4	3	5RV 75	3			130	175	DBH	
G I/ B-L	ULFA	9004437	Ulmus parvifolia	74	78	4	3	75	3			185	215		
			SO, Woodard, Okla.		79		3	75	3			220	300		
					83		3	75	4			400	600	8	
					93		3	75						16	
					98		3	75					1285		
					02		3	75					1321	00	
					03 04		3 3	75 75					1604	30	
					04		3	75					1604		
G 2/ A-E	ULMUS	9004439	Offerle elm	63	70	5	5	100	5			323	643	10	
			Ulmus species		74		4	80	5			451	991	14	
			Edwards Co., Kans.		78		4	80	3			500	1050		
					79		4	80	1 2			500	1100	07	
					83 93		4 4	80 80	2			650	1330	27 33	
					93 97		4	60 60						33	C - dead
					02		2	40					1585	42	
						_	_								
G 3/ A-E	ULPA	9013711	Chinese elm	63	70	5	5	100	3			457	640	11	
			<i>Ulmus parvifolia</i> ARS, Woodard, Okla.		74 78		4 4	80 80	3 3			564 500	914 1500	18	
			ANS, Woodard, Okia.		79		4	80	3			650	1450	28	
					83		4	80	3			600	1300	35	
					93		4	80	-						
					97		4	80					1574	39	
					02		4	80					1699		
G 3/ F-J	CEOC	9004256	common hackberry	63	66	5	5	100	2			415	445	6	
			Celtis occidentalis		70	Ū	5	100	2			530	713	15	
			Pottawatamie Co., Kans.		74		5	100	3			615	927	20	
					78		5	100	5			500	850		
					93		2	40						45	
					97		2	40					1387	55	
					02		2	40					1433		
G 4/ A-E	ULMUS	9004440	hybrid elm	63	70	5	5	100	3			299	689	10	
			<i>Úlmus</i> species		74		5	100	4			439	1006	15	
			KSU Horticulture Farm		78		5	100	3			400	1100		
					79		5	100	3			400	1300		
					83		5	100 100	5			400	1250	24 31	
					93 97		5 5	100					1428	31	
					97 02		5	100					1420	37	
					02		0	100					1401	07	

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
ocation	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
G8/F-J	CEOC	9004255	common hackberry	63	66	5	5	100	1			390	427	5	
			Celtis occidentalis		70		5	100	3			597	668	14	
			Central Oklahoma		74		5	100	2			732	920	22	
					78		5	100	3			900	1100		
					79		5	100	1				1125		
					83		4	80	7			800	1200	33	I, J – much dead wood – herbicide
					93		3	60						45	
					97		3	60					1707		
					02		3	60					1960	54	
G 9/ F-J	CAIL2	9034679	pecan	63	70	5	5	100	5			183	326		
			Carya illinoensis		74		5	100	3			427	628	9	
			KSU Forestry, Kans.		83		5	100	3			450	1150	16	
			-		93		5	100						23	
					97		5	100					1747		
					02		5	100					1823	26	
G 10/ F-J	CAIL2	9034680	pecan	63	70	5	4	80	4			207	290		
		-	Carya illinoensis		74		4	80	3			436	695	10	
			KSU Forestry, Kans.		78		4	80	5			450	800	-	
			·····,,·····		79		4	80	3			500	880		
					83		4	80	3			600	760	23	
					93		4	80	-					31	
					97		4	80					1833	•	
					02		4	80					1996	36	
G 2/ K-O	JUVI	9004329	eastern red cedar	63	70	5	5	100	1			323	421	9	
			Juniperus virginiana		74	-	5	100	1			451	567	15	
			KSU Forestry, Kans.		78		5	100	3			500	750		
					79		5	100	1			500	750		
					83		5	100	3			600	760		
					02		5	100	U			000	1055		
G 4/ K-N	JUVI	9004333	eastern red cedar	63	70	4	4	100	1			299	351	6	
	50 11	000-000	Juniperus virginiana	00	74	т	4	100	1			457	564	12	
			Harper Co., Okla.		78		4	100	1			500	700	12	
					83		4	100	3			600	825		
					02		4	100	5			000	1126		
G 6/ K-O	JUVI	9004332	silver eastern red cedar	63	70	5	5	100	1			378	424	9	
	50 11	000-002	Juniperus virginiana	00	74	0	5	100	1			530	530	17	
			USDA-ARS, Woodward,					100	3			530 550	530 700	17	
					78		5		3 4						
			Okla.		83		5	100	4			750	900		
					02		5	100					1256		

Plot	PLT	Accession	Evaluation: Miscellaneous Species	YR	YR	NO.	NO.	PCT	VI	DI	ÍN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
G 8/ K-O	PIPO	9034671	ponderosa pine	63	70	5	3	60	7			131	152		
			Pinus ponderosa		74 78		3	60 60	7 5			296 300	375 550	9	
			KSU Forestry, Kans.		78 83		3 3	60 60	ว 5			300 500	550 1250		
					02		3	60	5			500	1530		
					02		0	00					1000		
G 9/ K-O	PINI	9013469	Austrian pine	63	70	5	5	100	6			143	140		
			Pinus nigra		74		5	100	4			311	341		
			KSU Forestry, Kans.		78		5	100	3			500	600		
					79		5	100	5			500	670		
					83 97		5	100	3			700	750		
					97 02		5 3	100 60					1311		
					02		0	00					1011		
G 15/ U-Y	QUAC80	9034673	sawtooth oak	64	70	5	4	80	4			286	390	6	
			Quercus acutissima		74		4	80	3			533	701	12	
			PMC, Americus, Ga.		75		4	80	4			579	732		
					78		4	80	3			900	1000		
					79		4	80	3			850	1000	20	
					93 96		3 2	60 40					938 1055	39	
					98		2	40					1098	43	
					03		2	40					1000	45	
					04		2	40					1205		
G1 17 1-3	JUNI	9004312	black walnut	77	77	3	3	100	3			10	45		
			<i>Juglans nigra</i> Doniphan Co., Kans.		78 70		3	100 100	1 1			80 250	117 240		
			Doniphan Co., Kans.		79 83		3 3	100	I	1		250 550	240 575	9	
					93		3	100		1		550	1155	18	
					01		3	100					1329	24	
					06		3	100					1600	31	
													105		
G2 16 1-8	ULMUS	9004462	elm	76	76 77	8	8	100	3			110 270	130 174		
			<i>Ulmus</i> sp. PI Station, Ames, Iowa		77 78		8 8	100 100	3 1			270 420	315		
			i i Gialion, Ames, iowa		78 79		о 8	100	1			420 600	400		
					83		8	100	1	3	3	900	860		
					86		8	100	•	•	•	914	1200		
					00		8	100					1551		
					05		8	100					1713		

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
G2 23 6-8	AEGL	9030309	Ohio buckeye <i>Aesculus glabra</i> PI Station, Ames, Iowa	81	81 82 83 85 86 91 93 05	3	3 3 3 3 3 3 3 3 3 3	100 100 100 100 100 100 100 100	6 5 4	6 4	3 8 5	15 15 24 95 206	52 58 64 88 142 236 278 501		Leaves dropping 8/20.
G2 24 6-7	ACPL	9030308	Norway maple <i>Acer plantanoides</i> PI Station, Ames, Iowa	81	81 82 83 85 87 93 05	3	3 3 2 2 2 1 1	100 100 67 67 67 33 33	6 5 5	5 5	5 5	21 30 55 120 100	118 104 110 274 280 364 478	5	
G3 16 1-8	QUAC80	9008245	sawtooth oak <i>Quercus acutissima</i> PMC, Knox City, Tex.	76	76 77 78 79 83 85 95 00 05	8	8 8 8 8 8 8 8 8 8 8 8	100 100 100 100 100 100 100 100	5 5 3 5 3 1	3 1	3 2	25 90 150 220 420 427	40 70 170 300 550 518 953 1055 1095	7 18 23	
G3 18 1-8	QUMA2	9004392	bur oak <i>Quercus macrocarpa</i> City Park, Stillwater, Okla.	76	76 77 78 79 81 83 85 86 89 93 95 00 05	8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 100 100 100 100 100 100 100 100 100	3 3 3 3 3 3 5 2	1	4	15 80 100 260 560 457 549	80 140 180 300 425 575 518 600 853 933 1048 1042	13 23 22 27 30 35	

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT SYM	Accession	Species Origin/Source	YR	YR REC	NO. EST	NO. SRV	PCT SRV	VI	DI	IN	CAN COV	PLT HGT	PLT DBH	Plot Remarks
Location G3 19 7	CACR27	Number 9034858	Origin/Source chestnut hybrid	PLT 76	76	1	<u>5RV</u> 1	100	5			5	<u>HG1</u> 15	DBH	
05 15 7	CACIN27	3034030	Castanea crenata	70	77	(8)	1	100	3			25	45		
			PMC, Elsberry, Mo.		78	(0)	1	100	3			80	90		
					79		1	100	3			180	200		
					83		1	100	1	1	2	520	440		
					85		1	100	1	-	_	460	457		
					93		1	100					679		
					95		1	100					738		
					00		1	100					884		
					05		1	100					842		
HQ1 1/1	NYSY	9050506	black gum	66	66	1	1	100							
			Nyssa sylvatica		06	1	1	100					1050	22	
			Forrest Keeling Nursery,												
			Elsberry, Mo.												
HQ1 3/1	TIEU3	9050505	Redmon Crimean linden	66	66	1	1	100							
	HE00	0000000	Tilia X euchlora	00	06	1	1	100				1483	1580	88	
			Plumfield Nursery,			•									
			Fremont, Nebr.												
HQ1 5/1-10	JUSQ2	9030990	blue star juniper	82	82	4	4	100				10	5		Plants not hardened off; failed to
	000Q2	3030330	Juniperus squamata	02	83	(10)	4	100				12	6		establish.
			Holland /PI Sta., Ames,		91	(10)	4	100				43	18		
			lowa		96		4	100	3			53	24		
					98		4	100	-			63	27		
					06		3	75				61	30		Declining, competition from grasses
104 0/2		0004000			77	4		400							
HQ1 8/3	PIAY	9004363	Mexican white pine	77	77 06	1 1	1 1	100 100					1150		
			<i>Pinus strobiformis</i> Lincoln Co., N. Mex. /Rky		06	1	.1	100					1150		
			Mtn Exp Sta., Nebr.												
HQ2 2/16	SYOBD	9050510	Korean early lilac	76	76	1	1	100							
			Syringa oblate dilatate		06	1	1	100				24	268		
			/ARS Hort. Sta.,												
			Cheyenne, Wyo.												
HQ2 3/1	ULDAJ	421614	Japanese elm	77	77	1	1	100							
			<i>Ulmus davidiana</i> var		82	1	1	100	1	3	3	475	470	6	
			japonica		83	1	1	100	1	2	3	450	600	9	
			ARS Nurs. Crops Res.		06	1	1	100					1925	75	
			Sta., Delaware, Ohio												

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
HQ2 3/19	MALUS	514275	hybrid crab apple <i>Malus sp.</i> Clinton Co., Mich. /PMC, East Lansing, Mich.	77	77 06	1 1	1 1	100 100							
P 22 1-5	ULMUS	566597	elm <i>Ulmus</i> hybrid PI Station, Ames, Iowa	01	01 02 03 04 05 06	5	5 5 5 5 5 5 5	100 100 100 100 100 100	1	2 3	2 7 7	74 81 104 154 212	103 125 109 156 225 293		Medium browse Severe rubbing and browse damag Heavy deer browse
P/S 1-6, 8- 10	PINI	399400	Austrian pine <i>Pinus nigra</i> PI Station, Ames, Iowa	77	77 78 79 83 86 96 01 06	9 (10)	9 9 9 9 9 9 8	100 100 100 100 100 100 100 89	7 7 3 5			13 30 47 205 296	12 23 48 210 380 668 817 1039	3	No. 9 produced seed
P/S 7, 11- 30, 55, 57, 83, 85	PINI	9034670	Austrian pine <i>Pinus nigra</i> /KSU Forestry, Manhattan, Kans.	81	83 86 95 01 05	25 (26)	25 23 23 23 23 23	100 92 92 92 92 92	5 5		3	28 64	22 62 337 615 730	20	No. 55 produced seed
PQ/S 31- 35, 37-50	PISY	399402	Scots pine <i>Pinus sylvestris</i> PI Station, Ames, Iowa	77	77 78 79 83 86 96 01 06	20	20 20 19 19 19 19 19 13	100 100 95 95 95 95 65	3 3 2 5		3	14 33 52 230 345	21 36 56 225 342 728 844 1009	4 25	No. 48 & 50 produced seed
P/W 1/ 1	LIST2	9050512	sweetgum <i>Liquidambar styraciflua</i> /Forest Keeling Nursery, Elsberry, Mo.	66	66 06	2	2 1	100 50				1564	1430	72	
P/W 1/ 2	JUVI	9050514	Canert juniper <i>Juniperus virginiana canaerti</i> /Nelson Nursery, Enid, Okla.	65	65 06	1 1	1 1	100 100							Over topped with vines

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans, (continued)

Plot	PLT	Accession	Species	YR	YR	NO.	NO.	PCT	VI	DI	IN	CAN	PLT	PLT	Plot Remarks
Location	SYM	Number	Origin/Source	PLT	REC	EST	SRV	SRV				COV	HGT	DBH	
P/W 1/ 3	JUHO2	9050513	blue creeping juniper Juniperus horizontalis glauca /MIPMC	66	66	1	1	100							
P/W 1/ 4	QURU	9000399	northern red oak Q <i>uercus rubra</i> Eureka, Kans.	66	66 06	1 1	1 1	100 100				1501	1130	44	
P/W 1/ 5-6	FRPE	9001455	ash Fraxinus <i>sp.</i> Marshall Nursery, Arlington, Nebr.	71	71 06	2 2	2 2	100 100					1225	65	
Q/S 51-54, 56, 58-70	PISY	399403	Scots pine <i>Pinus sylvestris</i> PI Station, Ames, Iowa	77	77 78 79 83 86 96 01 06	18 (20)	18 18 18 18 18 18 18 13	100 100 100 100 100 100 100 72	3 3 1 5	4	3	18 35 55 245 381	24 36 57 240 413 819 945 1178	5 28	52,53,58,61-62,65,68 prod. seed
Q/S 71-82, 84, 86-90	PISY	399404	Scots pine <i>Pinus sylvestris</i> PI Station, Ames, Iowa	77	77 78 79 83 86 96 01 06	18 (20)	18 18 18 18 18 18 18 18	100 100 100 100 100 100 100 100	5 5 3 5	3	3	12 26 40 175 294	16 21 36 175 315 714 832 991	2 31	

Table 2.4 Study No. - 201010K Initial Evaluation: Miscellaneous trees and shrubs, Manhattan, Kans. (continued)

Refer to Page 67, legend for miscellaneous trees and shrub evaluations.

