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ABSTRACT
Corrugated fiberboard is characterized as a nonlinear material

to account for buckling phenomena prior to material breakdown
and to make box compression strength more sensitive to length and
width differences than allowed for by linear theory. In this report, a
historical base of box compression data thought to be insensitive
to length and width differences is analyzed for nonlinear material
effects and compared with other data reflecting greater sensitivity.
Linear material theory is shown to overpredict the strength of
narrow box panels, typically the end panels, and to lead to an
apparent strength equality between rectangular and square boxes of
the same perimeter. Nonlinear material theory is shown to predict a
lower buckling strength for low width panels and make it safer to
apply box compression theory to other corrugated structures.
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INTRODUCTION
Knowing how to predict box compression strength from

stress-strain properties of component paperboards has important
implications for evaluating linerboard and corrugating medium
material. A relation between box strength and paper properties
according to mechanistic principles can provide the rationale to
rank various paper properties by importance and manage quality
control.

Theory developed at the Forest Products Laboratory (FPL)
(Johnson et al., 1979; Urbanik, 1981) has previously been used to
investigate the optimum mix of fiber between linerboard and
medium components. Recent issues in regard to quality control
practices and test methods for characterizing paper strength have
raised new interest among paper makers in determining the
importance of machine direction (MD) paper properties in relation
to cross direction (CD) properties. Concurrent issues in box design
have raised concerns about the relevance of traditional models
(McKee et al., 1963) for predicting box strength of short boxes and
styles different than regular slotted containers. A more mechanistic
understanding of box compression behavior is needed to assess the
importance of material properties.

In response to these concerns, a study was conducted between
the Technical Division of the Containerboard and Kraft Paper
Group (CKPG) of The American Forest & Paper Association and
FPL to broaden the understanding of box compression behavior
and to establish principles for experimentally verifying FPL
theory. This study was conducted concurrently with a study
between the CKPG and the Institute of Paper Science and
Technology (lPST) to investigate experimentally how MD and CD
properties of linerboard components affect box stacking
performance.

OBJECTIVES  AND SCOPE
The objectives of this report are (a) to relate the buckling

strength of plates made of a nonlinear material to the maximum
strength observed in experiments and (b) to compare the results of
applying FPL nonlinear material behavior to reported data that
assume linear behavior. The panels of a corrugated box and the
linerboard and corrugated medium components in corrugated
fiberboard are typical plate materials to which this research can be
applied. The buckling theory on which this paper is based was
developed in previous FPL research (Johnson and Urbanik, 1984,
1987; Urbanik, 1992). The relationship between theoretical plate
buckling strength and actual maximum strength applied in this
report is empirical and is treated further in a textbook by Boulson
(1969). For lack of applicable data, more recent postbuckling
theories of nonlinear and laminated structures (Haslach, 1991;
Shin et al., 1993) were not investigated.

The motivation behind the research reported here was the
inconsistency observed between existing box compression theory
and unpublished industry data on how MD and CD linerboard
orientation affects box compression strength. The data exhibited
specimen depth and boundary condition elasticity effects found to
be intractable with available theories (McKee et al.. 1963; Johnson
and Urbanik, 1987). An examination of additional industry data
bases revealed that principles of nonlinear material effects, box
dimension effects, and boundary condition effects needed to be set
forth to unify the various data

The scope of this study was limited to a broadening of
postbuckling theory to include nonlinear material behavior. Data
from studies by Maltenfort (1956) and McKee et al. (1963) were
analyzed to compare the results of applying FPL nonlinear material

behavior to reported data that had assumed linear behavior. On
average, the predictive accuracy was about the same for linear and
nonlinear material effects applied to the McKee data However, for
those cases involving relatively high stiffness-to-strength
materials or narrow box panels. nonlinear material theory proved to
be superior. The significance of nonlinear material theory is further
corroborated by the Maltenfort (1956) data Our results are used to
show that nonlinear material theory is essential to be able to unify
box compression data over a more general data base and to deal
with additional effects of variations of geometry and boundary
conditions.

