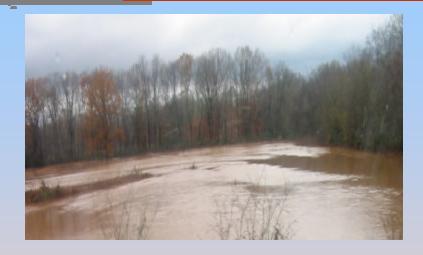


Comprehensive Water Quality Assessment and Database Development at Alabama A&M University

By


T. Tsegaye*, R. Ward, M. Wagaw, L. Williams, W. Tadesse, K. Garner, P. Okweye, A. Bohlman, and D. Spencer

Our Watersheds

Streams and Rivers in our Watersheds

Water Quality Research at Alabama A&M University

- The water quality program at Alabama A&M University (AAMU) has progressively expanded our research, teaching, and service capacities in the last few years.
- In 2005, comprehensive water quality monitoring and modeling research was launched to evaluate surface water bodies of five watersheds in northern Alabama.

 Filed data collection was expanded throughout five watersheds:

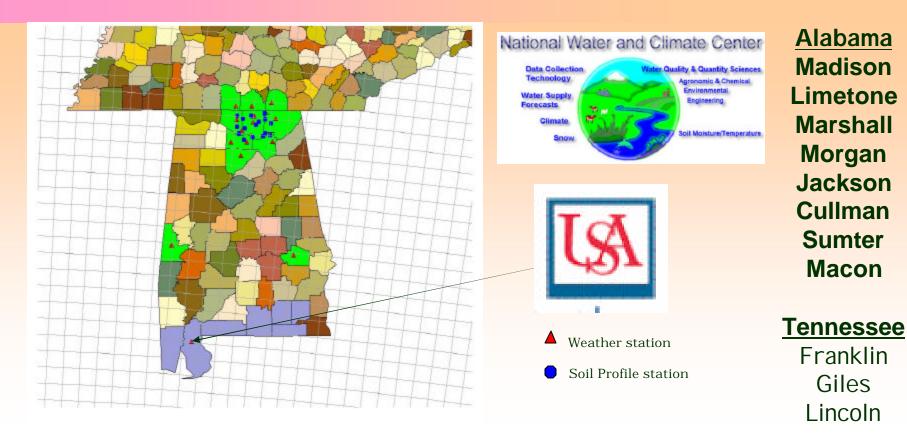
 Flint River
 Flint Creek
 Huntsville Spring Branch
 Indian Creek
 Sipsey Fork

Cont'd

- Five thrust areas in these water quality evaluation efforts are:
 - Bio-assessment of macroinvertebrates as bioindicators
 - Heavy metals
 - Pesticides and herbicides
 - Nutrients
 - Source tracking for pathogenic and non-pathogenic microorganisms

 Furthermore, this comprehensive database development also will evaluate the applicability of some of the most popular water quality modeling tools, namely AQUATOX, BASINS, AnnAGNPS, and SWAT.

 Our database will eventually archive all necessary datasets such as remotely sensed, meteorological, hydrological, soil, nutrient, heavy metals, pesticides, micro- & macroinvertebrates, pathogenic and non pathogenic bacteria and viruses, to investigate the pollution trends and over all health of the aquatic ecosystem.