Legend for miscellaneous trees and shrub evaluations:

Plot Location: Field number, row number, and plot (numbered spaces in the row).

E.g. B3 1 9-14 = Field Row Plot numbers B3 1 9-14

CAN COV: Crown width or ground cover as measured in centimeters DI: Disease Resistance, rating 1-9 IN: Insect Resistance, rating 1-9 NO. EST: Number Established NO. SRV: Number Surviving PCT SRV: Percent Survival * May not agree with current plot number designations. PLT DBH: Diameter at Breast Height in centimeters, measured at 137 cm above the ground PLT HGT: Total plant height as measured in centimeters VI: Plant Vigor, rating 1-9 YR PLT: Year Planted YR REC: Year of Record

3. Study No. 201026K - Evaluation of hackberry.

Introduction: Common hackberry (*Celtis occidentalis* L.) is a small-to-medium tree 9.1 to 15.2 m (30 to 50 ft) tall and 0.5 to 0.6 m (18 to 24 in) in diameter varying greatly in response to habitat. Potentially the species may attain heights upwards of 30.5 to 39.6 m (100 to 130 ft) and trunk diameters up to 1.2 m (4 ft). The crown is normally rounded and composed of large spreading branches. Hackberry is drought resistant and has survived extremely dry periods on the Great Plains. It is a long-lived species, believed to live 150 to 200 years (USDA Forest Service 1965; Rehder 1940).

A native to North America, common hackberry is commonly found throughout the eastern three-quarters of the Great Plains and stretching on east to the east coast. Hackberry grows on rich, moist soils along stream banks, on flood plains, and on rocky hillsides in open woodlands. In western Nebraska, hackberry grows on the north side of sand dunes and in river valleys.

Problem: There are no reliable seed sources for common hackberry cultivars adapted to western Nebraska and western Kansas. Existing nursery stock is very often of unknown origin and therefore of questionable quality. A tested and proven superior cultivar is needed to provide consistent, high quality plant material for farmstead and field windbreak plantings.

On-Center evaluations of plant materials for western Nebraska and western Kansas have proven to be unsatisfactory. Extreme differences in climate make initial evaluation at Manhattan unreliable and insufficient. For this reason, initial evaluations are being conducted where the species is needed.

Objective: Evaluate and select a superior accession of common hackberry as an adapted native tree for use in windbreak and wildlife plantings in western Kansas, western Nebraska, and northeastern Colorado.

Procedure: The original assembly consisted of 43 accessions. The seed was planted in a seedling nursery in the fall of 1979. Seedlings 0.3 m (1ft) tall were lifted in the fall of 1980 and placed in cold storage. An initial evaluation planting (IEP) at the Manhattan PMC and field evaluation plantings (FEP) at the Tribune Experiment Station and Sheridan Wildlife Area near Quinter, Kansas, were made in the spring of 1981. A field planting was made at Valentine, Nebraska. The only successful plantings were the Manhattan IEP and the Tribune FEP. The Manhattan IEP consists of one to six plants per plot in a non-replicated randomized planting; refer to Figures 2.1 and 2.2 in the map section of this report for plot locations. The Tribune FEP was established in a completely randomized design, three plants/plot and three replications. The spacing between plants was 4.6- x 5.5-m (15- x 18-ft).

Potential Products: Cultivar Release

Progress or Status: Minimal observation and site maintenance were performed this year.

Literature Cited:

Rehder, A. Manual of Cultivated Trees and Shrubs. The Macmillan Company, New York, 1940, 996 p.

USDA Forest Service. Silvics of Forest Trees of the United States. Agric. Handbook No. 271. Compiled and revised by H. A. Fowells. Washington, D.C., 1965.

4. Study No. 201031K - Evaluation of Oriental arborvitae.

Introduction: Oriental arborvitae [*Platycladus orientalis* (L.) Franco] is a medium-sized tree reaching heights of 9 to 11 m (30 to 36 ft) at maturity. Growth habit is normally pyramidal or bushy. Many cultivars exhibiting unique characteristics of growth form and color have been selected for landscape use.

Oriental arborvitae is native to Asia occurring in northern and western China and Korea. It is an aromatic evergreen with scale-like appearance. Male and female flowers are borne on the same tree but usually on separate twigs or branches. Flower buds form in the fall and develop into small cones, 1.1 to 2.5 cm (0.4 to 1 in) long with 6 to 8 scales per cone. The cones mature the following spring. *Platycladus orientalis* is easily distinguished from a similar species native to the U.S.; eastern white cedar (*Thuja occidentalis* L.) which has a vertical disposition of leaf sprays, thick cone scales, and wingless seed.

Oriental arborvitae is adapted to a wide range of soil types and excellent survival can generally be expected from the use of bare-root stock.

Problem: Eastern red cedar (*Juniperus virginiana* L.) and Rocky Mountain juniper (*J. scopulorum* Sarg.) are two commonly planted evergreens in the Western Great Plains which serve as alternate hosts for cedar apple rust. In addition, eastern red cedar is often considered a weed pest in poorly managed pasture and rangeland. Evergreen species that do not pose a threat to fruit orchards or occur as a weed pest are needed for use in field and farmstead windbreaks. Diversity within windbreak plantings is desirable to ensure continued function with outbreaks of specific disease and insect pests. Oriental arborvitae offers a potential alternative evergreen for use in place of or in addition to eastern red cedar or Rocky Mountain juniper.

No adapted cultivars of oriental arborvitae are available for use in Major Land Resource Areas (MLRAs) 64, 65, 67, 71-73, and 77-80 in western Nebraska and Kansas. Oriental arborvitae is available through the Oklahoma State Forestry Nursery, but this material is unproven over a large portion of the total area for which the species could be adapted. A tested and proven cultivar of oriental arborvitae is needed to provide consistent high quality plant material for farmstead and field windbreak plantings in the Great Plains.

On-Center evaluation of plant materials for the Western Great Plains area has proven to be unsatisfactory. Evaluation of plant materials at Manhattan cannot adequately test for extremes of climate encountered in the High Plains of western Kansas, Nebraska, and Oklahoma. For this reason, initial evaluation will need to be conducted off-Center in areas for which the plant material is intended for eventual use.

Objectives: Select a superior accession or accessions of oriental arborvitae for use in windbreak and wildlife plantings in western Kansas, Nebraska, and Oklahoma.

Initial evaluation must be conducted off-Center in MLRAs for which the plant has been selected. Planting, evaluation, and plot maintenance should be conducted in a precise and controlled manner as outlined by the study plan.

Procedure: Fifty-five accessions were assembled from seed collections in Kansas, Nebraska, Oklahoma, and 27 foreign countries. Insufficient seedling numbers caused by low germination narrowed the field to 35 accessions to be evaluated. Accessions (N) were planted at the Manhattan PMC (35); Southern Plains Range Research Station (18), Woodward, Oklahoma; Mead (16), Nebraska; Alliance (22), Nebraska; Sheridan Wildlife Area (26), Quinter (26), Kansas; and Knox City (15), Texas, PMC. All plantings were made in 1983, using 2-0 stock in a randomized complete block design. With the exception of the Manhattan PMC and Knox City PMC, plantings contained 3 replications with 3 trees per plot on a 3- x 4.6-m (10- x 15-ft) spacing. The Manhattan and Knox City plantings were non-replicated plots consisting of 6 trees per plot and 5 trees per plot, respectively. Refer to Figure 3.1 in the map section of this report for plot locations at Manhattan.

Evaluation Factors: Factors for evaluation include survival, rate of growth, vigor, plant size, uniformity, foliage density, and stress due to climatic factors, insects, and disease. Special attention will be given to winter hardiness in northern plantings.

Potential Products: Cultivar Release

Progress or Status: Archiving seed of each tree was continued this year. It is desirable to retain seed of each tree before they are removed from the plantation. Seed was collected from each individual tree that produced seed at Manhattan. The amount of fruit was rated for each tree before collecting cones. A representative sample of cones was collected from each tree. The collection process began once cones had begun to open exposing the mature seeds. Collecting continued until enough cones were collected from each tree to fill up to an 11.5- x 12-cm (4.5- x 5-in) cloth bag. The cones were dried down and placed in the seed storage building until the collections can be processed. A fourth and final year of seed collecting is planned for 2007, from trees that have produced little seed.

Literature Cited:

Schopmeyer, C. S., Technical Coordinator, 1974. Seeds of Woody Plant in the United States. Agriculture Handbook No. 450. USDA Forest Service, Washington, D.C., 883 p.

5. Study No. 201037K - Evaluation of selected common hackberry.

Introduction: The selection of woody plant materials is typically lengthy. The process can take 20 years or more. George and Frank (1973) observed that tree seedlings having larger stem diameters at 1 year continued to display that same characteristic following the second growing season in the nursery. Green ash (*Fraxinus pennsylvanica* Marsh.) seedlings graded into four grades based on height and stem diameters were field grown for 29 years. The growth rate of grade 1 stock exceeded the other grades in both diameter and height over the 29-year period. Grade 2 stock likewise exceeded grades 3 and 4. Similar results were observed for American elm (*Ulmus americana* L.) where grade 1 stock exceeded two other grades in height for 20 years, and diameter for 15 years. Clausen (1963) reported that birch trees originally classified as small, medium, and large, maintained their relative position after nine years in the field. A hypothesis was developed whereby superior seedling trees of common hackberry (*Celtis occidentalis* L.) might be selected from the nursery bed. The criteria for selection would be to select seedlings based on height, stem caliper, and form. It was theorized that such seedlings would prove to be superior. The work of George and Frank supports this theory. If true, the established trees would become the source material and eliminate the amount of time required to establish a productive seed orchard.

Problem: There are no reliable seed sources for hackberry cultivars adapted to western parts of Nebraska, Kansas, Oklahoma, and northeastern Colorado. Existing nursery stock is very often of unknown origin and therefore of questionable quality. A tested and proven superior cultivar is needed to provide consistent, high quality plant material for farmstead and field windbreak plantings. The process for selecting quality nursery stock is lengthy.

Objective: Evaluate and select a superior accession of common hackberry as an adapted native tree for use in windbreak and wildlife plantings in western Kansas, Nebraska, Oklahoma, and northeastern Colorado.

Procedure: The best single seedling was selected from 30 different accessions growing in a seedling production nursery at the PMC, Manhattan, Kansas. The origin of all accessions was from collection locations south of the Platte River in Nebraska. Seedlings (n) originating from Kansas (11), Nebraska (4), Missouri (8), Oklahoma (5), Iowa (1), and Arkansas (1), were selected. The 1-0 seedlings were planted in a spaced plant nursery on 9.1 m (30 ft) spacing, on a Belvue silt loam soil, March 21, 1988, in Field D-1 at the PMC.

Evaluating Factors: Plant vigor; growth rate and uniformity; and resistance to insects, disease, and climatic factors.

Potential Products: Cultivar Release

Progress or Status: Minimal observation and site maintenance were performed this year.

Literature Cited:

- George, E. J. and A. B. Frank. 1973. Graded nursery stock in shelterbelt type planting evaluated over 29-year span. Tree Planters' Notes 24:30-32.
- USDA Forest Service. Nursery selection affects survival and growth of birch. Research Note LS-31. Lake States Forest Experiment Station. K. E. Clausen. Washington, D.C., 1963.

6. Study No. 201038K - Bur oak seed source study.

Introduction: Bur oak (*Quercus macrocarpa* Michx.) is a hardy, drought resistant, long-lived tree adapted to a wide range of growing conditions. On favorable sites it may attain heights of up to 30.5 m (100 feet). Bur oak is well known for its deep taproot system, which provides drought tolerance and resistance to wind-throw. The principal factor discouraging the use of bur oak in Great Plains shelterbelts has been slow growth, especially the first year after planting.

Bur oak is widely distributed in the Great Plains. Its range extends from Texas north to central Saskatchewan. Most of the native populations are found on deep soils in bottomlands and occasionally on upland sites. A Nebraska study, reported by Dickie and Bagley (1980), suggested that there is considerable genetic variability in the species and that further evaluation is warranted. At the 1990 Great Plains Tree Improvement Committee (GP13) meeting, a motion was passed to initiate a bur oak seed source study for the Great Plains.

Problem: No known cultivars of bur oak are available for conservation use. Superior bur oak cultivars are needed for watershed protection, for multi-row windbreaks, for landscape plantings for farmsteads and parks, for reforestation on disturbed lands, and for wildlife plantings throughout the Great Plains region.

Objective: The principal objectives of the study are to determine the nature and extent of genetic variation present among bur oak families from selected sources in the Great Plains, to provide genetically improved bur oak seed for shelterbelt planting, provide germ plasm that can be used for selection and trait improvement as well as advanced generation breeding, and to survey acorn weevil *Curculio* sp. distribution and its impact on seed quality.

Procedure: Acorns were collected from individual trees displaying superior phenotypic characteristics in the fall of 1990. Seed collections, consisting of 400 acorns, were shipped to the Nebraska Forest Service, Lincoln, Nebraska, for assembly of collections. Thirty acorns of selected accessions were shipped to trial sites for grow out. The Manhattan PMC requested 52 accessions from Central Great Plains sources. The PMC received only 22 accessions due to a poor acorn crop in some parts of the Great Plains. In addition to these collections, two local collections were included in the study at Manhattan, 'Lippert', accession 9004392 and accession 9050065. Accession 9050065, a collection that was made on the Center, was also entered in the GP13 assembly for planting out at other trial sites. Acorns were planted in a soil-less mix in 102 cm³ (40 cu in) deep pots in the spring of 1991. The "conetainers" were placed in the greenhouse for grow out. Only enough trees from 16 accessions were available for the planting. The plot layout consisted of five replications with two plants per plot. The plants were spaced 4.6- x 4.6-m (15- x 15-ft) apart in a randomized complete block design in the fall of 1992. A second collection was conducted in the fall of 1992. Sixteen accessions were received by the

PMC from the second collection. These acorns were grown out in the greenhouse in 1993 and planted in the field June 14. There were enough seedlings to establish a 68.6- x 91.4-m (225- x 300-ft) field plot consisting of 26 accessions, Figure 4.1 (refer to the map section of this report). The plot was surrounded by a border row composed of trees from the same sources. Some of the northern sources and individual trees of other entries did poorly. These were replaced by either white oak, (*Quercus alba*), accession 9050077or by green ash, (*Fraxinus pennsylvania*), accession 9050087, to provide adequate competition for the remaining trees.

A complete list of sources established at Manhattan is listed in Table 6.1.

Potential Products: Cultivar Release

Progress or Status: Minimal observation and site maintenance were performed this year.

Literature Cited:

Dickie, S. G. and W. T. Bagley 1980. Variability of *Quercus macrocarpa* Michx. in an eastern Nebraska provenance study. Silvae Genet. 29(5/6):171-176.

