

Obese and

 Overweight Adults in the United StatesEstimates of obesity of U.S. adults ages 20-74 years were obtained from skinfold thickness, and overweight was estimated from weightheight measurements. Comparisons are made between methods, and estimates are presented based on cross-classification of the two methods.

Data From the National Health Survey Series 11, No. 230

DHHS Publication No. (PHS) 83-1680
U.S. Department of Health and Human Services
Public Health Service
National Center for Health Statistics
Hyattsville, Md.
February 1983

COPYRIGHT INFORMATION

All material appearing in this report is in the public domain and may be reproduced or copied without permission; citation as to source, however, is appreciated.

SUGGESTED CITATION

National Center for Health Statistics, S. Abraham: Obese and overweight adults in the United States. Vital and Health Statistics. Series 11, No. 230. DHHS Pub. No. 83-1680. Public Health Service. Washington. U.S. Government Printing Office, January 1983.

Library of Congress Cataloging in Publication Data

Abraham, Sidney

Obese and overweight adults in the United States.
(Data from the national health survey ; no. 230) (DHHS publica-
tion: (PHS) 83-1680)
Prepared by Sidney Abraham.
Supt. of Docs. no.: HE 20.6209:11/230

1. Obesity-United States-Statistics. 2. Anthropometry-United

States-Statistics. 3. Health surveys-United States. I. National Center for Health Statistics (U.S.). II. Series: Vital and heal th statistics. Series 11, Data from the national health survey ; no. 230. III. Series: DHHS publication ; (PHS) 83-1680. [DNLM: 1. Obesity-Occurrence-United States. 2. Body weight. W2 A N 148 vk no. 230]

RA407.3.A347 no. 230	$312^{\prime} .0973 \mathrm{~s}$	$82-600498$
[RA645.023]	$\left[312^{\prime} .3398^{\prime} 00973\right]$	AACR2

National Center for Health Statistics

MANNING FEINLEIB, M.D., Dr. P.H., Director
ROBERT A. ISRAEL, Deputy Director
JACOB J. FELDMAN, Ph.D., Associate Director for Analysis and Epidemiology
GAIL F. FISHER, Ph.D., Associate Director for the Cooperative Health Statistics System
GARRIE J. LOSEE, Associate Director for Data Processing and Services
aLVAN O. ZARATE, Ph.D., Assistant Director for International Statistics
E. EARL BRYANT, Associate Director for Interview and Examination Statistics
ROBERT L. QUAVE, Acting A ssociate Director for Management
MONROE G. SIRKEN, Ph.D., Associate Director for Research and Methodology
PETER L. HURLEY, Associate Director for Vital and Health Care Statistics
ALICE HAYWOOD, Information Officer

Interview and Examination Statistics Program
E. EARL BRYANT, Associate Director

MARY GRACE KOVAR, Special Assistant for Data Policy and Analysis

Division of Health Examination Statistics
ROBERT S. MURPHY, Director
SIDNEY ABRAHAM, Chief, Nutrition Statistics Branch
JEAN ROBERTS, Chief, Medical Statistics Branch
KURT R. MAURER, Chief, Survey Planning and Development Branch

RITA WEINBERGER, Chief, Programming Staff

Data Processing and Services Program

GARRIE J. LOSEE, Associate Director
ALAN K. KREGER, Chief, Computer Users Staff

Division of Data Services

JAMES C. JACKS, Ph.D., Director
PHILLIP R. BEATTIE, Deputy Director
DAVID L. LARSON, Chief, Health Examination Field Operations Branch

[^0]
Contents

Introduction 1
Highlights 4
Methods 6
Anthropometric measurements 6
Findings 8
Obesity measurement-skinfold thickness. 8
Overweight measurements. 8
Relative desirable weight 9
Weight-height index 9
Comparability of obesity and overweight measures 11
Interrelationship of overweight and obesity 15
Sex and age 15
Discussion 22
References 25
List of detailed tables. 27
Appendixes
I. Statistical notes. 64
II. Demographic terms 76
III. Profile of body measurements of persons from cross-classification of overweight and obesity measures 77
List of text figures

