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Abstract

For general linear models with normally distributed
random errors, the probability of a Type II error decreases
exponentially as a function of sample size. This potentially
rapid decline reemphasizes the importance of performing
power calculations.
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1 Introduction

Introductory statistics students learn that hypothesis tests involve two types of error. If we reject a
true null hypothesis, a Type I error occurs. If we fail to reject a false null hypothesis, a Type II error
occurs. Students become adept at using tables to find critical values that control the probability
of a Type I error. However, the calculations needed to control the probability of a Type II error
can be complex and typically receive less emphasis in introductory courses. This is unfortunate as
the scientists and engineers who take these courses and later design experiments sometimes fail to
perform proper power calculations (power = 1 — Prob(Type II error)). Instead, their sample sizes
are sometimes based on past practice or available resources. As a result, their experiments can be
underdesigned (sample sizes are too small) or overdesigned (sample sizes are unneccessarily large).
See Lenth (2001) for an overview of sample size determination.

In one sense, a researcher doesn’t design an experiment to achieve a certain Type I error
probability. Instead, at the analysis stage, the researcher just enters a critical value table via the
targeted probability and the appropriate degrees of freedom. Given that the scientist’s model and
distribution assumptions hold, the scientist is assured that the desired Type I error probability
will result. Thus an analysis of Type I error is relatively easy to incorporate into an introductory
statistics course or a plan of experimentation. On the other hand, achieving a desired level of Type
IT error requires much more forethought. Prior to performing an experiment, a researcher must
specify the following:

1. What Type I error rate (probability of falsely detecting an effect) are they willing to accept?

2. What differences do they want to be able to detect? Perhaps a 5% difference in means is
not of practical importance, but the researcher wants to be fairly certain of detecting a 25%
difference.

3. What is the variability in the property that is being tested?

4. What Type II error rate (probability of failing to detect a real effect) are they willing to
accept?

Given this information, the researcher can calculate the necessary sample sizes for a wide variety
of experiments.

If the necessary sample size is beyond the capability of the researcher, then they must be willing
to consider obtaining more resources or abandoning the experiment rather than waste resources on
an experiment that is unlikely to be definitive. If the necessary sample size is smaller than what
standard practice dictates, then the researcher can save resources by adopting the size dictated by
the power calculations.

The problem with failing to understand the implications of power calculations goes beyond a
possible waste of resources. It goes to the validity of claims produced by improperly designed



experiments. If the intent is to demonstrate that one process is better than another (e.g., that one
mean is larger than another), and it turns out that the difference observed in the experiment is
not statistically significant, researchers are generally sophisticated enough to note that a difference
might still exist but that the sample sizes were simply too small to detect the difference statistically.
They can always try again with a better designed experiment. They do not necessarily draw the
possibly false conclusion that no difference exists. However, sometimes researchers simply want to
establish that a new (possibly cheaper) product or process is no worse than an existing product or
process. If their experiment detects no statistical difference between the new and old products, then
they might be tempted to conclude that the claim they wanted to establish is indeed established.
If, however, their experiment was not properly designed and their sample sizes were too small, the
Type II error rate (the probability of failing to detect a difference that actually exists) associated
with the experiment could be large and the lack of statistical significance would not represent good
evidence that the new process is no worse than the old.

In this paper we demonstrate that for a large class of experiments (those whose results can be
represented by linear models with normally distributed random errors) the probability of a Type
IT error declines exponentially as a function of sample size. That is

Prob(Type II error) = 1 — power < K exp(—b x n) (1)

for constants K, b > 0 where n is a measure of the sample size. Results of this type are well known to
those who work with asymptotic relative efficiencies (ARE) (see, for example, section 10.5 of Serfling
(1980)). However, the ARE approach might be somewhat opaque to many statistics students. Here
we work through calculations that should be more accessible. We first illustrate the exponential
rate of decrease in a special case, and then establish it for general linear models. The proof in the
special case can be readily grasped by undergraduate statistics students. The proof in the general
linear models case is more difficult and might be more suitable for graduate students.

The potentially rapid decline in the probability of a Type II error as sample size increases has
important implications for researchers as they design their experiments. There can be a fairly
sharp boundary between successful and unsuccessful experiments. An underdesigned experiment
can fairly rapidly become a successful and then an overdesigned experiment. At the close of Section
3, we provide the addresses of two internet-based linear model power calculation programs that we
have developed to aid in the design of experiments.

