

Who Will Stop the Rain

LID Strategies for Stormwater Management and Water Resources Protection in North Carolina

2007

Presented by

BUDD TITLOW

Professional Wetland Scientist Water Resources Permitting Manager

The Issue A Question of Balance

THE TRIANGLE IS BOOMING AGAIN!

How do we balance ... Water Resources Protection/Permitting with High Quality Economic Development?

The Answer Low Impact Development (LID)

- Designs with Nature
- Protects Valuable Resources
- Maximizes Green Space
- Maintains Wildlife Corridors
- Expedites Permitting
- Produces Top Quality Projects
- Enhances Marketability
- Increases Profits
- Provides Proven Technology
- VA, MD, MN, WI, OR, WA, MA, NJ, EPA, NAH, ASCE AIA, HUD
- Google = 79 million hits

Water resources permitting Direct Impacts Are NOT the Primary Problem

 USACE – DWQ Regulations
(Section 404/401, etc.)
Effectively Control Stream/Wetland Filling

Water resources permitting Off-Site Impacts ARE the Primary Problem

- Premium on Protecting
- Downstream
- Water Quality & Flow Rates/Volumes

Stormwater Management The Conventional Approach

- "Pipe-and-Pond"
- Hard Engineering
- Centralized Runoff
- Heavy-Duty Infrastructure
- High Cost
- Low Aesthetics
- Safety Risks

Conventional Approach Catch Basins

- Poor TSS-pollutant removal rates
- Can become a source of pollutants
- Frequent maintenance
- Cannot remove soluble pollutants
- Cannot remove fine sediments

Conventional Approach Large Detention Basins/Ponds

- "End-of-pipe" treatment
- High infrastructure cost
- Lost developable area
- Groundwater pollution
- Low aesthetics
- Safety hazard
- Require fencing
- Stagnation
- Mosquito breeding

Stormwater Management The Innovative Approach

- Low Impact Development (LID)
- Non-structural engineering
- Works with natural topography
- Mimics natural hydrology
- Blends built and natural environments
- Uses decentralized mini-watersheds
- Yields customized site designs

How does LID work?

LID – Benefits

Comparison Overview Conventional - Flow Paths

Centralized runoff collected and discharged into one primary BMP (large detention basin).

Comparison Overview LID - Flow Paths

Runoff decentralized into sub-watersheds, then contained & treated at source by multiple BMP's.

Comparison Overview Conventional – Site Plan

Design alters existing topography and drainage patterns while maximizing buildable are

Comparison Overview LID – Site Plan

Site design is compatible with existing topography, native vegetation and drainage patterns.

Comparison Overview LID – Detail

Stormwater is managed at its source on a lot-by-lot basis.

LID Design Sequence

- Conduct site assessment
- Define building envelope
- Develop conceptual plans
- Use natural contours
- Create sub-watersheds
- Treat runoff at source
- Size for low-intensity storms
- Emphasize small, local BMP's

BMP's =

Best Management Practices

BMP's

are the

Building Blocks

of

Erosion controls

- Clear in phases
- Minimize bare ground
- Dual controls
- Double silt fence
- Silt fence & haybales
- Fiber rolls/vegetation
- Filter fabrics
- Stockpile extras

Bioretention Swales Design

- Sheet flow runoff
- No curbs/gutters
- Proper grading
- Design flexibility
- Parking lot islands
- Roadway medians
- Multi-functional designs
- Routine maintenance
- ~ \$10 per square foot

Bioretention Swales Types

cul-de-sac

Bioretention Swales Development #1

Excavation & Preparation

Bioretention Swales Development #2

Bioretention Swales Development #3

Rain Gardens

- Essentially same design
- Emphasis on plantings
- Individual lots
- Organic growing medium
- Native plants
- Wildlife habitat
- Aesthetics
- Irrigate with roof runoff
- Routine maintenance