1. Cross-classification of the distribution of relative desirable weight and triceps plus subscapular skinfold measurements: United States, 1971-74 3
2. Percent of men obese and overweight at selected percentiles of criteria measures, by age, with confidence intervals: United States, 1971-74 12
3. Percent of women obese and overweight at selected percentiles of criteria measures, by age, with confidence intervals: United States, 1971-74. 13
4. Percent of men overweight and/or obese at the 85 th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74 16
5. Percent of men overweight and/or obese at the 90th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74 17
6. Percent of men overweight and/or obese at the 95 th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971 -74 18
7. Percent of women overweight and/or obese at the 85 th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74 19
8. Percent of women overweight and/or obese at the 90th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74 20
9. Percent of women overweight and/or obese at the 95 th percentile estimated from cross-classification of triceps plus sub- scapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74 21
List of text tables
A. Distribution of obesity and overweight values at selected percentiles of criteria measures, by sex: United States, 1971-74 2
B. Number and percent of population overweight and obese ages $20-74$ years at selected percentiles of criteria measures, by sex: United States, 1971-74 4
C. Number and percent of population overweight and/or obese ages $20-74$ years below and above selected percentiles of cri- teria measures, by sex and method of determining weight status: United States, 1971-74 5
D. Desirable weights for men and women ages $20-74$ years by height: United States, 1971-74 8
Symbols
... Data not available
. . . Category not applicable
Quantity zero
0.0 Quantity more than zero but less than 0.05
Z Quantity more than zero but less than500 where numbers are rounded tothousands

* Figure does not meet standards ofreliability or precision (more than30 percent relative standard error)
\# Figure suppressed to comply with confidentiality requirements

Obese and Overweight Adults in the United States

by Sidney Abraham, Margaret D. Carroll, Matthew F. Najjar and Robinson Fulwood, Division of Health Examination Statistics

Introduction

This report presents estimates of the prevalence of obesity and overweight in the U.S. civilian noninstitutionalized population 20-74 years of age by sex and age. These estimates are based on body measurements obtained from the first National Health and Nutrition Examination Survey conducted by the Na tional Center for Health Statistics in 1971-74. The National Health and Nutrition Examination Survey was designed to measure the nutritional status of the United States population as well as certain aspects of general health status and medical care needs. A nationwide probability sample of 28,043 persons was selected to be examined in 65 primary sampling units visited between April 1971 and June 1974.

The survey included a general medical examination by a physician for indicators of nutritional deficiencies, a skin examination by a dermatologist, and a dental examination by a dentist. Body measurements were taken by a trained technician. A dietary interview was administered consisting of a 24 -hour recall of food consumption and a food-frequency questionnaire. Laboratory tests were performed on whole blood, serum, plasma, and urine. A description of the sampling process and survey content and operation was published previously. ${ }^{1}$

Findings in this report are based on examinations of 13,131 persons from a probability sample of 18,816 persons ages $20-74$ years selected to represent 122 million persons of these ages in the population. The examination response rate was 70 percent, and findings are shown as national estimates based on weighted observations. Appropriate weights were used to account for sampling fractions and survey response results with a final adjustment to closely aline population estimates with the independent U.S. Bureau of Census estimates for the U.S. civilian noninstitutionalized population as of November 1, 1972, by race, sex, and age.

In this report, distinctions are made between the terms "obesity" and "overweight." Obesity is an excess of body fat; overweight is an excess in body weight relative to standards for height. Obesity, defined by triceps plus subscapular skinfold measurements, reflects adipose tissue. Obesity determined by weight indexes, independent of a fat measurement, commonly is defined as overweight. Overweight reflects several tissues-bone, muscle, and adipose-and is measured by using two types of weight indexes that differ in the manner in which they include height.

