Source-specific Estimation of Fecal Bacteria Using SWAT: Calibration and Application

Prem B. Parajuli, Kyle R. Mankin, and Philip L. Barnes Biological and Agricultural Engineering Dept. Kansas State University

> Other Project Cooperators: Will Boyer, George Marchin, Joel DeRouchey, Joe Harner, Dan Devlin, Bill Hargrove Kansas State University

USDA-CSREES National Water Conference Research, Extension and Education for Water Quality and Quantity 28 Jan-1 Feb 2007 Marriott Savannah Riverfront, Savannah, Georgia

Project Overview

"Sources and Abatement of Fecal Bacteria in a High Priority TMDL Watershed in NE Kansas"

Situation:

- Fecal bacteria contamination of surface waters threatens human health and safety.
- The Upper Wakarusa watershed has bacteria impairment (TMDL) and is a high priority watershed in the State for restoration.
- Focus on livestock operations, particularly cattle winter-feeding sites

(Source: http://www.kdheks.gov/tmdl/HiPriorityMaps.pdf)

Project Overview

"Sources and Abatement of Fecal Bacteria in a High Priority TMDL Watershed in NE Kansas"

Actions:

- Implement BMPs Will Boyer, Joe Harner
- Monitor stream water quality
 Phil Barnes
- Track bacteria sources
 George Marchin, Adam Henry
- Model bacteria fate & transport Kyle Mankin, Prem Parajuli
- Evaluate BMPs Phil Barnes, Kyle Mankin, Joel DeRouchey
- Educate farmers Will Boyer, Dan Devlin, Joel DeRouchey, Phil Barnes, Joe Harner
- Update KSU courses & educational materials Kyle Mankin, George Marchin

Project Overview

"Sources and Abatement of Fecal Bacteria in a High Priority TMDL Watershed in NE Kansas"

Actions:

- Implement BMPs Will Boyer, Joe Harner
- Monitor stream water quality
 Phil Barnes
- Track bacteria sources
 George Marchin, Adam Henry
- Model bacteria fate & transport Kyle Mankin, Prem Parajuli
- Evaluate BMPs Phil Barnes, Kyle Mankin, Joel DeRouchey
- Educate farmers Will Boyer, Dan Devlin, Joel DeRouchey, Phil Barnes, Joe Harner
- Update KSU courses & educational materials Kyle Mankin, George Marchin

Specific Objectives of this Study

- 1) Develop methods to quantify bacterial input source loads and spatial distributions using readily available data
 - Livestock (AFO permitted, grazing lands)
 - Human (Onsite)
 - Wildlife (Large/Small mammal, Indigenous/Migratory fowl)
- 2) Calibrate, Verify SWAT 2005
 - Use BOTH total bacteria AND source-specific bacteria data
 - Use modified % fraction of ARA/Discriminant analysis data
 - Calibrate (Rock Creek) using 3 years data
 - Verify (Deer Creek, Auburn, Upper Wakarusa) using 3 years data

Materials and Methods Study area

SWAT input layers

- DEM (30 m x 30 m grid) (USGS, 1999)
- SSURGO (USDA, 2005)
- GAP Landuse (KARS, 2001)
 - Reclassified based on field-verified landuse conditions (Mankin and Koelliker, 2001; Mankin et al., 2003)
- Weather (NCDC, 2006; Kansas State Climatologist)

Flow, bacteria data collection

Flow and Bacteria

- Event flow calculated using flow depth, Manning's eqn. (Ward and Elliot, 1995)
- Event flow validated using USGS, Richland data weighted by watershed area
- Grab samples data collected from 2004-2006
- Serial dilution method used to enumerate Fecal coliform bacteria concentration

(Clesceri et al., 1998)

 Bacteria source tracking using ARA/Discriminant analysis: % of human, livestock, wildlife

Quantify Bacteria Source Loads - Livestock

- Utilized County-level GIS-layer livestock population (USDA, 2006) and compared with Kansas Farm Facts (KDA, 2004)
- Utilized permitted livestock data (KDHE, 2005)
- Estimated AUs in the watersheds 3.04 ha per cow/calf pair stocking rate (KDA, 2004)
- Estimated fecal coliform bacteria: 13x10¹⁰ cfu day⁻¹ AU⁻¹ (ASAE, 2000)
- Modeled 4 livestock source loads:
 - Livestock in pastureland
 - Livestock in winter feeding areas
 - Livestock stream or near stream access
 - Livestock in confined areas
- Applied about 8.5% livestock source loads as a direct input to represent cattle access to the stream
- Applied about 15% livestock source loads from confined area as a direct input in the feedlot located sub-watershed

Quantify Bacteria Source Loads - Septic

 Overlaid watershed into 1 m resolution Orthophoto, 2002

(State of Kansas/Sanborn, 2002)

- Digitized Orthophoto, 2002 based on physical context to represent each rural household septic systems
- Determined failing rate of septic systems

 20% for Rock Creek and Deer Creek
 40% for Auburn
- Land application method: less sensitive (Parajuli et al., 2006)
- Assumed 10% failing septic source loads as direct input
- Estimated Fecal coliform bacteria = 6.3x10⁶ cfu/100mL

