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ABSTRACT

Corrugated fiberboard is characterized as a nonlinear material
to account for buckling phenomena prior to material breakdown
and to make box compression strength mor e sensitive to length and
width differencesthan allowed for by linear theory. In thisreport, a
historical base of box compression data thought to be insensitive
to length and width differences is analyzed for nonlinear material
effects and compared with other data reflecting greater sensitivity.
Linear material theory is shown to overpredict the strength of
narrow box panels, typically the end panels, and to lead to an
apparent strength equality between rectangular and squar e boxes of
the same perimeter. Nonlinear material theory is shown to predict a
lower buckling strength for low width panels and make it safer to
apply box compression theory to other corrugated structures.

NOMENCLATURE

b postbuckling constant

postbuckling constant

stress-strain curve constants

nor malized in-place shear modulus of elasticity
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D box depth

Dy plate bending stiffness in machine direction

D, plate bending stiffness in cross-machine direction
E modulus of elasticity

E. modulus of elasticity in machine direction

E, modulus of elasticity in cross-machine direction
EI,  beam bending stiffnessin machine direction

El,  beam bending stiffness in cross-machine direction
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normalized buckling strain function
thickness

moments of inertia per unit width
buckling coefficient

box length

plate width

box compression strength

critical load of plate

failureload of plate

material edgewise compression strength
compression strength of rectangular box
compression strength of square box
yield load of plate material

normalized plate stiffness

universal plate slenderness

box width

box perimeter

postbuckling constant

postbuckling constant

strain

normalized buckling strain

stress

average critical stress of plate

averagefailure stress of plate

material yield stress

normalized buckling stress

nonlinear material postbuckling constant ¢ 4/P,

geometric mean ViVva
material Poisson’sratio for x direction

material Poisson’sratio for y direction



INTRODUCTION

Knowing how to predict box compression strength from
stress-strain properties of component paperboards has important
implications for evaluating linerboard and corrugating medium
material. A relation between box strength and paper properties
according to mechanistic principles can provide the rationale to
rank various paper properties by importance and manage quality
control.

Theory developed at the Forest Products Laboratory (FPL)
(Johnson et al., 1979; Urbanik, 1981) has previously been used to
investigate the optimum mix of fiber between linerboard and
medium components. Recent issues in regard to quality control
practices and test methods for characterizing paper strength have
raised new interest among paper makers in determining the
importance of machine direction (M D) paper propertiesin relation
to cross direction (CD) properties. Concurrent issuesin box design
have raised concerns about the relevance of traditional models
(McKeeet al., 1963) for predicting box strength of short boxes and
styles different than regular dotted containers. A more mechanistic
under standing of box compression behavior is needed to assess the
importance of material properties.

In response to these concerns, a study was conducted between
the Technical Division of the Containerboard and Kraft Paper
Group (CKPG) of The American Forest & Paper Association and
FPL to broaden the understanding of box compression behavior
and to establish principles for experimentally verifying FPL
theory. This study was conducted concurrently with a study
between the CKPG and the Institute of Paper Science and
Technology (IPST) to investigate experimentally how MD and CD
properties of linerboard components affect box stacking
performance.

OBJECTIVES AND SCOPE

The objectives of this report are (a) to relate the buckling
strength of plates made of a nonlinear material to the maximum
strength observed in experiments and (b) to compare the results of
applying FPL nonlinear material behavior to reported data that
assume linear behavior. The panels of a corrugated box and the
linerboard and corrugated medium components in corrugated
fiberboard are typical plate materials to which thisresearch can be
applied. The buckling theory on which this paper is based was
developed in previous FPL research (Johnson and Urbanik, 1984,
1987; Urbanik, 1992). The relationship between theoretical plate
buckling strength and actual maximum strength applied in this
report isempirical and is treated further in a textbook by Boulson
(1969). For lack of applicable data, more recent postbuckling
theories of nonlinear and laminated structures (Haslach, 1991;
Shin et al., 1993) were not investigated.