The most commonly used method to measure overweight is to compare the height and weight of persons with tables of standard weights, referred to as "relative body weight." Another method used is the "power function" of height in relation to weight obtained by calculating a power function of height in a weight-height index ($\mathrm{W} / \mathrm{H}^{\mathrm{P}}$ in kilogram/meter ${ }^{\mathrm{P}}$). The weight indexes allow individuals to be classified as overweight or underweight. Because obesity and overweight are not synonymous, the relationship is analyzed between the obesity measure and the overweight measure, which traditionally is used to estimate the prevalence of obesity. The analysis aids in determining whether overweight measures are reliable estimates of obesity and may be used interchangeably with independent measures of obesity.

Estimates of obesity also are obtained by crossclassifying triceps plus subscapular skinfold measurements with weight indexes, assuming that the weight indexes are a measure of body size. Because fat content of the individual is not the only body measurement that can account for the difference in body composition of the obese and the nonobese, this approach provides an estimate of body size in assessing obesity.

Because no critical values of overweight and obesity have been identified at which cardiovascular or other morbidity predictably occur, in this report, overweight and obesity in adults were statistically defined at the 85th, 90th, and 95th percentiles for men
and women ages $20-29$ years. These criteria follow the principle of "ideal weight"-in adults, increase in body weight with age is undesirable and, after the twenties, an individual should not gain weight (presumably fat) with each year of age. Although not ideal for some persons in the age group 20-29 years (average age of 24 years), the standard minimizes the observed increase in fat in men and women during maturity and is not based on morbidity or mortality experience of the survey population.

Table A presents triceps plus subscapular skinfold measurements, relative desirable weight, and weightheight index values at selected percentiles of defining obesity and overweight in men and women. The mean of these measurements plus one standard deviation of the distributions of the measurements is almost equal to the values derived from the 85 th percentiles and is slightly less than the 90th percentiles. The mean of measurements plus two standard deviations showed almost equivalent values derived from the 95 th percentiles. Data at the 85 th, 90 th, and 95 th percentiles are presented, but only data at the 85th and 95th percentiles are discussed.

Another estimate was made by cross-classifying the measures of overweight with the measures of obesity. The resulting interrelationship of the two distributions of underweight and overweight and leanness and fatness then was examined. This method determined to what degree excess weight over a given standard for weight and height measurements was accounted for by excess fat or the relative contribution of fat to the overweight status of individuals. It considers that fat is not the only component of body composition that accounts for the difference between obesity and nonobesity of individuals. The determina-
tion of relative fatness of individuals is of primary importance because obesity is associated with excess mortality and morbidity.

From the combined distribution, results were classified into several excess weight categories. Prevalence data were obtained on weight categories pertaining only to the presence and absence of obesity, obese not overweight, overweight not obese, and overweight and obese. The cross-classitication between overweight and obesity described previously also was prepared between weight-height index and triceps plus subscapular skinfold measurements.

The schematic representation of the crossclassification is presented in figure 1. The 15 th and 85 th percentile cutting points are used in the illustration. This illustration also applies to the 90th and 95th percentile cutting points, with the exception of cell 5 , which was not used as a weight category at the 95th percentile cutting point. Underweight and lean individuals are in cell $1(<15$ th percentile of the distribution of triceps plus subscapular skinfold measurements and relative desirable weight or weightheight index); average weight and medium obese individuals are in cell $3(\geqslant 15$ th $-<85$ th, $\geqslant 15$ th $-<90$ th percentiles of the distribution of triceps plus subscapular skinfold measurements and relative weight or weight-height index); obese not overweight individuals are in cell 2 (the $\geqslant 85$ th, $\geqslant 90$ th, and $\geqslant 95$ th percentiles of the distribution of triceps plus subscapular skinfold measurements and the <85 th, <90 th, and <95 th percentiles of the distribution of relative desirable weight or weight-height index). Overweight not obese individuals are in cell 4 (the $\geqslant 85$ th, $\geqslant 90$ th, and $\geqslant 95$ th percentiles of the distribution of relative lesirable weight or weight-height index, and the

Table A. Distribution of obesity ${ }^{1}$ and overweight ${ }^{2,3}$ values at selected percentiles of criteria measures, by sex: United States, 1971-74

Obesity and overweight measures	Mon						Women					
	Percentile			Mean	Standard deviation	Mean plus two times standard deviation	Percentile			Mean	Standard deviation	Mean plus two times standard deviation
	85th	30th	95th				85th	90th	95th			