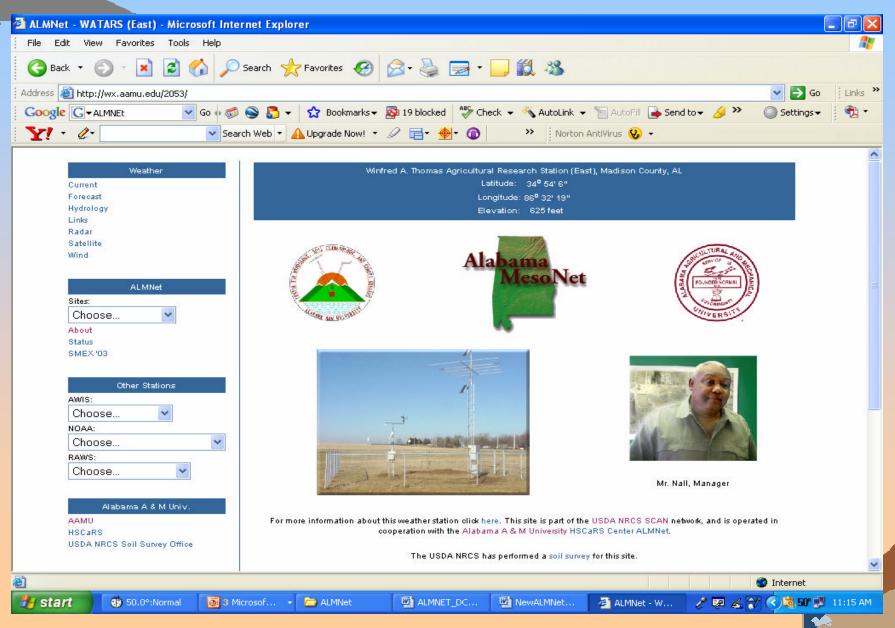
Database Development

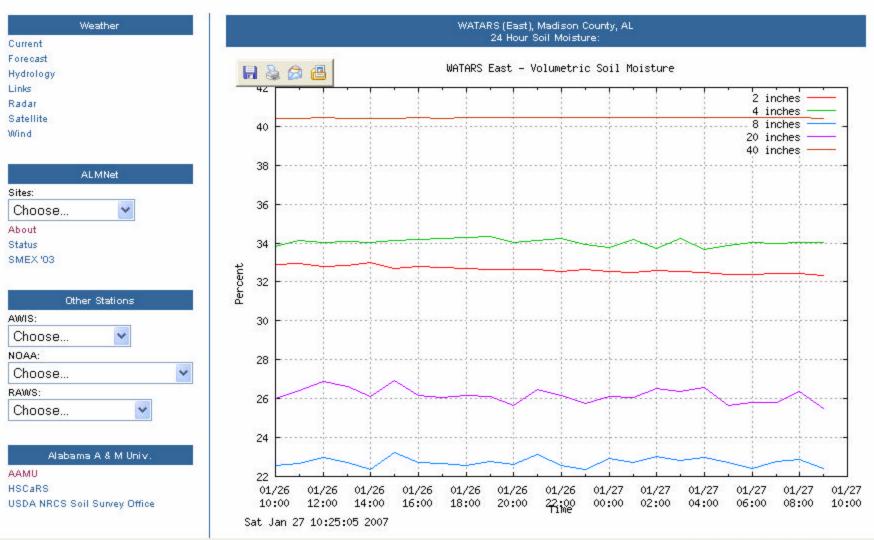
ALMNet was established by Alabama A&M University in 2002

ALMNet

- Equipped with state-of-the-art in situ sensors that continuously record
 - Precipitation
 - Relative humidity
 - Soil heat flux
 - Soil moisture
 - Solar radiation
 - > Temperature (air & soil) and
 - > Wind (speed and direction)
 - Depth of water table (selected sites)

Eddy Covariance Measurement of Energy Flux (CO₂ and Water Vapor) at AAMU in Hazel Green, AL





Cont'd

🥝 Internet

ne

- The database is accessible to anyone interested to use it free:
 - Data may be viewed on the Internet at:

http://www.wcc.nrcs.usda.gov/scan/Alabama/alabama.html

• Graphical results are also available at:

<u>http://wx.aamu.edu/ALMNET.html</u>


Soil Database


USDA-NRCS

350 Miles

Tennessee Valley

- Ap--0 to 7 inches; dark reddish brown silt loam
- Bt1--7 to 20 inches; dark reddish brown silty clay loam
- Bt2--20 to 72 inches; dusky red clay
- Bt3--72 to 120 inches; dusky red clay, few fragments of chert

Decatur Series

e Edit	t View	Favorites T	Tools Help																		
Back	- 6) - 💌 🕻	2 🏠 🖌	Searcl	:h 🤸	' Favorit	es 🍕	3 6	3.		3 - [. 1	1 - 28	,							
ress 🧔	http://se	sldata.nrcs.usd	Ja.gov/rptExr	acute.asp?	/p=3050/	88r=18s	submit1	=Get+R	.eport										*	🖌 🔁 Go	Lin
oogle	G▼USD	A-NRCS SOIL	💙 Go 🐽	6 🕥	- 🖏	🔂 Br	ookmark	ડ 🔻 📓	19 block	ed 📲	🏷 Chec	k 🕶 🍕	AutoL	.ink 👻	🗐 Auto	əFill 🔒	Send to	• 🌛 ×	» 🔘	Settings+	•
c! -	<i>Q</i> -		*	Search We	eb 🕶 ⊿	Upgrad	de Now	• 6	• 🖬 •	⊕ -		**	> N	lorton An	itiVirus	• 😵					
						*** P	rimary	Chara	cterizatio	on Da											
on ID: S	603AL-089-0	-005				1.1			, Alabama		a					Print	Date: Jar	n 27 2007	7 10:26AM		
pled as			DECATO	/R																	
sed to :													Ur	nited Sta	tes Dep;	artment (of Agricul	ture			
- Pro	A 101 100 100	C2003USAL171							SITE				United States Department of Agriculture Natural Resources Conservation Service National Soil Survey Center								
- Site		S03AL-089-005	Lat: 34° 53'	37.40" no	rth Long	;: 86° 36'	9.00" v	Jest													
0.00070	don No. – O3 neral Metho	03N0926 hods 181A, 2A1,	.28											oil Survey incoln, Ne	·	atory 68508-38	366				
	20040000	20 JAN 1997		ese martinariti	aresser as			And 0 10 201			29570	Romanner			0.0000002	-					
51	Horizon	n Orig Hzn	Depth (cm)	n) Field La	abel 1		Fi	ield Lab	el 2		Fiel	ld Label 3	3		Field	Texture	La	.ab Texture	a		
04772	Ap		0-5	S03AL-	-089-005-	-1											S'	ICL			
04773	Bt1		5-20		-089-005-2													ICL			
04774	Bt2		20-46		-089-005-													SIC			
04775 04776	Bt3 Bt4		46-104 104-132		-089-005-4 -089-005-4												C C				
D4776 D4777	Bt4 Bt5		104-132 132-152	- RESSIET.	-089-005-0												C C				
20000	010				000000	-															
A & R	ock Fragme	ents	<u>-1-</u>	-2-	-3-	-4	-5-	-6-	.7.	-8-	.9.	-10-	-11-	-12-	-13-	-14	-15-	-16-	-17-		
			(• •	··· Total ·)	(Cla	ay)	(••••	Silt)) (••••		- Sand)	(Rock Fra	agments ((mm))			
			Cla	ay Silt	Sand	Fine	co,	Fine	Coarse	VF	F	M	С	VC	(We'	ight)	>2 mm		
			<	.002		<	<	.002	.02	.05	.10	.25	.5	1	2	5	20	.1-	wt %		
	Depth		.002		-2		.002	02	05	10	25	50	-1	-2	-5	-20	-75	75	whole		
er	(cm)	Horz	Prep (Mineral So)	·····		f <75mm -)	soil		
	455381		3A′	1a1a		3A1a1	а	3A1a1	13	3A1a'	1a3A1a′	ia3A1a'	la3A1a′	1a3A1a1				20012000.002			
04772	0-5	Ap	S 31.4	.1 56.2	12.7	19.2		37.1	19.1	5.3	5.0	1.3	0.9	0.2	2	1	321	10	3		
04773	5-20	Bt1	S 36.7			25.4		33.0	17.2	5.6	4.6	1.5	1.1	0.3	2	1	31	11	4		
04774	20-46	Bt2	s 48.9	.9 43.1	8.0	35.8		29.6	13.5	3.2	3.3	0.8	0.4	0.3	1	1		7	2		
04775	46-104	Bt3	s 54.1	.1 38.4	7.5	40.9		27.5	10.9	3.5	3.0	0.6	0.3	0.1	1	1	1	7	з		
04776	104-132	Bt4	S 56.6	.5 34.6	8.9	43.4		24.3	10.3	4.1	3.4	0.7	0.6	0.1	1	1		7	2		
04777	132-152	Bt5	S 56.2	.2 33.8	10.0	45.9		22.6	11.2	4.0	4.0	1.1	0.7	0.2	1	3	2	12	6		

