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Abstract

For normally distributed populations, we obtain confidence
bounds on a ratio of two coefficients of variation, provide a
test for the equality of & coefficients of variation, and pro-
vide confidence bounds on a coefficient of variation shared
by k populations.

To develop these confidence bounds and test, we first
establish that estimators based on Newton steps from
\n-consistent estimators may be used in place of efficient
solutions of the likelihood equations in likelihood ratio,
Wald, and Rao tests. Taking a quadratic mean differentiabil-
ity approach, Lehmann and Romano have outlined proofs
of similar results. We take a Cramér condition approach and
make the conditions and their use explicit.

Keywords: coefficient of variation, signal to noise ratio,
risk to return ratio, one-step Newton estimators, Newton’s
method, Vn-consistent estimators, efficient likelihood esti-
mators, Cramér conditions, quadratic mean differentiability,
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Confidence Bounds and Hypothesis Tests for Normal
Distribution Coefficients of Variation

Steve Verrill, Mathematical Statistician

USDA Forest Products Laboratory, Madison, Wisconsin
Richard A. Johnson, Professor of Statistics
University of Wisconsin, Madison, Wisconsin

1 Introduction

The coefficent of variation (COV) of a distribution with mean p and variance o? is defined as
the noise to signal ratio or o/u. (Sometimes this ratio is multiplied by 100 and reported as a
percentage.) Building materials are often evaluated not only on the basis of mean strength but also
on relative variability. Laboratory techniques are often compared on the basis of their coefficients
of variation. Financial managers treat coefficients of variation as measures of risk to return. Thus,
scientists, engineers, and portfolio managers are interested in obtaining confidence intervals on
population coefficients of variation and in testing for the equality of coefficients of variation.

For normally distributed populations, Vangel (1996) and Verrill (2003) focused on techniques
for obtaining confidence intervals on single coefficients of variation. In this paper, for normally
distributed populations, we use likelihood-based methods to obtain large sample solutions to three
additional problems:

1. Obtain a confidence interval on the ratio of two coefficients of variation

2. Perform a test of the hypothesis that the coefficients of variation associated with & populations
are all equal

3. Obtain a confidence interval on a coefficient of variation that is shared by k populations

A likelihood ratio test of the hypothesis that k coefficients of variation are equal has previously
appeared in the literature (Doornbos and Dijkstra 1983, Nairy and Rao 2003). However, no rig-
orous demonstration of its asymptotic distribution has previously appeared. In addition, several
other tests of the equality of k coefficients of variation have been proposed (Bennett 1976, Shafer
and Sullivan 1986, Miller 1991, Feltz and Miller 1996, Nairy and Rao 2003). Simulation studies
(Doornbos and Dijkstra 1983, Shafer and Sullivan 1986, Fung and Tsang 1998, Nairy and Rao 2003)
have suggested that the tests of Bennett (1976), Miller (1991) (and their modifications — Shafer
and Sullivan 1986, Feltz and Miller 1996), and the ICV Wald test of Nairy and Rao (2003) have
statistical sizes that are near nominal for small sample sizes while the statistical size of the likeli-
hood ratio test is overly liberal. This has led some authors to recommend the tests of Bennett and
Miller over the likelihood ratio test. However, we provide Web-based simulation tools that protect
a user from an overly liberal test. We illustrate the use of one of these tools in the next section.

In a subsequent paper we will compare the power properties of the tests when actual statistical
sizes for all tests are near nominal.

A confidence interval on a ratio of two coefficients of variation has not previously appeared
in the literature. Tian (2005) has taken a Weerahandi (1993) approach to obtain a generalized
confidence interval on a coefficient of variation that is shared by k populations.



In Section 2 we present an example of the application of our methods to a real data set. In
Sections 3 through 8, we present our coefficient of variation theorems. In Appendices A through G,
we provide the details of the proofs of these theorems. In Appendix H, we present the proofs
of general theorems that provide the basis for the specific coefficient of variation theorems. In
particular, in Appendix H we derive the asymptotic distributions of general likelihood ratio, Wald,
and Rao test statistics. Versions of these asymptotic results have been reported previously in the
literature, but portions of our proofs are novel, and we make the conditions needed to establish our
asymptotic results so explicit that we can readily apply them to the special case of coefficients of
variation.

In addition, in Appendix H we demonstrate that a solution of the likelihood equations can be
replaced in likelihood ratio, Wald, and Rao tests by a Newton step refinement of a y/n-consistent
estimator.! Taking a quadratic mean differentiability approach, Lehmann and Romano (2005) have
outlined proofs of similar results.

We make use of likelihood ratio tests in Theorems 2, 4, and 6. The asymptotic distributions of
our test statistics are given by Theorems H.1 and H.4. We establish the conditions that permit us to
invoke these theorems in Appendices B, E, and G. These conditions would also have permitted us to
invoke Theorems H.2, H.3, H.5, and H.6 to obtain the asymptotic distributions of the corresponding
Wald and Rao test statistics.

2 Application of Our Results to Laboratory Quality Control Data

In this section we illustrate the use of one of our programs to test the hypothesis that five coeffi-
cients of variation are equal. The data set consists of quality control measurements of the xylan
percentage (xylan is a polysaccharide) in a standard measured in the USDA Forest Products Lab-
oratory’s Analytical Chemistry Laboratory over the course of 2 years.? The data are presented
in Table 1. The measurements were time sequential. For the purposes of illustration, we have
grouped observations 1 through 20 into Group 1, observations 21 through 40 into Group 2, and
so on. Ideally the quality control measurements represent a steady state process, so the coefficient
of variation should not be changing. We plot the data in Figure 1. The curve in the figure was
produced by a locally weighted regression (loess) smoother.

From the top plot in Figure 1, it is clear that for practical purposes, the xylan measurement is
quite stable. However, the bottom plot in Figure 1 suggests that at a micro level, there might be
statistically significant local trends in the data. (There were 102 observations in the full data set.
The dashed lines in the bottom plot of Figure 1 demarcate the five groups of 20.)

We plot box plots of the data in Figure 2. The sample means and standard deviations are pre-
sented in Table 2. Normal probability plots and formal tests of normality indicated that Groups 1,
2, and 5 do not violate the normality assumption. Group 3 appears to be bimodal and nonnormal.
Group 4 appears to have two outliers that cause the normality assumption to be violated. We have
performed three analyses. For the first we accepted all the data. For the second we removed two
“outliers.” For the third we removed all “outliers.” The Web program that we used to analyze
the three cases is available at http://wwwl.fpl.fs.fed.us/covtestk.html. It is illustrated in
Figure 3. As indicated in that figure a user need only provide the program with the number of
groups, the sample sizes, means, and standard deviations of the groups, and an integer starting
value for the random number generator that is used in the small-sample simulation. The program
returns the p-value calculated from the asymptotic test and a simulation-based estimated p-value.

4 is a \/n-consistent estimator of a if \/n(a —a) = Op(1)
*We thank Dr. Mark Davis for providing this data.



For the data presented in Table 1, the asymptotic p-value is 0.144, and the small sample simulation
test is not significant at a 0.10 level. However, if the two “outliers” of Group 4 are removed, the
asymptotic p-value is 0.016 and the estimated p-value from the small sample simulation is 0.025. If
all “outliers” in all groups are removed, the asymptotic p-value is 0.006 and the estimated p-value
from the small sample simulation is 0.012. A user should give greater credence to the results of the
small sample tests. (See Section 9.)

We emphasize that we have presented this example solely for the purpose of illustrating the
use of the program. A fully defensible analysis in this case would have to consider issues of serial
correlation, non-normal data, and the legitimacy of discarding outliers.

We have also developed two additional Web-based programs. A program that calculates a
confidence interval on a ratio of two coefficients of variation can be found at
http://wwwl.fpl.fs.fed.us/covratio.html. A program that calculates a confidence interval
on a coefficient of variation that is shared by k£ normally distributed populations can be found at
http://wwwl.fpl.fs.fed.us/covconfk.html.

In Sections 3 through 8 we develop the statistical theory that underlies these programs. Readers
who are not interested in this theory should skip to Section 9.

3 Confidence Interval on the Ratio of Two Coefficients of Varia-
tion

In Sections 3 and 4 we present two approaches to obtaining a confidence interval on a ratio of
two coefficients of variation. In Section 3 we obtain the asymptotic distribution of the maximum
likelihood estimate of the ratio. A 95% (for example) confidence interval is then just the usual
“estimate plus or minus two (1.96) standard deviations.” See below for details. In Section 4 we
take a likelihood ratio test approach. In this case, a 95% (for example) confidence interval is simply
the collection of those ratio values that are not rejected at a 0.05 significance level by the test. We
have found via simulations that actual confidence levels approach nominal confidence levels more
rapidly when we take the likelihood ratio approach. Thus our Web programs implement only the
material in Section 4. However, we include the Section 3 material for completeness.

We assume that we have ny observations, 11,...,%n,1, from a N(u1,0?) population, and ny
observations, 1, ... ,Tn,2, from a N(us,03) population, and that pu1,us > 0. We assume that
all these observations are statistically independent. Let n = ny + no. We further assume that
ni/n — A1 > 0 and ng/n — Ay > 0 as n — oco. We denote the coefficient of variation of the first
population by

CEUl/y,l
SO
p = o1/c

We denote the ratio of the coefficient of variation of the second population to the coefficient of
variation of the first population by r. Thus

r = (o2/p2)/c
and

pa = 02/(rc)



Then, we have the following theorem.
Theorem 1

o1 01
vall T -1 7 || B Moo
T r
where 0 = (01,02,077“)Ta
;j
Tj = Y mi/n; forj=1,2
i=1
nj
6; = | D (wij —T4)?/n; for j=1,2
i=1
= &1/@‘.1

= o

(62/7.2)/¢
and Fisher’s information matrix is given by

I1(0) = M11(0) + Xa12(0)

where
241/t )o? 0 —1/(c}o1) O
0 0 0 0
L(6) = ~1/(Goy) 0 1/t 0
0 0 0 0
0 0 0 0
1(6) = 0 (2+1/(re)®) /o2 —1/(r’coy) —1/(r3c?os)
2T 00 —1/(r2 o) 1/(r2c%) 1/(r3¢?)
0 —1/(r3c?oy) 1/(r3c?) 1/(r*c?)
Proof

The proof is a standard application of theorem 6.1 of chapter 6 of Lehmann (1983). In Appendix
A we establish the conditions needed to invoke Lehmann’s theorem. W
Based on Theorem 1, an approximate 1 — « confidence interval on r is given by

7+ za/g\/cz44/n

where 2,/2 is the appropriate critical value from a standard normal distribution, dys is the 4th
diagonal element of 1(8) 1, and I(8) is I(0) with oy, o2, ¢, and r replaced by &1, 62, &, and 7.

4 Likelihood-Ratio—Based Confidence Interval on the Ratio of

Two Coeflicients of Variation

In Section 3 we obtained a confidence interval on the ratio of two coefficients of variation by
establishing the asymptotic normality of the estimated parameter vector. In this section we take a



likelihood ratio approach to this problem. That is, a 95% (for example) confidence interval is simply
the collection of those ratio values that are not rejected at a 0.05 significance level by the test. We
have found via simulations that actual confidence levels approach nominal confidence levels more
rapidly when we take this likelihood ratio approach. Thus our Web programs implement only the
material in Section 4. However, we include the Section 3 material for completeness.

We make the same assumptions as those made in Section 3. Then, in the notation of Section 18.3
of Appendix H, we have the following theorem.
Theorem 2

Provided that the ratio of coefficients of variation, r, equals 7,

2(nL(6,) — In L(g(#n))) 2 x3

where 0 = (01,09,¢,7)", v = (01,02,¢)", up to a constant

ni

In L(@) = —nq In(oy) — Z(mzl —01/¢)?/(20?) — nyIn(oy) Z Tio — 03/(r¢))?/(203)
=1

=1

0, = (61,69,¢,7)7 is the solution of the unconstrained likelihood equations described in connection
with Theorem 1,

1(v1, v2,13) vy o1

g(v) = g2(vi,va,vg) | _ | v | _ | o2
g3(v1,v2,13) V3 c
NZRZNZY, To To

and &, is the solution to the likelihood equations obtained in Appendix C.
Proof

Because two probability density functions are involved, Theorem 2 is a slight extension of a
standard likelihood ratio result. To prove Theorem 2, we invoke Theorem H.1 of Appendix H. In
Appendix B we establish the conditions needed to invoke Theorem H.1. W

We have written a FORTRAN program that uses Theorem 2 to perform a test of the hypothesis
that r = rg. The program uses this test to obtain a confidence interval for r — those r¢ that are not
rejected at an « significance level constitute a 1 — a confidence interval for r. A user of the program
need only supply ni,n2,Z.1,Z.2, \/E:’:ll(mzl —Z.4)?/(n1 — 1), and \/ZZ | (@io — Z.2)%/(n2 — 1).
The program can be run over the Web at http://wwwl.fpl. fs fed.us/covratio.html

5 Confidence Interval on a Coefficient of Variation that Is Shared
by Two Normally Distributed Populations

In this section, we obtain a confidence interval on a coefficient of variation that is shared by two
normally distributed populations. (Lohrding (1969) attacked a related problem by parametrizing
by p1, p2, and ¢, rather than by o1, o9, and ¢ as we do here.) In Section 7 we generalize this problem
and obtain a confidence interval on a coefficient of variation that is shared by & normally distributed
populations. The special case of two populations is still worth investigating because in this case
we can obtain a closed form solution for the estimate of the coefficient of variation. Further, the
arguments needed to handle the k-population case are simple extensions of those needed to handle
the two-population case, and these arguments are most simply presented in the two-population
case.



We assume that we have n; observations, 11,...,%n,1, from a N(u1,0?) population, and ny
observations, T1,... ,Tn,2, from a N(us,03) population, and that u1,us > 0. We assume that
all these observations are statistically independent. Let n = ny + no. We further assume that
ni/n — A1 > 0 and ng/n — Ay > 0 as n — oo. We denote the shared coefficient of variation of the
two populations by

c=o01/m = oa/p>

Then, we have the following theorem.
Theorem 3

o1 o1
vall 6 | = o2 | | BN, 1(6)Y)
¢ c

where @ = (01,09,¢)", 61, 62, ¢ are derived in Appendix C (set rg in Appendix C to 1),

1(0) = A\ 11 (0) + A2 12(0)

and
2+1/2))o? 0 —1/(co)
1(8) = 0 0 0
~1/(coy) 0 1/ct
0 0 0
L®)=] 0 (2+ 1/02)/(7% —1/(c?03)
0 —1/(c*09) 1/ct
Proof

The proof is a standard application of theorem 6.1 of chapter 6 of Lehmann (1983). In Ap-
pendix C we establish the conditions needed to invoke Lehmann’s theorem. B
Based on Theorem 3, an approximate 1 — a confidence interval on ¢ is given by

(= Za/g\/dgg,/’n,

where z,/7 is the appropriate critical value from a standard normal distribution, 6233 is the third
diagonal element of I(8) 1, and I(8) is I(8) with o1, o9, and ¢ replaced by &1, 62, and é In
Appendix I we establish that dsz = ¢* + ¢?/2.