7. Study No. 201039E - Evaluation of switchgrass germ plasm for rhizomatous characteristics.

Introduction: Switchgrass (*Panicum virgatum* L.) is a perennial, warm-season grass that is widely distributed over much of the continental United States. It occurs naturally with other tall-grass prairie species such as big bluestem and Indian grass. Forage quality of switchgrass is generally recognized as being excellent for grazing. In addition to its forage value, it is widely used in areas where soil-conserving practices are needed. Switchgrass is also recognized as a species of wide diversity in growth forms, which often proves valuable in a plant-breeding program. Heritable variation has been observed in endemic strains collected from native grasslands. Newell and Eberhart (1959, 1961) discussed the heritability of certain morphological characteristics from switchgrass strains collected in different locations in the Great Plains. Their studies indicated that a significant proportion of the total variation is due to genetic differences. A source material collected in Roger Mills Co., Oklahoma, accession 9049968, was screened using recurrent selection techniques to select for a highly rhizomatous type of switchgrass at the Manhattan PMC.

Objective: The goal of this work is to select superior seed to improve the germination and seedling vigor of rhizomatous switchgrass to promote rapid establishment of this species for re-vegetation projects, waterway establishment, and commercial seed production.

Procedure: A sample lot of seed was obtained from switchgrass polycross nursery harvests in 2000, 2001, 2002, 2004, and 2005. All seed lots were handled and stored in the same manner. Seed lots were divided into two fractions, heavy and light, utilizing a South Dakota Seed Blower. These fractions were then weighed in ten replications of 100 seeds and recorded. Two germination strategies were used in the experiment, 1 week at 24°C (75°F), and 2 weeks cold, moist stratification, and one week at 24°C. The results were recorded and analyzed.

Germination tests were performed on seed lots of rhizomatous switchgrass from 2000, 2001, 2002, 2004, and 2005. Each seed lot was split into 3 fractions, Unsorted, Light, and Heavy, using a South Dakota Seed Blower. This was done by pulling a small unsorted sample from each year's seed lot, and then placing the rest of the seed, 30 to 50 ml at a time, in the South Dakota Seed Blower. It was blown for one minute with the opening set at 5.5 cm. (The 2005 seed was blown with the opening set at 6 cm; 5.5 cm for the 2005 lot of seed did not yield an even separation, so slightly more air was used to achieve a better separation.)

The 3 fractions, Unsorted, Light, and Heavy, from each year were subjected to two germination procedures. The first germination was done using 24°C for one week, and the second was accomplished using cold, moist stratification at 4°C two weeks. After the two weeks of cold, moist stratification, the seed was placed in a germinator at 24°C for one week. The germination was counted, recorded, and analyzed. There were 4 replications of 100 seeds for each treatment and seed lot. The germination was only recorded for one week due to the rapid establishment aspect of this study.

4 replications 2 treatments (24°C 1 week; cold, moist stratification 2 weeks) 3 seed samples (Unsorted, Light, and Heavy) 5 years (2000, 2001, 2002, 2004, 2005)

Evaluation Factors: Data such as plant height, spread, disease resistance, and flowering date, will be collected on the plants through out the growing season.

Potential Products: Cultivar Release

Progress or Status: There were significant differences at the .05 level between all variables in this experiment. The germination tests established that the heavier seed from rhizomatous switchgrass had increased germination and that cold stratification provided a significant improvement to the germination of this species. The 2005 seed lot showed a significant decrease in germ when compared to the older lots of seeds. When comparing all factors using Tukey's All Pair-Wise Comparison, the 2005 seed stood alone as being significantly worse in germination from the older seed. However, the heavier, cold stratified seed from 2005 did have the highest germination when compared to the other fractions and treatments from that year. This is important to the rapid establishment goal of this study. Though the seed from 2005 showed a decrease in germination compared to older lots of seed, the seed that did germinate might be used in a poly-cross nursery to decrease the amount of dormancy in this species.

Using the information gathered from the germination tests of rhizomatous switchgrass, a protocol for establishing seedlings for a poly-cross nursery was established. This protocol involves using the heavy fraction of seed from 2005 and placing it under a series of stresses during germination to aid in the selection of the most vigorous seedlings. The stresses for this portion of the study were heat, cold, acid, and salt.

<u>Heat Stress</u>: A small sample of heavy seed from the 2005 harvest of rhizomatous switchgrass was placed in cold storage for 2 weeks at 4°C on a moist germination pad. It was then planted into a seedling flat using a 50:50 ratio of Pro-Mix 'BX' and soil from the field. The soil from the field ensured that any pathogens present in field were also available to attack the seedlings during the stress test.

The seedling flat was then placed in a germinator set at 41°C (103°F) with a 16h dark/8h light photo period. This photo period was used on all the germinators during the stress testing. The seedlings were allowed to germinate and grow in the germinator. Special attention was given to these plants to ensure they had sufficient water. The seedlings remained in the germinator until they showed signs of dampening off. At this point, the flat was moved to the greenhouse. The plants were grown out for another week, and the biggest, healthiest seedlings were transplanted to cone-tainers for use in the polycross nursery.

<u>Cold Stress</u>: The cold stress was very similar to the heat stress. A portion of the same seed fraction which was used in the heat stress test was cold stratified for 2 weeks. After this time, the seeds were planted into a flat in the same manner as the heat stress test. The flat was them placed in a germinator set at 18°C (64°F). The flat showed no signs of germination after one week, so the temperature was increased a degree per week until enough seedlings had germinated for transplanting into cone-tainers. This procedure took about 4 weeks. The final temperature in the germinator was 22°C (72°F). These seedlings were then taken to the greenhouse and allowed to grow until they were large enough to transplant. The biggest, healthiest seedlings were then selected from this stress test and transplanted into cone-tainers for use in the poly-cross nursery.

<u>Acid Stress</u>: The acid stress test used the same heavy, stratified seed lot from the 2005 harvest. Five hundred milliliters of distilled water was brought to a pH of 3.15 by adding sulfuric acid (H_2SO_4). It only took a minute amount of acid, two or three drops, to lower the pH of the water to this level. The seed was then placed in a germination box on germination paper that had been moistened with the 3.15 pH solution. This was placed in a germinator set at 20/30°C (68/86°F). The time periods for each temperature were 16h dark and 8h light, respectively.

After one week the germination was checked. Some seed had germinated, and was allowed to grow in the germination box for another week until big enough to transplant. The seed was watered as needed with the pH 3.15 solution during this period. It was then transplanted straight into cone-tainers and placed in the greenhouse with the other seedlings.

<u>Salt Stress</u>: This test was very similar to the acid stress test. A solution of 5 parts per thousand NaCl was made. This can be done by placing 5 g of salt in 1000 g of water, 2.5 g of salt in 500 g of water, etc. Parts per thousand also translates into 5 mg/l, however 5 mg is a very small quantity to weigh. Grams are a much easier unit to work with and do not require the use of an analytical balance.

The heavy, stratified seed from 2005 was placed in a germination box on a piece of germination paper that had been moistened with the 5 ppt NaCl solution. It was then placed in the germinator with the same settings used in the acid test. The germination was checked after one week. The seedlings were then allowed to grow in the germination box just as in the acid test, and were watered with the 5 ppt NaCl solution as needed. When the seedlings were large enough, they were transplanted into cone-tainers and placed in the greenhouse with the other plants for use in the poly-cross nursery.

<u>Selections</u>: Materials from the stress test were grown out in the greenhouse. More plants than were needed for the poly-cross nursery were started. This is to compensate for any seedling that might die during transplanting, and to allow selections to be made from the healthiest seedlings from each stress test. The largest, healthiest plant materials were transplanted to the field in a Latin Square design. Seed was harvested at the end of the growing season and compared to the data from the previous year to mark any improvements in germination and seed size.

Literature Cited:

- Eberhart, S.A. and L.C. Newell. 1959. Variation in domestic collections of switchgrass, *Panicum virgatum* L. Agronomy Journal 51:613-616.
- Newell, L.C. and S.A. Eberhart. 1961. Clone and progeny evaluation in the improvement of switchgrass, *Panicum virgatum* L. Crop Science 1:117-121.

8. Study No. 201041K - Evaluation of Siberian elm.

Introduction: Siberian elm (*Ulmus pumila* L.) has been planted and tested in the Central and Northern Plains States since the early 1900s. This species once became of interest to researchers because of its apparent rapid rate of growth. Thus, early tests indicated that it warranted further distribution and additional adaptability studies. Extremes in weather conditions have proven challenging to the species over the years on the Plains states. It begins blooming early in the year if weather conditions permit and is one of the last deciduous trees to defoliate in the fall. Therefore, this species tends to be frequently damaged by freezes early in the spring or fall of the year. Early fall ice or sleet storms on the Plains tend to damage Siberian elm more severely because of the late loss of leaves and brittle wood that is subject to breakage. This species is also susceptible to a number of diseases such as Tubercularia canker and Botryodiplodia canker and wet wood. Common insect pests are cankerworm and elm leaf beetle. Despite these faults and its relative short life span there are many locations where Siberian elm can be effectively utilized in shelterbelts and windbreaks.

Problem: The need exists to develop an improved Siberian elm for use in shelterbelt and windbreak conservation practices in semiarid regions of the service area: northeastern Colorado, western Kansas, western Nebraska, and southeastern Wyoming.

Objectives: Select individual seedlings from the available germ plasm with the following characteristics: improved initial survival, growth rate, insect and disease resistance, drought resistance, and earlier fall defoliation.

Procedures: Siberian elm accessions grown in raised beds at the PMC were lifted on March 25, 1999. Seedling production by the various accessions met with mixed success. Some accessions produced abundant, healthy seedlings and other accessions produced limited numbers of seedlings. The production of limited number of seedlings by some accessions cause evaluation plots to be limited in number and scope. Evaluation plots were designated for western Nebraska and eastern Colorado to test the accessions in the environment in which it will be utilized.

A three-replication, randomized evaluation plot containing 15 accessions and three seedlings per plot (MAPS Figure 5.1) was established on April 15, 1999, in Akron, Colorado. The plot was established in a recently tilled area on the USDA/ARS Central Great Plains Research Station, 4 miles east of Akron. The elm seedlings were planted using a tractor-drawn tree planter which made the planting quick and efficient. Due to the extremely windy conditions experienced the day of planting the weed barrier fabric [1.83 m (6 ft) Sunbelt] was not installed until May 19, 1999.

The Akron Site is located in Logan County, Colorado. The planting was established in cooperation with the USDA ARS Central Great Plains Research Station at Akron, Colorado. The site is located within MLRA 72. Average annual precipitation is 40.6 cm (16 in). The soils are classified as a Rago silt loam.

A three-replication, randomized evaluation plot containing 11 accessions and three seedlings per plot (MAPS Figure 5.2) was established on May 18, 1999, in Sidney, Nebraska. The plot was established in a disked area that was planted to wheat the previous growing season. The elm seedlings were planted by hand and then a tractor was utilized to apply the 1.83 m (6 ft) Sunbelt weed barrier fabric to the plot.

The Sidney Site is located in Cheyenne County, Nebraska. The planting was established in cooperation with the Nebraska State Forestry Service. The planting was established on the Tom Knighttengale farm located approximately 4 miles north of Sidney, Nebraska. The site is located with MLRA 72. Average annual precipitation is 40.6 cm (16 in). The soils are classified as Goshen silt loam.

Evaluating Factors: Factors for evaluation include survival, plant growth, vigor, winter injury, disease, and insect resistance.

Potential Products: Cultivar Release

Progress or Status: Evaluations were performed at the Akron and Sidney sites on October 4, 2006 with 97% survival and 85% survival, respectively. Heights ranged from 100 to 482 cm at Akron and 100 to 491 cm at Sidney with means of 351 and 316 cm respectively, Table 8.1. There was some loss in tree height from the previous year at both locations. Two accessions at Akron suffered losses in height due to die back and there was no change in height in one accession. At Sidney, four accessions experienced losses in tree height.

		Akron	, ,		Sidney	
Accession	HGT 05	HGT 06	Foliage	HGT 05	HGT 06	Foliage
Number	(cm)	(cm)	Retention	(cm)	(cm)	Retention
			Rating 10/04			Rating 10/04
9050184	353	356	1.7	326	332	1.6
9050213	341	348	2.0	315	323	2.0
9050214	342	356	1.8	365	332	1.3
9050216	345	335	1.2	-	-	-
9050217	308	318	2.2	323	287	1.3
9050219	359	367	1.5	289	210	1.6
9050222	342	349	1.2	318	332	1.5
9050224	381	392	1.4	315	322	1.0
9050225	359	339	1.8	-	-	-
9050226	337	347	1.5	345	334	1.3
9050228	359	368	1.7	292	309	1.9
9050233	312	322	2.0	290	331	1.3
9050235	370	380	2.1	-	-	-
9050240	354	367	1.3	351	363	1.0
9050241	328	328	1.8	-	-	-
Mean	346	351	1.7	320	316	1.4

Table 8.1 Two-year tree height data and 2006 foliage retention ratings for Siberian elm at Akron, Colorado and Sidney, Nebraska.

The trees at Sidney suffered three times more dieback than at Akron and mortality was five times greater. At Sidney, eighty-nine percent of the trees in accession 9050219, Stevens County, Kansas, suffered some degree of dieback and one was dead. Accessions 9050214 and 9050217, Beaver County, Oklahoma and Ellis County, Oklahoma, were among the worst performers. Each had two trees with dieback and three trees that were dead. There were four with dieback and one dead in accession 9050226, Custer County, Oklahoma. Overall there was a 27.4% incidence of dieback and a 15% mortality rate. At Akron the incidence of dieback was much less, only 6% and a mortality rate of just 2%, Table 8.2.

Leaf retention was rated a three levels, no leaf retention, one-half of the leaves were retained, and minimal leaf drop, a rating of 1 to 3 respectively, on October 4, 2006. Early leaf loss was identified as a desirable characteristic in this study in order to determine branch breakage due to ice storms; which was not noticeable after 6 years growth. Refer to Tables 8.3 and 8.4 for data on individual accessions.

	Perc	ent Leaf Reter	ntion	Die	eback	D	ead
Location	None	50%	Minimal	No.	%	No.	%
Akron	61.1	6.9	32.1	8	6.1	3	2.2
Sidney	75.9	6.0	18.1	23	27.4	15	15

Table 8.2 Leaf retention ratings and survival for Siberian elm at Akron and Sidney.

Table 8.3 Study No. – 201041K Initial Evaluation: Siberian elm (Ulmus pumila), Akron, Colorado.