Cumberland Plateau

- Ap--0 to 7 inches; brown fine sandy loam
- BE--7 to 11 inches; strong brown fine sandy loam;
- Bt--11 to 30 inches; strong brown sandy clay loam
- BC--30 to 42 inches; strong brown fine sandy loam;
- Cr--42 to 60 inches; yellowish brown and strong brown, level bedded, massive, weathered, sandstone bedrock.

Nauvoo Series

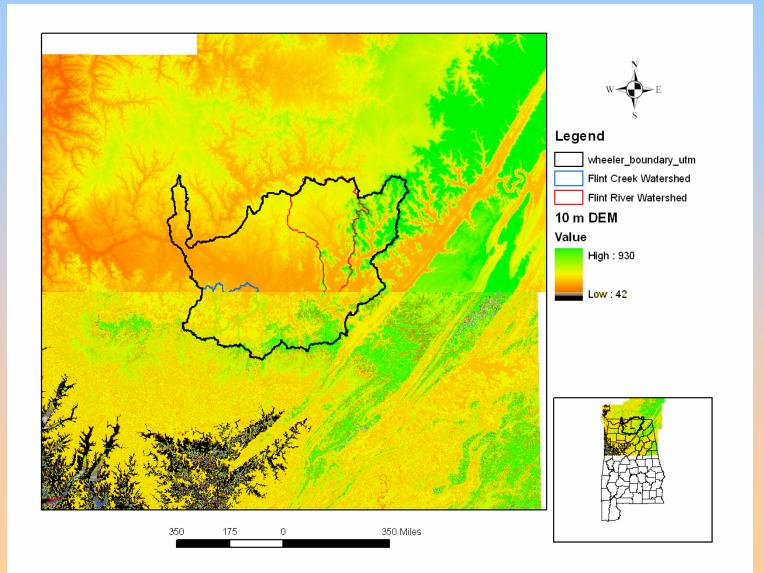
Highland Rim

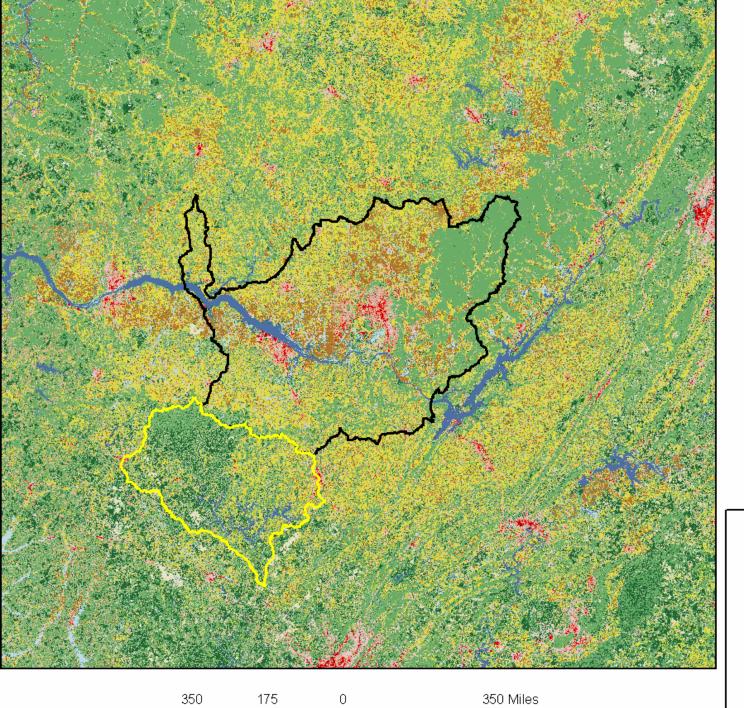
Bodine Series

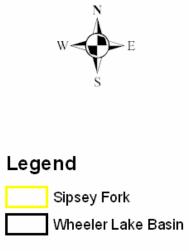
Ap--0 to 5 inches; dark grayish brown gravelly silt loam