6 Likelihood Ratio Test of the Hypothesis that £ Normally
Distributed Populations Share the Same Coefficient of Variation

We assume that we have n; observations, 211, ... ,Tp,1, from a N(u1,0?) population, ny observa-
tions, 12, ... ,Zn,2, from a N(uz,03) population, ..., and ng observations, 1, ... ,Zn,k, from a
N (pg, a,%) population, and that pi,...,ur > 0. We assume that all these observations are statisti-

cally independent. Let n = ny + ... 4 ng. We further assume that n;/n — X\; > 0 as n — oo for
j=1,... k. We denote the shared coefficient of variation of the k populations by

c=o01/p1 =" = 0k/p



Then, in the notation of Section 18.3 of Appendix H, we have the following theorem.
Theorem 4
Provided that oy /puy = -+ = ok / ik,

2(In L(8,,) — In L(8(V,, Newt))) = Xi—1

where 8 = (1, 01,... , g, 0%) , v = (01,... ,01,¢)" [note that in this section the parameter vector
is given by @ = (u1,01,... , g, 0%) while in Sections 5, 7, and 8 8 = (o1,... ,0%,¢)], up to a
constant

k n;j
InL(6) = Z <—nj In(oj) — Z(ﬂiz‘j - Mj)Z/(%gz))

~

0,, is the standard solution of the unconstrained likelihood equations, that is

T.1
1
6,=| :
Tk
Sk
where
nj
85 = y| (@i — T5)2/n;
i=1
V1 /Vktt oi/c
1241 o1
g(v) = : = :
Vi /Vi+1 or/c
Vg Ok
V, Newt is the Newton estimator of (o1,... ,04,¢)T given by
_ OlnL 81/1
2L /
Vn,NeWt = - OV, 0vy, |Vn,c : |I/n,c + Vn,c (1)
OlnL/0vkiq
where v, is any \/n-consistent estimator of (c1,... ,04,¢)T (such as (si,...,sk,é)T where ¢ is

described in connection with Equation 78 in Subsection 15.7). The partial derivatives in Equa-
tion 1 (actually, the partials of the In f;(x;0)’s where In L = 2?21 S In f;(x5;0)) are listed in
Appendix C, and a simple technique for solving the equation is provided in Appendix I.
Proof

Because k probability density functions are involved, and because we are dealing with a Newton
one-step estimator, Theorem 4 is a slight extension of a standard likelihood ratio result. To prove
Theorem 4, we invoke Theorem H.4 of Appendix H. (Note that in applying Theorem H.4 we can use



6., as our \/n-consistent estimator in the unconstrained case. Then the Newton 1-step estimator is
again 9n) In Appendix E we establish the conditions needed to invoke Theorem H.4. W

We have written a FORTRAN program? that uses Theorem 4 to perform a test of the hypothesis
that o1/pu1 = ... = o /pr. The user need only supply ny,... ,nk, Z.1,... , Tk,
VIR (it — Z.4)2 /(1 — 1), ooy /Doik (wir — T.6)%/(nk, — 1). The program can be run over the
Web at http://wwwl.fpl.fs.fed.us/covtestk.html.

7 Confidence Interval on a Coefficient of Variation that Is Shared
by k£ Normally Distributed Populations

In Sections 7 and 8 we present two approaches to obtaining a confidence interval on a coefficient
of variation that is shared by k£ normally distributed populations. In Section 7 we obtain the
asymptotic distribution of the estimate of the coefficient of variation. A 95% (for example) confi-
dence interval is then just the usual “estimate plus or minus two (1.96) standard deviations.” See
below for details. In Section 8 we take a likelihood ratio test approach. In this case, a 95% (for
example) confidence interval is simply the collection of those coefficient of variation values that
are not rejected at a 0.05 significance level by the test. We have found via simulations that actual
confidence levels approach nominal confidence levels more rapidly when we take the likelihood ratio
approach. Thus our Web programs implement only the material in Section 8. However, we include
the Section 7 material for completeness.

We make the same assumptions as those made in Section 6. However, here the parameter vector
is given by 8 = (01,... ,0%,¢)T (as opposed to the vector (pu1,01, ...,k 0%)T of Section 6).

Then, we have the following theorem.
Theorem 5

V0, News — 8) = N(0,1(8)7")

where en,Newt is the Newton estimator of (o1,... ,0%,¢)T given by
_ 0lnL/06
_ #mnL] ! / '
en,NeWt = W |0n,c . |0n,c + onyc (2)
[VUm
8 In L/89k+1
0, is any /n-consistent estimator of (o1, ... ,0%,¢)T (such as (s1,... ,sk,¢)T where ¢ is described

in connection with Equation 78 in Subsection 15.7), and
k

16) = 3" A 15(6)
7=1

where the 7, j th element of I;(0) is (2+ 1/02)/0]2-, the j,k+1th and k41, j th elements of 1;(8) are
—1/(c30}), the k+1,k+1 th element is 1/c?, and the remaining elements are 0. The partial deriva-
tives in Equation 2 (actually, the partials of the In f;(x;80)’s where In L = Z?Zl S In fi(wi5:0))
are listed in Appendix C, and a simple technique for solving the equation is provided in Appendix I.

3We note that in this program, we start with the \/n-consistent estimator given by (si,..., sk, ¢), perform a
limited number of backtracking Newton steps (which still leaves us with a \/n-consistent estimator), and then do a
final full Newton step.



Proof

Because k probability density functions are involved, and because we are dealing with a Newton
one-step estimator, Theorem 5 is a slight extension of a standard efficient likelihood estimator
result. To prove Theorem 5, we invoke Corollary 1 to Lemma H.8 of Appendix H. In Appendix F
we establish the conditions needed to invoke the corollary. M

Based on Theorem 5, an approximate 1 — a confidence interval on ¢ is given by

¢t 2q)21/ 1 p41/n

where ¢ is the k + 1 th element of 8 Newt, 2a/2 18 the appropriate critical value from a standard

normal distribution, CZ]C+1’]C+1 is the k + 1th diagonal element of I(0) !, and 1(8) is I(8) with
(01,... ,0%,¢)" replaced by 0, Newt- In Appendix I we establish that dg 141 = A+ 22

8 Likelihood-Ratio-Based Confidence Interval on a Coefficient of
Variation that Is Shared by k£ Normally Distributed Populations

In Section 7, we obtained a confidence interval on a coefficient of variation shared by k normally
distributed populations by establishing the asymptotic normality of the Newton one-step estimator
of the parameter vector. In this section we take a likelihood ratio approach to this problem. That
is, a 95% (for example) confidence interval is simply the collection of those coefficient of variation
values that are not rejected at a 0.05 significance level by the test. We have found via simulations
that actual confidence levels approach nominal confidence levels more rapidly when we take this
likelihood ratio approach. Thus our Web programs implement only the material in Section 8.
However, we include the Section 7 material for completeness.

We make the same assumptions as those made in Section 7. Then, in the notation of Section 18.3
of Appendix H, we have the following theorem.
Theorem 6

Provided that ¢ = ¢,

2(In L(6,, Newt) — In L(g(#n))) 3 1}

where 8 = (01,... ,04,¢)7, v = (01,... ,0)T, up to a constant
k nj
InL(@) = (_nj In(o;) = Y (i — 0/c)? /(za§)>
j=1 i=1
on,Newt is the Newton estimator of (oy,... ,0%,¢c)’ given by
_ dIlnL/00
_ [0’InL ! / '
0, Newt = — 0.0, 16,.c : 16,0 + Onie (3)
Oln L/89k+1
where 0,, . is any \/n-consistent estimator of (1, ... ,0x,¢)’ (such as (sq,... , s, é)” where ¢ is de-

scribed in connection with Equation 78 in Subsection 15.7), and 2, is the solution of the constrained
likelihood equations obtained in Appendix G. (The constraint is ¢ = ¢g.)

The partial derivatives in Equation 3 (actually, the partials of the In f;(z;0)’s where InL =
Z?Zl S In fi(zi5;0)) are listed in Appendix C, and a simple technique for solving the equation
is provided in Appendix I.



Proof

Because k probability density functions are involved, and because we are dealing with a Newton
one-step estimator, Theorem 6 is a slight extension of a standard likelihood ratio result. To prove
Theorem 6, we invoke Theorem H.4 of Appendix H. (Note that in applying Theorem H.4 we can
use ¥, as our y/n-consistent estimator in the constrained case. Then the Newton 1-step estimator
is again ,,.) In Appendix G we establish the conditions needed to invoke Theorem H.4. B

We have written a FORTRAN program?® that uses Theorem 6 to perform a test of the hy-
pothesis that ¢ = ¢p. The program uses this test to obtain a confidence interval for ¢ — those
co that are not rejected at a « significance level constitute a 1 — a confidence interval for c¢. A
user of the program need only supply n1,... ,nk, Toiy.. Tk \/Doiiq(Tin — T.0)2/(n1 = 1), ...,
VOomk (wik — T.k)?/(nk, — 1). The program can be run over the Web at
http://wwwl.fpl.fs.fed.us/covconfk.html.

9 Small Sample Tools and Further Research

The theory that underlies Theorems 1 through 6 is asymptotic theory. That is, it yields good ap-
proximations for large data sets but poorer approximations for small data sets. In our case, for small
data sets, it leads to confidence intervals that are too narrow and to tests of hypotheses that reject
true null hypotheses too frequently. We are currently engaged in research that should lead to im-
proved small sample approximations. In the interim, however, we have provided a simulation-based
fix to the problem. Our Web-based programs (see http://wwwl.fpl.fs.fed.us/covconfk.html)
perform the theoretical calculations needed to obtain confidence intervals or to test hypotheses.
However, they also perform tests and calculate confidence intervals that are based on simulations.
In particular small sample critical values are obtained via simulations in which 10,000 samples
are generated from the normal distributions estimated from the original data. The value of the
appropriate likelihood ratio statistic is calculated for each of these samples. Empirical estimates
of the 90th, 95th, and 99th percentiles of the distribution of the likelihood ratio statistic are then
obtained from these 10,000 values and used to perform small sample tests and to calculate small-
sample confidence intervals.

These simulations might be suspect because they make use of estimated population param-
eters rather than the true (and unknown) population parameters. However we have performed
“simulations of simulations” that indicate that this small sample approach works quite well. In
particular for a variety of cases we have performed 10,000 trial simulations in which we generated
a sample data set from known normal distributions, estimated population parameters, drew 10,000
samples from the estimated populations, calculated estimates of the percentiles of the likelihood
ratio statistic, and then used these to perform tests and obtain confidence intervals. Test sizes and
confidence interval coverages were very near nominal for the small sample simulation approach. A
subset of results from this simulation of simulations appears in Tables 3 — 5. For these three tables,
k = 2 and n; = ny. The tables suggest that the small sample approach works well.

Our current Web programs report both asymptotic results and simulation results. As we have
noted, simulation works well even for small samples. However, for larger samples, simulations
can become quite time consuming. (For 10 samples of size 60, the hypothesis test program takes
approximately 6.9 seconds to report. The confidence interval program takes about 7.3 seconds to
report.) Hence the need for asymptotic results. We are currently engaged in performing a wide-

“We note that in this program, we start with the \/n-consistent estimator given by (si,..., sk, ¢), perform a
limited number of backtracking Newton steps (which still leaves us with a \/n-consistent estimator), and then do a
final full Newton step.
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ranging set of size/power studies. These studies suggest that for n; > 30, the two approaches
essentially coincide. After we have become convinced that this holds generally, we will modify the
Web program so that simulations are not performed for larger sample sizes. Instead, for these
larger sample sizes, only the asymptotic results will be reported. This will improve the program’s
performance.

10 Summary

We have developed asymptotic theory that permits us to address three normal distribution co-
efficient of variation estimation or testing problems: obtain a confidence interval on the ratio
of two coefficients of variation, perform a test of the hypothesis that the coefficients of vari-
ation associated with k populations are all equal, and obtain a confidence interval on a coef-
ficient of variation that is shared by k populations. We have developed Web-based computer
programs that implement these large sample techniques, and also provide simulation results that
are valid for small samples. These programs can be accessed at the following web addresses:
http://wwwl.fpl.fs.fed.us/covratio.html, http://wwwl.fpl.fs.fed.us/covtestk.html,
and http://wwwl.fpl.fs.fed.us/covconfk.html.

REFERENCES

Bennett, B.M. (1976), “On an Approximate Test for Homogeneity of Coefficients of Variation,” in
Contributions to Applied Statistics: Dedicated to Professor Arthur Linder, edited by Walter
John Ziegler, Birkhauser, Stuttgart, 169 — 171.

Dennis, J.E. and Schnabel, R.B. (1983), Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Doornbos, R. and Dijkstra, J.B. (1983), “A Multi Sample Test for the Equality of Coefficients of
Variation in Normal Populations,” Communications in Statistics — Simulation and Compu-
tation, 12, 147-158.

Feltz, C.J. and Miller, G.E. (1996), “An Asymptotic Test for the Equality of Coefficients of
Variation from k Populations,” Statistics in Medicine, 15, 647—658.

Fung, W.K. and Tsang, T.S. (1998), “A Simulation Study Comparing Tests for the Equality of
Coefficients of Variation,” Statistics in Medicine, 17, 2003—2014.

Lehmann, E.L. (1983), Theory of Point Estimation, John Wiley, New York.

Lehmann, E.L. and Romano, J.P. (2005), Testing Statistical Hypotheses, Third Edition, Springer,
New York.

Lohrding, R.K. (1969), “A Test of Equality of Two Normal Population Means Assuming Homo-
geneous Coefficients of Variation,” Annals of Mathematical Statistics, 40, 1374—1385.