2 Simple Comparison of Two Populations, Known Variance

To characterize this case, we need a useful fact about the tail behavior of normal distributions.
Versions of this fact have appeared previously in the statistical literature. See, for example, the
discussions of “Mills’ ratio” in Kendall and Stuart (1977) and Johnson and Kotz (1970). The par-
ticular form of the fact described in the Lemma is due to Gordon (1941). His proof is considerably
more complex than the proof we give here.

Lemma.
For z < 0,
2? (2% +1) < () ($(a)/(—2)) < 1 (2)
and for z > 0,
2?2 +1) < (1 - @(x))/(d(z)/z) < 1 (3)

where ®(z) is the N(0,1) cumulative distribution function and ¢(z) is the N(0,1) probability density
function.



Proof.
Let x < 0. We have

$@)/(-a) = [ 0w/ 0= [ g+
Thus . .

B(x) = / p(t)dt < / B (1L + (1/12))dt = p(x) /()
and

o)/ (o) = [ )+ (1))t < / 1+ (1)t = () (2 + 1) /2

and result (2) follows.

Since for z > 0, 1 — ®(z) = ®&(—=z) and ¢(z) = ¢(—=x), result (3) is an immediate consequence
of result (2).

Now suppose that we have n/2 observations from a N(ui,0?) population and n/2 from a
N(p2,02) population, o known. We want to test the null hypothesis that p; = po versus the
alternative that p; # po. In this case, the test statistic is the ratio z = (Xo — X1)/(0y/4/n), and
we reject the null hypothesis if z < —a or z > a for an appropriate critical value, a.

The power associated with this test equals

XZ_XI XQ—XI
Prob <m < —a) +Pr0b<W > a)
= (_a_w>+l_¢(a_w>

20 %
Thus,
Prob(Type II error) = 1 — power = & (a — M) _ P <—a _ M) (4)
20 %
SO
Prob(Type II error) < ® (a — W;ﬂ) 5
o
and
Prob(Type Il error) < 1 — & (—a _ W;ﬂ) o
o

By the Lemma, for pus > pq and n large enough, the quantity on the right side of equation (5)

is of the order (s — /N2 (s — ji) /70
exp<— <a — T) /2) + <T - a)

which, for large n, is dominated by

2 a(pz — p)vn  (p2 — p1)*n
exp <—a /2 + 5, - 52
which, in turn, is dominated for large n by exp(—b x n) for any b less than (us — p1)2/(80?).
From result (6), the ua < pp case follows in a similar fashion.



Although this is a large sample result, a roughly exponential decline in the probability of
a Type II error can actually hold for “small” samples. For example, for a 0.05 significance level,
o/(p2—p1) =1, and n = 10,20, 30, 40, 50, the Type II error probabilities for a z test of the equality
of the means are 0.65, 0.39, 0.22, 0.11, and 0.06. (In this example, the coefficient of variation is
assumed to be roughly equal to the percent difference in the means. Hence the o/(u2 — p1) =
1 relationship between standard deviation and the difference in the means.) The logs of these
values are plotted against n in Figure 1. This plot appears to be approximately linear. That is,
Prob(Type II error) =~ K exp(—b x n).

3 General Linear Model
Now suppose that we have the linear model
y ~ N(X8,0°I)

where y is the m x 1 vector of responses, X is the m X p design matrix, and § is the p x 1 parameter
vector. Following Scheffé (1959), suppose that we want to test the hypothesis ¢! 8 = 7, ...,
chﬁ = 1y where the c;frﬁ’s are estimable and the ¢;’s are linearly independent.! Since the ciTﬁ 's are
estimable and the c¢;’s are linearly independent, we can find unique linearly independent vectors,
ai, ..., ag, that lie in the linear span of the columns of X and satisfy a;fr’X = ciT.

