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ABSTRACT 

A wood cantilever loaded at the free end was analyzed using the anisotropic elasticity theory. This 
report presents a two-dimensional numerical example of a Sitka spruce cantilever in the longitudinal- 
radial plane. When the grain slope is zero, ie., the beam axis coincides with the longitudinal axis of 
wood, the stresses in the beam and the deflection of the beam are the same as those for an isotropic 
beam; when the grain slope is different from zero, the stresses and the deflection can increase signif- 
icantly. 
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INTRODUCTION 

Wood may be described as an orthotropic 
material with independent mechanical prop- 
erties in the directions of three mutually per- 
pendicular axes: longitudinal (L), radial (R), 
and tangential (T). These are called the prin- 
cipal material axes, and the mechanical prop- 
erties referred to them are the engineering con- 
stants. The material axes and the geometrical 
axes used to describe a rectangular structural 
member do not usually coincide. According to 
Hoyle, Jr. (1982), the angle between a material 
axis and an adjacent geometrical axis can be 
as much as ±15°. The mechanical properties 
referred to the geometrical axes are called the 
transformed engineering constants. In a two- 
dimensional situation, the relations between 
transformed engineering constants and engi- 
neering constants, between transformed stiff- 
ness and principal stiffness, and between 
transformed compliance and principal compli- 
ance are well documented (Jones 1975; Tsai 
and Hahn 1980). 

Kilic et al. (2001) analyzed the effects of 
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shear on the deflection of an orthotropic can- 
tilever loaded either uniformly or by a single 
force at the free end. In their analysis, they 
referred the shear effects to the geometrical 
axes only, which is of limited interest in the 
design of a wood structural member. In wood 
engineering, all the independent mechanical 
properties are referred to the material axes. 

In this study, we investigated the stress dis- 
tributions and the deflection curves of an or- 
thotropic cantilever loaded at the free end us- 
ing the anisotropic elasticity theory by Lekh- 
nitskii (1968). The effects of shear on deflec- 
tion for several values of grain slope referred 
to the material axes are analyzed. Numerical 
results are presented for a Sitka spruce (Picea 
sitchensis (Bong.) Carr.) cantilever beam. 

GENERAL ANISOTROPIC ELASTICITY 

Let axes 1 and 2 define the principal ma- 
terial plane, with axis l in the grain direction 
and axis 2 in the radial direction. The geo- 
metrical axes x and y are located at the free 
end of the beam, with axis x at an angle q from 
axis 1 (Fig. 1). Angle q is called the grain 
slope. The stress/train relations in anisotropic 
elasticity theory are shown in Eqs. (1) (Tsai 
and Hahn 1980): 
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FIG. 1. Orthotropic cantiever subjected to single load. in which u and v are displacements in x and y 
x and y are geometrical axes; 1 and 2 are material axes. directions, respectively. 

where the transformed 
given as 

DERIVATION OF DEFLECTION CURVES 

Stress components at a point (x, y) of a can- 
tilever subjected to a single load P at the free 
end are (Lekhnitskii 1968) 

compliances Sij can be 

with m = cos q and n = sin q and the principal 
compliances 

where I = hb3/12; h and b are the width and 
height of beam cross section in Fig. 1. From 
Eqs. (la), (5), and (4a), we obtain 

From Eqs. (1b), (5), and (4b), it follows 

Then, from Eqs. (1c), (5) and (4c), we obtain, 
by means of Eqs. (6) and (7), 

In addition, the strain/displacement relations 
are 

In Eq. (8), some terms are functions of x only, 
some are functions of y only, and one is in- 
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dependent of both x and y. Denoting these 
groups by F(x), G(y), and K, we have 

and Eq. (8) may be written 

Since K is independent of x and y, we must 
set F(x) equal to some constant d and G(y) 
some constant e. Thus, 

and 

Functions g(x) and f(y) are then 

Substituting in Eqs. (6) and (7), we find 

The constants d, e, k, and j may now be de- 
termined from Eq. (9) and from the three con- 
ditions of constraint that are necessary to pre- 
vent the beam from moving as a rigid body in 
the xy -plane. Assuming that u and v are zero 
for x = l, y = 0, we find from Eqs. (10) and 
(11.) 
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For determining the constant d in Eq. (1l), 
we must use the third condition of constraint 
to eliminate the possibility of rotation of the 
beam in the xy -plane about the center of the 
fixed end (Timoshenko and Goodier 1951). 
Two possible constraining conditions are con- 
sidered: 