The motivation behind the research reported here was the
inconsistency observed between existing box compression theory
and unpublished industry data on how MD and CD linerboard
orientation affects box compression strength. The data exhibited
specimen depth and boundary condition elasticity effects found to
be intractable with available theories (McKee et al.. 1963; Johnson
and Urbanik, 1987). An examination of additional industry data
bases revealed that principles of nonlinear material effects, box
dimension effects, and boundary condition effects needed to be set
forth to unify the various data

The scope of this study was limited to a broadening of
postbuckling theory to include nonlinear material behavior. Data
from studies by Maltenfort (1956) and McKee et al. (1963) were
analyzed to compar e the results of applying FPL nonlinear material
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behavior to reported data that had assumed linear behavior. On
aver age, the predictive accuracy was about the same for linear and
nonlinear material effects applied to the McK ee data However, for
those cases involving relatively high stiffness-to-strength
materials or narrow box panels. nonlinear material theory proved to
be superior. The significance of nonlinear material theory isfurther
corroborated by the Maltenfort (1956) data Our resultsare used to
show that nonlinear material theory is essential to be able to unify
box compression data over a more general data base and to deal
with additional effects of variations of geometry and boundary
conditions.

BOX COMPRESSION MODELS

Statistical Formulae

The simplest reported box compression models have been
gtatistical relationships between box compression strength P and
box length L, width W, and depth D. The model most supported by
experiments is probably the formula by Maltenfort (1956) derived
from an extensive body of 14,800 compression tests. Although the
original experimental design treated L and W as independent
variables, there is a benefit to writing the formula in terms of the
box perimeter Z and the L/W ratio asinputs. The Maltenfort formula
can be put in the form

P =2090+
LW+

where P is expressed in Newtons and D and Z in millimeters.
Equation (1) is useful for examining how the strength P of a
rectangular box compares to the strength P, of a square box with an
equal perimeter and all other variables remaining the same. The
variation of the strength ratio P,/ P, with L/W applied to the
Maltenfort data (Fig. 1) predictsthat treating a rectangular box as
“square’ leadsto about a 7% strength error around L/W = 2.5.
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Figure 1—Ratio of strength of rectangular box to strength
of square box having an equal perimeter and the same
material, varying with the box length/width ratio. Points
represent data from Maltenfort (1956) and curves represent
two material conditions in a buckling theory. Box strength
with linear material is characterized by o = 0.397 and

n= 0.255 in Eq. (3). Box strength with nonlinear materiai

is characterized by o = 0.434, n= 0.308, and 60 = 1.13 in
Eq. (19).



Compression models advocated by other researchers predict
greater errors. The formula published by Windaus et al. (1976)

gives P proportional to sJL/W , which predicts

P/P. =2 «L/W/ (LIW + 1). Podstavkina et al. (1986) made P
proportional to the area-to-perimeter ratio LW/Z, which predicts
P /P, =4 (L/IW)/(L/W+ 1)’. These formulas yield “square’ approx-
imation errors of 10% and 18%  respectively, when
L/W = 2.5. The general trends displayed by the data in figure 15 of
Hoke and Gottsching (1985) also agree with the error magnitude of
these statistical formulas.

Postbuckling Theory

Better strength models result from a consideration of how
plates fail by buckling. If a perfectly flat plate is subjected to
uniform compression in its midplane, the plate can fail by elastic or
inelastic buckling. With elastic buckling, the plate remains flat
until the applied stress attains a critical stress level s, . Here the
plate is considered to have buckled, but in general will not yet
have collapsed As compression continues, the plate deforms
laterally into a buckled shape and stress increases nonuniformly at
various points around the plate. A breakdown of material
eventually occurs when the local stress at some point reaches the

yield stresss, of thematerial. Maximum plate strength isreached at
an average applied failure stress s, such that s, >s, > s, . With
inelastic buckling, material breakdown occurs before the applied
stress reaches s, . The ordering of stress levels at maximum plate
Strength isthens, >s, >s,

Stresslevelss, and s, can be determined experimentally. Stress

s .is a function of elastic properties and edge conditions of the
plate and needs to be determined analytically. The mechanical

behavior of the plate between stresses s, and s, has been termed

the postbuckling response. Difficulties in developing accurate
theories of postbuckling behavior has led researchers (Bulson,
1969) to utilize an empirical characterization given by

n
[+ [s) [+
..f.:a{-—ﬂ) : 2 <1
Oy Oy Oy

in which aand h are postbuckling constants, to predict maximum
plate strength. If material thickness his considered to remain
constant, Equation (2) can be rewritten in terms of load levels per
unit width corresponding to the stress levels:

n
EL:a[!ﬁ]; L

(2

3)

Equation (3) is more readily applicable to corrugated
fiberboard wherein the corrugated material can be treated as an
effective homogeneous plate.