Rain Gardens

Infiltration Devices

Groundwater rechargeLinear designs

- Flexibility
- Parking lot perimeters
- Driveway perimeters

Plant herbaceous cover

Infiltration Devices Perimeter/Surface Sand Filters

Parking Lot Perimeter

Permeable Payments

- Infiltrate runoff
- Groundwater recharge
- Reduce flow volumes
- Increase aesthetics
- Low traffic areas
- Overflow parking lots
- Driveways
- Vacuum sweeping

Permeable Payments Types

Permeable Payments Uses & Maintenance

Green Roofs

- Reduces runoff
- Increased aesthetics
- Saves energy (HVAC)
- Sound insulation
- Fire protection
- Extends roof life
- Urban "heat island"

Bioretention Swales Design

- Use wasted space
- Waterproof membrane
- Filter fabric layer
- Lightweight planting substrate
- Hardy, native plants
- Load limitations
- Best for new buildings
- Greater initial cost
- Same long-term cost

Wildlife Edge Habitat Plantings

- Sides and rear areas
- All native species
- Attract songbirds
- Reduce maintenance
- Enhance aesthetics
- Passive recreation
- Interpretive nature trails
- Community PR
- Increase property values

Buffer Strips

- Create dense vegetation
- Treat sheet flow runoff
- Remove sediment& pollutants
- Reduce nutrients
- Increase recharge
- Control erosion
- Stabilize streambanks

Buffer Strips

- Add to open space
- Increase wildlife habitat
- Establish riparian corridors
- Provide visual privacy screening
- Create goose barriers
- Require minimal maintenance

STEP #1 – Install Erosion Controls

STEP #2 – Preliminary Grading

STEP #3 – Stabilization & Seeding

STEP #4 – Planting

STEP #5 – Growing In

STEP #6 – First Growing Season

Who Benefits from LID?

EVERYBODY!!!

For developers & investors, LID ...

- Increases Developable Area
- Lowers Clearing/Grading Costs
- Reduces Impervious Surface
- Decreases Infrastructure Costs (25-30%)
- Reduces Utility Fees
- Increases "Permitability" Saves Time
- Decreases Maintenance Costs
- Lowers Energy Costs
- Promotes Corporate Good Will
- Increases Long-Term Marketability

For abutters & the local community, LID ..

- Balances Growth & Resource Protection
- Increases Open Space/Wildlife Habitat
- Maintains/Creates Buffer Zones
- Protects Streams, Wetlands & Aquifers
- Protects Water Quality
- Maintains Runoff Volumes/Rates
- Avoids Increased Flooding
- Enhances Scenic/Aesthetics Values
- Increases Property Values

Doggy Station The Ultimate BMP

Obligatory Sunset Closing

Questions – page #1

Q#1 – How does freezing affect porous pavers?

A#1: Pavers are typically installed on a sand bed without mortar. They can expand and contract without cracking or spalling.

Q#2 – What are the cost differences – conventional v LID systems?

A#2: LID-BMP systems are generally cheaper than conventional systems for the following reasons:

- Reduced construction costs clearing, grading, landscaping
- Reduced infrastructure costs pavement, curbing, catch basins, piping
- Reduced maintenance costs irrigation, pesticides, fertilizers, detention basin dredging, parking lot repairs
- Increased market value both short & long-term

Questions – page #2

Q#3 – What are the relative maintenance requirements?

A#3: LID-BMP systems generally require less maintenance than conventional systems, primarily because most LID-BMP's are non-structural.

Q#4 – Provide a summary of the Neuse River Buffer Rules (NRBR).

A#4 :The NRBR were established on 12-9-99 in response to a series of fish kills caused by excessive nitrogen loading. They establish a 50-foot wide riparian buffer along waterways in the basin.

Questions – page #3

Q#5 – Are there LID-BMP's that are cost- effective for multi-family residential units with limited open space?

A#5: Yes, one of the primary advantages of bioretention swales, rain gardens, and infiltration units is that they can be sized to fit any development scenario.

Q#6 – Does NC-DWQ give developers credit for using pervious pavements?

A#6: Yes, although a specific formula for calculating reduced impervious surface has not been developed.