(1) When an element of the axis of the beam 
is fixed at the fixed end, we have 

We obtain from Eq. (1 1) 

and Eq. (1 1) becomes 

The deflection curve is obtained by substitut- 
ing y = 0 into Eq. (13). Then, 

At the free end, 



Liu and Rammer –CANTILEVER LOADED AT FREE END 337 

(2) When a vertical element at the fixed end 
is fixed, we have 

From Eq. (10) we obtain 

The constant d in Eq. (11) is then obtained 
from Eq. (9) 

and Eq. (1 1) becomes 

The deflection curve is obtained from Eq. (17) 
with y = 0. 

At the free end, 

which is the corrected form of the resulting 
equation obtained by Kilic et al. (2001). Note 
the first term is identical to Eq. (15). 

SHEAR EFFECTS ON DEFLECTION 

For an isotropic material, the first term in 
Eq. (19) is due to flexural and the second term 

to shear (Timoshenko and Goodier 1951). This 
approach was also adopted by Kilic et al. 
(2001). For an orthotropic material, however, 
that is only true when q = 0. For q ¹ 0, Sxx 

in the first term as well as Sxs and Sss are all 
functions of the principal compliances, as 
shown in Eqs. (2) and (3). After the trans- 
formed compliances are replaced by the prin- 
cipal compliances, it is appropriate to separate 
the terms containing S66 from those that do not 
in Eq. (19) to study the effects of shear on 
deflection based on the consideration of me- 
chanical properties. For this separation, the 
only term that requires special attention is the 
ratio S2 

xs/Sxx. 
For abbreviation, we may write from Eq. (2) 

where 

and 

where 

We then have 

where 
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FIG. 2. Normal stresses (s x) at free end (x = 0 mm) 
for several grain slope values (q). 

For | Y | < 1 as in the present case, the series 
in Eq. (20) converges very quickly. The first 
term in Eq. (20) is independent of S66. The 
second term containing X and Y is a function 
of S66, although they are not devoid of the oth- 
er principal compliances. 

Equation (19) can now be written 

The first pair of brackets encloses terms with- 
out S66; the second encloses terms with S66. 

RESULTS AND DISCUSSION 

Mechanical properties for Sitka spruce (Liu 
2000) are used for numerical calculations: E 1 

= 11,800 MPa, E 2 = 2,216 MPa, G 12 = 910 
MPa, and v 12 = 0.37. The geometrical dimen- 
sions and the applied load in Fig. 1 are as 

FIG. 3. Normal stresses (s x) at fixed end (x = 80 mm) 
for several grain slope values (q). 

follows: l = 80 mm, b = 40 mm, h = 10 mm, 
and P = 100 N. For the grain slope, the as- 
sumed values are 0°, ±5°, ±10°, and ±15°. 

Figure 2 presents the distribution of the nor- 
mal stress s x at the free end, x = 0 mm. For 
q = 0°, the stresses are zero as in the case of 
an isotropic beam. As q increases from zero, 
the stresses distribute parabolically from ten- 
sile at the upper and lower edges to compres- 
sive in the middle. The absolute values of the 
stresses increase as q increases but at a de- 
creasing rate. For q > 15°, the increases be- 
come negligible. When q changes sign, s x also 
changes sign for the same value of y. There 
are two focal points at y ≈ ±12 mm and s x 

= 0°, through which all stress curves pass. 
These stress curves indicate that for q =  /  0°, 
the, free end is no longer flat because the 
stresses exist in proportion to the strains. 