Miller, G.E. (1991), “Asymptotic Test Statistics for Coefficients of Variation,” Communications
in Statistics — Theory and Methods, 20, 3351-3363.

Nairy, K.S. and Rao, K.A. (2003), “Tests of Coefficients of Variation of Normal Population,”
Communications in Statistics — Simulation and Computation, 32, 641-661.

11



Rao, C.R. (1973), Linear Statistical Inference and Its Applications, Second Edition, John Wiley,
New York.

Searle, S.R. (1982), Matriz Algebra Useful for Statistics, John Wiley, New York.
Serfling, R.J. (1980), Approzimation Theorems of Mathematical Statistics, John Wiley, New York.

Shafer, N.J. and Sullivan, J.A. (1986), “A Simulation Study of a Test for the Equality of the
Coefficients of Variation,” Communications in Statistics — Simulation and Computation, 15,
681-695.

Silvey, S.D. (1959), “The Lagrangian Multiplier Test,” The Annals of Mathematical Statistics, 30,
389-407.

Vangel, M.G. (1996), “Confidence Intervals for a Normal Coefficient of Variation,” The American
Statistician, 50, 21-26.

Tian, L. (2005), “Inferences on the Common Coefficient of Variation,” Statistics in Medicine, 24,
2213-2220.

Verrill, S. (2003), “Confidence Bounds for Normal and Lognormal Distribution Coefficients of
Variation,” USDA Forest Products Laboratory Research Paper FPL-RP-609.

Wald, A. (1943), “Tests of Statistical Hypotheses Concerning Several Parameters When the Num-
ber of Observations is Large,” Transactions of the American Mathematical Society, 54, 426—
482.

Weerahandi, S. (1993), “Generalized Confidence Intervals,” Journal of the American Statistical
Association, 88, 899-905.

Wilks, S.S. (1938), “The Large-Sample Distribution of the Likelihood Ratio for Testing Composite
Hypotheses,” The Annals of Mathematical Statistics, 9, 60—62.

11 Appendix A — Verification of the Conditions Needed to Es-
tablish Theorem 1

To invoke Lehmann’s (1983) theorem 6.1 to prove our Theorem 1, we must establish conditions
(A0) through (A2) and (A) through (D) of Appendix H.
In the notation of Section 18.1, in the case under consideration, k = 2,
£1(5:8) = exp (—(z — 01/)?/(202)) / (013/27 ), and f(5:8) = exp (—(z — 02/ (r))2/(202)) | (02/27).
It is clear that conditions (A0) through (A2) and (A) hold.

11.1 Condition (B)

We have
Oln fi(z;6) _—1—1—36_021/04-(36_?/0)2 (4)
do o1 coy oy
Olnfi(z;0)  —(z—o01/c) (5)
Oc N 2oy
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and

OIn fi(z;8) _ 01n fi(z;6)

80’2 87" :0
Thus
gy (LRIXS0)) _ p (IWMAKG0)) _ o (OMA(X50)) _ pp (OWMAGGON _
801 Jdc 802 or
Also,
Onfolwif) _ 1, w-oallrd) | z=oa/(re)) )
0oy 09 rCcoy 09
Olnfolw;8) _ —(w=0of(re)) (8)
dc rc2oy
Olnfo(x:6) _ —(x = 0a/(rc) (9)
or r2coy
Oln fo(x;0)
— = 7 0
do
Thus
gy (AL50)) _ p (OS(G0)) _ p (OB(G0)) _ p (OMBXGO)) _ g
802 Jc or 801
Next, we have
Plfi(r:0) 1 1 Aa-o/d) -0/ (11)
do? o} o} co} of
Fhnhx6) _ L  z-ofe (12)
O0cdoy - oy 2o}
o? ]nfl(q;;e) _ 1 2(ZE - 0'1/0)
i s 1
FPinfo@0) _ 11 Ae=—o0y/(re) (e —ov/(rc))?
— 2 T 3 ma 3 - 1 (14)
dos o5  recio rCoy 05
O In fo(z;0) 1 z — o3/(re)
B 7 e (15)
O%In fo(z;0) 1 2(z — 02/(rc))
T2 T At rcdoy (16)
Pinfox0) _ 1 2w-0(re) (17)
Or2 - rie? r3co
Finfo(zi6) 1 z-0flre) (18)
Ordosy oy r2cos
O?In fo(z;0) 1 T — 0y/(re)
b9 = “rat i, (19)



Thus,

We also have

5 (alnfl(X;t)) .

80'1

By <31nf1(X;0)

Jdc

5 (3lnf2(X;0) .

80'2

80'2 >

Eqg <821an (X36) ) = —(2+1/c¢%) Jo} (20)
do?
Pinfi(X;0) 1
Eo < dcdo ) T Boy (21)
0%In f1(X; ) 1
B (TR0 - 5 (22
Eg <82 ln§2 (X;6) ) = —(2+1/(re)?) Jo? (23)
o3
Plnfr(X;0)\ 1
Ee < dcdog > 20y (24)
9%In f>(X;0) 1
B (TREEEY) = s (25)
82 In f»(X; 0) |
B (ZREY) (26)
92 1n f2(X; 6) 1
Ee < Ordos ) r3coy (27)
Pinfo(X;0) 1
Ee < Ordc > T3 (28)
O0ln f1(X;6) B i_Q(X—O’l/C) _2(X—01/c)
doy ) = b <O’% co} of (29)
(X —o1/e)?  2(X —o1/e)® (X — 01/0)4>
c2of cop of
= (2+ 1/02) Jo?
MRG0 _ g, (X)X (feP) 1
doy - e c2o? o} ot - oy
(30)
Oln f1(X;0) Olnfi(X;0)) (X —o1/e)*\ _ 1
dc . dc > = Fo < cto? > Tt (31)
Oln fo(X; 0) 2(X — 03/(rc))?

2 3
05 rco,

L (X —o/a)? |

<i _2(X —o2/(re)

1
09

2(X — o9/(rc))?

2.2 -4
rectoq

(2 + 1/(7‘0)2) o2
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5
rcoy

6
09

Koyt

(32)



Fy (31Df2(X§0) o 31Df2(X;0)> — By <(X —oy/(re)) (X —ay/(re))* (X —02/(7“0))3>

Oc 0os rc2ol r2cios 7“020‘21
1
- r2c30y (33)
Oln fo(X:0) Oln fo(X:0 X - 2 1
5, < nf;(c ) nf;(c )) _ 5, <( r;ci/g(gc» ) - = (34)
Oln fo(X:60) Oln fo(X:0 X - 2 1
5, ( nfgi ) nfgi )) _ 5, (( r40022{7(§0)) > - (35)
g (31nf2(X;9) " 31ﬂf2(X;9)> _ B <(X—U2/(7“C)) (X —a/(re) (X —02/(7"0))3)
o or 0os -0 r2co? r3c2os r2coy
1
- 2o, (36)
Oln f2(X;0) Olnfo(X;0 X - 2 1
Eo < Hfgsﬂ ) ) % nfg(c ) )> — EB <( 7"30;?))/0(%7'0)) > — 53 (37)

Results 6, 10, and 20 through 37 establish condition (B).

11.2 Condition (C)

Let xT' = (21,2, 23,74). Then (from results 29 through 37)

XTI(O)X = Alx%@ + 1/02)/0% + >\2x§(2 + 1/(7‘0)2)/03 + (>\1/c4 + >\2/(’F264))$§ + A2$i/(7’402)
—2)\1$1x3/(c301) — 2)\2$2x3/(7’2c302) — 2>\2x2$4/(7‘30202) + 2>\2$3x4/(r303)

= 2\iz7/0f + M\ (z1/(cor) — :E3/C2)2 + 20013 /05 + Ao (w2/ (rcos) — m3/(rc?) — 5174/(7"20))2

which is clearly positive unless x1, x2, 23, and x4 are all 0. Thus condition (C) is established.

11.3 Condition (D)

From results 11 through 19 (actually from the third-order derivatives that are based on them),
the fact that o1, o9, ¢, and r are bounded away from 0 if they are in a sufficiently small open
neighborhood of 6y, and the fact that normal distributions have finite absolute moments, it is clear
that condition (D) holds.

11.4 A Subtlety

Lehmann’s theorem only guarantees the existence of a vector of solutions of the likelihood equations
that is asymptotically normal. In our Theorem 1 we are dealing with a vector of maximum likelihood
estimates. It is well-known that Z.1, /> %, (zi1 — Z.1)%/n1, T2, and /D12, (Ti2 — T.2)2 /o are the
unique solutions to the likelihood equations when the likelihood is parametrized by pq, o1, po, and
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09. The fact that &1, &2, ¢, 7 must be the unique solution of the likelihood equations when we
parametrize by o1, 09, ¢, and r then follows from the relations among the partial derivatives. For
example,

OlnL/0c = 0lnL/0uy x Oui/0c (38)
+0InL/0oy x do1/0c+ dln L/Opus x Ops/dc + ln L/doy x Doy /dc

and

OlnL/Ouy = 0lnL/doy x oy /0ur (39)
+0InL/0oy x o9 /01 + 0In L /e x Oc/Ouy + OIn L/Or x Or/du

Equation 38 and the related equations for dlnL/doy, 0lnL/do9, and Oln L/Or assure us that
(61,69,¢,7)7 is indeed a solution of the likelihood equations. Equation 39 and the related equations
for dInL/doy, O1n L/Ous, and 01n L/0os assure us that (61, 69,¢,7)T must be the unique solution
of the likelihood equations.

12 Appendix B — Verification of the Conditions Needed to Es-
tablish Theorem 2

In the notation of Section 18.3, 87 = (01, 09,¢,7) and vT = (01,02,¢) where the o’s are the
standard deviations of the two populations, c is the coefficient of variation of the first population,
and rc is the coefficient of variation of the second population. Under the null hypothesis, r = rg.
To invoke Theorem H.1 to prove our Theorem 2, we must establish conditions (A0) through (A2),
(A) through (D), and (E1) through (I) of Appendix H.
In the notation of Section 18.1, in the case under consideration,
£1(5:8) = exp (— (5 — 01/0)%/(202)) / (91v/27 ) and fo(;8) = exp (—(z — 7/ (re))?/(23)) | (0227 ).
Conditions (A0) through (A2) and (A) through (D) are established in Appendix A.

12.1 Condition (E1)

In the notation of Section 18.3, we have

Ri(0)=r—rg
and
0 = o1=gq, ) =1
Oy = o02=g2(v1,12,13) =112
05 = c=g3(vi,10,13) =13
0y = r=gs(th,v2,13) =10

The equivalence of these two forms of the constraints is clear. They both permit the ¢’s and ¢ to
vary freely from 0 to oo and restrict r to the single value ry.

12.2 Condition (E2)
Clear.
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12.3 Condition (E3)
Clear.

12.4 Condition (E4)

C(GO) = (03 03 03 1)1><4

which is clearly of rank 1, which equals r in the notation of Section 18.3. (Again, please do not be
confused by our awkward notation; that is, we are using r to denote both a parameter of the fo
density and, in Section 18.3, the rank of a particular matrix.)

12.5 Condition (E5)
We have

D(vy) =

o O O
o O = O
o = O O

4x3

which is clearly of rank 3 = 4 — 1, which equals s — r in the notation of Section 18.3. (Please do
not be confused by our awkward notation; that is, we are using r to denote both a parameter of
the fy density and, in Section 18.3, the rank of a particular matrix.)

12.6 Condition (F)
Clear.

12.7 Conditions (G) through (I)
These conditions are established (as conditions (B) through D) in Appendix C.

12.8 The solution to the likelihood equations in the constrained case

See Appendix C.

13 Appendix C — Verification of the Conditions Needed to Es-
tablish Theorem 3

To invoke Lehmann’s (1983) theorem 6.1 to prove our Theorem 3, we must establish conditions
(A0) through (A2) and (A) through (D) of Appendix H.

In the notation of Section 18.1, in the case under consideration, k = 2,
fi(z;0) = exp (—(z — 01/c)?/(20})) / (01V27 ), and fo(z;0) = exp (—(z — 02/c)?/(203)) / (022 ).
Because we also want to use the material below to establish Theorem 2, we generalize this slightly
by taking fa(z;0) = exp(—(z — 02/(roc))?)/(02v/27) where g > 0 is fixed. (Theorem 3 then
corresponds to the ry =1 case.)

It is clear that conditions (A0) through (A2) and (A) hold.