McKee Formula-Linear Material. As noted in Bulson
(1969), Equation (2) has been manipulated into various alternative
forms by different researchers. The form utilized in McKee et al.
(1963) for application to the panels of a corrugated box is given by
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b
ﬁ-:c(i} (4)
Pcr Pcr
in terms of new postbuckling constants, c=a and b=1-h. To
apply plate theory to boxes, rectangular boxes were treated as
squar e boxeswith an equal perimeter, approximating a structurein
which each supporting panel behaves identically like a simply
supported plate. Only elastic buckling failure was considered. Box
compression strength was then considered equal to P Z, with P,
determined from Equation (4).

Material yield strength in Equation (4) was taken to be the
edgewise crush strength P, of a short column of corrugated
fiberboard. An expression for the critical load in Equation (4) was
taken from March and Smith (1945) as

A 12D,

P, =

where | is plate width perpendicular to the direction of loading, D,
and D, are bending stiffnesses of the corrugated fiberboard in the
MD and the CD, respectively, and k, is a buckling coefficient that
is an involved function of plate material properties and boundary
conditions. A simplified expression for P was derived by first
constructing an approximation for k, in terms of the significance of
various contributing variables and with consideration for the
limiting case as box depth increases. The same formula for P ismore
readily derived by considering the buckling strength of an
infinitely long plate with compression in the direction of its length
and with the unloaded edges simply supported along the length.
The edge conditions beneath the loads become unimportant. For
this straightforward approach, the solution for P, is obtainable
from numerous textbooks on plate theory (Bulson, 1969 Ugural,

1981).
4? [D,D,
P, = —F

Substituting Equation (6) into Equation (4). using P, =P,,
| =2/4,P=P Z,and rearranging termsyield

1-b
P= aP,::( ’Dny) ZZh-I

wherea = ¢ (647)"". Equation (7) should be recognized as being
the same as Equation (6) in the work by McKee et al. (1963).

A tit of Equation (7) to data yielded the experimental
constants a = 2.028 and b = 0.746. An examination of the
postbuckling response of the box panels by the more conventional
Equation (2) is made by transforming a and b into
a=a(64p’)'= 03942 and h =1- b=0.254. A technique
advocated in Gerard (1957) and Bulson (1969) for unifying data
from various sources is to plot Equation (2) with reference to the

&)

(6)

M

axess, /s, and \joy/oc, . the second expression characterizing a
universal plate enderness U.

(8)



Universaisienderness

Figure 2—Variation of ratio P/Py with universal
slenderness U defined by Eq. (8) for supporting panels
of corrugated box adjusted to an equivalent square box
geometry. Points represent A-, B-, and C-flute box
strength data from McKee et al. (1963). Dashed line is
a fit of Eq. (3) to the data, assuming linear material
behavior and failure by elastic buckling. Solid line
corresponds to the condition Py = Pe.

Equation (3) is plotted through the McKee data in Fig. 2
following this technique. There, Equation (6) was used to
determine P, . When U > 1, failure occurs by eastic buckling.
When U < 1, failure occurs by inelastic buckling. Figure 2 predicts
that five boxes failed by inelastic buckling and from the average
value of B /P,, when U< 1 it cart be inferred that material
breakdown initiated at a value around 40% of P,.