At the fixed end with x = 80 mm, the nor- 
mal stress s x distributions are shown in Fig. 
3. For q = 0°, the stresses fall on a straight 
line, as in the case of an isotropic beam, with 
s x = ±3 MPa at the upper and lower edges. 
As q increases from zero, the stresses form 
concaved curves toward the first quadrant of 
the figure, crossing the straight line of 8 = 0° 
at two focal points at y ≈ ±12 mm and s x ≈ 
±1.8 MPa. At the upper edge of the beam (see 
Fig. l), where y is negative and s x is positive, 
the stress increases with q and reaches its max- 
imum for any specified value of q; at the lower 
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edge where y is positive and s x is negative, 
the stress increase reduces its absolute value 
and reaches its minimum for any specified val- 
ue of q. When q changes from a positive value 
to a negative value of the same magnitude, the 
corresponding s x and y also change sign but 
maintain the same magnitude. Thus, for q = 
15°, s x has a tensile stress of 3.7 MPa at the 
upper edge of the beam and a compressive 
stress of -2.3 MPa at the lower edge; for q = 
-15°, it is a tensile stress of 2.3 MPa at the 
upper edge and a compressive stress of -3.7 
MPa at the lower edge. The change from ±3 
to 23.7 MPa is 23%. Note that the stresses at 
q = ±15° and ±10° are barely distinguishable. 
Thus, in this numerical example, the maxi- 
mum increase in normal stress a, due to grain 
slope q is 23%. 

Results of deflection at the center of the free 
end are tabulated in Table 1. Since deflection 
is independent of the sign for q, absolute val- 
ues for q are used in the table. Deflection ex- 
pressed in terms of the transformed compli- 
ances referred to the geometrical axes in Eq. 
(19) as studied by Kilic et al. (2001) and de- 
flection expressed in terms of the principal 
compliances referred to the material axes in 
Eq. (21) are both calculated. Based on Eq. 
(19), the portion of deflection due to flexural 
increases with q, but the portion due to shear 
decreases with q. Based on Eq. (21), the por- 
tion of deflection due to flexural remains es- 
sentially unchanged, but the portion due to 
shear increases with q. The results based on 
Eqs. (19) and (21) are therefore totally incon- 
gruous. Since S66 in Eq. (21) is an independent 
material parameter, clearly it should be the one 

that reflects the effects of shear on deflection 
in design consideration. As Table 1 indicates, 
deflection related to S66, not only increases with 
increasing θ, but at an increasing rate. At q = 
0° deflection is 0.033 mm; at q = 15° it reaches 
0.0414 mm, an increase of more than 25%, 
and it continues to increase. 

In lumber grading, each visual stress grade 
has a very specific maximum permitted grain 
slope (Hoyle, Jr. 1982). In the design of a 
wood cantilever, it seems the maximum allow- 
able deflection could be used to limit the max- 
imum permitted grain slope in any specified 
application, as demonstrated in the numerical 
example. 

CONCLUSIONS 

In this study, we analyzed a cantilever of an 
orthotropic material with a single load at the 
free end, as shown in Fig. 1. Numerical cal- 
culations based on the mechanical properties 
of Sitka spruce in the longitudinal-radial plane 
revealed the following: 

1. When the beam axis and longitudinal axis 
coincide, i.e., the grain slope q is zero, the 
stress distributions in the beam and the de- 
flection curve of the beam are practically 
the same as those for an isotropic beam (Ti- 
moshenko and Goodier 195 l). 

2. When the grain slope is zero, the free end of 
the beam remains flat; when it is different 
from zero, the free end becomes concave or 
convex depending on the sign for q. 

3. When the grain slope is zero, the bending 
stress curve at the fixed end is linear with 
a positive value at the upper edge and a 
negative value of equal magnitude at the 
lower edge; when it is different from zero, 
the stress curves become nonlinear, cross- 
ing the straight line for q = 0° at two focal 
points. The stresses at the upper and lower 
edges may increase or decrease depending 
on the sign for q. These changes can be 
significant, depending on the beam geom- 
etry, the material properties, and the ap- 
plied load. 
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4. The deflection curve of the beam is inde- 
pendent of the sign for q. At the center of 
the free end, deflection increases with in- 
creasing q and at an increasing rate be- 
tween the considered range of 0° < q < 
15°. The increases are due to the terms con- 
taining the principal compliance S66 the in- 
verse of the shear modulus G 12. We note 
that these observations are based on the as- 
sumption that E 1 in tension is equal to E 1 

in compression. 
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