E--5 to 10 inches; pale brown gravelly silt loam

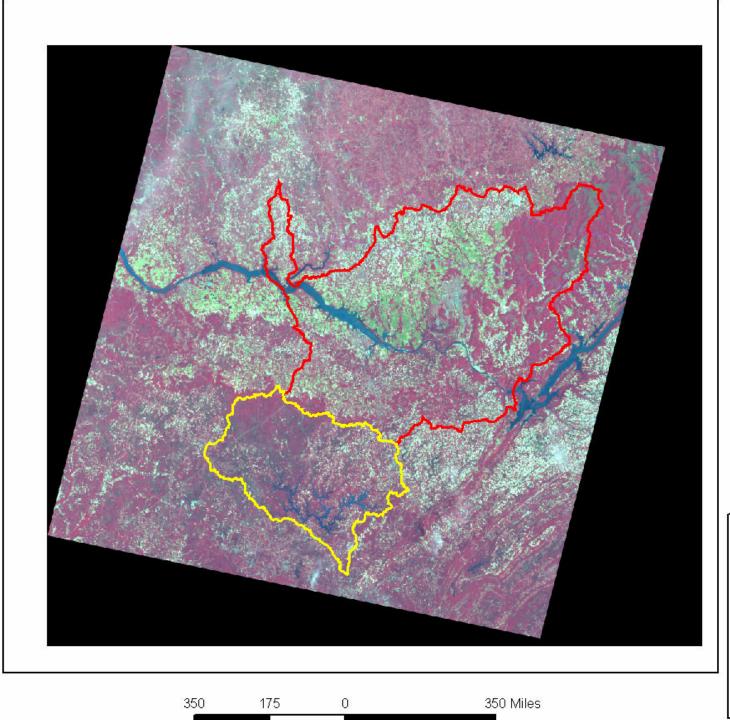
Bt1--10 to 28 inches; yellowish brown very gravelly silt loam, 50 percent fragments of chert

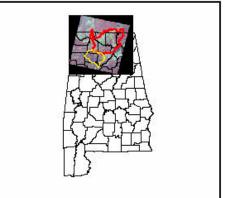

Bt2--28 to 60 inches; yellowish brown very gravelly silt loam with red and pale brown mottles, 50 percent fragments of chert