Accession	Origin/Source	YR	YR	NO	NO	PCT	FOL	PLT	BAS	Remarks
lumber 050184	Roger Mills Co., Okla.	PLT 99	REC	PLT 9	SRV	SRV	DEN	HGT	DIA	Plot Legend: e.g. 2-214-1 = rep-last three digits accn. no. – tree no.
9050184	Roger Millis Co., Okia.	99	00 01	9	9 9	100 100		173 244		
			02		9	100		244		
			03		9	100		282		
			05		9	100	94	353	10.4	
			06		9	100		356		
9050213	Woodward Co., Okla.	99	00	9	9	100		157		
			01		9	100		238		
			02		9	100		241		
			03 05		9 9	100 100	67	289 341	10.6	
			05		9	100	07	348	10.6	
9050214	Beaver Co., Okla.	99	00	9	9	100		180		
			01		9	100		262		
			02 03		9 9	100 100		262 276		2-214-1 – DBK
			05		9	100	78	342	12.0	2-214-1 - DDIX
			06		9	100	10	356	12.0	2-214-1 – DBK
9050216	Ellis Co., Okla.	99	00	9	9	100		171		
			01		9	100		257		
			02 03		9 9	100 100		261 304		
			05		9	100	83	345	12.0	
			06		9	100	00	335	12.0	2-216-3 – DBK; dying
9050217	Ellis Co., Okla.	99	00	9	9	100		173		
			01		9	100		253		
			02		9	100		254		
			03		9	100	70	298	11.0	
			05 06		9 9	100 100	72	308 318	11.2	2-217-3 – DBK
					5	100		010		
9050219	Stevens Co., Kans.	99	00	9	9	100		185		
			01		9	100		268		
			02		9	100		273		
			03 05		8 8	89 89	75	310 359	11.5	
			06		8	89	15	367	11.5	2-219-1 – dead
			00		5	00		001		

Accession	Origin/Source	YR	YR	NO	NO	PCT	FOL	PLT	BAS DIA	Remarks
Number 9050222	Custer Co., Okla.	PLT 99	REC 00	PLT 9	SRV 9	SRV 100	DEN	HGT 180	DIA	
9030222	Custer Co., Okia.	99	00	9	9	100		269		
			02		9	100		267		
			03		9	100		301		
			05		9	100	100	342	11.1	
			06		9	100	100	349		1-222-2 – DBK
9050224	Custer Co., Okla.	99	00	9	9	100		180		
			01		9	100		271		
			02		9	100		278		
			03		9	100	400	319		
			05		9	100	100	381	11.6	
			06		9	100		392		
9050225	Custer Co., Okla.	99	00	9	9	100		164		
			01		9	100		248		
			02		9	100		251		
			03		9	100		278		3-225-1 – DBK
			05		7	78	100	359	11.5	
			06		6	67		339		2-225-1 – DBK, resprout; 3-225-1 – dead
9050226	Custer Co., Okla.	99	00	9	9	100		173		
9030220	Custer CO., Okia.	99	00	9	9	100		258		
			02		8	89		260		
			02		8	89		200		
			05		8	89	100	337	11.5	
			06		8	89	100	347	11.5	3-226-3 – dead
			00		0	00		047		0 220 0 4044
9050228	Custer Co., Okla.	99	00	9	9	100		167		
			01		9	100		252		
			02		9	100		256		
			03		9	100		297		
			05		9	100	94	359	10.9	
			06		9	100		368		
0050000		00	00	0	0	100		454		
9050233	Harper Co., Okla.	99	00	9	9	100		154		
			01		9	100		237		
			02		9	100		245		3-233-3 – DBK
			03 05		9 9	100 100	83	264 312	10.9	3-233-3 - DDN
			05		9	100	00	322	10.5	3-233-3 – DBK
					-			-		

Table 8.3 Study No. – 201041K Initial Evaluation: Siberian elm (Ulmus pumila), Akron, Colorado (continued).

Accession	Origin/Source	YR	YR	NO	NO	PCT	FOL	PLT	BAS	Remarks		
Number		PLT	REC	PLT	SRV	SRV	DEN	HGT	DIA			
9050235	Garfield Co., Okla.	99	00	9	9	100		169				
			01		9	100		261				
			02		9	100		262				
			03		9	100		317				
			05		9	100	83	370	11.2			
			06		9			380				
9050240	Cotton Co., Okla.	99	00	9	9	100		163				
			01		9	100		245				
			02		9	100		249				
			03		9	100		267		1-240-2 – DBK		
			05		8	89	94	354	11.9			
			06		8	89		367		1-240-2 – DBK		
0050244	Cotton Co. Okla	00	00	0	0	100		170				
9050241	Cotton Co., Okla.	99	00	9	9	100		178				
			01		9	100		252				
			02		9	100		255				
			03		9	100	04	278	10 F	1-241-2 – DBK		
			05		9	100	94	328	10.5			
			06		9	100		328		1-241-2 – DBK		

Table 8.3 Study No. - 201041K Initial Evaluation: Siberian elm (Ulmus pumila). Akron, Colorado (continued).

Legend for Siberian elm evaluations:

DBK: Die back FOL DEN: Foliage Density, rating 1-9 NO. PLT: Number of trees planted NO. SRV: Number Surviving PCT SRV: Percent Survival. PLT HGT: Total plant height as measured in centimeters YR PLT: Year Planted. YR REC: Year of Record

Accession	Origin/Source	YR	YR	NO	NO	PCT	FOL	PLT	BAS	Remarks
Number		PLT	REC	PLT	SRV	SRV	DEN	HGT	DIA	Plot Legend: e.g. 2-214-1 = rep-last three digits accn. no. – tree no.
9050184	Roger Mills Co., Okla.	99	00	9	9	100		186		
			01		9	100		232		
			02		9	100		285		
			03		9	100		312		
			05		9	100	67	326	11.4	
			06		9	100		332		2-184-1 – DBK
9050213	Woodward Co., Okla.	99	00	9	9	100		139		
			01		8	89		176		
			02		8	89		242		
			03		8	89		271		
			05		8	89	29	315	10.9	
			06		7	67		323		1-213-1 – dead; 3-213-1 – dead
9050214	Beaver Co., Okla.	99	00	9	9	100		197		
			01		9	100		243		
			02		9	100		290		
			03		8	89		315		
			05		7	78	93	365	11.9	
			06		6	67		332		1-214-1 – dead; 1-214-2 – 75% DBK; 2-214-2 – DBK; 3-214-1 & 2 – dead
9050217	Ellis Co., Okla.	99	00	9	9	100		178		
	,		01		9	100		215		
			02		9	100		255		
			03		8	89		272		
			05		8	89	50	323	11.9	
			06		6	67		287		1-217-1 – DBK; 2-217-1 – DBK; 2-217-3 – dead; 3-217-2 & 3 – dead
9050219	Stevens Co., Kans.	99	00	9	9	100		165		
			01	-	9	100		193		1-219-3 – resprout from base
			02		9	100		261		
			03		8	89		279		
			05		8	89	67	289	13.1	
			06		8	89	-	210	-	1-219-1 thru 3 - DBK; 2-219-1 &2 - DBK; 2-219-3 - dead; 3-219-1 - 90% DBK, 2&3 DBK
9050222	Custer Co., Okla.	99	00	9	9	100		155		
	,		01	-	9	100		193		
			02		9	100		256		
			03		9	100		278		
			05		9	100	56	318	11.5	

Table 8.4 Study No. – 201041K Initial Evaluation: Siberian elm (Ulmus pumila), Sidney, Nebraska.

Accession	Origin/Source	YR	YR	NO	NO	PCT	FOL	PLT	BAS	Remarks
Number		PLT	REC	PLT	SRV	SRV	DEN	HGT	DIA	
9050224	Custer Co., Okla.	99	00 01 02 03 05 06	9	9 9 9 9 9 8	100 100 100 100 100	78	175 207 249 272 315 322	10.6	1-224-2 – dead; 3-224-1 – DBK
9050226	Custer Co., Okla.	99	00 01 02 03 05 06	9	9 9 8 9 7	100 100 100 89 100 78	78	165 200 257 291 345 334	13.4	1-226-1 – 98% DBK; 1-226-2 – 50% DBK; 2-226-1 – DBK; 2-226-2 dead; 3-226-1 – DBK
9050228	Custer Co., Okla.	99	00 01 02 03 05 06	9	9 9 8 8 8	100 100 100 89 89 89	81	172 206 230 247 292 309	13.2	1-228-1 – dead; 1-228-3 – 50% DBK
9050233	Harper Co., Okla.	99	00 01 02 03 05 06	9	9 9 9 9 8	100 100 100 100 100	75	150 190 226 251 290 331	12.3	1-233-3 – dead
9050240	Cotton Co., Okla.	99	00 01 02 03 05 06	9	9 9 8 8 8	100 100 100 89 89 89	99	165 211 254 276 351 363	12.5	3-240-2 – DBK 2-240-3 – dead; 3-240-2 – 50% DBK; 3-240-3 – DBK

Table 8.4 Study No. - 201041K Initial Evaluation: Siberian elm (Ulmus pumila), Sidney, Nebraska (continued).

9. Study No. 201042E - Evaluation of false indigo for use in streambank stabilization, shoreline protection, and wetland restoration and enhancement.

Introduction: False indigo (*Amorpha fruticosa* L.) is a native legume, deciduous, medium-to-tall growing shrub native to North America. Its range is from New Hampshire west to Saskatchewan, south to Texas, New Mexico, Arizona, California, east to Florida, and north to New England. False indigo has application for erosion control along shorelines and streambanks, for wildlife food and cover, and for ornamental purposes.

Problem: The Manhattan PMC Long-Range Plan has listed four program objectives that pertain to developing and using plant materials to address: improving water quality, riparian vegetation, streambank and shoreline protection, and wetland restoration and enhancement. The need exists for plant species of known origin and adaptability that are not currently available for conservation work in the Central Great Plains Region.

Objective: Assemble, test, and release adapted false indigo selections for streambank stabilization and shoreline protection, wetland restoration and enhancement plantings, and for the improvement of wildlife habitat.

Procedure: Seeds from 84 accessions were planted to 25.4 cm³ Ray Leach Single Cell "Cone-tainers" in the spring of 2001. Seeds of accessions with poor quality seed had to be replanted but establishment of most accessions was successful. Enough seedlings were established from 76 of the accessions to support an initial evaluation planting. The plants were transplanted to a spaced plant evaluation nursery in Field C-3-D-3, May 29, 2002, on a Stonehouse-Eudora complex soil. The plot layout consisted of 3 plants per plot with 3 replications in a RCB design, refer to MAPS Figure 6.1. In-row spacing was 0.9 m (3 ft) and the between row spacing was 4.57 m (15 ft). The plots were irrigated throughout the growing season of the establishment year. Maintenance consists of mowing, disking, and hand weeding between the rows.

Potential Products: Information Technology and Cultivar Release.

Progress or Status: The plants continue to suffer from dry conditions and competition for available moisture resulting in dieback. While accessions suffered dieback, three experienced losses in numbers of surviving plants. Fruiting and fruit persistence were evaluated this year. The amount of fruit produced tended to be down from the 2004 rating period. Data on individual accessions can be referred in Table 9.1.

Table 9.1 Study No. – 201042E Initial Evaluation: False indigobush (Amorpha fruticosa), Manhattan, Kans,

Accession Number	Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9008041	no. plains /NDPMC	02	02 03 04	9	9 9 9	100 100 100	4/14	9 9	3.0	8 8	9.0 7.7		3.1	7.0	106	89 142	1.0	5.2 10.9
			05 06		9 9	100 100				6	7.7	8.7				175		
9050188	Lyon Co., Kans.	02	02 03	9	9 9	100 100	4/15	7 9	4.6	5	7.4		1.8	3.2	80	77 149	1.0	4.6 6.4
			04 05 06		9 9 9	100 100 100		9	4.6	9 8	5.0 5.2	6.9				216		
9050250	Johnson Co., Nebr.	02	02 03	9	9 9	100 100	4/14	9		8	5.9		2.4	1.9	105	114 192	1.6	4.8 8.9
			04 05 06		9 9 9	100 100 100		9	3.1	9 9	4.0 4.3	5.4				253		
9050251	Pawnee Co., Nebr.	02	02 03	9	9 9	100 100	4/15	3		3	7.8		3.0	3.1	72	109 186	1.0	4.3 6.2
			04 05 06		9 9 9	100 100 100	.,	9	4.4	9 9	3.7 4.6	7.2				257		
9050253	Lincoln Co., Nebr.	02	08	9	9	100				9	4.0	1.2	3.4		67	102	1.0	5.2
			03 04 05		9 9 9	100 100 100	4/15	3 9	3.8	3 8	8.7 6.2			4.8		180 279		8.8
			06		9	100				9	4.6	7.2						
9050261	Douglas Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	8 9	3.2	7 9	6.2 3.1		1.8	3.3	112	110 195	1.0	4.8 9.2
			05 06		9 9	100 100		-		9	4.4	5.3				267		
9050262	Wheeler Co., Nebr.	02	02 03	9	9 9	100 100	4/14	9		9	6.9		2.2	3.2	98	101 166	1.0	8.1 10.8
			04 05 06		9 9 9	100 100 100		9	2.6	9 9	2.8 5.2	6.6				240		

Accession Number	Study No. – 201042E Init Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PĊT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050269	Holt Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/14	9 9	2.8	9 9	8.2 4.4		3.6	3.4	102	102 167	1.6	6.4 9.2
			05 06		9 9	100 100				9	5.3	7.0				216		
9050271	Neosho Co., Kans.	02	02 03	9	7 7	78 78	4/16	6		6	5.6		2.1	3.1	69	84 153	1.0	3.1 6.3
			04 05 06		7 7 5	78 78 56		6	3.2	7 5	3.2 4.2	5.6				238		
9050272	Crawford Co., Kans.	02	02 03	9	9 9	100 100	4/14	9		9	2.9		1.6	2.8	106	116 194	1.0	5.6 7.1
			04 05 06		9 9 9	100 100 100		9	3.0	9 8	3.0 4.6	5.9				263		
9050273	Anderson Co., Kans.	02	02 03	9	8 8	89 89	4/14	5		5	5.6	0.0	1.9	3.3	91	82 159	1.0	4.5 8.8
			04 05 06		8 8 8	89 89 89		8	2.6	8	3.0 2.9	4.9				224		
9050274	Dickinson Co., Kans.	02	02 03	9	9 9	100 100	4/15	9		9	5.4		1.7	2.0	106	105 186	1.0	7.4 8.4
			04 05 06		9 9 9	100 100 100	4/10	9	3.1	9 9	3.0 4.2	6.1		2.0		265		0.1
9050275	Shawnee Co., Kans.	02	02	9	8	89						0.1	2.3		105	101	1.0	5.8
			03 04 05		8 8 8	89 89 89	4/14	6 7	3.9	5 7	8.8 4.5			2.9		170 239		9.8
			06		7	78				7	4.9	6.0	_				_	
9050277	Holt Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/14	8 9	2.3	6 9	7.2 5.2		3.6	4.7	109	115 182	2.3	6.1 8.6
			05 06		9 9	100 100		-		9	5.0	6.8				253		