Conditions (B) through (D) follow as in Appendix A. However, for clarity and because the
proofs of Theorems 2, 4, 5, and 6 refer to them, we provide the details here.
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13.1 Condition (B)

We have
Oln fi(x;0) ~1 z—o0i/c (x—01/c)?
— K. = —* 5 — + 3
do o1 coy oy
Ol fi(z;0) _ —(z—o01/c)
Oc N 2o
Oln fi(x;0)
—_— 0
0o9
Thus
y dln f1(X;0) _ B, dln f1(X;0) _ B, dln f1(X;0) _0
60'1 30 80'2
Similarly,
Oln fo(z;0)  —1  x—o09/(roc) (z— (72/(7“00))2
— . = —+ 2 + 3
0oy o9 T0COY o
Oln fo(x;0) _ —(x — 09/(roc))
Oc roc2os
dln fo(z;0)
IRIZTT)
80’1
Thus

dln fo(X;6)\ _ dln fo(X;6)\ _ dln fo(X;6)\ _
(P10 (s o g

Next, we have

I fi(z;0) 1 1 4z —o1/c) 3(x—o1/c)?
do? T o2 2o? co? - of
Ol fi(z;0) 1 x—oy/c
O0cdoy - Boy c2o?
0% 1In f1(z; 0) 1 2(x—o01/c)
Oc? - T a 3oy
I fo(z;0) 1 1 4(x — o9/ (roc))  3(z — 02/(roc))?
do2 I R rocos - oy
0% 1n fo(7; 0) 1 x — o9/(roc)
= +
0cOoy r3cdoy roc2o3
0%1n fo(z; 0) 1 2(z — 09/(roc))
Oc? - _r[2)04 + roc3og



Thus,

Eqg <821n§1 (X36) > = —(2+1/c¢%) o} (52)
ot
Pinfi(X;0) 1
Ee < dcdo ) T Boy (53)
0In f1(X; ) 1
B (TR0 - -2 (54
Eo (82 o) ) = (24 1/(2) Jod (55)
o3
Info(X;0)\ 1
Ee < dcdo )  ricdoy (56)
9%In f2(X; ) 1
B () - @
We also have
Oln f1(X;0) Olnfi(X;0)\ 1 2(z-o01/c) 2(X —o01/c)?
Ee < doy % doy ) = b <O'_% a co} a of (58)
(X —01/c)?  2(X —o1/e)® (X —o1/c)?
* c2of cop of >
= (2+1/c¢%) [o}
g, (Onfi(X;0) OWmA(X;0)\ _ . ((&—01/) (X —01/)> X -0/’ _ 1
o ( de X doy > - ( 2o o? a c2of ) T Boy
(59)
Olnf1(X:0) Olnfi(X:0 o2\ 1
(PRI ) ()
> (31Df2(X;0) 31Df2(X§0)> _ g <i 22X —a2/(roc))  2(X —a2/(roc))?
o do % do - 0\ 2 rocos ol
2 2 2 0692 2
L (X —02/(re0)? | 2(X = 09/(roe))* | (X — 02/(7"00))4>
2,24 5 6
rictoy rocoy o
= (2+1/(r5c?)) /o3 (61)
g (3lnf2(X;0) " 31Df2(X;0)> _ g <(X —02/(roc)) (X —o2/(roc))® (X —02/(7”00))3>
o dc Jdoy - roc2o? r3cdos rocoy
1
- _7"80302 (62)
Olnfo(X;0)  Olnfo(X;0)\ (X —02/(roc))?\ 1
Eo ( de X de > = Fo ( récto? > - rgct (63)

Results 42, 45, and 52 through 63 establish condition (B).
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13.2 Condition (C)
Let x = (21,2, 23). Then, from results 58 through 63 (recall that I(8) = \11;(0) 4+ \212(8))
x'I(0)x = MNzi(2+1/c) /o] + Xox3(2+1/(rac?)) /o3 + (M /c* + o/ (r3ct)) 3
—2>\1(L‘1(L‘3/(C301) — 2)\21‘21‘3/(’/’%0302)

= 2\z3/07 + M (21/(cor) — $3/02)2 + 2073 /05 + A2 (72/ (roco2) — 1‘3/(7“062))2

which is clearly positive unless z1, 2, and z3 are all 0. Thus condition (C) is established.

13.3 Condition (D)

From results 46 through 51 (actually from the third-order derivatives that are based on them),
the fact that oy, o2, and ¢ are bounded away from 0 if they are in a sufficiently small open
neighborhood of 6y, and the fact that normal distributions have finite absolute moments, it is clear
that condition (D) holds.

13.4 The solution to the likelihood equations

Up to a constant, the log likelihood in this case is

ni n2
InL = —nyln(oy) =Y (zir — 01/¢)*/(207) —naIn(oz) = > (22 — 02/ (roc))?/(203)
=1 =1
We have
OlnL - >
ar; =- ;(ﬂ:n —aife)/ (o) — izzl(l“z? — 03/ (r0c))/ (roc’o2)
Setting ‘9}9“0L = 0, we obtain
Y (@i —o1/e)/or + Y (i — 02/ (ro0))/(roos) = 0
i=1 i=1
or
(nla_c.l/al + ngzﬁ.Q/(’l"o(IQ)) / (m + n2/’f'§) = l/C (64)
Next,
OlnL - -
321 = —nmifor + > (zi1 —o1/)/(co?) + Y (i — 01/c)? /o
=1 =1
Setting ‘93121L = 0, we obtain
ni ni
of = Y (za—oi/o)(or/c)/n + Y (wa —o1/0)*/m
=1 =1
ni
= (x4 —o1/c)(o1/c) + Zx?l/nl —2z.q01/c+ (0'1/6)2

=1

ni
= —53.10'1/6 + Zx?l/nl
=1

20



S0
ni
2 2 _ -
g zf/n1 — oy = T.a01/c
i=1

or (assuming that z.; # 0)

(Z%%/m - U%) [(Zao1) =1/c
i=1

OIL _ () we obtain (assuming that Z., # 0)

In
Ooa

Similarly, setting

(Z T /2 — U%) [(Z202/10) = 1/c
=1

From Equations 64, 65, and 66, we have

(Z T /ny — O'%) [(Za01) = (mZa /o1 + naZ.a/(roo2))/ (n1 + ng/rg)
=1

and
ny
(Z x2 [y — O'%) [(Z.202/r0) = (n1Z.1/01 + n2Z.o/(roo2))/ (n1 + nQ/TS)
=1
Now define
Y = 0'1/0'2
S0
g9 = 01/y

Equation 67 becomes

ni
Zm?l/nl — o7 = (mZ4 + maZaZoy/ro) [ (n1 + na/rf)
=1

or
ni
szzl/nl —mz%/ (n1 4+ n2/rg) — (n2ZaZ.oy/ro)/ (n1 + na/rg) = of
i=1
Equation 68 becomes
n2
Zx?Z/ng — ol )y = (n1Z.1Z.2/(roy) + n2§3_22/rg) / (n1+ m/r%)
i=1
or

y? (Z x?Q/ng — (nﬂ:é/r%)/ (n1 + n2/7’§)> —y(n1zaZ.2/10)/ (n1 + ng/rg) = 0'%
=1
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From Equations 70 and 71 we have
ay* +by+d=0

(we use d here rather than the standard ¢ because we have already used ¢ to denote the coefficient
of variation) where

a = Y ah/ng —na(@%/r5)/ (n1 +na/ry) (72)
i=1
b = ((TLQ — nl)i.lig/m)/ (TL1 + nz/’l“g) (73)
d = - <21: z? /n1 — iz / (n1 + m/r%)) (74)
i=1

The possible solutions for y = o /09 are, of course, (—b +vVb? — 4ad) /(2a).
Now note that

na ng
a =" wh/ng—na(@%/13)/ (n1 +n2/r5) = > wih/ng — 3% >0
=1 =1

with ¢ = 0 only if all the x;0’s are zero. Similarly, d < 0 with equality only if all the z;;’s equal
zero. Thus, unless all the z;1’s equal 0 or all the z;5’s equal 0,

—4ad > 0 and V' b? — 4ad > |b|

So if b > 0,
(—b /- 4ad) /(2a) <0
and
(—b+ M) /(2a) > (=|b| + |b])/(2a) =0
If b < 0,
(—b /e 4ad> /(2a) < (|b] — |B])/(2a) = 0
and

(—b—l— V b? —4ad> /(2a) >0

Thus (—b + Vb2 — 4ad) /(2a) is the unique positive solution for y = o1 /0y. The estimates of o2

and o2 can then be obtained from Equations 70 and 69. (See Appendix D for a proof that the
estimate of o7 obtained from Equation 70 is positive.)
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14 Appendix D — A Proof that the Estimate of ¢? Obtained from
Equation 70 Is Positive

Assume that we do not have

L. zyg = =xp, 1 and T12 = -+ = Ty, 2, OT

If Z.1, Z.o are of opposite sign, then Equation 70 implies that 67 > 0 so assume that Z.1Z.o > 0.
Then, given Equation 70, to establish that 42 > 0, we need to show that

L> (—b+ Vb2 — 4ad) /(2a)
or
L+b/(2a) > Vb?> — 4ad/(2a) (75)
where
ni
L= <Z z3 /ny —nizy [ (ng + m/r%)) / ((n2Z1%.2/m0)/(n1 + na/rd))
i=1
and a, b, and d are given by Equations 72 through 74. Now suppose that
(L +b/(2a)) (\/bZ 4ad/(2a ) (76)
Then either result 75 holds or
L+0b/(2a) < —Vb? — 4ad/(2a)

which is equivalent to
< (~b- Vi? = 4ad) /(20) (77)

But L is positive and, as we saw at the end of Section 13.4, (—b — Vb - 4ad> /(2a) is negative so

inequality 77 cannot hold. Thus, result 76 implies result 75.
We establish result 76 by showing that

n1 2
(Z 22 /ny — niz% /(ng + ng/r§)> / ((n2Z1Z.2/r0)/ (1 + nafrd))?

=1

(Z w3 fni —mE [/ (n1 + n2/7"§)> / ((naZ1Z.2/r0)/(n1 + ma2 /7))

=1

X [((ng = n1)Z1Z.2/r0) [ (n1 + n2/r3)] <Z @i ng — no(E5/r3)/(n1 + n2/7"§)>

(Z w3 [m —mz [ (n1 + n2/7“3)> / (Z T3 /na — na(T5/r5)/ (n1 + n2/7“3)>

=1 =1
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or

(Z x%l/m — n1:ﬁ.21/(n1 + ng/?"%))

i=1
X (Z w5 /ne — na(T5/r3)/(n1 + n2/7"3)> / ((n2Z.17.0/70) /(n1 + o /r3))
i=1

+(n2 - n1)/n2
> 1

(Z o3 [n1 — mizh [ (n1 + n2/7“§)> (Z w3 n2 — ng(T%/r5) /(m1 +”2/7“§)>
=1 =1
> (n1/n2) (noZaZ.a/ro)/(n1 + na/r3))’
This will follow if
(Z(xﬂ —z)%/m + 74 (L=ny/(n + n2/r§))> (Z(m — Z.9)% /g + 7% (1 = (n2/rd)/(n1 + nZ/rg))>
=1 =1
> (nino/rg)Z4 25/ (n1 + na/rg)

(Zl(ﬂm - x.1)2/n1> (i(wn — $.2)2/n2>

+ (Zl(le — E.1)2/n1> i‘?gnl/(nl + nQ/T(%)

i=1
+ <Z($i2 - 502)2/”2) 74 (na/rg)/(n1 + na /1)
i=1
+(nang/rg) T3 T5/ (n1 + na /1)’
> (nang/rg) T3 E5/ (n1 + na/rg)’

which clearly holds.

15 Appendix E — Verification of the Conditions Needed to Es-
tablish Theorem 4

In the notation of Section 18.3, 87 = (1,01, ... , ik, 0%) and vT = (01,... , 0k, c) where the pu’s are
the means and the o’s are the standard deviations of the k& populations. Under the null hypothesis,
the shared coefficient of variation is c.

To invoke Theorem H.4 to prove our Theorem 4, we must establish conditions (A0) through (A2),
(A) through (D), and (E1) through (I) of Appendix H.

In the notation of Section 18.1, in the case under consideration,
fj(x;0) =exp (—(3: - ﬂj)2/(20']2~)> [ (o;vV2r) for j =1,... k.

It is clear that conditions (AO0) through (A2) and (A) through (D) hold. (The proofs are well
known in the 2k parameter case.)
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15.1 Condition (E1)

In the notation of Section 18.3, we have

Ri(0) = o1/p —o2/p2

R 1(0) = o1/p —ok/pk

and
01 = Nl:UI/CZVI/VIH—I:QI(VI,--- ,I/k_|_1)
02 = 01 =1 ZQQ(Vl,... ,I/k+1)
Oo—1 = pr=o0k/c=vk/Vki1 = gok—1(V1,.-- ,Vkt1)
Oo = ok = vk = gor(V1,--+ s Vkt1)

The equivalence of these two forms of the constraints follows from the fact that o;/p; = c < 0j/c =
Hj

15.2 Condition (E2)
Clear.

15.3 Condition (E3)

Straightforward calculations demonstrate that

OR;/ou = —o1/ul
OR; /001 = 1/m
OR;[Opjs1 = ojr1/mjp
OR;/00j41 = —1/pjn

and the remaining first-order partials are all 0.

15.4 Conditions (E4) and (E5)

We have

—oi/ui ... —o1/ui

1/;1,1 ]_/,U,l

2
_ T o2/ 15 0
C(GO)T—[aRZ(a)] Y 0
90; 2kx (k—1) .

0 oK/ 1
0 —1/

which is clearly of rank £ — 1 = r (in the notation of Section 18.3).
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Also

]_/C 0 0 _01/62
1 0 ... 0 0

Wi Lot (k1) 0 ... 0' 1/c —01;/02
0o ... 0 1 0

which is clearly of rank k£ + 1 =2k — (kK — 1) = s — r (in the notation of Section 18.3).

15.5 Condition (F)
Clear.

15.6 Conditions (G) through (I)

The necessary arguments are straightforward extensions of the arguments used to establish condi-
tions (B) through (D) for the k = 2 case treated in Appendix C.

15.7 The solution to one of the likelihood equations

Setting %LCL = 0, we obtain (as a straightforward extension of the manner in which we obtained

Equation 64)

k
ani-j/ffj /(n1+...+nk):1/c (78)
j=1

If we replace o; in Equation 78 by s; = \/Z:L;l(mlj — 7.;)2/n;, we obtain a /n-consistent®
estimator of 1/c. Further, the inverse of this estimator is a \/n-consistent estimator of c.
This follows from the relations

Vn(T.j/sj = wiloj) = Vn(Z.j/s; — pi/sj +wi/si — wiloj) = V(@ — pg)/s; + Vnpjloj — s5)/(s50)

and

Va(l/a = 1/a) = v/n(a — @)/ (aa)

16 Appendix F — Verification of the Conditions Needed to Es-
tablish Theorem 5

To invoke Corollary 1 to Lemma H.8 in Appendix H to prove Theorem 5, we must establish
conditions (A0) through (A2) and (A) through (D) of Appendix H.

In the notation of Section 18.1, in the case under consideration,
[j(z;0) =exp (—(m - aj/c)Z/(2a]2-)> [ (o5V2r) for j=1,... k.

It is clear that conditions (A0) through (A2) and (A) hold. Conditions (B) through (D) can
be established by straightforward extensions of the arguments used in the k = 2 case addressed in
Appendix C.

5

d is a \/n-consistent estimator of a if /n(d — a) = Op(1)
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17 Appendix G — Verification of the Conditions Needed to Es-
tablish Theorem 6

In the notation of Section 18.3, 87 = (o1,... ,04,¢) and 7 = (01,... ,0}) where the o’s are the
standard deviations of the & populations and c is the shared coefficient of variation. Under the null
hypothesis, this shared coefficient of variation is cg.

To invoke Theorem H.4 to prove our Theorem 6, we must establish conditions (A0) through (A2),
(A) through (D), and (E1) through (I) of Appendix H.

In the notation of Section 18.1, in the case under consideration,
[j(z;0) = exp (—(m — aj/c)Z/(2a]2.)> [ (o;V2r) for j=1,... k.

The fact that conditions (A0) through (A2) and (A) hold is clear.

Conditions (B) through (D) can be established by straightforward extensions of the arguments
used to establish conditions (B) through (D) for the & = 2 case in Appendix C.