Obesity

Triceps plus subscapular skinfold in millimeters ${ }^{1}$	38.0	43.0	51.0	25.9	13.0	51.9	52.0	58.5	68.0	36.2	16.0	68.2
Overweight												
Relative desirable weight ${ }^{2}$.	114	118	130	99	16	131	115	123	139	98	20	138
Weight-height index ${ }^{3}$. . .	28.0	29.0	32.0	24	4	32	34.0	37.0	42.0	29	6	41

[^1]NOTE: Criteria of obesity and overweight are at the 85 th, 90 th, 95 th percentiles or more with measurements for persons ages $20-29$ years as the standard.

Figure 1. Cross-classification of the distribution of relative desirable weight and triceps plus subscapular skinfold measurements: United States, 1971-74
<85 th, <90 th, and <95 th percentile of the distribution of the triceps plus subscapular skinfold measurements); and overweight and obese individuals are in cell 5 (the $\geqslant 85$ th, $\geqslant 90 \mathrm{th}$, and $\geqslant 95$ th percentiles of
the distribution of relative desirable weight or weightheight index and triceps plus subscapular skinfold measurements.

The mean values of weight categories obtained by cross-classifying triceps plus subscapular skinfold measurements with relative desirable weight or weight-height index at selected percentiles are shown in tables 1 and 2. The mean values, as expected, are related to the weight categories.

Two kinds of statements throughout the text concern differences in prevalence rates of weight categories: (1) statements based on results of tests of hypotheses or significance tests, and (2) statements based on observed differences (not tested for statistical significance but may be of interest from a descriptive standpoint). To enable the reader to differentiate between the two types of statements in the text, the terms "statistically significant" and "not statistically significant" are used to indicate all "tested" differences in the prevalence rates of weight categories, and the term "observed" is used to indicate that the differences in the percent values may be of interest but are not "tested" for statistical significance.

Highlights

Obesity, which refers to a surplus of body fat, is defined by the sum of triceps and subscapular skinfold thickness measurements. Overweight, which refers to an excess in body weight, is defined by two indexes: (1) Reative weight-expressed as the aeviation of observed weight from the NHANES table of desirable weights. (2) Weight-height index--weight divided by a power function of height. All three of the measures use ages 20-29 as the standard.

Estimates of the number and the percent of adult men and women in the civilian noninstitutionalized population of the United States who were obese or overweight by each of these measures are shown in table B. The estimates are also shown by three percentile levels to demonstrate the effect of changing the criterion on the estimated prevalence.

- There were 11 million men, 19 percent of the adult males in the United States, who were obese using the 85th percentile.
- The proportion of men who were overweight was significantly higher than the proportion of men who were obese regardless of which measurement of overweight was used.
- At the 95th percentile there were no significant differences in the prevalence regardless of which of the three measures were used. The three measures can be used interchangeably to estimate prevalence.
- There were 18 million women, 28 percent of the adult females in the United States, who were obese using the 85th percentile.

Table B. Number and percent of population overweight and obese ages $20-74$ years at selected percentiles of criteria measures, by sex:
United States, 1971-74

Overweight and obese at selected percentiles	Men		Women	
	Estimated number in millions	Percent of adult population	Estimated number in millions	Percent of adult population
85th percentile or more				
Overweight				
Relative desirable weight	13.3	23.2	18.9	29.5
Weight-height index	13.1	22.8	19.0	29.5
Obesity				
Triceps plus subscapular skinfold	11.1	19.4	17.7	27.7
90th percentile or more				
Overweight				
Relative desirable weight	9.9	17.1	13.4	20.8
Weight-height index	9.5	16.5	12.0	18.8
Obesity				
Triceps plus subscapular skinfold	6.9	12.0	11.4	17.8
95 th percentile or more				
Overweight				
Relative desirable weight	3.5	6.0	6.2	9.6
Weight-height index	3.3	5.8	5.4	8.3
Obesity				
Triceps plus subscapular skinfold	2.9	5.1	5.5	8.5

