Quantifying soil-stream nutrient linkages in coastal temperate rainforest watersheds

R.T. Edwards¹, D.V. D'Amore¹, E. Hood², A. Johnson¹

USDA Forest Service Pacific Northwest Research Station

²Environmental Science Program University of Alaska Southeast

Special thanks to: Jason Fellman, Erik Norberg, Jacob Berkowitz, Denise Elston, and Andy Bookter

Research funded by the USDA Forest Service PNW Research Station and USDA NRI CSREES Grant # 2005-35102-16289

Tongass National Forest

Annual precipitation 1.5-8 meters Highly variable Orography Altitude Glacial till Wetlands ~ 30% of land surface

Study Design

• Local scale: detailed measurements highly replicated in space and time

 Regional scale: two temporal samples of 63 randomly chosen watersheds across Tongass NF

Three dominant soil types Three replicate watersheds

Discharge measurements below mapped soil units
Weekly to monthly water samples analyzed for C, N, P
Carbon quality and quantity
Calculate nutrient fluxes
Upstream-downstream comparisons for salmon

63 randomly chosen watersheds

Two sample periods •Spring- low baseflow, no fish •Fall- higher flows, post spawning

Soil C storage by soil type

Tributary DOC concentrations

DOC flux per unit soil area

Some streams receive runs of pink or chum salmon from August through early September

DOC trends during salmon runs

Fluorescence excitationemission matrices

SUVA vs percent wetland by season and presence of fish

Climate Change

- Increase in soil temperature
- Increase in precipitation as rain
- Decrease in snow cover
- Change in annual hydrograph
- Increase in carbon mineralization?
- Increase in [DOM] and flux?
- Changes in aquatic habitat productivity/quality

Climate change influences forest structure

200,000 ha of yellow cedar declining

Unit watersheds for Tongass NF

Soil type distribution

Non-wetland (<20%)
Average (44%)
Wetland (>80%)

Unit watersheds for Tongass NF

Soil type distribution

Non-wetland (<20%)
Average (44%)
Wetland (>80%)

Carbon flux by soil type