Let A = (a;...a,), C=(ci...¢cq), and nT = (n1...7,). Under the null hypothesis, ATX3 =
C"B =n and

ATy ~N(ATXB,0°ATA) =N (n,0>ATA)

or

ATy — n~N (0, UQATA)

and
(ATA) 2(ATy — ) ~ N (0,0 I;%q)

Under the alternative hypthesis, A”X3 # n and
(ATA) V2(ATy — ) ~ N ((ATA) V2 (ATXS = 1), 01y
Thus under the null hypothesis, the standardized F' test numerator sum of squares
§Sy = (ATy —n)" (ATA) T (ATy —n)/o?

is distributed as a central chi-squared random variable with ¢ degrees of freedom, while under the
alternative hypothesis, SSy is distributed as a non-central chi-squared with ¢ degrees of freedom
and non-centrality parameter

Am = (ATXB - )" (ATA) ™" (ATXB - ) /o? (7)

In this case, the Type II error probability associated with the standard ANOVA F' test equals the
probability that a noncentral F ,,_, ), random variable lies below the appropriate critical value,
T, derived from a central F ,,_, random variable (here r is the rank of the X matrix). As the

!For example, in a balanced one-way analysis of variance with J “treatments” and I replicates of each treatment,
m=1IxJ,p=2J, and X = (x1...%p) where x; = (0...01...10...0) and x; contains I x (j — 1) initial 0's, I 1’s,
and I x (J — j) ending 0’s. In this case we are interested in testing the null hypothesis that 31 = 82 = ... = 3, or
Bi—B2=...=p1—B,=0 Wehavec] =(1 —10...0),...,c¢-_;,=(10...0 —1),and gy = ... =1p_1 = 0.



noncentrality parameter increases, this probability decreases. Larger differences among treatment
means (resulting in larger (ATXS — n)T (ATA)_1 (ATX — n) values) and smaller variances will
lead to larger values of A\, and a reduction in the probability of a Type II error. More importantly
for the purposes of this paper, increased sample sizes will lead to larger noncentrality parameters
and thus reductions in the probability of a Type II error.

How, specifically, does the noncentrality parameter change as the sample size changes? Suppose
that we multiply the design by a factor of k so that n = k& x m. Then the new n X p design matrix
contains k copies of the original design matrix and the new a; must contain k copies of the original a;,
each copy divided by k. Thus, the new noncentrality parameter is just k£ times the old noncentrality
parameter, and

An = Xexm =k X Ay =n X (A\/m) xn (8)

The new denominator degrees of freedom in the standard linear model F' test statistic is n — .

As noted above, in this case the Type II error probability equals the probability that a F, ,_, x,
random variable will lie below the appropriate critical value, z,, derived from a central F,,_,
random variable.? Since z,, decreases as n increases, we have

Prob(Type IT error) = 1 — power = Fy ,_, x, (zn) < Fyn—ra, () 9)

for an appropriate fixed z.

To proceed with our demonstration of an exponential decline in the Type II error probability as
a function of sample size, we now need the following theorem. Its proof is provided in the Appendix.
Theorem.

Let vo9 — 00 as m — oo. Let vy and z be fixed. Then for any d > 2, there exists an Ny > 0 such
that, for all A > 0, n > Ny yields

Fvl,vg,)\(l‘) < KdeXp(—A/d) (10)

for some constant K.
Results (9) and (10) yield

Prob(Type II error) = 1 — power < Kgexp(—A,/d) (11)

for n > Ny, or, since, by (8), A\, = n(A\,/m),
Am
Prob(Type II error) = 1 — power < Ky exp(—%) (12)

for any constant d > 2 and n > Ny. This establishes that the probability of a Type II error declines
exponentially as a function of n.

2Note how the four inputs discussed in Section 1 are incorporated into the calculation of appropriate sample size:
. The Type I error probability appears in the choice of the critical value.

. The differences show up as non-zero ATX 3 — 5 values in the noncentrality parameter calculation.

2

1

2

3. The variability appears as o~ in the noncentrality parameter calculation.
4

. Given a base design and corresponding noncentrality parameter, A,,, the targeted Type II error probability is
obtained by finding the lowest k value such that the Type II error probability calculated using noncentrality
parameter A\, = Agxm = k X A, falls below the targeted level. An acceptable design is then one that is k
replicates of the base design.



Note that in the case considered in Section 2,

(p2 — M1)2n

An = 402

so from (11) we would expect

(p2 — M1)2n>

Prob(Type II error) = 1 — power < Kjexp (— 1524
o

for any d > 2. This is equivalent to the bounding rate identified at the end of Section 2.