Accession Number	Study No. – 201042E Init Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050279	Wheeler Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/13	9 9	2.3	6 9	8.7 3.7		2.8	2.8	103	135 220	1.4	7.7 10.8
			05 06		9 9	100 100		-		8	5.9	7.6				286		
9050280	Dickinson Co., Kans.	02	02 03	9	9 9	100 100	4/14	6		5	6.9		1.4	1.7	102	114 196	1.0	4.6 8.8
			04 05 06		9 9 9	100 100 100		9	3.2	9 9	3.2 4.1	5.8				274		
9050284	Reno Co., Kans.	02	02 03	9	8 8	89 89	4/15	3		1	7.9		1.9	2.8	73	129 222	1.0	4.5 8.4
			04 05		8 8	89 89	4/13	8	2.9	8	2.4			2.0		305		0.4
			06		8	89				8	3.9	6.0						
9050285	Hodgeman Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	1 9	3.7	1 9	8.3 3.3		2.4	2.9	79	113 206	1.2	5.4 8.7
			05 06		9 9	100 100				9	3.9	5.9				295		
9050292	Nuckolls Co., Nebr.	02	02 03	9	9 9	100 100	4/15	7		7	5.0		2.3	2.9	112	122 205	1.1	6.3 12.6
			04 05 06		9 9 9	100 100 100		9	2.2	9 9	3.2 4.0	6.3				276		
9050293	Buffalo Co., Nebr.	02	02 03	9	9 9	100 100	4/14	5		Б	7.2		2.0	3.3	81	104 186	1.0	5.6 7.1
			03 04 05		9 9 9	100 100 100	4/14	5 9	3.1	5 9	7.2 3.0			5.5		267		7.1
			06		9	100				9	5.2	6.2				20.		
9050294	Greeley Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/14	8 9	2.3	7 9	5.6 3.3		2.0	3.6	95	126 200	1.6	5.4 8.4
			04 05 06		9 9 9	100 100 100		Э	2.3	9 9	3.3 5.2	6.2				272		

Table 9.1 Study No. – 201042E Initial Evaluation: False indigobush (Amorpha fruticosa), Manhattan, Kans. (continued

Accession Number	Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
050295	Miami Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/14	8 9	3.1	6 9	6.4 4.3		1.9	2.7	115	89 156	1.4	6.1 12.1
			05 06		9 9	100 100		-	-	9	4.1	5.6				228		
050297	Pawnee Co., Nebr.	02	02 03	9	9 9	100 100	4/15	1		1	8.2		2.8	3.9	81	100 182	1.0	3.7 5.6
			04 05 06		9 9 9	100 100 100		9	2.9	9 9	2.3 3.6	5.4				250		
050298	Cuming Co., Nebr.	02	02 03	9	9 9	100 100	4/14	7		4	7.2		3.3	3.6	111	119 215	1.9	4.7 11.7
			04 05 06		9 9 9	100 100 100		9	3.3	9 9	3.1 4.2	5.3				277		
050299	Pratt Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	6 9	2.8	5 9	7.4 3.2		2.1	3.3	90	105 177	1.2	6.8 13.3
			05 06		9 9	100 100		5	2.0	9	4.8	6.9				261		
050300	Russell Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/16	4 9	3.2	2 9	8.7 5.4		1.4	1.6	70	111 191	1.0	5.3 8.9
			05 06		9 9	100 100		U	0.2	9	6.1	7.1				277		
050307	Colfax Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/15	7 9	3.2	7 9	5.3 3.6		2.1	3.1	128	116 208	1.0	8.2 14.4
			04 05 06		9 9	100 100 100		9	5.2	9	4.6	5.8				293		
9050308	Cheyenne Co., Kans.	02	02 03	9	9 9	100 100	4/14	5		3	8.4		2.9	2.4	110	127 212	1.2	6.2 13.9
			04 05 06		9 9 9	100 100 100		9	4.1	9 9	3.9 5.3	6.7				301		

Accession Number	Study No. – 201042E Ini Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PĊT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050309	Sioux Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/15	2 9	6.2	0 5	9.0 8.0		4.2	6.3	64	73 109	1.0	6.2 11.8
			05 06		9 9	100 100				4	8.6	8.6				163		
9050310	Douglas Co., Kans.	02	02 03 04	9	9 9	100 100 100	4/16	5 9	3.0	3 9	8.7 4.0		1.8	3.4	99	104 200	1.0	3.9 8.2
			04 05 06		9 9 9	100 100 100		9	3.0	9	4.0 4.0	5.9				276		
9050312	Knox Co., Nebr.	02	02 03	9	9 9	100 100	4/14	8		8	5.9		3.9	3.1	111	119 200	1.3	7.3 11.8
			04 05 06		9 9 9	100 100 100		9	1.9	9 9	3.8 4.2	6.3				279		
9050313	Knox Co., Nebr.	02	02 03	9	9 9	100 100	4/14	7		7	7.4		3.8	4.4	105	126 221	1.8	6.6 10.3
			04 05		9 9	100 100	-11	9	2.4	9	3.4					282		10.0
9050314	Dodge Co., Nebr.	02	06 02	9	6 9	67 100				6	5.3	7.1	1.9		110	125	1.3	6.3
			03 04 05		9 9 9	100 100 100	4/14	8 9	2.8	8 9	6.3 3.2			2.1		239 319		7.7
			06		9	100				9	4.7	5.6						
9050316	Kiowa Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	3 9	3.0	1 9	8.1 3.0		1.7	2.8	79	130 218	1.3	6.0 9.4
			05 06		9 9	100 100				9	4.7	6.3				309		
9050315	Trego Co., Kans.	02	02 03	9	9 9	100 100	4/15	5		4	8.0		3.0	3.1	92	105 180	1.6	6.9 10.8
			04 05 06		9 9 9	100 100 100		8	4.1	7 8	5.7 6.0	6.7				264		

Accession Number	Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050317	Smith Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	7 9	2.2	4 9	8.4 3.8		1.7	2.8	108	114 195	1.3	4.9 12.1
			05 06		9 9	100 100				9	3.1	6.0				278		
9050318	Kingman Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/15	5 9	2.3	4 9	7.6 3.8		2.2	2.0	94	100 195	1.2	6.7 11.1
			04 05 06		9 9	100 100 100		5	2.5	9	4.6	6.3				275		
9050319	Keith Co., Nebr.	02	02 03	9	9 9	100 100	4/15	4	0.4	1	9.0		3.2	4.4	75	92 152	1.0	5.9 8.7
			04 05 06		9 9 9	100 100 100		9	3.4	9 9	6.1 7.3	7.8				221		
9050321	Howard Co., Nebr.	02	02 03	9	9 9	100 100	4/14	9		8	8.4		2.5	3.0	102	122 205	1.8	8.3 14.0
			04 05 06		9 9 9	100 100 100		9	3.1	9 9	4.1 4.8	6.4				277		
9050324	Harvey Co., Kans.	02	02 03	9	9 9	100 100	4/15	8 9	0.7	7	6.4		1.6	3.6	102	110 201	1.0	4.7 7.7
			04 05 06		9 9 9	100 100 100		9	2.7	9 9	3.4 2.8	5.7				287		
9050325	Neosho Co., Kans.	02	02 03	9	9 9	100 100	4/16	6 9		5	6.6		2.0	2.4	103	114 189	1.0	5.7 11.1
			04 05 06		9 9 9	100 100 100		9	3.0	9 9	3.1 4.7	5.7				250		
9050327	Graham Co., Kans.	02	02 03	9	9 9	100 100	4/15	5		5	7.4		2.0	3.4	86	105 199	1.3	7.1 13.2
			04 05 06		9 9 9	100 100 100		9	3.2	9 8	4.9 5.4	7.1				277		

Accession Number	Study No. – 201042E Init Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PĊT SRV	ŠPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050328	Cherokee Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/16	6 9	3.4	6 9	5.6 3.2		1.3	2.6	93	91 160	1.0	5.2 8.0
			05 06		9 9	100 100				8	4.9	6.0				231		
9050329	Cherokee Co., Kans.	02	02 03	9	9 9	100 100	4/14	6		6	6.1		1.2	3.1	80	93 177	1.3	4.8 8.2
			04 05 06		9 9 9	100 100		9	2.7	9 8	2.6 5.6	6.2				237		
9050334	Cotton Co., Okla.	02	02 03	9	9 9	100 100	4/19	2		2	8.4		2.8	2.8	82	117 185	1.0	7.3 13.0
			04 05 06		9 9 9	100 100 100		8	4.8	8 9	4.0 5.9	7.2				266		
9050335	Cotton Co., Okla.	o., Okla. 02 02 9 9 100	2				1.2	1.9	3.1	94	115 187	1.0	5.8 10.6					
			04 05		9 9	100 100	4/10	3 9	2.7	3 9	8.1 2.4			3.1		263		10.6
9050336	Johnson Co., Nebr.	02	06 02	9	9 9	100 100				9	3.2	5.8	2.4		116	102	1.6	6.2
9000000		02	03 04	9	9 9	100 100	4/15	5 9	3.8	4 9	7.4 4.4		2.4	3.1	110	212	1.0	9.7
			05 06		9 9	100 100				9	5.9	6.6				273		
9050337	Linn Co., Kans.	02	02 03	9	9 9	100 100	4/15	7		7	5.6		2.6	3.1	110	113 185	1.0	4.2 7.8
			04 05 06		9 9 9	100 100 100		9	2.9	9 9	3.6 5.1	6.1				253		
9050342	Cleveland Co., Okla.	02	02 03	9	9 9	100 100	4/17	2		0	9.0		1.1	2.3	70	86 190	1.0	6.1 8.7
			04 05		9 9	100 100	11/17	9	3.9	8	4.2			2.0		250		0.7
			06		9	100				8	4.8	6.7						

Accession Number	Study No. – 201042E Init Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PĊT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050343	Cleveland Co., Okla.	02	02 03 04	9	9 9 9	100 100 100	4/18	3 9	3.4	3 9	6.7 3.6		2.3	2.2	80	119 234	1.0	4.6 6.8
			05 06		9 9	100 100				9	4.4	6.8				339		
9050344	Harper Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/16	4 9	2.7	3 9	7.9 4.3		1.2	3.0	102	115 215	1.0	7.0 9.9
			04 05 06		9 9 9	100 100 100		9	2.1	9	4.3 4.4	6.7				304		
9050345	Elk Co., Kans.	02	02 03	9	9 9	100 100	4/14	6		6	5.6		1.8	2.9	107	101 184	1.0	7.0 11.2
			04 05 06		9 9 9	100 100 100		9	2.3	9 9	2.0 4.2	4.3				244		
9050346	Greenwood Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/13	9 9	2.4	9 9	2.8 3.1		1.2	2.8	108	102 171	1.1	6.0 7.9
			05 06		9 9	100 100 100		5	2.7	9	4.2	5.4				231		
9050348	Greenwood Co., Okla.	02	02 03 04	9	8 8 8	89 89 89	4/19	5 8	2.1	4 8	7.1 3.0		2.8	2.6	103	118 219	1.4	6.5 13.8
			05 06		8 8	89 89		U	2	7	4.8	6.3				291		
9050349	Haskell Co., Okla.	02	02 03 04	9	9 9	100 100	4/15	4 9	2.0	3 9	7.7		1.9	2.0	87	97 197	1.0	6.2 8.0
			04 05 06		9 9 9	100 100 100		Э	3.8	9 9	1.4 3.7	5.1				267		
9050353	Nance Co., Nebr.	02	02 03	9	9 9	100 100	4/15	8		7	7.8		3.2	2.8	117	115 203	1.4	6.0 13.6
			04 05 06		9 9 9	100 100 100		9	2.7	9 9	3.9 5.0	6.8				270		

Accession Number	Study No. – 201042E Ini Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PĊT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050354	Reno Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/16	5 9	1.3	5 9	6.9 1.6		1.2	4.0	116	135 225	1.0	8.3 12.3
			05 06		9 9	100 100		Ū		9	3.0	4.9				306		
9050355	Reno Co., Kans.	02	02 03	9	9 9	100 100	4/15	2		2	8.0		1.6	2.6	75	139 216	1.0	3.7 8.7
			04 05 06		9 9 9	100 100 100		9	3.0	9 8	3.6 3.9	5.7				293		
9050356	Jefferson Co., Okla.	02	02 03	9	9 9	100 100	4/18	1		1	8.7		1.3	3.2	88	104 205	1.0	6.4 10.2
			04 05 06		9 9 9	100 100 100		9	2.8	9 9	2.3 2.6	5.2				276		
9050361	Chautauqua Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/18	4 9	3.4	3 9	8.0 2.3		2.8	3.0	97	103 186	1.0	5.8 9.3
			05 06		9 9	100 100				9	4.2	5.7				234		
9050362	Alfalfa Co., Okla.	02	02 03 04	9	9 9 9	100 100 100	4/18	0 9	3.1	0 9	9.0 2.8		1.4	2.3	73	124 214	1.0	5.7 7.3
			05 06		9 9	100 100				9	3.7	5.4				298		
9050365	McIntosh Co., Okla.	02	02 03 04	6	6 6 6	100 100 100	4/16	3 6	2.3	2 6	7.8 2.5		1.7	2.3	47	71 141	1.0	2.2 7.2
			05 06		6 6	100 100				6	3.6	5.0				219		
9050366	Dodge Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/15	8 9	2.7	7 9	7.9 4.0		2.0	3.2	88	108 186	1.0	2.6 5.1
			04 05 06		9 9 9	100 100 100		Э	2.1	9 8	4.0 5.8	6.7				263		

Accession Number	Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC DAT	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK †	NO. BAS STM/PLT
9050367	Thomas Co., Nebr.	02	02 03 04	9	9 9 9	100 100 100	4/14	4 9	4.1	3 9	9.0 5.0		4.2	4.6	90	90 149	1.0	7.9 13.4
			05 06		9 9	100 100				9	7.1	8.2				235		
9050372	McPherson Co., Kans.	02	02 03	9	9 9	100 100	4/15	6		6	6.1		1.8	2.9	112	96 182	1.4	7.2 12.7
			04 05 06		9 9 9	100 100 100		9	2.8	9 8	3.2 3.9	5.6				256		
9050373	Butler Co., Kans.	02	02 03	9	8 8	89 89	4/15	4		4	6.9		3.5	2.5	96	102 171	1.0	6.1 11.0
			04 05		8 8	89 89	., 10	8	2.6	8	3.8	5.0		2.0		236		
9050374	Montgomery Co.,	02	06 02	9	8 8	89 89				8	3.5	5.3	2.3		121	103	1.3	5.9
5050574	Kans.	02	03 04	5	8 8	89 89	4/15	6 8	4.6	5 8	7.3 4.1		2.0	2.4	121	191	1.5	14.9
			05 06		8 8	89 89					4.9	6.8				257		
9050377	Woodson Co., Kans.	02	02 03 04	9	9 9 9	100 100 100	4/14	8 9	1.6	8 9	5.0 3.8		2.2	2.7	91	92 148	1.1	6.0 8.2
			05 06		9 9	100 100		0	1.0	9	2.7	4.8				212		
9050378	Republic Co., Kans.	02	02 03	9	9 9	100 100	4/15	3 9		3	8.0		3.1	4.2	109	124 220	1.2	5.3 10.9
			04 05 06		9 9 9	100 100 100		9	3.4	9 9	3.8 4.3	6.1				291		
9050379	Richardson Co.,	02	02	9	9	100		_					2.4		99	120	2.2	5.8
	Nebr.		03 04 05		9 9 9	100 100 100	4/15	5 9	2.1	5 9	6.4 2.8			2.2		211 283		7.7
			06		9	100				9	4.0	6.8				200		