Bending Stiffness. Before proceeding with the introduction
of nonlinear material behavior, it is important to clarify the
definition of bending stiffness. In the preceding discussion, it was
tacitly assumed that material behavior occurred according to the
linear stress-strain law

c=Ee 9

where eisstrain and E is modulus of elasticity. Subscripted moduli
E,and E are used here to relate to MD and CD stress-strain
responses, respectively. The initial bending stiffness of a beam
specimen can be determined from a conventional four-point
bending test (Tappi, 1988) to be

3~ E,n*
El, =E,l, = 2
where |l and | are moments of inertia per unit width. Compared to
bending of a beam, plate bending is accompanied by additional
material restraint along the axis around which bending occurs. A
unit width of plate is stiffer than a unit width of beam in accordance
with

- E.h
Ely=El = ;2 (10)

El,

El, ~
¥ l-V1V2

T ol=-vyv,y

D an

where V,and V,are material Poisson’s ratios associated with x-
direction and y-direction extensions, respectively. Substituting
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Equation (11) into Equation (7) and rearranging terms yield the
equivalent expression

1-b
El, E/,) (1- vy v, )o1 Z264

p= aP,‘,’,( (12)

The bending stiffness data given by McKee et al. (1963) are
ET,and ET values. However, these values were treated as

D, and D, values. In essence it was assumed that v,=v,= 0. This
approximation made sense in view of the fact that Poisson’s ratios
are difficult to determine for corrugated fiberboard. A recent test
method (Luo et al., 1995) predicts Poisson’s ratios from a
combination of four-point bending tests and plate twisting tests.

Valuesreported for an A-flute corrugated fiberboard are v,= 0.644
and v,= 0.351. With these substitutions made into Equation (12).
P is predicted to be about 6.7% greater compared to when
v,= v, = 0. Therefore, the evaluation of a using Equation (7) and
letting D, = ET, and D,= ET ,was inflated and reflects an average
Poisson’s ratio effect.

FPL Theory-Nonlinear Material. The material behavior of

paper has been observed (Urbanik. 1982) to follow the stress-
strain characterization given by

S=¢ tanh(f-z-ej
a

(13

where c,is the initial slope of the stress-strain curve and c,is a
horizontal asymptote approached by the curve as e increases. As
the value of c,approaches infinity, the form of Equation (13)
approaches the straight line defined by Equation (9). Equation
(13) also matches the load-deformation curve of corrugated
fiberboard. A cautionary remark when fitting Equation (13) to
paper compression data and fiberboard compression data is that
only approximate respective curves are obtained, since Equation
(13) cannot be summed to yield an equal numerical form, as when
adding the contributions of different paper components in a
corrugated structure.

The buckling of plates with nonlinear material was considered
by Johnson and Urbanik (1987). The solution is expressed in terms
of a normalized buckling stress @ as a function of a normalized
plate stiffness S given by

2
S=f_z.(h] }i
(4] ] V-

An algorithm for determining 6 from Sis summarized in the
Appendix. The critical stress s , corresponding to & is given by

(14

O =¢0 (15)

The solution of & varying with Sreported in Johnson and Urbanik
(1987) for the case of an infinitely long, simply supported plate is
repeated in Fig. 3 for various levels of the geometric mean
Poisson’s ratio v = ,/v,vz . 'The solution was further generalized

by Urbanik (1992) to include the effect of the material in-plane
shear modulus of easticity on buckling strength.



10 d
08 :
Simpie support
06 — Fixed support
04
02
00 A 1 . L
00 02 04 06 08 10

Oimensioriess stff
Figure 3—Variation of dimensioniess buckling stress
with dimensioniess stiffness S for an infinitely long
plate with nonlinear material and subjected to
longitudinal compression. The buckling response for
three Poisson'’s ratios and two support conditions is
shown.