As in the simple case discussed in Section 2, although the exponential decrease in the proba-
bility of a Type II error is an asymptotic result, a roughly exponential decline can hold for small
samples. For example, given a 3 x 3 ANOVA design, a 0.05 significance level, p values for one
of the factors equal to 0.9, 1.0, and 1.1, a o value of 0.15, and 2, 3, 4, 5, and 6 replicates per
cell, the Type II error probabilities for the standard F' test of the equality of the u’s are 0.56,
0.35, 0.20, 0.11, and 0.06. (See http://wwwl.fpl.fs.fed.us/power.glm.html for a program that
permits general linear model power calculations to be performed using the World Wide Web. See
http://wwwl.fpl.fs.fed.us/power.html for a simpler program that calculates power for bal-
anced ANOVAs.) The logs of these values are plotted against n in Figure 2. Again this plot
appears to be approximately linear. That is, Prob(Type II error) ~ K exp(—b X n).

4 Design Implications

From (12) we can obtain the Any,. ¢ that (approximately) halves the Type II error probability. We

ave (n5 — 1) (A /)
no — Ny m/
)

1/2 = (Error probability),/(Error probability), = exp (—

or
Anhalf =MNg2 —N1 = d X m X ln(2)/)\m

Thus, large treatment differences or small variances (which yield large A, values) can yield very
rapid declines in Type II error probabilities. In this case, as noted in the introduction, an under-
designed experiment can fairly rapidly become a successful and then an overdesigned experiment.

5 Aside on Asymptotic Relative Efficiencies (AREs)

In the introduction we remarked that those who study AREs are familiar with exponential declines
in the probability of a Type II error. In particular in the Hodges-Lehmann approach to ARE, one
fixes the probability of a Type I error and the difference one wants to detect, and compares tests
based on the rate at which the probability of a Type II error declines. Thus, in the normal theory
linear model case, the focus will in effect be on the constant b in (1). A larger b will correspond
to an asymptotically more efficient test—given a fixed difference that one wants to detect, the
probability of a Type II error will decline more rapidly.

On the other hand, in the Pitman approach to asymptotic relative efficiencies, one fizes the
Type IT (and Type I) error probability and observes the manner in which the minimal detectable
difference declines as sample size increases. (The minimal detectable difference is the smallest
difference for which power > 1 — the fixed Type II error probability.) In this case (constant Type



IT error probability), the noncentrality parameter given by (8) must converge to a constant so we
have
Am x 1/n

or, from (7), (ATXﬁ — 17), the “difference” that we are trying to detect must be declining as 1/y/n.
Thus, as one would expect given the equivalence between hypothesis tests and confidence intervals,
for fixed Type I and Type II error probabilities, the minimal detectable difference declines at the
same rate as confidence interval lengths. Pitman ARE differences among hypothesis tests will
show up as differences in multipliers of the basic 1/y/n rate of decline of the minimal detectable
difference. Smaller multipliers will correspond to more asymptotically efficient tests—given a fixed
Type II error probability, the minimal detectable difference will be smaller.

6 Summary

We have established that for tests of hypotheses in general linear models, the probability of a Type
II error declines exponentially. To do so, we have made use of a Mills’ ratio lemma that permits
one to approximate the tail behavior of the normal distribution, and (see the Appendix) Tang’s
(1938) asymptotic expansion of the noncentral F' distribution.

The potentially rapid decline in the probability of a Type II error reemphasizes the importance
of performing power calculations. For reasons of experimental efficiency (and in underdesigned
cases, statistical validity), it is important to neither underdesign nor overdesign a study. We have
provided web resources that facilitate the performance of linear model power calculations. Links
to other web resources for performing power calculations can be found at
http://www.stat.uiowa.edu/~rlenth/Power/ and
http://members.aol.com/johnp71/javastat.html#Power.
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8 Appendix — Proof of the Theorem
Tang (1938) gives the following expression for the noncentral F' cdf:

00 !
Fyy o () = exp(=2/2) Y (A{f) (1 = Lo (
=0

V2 U1
272

+1)) (13)

where A is the noncentrality parameter, vy, vy are the numerator and denominator degrees of
freedom,
ug = U2/(U2 + 1)1.’1:)

and

U 1
I.(a,b) :/ t“—l(l—t)”—ldt// (1 — t)btdt
0 0

is the incomplete beta function. In our case the numerator degrees of freedom, vy, is fixed, and
V9 — 00 as 7T Increases.