Accession Number	Origin/Source	YR PLT	YR REC	NO. PLT	NO. SRV	PCT SRV	SPR REC	NO. BLM	BLM AMT	NO. FRT	FRT AMT	FRT PER	DI*	HEA STR	CAN COV	PLT HGT	STM BRK	NO. BAS STM/PLT
					0	•	DAT	22						•			+	0
9050383	Norton Co., Kans.	02	02	9	9	100							2.9		62	114	1.0	5.9
	,		03		9	100	4/15	6		4	9.0			4.6		191		11.9
			04		9	100		9	3.6	9	5.4							
			05		9	100										275		
			06		9	100				9	6.6	7.4						
9050384	Sumner Co., Kans.	02	02	9	9	100							1.0		93	125	1.0	5.7
			03		9	100	4/16	9		8	3.9			2.3		202		9.1
			04		9	100		9	2.6	9	2.7							
			05		9	100										288		
			06		9	100				9	3.9	5.7						
9050388	Antelope Co., Nebr.	02	02	9	9	100							3.1		96	111	1.0	4.6
			03		9	100	4/14	7		5	7.7			4.2		183		7.1
			04		9	100		9	4.1	9	4.4							
			05		9	100										253		
			06		9	100				9	7.1	7.7						
9050391	Washington Co.,	02	02	9	9	100							2.6		92	87	1.0	5.4
	Kans.		03		9	100	4/15	7		7	5.7			1.4		154		8.4
			04		9	100		9	2.6	9	4.8							
			05		9	100										225		
			06		9	100				9	3.4	5.4						
9050394	Pottawatomie Co.,	02	02	9	8	89							2.9		97	105	1.5	6.3
	Kans.		03		8	89	4/16	2		1	8.4			3.1		188		7.9
			04		8	89		8	3.8	8	3.4							
			05		8	89										271		
			06		8	89				7	4.8	5.8						
9050400	Clay Co., Kans.	02	02	9	9	100							1.4		88	101	1.0	6.6
			03		9	100	4/16	7		5	7.4			3.0		167		13.0
			04		9	100		9	2.8	9	3.7							
			05		9	100										240		
			06		9	100				9	4.6	5.7						

Table 9.1 Study No. - 201042E Initial Evaluation: False indigobush (Amorpha fruticosa), Manhattan, Kans. (continued)

† 1-5 Rating = (Best-Worst); Refer to page 94, legend for false indigobush plant evaluations

Legend for false indigobush plant evaluations:

BLM AMT: Bloom Amount

CAN COV: Crown width or ground cover as measured in centimeters DI: Disease Resistance, rating 1-9 FLW AMT: Amount of Flowers, rating 1-9 FRT AMT: Fruit Amount, rating 1-9 FRT PER: Fruit Persistance, rating 1-9 HEA STR: Heat Stress, rating 1-9 NO. BAS STM /PLT: Number of basal stem per plant NO. BLM: Number of plants blooming NO. FRT: Number of trees producing fruit NO. PLT: Number of trees planted NO. SRV: Number Surviving PCT SRV: Percent Survival PLT HGT: Total plant height measured in centimeters SPR REC: Spring Recovery Date STM BRK: Stem Breakage, rating 1-5 YR PLT: Year Planted YR REC: Year of Record

10. Study No. KSPMC-T-0502-RA - Laboratory evaluation of plant materials to determine seed analysis, germination, and propagation techniques.

Introduction: Many native plant species produce seed that have an impermeable, hard, seed coat. This is used as a survival mechanism to combat unfavorable growing conditions. It allows for some seed from each year's production to be stored in the soil as a seed bank. It is a wonderful mechanism to ensure survival in the wild, but can cause difficulties when trying to establish stands of native plants for conservation purposes. Often a rapid response is needed to repair critical areas and restore them to their natural state. This is difficult to accomplish if the seed lies in the ground for 2-5 years before becoming viable.

Acid scarification is a useful means of breaking down the seed coat of hard seeded species, and increasing the germination rate. It can be precisely controlled by monitoring the concentration and exposure time of the acid. The acid partially dissolves the seed coat allowing it to become permeable to water and start the biochemical processes that lead to germination. As acid strength and exposure time increase, so does the amount of scarification. However, is there a critical point at which the acid penetrates the seed coat, causing damage to the embryo? This can have a detrimental effect on germination, and destroy the seed.

Objective: The object of this study was to determine the optimum amount of scarification needed to break dormancy and maximize germination for hard seeded legumes, and to gain experience using this procedure before handling smaller seeded legume species such as purple prairie clover.

Procedure: Concentrated sulfuric acid (H_2SO_4) was diluted with 100 ml of purified water to prepare molar solutions of 0 (control), 3, 9, 15, and 18, with 4 replications per treatment. The acid solutions were prepared using the formula (M_1) (V_1) = (M_2) (V_2). M_1 represents the original concentration of the starting solution, and M_2 represents the desired concentration to be made. V_1 represents the volume needed to dilute the starting concentration to the desired concentration, and V_2 represents the desired amount of dilute solution.

Example:

A dilution of concentrated 18 M H_2SO_4 to yield 100 ml of 3 M solution was needed to create the acid bath for the first portion of the experiment.

18 M (V₁) = (3M) (100 ml) 18 M (V₁) = 300 V₁ = 16.66 ml of concentrated H₂SO₄ 16.66ml - 100ml = 83.34 ml of Water

So, 16.66 ml of concentrated acid was needed to make a 100 ml, 3 M solution. This was done by adding the 16.66 ml of concentrated sulfuric acid to 83.34 ml of purified water.

Three samples of approximately 1,600 seeds were placed in Erlenmeyer flasks and labeled for each acid bath concentration. The appropriate acid solution and a magnetic stir bar were added to each flask, and they were placed on magnetic stirring plates. At the specified time intervals of 5, 15, and 30 minutes, the seeds were separated from the acid bath using a glass funnel and nylon mesh. The acid was collected in a 250 ml Erlenmeyer flask and set aside for later use with the other time intervals. It was discarded into a waste container after the 30 minutes time interval samples were collected. The seed was triple rinsed with purified water to remove any acidic residue from the seed coats. The rinsate was collected in a separate Erlenmeyer flask and discarded. A sample of 400 seeds was collected from each time interval and acid concentration to conduct germination tests. The samples were labeled according to species, acid concentration, time interval, and set aside to air dry over night after being rinsed.

Once dried, the germination tests were conducted. The seeds were placed in 10.16- \times 10.16-cm (4- \times 4-in) germination boxes on moistened germination paper. These were then placed in a germinator set at alternating temperatures of 20°C for 16 hours and 30°C for 8 hours. The germinator was also set

for a diurnal photoperiod with 10 hours of light and 14 hours of darkness. The germination results were recorded weekly for 2 weeks, analyzed, and compared to the control.

a.) Acid Scarification Screening of Roundhead Lespedeza, Lespedeza capitata

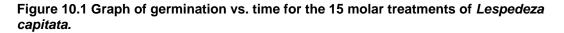
Progress or status: The control averaged 53% germination over a 2-week period, Table 10.1. There was a significant difference between germination based on concentration as indicated by P = .0000. Tukey's All-Pairwise Multiple Comparison Tests showed no significant difference in germination between the control, 3 M treatments, and 9 M treatments. However, there was a significant increase in germination for the 15 M treatments. It also showed no interaction between time and concentration. The 15 M treatments were significantly better in germination from the other treatments, yet there was no significant difference between the 15 M treatments based on time.

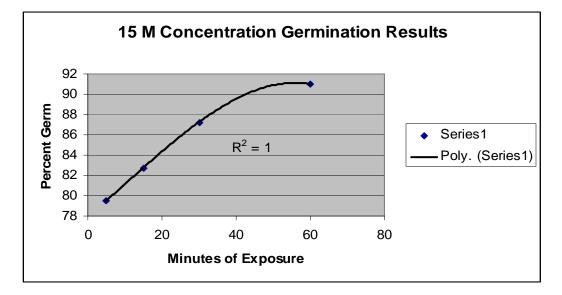
Table 10.1 Two-week germination results for Lespedeza capitata using 3 acid concentrations and
3 time treatments.

	Control	5 Min	15 Min	30 Min	5 Min	15 Min	30 Min	5 Min	15 Min	30 Min
Rep	0 M	3 M	3 M	3 M	9 M	9 M	9 M	15 M	15 M	15 M
1	51	47	58	61	49	55	52	92	81	95
2	67	51	61	47	44	58	59	75	88	87
3	48	56	50	51	58	49	56	79	84	88
4	46	55	46	58	53	55	49	72	78	79
AVG	53	52.3	53.75	54.25	51	54.25	54	79.5	82.75	87.25

An additional test was conducted using longer exposure times and higher acid concentrations to determine if the germination continued to increase, and to help determine the critical point at which damage to the seed occurred. The time limit for the 15 M treatment was extended to 60 minutes, and three 18 M treatments were added, Table 10.2. The 18 M treatments were run for 30, 45, and 60 minutes in hopes of finding a critical point at which the acid scarification became detrimental, damaging the seed, and inhibiting germination.

Table 10.2 Additional germination results for *Lespedeza capitata* using stronger acid and increased time to determine the critical point of scarification.


Southiou				
	15 M	18 M	18 M	18 M
Rep	60 Min	30 Min	45 Min	60 Min
1	93	17	67	34
2	96	20	63	45
3	83	8	54	32
4	92	3	56	30
Avg	91	12	60	35.25


This additional test showed an increase in germination to 91% for the 15 M, 60-minute treatment and a decline in the 18 M treatments to 60% for the 45-minute treatment and 35.25% for the 60-minute treatment. The 18 M, 30-minute treatment results are shown, but were not included in the analysis. The hot plate on the magnetic stirrer was accidentally turned on during this portion of the experiment. The acid bath became very hot, cooking the seed, and causing an unusually low germination result. It should be repeated to obtain more accurate results.

Damage to the seed appeared to occur in the 18 M concentration treatments. There was a significant decrease in germination seen in the 18 M, 45-minute treatment compared to the 15 M, 60-minute treatment (P = .0015) for the germination X concentration interaction, and (P = .0001) for the interaction between the germination X concentration for the 18 M, 60-minute treatment.

Further analysis of the 15 M treatments showed that there were slight statistical differences between exposure times (P = .0281).

Conclusion: The germination of *Lespedeza capitata* was improved from 53% in the control to 91% in the 15 M, 60-minute treatment, Figure 10.1. The germination appeared to decrease after the acid concentration was increased to 18 M. Treating the seed for 60-minutes with 15 M H_2SO_4 could greatly reduce the amount of seed and time needed to revegetate a specific area in a single growing season. More work needs to be done to determine the exact point at which damage occur to the seeds. This would be valuable information to aid the producers and conservationists. It would ensure that expensive seed is not destroyed by over scarifying. And help eliminate weed pressure by allowing a more uniform stand of plants and quicker establishment times.

b.) Acid Scarification Screening of Illinois Bundleflower, Desmanthus illinoensis

Progress or status: Most of the germination occurred within the first week of the experiment. The average germination for the control over the two-week period was 34.75%, Table 10.3. There were no significant differences in germination between the control and 3 M treatments for germination X concentration (P = .2167) and germination X time (P = .1221). The germination for the 15 M, 5-minute treatment also fell into the same range as the control and 3 M treatments. It would be reasonable to assume that it too had no significant difference from the control.

	Table 10.5 Two week germination results for Desmanthus minoensis using 4 acid concentrations and 5 time treatments.												
	0 M	3 M	3 M	3 M	9 M	9 M	9 M	15 M	15 M	15 M	18 M	18 M	18 M
REP	0 Min	5 Min	15 Min	30 Min	5 Min	15 Min	30 Min	5 Min	15 Min	30 Min	5 Min	15 Min	30 Min
1	43	43	40	36	19	16	22	43	72	62	84	85	86
2	30	42	38	38	20	21	18	33	73	60	83	90	89
3	35	40	32	36	15	16	19	38	77	63	83	84	88
4	31	40	39	31	22	20	16	39	77	65	85	91	84
AVG	34.75	41.25	37.25	35.25	19	18.25	18.75	38.25	74.75	62.5	83.75	87.5	86.75

Table 10.3 Two week	germination results for	Desmanthus illinoensis usin	ng 4 acid concentrations a	nd 3 time treatments.
---------------------	-------------------------	-----------------------------	----------------------------	-----------------------

The 9 M treatments showed a drastic drop in germination from the control, 18.66% versus 34.75%. This was an unexpected result. To ensure that no errors had been made, the 9 M treatment was repeated using a new acid solution. The second 9 M treatment showed similar germination results, Table 10.4. Comparison of the 9 M treatment to the control showed a highly significant difference in germination (P = .0000) for the germination X concentration interaction.

Table 10.4 Repeated germination results for the 9 molar treatments to verify accuracy.

verify acc	veriny accuracy.									
REP	5 Min	15 Min	30 Min							
1	12	17	18							
2	16	13	13							
3	15	15	19							
4	15	15	18							
AVG	14.5	15	17							

The 15 M treatments showed an increase in germination compared to the control. This increase was highly significant (P =.0133) for germination X concentration and (P =.0000) for germination X time. Tukey's All-Pairwise Comparisons Test broke the results for the 15 M treatments into 3 groups. The 15-minute treatment proved to be the best performing, followed by the 30-minute treatment. The third group consisted of the control and 5-minute treatment. Tukey's showed no significant difference between these two at the critical level of .05. This supports the earlier assumption that the 15 M, 5-minute treatment was not significantly different from the control or 3 M treatments. The 18 M treatments yielded the highest levels of germination for the study. It was significantly different from the 15 M treatments at all levels (P =.0000) for germination X time, germination X concentration X time.

Conclusion: The use of concentrated, 18 Molar, H_2SO_4 proved to be very effective at scarifying *Desmanthus illinoensis.* The 18 M, 15-minute treatment produced the highest germination results for the test at 87.5%. Tukey's All-Pairwise Comparisons Test showed that it was significantly better when germination was compared to time and concentration, yet when compared to the time X concentration interaction there was no significant difference within the 18 M treatments. However, the time X concentration interaction for the 18 M treatments were significantly better than any of the treatments using weaker acid concentrations according to Tukey's Test.