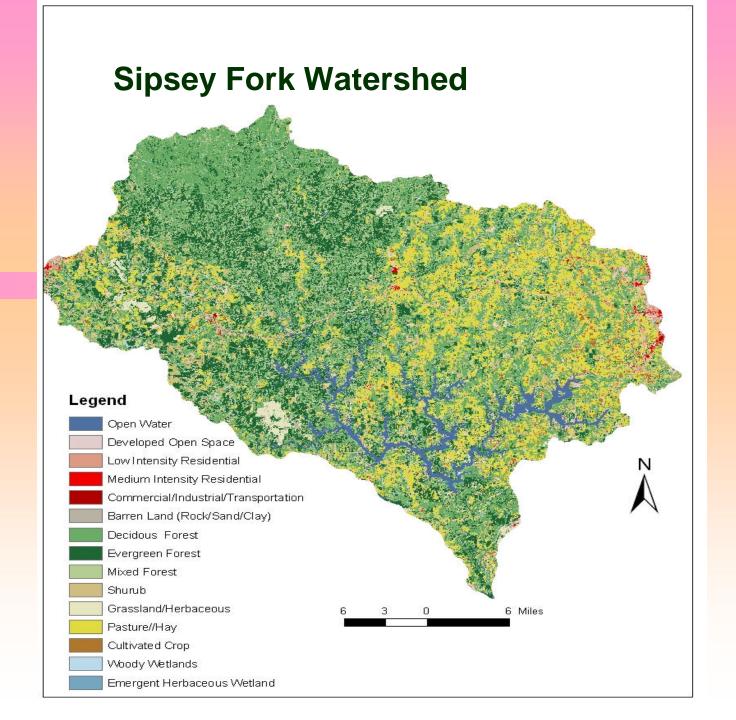


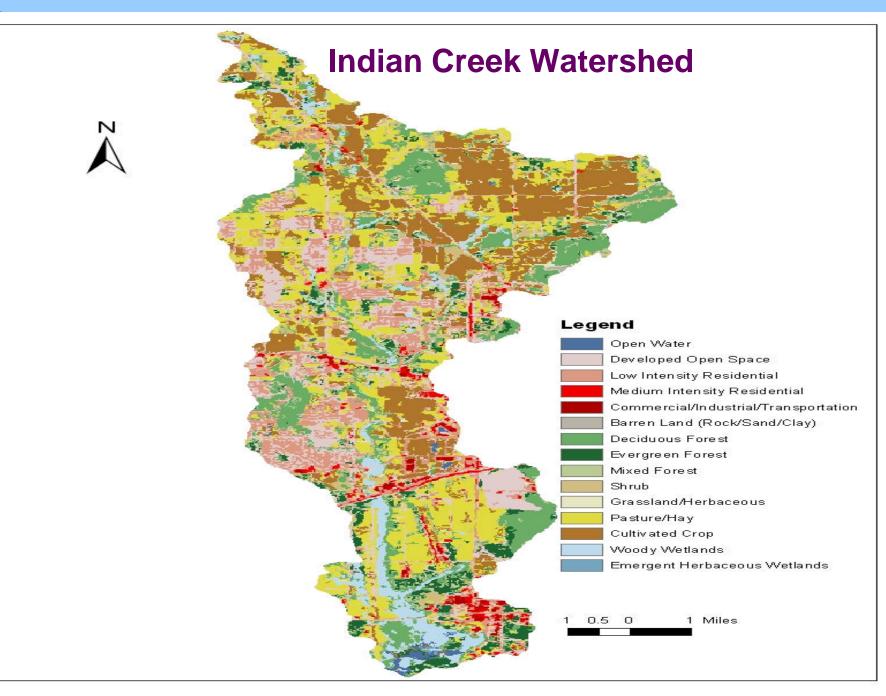


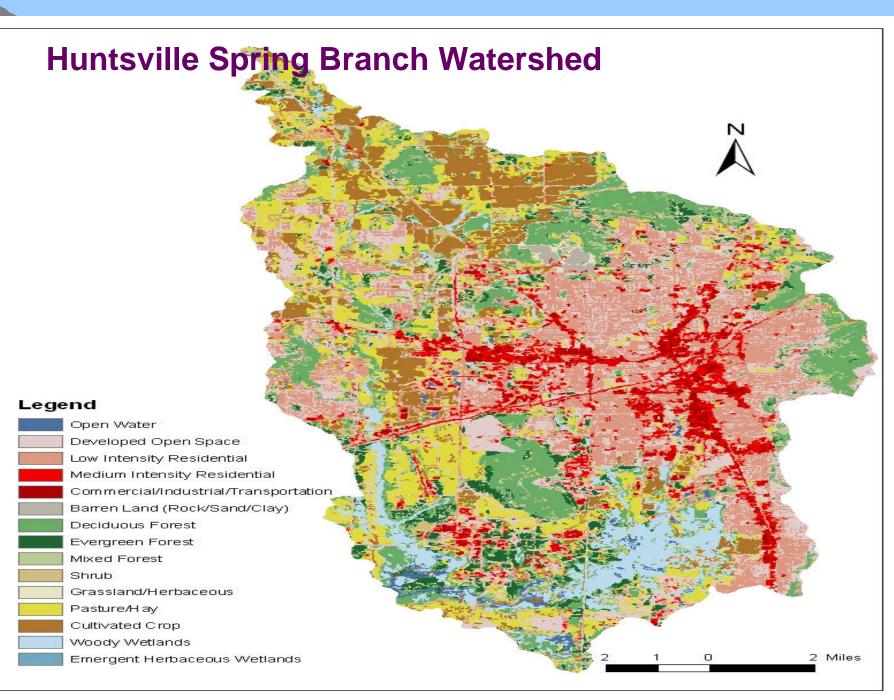
Remote Sensing Database


DEM Data





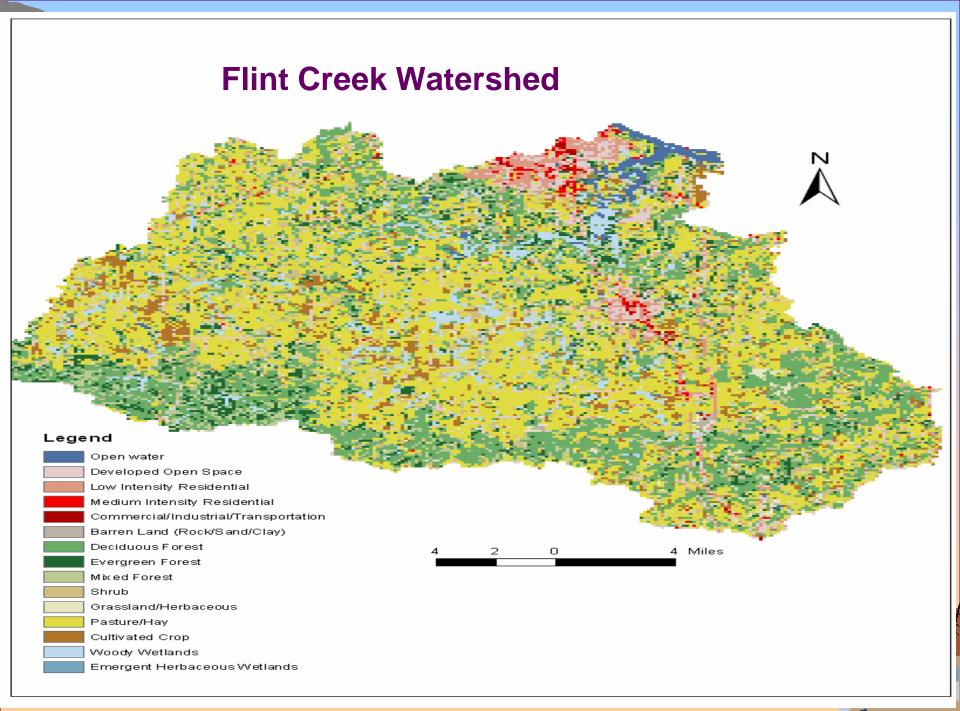




A .