Recall that

o0
Z al /1! = exp(a)
=0
so we would like to show that -
2 U1
1 - Iuo(?a ) +1)
is of the order s* where 0 < s < 1.
We have -
1—Iu0(72,71+l):N/D (14)
where .
N = t3 L1 — )2l
v2+%1:c
and
D= t3 Y1—t)2t 14t
0
Consider N: .
1 LA
vl 1 1T 2
N < 1—¢)2t1gt = 15
/v_z( ) S 4+1 \v2 +uviz (15)
votvix
Consider D:
For [ > 1 and any R > 0,
—2 !
Ve viz v R 2
D> / SRS <7W ) dt (16)
0 vy + Rvjx
_ z 1 Rviz 5 Ruvyx ERAa
uy v9 + Ru1x v9 + Ruix
vo+Rvuz —Rvjzx U—l-l-l—l
2 ] Ruiz 2 ] Ruviz 2 Ruvix 2
g v9 + Ruizx vy + Ruix v9 + Ruizx
2
E—XE1XE2XE3 (17)
Vg



Since (1 —a/y)¥ — exp(—a) as y — oo, we can treat F; as a constant in what follows. Also, it is
clear that Es converges to 1 as vy gets large.
By results (15), (16), and (17), for [ > 1,

Y1

1 R Rvjz\ 2

N/D < v2 V1T 1T v vo + Lvix (18)
FE| x Ey 2 \vyg+ Ruiz Vo + V1% Ruvix

_ 1 V9 Rvix v9 + Ru1x 5 1! (vy 4+ Ruiz !
By X Ey 2 \vy+ Rz (vg + v1zZ)R R \ vu+wvz
< Ch ll <v2 + Rv1$>l

R v +U1T

for some constant Ci that depends on R (recall that v; and z are fixed).
Thus, by (13), (14), and (18) (we might have to add 1 to Cg to account for the [ = 0 term),

/A 1 vy + Rux !
Fyy mo (@) < CRexp(—)\/2)Z< ¥> /I

=0

1
2 R>< vg + V1T (19)

Now given any 6 > 0, we can find an Rs > 0 and an Ng, > 0 such that n > Ng; implies that

1 v + Rsvix
X —_—

— ) 20
R vg +U1T < (20)
Results (19) and (20) imply that for n > Ng,
[e'e) >\ [
Fy v (x) < Cryexp(—A/2) Z (5 X 5) /1! (21)

=0

A A A
= CR; exp (—§> exp (§5> = CR; exp (—5(1 - 5))

As 0 was arbitary, result (21) implies that for any d > 2, there exists an Ny > 0 such that
n > Ny yields
Fyywop(7) < Kgexp(=A/d) (22)

for some constant Ky (d =2/(1 —¢), K4 = Cgy). This establishes the theorem.
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Figure 1: The approximately linear decline of In(Prob(Type II error)) with increasing sample size
in the two sample example. In this example, we have n/2 observations from a N (1, 0?) population,
and n/2 observations from a N(uz,0?) population. o is known, and we use a z statistic to test
the hypothesis u1 = uo versus the alternative 1 # us. The probability of a Type II error is given
by equation (4). In the plot we present In(probability of a Type II error) versus n for the case in
which (pu2 — p1)/o = 1.
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Figure 2: The approximately linear decline of In(Prob(Type II error)) with increasing sample size
in the 3 x 3 ANOVA example. In this example, we have a 3 x 3 ANOVA design with 2, 3, 4,
5, or 6 replicates per cell. We use a standard F statistic to test the hypothesis that the three
means associated with the first factor are all equal versus the alternative hypothesis that there
are differences among the three means. The probability of a Type II error in this case is given by
result (9). The mean values for the three levels of the factor were taken to be 0.9, 1.0, and 1.1.
The o value was taken to be 0.15. In the plot we present In(probability of a Type II error) versus
n = 3 X 3 X number of replicates.
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