It was hoped that the upper threshold of scarification would be reached with this study by seeing a marked decrease in germination in some of the 18 M treatments. The 18 M, 30-minute treatment did show a slight drop in germination, however it was not significant. More work would need to be done to determine the point at which the acid bath becomes detrimental to germination for this species.

The decrease in germination in the 9 M treatments was unexpected. As mentioned earlier, this section was repeated to ensure no errors were made while mixing the acid. It is not known why the germination seemed to be inhibited by the 9 M acid. It may be that the 9 M treatment was strong enough to be detrimental to the seeds that were not hard, yet too weak to scarify the seeds that were hard. Another explanation is that it may have only slightly scarified the seed, triggered a mechanism to increase dormancy through some other biochemical process.

In application of this technique in the future, it may be more helpful to use the weaker, 15 M concentration of acid, for a longer period of time as opposed to the 18 M concentration. The 15 M treatments showed a steady increase in germination as time was increased. It uses less acid, and is easier to work with. The 18 M acid was very hard on the nylon mesh used to separate the seed from solution. It often melted the mesh, causing it to stick to the seed and became very cumbersome. Another study needs to be done to determine if a longer bath in 15 M acid is as effective as a shorter bath in 18 M acid for scarifying this species. The 15 M acid was much easier to work with than the 18 M acid, and when used at a longer time interval may yield equal results.

11. Study No. KSPMS-T-0201-CR – Plant species for revegetation of natural and man-induced saline areas.

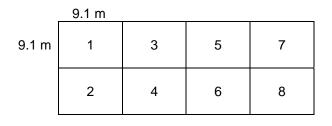
Introduction: Small areas of pasture and rangeland have been damaged through the spillage of brine water associated with oil drilling activity. Natural saline seeps have formed in cropland fields due to cropping practices, soil geology, and drainage configuration. These areas while small in size (typically less than 5 acres) are extremely erosive and contribute heavy sediment loads (including contaminants) to adjacent water bodies. Because these sites are typically high in salts, poor in soil structure, and low in organic matter, revegetation is extremely difficult without considerable economic input.

Objective: To evaluate various plant species for use in revegetating saline areas and to evaluate the effect of various surface treatments on plant species establishment.

Procedure: Eighteen different species/selections will be seeded at four different locations; Perry, Oklahoma (1 site), Okmulgee, Oklahoma (2 sites), El Dorado, Kansas (1 site), and Eureka, Kansas (1 site). Sixteen different soil amendment treatments will be applied at the Eureka and El Dorado sites. Soil salinity analysis will be performed on all sites prior to and following species establishment. Plant species to be used are provided in Table 10.1. Treatments for the Kansas locations are provided in Figure 11.1. Okmulgee and Perry locations will be seeded in the spring of 2002. Evaluations will be completed annually through 2006. Locations will be evaluated for plant species establishment, growth, and persistence.

Potential Products: A summary of the study with appropriate recommendations regarding soil amendments and species selection will be developed and provided in the form of a technical note.

Progress or Status: The study sites located in Okmulgee and Perry, Oklahoma, did not materialize and are not being monitored as part of this study. They are failed plantings.


The Eureka and El Dorado sites were evaluated August 23, 2006. At the Eureka site, seedling establishment is primarily limited to areas with supplemental residue such as wheat straw. Grass in many areas could be observed in rows to the edge of the residue. Outside of the residue there would be little grass establishment. Results indicate the addition of crop residue to a saline site seeding is very important to the seeding success. Primary grasses at this site include inland saltgrass, 'Jose' tall wheatgrass and Alkali sacaton.

The EI Dorado site also indicates that the addition of residue is important to seeding success. This site has off-site water that flows across the planting site during high rainfall events. This has disturbed the residue and has deposited additional deposits at this site. Seeding establishment is limited to areas that have additional residue. Plant species is limited primarily to inland saltgrass, 'Jose' tall wheatgrass and Alkali sacaton. There has been some browsing of livestock at this planting site.

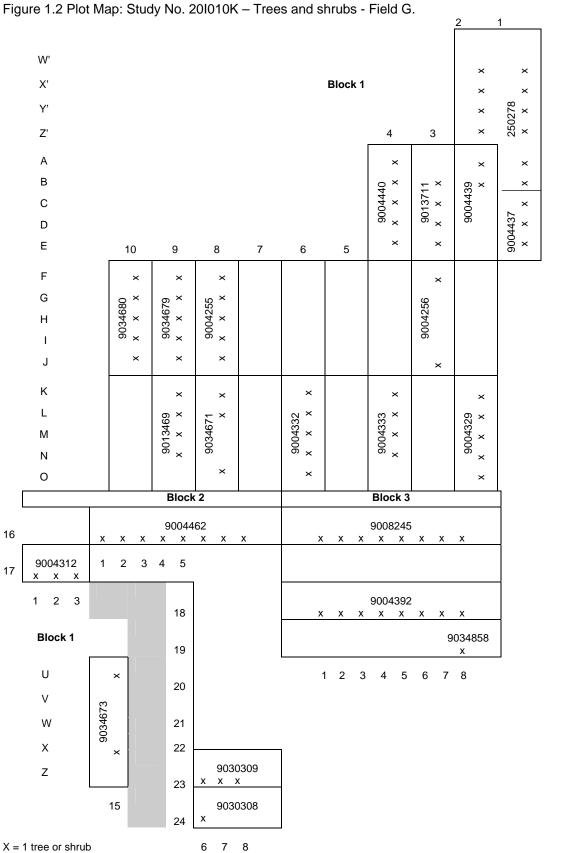
Table 11.1 Plant species per location.

Plant Species	Okmulgee	Perry	El Dorado	Eureka
Havard's panic grass	Х		Х	Х
Alkali sacaton, 'Saltalk'	Х	Х	Х	Х
Big sacaton / 434453	Х	Х	Х	Х
Four-wing saltbush			Х	Х
Texas dropseed / 9029930	Х	Х	Х	Х
Texas dropseed / 9029932	Х	Х	Х	Х
Side-oats grama, 'Premier'	Х	Х	Х	Х
Inland saltgrass	Х	Х	Х	Х
Blue panicum	Х	Х	Х	Х
Alkali-grass, 'Fults'	Х	Х	Х	Х
Switchgrass, 'Kanlow'	Х	Х	Х	Х
Western wheatgrass, 'Barton'	Х	Х	Х	Х
Western wheatgrass / Knox City	Х		Х	Х
Tall wheatgrass, 'Jose'	Х	Х	Х	Х
Russian wildrye, 'Bozoiski-Select'	Х	Х	Х	Х
Western indigo / Knox City	Х		Х	Х
Illinois bundleflower, Reno Germplasm	Х		Х	Х
Showy partridge pea, Riley Germplasm	Х		Х	Х

Figure 11.1 Surface treatments for each site.

Treatment No.							
1 – Control: no amendment	5 – Incorporated wood chips* (manure)						
2 – Incorporated gypsum	6 – Incorporated gypsum and wood chips* (manure)						
3 – Incorporated straw	7 – Annual crop**						
4 – Incorporated gypsum and straw	8 – Incorporated gypsum then seed annual crop**						
*Wood chips applied at Eureka location; manure at El Dorado location							

**Perennial species seeded 1 year after seeding of annual crop


Rate of Amendment Application and Incorporation

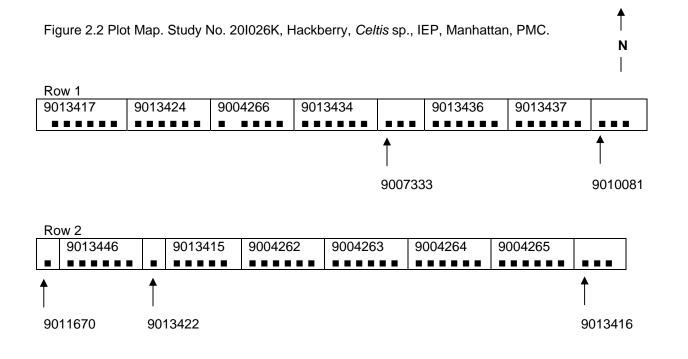
Gypsum – 385.4 net cwt/ha (7.8 t/ac) El Dorado; 523.8 net cwt/ha (10.6 T/ac) Eureka
Manure – 741.2 net cwt/ha (15 t/ac)
Wood chips – 642.4 net cwt/ha (13 t/ac)
Straw – 148.2 net cwt/ha 3 (t/ac)

Rate of Surface Mulch Application

Straw – 148.2 net cwt/ha (3 t/ac) Surface mulch will be applied to ½ of each treatment immediately after seeding of the perennial plant species.

Row		Block 1	Blo	ck 2	Bloc	:k 3	Blo	ock 4
		107630						9004461
1	х х	XXXXX XXXX						ХХ
0			-		9001			
2	X X	x x x camores			x x x 4863			9004434
3	x x	X X X			400. X X X X X			9004434 X X X X X
0	X	9050263	900	6095		<u> </u>		
4		x x x	x x x x	x x x x x				
		9050268			9004305			323932
5	хххх	x x x x x x			x x x x			xx x x x x x x
<u> </u>		9050265	chestnuts					
6		x x x x x x	x x x x x					
7		9050267			9050478 9 050499	9050481		
		<u>x x x x x x x</u> 9050264	x x x x x x		X X X X	x x x x x x 9050480		
8		9050264 X X X X X X	x		9050479 x x x x x x	9050480 x x x x x x		
		9050266	9050011					
9		X X X X X X	x x x x					
10					9034	682		9004334
10					x x x x x x	хххх		x x x x x
11	9	9055585					905	50504
••		x x x x x x					x x x x x	<u>x x x x x</u>
12	325270				9050			
	X X				<u> </u>			
13					x x x x x x			
					9050501	9050503		
14					x x x x x x	x x x x x x		
					9050			
15					x x x x x x	хххх		
								7011
17	177010						<u> </u>	
	477010				9004		-	3949
18	<u>x x x x x</u> 9050500	323957			<u> </u>	x x x x x 265620	X X X X X 34	3948
	x x x x x				X X	x	54	X X X
19	9050482	9050483			9034674	9017646	903	34668
20	x	x x x x x			x x x	x x x x	x	x x x x x x
20	9050417	9050418				9050022	900	04363
21	x x x x x					ххх	x x x x x	
	9050425	9050426				9004392		04364
22	X X X X X X				40.4		<u> </u>	<u> </u>
	9050427 x x x x x	9050498 x x x x x x			4342 x x x x x x x			
23	9050429	9050430	9006225	9034667				
24	x x x x x x		x x x x x x	x x x x x				
24	9050431	9050432						9034669
25	x x x	 						x x x xxx
-	9050007				Windt			
26	x x x x x	(x x x x x x >	* * * * * *	x x x x x x x	x x x x x	x x x x x x	x x x x x
			J					

▲ North ▲


Elaura 2.1 Diat Man	Study No. 201026	/ Unakharny Calting	n IED Monhotton DMC
FIGURE Z. FIGURIAD	. Sluuv INU. ZUIUZO	Λ . Hackbelly, <i>Cellis</i> s	p., IEP, Manhattan, PMC.
		.,	1

↑ N

Row W

Row W	1
	9026646
	9026643
	9026641
	9023017
	9026672
:	9017884
•	9026427
_	9022741
	9021223
	9015678
9030314	
9030313	
9013440	
9013439	
9013438 ■ ■ ■ ■ ■	

■ = 1 tree

■ = 1 tree

MAPS

← N —

Figure 3.1 Plot Map. Study No. 201031K - Oriental arborvitae, *Platycladus orientalis*, IEP, Manhattan PMC.

Field J

Col. 2	9017764	9017879	9018973	9019848	9019849	9019850	9019853	9019854	9020979	9021012
	X X 0 0 X 0	0 X X 0 0 X	000000	XXXXXX	X X X X X X	X X 0 0 0 0	0 X X X X X	000X00	000000	0 X 0 0 0
Col. 1	9010076	9010077	9011202	9012467	9013567	9013568	9013569	9013570	9013571	9013572
	000000	0 X 0 X 0 0	000000	X X X X X X	X X X X X X	000000	000000	X X X X X X	0 0 X 0 0 X	X00000

Field L

Col. 2	9023359	9026610	PMK-2925	9026780	Blank	9013566		9019852		780				
	X X X X X X	XXXXXX	XXXXXX	X 0 X 0 X 0		Х	00		X X 0		ΧХ			
Col. 1	9013573	9013574	9013575	9013576	90135	77	9013578	90	13579	901	13580	901	4890	9015329
	0 0 0 0 X 0	XXXXXX	XXXXXX	X 0 X X X X	X X 0 0	хх х	хххх	(XX	X X 0 0	002	X 0 0 0	X 0 X	ХХХ	00X00

Figure 4.1 Plot Map Field E-2. Study No. 201038K - Bur Oak Seed Source Study - Manhattan PMC.