(Overcash and Davidson, 1980)

Quantify Bacteria Source Loads - Wildlife

- Large mammals: Deer harvested information (KDWP) used to populate deers in the watershed (9.12/mile²)
- Small mammals: Road kill/windshield survey indices (KDWP) used (3.25/mile²)
- Indigenous birds (Turkey): Road kill/windshield survey regional indices (KDWP) used (303/mile²)
- Migratory birds: Kansas population data (KDWP) equally distributed over the water surface and wetland area
- Applied wildlife source loads into woodlands and croplands
- Assumed 10% of wildlife source loads as direct input
- Estimated Fecal coliform bacteria using published data:
 - Turkey = 0.62 x10¹⁰ cfu AU⁻¹ day⁻¹ (ASAE, 2000)
 - Duck = 8.1x10¹¹ cfu AU⁻¹ day⁻¹ (ASAE, 2000)

Calibration and Verification using 3 years of data

- Calibration: Rock Creek watershed (75.4 km²)
- Verification: Deer Creek watershed (51.4 km²), Auburn watershed (152.4 km²), Upper Wakarusa watershed (950 km²)

Calibration Procedure:

Table 1. SWAT model parameters test and adjustment during calibration						
Parameters	Default value	Test range value	Final value			
Flow:						
Curve Number (CN)	73-83	73-80	74-76			
Soil evaporation compensation factor (ESCO)	0.95	0.01 to 1.00	1			
Plant uptake compensation factor (EPCO)	1	0.01 to 1.00	0.01			
Threshold depth of water in the shallow aquifer (REVAPMIN)	1	1 to 500	500			
Sediment:						
USLE cover and management factor (C)	Crop varied	0 to 0.50	0.15			
USLE practice factor (P)	1	0 to 1.00	0.1			
Channel Erodibility Factor	0	-0.05 to 0.60	0.05			
Channel Cover Factor	0	-0.001 to 1.00	0.3			
Bacteria:						
Bacteria partition coefficient in surface runoff (BACTKDQ)	175	0 to 500	175			
Temperature Adjustment Factor (TBACT)	1.07	0.80 to 1.2	1.07			
Persistent bacteria die-off in solution (WDPQ)	0	0.40 to 0.693	0.4			
Persistent bacteria die-off in soil particles (WDPS)	0	0.04 to 0.069	0.04			

Calibration and Verification using 3 years of data

Calibration process & statistics:

- Adjusted selected input parameters
- Compare measured vs. SWAT- simulated
 - Daily mean flow vs. daily mean flow
 - Daily mean sediment yield vs. daily mean sediment yield
 - Daily discrete bacteria conc. vs. daily mean bacteria conc.
- Nash-Sutcliffe Efficiency Index (E) (Nash and Sutcliffe, 1970)
 - How consistently do measured values <u>match predicted</u> values (<u>follow 1:1 line</u>)
- Coefficient of Determination (R²)
 - How consistently do **measured** vs. **predicted** values follow a best-fit line

Bacteria Source Tracking – ARA Method

 ARA Reference: Hagedorn et al. (1999)

Common BST Methods

- Molecular BST (genotypic):
 - Amplified fragment length polymorphism (AFLP)
 - Ribotyping
 - PCR, qPCR
- Biochemical BST (phenotypic):
 - ARA (antibiotic resistance patterns)
 - BIOLOG (C sources)

Antibiotic Resistance Analysis (ARA)

- Collect water sample
- Plate for fecal enterococci
- Randomly select 24 (or 48) bacterial isolates
- Expose each isolate to four concentrations of nine antibiotics; response is + or – to each
- Combination of responses to all antibiotics is compared statistically (discriminant analysis) to known fecal enterococcus source isolates from human, livestock, and wildlife
- Determine probability of each bacterial source for each isolate

Bacteria Source Tracking Data

Standard method: Assume single source – *Probabilistic Method*

- Determine source probability of each isolate
- Assign isolate to source with greatest probability
- Sum all isolates to assign <u>event-based probability</u>

Sample	Isolates	Human	Livestock	Wildlife
Auburn 1-14-04	48			
Probability				

Modified method: Assume multiple sources – *Deterministic Method*

- Determine source probability of each isolate
- Assume source probability = source fraction
- Average all isolates to assign event-based fraction

Sample (Auburn 1-14-04)	Human	Livestock	Wildlife
Average fraction =			
Percentage =			