Legend

-	
	Open Water
	Developed Open Space
	Low Intensity Residential
	Medium Intensity Residential
	Commercial/Industrial/Transportation
	Barren Land (Rock/Sand/Clay)
	Deciduous Forest
	Evergreen Forest
0	Mixed Forest
	Shrub
	Grassland/Herbaceous
	Pasture/Hay
	Cultivated Crop
U	Woody Wetlands
	Emergent Herbaceous Wetlands


Flint River Watershed

N

4 Miles

2

0

"Emphasis on Urban growth" Indian Creek and Huntsville Spring Branch Watersheds

Ms. Karnita Golson-Garner Doctoral Graduate Student & Research Associate

EPA STAR Fellowship Recipient (2006)

Pesticides	IC-KS (µg/L)	IC-MR (µg/L)	IC-TN (µg/L)	SB-DT (۱۹۵۴)	SB-DK (µg/L)	S B-MR (µg/L)
Aidrin	<0.0400	<0.0400	< 0.04 00	0.0133	<0.0400	<0.0400
Gamma-Chlordane	<0.250	<0.250	≺0 .250	0.0257	≺0 .250	<0.250
4,4' - DD T	<0.0400	<0.0400	< 0.040 0	<0.0400	<0.0400	<0.0400
4,4' -DDE	<0.04 00	<0.0400	< 0.040 0	<0.0400	<0.0400	<0.0400
4,4' -DDD	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400
Dieldrin	<0.0400	<0.0400	<0.0400	0.0712	<0.0400	0.0167
Endosulfan i	<0.0400	<0.0400	< 0.040 0	<0.0400	<0.0400	<0.0400
Endosulfan 2	<0.04 00	<0.0400	< 0.04 00	<0.0400	<0.0400	<0.0400
Endrin	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400	<0.0400
Heptachlor epoxide	<0.0400	<0.0400	<0.0400	0.0321	<0.0400	<0.0400
Methoxychior	<0.04 00	<0.0400	< 0.04 00	<0.0400	<0.0400	<0.0400

Please visit the Poster Presentation for more information

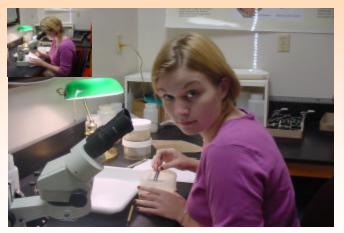
Location	AI (mg/L)	Fe (mg/L)	Mn (mg/L)	Cu (mg/L)	Ni (mg/L)	As (mg/L)	Pb (mg/L)	Zn (mg/L)	Se (mg/L)
IC@MR	0.065	0.110	0.044	ND	ND	0.013	ND	0.052	0.003
IC@TN	0.122	0.111	0.019	0.001	0.004	0.028	ND	0.020	0.016
IC @72	0.196	0.159	0.039	0.001	0.001	ND	ND	0.142	0.018
SB@PR	0.847	0.856	0.273	0.003	ND	0.014	0.001	0.176	ND
SB@JN	0.023	0.049	0.48	0.001	ND	0.008	ND	0.093	0.014
SB@DT	0.148	0.068	0.003	0.012	0.021	0.003	0.004	0.637	0.001

Please visit the Poster Presentation for more information

Flint River and Flint Creek Watersheds

Mr. Paul Okweye (Doctoral Graduate Student)

WINTER							
	EPA- MCL	WR-FR	BF-FR	HR-FR	RB-FC	MB-FC	VB-FC
Al	-50	90.1	169	196.5	185	165.3	160
Со	0	0.5	39.8	24.6	0	0	0
Ni	100	1	0.3	3.1	0.3	0.6	1.6
Cu	1000	0	0	5.3	0.3	2.3	0.3
Fe	300	89	112.3	113.6	214.3	174.6	168.3
Mn	50	8.5	10	16.8	10.3	13.6	19.6
Ag	50	0	0.3	0.3	0	0	0
Cd	5	0	0	0	0	0	0
As	50	0.8	1.3	0	2.6	0.3	0.3
Se	10	4.3	4	3	2	4.3	7
Zn	5000	20.3	208	453.1	127.3	197	117
Pb	10	20.8	32.6	116	0.6	0	0.6
Sn	None	0.1	1	1	4.3	2.6	2.3
Мо	None	1	0.8	1	0.3	0.6	0.6
Р	None	18.6	11.8	31.2	15	45.3	76.1


Please visit the Poster Presentation for more information

Biological assessment of **Benthic** Macroinvertebrates as indicators of water quality

Dr. Rufina Ward Ms. Allison Bohlman (Research Associate)

Allison at work.

Table 3. Number and percent (%) EPT, chironomids and simuliids collected in north Alabama watersheds.