To apply the theories by Johnson and Urbanik (1987) and
Urbanik (1992) to the McKee data (1963), it is helpful to
restructure Equations (14) and (15) in terms of P, El,, and EI, as
inputs. This is done by utilizing the theories of Johnson and
Urbanik (1984) and Luo et al. (1995) that predict v,/v,= EI /EI,
and by recognizing that the initial slope of Equation (13) for
loading in the CD yields c,= E,. By definition I,=h®/12. Values of
c,cannot be determined from the McKee data. However, Urbanik
(1990) observed that values of c,reported for paper averaged about

33% greater than the corresponding values of s ,. Therefore, a
relative value of ¢ for corrugated fiberboard can be obtained by
letting

c=65— (16)
1 oh

where q,reflects the average ratio of c,h/P Making these
substitutions into Equation (14) leads to the normalized stiffness

in the form
‘o 12{El, El, n

80P, 1
The critical load can then be determined from
Py =ciGh=084P,C (18)

Johnson and Urbanik (1987) showed that the initial slope of the
curves for the simply supported case in Fig. 3 predicts buckling by
Equation (6). In other words, for large values of q,in Equation (17)
or for small values of Sa plate behaveslike a linear material.

Substituting P, from Equation (18) into Equation (3) and
rearranging terms yield

A .
L =8y6)"; U>1 (19)
P)’

for elastic buckling of a plate with nonlinear material. Making the
same substitutions into Equation (8) yields the plate slenderness

U= |- 20)

8,6
for nonlinear materials.

RESULTS

McKee et al. (1963) found that the prediction errors using
linear material theory were independent of the specimen L/W ratios,
which ranged from 1 to 2.9. The sensitivity to length and width
effects was examined further in this study by applying Equation (4)
to the box panels assuming a “square” geometry, for which
P. =P Z, for comparison with the actual “rectangular” geometry,
for which P = SP,I. Results from fitting the McK ee data are given
in Table 1. With linear material theory, little apparent differenceis
discernible. The variation of the strength ratio P, / P, with L/W is
plotted in Fig. 1. The sensitivity to length and width effects
inferred from linear material theory isless than that observed in the
Maltenfort (1956) data (Fig. 1). McKee et al. (1963) noted this
disparity, but they did not consider the maximum “square’
approximation error of about 3% around L/W = 29 to be
significant.

A nonlinear material model was constructed from the previous
section and the Appendix and it was assumed that P, =P, and
v =0, as was done previously for alinear material. The curve fitting
method applied was to restructure Equation (19) in terms of U
instead of & and to search for an optimum value of q,to obtain the
best fit of the transformed formula

log(%): loga-2mlogl(8,) 210

applying a linear regression technique (Fig. 4). As shown in Fig. 4,
the fit obtained as g,approaches infinity becomes insensitive to
nonlinear material effects. Results are given in Table 1 for the
“square” and “rectangular” cases. The differences in the
postbuckling constants obtained between these cases reflect a
greater sensitivity to length and width effects compared to that

Table 1—Characterization of elastic postbuckling response

. Postbuckling constants Average
Material error
character- magnitude
Geometry ization a n 0 (%)
Square Linear 0.396 0.256 oo 6.11
Rectangular Linear 0.397 0.255 oo 6.09
Square Nonlinear 0.421 0.295 1.30 5.84

Rectangular  Nonlinear 0.434 0.308 1.13 5.83




Figure 4—Sum of errors squared obtained from fitting
Eq. (21) to data at various levels of 0o. The y-axis level
of each curve is scaled relative to level at optimum 8o,
which predicts the value of parameter ¢y (Eq. (16)) in a
nonlinear characterization of corrugated fiberboard.
As 6 approaches -, error response and predicted
characterization approach the condition of linear
material. Plots are shown assuming square and
rectangular box geometries.

obtained with the linear material. Using a nonlinear material
characterization and adding a third postbuckling constant reduced
the aver age magnitude of the prediction error from 6.1% to 5.8%, a
seemingly small improvement. However, thevariation of P. / P, with
L/W (Fig. 1), predicted by nonlinear material theory, is consistent
with the data from Maltenfort (1956) and predictsgreater errorsup
to 8% if the “square” geometry is assumed to apply.