BOX COMPRESSION MODELS

Statistical Formulae
The simplest reported box compression models have been

statistical relationships between box compression strength P and
box length L, width W, and depth D. The model most supported by
experiments is probably the formula by Maltenfort (1956) derived
from an extensive body of 14,800 compression tests. Although the
original experimental design treated L and W as independent
variables, there is a benefit to writing the formula in terms of the
box perimeter Z and the L/W ratio as inputs. The Maltenfort formula
can be put in the form

where P is expressed in Newtons and D and Z in millimeters.
Equation (1) is useful for examining how the strength P r of a
rectangular box compares to the strength P s of a square box with an
equal perimeter and all other variables remaining the same. The
variation of the strength ratio P r / P s with L/W applied to the
Maltenfort data (Fig. 1) predicts that treating a rectangular box as
“square” leads to about a 7% strength error around L/W = 2.5.
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Compression models advocated by other researchers predict
greater errors. The formula published by Windaus et al. (1976)

gives P proportional to which predicts

P r / P s = 2 (L/W + 1). Podstavkina et al. (1986) made P
proportional to the area-to-perimeter ratio LW/Z, which predicts
P r / P s = 4 ( L/W)/(L/W+ 1)2. These formulas yield “square” approx-
imation errors of 10% and 18% respectively, when
L/W = 2.5. The general trends displayed by the data in figure 15 of
Hoke and Gottsching (1985) also agree with the error magnitude of
these statistical formulas.

Postbuckling Theory
Better strength models result from a consideration of how

plates fail by buckling. If a perfectly flat plate is subjected to
uniform compression in its midplane, the plate can fail by elastic or
inelastic buckling. With elastic buckling, the plate remains flat
until the applied stress attains a critical stress level σ σ cr . Here the
plate is considered to have buckled, but in general will not yet
have collapsed As compression continues, the plate deforms
laterally into a buckled shape and stress increases nonuniformly at
various points around the plate. A breakdown of material
eventually occurs when the local stress at some point reaches the
yield stress σ σ y of the material. Maximum plate strength is reached at

an average applied failure stress σ σ f such that σ σ y > σ  σ f > σ  σ cr . With
inelastic buckling, material breakdown occurs before the applied
stress reaches σ σ cr . The ordering of stress levels at maximum plate
Strength is then σ σ cr > σ  σ y > σ  σ f

Stress levels σ σ y and σ σ f can be determined experimentally. Stress

σ σ cr is a function of elastic properties and edge conditions of the
plate and needs to be determined analytically. The mechanical
behavior of the plate between stresses σ σ cr and σ σ f has been termed
the postbuckling response. Difficulties in developing accurate
theories of postbuckling behavior has led researchers (Bulson,
1969) to utilize an empirical characterization given by

in which a and η η are postbuckling constants, to predict maximum
plate strength. If material thickness h is considered to remain
constant, Equation (2) can be rewritten in terms of load levels per
unit width corresponding to the stress levels:

Equation (3) is more readily applicable to corrugated
fiberboard wherein the corrugated material can be treated as an
effective homogeneous plate.

McKee Formula-Linear Material. As noted in Bulson
(1969), Equation (2) has been manipulated into various alternative
forms by different researchers. The form utilized in McKee et al.
(1963) for application to the panels of a corrugated box is given by

in terms of new postbuckling constants, c = α α and b = 1 - η. η. To
apply plate theory to boxes, rectangular boxes were treated as
square boxes with an equal perimeter, approximating a structure in
which each supporting panel behaves identically like a simply
supported plate. Only elastic buckling failure was considered. Box
compression strength was then considered equal to P f Z, with P f
determined from Equation (4).

Material yield strength in Equation (4) was taken to be the
edgewise crush strength P m of a short column of corrugated
fiberboard. An expression for the critical load in Equation (4) was
taken from March and Smith (1945) as

where l is plate width perpendicular to the direction of loading, Dx

and Dy are bending stiffnesses of the corrugated fiberboard in the
MD and the CD, respectively, and k cr is a buckling coefficient that
is an involved function of plate material properties and boundary
conditions. A simplified expression for P was derived by first
constructing an approximation for k cr in terms of the significance of
various contributing variables and with consideration for the
limiting case as box depth increases. The same formula for P is more
readily derived by considering the buckling strength of an
infinitely long plate with compression in the direction of its length
and with the unloaded edges simply supported along the length.
The edge conditions beneath the loads become unimportant. For
this straightforward approach, the solution for P cr is obtainable
from numerous textbooks on plate theory (Bulson, 1969 Ugural,
1981).

Substituting Equation (6) into Equation (4). using P y = P m ,
l = Z/4, P = P f Z, and rearranging terms yield

where a = c (64-2)1-b. Equation (7) should be recognized as being
the same as Equation (6) in the work by McKee et al. (1963).