Insect Group	Flint I	Flint River		Indian Creek		Flint Creek	
	Number	%	Number	%	Number	%	
Ephemeroptera	2431	61	1419	36.97	178	11.32	
Plecoptera	179	4.5	4	Q.1	349	22.2	
Trichoptera	462	TI S	1347	35.1	116	7.38	
EPT	3072		3838	72.17	821	45,43	
Chironomidae	423	8.94	208	<u>\$</u> .4	811	17.21	
Simuliidae	142	3.8	405	10.55	40	2.21	

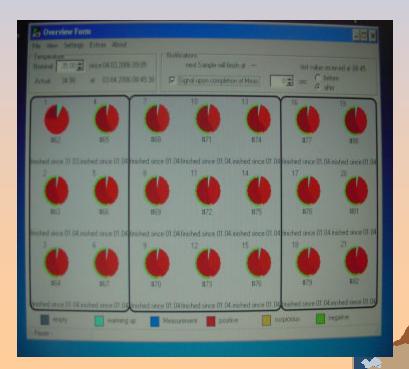
Table 2. Watershed Averaged Physical Parameters 2006											
Location/ Parameter	DO (mg/L)	Turbidity (fau)	TDS (ppm)	рН	Temperature (°C)	Water Depth (cm)	Canopy Cover %	Light (ft candles)			
Flint River	8.43	15.81	78.44	8.04	23.13	17.28	65.00	505.97			
3 Forks	7.70	5.00	82.00	7.82	25.13	8.33	50.00	754.17			
B.W. Road	9.42	25.40	56.50	7.93	21.05	12.50	67.00	201.25			
Hwy 72	7.97	8.20	93.00	7.78	23.30	31.00	80.00	562.50			
Indian Creek	8,03	26,90	114.76	8,62	22.85	19.90	77,50	1465.02			
Providence	7.74	10.33	106.00	8/18	22.12	15.67	62.50	89.11			
Farrow Road	8,78	6,75	116.60	8,54	23,38	20.92	90.09	109.17			
Madison Pike	7.58	6.00	119.20	8:10	23.05	23.41	80.00	329.44			
Flint Creek	10.15	17.33	112.75	8.54	20.85	8.82	50.12	312.78			
Laconi, AL	*11.40	23.75	91.00	7.95	23.40	9.15	41.67	280,00			
Bankhead N.F	7.65	3.50	1511.66	8.22	18:30	17,33	100.00	333.33			
Neel, AL*					(internet)	- \$%	50.00	325.00			

Beck's Biotic Index

- Three Classes of Pollution Tolerance or Sensitivity
 - Class 1: Macroinvertebrates Intolerant to Pollution

Plecoptera : Stonefly

Coleoptera : Riffle Beetle


Megaloptera : Hellgrammite

Impedence & Water Sampling

- Preliminary Trends
 - High Growth Rates
 - Exponential Growth Curves
 - Coliform Presence Positive over 95% in all samples
 - Visual Confirmation:
 - Purple Yellow

Random Amplified Polymorphic DNA Analysis and Genotypic Analysis of Verotoxin-Producing <u>Escherichia</u> coli

Dr. Leonard Williams

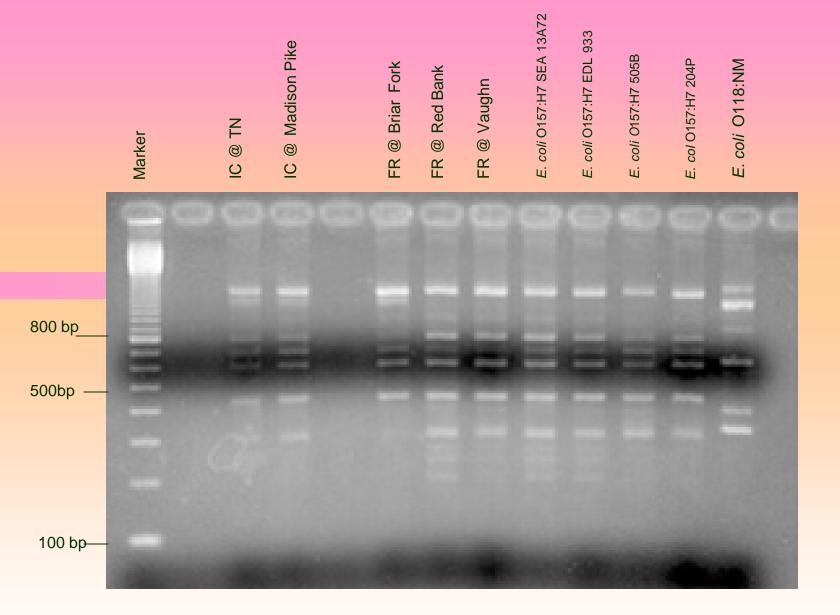


Figure 1. Random amplified polymorphic DNA analysis of isolates detected from selected water samples.

