Phosphorus and Sediment Delivery from Streams Draining Poultry Operations in the Upper Etowah River Basin, Georgia

J.J. Romeis, C.R. Jackson, D.E. Radcliffe, M.L. Risse, and J. Bryant

The University of Georgia

USDA CSREES #GEO-2003-04944

Monitoring Study Objectives

- 1) Estimate P loads and export coefficients from agricultural and forested watersheds within upper Etowah River basin
- 2) Use results for
 a) Watershed-scale modeling
 b) Relation to P indices
 c) BMP identification

→ Explore pollution trading opportunities

Site Characteristics

Site Number	Land Use	Area (ha)	Number Poultry Houses in Watershed	Stream Buffer Present	Livestock Grazing		Pond in	Area-Weighted
					Туре	Excluded from Channel	Watershed	(lbs/acre)
1	FORS	44	na	na	na	na	Yes	6
2	FORS	28	na	na	na	na	No	6
3	FORS	31	na	na	na	na	No	7
4	AG	28	3	No	Cattle	No	No	51
5	AG	2.8	0	No	Cattle	No	No	371
6	AG	2.4	3	Partial	Cattle	Yes	No	266
7	AG	9.7	3	Yes	None> Horses	Partial	No	68
8	AG	7.3	2	Partial	None	na	No	129
9	AG	11	9	No	Goats	Yes	Yes	103
10	AG	19	0	Partial	Cattle	No	No	101
11	AG	16	2	Partial	Cattle	No	Yes	195
12	AG	3.2	3	No	Sheep + Cattle	No	No	303

DATA COLLECTION METHODS

- February 2005 → October 2006
- Hydrologic monitoring
- Water quality sampling
- Laboratory analyses
- Soil sampling

PRELIMINARY RESULTS

Hydrology

• **TP** + **TSS**

Relationships between TP and STP

Early view of load estimation

Rainfall and Residual by Site 05/01/2005 – 04/30/3006

Flow Duration Curves by Site 05/01/2005 – 04/30/3006

Total Phosphorus--Biweekly Grab Samples

Total Phosphorus--Storm Samples

Site

Median BWG + Storm TP vs. Area-Weighted STP

Total P results

- BWG samples
 - Median AG 10X higher than FORS median
 - 33X difference in median within AG sites
- Storm samples
 - Median AG 50X higher than FORS median
 44X difference in median within AG sites
- Apparent correlation between STP and baseflow and stormflow

TSS—Biweekly Grab Samples

Site

TSS—Storm Samples

Site

TSS results

BWG samples

- Median AG 2X higher than FORS median
- 15X difference in median within AG sites

Storm samples

- Median AG 3X higher than FORS median
- 26X difference in median within AG sites

Site 5: TP Concentration vs. Flow

Site 5: TP Load vs. Flow

<u>SUMMARY</u>

• Wide range in hydrologic and water quality conditions observed

- Between and within land uses
- Larger differences for TP (vs. TSS)
- Correlations between TP and STP in baseflow and stormflow

TP load estimation

- Flow is critical variable
- Regression-based method may be suitable
- May be supported by other data

Implications of variability among sites

 Suggests potential for water quality improvement
 Aids identification of BMPs
 Important for pollution trading

<u>Future work</u>

- 1) Data analysis \rightarrow Load estimation
- 2) Relate measured values to site conditions (incl. BMPs) and P indices
- 3) SHPS study
- +
- 4) Hydrologic pathways of P transfer
- 5) Critical P source areas

Phosphorus and Sediment Delivery from Streams Draining Poultry Operations in the Upper Etowah River Basin, Georgia

J.J. Romeis, C.R. Jackson, D.E. Radcliffe, M.L. Risse, and J. Bryant

The University of Georgia

USDA CSREES #GEO-2003-04944