17.1 Condition (E1)

In the notation of Section 18.3, we have

Ri(0) =c—co
and
0 = o1=gi(v1,..., V) =11
O = op=gr(vi,... . ) =13
Opr1 = c=grr1(vi,...,v) =co

The equivalence of these two forms of the constraints is clear. They both permit the o’s to vary
freely from 0 to oo and restrict ¢ to the single value c¢y.

17.2 Condition (E2)

Clear.

17.3 Condition (E3)
Clear.

17.4 Condition (E4)

C(OO) = (05 50, 1)1><(k+1)

which is clearly of rank 1 = r (in the notation of Section 18.3).
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17.5 Condition (E5)
We have

e N
00 00/ iy

which is clearly of rank k = (k + 1) — 1 = s — r (in the notation of Section 18.3).

17.6 Condition (F)
Clear.

17.7 Conditions (G) through (I)

The necessary arguments are straightforward extensions of the arguments used to establish condi-
tions (B) through (D) for the £ = 2 case treated in Appendix C. (Note that, in fact, we do not
have to do as much work here as in Appendix C because here c is fixed at ¢g.)

17.8 The solution to the likelihood equations in the constrained case

We have

OlnL _ —n;  Y(y —0y/c0) | >l (@i . 7j/co)? (79)
doj o €00} 75

= 0 and performing some simple algebra, we obtain

/CO Z ng/n] =0 (80)

whose unique positive solution is given by

nj
;=\ —-%.;/co+ is?j/cg+4zl"z2j/”j /2 (81)

18 Appendix H — Some Asymptotic Results

This appendix is based on material that appears in chapter 6 of Lehmann (1983) and chapter 4
of Serfling (1980). In section 4.4.4 of his book, Serfling investigates the asymptotic properties of
the likelihood ratio test for the case in which the null hypothesis is composite and the number of
samples, k, equals one. For our purposes we need to extend his proofs to the case in which k& > 1.
This is a relatively trivial task and we might wave our hands were it not for the fact that there is
a flaw in Serfling’s proof. Here we correct that flaw.

We note that related results have been established under related conditions by Silvey (1959). An
outline of an alternative proof of results closely related to our Theorems H.1 through H.3 is provided
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in section 6e.3% of Rao (1973). Taking a quadratic mean differentiability approach, Lehmann and
Romano (2005) outline the proof of results (see their sections 12.4.2 through 12.4.4) closely related
to our Theorems H.1 through H.6. We take a Cramér condition approach and make the conditions
and their use explicit. The original work on asymptotic tests of composite hypotheses was due to

Wilks (1938) and Wald (1943).
Before we proceed with our proof it is useful to recall Lehmann’s versions of the Cramér con-
ditions, and one of Lehmann’s asymptotic results.

18.1 Lehmann’s (1983) version of the Cramér conditions

Let the parameter space be denoted by © C R®. Let 8y € © denote the true parameter value.

Suppose that we have k independent samples. Let P;(@) denote the distribution associated with
the jth sample. Define n = ny +...+ n and further suppose that for j =1,... ,k, nj/n — X; >0
as n — 0o.

(A0) Distinct @’s correspond to distinct P;(@)’s.
(A1) The distributions P;(#) have common support.

(A2) For j =1,...,k, the observations are X; = (X1, ... anj)T where the X;; are iid with prob-
ability density f;(z; @) (and the observations from the k different samples are independent).

(A) There exists an open subset T of © that contains the true parameter value 6y such that for
all j € {1,... ,k} and almost all z, the densities f;(z;@) have continuous third derivatives,
*f(z;0)/00,00,,00, for all @ € T.

(B) For all 8 € T, the first and second logarithmic derivatives of f; satisfy the equations
Eg(9n f;(X;0)/06) = 0
forj=1,... ,k;1=1,...,s and
Timj(0) = Eo(01n f;(X;0)/90, x 9ln f;(X;0)/00,,) = Ep(~0” In f;(X;8) /96,00,

forj=1,... ,k;I,m=1,...,s. The I}, ; are finite.

(C)
I(0) =\ 11 (0) + ... + A\ 1 (0)
is positive definite for all 8 in T'. Here I;(0) = [I1m,j]sxs-

(D) For all l,m,p,j, 03In f;(x;0)/060,00,,00, is a continuous function of @ for @ € T. There exist
integrable functions M, j(x) such that

‘83 In f;(x; 0)/89189m89p‘ < My, ()
for all @ € T, and
Mimp,j = Egoy(Mimp (X)) < 00

for all [,m,p, .

SNote that there is an error above (6e.3.9) in Rao. The line above the “Therefore,” should be, in essence,
201(0) —1(B)] — VII(0)~'V B 0.
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18.2 One of Lehmann’s results

Given conditions (A0) through (D), Lehmann (1983) establishes (theorem 6.1 of his chapter 6)
that with probability tending to 1 as n — oo, there exists a solution of the likelihood equations,
0,,, that satisfies

Vi(8, —80) B N(0,1(8,)7") (82)
where

1(60) = A\ 11(00) + ... + A1k (00)

18.3 An extension of Serfling’s likelihood ratio theorem to the case of £ samples
We need two additional assumptions:

(E1) There are two equivalent methods for characterizing the nature of the space that constitutes
the null hypothesis. It can be specified by the constraints:

Ri(6) = 0
R.(6) = 0
or by the equations
91 == 91(7/1,--- ays—T)
Os = gs(vi,...,vs )

In both cases the effective dimension of the parameter space is s — r (we assume that r < s)
rather than s.

(E2) g takes R*" 1 to 1 into R*.
Under assumptions (E1) and (E2), there exists a unique v( such that
vo =g ' (6o).

We need to establish a relationship between the two modes of specifying the null hypothesis
parameter space. Define

3Rz‘(9)]

and

il o
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Lemma H.1
Assume that conditions (E1) and (E2) hold. Further assume that for [ € {1,...,s}, i €
{1,...,r}, OR;/00; is continuous within an open neighborhood of @y, and that forl € {1,... ,s—r},

i €{1,...,s}, 0g;/0v, is continuous within an open neighborhood of vy.
Then
C(00)D(vo) = Orx(sfr) (83)
Proof
For 6,0 in the s — r dimensional null hypothesis space, by Taylor’s theorem we have
R:(0) R1(00) [0R1(6.,1)/00/]
: = : + E (6 — 69) (84)
R.(0) R.(6y) [OR,(0.,)/06;]

where 6, ; lies on the line segment between 8 and 6.
We also have

(091 (V,1)/0v]
0 — 0y =g(v) —g(vo) = : (v —vo) (85)
(095 (V+,5) /O]

where v, ; lies on the line segment between v and vy.

Now suppose that C(89)D(v¢) # 0, (s—r)- Then C(80)D(vp) contains some non-zero column.
Assume that the column is the first column. (The proof is essentially the same in the other cases.)
Take

v—vog=~h
0 (s—r)x1

Then, by substituting Equation 85 into Equation 84, and noting that both the vector on the left-
hand side of Equation 84 and the first vector on the right-hand side of Equation 84 must equal 0
(since @ and @ are in the null hypothesis space), we have

[OR1(0+,1)/06] (091 (v4,1)/0v1]

0,451 = h x |column 1 of

OR(0.,)/00] ) \ [095(vs.0) /0]

Dividing by h and then letting & converge to 0, we obtain a contradiction (that the first column of
C(6p)D(vy) equals 0,4;).H

Next we need to establish a relationship between the solution to the likelihood equations in the
restricted case, &, and the solution in the unrestricted case, 0,,. To do so we first list an additional
series of assumptions:

(E3) Forle{l,...,s},i€{l,...,r}, OR;/00; is continuous within an open neighborhood of 6.

(E4) C(0¢),xs is of rank 7.
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(E5) D(vo)sx(s—r) is of rank s —r.

(F) There exists an open neighborhood, S, of vy in R*~" such that for all v in this neighborhood,
%9i(v) ] Ov OV, O, is continuous for i € {1,... ,s}; [,m,p € {l,... ,s—r}

(G) For all v in S, the first and second logarithmic derivatives of f; satisfy the equations
Ey(01n f;(X;g(v))/0n) =0
forje{l,... ,k};le{l,...,s—r}, and
T, (V) = By (010 f;(X;8(v))/0v x 81n f{(X;8(v))/0vm) = By (=0 In f;(X; 8(v))/0110vm)
for je{l,... ,k};i,me{l,...,s —r}. The Jj, ; are finite. (Note that, for example,
Ofj(z;8(v)) /0w = 0fj(x;0)/001|o=g(v)091 (V) /01 + ... + Of (2 0) [ 00s|0=g(1) 095 (V) | O

so this condition places restrictions on the behavior of the partials of the g;’s as well as the
partials of the f;’s.)

(H)

J(I/) = >\1J1(I/) +...+ >\ka(1/)
is positive definite for all v in S. Here J;(v) = [Jim,j](s—r)x(s—r)-

(I) Foralll,m,p,j, 8®In f;(z;g(v))/0v,0vmy0v, is a continuous function of v, there exist integrable
functions Ny, j(x) such that

0% In f;(z; 8(v))/ 0010V Ovp| < Nip, ()

for all v € S, and

Nmp,j = Fvg(Nimp,; (X)) < 00

for all I, m,p,J.

Now we can state and prove the following lemma.
Lemma H.2

Assume that conditions (A0) through (A), (E1), (E2), and (F) through (I) hold. Then there
exists a solution of the likelihood equations, ©,,, that satisfies

V(i —vo) B N(0,3(vo) 1) (86)

(Note that in this context, a solution of the likelihood equations is a solution of d1n L(g(v))/0v, =
...=0InL(g(v))/ovs—y =0.)
Proof

The result follows from theorem 6.1 in chapter 6 of Lehmann (1983). W
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Note that

(921nfj B i(@lnfj%_i_ +8lnfj 8gs>
OV 0vy, oy, \ 00, Ov,, 00, Ovy,
B <82lnfj%+ +82lnfjags>%
301301 aVl o 305891 (9l/l al/m
_l’_
_l’_
<82lnfj%+ +82lnfj%> dgs
00:00, ov; T 00,00, vy ) Ovy,
olnf; 0%gy R olnf; 0%g,
891 al/lal/m 895 al/laym

Thus, given condition (B) (note that the expectation of the last line above is 0),

k

k 821 .
Jwo) = Y NJjwe) =D X [—Eyo (aylélfj)]
j=1 J=1 "

k
= Y A;D(v0)"I;(80)D(vo) = D(vo)" I(80)D(vo) (87)
j=1

Lemma H.3
Under condition (B) and the conditions needed to establish Lemma H.2,

Vn(0: —80) BN <O,D(u0) (D(v0)T1(80)D(v0)) D(VO)T>

where

Proof
By Taylor’s theorem and assumption (F), we have
0g1/0vy ...0g1/0vs_
V(8] - 8o) = Vn : (On — 1)
0gs/0v1 ...0gs/OVs_y

where the partials are evaluated at v’s that lie on the line segment between i, and vy. Then the
Lemma follows from Lemma H.2, result 87, and assumption (F).H
Corollary

Under conditions (A0) through (D), (E1), (E2), and (F) through (I),

Vn(0;, — 0,) = 0,(1) (88)

Proof
Under conditions (A0) through (D), Lehmann’s theorem implies

V(8 — 6p) = 0,(1)
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This result and Lemma H.3 yield the corollary. W
Next we need the following lemma.
Lemma H.4
Recall that 6, = g(©,,). Assuming that the partials exist, we have

0ln L(6})/06,
D(’)n)T = 0(s—r)><1
0ln L(8;) /005
Proof
We have
Oln L(g(¥y,))/0v
0(sfr)><1 = :

In L(g(irm)) /Ovs_s
0ln L(g(Dy,))/061 x 0g1(0y)/0vi + ...+ 0In L(g(Py,))/00s x 0gs(0y,) /01

8lnL(g(’>n))/891 X 0g1 (ljn)/aysfr +...+ 81DL(g(1>n))/895 X ags(’)n)/aysfr
91n L(6%) /06,

= D(’)n)T

dln L(6;) /004

We are now in a position to establish a closer relationship between @ and 9n
Lemma H.5
Under conditions (A0) through (D), (E1), (E2), and (F) through (I),

D (v)" 1(80)Vn(8;, — 8,) = 0,(1)

Proof
By Taylor’s theorem we have
0lnL/00 OlnL/06
S T e [ %2
- o 2 On T 0000m |,y " "
0ln L/00 0ln L/00

where the second partials are evaluated at €’s along a line segment from 6} to 6,,. Thus

8111[1/891 81nL/801
D(,)" : lo; = D ()" : lg, +D@n)" [
0lnL/06, Jdln L/00

9’InL .
89l89m:| SXS (071 - an)

(89)

By assumptions (D) (this assumption implies that the first partials of In L exist in a neighborhood
of 8y) and (F) (implicit in this assumption is the conclusion that D(v) exists in a neighborhood of
vyo), and Lemmas H.2, H.3, and H.4, the left hand side of Equation 89 is 0,(1). By the definition
of 8,, the first term on the right hand side of Equation 89 is 0,(1). Thus we have

9*’InL .
D ()" 0, — 6,) = o,(1
" | Soi] @30 o)

34



and

D) (- [ S| o) V0] - 0,) = 0,01 (90)

where the second partials are evaluated at €’s along a line segment from 6} to 0,,.

By Lemma H.2, ©,, — vy = 0p(1). Thus since (by (F)) the partial derivatives in D(i,,) are
continuous functions of the argument, the elements of D(2,,) converge in probability to the corre-
sponding elements of D(vy).