A tit of Equation (7) to data yielded the experimental
constants a = 2.028 and b = 0.746. An examination of the
postbuckling response of the box panels by the more conventional
Equation (2) is made by transforming a and b into
α α = a (64 π π 2 )b-1 = 0.3942 and η η = 1 - b = 0.254. A technique

advocated in Gerard (1957) and Bulson (1969) for unifying data
from various sources is to plot Equation (2) with reference to the

axes σ σ r / σ σ y and the second expression characterizing a

universal plate slenderness U.
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(12)

____              ____ 

__                __

Equation (3) is plotted through the McKee data in Fig. 2
following this technique. There, Equation (6) was used to
determine P cr . When U > 1, failure occurs by elastic buckling.
When U < 1, failure occurs by inelastic buckling. Figure 2 predicts
that five boxes failed by inelastic buckling and from the average
value of P f / P y , when U < 1 it cart be inferred that material
breakdown initiated at a value around 40% of P m .

(13)

Bending Stiffness. Before proceeding with the introduction
of nonlinear material behavior, it is important to clarify the
definition of bending stiffness. In the preceding discussion, it was
tacitly assumed that material behavior occurred according to the
linear stress-strain law

where ε ε is strain and E is modulus of elasticity. Subscripted moduli
Ex and Ey are used here to relate to MD and CD stress–strain
responses, respectively. The initial bending stiffness of a beam
specimen can be determined from a conventional four-point
bending test (Tappi, 1988) to be

where Ix and Iy are moments of inertia per unit width. Compared to
bending of a beam, plate bending is accompanied by additional
material restraint along the axis around which bending occurs. A
unit width of plate is stiffer than a unit width of beam in accordance
with

where V1 and V2 are material Poisson’s ratios associated with x-
direction and y-direction extensions, respectively. Substituting

Equation (11) into Equation (7) and rearranging terms yield the
equivalent expression

The bending stiffness data given by McKee et al. (1963) are

E Ix and E Iy values. However, these values were treated as

Dx and Dy values. In essence it was assumed that V1 = V2 = 0. This
approximation made sense in view of the fact that Poisson’s ratios
are difficult to determine for corrugated fiberboard. A recent test
method (Luo et al., 1995) predicts Poisson’s ratios from a
combination of four-point bending tests and plate twisting tests.
Values reported for an A-flute corrugated fiberboard are v1 = 0.644

and v2 = 0.351. With these substitutions made into Equation (12).
P is predicted to be about 6.7% greater compared to when
v1 =  v2 = 0. Therefore, the evaluation of a using Equation (7) and

letting Dx = EIx and Dy = EIy was inflated and reflects an average
Poisson’s ratio effect.

FPL Theory-Nonlinear Material. The material behavior of
paper has been observed (Urbanik. 1982) to follow the stress-
strain characterization given by

where c2 is the initial slope of the stress-strain curve and c1 is a
horizontal asymptote approached by the curve as ε ε increases. As
the value of c1 approaches infinity, the form of Equation (13)
approaches the straight line defined by Equation (9). Equation
(13) also matches the load-deformation curve of corrugated
fiberboard. A cautionary remark when fitting Equation (13) to
paper compression data and fiberboard compression data is that
only approximate respective curves are obtained, since Equation
(13) cannot be summed to yield an equal numerical form, as when
adding the contributions of different paper components in a
corrugated structure.

The buckling of plates with nonlinear material was considered
by Johnson and Urbanik (1987). The solution is expressed in terms
of a normalized buckling stress & as a function of a normalized
plate stiffness S given by

An algorithm for determining 6 from S is summarized in the
Appendix. The critical stress σ σ cr corresponding to b is given by

The solution of 6 varying with S reported in Johnson and Urbanik
(1987) for the case of an infinitely long, simply supported plate is
repeated in Fig. 3 for various levels of the geometric mean

Poisson’s ratio v = The solution was further generalized

by Urbanik (1992) to include the effect of the material in-plane
shear modulus of elasticity on buckling strength.
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To apply the theories by Johnson and Urbanik (1987) and
Urbanik (1992) to the McKee data (1963), it is helpful to

restructure Equations (14) and (15) in terms of Py ,  EI x, and EIy  as
inputs. This is done by utilizing the theories of Johnson and

Urbanik (1984) and Luo et al. (1995) that predict v1 /v2 = EIx /EIy

and by recognizing that the initial slope of Equation (13) for
loading in the CD yields c2 = Ey . By definition Iy = h 3 /12. Values of
c1 cannot be determined from the McKee data. However, Urbanik
(1990) observed that values of c1 reported for paper averaged about
33% greater than the corresponding values of σ σ y. Therefore, a
relative value of c1 for corrugated fiberboard can be obtained by

_ _

_ _

letting

where θθ 0 0 reflects the average ratio of
substitutions into Equation (14) leads to
in the form

c 1 h/P y Making these
the normalized stiffness

The critical load can then be determined from

Johnson and Urbanik (1987) showed that the initial slope of the
curves for the simply supported case in Fig. 3 predicts buckling by
Equation (6). In other words, for large values of θθ0 0 in Equation (17)
or for small values of S a plate behaves like a linear material.