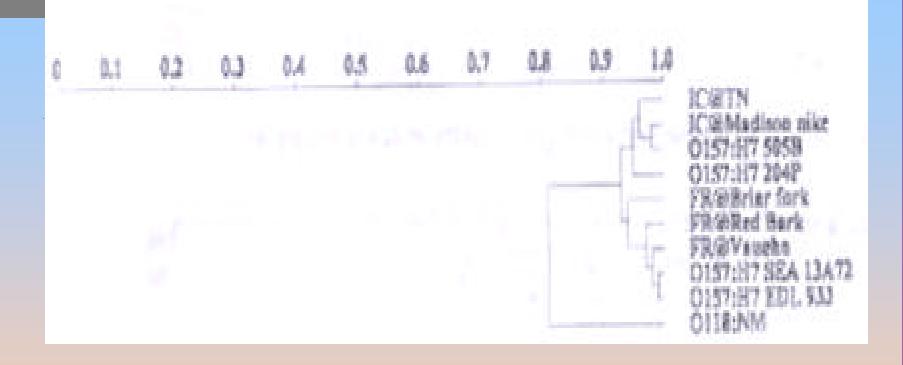
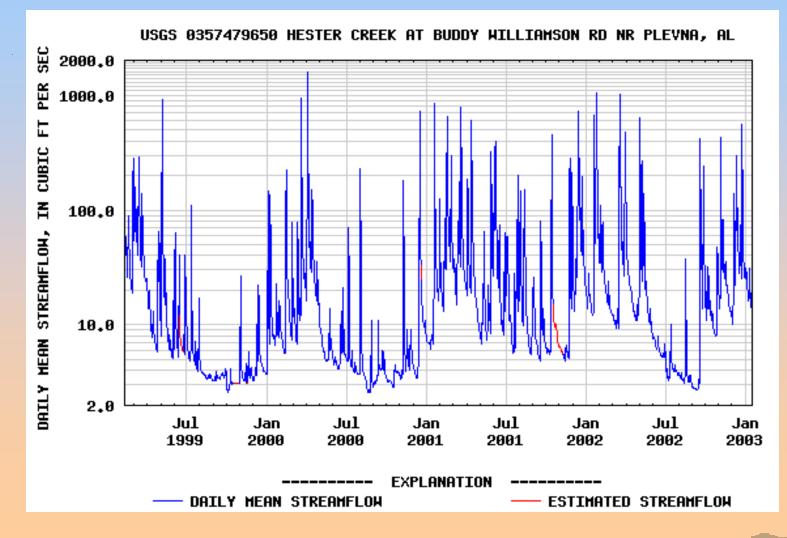
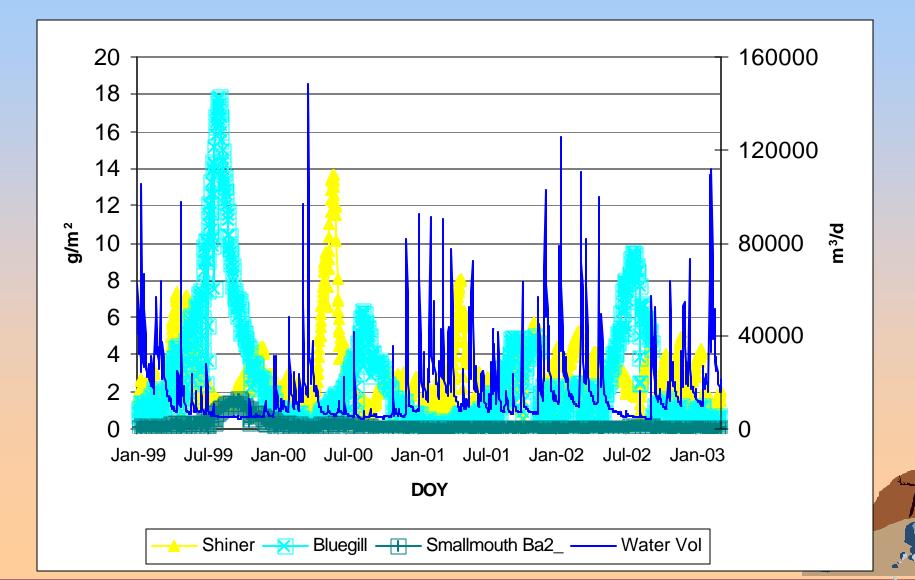


Figure 2. Dendrogram based on UPGMA cluster analysis of 10 different RAPD obtained in this study.

Field Monitoring and Maintenance and Calibration of Water Quality Instruments Mr. Dirk Spencer (Research Associate)





Water Quality Modeling Teferi Tsegaye & Mezemir Wagaw

Daily Stream Flow Hester Creek, 1999-2003

Impact Analysis on Fish Types, Population, and Distribution

Current Water Resources Outreach Activities at AAMU

- Creating a long-term water quality database for streams in Northern Alabama.
- The data is in the process to be compiled into a single database to evaluate aquatic ecosystem health, examine trends within or among water bodies, and identify specific problems.
- The water quality data is not available to the general public at this moment.

Summary

- The entire database will be downloaded in the future by exploring the Water Quality website at AAMU.
- Further, publications, presentations and other reports that include data from this water quality program for the watersheds under investigations will be viewed also by accessing the website.
- Our ultimate goal is to provide extensive water quality data that can be used by watershed council members, water resource professionals, and other stakeholders to further our common goal of protecting our water resources in Alabama.

Acknowledgements

- -School of Agriculture and Environmental Science (AAMU)
- -USDA-NRCS-SCAN-NWCC
- -USDA-CSREES
- -Southern Region Water Quality Program
- -Alabama Agricultural Experiment Station
- -All Collaborating Research Investigators and Students