Next we know (by (A2), (B), and the strong law of large numbers) that the elements of

_[#*InL 0./
90,00, | .., %"

converge almost surely to those of I(80y).
By Lemma H.3 and Lehmann’s theorem 6.1, 8, —0y = 0, (1) and 8,,—0y = 0,(1), so assumption
(D) implies that the differences in the elements of

B 0?InL /
90,00, | .. """

evaluated at @’s along a line segment from @) to 6,, and the elements evaluated at 6 converge in
probability to zero.
Finally, by the corollary to Lemma H.3,

Vn(0;, - én) = 0,(1)

Thus, the lemma, follows from result 90. H

We next need to establish the following lemma.
Lemma H.6

Assume that I(6y) is positive definite, and that conditions (E1) through (E5), and (F) hold.
Then

Lvs = A+ Ay (91)
where
Ay =1(80)' /D (v0)[D(v0) " 1(80)D(v0)] ' D(v) "1(60) "/
and
Ay = 1(80) 2C(00)T[C(80)I(80) " C(8)T] " C(B0)I(80) '/
Proof

By assumption (E5), D(vg),x(s—r) is of full rank (rank s —r). Thus, since I(0g)sxs is positive
definite, I(0¢)'/? is of full rank and

B, = 1(00)1/2D(V0)s><(sf1")
is of full rank. Thus

A, =B;(B'B))"'BT
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is the projection matrix onto the linear span of the columns of By. Let uj,...,us;_, be an or-
thonormal basis of this linear span. Then

A= ululT +...+ us,ruzﬂn
Similarly, by assumption (E4),
By = 1(60)~'/*C(60)1,
is of full rank, and
A; = By(BIBy)~'BY

is the projection matrix onto the linear span of the columns of Bs. Let ug ,11,...,us be an
orthonormal basis of this linear span. Then

T T
As=u, pp1ug g+ ...+ ugug

Finally, by (E1) through (E3), and (F), Lemma H.1 implies that A34; = 0545 so all the u’s are
orthonormal and

IsXs:ulur{—i—...—i—ususT:Al—i—Agl

Lemma H.7
Given conditions (A0Q) through (D), (E1) through (E4), and (F) through (I), we have

n(8, — 63)7C(6)" (C(80)I(80)"'C(60)") ' C(8;)(Bn — 65) B X2 (92)
Proof
By Taylor’s theorem, we have
R1(6,) Ri1(8) [OR1(0..1)/06/]
s = : + s (6, — 69) (93)
Rr(én) R,(69) [OR:(0,,)/06]]

where 0, ; lies on the line segment between 9n and 0.
By the definition of the R;’s, the first term on the right-hand side of Equation 93 equals 0.
Thus

R1(6,) [OR1(0..1)/06)]
N = : Vn (8, — 60) (94)

Rr(én) [aRT(o*,T)/ael]
Assumptions (E3) and (E4) and results 82 and 94 imply

R1(6,)
(C(80)1(80) ' C(8))"* v/ ; BNOx1,Lrxr) (95)
R.(6,)

36



Next note that by assumption (E1), because 6;, = g(©,), Ri1(0;) = ... = R,(0),) = 0, so by
Taylor’s theorem we have
Ri(6,) [OR1(0.,1)/06/]
vn : = : Vn(0, — 67) (96)
Rr(én) [OR, (0*,7“)/89!]

where 0, ; lies on the line segment between 0,, and 0. By assumption (E3) and results 82, 88,
and 96

Ri(0,)
vn : — C(0;,)vn (0, — 6;) = 0,(1) (97)
R:(8,)
From results 95 and 97, we have

(C(80)1(85)7'C(65)7) /*

C(6:)vn (0, — 67) B N(0,41,I4y)
or

n(0, — 6,)7C(8;)" (C(80)1(89) ' C(80)") ™ C(8;) (8 — 87) B x?

r
which completes the proof.

We are now prepared to establish our main results.
Theorem H.1 (likelihood ratio statistic)

Under assumptions (A0) through (D) and (E1) through (I), we have

2(1n(L(8y)) — In(L(6}))) 3 X2

Proof
By Taylor’s theorem we have
olnL/o6, \ "
2(In(L(6;,)) — In(L(6r))) = 2 X : 1, (07, — 01) (98)
0ln L/00
- 9*’InL .
* T *

where the second partials are evaluated at a point on the line segment between @) and 9n

Now by the definition of 6,, and the corollary to Lemma H.3, the first term on the right of
Equation 98 is 0,(1). By (A2), (B), (D), Lemma H.3, result 82, and the law of large numbers, the
matrix in the second term on the right of the equation converges in probability to —I(6(). Thus,
by the corollary to Lemma H.3 we will be done if we can establish that

Q = V(0% — 0,)T1(80)v/n(0: — 0,) 2 X2 (99)

From Lemma H.6 we have

Q = V(8] —0,)"1(8)"/*Lys1(80)"/* (8], — 0,,)
= Vn(6;,—6,)"1(60)" > A11(60)"*v/n (6}, — 6,)
+V/n(6}, — 0,)"1(80)'/* A21(80)'/*/n(0;, — Br)
= Vn(6;, = 0,)"1(80)D()[D(vo) " I(80)D(v0)] "' D(v0) " 1(80)Vn(6;, - 6,)

(8}, — 6,)7C(80)"[C(86)I(80) " C(85)"]' C(80)v/n(8}, — B,)
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By Lemma H.5 the D(v) term converges in probability to 0. By Lemma H.7, assumption (E3),
and Lemma H.3 and its corollary, the C(6p) term converges in distribution to a 2 random variable.
|

As one would expect we can obtain asymptotic distributions of the Wald and Rao statistics as
corollaries to the development leading to Theorem H.1.
Theorem H.2 (Wald’s statistic)

Assume that I() is a continuous function of @ at 6y. Then under assumptions (A0) through (D),
and (E1) through (E4), we have

Ri(0,) \ R1(0,)

n| oo (C(6n)1(8,) 'C(6,)T) | B¢ (100)
R.(8,) R.(8,)

Proof
By result (95) we will be done if we establish

1

(CO10,) 'C@B.)") " ~ (CONIB) CON") ™" = l0y(1)]ss (101)

Result 101 follows from result 82, assumptions (C), (E3), and (E4), and the assumption that 7()
is a continuous function of @ at 6,. W
Theorem H.3 (Rao’s statistic)

Assume that I(0) is a continuous function of @ at 8y. Then under assumptions (A0) through (D)
and (E1) through (I), we have

T

1 8IHL/801 8111[1/891
~ : 16;)7" : A2 (102)
O0ln L/00 02 0ln L/00 0:
Proof
We have

OlnL/00 OlnL/06

nL/06, nL/06, 2L o
00100, ] 5,
0ln L/06, 0: 0ln L]0 on

where the second partials are evaluated at points on the line segment between @ and én Thus
the expression on the left hand side of (102) is equal to

. 5 0?InL e 1 [0?InL N
VA0, = 0" | S| 167) | S ] VAe; - 6,)

so by the corollary to Lemma H.3 and result 99, we will be done if we can establish that

21 21
[86911895—; /n:| [(0;)_1 [ggllagfb /n:| — 1(60) = [Op(l)]sXs (103)

where the second partials are evaluated at points on the line segment between @) and 0, Equal-
ity 103 follows from the assumed continuity of (@), result 82, Lemma H.3, assumptions (A2), (B)
and (D), and the law of large numbers. H
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18.4 Using Newton method estimators rather than solutions of the likelihood
equations

We sometimes find it difficult to obtain closed form solutions to the likelihood equations or to
establish that the solutions are unique. In this case, if we begin with a y/n-consistent estimator
and take a Newton step we will be led to an estimator that is asymptotically efficient. (See, for
example, theorems 3.1 and 4.2 in chapter 6 of Lehmann (1983).) Here we establish that in likelihood
ratio, Wald, and Rao tests, we can replace solutions of the likelihood equations with Newton step
estimators.
Lemma H.8

Assume that conditions (A0) through (D) hold.

Let @), be a \/n-consistent estimator of 8y. That is, assume that

V(8 — 85) = O,(1) (104)
Then, 1) with probability approaching one as n — oo, the Newton estimator,

1 0ln L/06,
|0n,c |0n,c + 0”,0 (]‘05)

0? lnL]
5 0ln L/00

an,Newt == |: 00,0,

is well-defined (that is the partials exist and the matrix is invertible), and 2)
0, Newt — 0n = Op(n™") (106)

where @,, is a consistent solution of the likelihood equations guaranteed by theorem 6.1 in chapter 6
of Lehmann (1983) (see result 82).
Proof

We will be making use of the fact that the Newton method yields quadratic convergence. In
particular, we will verify the conditions of theorem 5.2.1 in Dennis and Schnabel (1983).

By assumption (D) we can define

o (552] 1)

We have
k nj 2 2
. B _ 0°In f(X;;;0) 0°In f(X;;;0) ‘
Iu0) = 5(00) = = | S (ng/m) 3 (O, SO, ) g
7j=1 =1
§XS
and, making use of assumption (D), by Taylor’s theorem
82 lnf(Xz],0)|A _ 82 lnf(XZ],0)| - 83 lnf(XZ],O) 831nf(X”,0) | (é _0 )
90,00, 0 90,00, '\ 00,00,,00, ' 00,00,,00, ) '%imn 70

where 6;,, ,, lies on the line segment between 6,, and 6.

Thus by assumption (D), for @, € T (an open neighborhood of ), the absolute value of the

Imth element of J,(0,) — Jn(00) is bounded by

k

S (05/7) 30" Misnp.i (Xi) B — Op0 /5 (107)

j=1 i=1 p=1
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Since (by assumptions (A2) and (D) and the strong law of large numbers)
n

Z Mlmp,j(Xij)/nj = Mimp,j < 0O

i=1
for l,m,p e {1,...,s}, 7 €{1,...,k}, results 82 and 107 imply that
172(82) = Ju(80)||7 5 0 (108)

where ||M||r denotes the Frobenius norm of the matrix M.
Now by assumptions (A2) and (B) and the strong law of large numbers, we know that

Jn(80) =¥ 1(6) (109)
Results 108 and 109 imply that
170 (8n) — I(80)|l» 5 0 (110)

By assumption (C), I(8y) is positive definite. Since the inverse and norm of a matrix are
continuous functions of the elements of the matrix, this implies that given any ¢ > 0, we can find
an Ns 1 such that n > Ns; implies that

Prob (||Jn(én)—1||p < 2||1(00)—1||F) >1-4 (111)

Since (see, for example, theorem 3.1.3 of Dennis and Schnabel (1983))

||Ms><s||F/\/§ S ||Ms><s||2 S ||Ms><s||F

where || M ||2 denotes the [ induced matrix norm of M (see, for example, pages 43 and 44 of Dennis
and Schnabel (1983)), result 111 implies that for n > Ns;

Prob (|1.7a(8n) ™' < 2v/5]11(80) ! l2) > 1 -6

or
Prob (||Jn(9n)_1||F < /3) >1-6 (112)

where 8 = 24/s/A and X is the smallest eigenvalue of 1(8y).

Let » > 0 be such that D(0y;2r) C T, the open neighborhood of @y in assumptions (A)
through (D). (Here, D(0¢;2r) denotes the open ball of radius 2r centered at 6y.) Since (result 82)
én RN 0o, given any 6 > 0, we can find an Nso such that n > Nso implies that Prob(én €
D(eo;’f')) >1-—0.

Now, provided that 81,85 € D(8y;2r),

[T (01) — Jn(02)||F = [|[aim]sxs||F

where

k 7 21 2 i
om = M) 3 (i, S0, )

= et 89l80m 89l89m
k j 3 3
_ . 0 lnf(XZ],O) 0 lnf(ijae) .
= ]Zl(n]/n); < 90,0090, "’ 08,00..90. |ol*m,n(91 02)/n;
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where 6}, ,, lies on the line segment between 6; and 5.

Thus, by assumption (D), if 81, 85 are within r of 0, then for n > N; 2, with probability
greater than 1 — d, we have

S S S S 2
170 (01) = Jn(0)|1F =D ap, < (Z > |azm|> (113)

=1 m=1 =1 m=1

2
s s k ng s
<D0 D/ Y0 (Munp,(Xig) /1) |61 — Oy
I=1 m=1 j=1 i=1 p=1
Since (by assumption (D))
n;
Z Mlmp,j(Xij)/nj 0;5>- Mimp,j < OO
i=1

for I,m,pe {1,...,s}, 7 € {1,... ,k}, result 113 implies that given any § > 0, we can find an N3

such that n > Ns3 implies that, if 81, 6 are within r of 9n, then with probability greater than
1-—0,

s s k s

172(61) = Tn(02) 117 < { DD 0D " (ni/n) > (mimp, + 1)1 — Opo

=1 m=1j=1 =1
<61 — 627

where

s k s

Z Z Zo‘j +1) Z(mlmp,j +1)] <o

=1 m=1 j=1 p=1

v

(Recall that n;/n — Aj as n — 0o.) That is, for n > Nj3, with probability greater than 1 — 4,

o € Lip,(D(8,,7)) (114)

Results 112 and 114 permit us to invoke Dennis and Schnabel’s (1983) theorem 5.2.1 to conclude
that given any 6 > 0, we can find an Nj4 such that n > Ns4 implies that with probability greater
than 1 —§

8 In L/801

PInL]
:| |0n,c |0n,c + an,c

0, Newt =~ [m dInL/0
n S

is well-defined (that is the partials exist and the matrix is invertible), and

16, Newt — Onll < B X7 X [0n.c — 0] (115)
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provided that

o . 1
[0n,c — 0n]| < € = min(r, %)

But by result 82 and the fact that 6,, . is a \/n-consistent estimator of 6y, we have /n(6,.—8,) =
O, (1) so given any § > 0 we can find a K; and an Ns5 such that n > Nj5 implies

Prob(v/n||@n,c — On]| < K5) > 16 (116)
If we require that Nss5 > Kg/EZ, then n > N5 also implies
Prob(||8,.c — 0,]| <€) >1—46 (117)

Results 115, 116, and 117 imply that given any 6 > 0, we can find an N such that n > N
implies that with probability greater than 1 — ¢,

16, Newt — Onll < B x 7y x Ki/n (118)

which completes the proof of the lemma. W
Corollary 1
Assume that conditions (A0) through (D) hold. Then

Vi(8,, Newt — 80) = N(0,1(80) 1)

Proof
Given conditions (A0) through (D), Lehmann’s theorem 6.1 implies that

V(0 — 80) B N(0,1(65) ") (119)

Results 106 and 119 yield the corollary.