Substituting P cr from Equation (18) into Equation (3) and
rearranging terms yield

for elastic buckling of a plate with nonlinear material. Making the
same substitutions into Equation (8) yields the plate slenderness

for nonlinear materials.

RESULTS
McKee et al. (1963) found that the prediction errors using

linear material theory were independent of the specimen L/W ratios,
which ranged from 1 to 2.9. The sensitivity to length and width
effects was examined further in this study by applying Equation (4)
to the box panels assuming a “square” geometry, for which
P s = P f Z, for comparison with the actual “rectangular” geometry,
for which P r = Σ ΣP f l.   Results from fitting the McKee data are given
in Table 1. With linear material theory, little apparent difference is
discernible. The variation of the strength ratio P r / P s with L/W is
plotted in Fig. 1. The sensitivity to length and width effects
inferred from linear material theory is less than that observed in the
Maltenfort (1956) data (Fig. 1). McKee et al. (1963) noted this
disparity, but they did not consider the maximum “square”
approximation error of about 3% around L/W = 2.9 to be
significant.

A nonlinear material model was constructed from the previous
section and the Appendix and it was assumed that P y = P m and
v = 0, 0, as was done previously for a linear material. The curve fitting
method applied was to restructure Equation (19) in terms of U
instead of 6 and to search for an optimum value of θθ0 0 to obtain the
best fit of the transformed formula

applying a linear regression technique (Fig. 4). As shown in Fig. 4,
the fit obtained as θθ 0 0 approaches infinity becomes insensitive to
nonlinear material effects. Results are given in Table 1 for the
“square” and “rectangular” cases. The differences in the
postbuckling constants obtained between these cases reflect a
greater sensitivity to length and width effects compared to that
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obtained with the linear material. Using a nonlinear material
characterization and adding a third postbuckling constant reduced
the average magnitude of the prediction error from 6.1% to 5.8%, a
seemingly small improvement. However, the variation of P r / P s with
L/W (Fig. 1), predicted by nonlinear material theory, is consistent
with the data from Maltenfort (1956) and predicts greater errors up
to 8% if the “square” geometry is assumed to apply.

Equation (19) is plotted through the results in Fig. 5
(nonlinear material, rectangular geometry) for comparison with
Fig. 2 (linear material, square geometry). The data contain results
from higher slenderness panels. reflecting the fact that using the
true length dimension of the box generates greater l-values  than
those obtained from Z/4. Additionally, the low slenderness data are
shifted to the right due to a reduction in material stiffness at the
failure stress. The significance of a nonlinear material
characterization becomes apparent by examining the variation of
predicted 6 with predicted S (Fig. 6). Most data yielded S < 0.2 for
which linear material theory yields adequate buckling strength
predictions. For the more rigid box panels, beyond S > 0.2, the
predicted P cr is significantly lower compared to predictions with
linear material. The data on the right in Fig. 6 correspond to the
data on the left in Fig. 5. High stiffness-to-strength, narrow box
panels are most affected by nonlinear material theory.

The nonlinear material model derived from the McKee data can
be expressed by rearranging Equation (19) and substituting the
postbuckling evaluations from Table 1:

(21)

CONCLUSIONS
Characterization of corrugated fiberboard as a nonlinear

Buckling stress values 61 and 6W
are to be evaluated at the respective stiffness values

material yields a more accurate account of buckling phenomonon
prior to material breakdown and predicts box compression strength
to be more sensitive than linear theory to length and width
differences.  A historical base of box compression data though to be
insensitive to length and width differences was analyzed to
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nonlinear material effects and compared with other data reflecting
greater sensitivity. A criterion for universal slenderness that
increases with material edgewise crush strength and panel width
and decreases with material bending stiffness was employed. Linear
material theory overpredicts the strength of low slenderness box
panels, typically the end panels, and leads to art apparent strength
equality between rectangular and square boxes of the same
perimeter. Nonlinear material theory predicts a lower buckling
strength for low width panels and makes it safer to apply box
compression theory to other corrugated structures. As slenderness
increases the buckling response predicted by nonlinear theory
approaches that of linear theory. This investigation was limited to
elastic buckling failures. Additional data on the failure of box
components by inelastic buckling are needed to broaden the
postbuckling theory.
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