Sample	Human	Livestock	Wildlife
Auburn 1-14-04		0.004	0.013
Auburn 1-14-04	0.006		0.308
Auburn 1-14-04	0.032		0.241
Auburn 1-14-04	0.162		0.388
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04		0.156	0.267
Auburn 1-14-04	0.162		0.388
Auburn 1-14-04	0.162		0.388
Auburn 1-14-04	0.032		0.241
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04	0.215		0.312
Auburn 1-14-04	_	0.013	0.103
Auburn 1-14-04	0.006		0.308
Auburn 1-14-04	0.162		0.388
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04	0.047		0.078
Auburn 1-14-04	0.006		0.308
Auburn 1-14-04	0.006		0.308
Auburn 1-14-04	0.038	0.265	
Auburn 1-14-04	_	0.013	0.103
Auburn 1-14-04	_	0.013	0.103
Auburn 1-14-04	0.047		0.078
Auburn 1-14-04	0.020		0.449
Auburn 1-14-04	0.000	0.011	0 294
Auburn 1-14-04	0.002	0.439	0.400
Auburn 1-14-04	-	0.013	0.103
Auburn 1-14-04	0.017	0.013	0.103
Auburn 1-14-04	0.217	0.075	0.023
Auburn 1-14-04	0.049	0.275	0.200
Auburn 1 14 04	0.000	0.265	0.306
Auburn 1 14 04	0.038	0.203	0 102
Auburn 1 14 04	-	0.013	0.103
Auburn 1-14-04	0.038	0.013	0.103
Auburn 1-14-04	0.038	0.203	
Auburn 1-14-04	0.010	0.132	0 294
Auburn 1-14-04	-	0.011	0.234
Auburn 1-14-04	-	0.003	0.021
Auburn 1-14-04	-	0.013	0.103
Auburn 1-14-04	0.045	0.010	0.450
Auburn 1-14-04	0.032		0.241
Auburn 1-14-04	0.032		0.241
Auburn 1-14-04	0.002	0.013	0.103
Auburn 1-14-04		0.013	0.103
Auburn 1-14-04		0.013	0.103
Average fraction =			
Average (%) =			

Probability %

Results and Discussion *Daily Flow/Sediment/Total FCB Conc.*

- Compared 11-15 measured daily events (Jan 2004 – April 2006)
- Year 2006 generally dry yr.
- Flow: CN was key calibrating parameter
- Sediment: USLE C was key calibrating parameter
- Bacteria: Only calibrating parameters adjusted were

 (a) 3-day half-life value for bacteria die-off in solution and
 (b) 0.1x that value for sorbed phase (Baffaut and Benson, 2003)

Results and Discussion

Daily Fecal Coliform Bacteria/<u>Rock Creek</u> (Source specific/combination of two sources)

- Compared 11 measured daily total bacteria data (Jan 2004 - April 2006)
- Utilized modified deterministic probability fraction bacteria source tracking data
- Modeled combination of two sources of bacteria each time
- SWAT model predicted combination of two sources of daily fecal coliform bacteria concentration with:
 - R² = 0.42 0.58 and E = 0.35 0.56 for Rock Creek watershed

Results and Discussion

Daily Fecal Coliform Bacteria/<u>Deer Creek</u> (Source specific/combination of two sources)

- Compared 15 measured daily total bacteria data (Jan 2004 - April 2006)
- Utilized modified deterministic probability fraction bacteria source tracking data
- Modeled combination of two sources of bacteria each time
- SWAT model predicted combination of two sources of daily fecal coliform bacteria concentration with:
 - R² = 0.41 0.54 and E = 0.27 0.44 for Deer Creek watershed

Results and Discussion

Daily Fecal Coliform Bacteria/<u>Auburn</u> (Source specific/combination of two sources)

- Compared 15 measured daily total bacteria data (Jan 2004 - April 2006)
- Utilized modified deterministic probability fraction bacteria source tracking data
- Modeled combination of two sources of bacteria each time
- SWAT model predicted combination of two sources of daily fecal coliform bacteria concentration with:
 - R² = 0.32 0.46 and E = 0.20 0.46 for Auburn watershed

Summary and Conclusions

- Methods quantifying bacterial source loads:
 - Used readily available data for livestock, septic systems, and wildlife to characterize fecal bacteria sources in rural watershed
 - Similar approach might work in other watersheds
- Model results promising:
 - SWAT microbial submodel provided good calibration (E>0.74) and validation (E>0.48) results with 3 years of data
 - Source-specific bacteria modeling showed good modeling efficiency (E up to 0.58) when model combination of two sources of bacteria each simulation

Future Study

- Refine source-specific modeling methods:
 - Refine source-specific model parameterization
 - Calibrate and verify model in the whole Upper Wakarusa watershed using bacteria source-tracking data
- Use SWAT model results to:
 - Target critical sources and source areas
 - Evaluate management practice effectiveness
 - Assess strategies to meet TMDL
- Test other bacteria models:
 - LSPC, WARMF

Acknowledgements

This material is based upon work supported by the USDA-CSREES under agreement No. 2003-04949, 2003-51130-02110.

We acknowledge the contributions of: **Mr. Will Boyer**, Extension Watershed Specialist, KSU **Mr. Mark Jepson**, Environmental Scientist, KDHE **Mr. Matt Peek**, Furbearer Biologist, KDWP **Dr. Lloyd Fox**, Big Game Coordinator, KDWP **Mr. Jim Pitman**, Small Game Coordinator, KDWP **Mr. Marvin Kraft**, Waterfowl Research Biologist, KDWP

Thanks !

?

Prem B Parajuli, Kyle R. Mankin, Philip L. Barnes Biological and Agricultural Engineering Dept. Kansas State University

Contact: kmankin@ksu.edu