— N →

В	Border	В													
В	520-1-1	520-1-2	267-1-1	267-1-2	137-1-1	137-1-2	567-1-1	567-1-2	Border	Border	Border	Border	Border	Border	В
	9050170	9050170	9050162	9050162	9050156	9050156	9050175	9050175	Doraci	Doraci	Doraci	Doraci	Doraci	Doraci	
В	125-1-1	125-1-2	246-1-1	246-1-2	392-1-1	392-1-2	262-1-1	262-1-2	274-1-1	274-1-2	265-1-1	265-1-2	510-1-1	510-1-2	В
_	9050154	9050154	9050163	9050163	9004392	9004392	9050159	9050159	9050167	9050167	9050161	9050161	9050169	9050169	
В	253-1-1	253-1-2	087-1-1	523-1-2	521-1-1	521-1-2	225-1-1	225-1-2	267-1-1	267-1-2	122-1-1	122-1-2	245-1-1	245-1-2	В
	9050160	9050160	9050087	9050172	9050171	9050171	9050157	9050157	9050162	9050162	9050153	9050153	9050158	9050158	
В	501-1-1	501-1-2	087-1-1	275-1-2	249-1-1	249-1-2	241-1-1	241-1-2	132-1-1	132-1-2	556-1-1	556-1-2	554-1-1	554-1-2	В
	9050168	9050168	9050087	9050065	9050176	9050176	9050164	9050164	9050155	9050155	9050174	9050174	9050173	9050173	
В	267-2-1	267-2-2	241-2-1	241-2-2	249-2-1	087-2-2	501-2-1	501-2-2	125-2-1	125-2-2	225-2-1	225-2-2	271-1-1	271-1-2	В
	9050162	9050162	9050164	9050164	9050176	9050087	9050168	9050168	9050154	9050154	9050157	9050157	9050166	9050166	
В	275-2-1	087-2-2	392-2-1	392-2-2	271-2-1	271-2-2	554-2-1	554-2-2	265-2-1	265-2-2	137-2-1	137-2-2	556-2-1	556-2-2	В
	9050065	9050087	9004392	9004392	9050166	9050166	9050173	9050173	9050161	9050161	9050156	9050156	9050174	9050174	
В	246-2-1	246-2-2	567-2-1	567-2-2	122-2-1	122-2-2	523-2-1	523-2-2	269-2-1	269-2-2	274-2-1	274-2-2	520-2-1	520-2-2	В
	9050163	9050163	9050175	9050175	9050153	9050153	9050172	9050172	9050165	9050165	9050167	9050167	9050170	9050170	
В	087-3-1	521-3-2	253-2-1	253-2-2	132-2-1	132-2-2	245-2-1	245-2-2	521-2-1	521-2-2	510-2-1	510-2-2	262-2-1	087-2-2	В
	9050087	9050171	9050160	9050160	9050155	9050155	9050158	9050158	9050171	9050171	9050169	9050169	9050159	9050087	
В	262-3-1	262-3-2	249-3-1	077-3-2	510-3-1	510-3-2	087-3-1	523-3-2	253-3-1	253-3-2	125-3-1	125-3-2	077-3-1	554-3-2	В
	9050159	9050159	9050176	9050077	9050169	9050169	9050087	9050172	9050160	9050160	9050154	9050154	9050077	9050173	
В	225-3-1	225-3-2	269-3-1	269-3-2	137-3-1	137-3-2	271-3-1	271-3-2	265-3-1	265-3-2	556-3-1	556-3-2	267-3-1	267-3-2	В
	9050157	9050157	9050165	9050165	9050156	9050156	9050166	9050166	9050161	9050161	9050174	9050174	9050162	9050162	
В	241-3-1	241-3-2	501-3-1	501-3-2	392-3-1	392-3-2	245-3-1	245-3-2	520-3-1	520-3-2	132-3-1	132-3-2	122-3-1	122-3-2	В
	9050164	9050164	9050168	9050168	9004392	9004392	9050158	9050158	9050170	9050170	9050155	9050155	9050153	9050153	
В	262-4-1	262-4-2	269-4-1	269-4-2	245-4-1	245-4-2	274-3-1	274-3-2	275-3-1	275-3-2	246-3-1	246-3-2	567-3-1	567-3-2	В
	9050159	9050159	9050165	9050165	9050158	9050158	9050167	9050167	9050065	9050065	9050163	9050163	9050175	9050175	
В	132-4-1	132-4-2	501-4-1	501-4-2	567-4-1	567-4-2	249-4-1	249-4-2	253-4-1	253-4-1	520-4-1	520-4-2	125-4-1	125-4-2	в
	9050155	9050155	9050168	9050168	9050175	9050175	9050176	9050176	9050160	9050160	9050170	9050170	9050154	9050154	
В	241-4-1	241-4-2	521-4-1	521-4-2	271-4-1	271-4-2	392-4-1	392-4-2	556-4-1	556-4-2	267-4-1	267-4-2	510-4-1	510-4-2	В
_	9050164	9050164	9050171	9050171	9050166	9050166	9004392	9004392	9050174	9050174	9050162	9050162	9050169	9050169	_
В	265-4-1	265-4-2	274-4-1	087-4-2	225-4-1	225-4-2	137-4-1	137-4-2	275-4-1	275-4-2	523-4-1	523-4-2	122-4-1	122-4-2	В
	9050161	9050161	9050167	9050087	9050157	9050157	9050156	9050156	9050065	9050065	9050172	9050172	9050153	9050153	_
В	267-6-1	267-6-2	392-5-1	392-5-2	271-5-1	271-5-2	087-5-1	122-5-2	554-5-1	554-5-2	246-4-1	246-4-2	554-4-1	554-4-2	В
	9050162	9050162	9004392	9004392	9050166	9050166	9050087	9050153	9050173	9050173	9050163	9050163	9050173	9050173	
В	249-5-1	249-5-2	501-5-1	501-5-2	245-5-1	245-5-2	265-5-1	265-5-2	556-5-1	556-5-2	521-5-1	521-5-2	262-5-1	262-5-2	В
-	9050176	9050176	9050168	9050168	9050158	9050158	9050161	9050161	9050174	9050174	9050171	9050171	9050159	9050159	
В	275-5-1	275-5-2	523-5-1	523-5-2	087-5-1	077-5-2	274-5-1	087-5-2	269-5-1	269-5-2	225-5-1	225-5-2	241-5-1	241-5-2	В
-	9050065	9050065	9050172	9050172	9050087	9050077	9050167	9050087	9050165	9050165	9050157	9050157	9050164	9050164	닏
В	253-5-1	253-5-2	246-5-1	246-5-2	267-5-1	267-5-2	520-5-1	520-5-2	125-5-1	125-5-2	567-5-1	567-5-2	137-5-1	137-5-2	В
	9050160	9050160	9050163	9050163	9050162	9050162	9050170	9050170	9050154	9050154	9050175	9050175	9050156	9050156	\mathbb{H}
В	Border	В													

Legend: Entry-Rep-Tree = 520-1-1 Accession No. = 9050170 Figure 5.1 Plot Map. Study No. 201041K - Siberian Elm, *Ulmus pumila*, FEP - Akron, Colorado.

Border	Border	Border	Border	Border	Border	Border	Border	Border	Border	Border
Border	9050214	9050184	9050217	9050225	9050214	9050219	9050225	9050241	9050228	Border
Dorder	1-1	1-1	1-1	2-1	2-1	2-1	3-1	3-1	3-1	Dorder
Border	9050214	9050184	9050217	9050225	9050214	9050219	9050225	9050241	9050228	Border
Dorder	1-2	1-2	1-2	2-2	2-2	2-2	3-2	3-2	3-2	Doruer
Border	9050214	9050184	9050217	9050225	9050214	9050219	9050225	9050241	9050228	Border
Doraci	1-3	1-3	1-3	2-3	2-3	2-3	3-3	3-3	3-3	Doraci
Border	9050226	9050233	9050241	9050233	9050241	9050235	9050184	9050224	9050240	Border
Dorder	1-1	1-1	1-1	2-1	2-1	2-1	3-1	3-1	3-1	Doruci
Border	9050226	9050233	9050241	9050233	9050241	9050235	9050184	9050224	9050240	Border
Dorder	1-2	1-2	1-2	2-2	2-2	2-2	3-2	3-2	3-2	Doraci
Border	9050226	9050233	9050241	9050233	9050241	9050235	9050184	9050224	9050240	Border
Dordor	1-3	1-3	1-3	2-3	2-3	2-3	3-3	3-3	3-3	Donator
Border	9050213	9050222	9050240	9050184	9050240	9050213	9050222	9050216	9050233	Border
	1-1	1-1	1-1	2-1	2-1	2-1	3-1	3-1	3-1	
Border	9050213	9050222	9050240	9050184	9050240	9050213	9050222	9050216	9050233	Border
	1-2	1-2	1-2	2-2	2-2	2-2	3-2	3-2	3-2	
Border	9050213	9050222	9050240	9050184	9050240	9050213	9050222	9050216	9050233	Border
	1-3	1-3	1-3	2-3	2-3	2-3	3-3	3-3	3-3	
Border	9050216	9050228	9050224	9050224	9050222	9050226	9050226	9050219	9050235	Border
	1-1	1-1	1-1	2-1	2-1	2-1	3-1	3-1	3-1	
Border	9050216	9050228	9050224	9050224	9050222	9050226	9050226	9050219	9050235	Border
	1-2	1-2	1-2	2-2	2-2	2-2	3-2	3-2	3-2	
Border	9050216	9050228	9050224	9050224	9050222	9050226	9050226	9050219	9050235	Border
	1-3	1-3	1-3	2-3	2-3	2-3	3-3	3-3	3-3	
Border	9050219	9050235	9050225	9050228	9050217	9050216	9050213	9050217	9050214	Border
	1-1	1-1	1-1	2-1	2-1	2-1	3-1	3-1	3-1	
Border	9050219	9050235	9050225	9050228	9050217	9050216	9050213	9050217	9050214	Border
	1-2	1-2	1-2	2-2	2-2	2-2	3-2	3-2	3-2	
Border	9050219	9050235	9050225	9050228	9050217	9050216	9050213	9050217	9050214	Border
	1-3	1-3	1-3	2-3	2-3	2-3	3-3	3-3	3-3	
Border	Border	Border	Border	Border	Border	Border	Border	Border	Border	Border

Legend: Accession No. = 9050214 Rep-Tree = 1-1

1 Ν Figure 5.2 Plot Map. Study No. 201041K - Siberian Elm, Ulmus pumila, FEP - Sidney, Nebraska.

Border	Border	Border	Border	Border	Border	Border	Border	Border	Border	Border
Border	9050213	9050240	9050217	9050184	9050217	9050226	9050217	9050219	9050233	Border
	3-1	3-1	3-1	3-1	2-1	2-1	1-1	1-1	1-1	
Border	9050213	9050240	9050217	9050184	9050217	9050226	9050217	9050219	9050233	Border
	3-2	3-2	3-2	3-2	2-2	2-2	1-2	1-2	1-2	
Border	9050213	9050240	9050217	9050184	9050217	9050226	9050217	9050219	9050233	Border
	3-3	3-3	3-3	3-3	2-3	2-3	1-3	1-3	1-3	
Border	Border	9050233	9050226	9050214	9050240	9050233	9050214	9050226	9050240	Border
		3-1	3-1	3-1	2-1	2-1	1-1	1-1	1-1	
Border	Border	9050233	9050226	9050214	9050240	9050233	9050214	9050226	9050240	Border
		3-2	3-2	3-2	2-2	2-2	1-2	1-2	1-2	
Border	Border	9050233	9050226	9050214	9050240	9050233	9050214	9050226	9050240	Border
		3-3	3-3	3-3	2-3	2-3	1-3	1-3	1-3	
Border	Border	9050224	9050222	9050213	9050219	9050184	9050184	9050213	9050222	Border
		3-1	3-1	2-1	2-1	2-1	1-1	1-1	1-1	
Border	Border	9050224	9050222	9050213	9050219	9050184	9050184	9050213	9050222	Border
		3-2	3-2	2-2	2-2	2-2	1-2	1-2	1-2	
Border	Border	9050224	9050222	9050213	9050219	9050184	9050184	9050213	9050222	Border
		3-3	3-3	2-3	2-3	2-3	1-3	1-3	1-3	
Border	Border	9050228	9050219	9050222	9050224	9050214	9050228	9050228	9050224	Border
		3-1	3-1	2-1	2-1	2-1	2-1	1-1	1-1	
Border	Border	9050228	9050219	9050222	9050224	9050214	9050228	9050228	9050224	Border
		3-2	3-2	2-2	2-2	2-2	2-2	1-2	1-2	
Border	Border	9050228	9050219	9050222	9050224	9050214	9050228	9050228	9050224	Border
		3-3	3-3	2-3	2-3	2-3	2-3	1-3	1-3	
Border	Border	Border	Border	Border	Border	Border	Border	Border	Border	Border

Legend: Accession No. = 9050217 Rep-Tree = 1-1

1

Ν

Rep 1	101	102	103	104	105	106	107	108	109	110
L L	9050384	9008041	9050345	9050285	9050373	9050355	9050361	9050262	9050310	9050253
	120	121	122	123	124	125	126	127	128	129
	9050324	9050277	9050313	9050336	9050327	9050309	9050362	9050294	9050366	9050327
	139	140	141	142	143	144	145	146	147	148
	9050335	9050348	9050251	9050354	9050292	9050367	9050316	9050353	9050337	9050271
	158	159	160	161	162	163	164	165	166	167
	9050317	9050269	9050379	9050344	9050307	9050308	9050378	9050394	9050329	9050391
	201	202	203	204	205	206	207	208	209	210
	9050292	9050334	9050284	9050312	9050319	9050324	9050272	9050294	9050373	9050349
p 2	220	221	222	223	224	225	226	227	228	229
Rep	9050279	9050313	9050354	9050378	9050251	9050299	9050356	9050325	9050188	9050374
	239	240	241	242	243	244	245	246	247	248
	9050297	9050309	9050253	9050348	9050337	9050277	9050372	9050394	9050383	9050343
	258	259	260	261	262	263	264	265	266	267
	9008041	9050321	9050345	9050280	9050271	9050273	9050261	9050379	9050342	9050355
	301	302	303	304	305	306	307	308	309	310
	9050345	9050355	9050354	9050391	9050384	9050344	9050280	9050310	9050374	9050321
	320	321	322	323	324	325	326	327	328	329
d O	9050379	9050300	9050343	9050325	9050346	9050317	9050298	9050275	9050295	9050388
Rep	339	340	341	342	343	344	345	346	347	348
	9050342	9050293	9050314	9050377	9050361	9050188	9050319	9050378	9050365	9050269
	358	359	360	361	362	363	364	365	366	367
	9050356	9050365	9050307	9050372	9050373	9050297	9050400	9050277	9050251	9050299

110

Figure 6.1 Plot Map Part 1, Field C-3. Study No. 201042E - false indigo, Amorpha fruticosa, IEP, Manhattan PMC.

1

Ν

Part 2

	111	112	113	114	115	116	117	118	119
	9050329	9050299	9050377	9050366	9050343	9050372	9050328	9050318	9050400
	130	131	132	133	134	135	136	137	138
~	9050293	9050383	9050346	9050388	9050250	9050298	9050188	9050284	9050342
Rep 1	149	150	151	152	153	154	155	156	157
	9050275	9050300	9050280	9050314	9050279	9050325	9050356	9050274	9050319
	168	169	170	171	172	173	174	175	176
	9050272	9050334	9050315	9050297	9050312	9050349	9050261	9050273	9050295
	211	212	213	214	215	216	217	218	219
	9050328	9050269	9050275	9050388	9050310	9050307	9050308	9050391	9050317
5	230	231	232	233	234	235	236	237	238
Rep	9050300	9050377	9050285	9050336	9050344	9050316	9050365	9050293	9050367
	249	250	251	252	253	254	255	256	257
	9050327	9050362	9050262	9050361	9050400	9050298	9050315	9050314	9050329
	268	269	270	271	272	273	274	275	276
	9050384	9050366	9050318	9050346	9050335	9050274	9050353	9050295	9050250
	311	312	313	314	315	316	317	318	319
	9050394	9050279	9050313	9050294	9050312	9050328	9050292	9050272	9050353
	330	331	332	333	334	335	336	337	338
3	9008041	9050271	9050285	9050250	9050274	9050334	9050335	9050321	9050309
Rep 3	349	350	351	352	353	354	355	356	357
	9050315	9050316	9050383	9050284	9050253	9050374	9050348	9050318	9050362
	368	369	370	371	372	373	374	375	376
	9050261	9050349	9050308	9050273	9050367	9050262	9050336	9050324	9050337

Part 1 ◀───

Figure 6.1 Plot Map Part 2, Field D-3. Study No. 201042E - false indigo, Amorpha fruticosa, IEP, Manhattan PMC (continued).

MAPS

Ν

NOTES