Corollary 2
Assume that conditions (A0) through (A), (E1), (E2), and (F) through (I) hold.
Let v, . be a \/n-consistent estimator of vy. That is, assume that

ViiWne — o) = 0,(1) (120)
Then, 1) with probability approaching one as n — oo, the Newton estimator,

0lnL/0v

PInL]"
] |Vn,c |Vn,c +Vne (121)

V, Newt == |:8Vla7/m :

OlnL/0vs_,

is well-defined (that is the partials exist and the matrix is invertible), and 2)
V, Newt — Uy = Op(”_l)

where ,, is the consistent solution of the constrained likelihood equations guaranteed by Lemma H.2.
We are now in a position to establish the following three useful theorems.
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Theorem H.4 (likelihood ratio statistic, Newton step version)
Under assumptions (A0) through (I), we have

D
2(n L(6,, Newt) — I L(g(¥,, Newt))) = X7

where 6 Newt 18 defined by Equation 105 and v, Nyt 18 defined by Equation 121.
Proof
We have
- OlnL OlnL A

N T[82lnL

, )
+5V(0, Newt — On) mlon,b/n] Vi, News — 0n)

where 6,5 lies on the line segment between 6, Nyt and 0,
We know (by (A2), (B), and the strong law of large numbers) that the elements of
0’InL oo/
- |=—= n
90,00, | ..., '%
converge in probability to those of I(6y). A
Since (by Lemma H.8) 8, Nowt —0n = 0p(1) and (by result 82) 8, — 8¢ = 0,(1), assumption (D)
implies that the differences in the elements of
0’InL
I et /n
00100, | ..,

evaluated at 6,; and the elements evaluated at g converge in probability to zero. Thus, by
Equation 122 and Lemma H.8

I L(6, Newt) — In L(8,) = 0,(1) (123)
Similarly,

In L(8(¥,, Newt)) — In L(g(#n)) = <81ngy(lg(u)  OlnL(g(v)

B |, W Newt —2) (124)

1 . 0% In L(g(v) .
+5Vn(V, Newt = ¥n)" [an,b/”] Vn(v, Newt = ¥n)

where v, lies on the line segment between v Newt and vy, and since (as above) the matrix
converges in probability to —J(v), Corollary 2 to Lemma H.8 implies that

In L(g(¥,, Newt)) — In L(g(@n)) = 0p(1) (125)

Theorem H.1, and results 123 and 125 (recall that 0, = g(,,)) complete the proof. W
Theorem H.5 (Wald’s Statistic, Newton step version)

Assume that I() is a continuous function of @ at 6y. Then under assumptions (A0) through (D),
and (E1) through (E4), we have

T
Rl (on,NeWt) Rl (on,NeWt)
. . 2

_ -1 D
n : (C(8, Newt)T(6,, Newt) ' C(8, Newt)") : 2

Rr(en,NeWt) Rr(en,NeWt)
(126)
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where 0 Nowt 18 defined by Equation 105.
Proof
For i € {1,... ,r} we have

> OR; OR; -

where the partials are evaluated on a line segment between 6, Newt and 9n
By results 127 and 82, Corollary 1 to Lemma H.8, assumption (E3), and Lemma H.8, for
i €{1,...,r} we have

Vi (a6, Newt) = Ri(8n)) = 0,(1) (128)

Result 128 implies that result 95 holds with 0, replaced by 6
we can establish

(CO, Newt 10, Newt) CO,Newt)”) ™ — (CO)1(B) 'CB0)) " = [0, (D]rr  (129)

Result 129 follows from Corollary 1 to Lemma H.8, assumptions (C), (E3), and (E4), and the
assumption that I(@) is a continuous function of  at 6,. B
Theorem H.6 (Rao’s Statistic, Newton step version)

Define

n,Newt- Thus we will be done if

az,Newt = g(”n,Newt)

where g is defined in connection with assumption (E1) and v Newt i defined by Equation 121.
Assume that I(8) is a continuous function of 8 at 8. Then under assumptions (A0) through (D)
and (E1) through (I), we have

T

1 BlnL/801 8IHL/801
- s 1(6] Newt) ™' s 2 (130)
dln L]0 ‘BZ,Newt dln L/00 |0;,Newt
Proof
We have
g(’/n,Newt) —g(n) = [gg;] ox (1) (Vn,Newt —Up)

where the partials are evaluated on a line segment between v Nowt and 2. Thus, by Lemma H.2,
Corollary 2 to Lemma H.8, and assumption (F), we have

V(0] Newt — 07) = V(8(¥,, Newt) — 8(Fn)) = 0p(1) (131)
Result 131 and Lemma H.3 imply
\/ﬁ(oz,Newt — 60) = Oyp(1) (132)
Result 131 and the corollary to Lemma H.3 imply
V(0! Newt — 6,) = 0,(1) (133)
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Results 131, 133, and 99, and the corollary to Lemma H.3 imply

* 0 * A D
V(0! Nowt = On) T(00) V(6] Nowt — 0n) = X7 (134)
Now we have

dlnL/06 dlnL /00

/ ' _ / ' 0?InL 0" D

: - : - 00,00,, ( n,Newt n)
OInL/00s ] o dnL/06, | . sxs

LN 0,
n,Newt

where the second partials are evaluated at points on the line segment between 0:; Newt and 9n
Thus the expression on the left hand side of (130) is equal to

- 0?InL 0?InL -
* T * —1 *
VA6 ot =007 |G| 1O o) | 1] V0 Nt~ )

so by results 133 and 134, we will be done if we can establish that

[82lnL

2 n
96,00, /”] 1(6;, Newt) ™ [u/n] — 1(80) = [0p(1)]sxs (135)

00,00,

where the second partials are evaluated at points on the line segment between 0; Newt and 0,,.

Equality 135 follows from the assumed continuity of (@), result 82, result 132, assumptions (A2),
(B) and (D), and the law of large numbers. W

19 Appendix I — Two Useful Matrix Calculations

19.1 The ¢* + ¢?/2 result

The necessary calculation is just an instance of a Schur complement result (see, for example,
Searle (1982), or page 33 of Rao (1973)). The result is

A B\ ' [(Al'+FE'F’ _FE!
B” D N —~E-'FT E-!

where E=D —BT”A~'B and F = A~!'B.
For our Theorems 3 and 5 we have

where
A1(2 + 1/02)/0% 0 0 0
A = .
0 0 ... 0 M(2+41/c*)/o?
—>\1/(0301)
B = :
i/ (o)
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and
D=1/

To obtain an asymptotic confidence interval on ¢ we need E~! where
k

E=D-B"A'B=1/c¢" - Y (\}/(f0?))o?/(Nj(2+ 1/¢) = 1/(c" + ?/2)
j=1

(Recall that Z?Zl Aj=1.)

19.2 The Newton step in Theorems 4, 5, and 6

To take this step we must calculate

dln L/00,

2InL]t
A — _ :
[ 2, aem] |6, : |6,
(9 In L/89k+1

We do this by obtaining an analytic solution to the equivalent set of equations

0ln L/06,

0?InL
A=— :
[ 2, 89m] |6, : 6,
Oln L/89k+1

The equations have the special form

where
ar 0 0 0
A = N
0 0 ... 0 ag
by
B = :
bre
D = d
01
A = :
Ok+1
l
L — .
U1
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These equations can be rewritten as

ll = 0151 + b15k+1
: (136)
Ik = apdg + byt
lk+1 - b1(51 + ...+ bkak + d5k+1

Now if, for j = 1,... ,k, we multiply the jth equation by b;/a; (which we can do if A is of full
rank) and then subtract the sum of the resulting & equations from the original k£ + 1th equation we
obtain

(k1 = (bl far + ..+ byl /ag)) /(d = (b /a1 + ... + bpfax)) = Ok

(o 5 )

is of full rank. If the denominator were zero, the last row of the matrix would be a linear combination
of the first k rows.) Given d;,; we can then solve for the remaining §’s via

d; = (Ij — bjok+1)/a;

(The denominator must be non-zero if

47



Table 1: Measurement order and xylan content

Order | Xylan content (%) || Order | Xylan content (%) || Order | Xylan content (%)
1 6.34 46 6.22 91 6.42
2 6.35 47 6.37 92 6.43
3 6.37 48 6.24 93 6.28
4 6.55 49 6.19 94 6.38
) 6.28 50 6.39 95 6.32
6 6.30 o1 6.38 96 6.36
7 6.39 52 6.39 97 6.25
8 6.29 53 6.37 98 6.35
9 6.26 o4 6.40 99 6.34

10 6.11 55 6.37 100 6.41
11 6.25 56 6.43 101 6.24
12 6.22 57 6.23 102 6.33
13 6.25 58 6.45
14 6.36 59 6.36
15 6.30 60 6.28
16 6.33 61 6.33
17 6.41 62 6.35
18 6.48 63 6.25
19 6.38 64 6.30
20 6.31 65 6.31
21 6.28 66 6.35
22 6.31 67 6.35
23 6.37 68 6.28
24 6.15 69 6.34
25 6.45 70 6.48
26 6.25 71 6.59
27 6.18 72 6.22
28 6.36 73 6.37
29 6.26 74 6.26
30 6.26 75 6.20
31 6.30 76 6.28
32 6.27 7 6.34
33 6.19 78 6.37
34 6.31 79 6.25
35 6.28 80 6.33
36 6.23 81 6.34
37 6.28 82 6.34
38 6.34 83 6.34
39 6.31 84 6.33
40 6.22 85 6.43
41 6.22 86 6.19
42 6.27 87 6.40
43 6.14 88 6.28
44 6.13 89 6.34
45 6.17 90 6.36
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Table 2: Sample means and standard deviations of the xylan data

“Outliers” in “Outliers” out
Group | Mean SD Mean SD

1 6.3265 | 0.09477 | 6.3261 | 0.06590
6.2800 | 0.06996 | 6.2711 | 0.05896
6.3000 | 0.10167 | 6.3000 | 0.10167
6.3275 | 0.08813 | 6.3044 | 0.05193
6.3445 | 0.06134 | 6.3526 | 0.05075

U W N

Table 3: Confidence interval coverage of the ratio® of two coefficients of variation (based on
Theorem 2), n = ny = no

Asymptotic procedure Simulation procedure
Nominal | Estimate’ 95% CI" Estimate’ 95% CI”

COV | n | coverage | of coverage | on coverage | of coverage | on coverage
0.90 0.8330 [0.8256,0.8402] 0.8987 [0.8927,0.9045]
5 0.95 0.9006 [0.8947,0.9064] 0.9496 [0.9452,0.9538]
0.99 0.9711 [0.9677,0.9743] 0.9886 [0.9864,0.9906]
0.90 0.8709 [0.8643,0.8774] 0.9007 [0.8948,0.9065]
0.01 | 10 0.95 0.9324 [0.9274,0.9372] 0.9529 [0.9487,0.9570]
0.99 0.9836 [0.9810,0.9860] 0.9915 [0.9896,0.9932]
0.90 0.8844 [0.8781,0.8906] 0.8995 [0.8935,0.9053]
20 0.95 0.9413 [0.9366,0.9458] 0.9500 [0.9456,0.9542]
0.99 0.9864 [0.9840,0.9886] 0.9904 [0.9884,0.9922]
0.90 0.8945 [0.8884,0.9004] 0.9022 [0.8963,0.9079]
30 0.95 0.9459 [0.9414,0.9502] 0.9512 [0.9469,0.9553]
0.99 0.9881 [0.9859,0.9901] 0.9903 [0.9883,0.9921]
0.90 0.8372 [0.8299,0.8444] 0.8985 [0.8925,0.9043]
5 0.95 0.9007 [0.8948,0.9065] 0.9490 [0.9446,0.9532]
0.99 0.9723 [0.9690,0.9754] 0.9885 [0.9863,0.9905]
0.90 0.8732 [0.8666,0.8796] 0.9033 [0.8974,0.9090]
0.05 | 10 0.95 0.9314 [0.9264,0.9363] 0.9518 [0.9475,0.9559]
0.99 0.9830 [0.9804,0.9854] 0.9908 [0.9888,0.9926]
0.90 0.8863 [0.8800,0.8924] 0.8990 [0.8930,0.9048]
20 0.95 0.9403 [0.9356,0.9449] 0.9484 [0.9440,0.9526]
0.99 0.9853 [0.9828,0.9876] 0.9892 [0.9871,0.9911]
0.90 0.8880 [0.8817,0.8941] 0.8956 [0.8895,0.9015]
30 0.95 0.9398 [0.9351,0.9444] 0.9455 [0.9410,0.9499]
0.99 0.9847 [0.9822,0.9870] 0.9880 [0.9858,0.9900]

®Ratio = 1 in these trials
"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values
used to construct small-sample confidence intervals)
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Table 3 continued: Confidence interval coverage of the ratio® of two coefficients of variation
(based on Theorem 2), n = ny = no

Asymptotic procedure Simulation procedure
Nominal | Estimate’ 95% CI" Estimate’ 95% CI"

COV | n | coverage | of coverage | on coverage | of coverage | on coverage
0.90 0.8288 [0.8214,0.8361] 0.8990 [0.8930,0.9048]
5 0.95 0.9009 [0.8950,0.9067] 0.9504 [0.9461,0.9546]
0.99 0.9718 [0.9685,0.9750] 0.9913 [0.9894,0.9930]
0.90 0.8715 [0.8649,0.8780] 0.9009 [0.8950,0.9067]
0.15 | 10 0.95 0.9294 [0.9243,0.9343] 0.9490 [0.9446,0.9532]
0.99 0.9825 [0.9798,0.9850] 0.9911 [0.9892,0.9928]
0.90 0.8869 [0.8806,0.8930] 0.9001 [0.8941,0.9059]
20 0.95 0.9427 [0.9381,0.9472] 0.9507 [0.9464,0.9549]
0.99 0.9868 [0.9845,0.9889] 0.9902 [0.9882,0.9920]
0.90 0.8891 [0.8829,0.8952] 0.8965 [0.8905,0.9024]
30 0.95 0.9466 [0.9421,0.9509] 0.9514 [0.9471,0.9555]
0.99 0.9891 [0.9870,0.9910] 0.9912 [0.9893,0.9929]
0.90 0.8349 [0.8276,0.8421] 0.8956 [0.8895,0.9015]
5 0.95 0.8974 [0.8914,0.9033] 0.9496 [0.9452,0.9538]
0.99 0.9700 [0.9666,0.9733] 0.9900 [0.9880,0.9919]
0.90 0.8670 [0.8603,0.8736] 0.8966 [0.8906,0.9025]
0.25 | 10 0.95 0.9257 [0.9205,0.9308] 0.9491 [0.9447,0.9533]
0.99 0.9828 [0.9802,0.9853] 0.9900 [0.9880,0.9919]
0.90 0.8896 [0.8834,0.8957] 0.9039 [0.8980,0.9096]
20 0.95 0.9439 [0.9393,0.9483] 0.9538 [0.9496,0.9578]
0.99 0.9855 [0.9831,0.9877] 0.9886 [0.9864,0.9906]
0.90 0.8913 [0.8851,0.8973] 0.9007 [0.8948,0.9065]
30 0.95 0.9470 [0.9425,0.9513] 0.9526 [0.9483,0.9567]
0.99 0.9877 [0.9854,0.9898] 0.9896 [0.9875,0.9915]
0.90 0.8291 [0.8217,0.8364] 0.8977 [0.8917,0.9036]
5 0.95 0.8985 [0.8925,0.9043] 0.9499 [0.9455,0.9541]
0.99 0.9714 [0.9680,0.9746] 0.9904 [0.9884,0.9922]
0.90 0.8692 [0.8625,0.8757] 0.8956 [0.8895,0.9015]
0.40 | 10 0.95 0.9273 [0.9221,0.9323] 0.9486 [0.9442,0.9528]
0.99 0.9821 [0.9794,0.9846] 0.9899 [0.9878,0.9918]
0.90 0.8799 [0.8735,0.8862] 0.8949 [0.8888,0.9008]
20 0.95 0.9377 [0.9329,0.9424] 0.9477 [0.9433,0.9520]
0.99 0.9846 [0.9821,0.9869] 0.9892 [0.9871,0.9911]
0.90 0.8967 [0.8907,0.9026] 0.9043 [0.8985,0.9100]
30 0.95 0.9450 [0.9404,0.9494] 0.9505 [0.9462,0.9547]
0.99 0.9890 [0.9869,0.9910] 0.9916 [0.9897,0.9933]