Equation (19) is plotted through the results in Fig. 5
(nonlinear material, rectangular geometry) for comparison with
Fig. 2 (linear material, square geometry). The data contain results
from higher denderness panels. reflecting the fact that using the
true length dimension of the box generates greater I-values than
those obtained from Z/4. Additionally, the low slenderness data are
shifted to the right due to a reduction in material stiffness at the
failure stress. The significance of a nonlinear material
characterization becomes apparent by examining the variation of
predicted & with predicted S (Fig. 6). Most data yielded S< 0.2 for
which linear material theory yields adequate buckling strength
predictions. For the more rigid box panels, beyond S> 0.2, the
predicted P, is significantly lower compared to predictions with
linear material. The data on the right in Fig. 6 correspond to the
data on the left in Fig. 5. High stiffnessto-strength, narrow box
panels are most affected by nonlinear material theory.

The nonlinear material model derived from the McKee data can
be expressed by rearranging Equation (19) and substituting the
postbuckling evaluations from Table 1:

P=7 Pna(8,6)"I=09P, (67 L+a%w) (22)

Buckling stress values 6;and G,
areto be evaluated at the respective stiffness values

98

10
= A-fite
08 | s C-fite
o B-fite
08 _‘\\ --Eq. (19)
\\\ A - Py = Pcr [
04 | i
QG +)
02 - O e o my
0-0 1 1 L H 1.
05 10 15 20 25 30 35 4C
Universal slenderness

Figure 5—Variation of ratio P/P, with universai siender-
ness U defined by Eq. (20) for supporting paneis of a
corrugated box. Points represent strength of A-, B-, and
C-flute side and end panels scaled as the ratio 2 P#P of
experimental box strength taken from McKee et al. (1963)
Dashed line is a fit of Eq. (19) to the data, assuming
nonlinear material behavior and failure by elastic
buckling. Solid line corresponds to the condition P; = P.,.
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Figure 6—Predicted variation of dimensioniess buckling
stress ¢ with dimensionless stiffness S for panel failure
of boxes in McKee et al. (1963). Points represent side
and end paneis from A-, B-, and C-flute boxes. Line is
optimum curve through data with 8, = 1.13 predicted by
Eq. (21). Uppermost points correspond to leftmost points
in Fig. 5.
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- algorithm in the Appendix.

CONCLUSIONS

Characterization of corrugated fiberboard as a nonlinear
material yields a more accurate account of buckling phenomonon
prior to material breakdown and predicts box compression strength
to be more sensitive than linear theory to length and width
differences. A historical base of box compression data though to be
insensitive to length and width differences was analyzed to

D =LW (21)



nonlinear material effects and compared with other data reflecting
greater sensitivity. A criterion for universal denderness that
increases with material edgewise crush strength and panel width
and decreases with material bending stiffness was employed. Linear
material theory overpredicts the strength of low slenderness box
panels, typically the end panels, and leadsto art apparent strength
equality between rectangular and square boxes of the same
perimeter. Nonlinear material theory predicts a lower buckling
strength for low width panels and makes it safer to apply box
compression theory to other corrugated structures. As senderness
increases the buckling response predicted by nonlinear theory
approaches that of linear theory. This investigation was limited to
elastic buckling failures. Additional data on the failure of box
components by inelastic buckling are needed to broaden the
postbuckling theory.
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APPENDIX
The algorithm for determining the buckling stress of an infinitely
long, simply supported plate with compression in the direction of
its length and having a nonlinear material characterization is as
follows:
1. Input normalized stiffness S. geometric mean Poisson’s ratio,
v and dimensionless shear constant ¢ (Urbanik, 1992). If

the Poisson’s ratio cannot be determined, let v = 0. If the
in-plane shear modulus of elasticity cannot be determined. let
c=1

2. Define function f(2) from Johnson and Urbanik (1987),

where € is a normalized buckling strain.

2e
sinh( 2€)

f(®)=1- 24

3. Determine an initiai € from Equation (3.5") of Urbanik
(1992).
72T+ 2

- (25)
12(1-v-)

£=
4. Determine New € from Equation (3.4°) of Urbanik (1992).

9

61-v2)

5.1fNew € = €, go to Step 7.

6. Otherwise, let € =New £ and return to Step 4.

7. Compute the normalized buckling stress & from Equation
(5.1) of Johnson and Urbanik (1987).

6 = tanh§é

New €= (26)

(54' \/I—(l-vz)f(é)J

27
8. Stop
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