®Ratio = 1 in these trials
"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values
used to construct small-sample confidence intervals)
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Table 4: Size of a test that k coefficients of variation are equal (based on Theorem 4), k = 2,
n=mny =mny

Asymptotic procedure Simulation procedure

Nominal | Estimate’ 95% CI” Estimate” 95% CI”

COV | n size of size on size of size on size
0.10 0.1639 [0.1567,0.1712] 0.1013 [0.0955,0.1073]
5 0.05 0.0991 [0.0933,0.1050] 0.0525 [0.0482,0.0570]
0.01 0.0295 [0.0263,0.0329] 0.0092 [0.0074,0.0112]
0.10 0.1329 [0.1263,0.1396] 0.1044 [0.0985,0.1105]
0.01 | 10 0.05 0.0728 [0.0678,0.0780] 0.0520 [0.0477,0.0564]
0.01 0.0174 [0.0149,0.0201] 0.0098 [0.0080,0.0118]
0.10 0.1159 [0.1097,0.1222] 0.1039 [0.0980,0.1100]
20 0.05 0.0594 [0.0549,0.0641] 0.0509 [0.0467,0.0553]
0.01 0.0139 [0.0117,0.0163] 0.0095 [0.0077,0.0115]
0.10 0.1116 [0.1055,0.1178] 0.1040 [0.0981,0.1101]
30 0.05 0.0599 [0.0553,0.0646] 0.0532 [0.0489,0.0577]
0.01 0.0130 [0.0109,0.0153] 0.0113 [0.0093,0.0135]
0.10 0.1639 [0.1567,0.1712] 0.0981 [0.0923,0.1040]
5 0.05 0.0961 [0.0904,0.1020] 0.0477 [0.0436,0.0520]
0.01 0.0291 [0.0259,0.0325] 0.0112 [0.0092,0.0134]
0.10 0.1334 [0.1268,0.1401] 0.1054 [0.0995,0.1115]
0.05 | 10 0.05 0.0742 [0.0691,0.0794] 0.0520 [0.0477,0.0564]
0.01 0.0184 [0.0159,0.0211] 0.0113 [0.0093,0.0135]
0.10 0.1163 [0.1101,0.1227] 0.1009 [0.0951,0.1069]
20 0.05 0.0589 [0.0544,0.0636] 0.0503 [0.0461,0.0547]
0.01 0.0148 [0.0125,0.0173] 0.0119 [0.0099,0.0141]
0.10 0.1064 [0.1004,0.1125] 0.1006 [0.0948,0.1066]
30 0.05 0.0563 [0.0519,0.0609] 0.0504 [0.0462,0.0548]
0.01 0.0122 [0.0101,0.0144] 0.0100 [0.0081,0.0120]

"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values)
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Table 4 continued: Size of a test that & coefficients of variation are equal (based on Theorem 4),

k=2,n=mn1=ny

Asymptotic procedure Simulation procedure

Nominal | Estimate’ 95% CI” Estimate” 95% CI”

COV | n size of size on size of size on size
0.10 0.1678 [0.1605,0.1752] 0.1026 [0.0967,0.1086]
5 0.05 0.1009 [0.0951,0.1069] 0.0514 [0.0472,0.0558]
0.01 0.0290 [0.0258,0.0324] 0.0094 [0.0076,0.0114]
0.10 0.1287 [0.1222,0.1353] 0.0964 [0.0907,0.1023]
0.15 | 10 0.05 0.0675 [0.0627,0.0725] 0.0498 [0.0456,0.0541]
0.01 0.0169 [0.0145,0.0195] 0.0109 [0.0090,0.0130]
0.10 0.1128 [0.1067,0.1191] 0.0996 [0.0938,0.1055]
20 0.05 0.0587 [0.0542,0.0634] 0.0497 [0.0455,0.0540]
0.01 0.0146 [0.0123,0.0170] 0.0101 [0.0082,0.0122]
0.10 0.1064 [0.1004,0.1125] 0.1001 [0.0943,0.1061]
30 0.05 0.0570 [0.0525,0.0616] 0.0509 [0.0467,0.0553]
0.01 0.0124 [0.0103,0.0147] 0.0096 [0.0078,0.0116]
0.10 0.1643 [0.1571,0.1716] 0.1010 [0.0952,0.1070]
5 0.05 0.0994 [0.0936,0.1053] 0.0515 [0.0473,0.0559]
0.01 0.0298 [0.0266,0.0332] 0.0103 [0.0084,0.0124]
0.10 0.1275 [0.1210,0.1341] 0.0984 [0.0926,0.1043]
0.25 | 10 0.05 0.0701 [0.0652,0.0752] 0.0497 [0.0455,0.0540]
0.01 0.0167 [0.0143,0.0193] 0.0094 [0.0076,0.0114]
0.10 0.1101 [0.1040,0.1163] 0.0966 [0.0909,0.1025]
20 0.05 0.0580 [0.0535,0.0627] 0.0467 [0.0427,0.0509]
0.01 0.0121 [0.0101,0.0143] 0.0090 [0.0072,0.0109]
0.10 0.1124 [0.1063,0.1187] 0.1048 [0.0989,0.1109]
30 0.05 0.0589 [0.0544,0.0636] 0.0529 [0.0486,0.0574]
0.01 0.0120 [0.0100,0.0142] 0.0091 [0.0073,0.0111]
0.10 0.1662 [0.1590,0.1736] 0.0997 [0.0939,0.1056]
5 0.05 0.0988 [0.0930,0.1047] 0.0511 [0.0469,0.0555]
0.01 0.0296 [0.0264,0.0330] 0.0093 [0.0075,0.0113]
0.10 0.1321 [0.1255,0.1388] 0.1041 [0.0982,0.1102]
0.40 | 10 0.05 0.0742 [0.0691,0.0794] 0.0513 [0.0471,0.0557]
0.01 0.0180 [0.0155,0.0207] 0.0101 [0.0082,0.0122]
0.10 0.1099 [0.1038,0.1161] 0.0972 [0.0915,0.1031]
20 0.05 0.0609 [0.0563,0.0657] 0.0511 [0.0469,0.0555]
0.01 0.0142 [0.0120,0.0166] 0.0105 [0.0086,0.0126]
0.10 0.1047 [0.0988,0.1108] 0.0976 [0.0919,0.1035]
30 0.05 0.0546 [0.0502,0.0591] 0.0490 [0.0449,0.0533]
0.01 0.0124 [0.0103,0.0147] 0.0103 [0.0084,0.0124]

"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values)
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Table 5: Confidence interval on a coefficient of variation shared by k normally distributed
populations (based on Theorem 6), k = 2, n =n; = ny

Asymptotic procedure Simulation procedure
Nominal | Estimate’ 95% CI” Estimate’ 95% CI”

COV | n | coverage | of coverage | on coverage | of coverage | on coverage
0.90 0.8091 [0.8013,0.8167] 0.8981 [0.8921,0.9040]
5 0.95 0.8850 [0.8787,0.8912] 0.9478 [0.9434,0.9521]
0.99 0.9629 [0.9591,0.9665] 0.9903 [0.9883,0.9921]
0.90 0.8583 [0.8514,0.8651] 0.8975 [0.8915,0.9034]
0.01 | 10 0.95 0.9223 [0.9170,0.9275] 0.9500 [0.9456,0.9542]
0.99 0.9784 [0.9755,0.9812] 0.9897 [0.9876,0.9916]
0.90 0.8833 [0.8769,0.8895] 0.9009 [0.8950,0.9067]
20 0.95 0.9374 [0.9326,0.9421] 0.9485 [0.9441,0.9527]
0.99 0.9860 [0.9836,0.9882] 0.9897 [0.9876,0.9916]
0.90 0.8872 [0.8809,0.8933] 0.9000 [0.8940,0.9058]
30 0.95 0.9439 [0.9393,0.9483] 0.9515 [0.9472,0.9556]
0.99 0.9882 [0.9860,0.9902] 0.9904 [0.9884,0.9922]
0.90 0.8134 [0.8057,0.8210] 0.9026 [0.8967,0.9083]
5 0.95 0.8889 [0.8827,0.8950] 0.9506 [0.9463,0.9548]
0.99 0.9653 [0.9616,0.9688] 0.9912 [0.9893,0.9929]
0.90 0.8574 [0.8505,0.8642] 0.8984 [0.8924,0.9042]
0.05 | 10 0.95 0.9197 [0.9143,0.9249] 0.9496 [0.9452,0.9538]
0.99 0.9799 [0.9771,0.9826] 0.9893 [0.9872,0.9912]
0.90 0.8789 [0.8724,0.8852] 0.8973 [0.8913,0.9032]
20 0.95 0.9331 [0.9281,0.9379] 0.9477 [0.9433,0.9520]
0.99 0.9848 [0.9823,0.9871] 0.9887 [0.9865,0.9907]
0.90 0.8864 [0.8801,0.8925] 0.9008 [0.8949,0.9066]
30 0.95 0.9417 [0.9370,0.9462] 0.9492 [0.9448,0.9534]
0.99 0.9878 [0.9856,0.9899] 0.9914 [0.9895,0.9931]

"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values
used to construct small-sample confidence intervals)
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Table 5 continued: Confidence interval on a coefficient of variation shared by &£ normally
distributed populations (based on Theorem 6), k =2, n = ny = no

Asymptotic procedure Simulation procedure
Nominal | Estimate’ 95% CI" Estimate’ 95% CI"

COV | n | coverage | of coverage | on coverage | of coverage | on coverage
0.90 0.8146 [0.8069,0.8222] 0.9012 [0.8953,0.9070]
5 0.95 0.8883 [0.8821,0.8944] 0.9499 [0.9455,0.9541]
0.99 0.9650 [0.9613,0.9685] 0.9900 [0.9880,0.9919]
0.90 0.8596 [0.8527,0.8663] 0.9010 [0.8951,0.9068]
0.15 | 10 0.95 0.9238 [0.9185,0.9289] 0.9517 [0.9474,0.9558]
0.99 0.9826 [0.9799,0.9851] 0.9909 [0.9889,0.9927]
0.90 0.8853 [0.8790,0.8915] 0.9035 [0.8976,0.9092]
20 0.95 0.9391 [0.9343,0.9437] 0.9516 [0.9473,0.9557]
0.99 0.9875 [0.9852,0.9896] 0.9908 [0.9888,0.9926]
0.90 0.8900 [0.8838,0.8961] 0.9031 [0.8972,0.9088]
30 0.95 0.9427 [0.9381,0.9472] 0.9506 [0.9463,0.9548]
0.99 0.9869 [0.9846,0.9890] 0.9893 [0.9872,0.9912]
0.90 0.8163 [0.8086,0.8238] 0.8985 [0.8925,0.9043]
5 0.95 0.8883 [0.8821,0.8944] 0.9479 [0.9435,0.9522]
0.99 0.9658 [0.9621,0.9693] 0.9904 [0.9884,0.9922]
0.90 0.8603 [0.8534,0.8670] 0.8987 [0.8927,0.9045]
0.25 | 10 0.95 0.9231 [0.9178,0.9282] 0.9512 [0.9469,0.9553]
0.99 0.9804 [0.9776,0.9830] 0.9890 [0.9869,0.9910]
0.90 0.8888 [0.8826,0.8949] 0.9070 [0.9012,0.9126]
20 0.95 0.9422 [0.9375,0.9467] 0.9540 [0.9498,0.9580]
0.99 0.9877 [0.9854,0.9898] 0.9911 [0.9892,0.9928]
0.90 0.8886 [0.8824,0.8947] 0.8996 [0.8936,0.9054]
30 0.95 0.9441 [0.9395,0.9485] 0.9521 [0.9478,0.9562]
0.99 0.9871 [0.9848,0.9892] 0.9895 [0.9874,0.9914]
0.90 0.8350 [0.8277,0.8422] 0.9112 [0.9055,0.9167]
5 0.95 0.9032 [0.8973,0.9089] 0.9562 [0.9521,0.9601]
0.99 0.9721 [0.9688,0.9752] 0.9921 [0.9903,0.9937]
0.90 0.8655 [0.8587,0.8721] 0.8975 [0.8915,0.9034]
0.40 | 10 0.95 0.9246 [0.9193,0.9297] 0.9482 [0.9438,0.9525]
0.99 0.9793 [0.9764,0.9820] 0.9887 [0.9865,0.9907]
0.90 0.8881 [0.8818,0.8942] 0.9019 [0.8960,0.9077]
20 0.95 0.9420 [0.9373,0.9465] 0.9537 [0.9495,0.9577]
0.99 0.9882 [0.9860,0.9902] 0.9911 [0.9892,0.9928]
0.90 0.8925 [0.8864,0.8985] 0.9021 [0.8962,0.9078]
30 0.95 0.9446 [0.9400,0.9490] 0.9508 [0.9465,0.9550]
0.99 0.9883 [0.9861,0.9903] 0.9902 [0.9882,0.9920]

"Based on 10,000 trials (and 10,000 trials within each of these to determine the simulation-based critical values
used to construct small-sample confidence intervals)
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Figure 1: Plots of xylan content (%) versus time order
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