- The proportion of adult women who were overweight was significantly higher than the proportion who were obese regardless of which measurement of overweight was used.
- At the 95 th percentile, there are no significant differences in the prevalence regardless of which of the three measures were used. The three measures can be used interchangeably to estimate prevalence.
- Regardless of which measure or cutoff level was used, prevalence rates were higher for women than for men.
Estimates of the number and the percent of adult men and women who were both obese and overweight, who were obese but not overweight, and who were overweight but not obese are shown in table C .
- About 13 percent or 7 million of the adult men in the United States were both obese and overweight using the 85th percentile.
- This was significantly higher than the proportion who were obese but not overweight and overweight but not obese.
- The method of measuring overweight made no difference in the estimate at the 95th percentile.
- About 22 percent or 14 million of the adult women were both obese and overweight using the 85th percentile.
- This was significantly higher than the proportion who were obese but not overweight and overweight but not obese.

Tabie C. Number and percent of population overweight and/or obese ages 20-74 years below and above selected percentiles of criteria measures, by sex and method of determining weight status: United States, 1971-74

Methods

Anthropometric measurements

The first National Health and Nutrition Examination Survey (NHANES I) was staffed with two highly trained examination teams. Two mobile examination centers, which could be moved to a central location in each of the primary sampling units, were used. Selected sample persons for whom appointments could be made were brought into the examination centers. Examinees changed from street clothing into disposable paper examination uniforms and foam rubber slippers designed to facilitate and standardize various parts of the examination. Body measurements were made at various times of the day at each examination center and in different seasons of the year; therefore, body measurements were not standardized for diurnal and seasonal variations. Weights vary between winter and summer and may differ depending upon recency of food and water intake.

Using standardized anthropometric equipment, trained technicians made multiple measurements until two results agreed within specified limits. One member of the examining teams observed and corrected any errors in the measurement technique, aided in positioning the examinee, and recorded information.

When possible, all measurements were taken on the right side of the body. Measurements were taken on the left side if the right side could not be used because of casts, amputations, or any other reason. Detailed explanations of the procedures used to determine the body measurements discussed in this report follow.

Height.-For height measurements, adults wore disposable foam rubber slippers and stood with their feet together and their backs and heels against the upright bar of the height scale. Examinees' heads were approximately in the Frankfort horizontal plane (examinees were instructed to "look straight ahead"). They stood erect (they were told to "stand up tall" or "stand up real straight"); assistance and demonstration were provided when necessary. Upward pres-
sure was not exerted by the examiner on subjects' mastoid processes to "stretch everyone in a standard manner," as is recommended by some. ${ }^{1}$

The equipment consisted of a level platform with a vertical bar attached with a steel tape. A horizontal bar was attached perpendicularly to the vertical bar and was lowered snugly on the examinee's head. In the same plane as the horizontal measuring bar, a Polaroid camera was attached to another bar; the camera was used to record the subject's identification number next to the pointer on the scale giving a precise reading. The camera not only gave a permanent record (minimizing observer and recording error) but, by sliding up and down with a horizontal bar and always being in the same plane, the camera also completely eliminated parallax. If the pointer had been in the space in front of the scale, it would have been read too high if the observer had looked up at the scale from below or too low if read from above.

Weight.-A Toledo self-balancing scale was used that mechanically printed the weight to one quarter of a pound directly onto the permanent record. This direct printing minimized observer and recording errors. The scale was calibrated with a set of known weights, and any necessary fine adjustments were made at each new location before examinations began, that is, approximately every month. The recorded weight to the nearest 0.25 pound was later transferred to a punched card. The total weight of all clothing worn ranged from 0.20 to 0.62 pounds; this was not deducted from weights presented in this report. The examination clothing used was the same throughout the year, which eliminated seasonal variation in the weight of clothing.

Skinfold measurements.-Skinfold measurements were taken with a Lange skinfold caliper calibrated to exert a pressure of 10 grams per square millimeter of jaw surface, as suggested by the Recommendations Concerning Body Measurements for the Characterization of Nutritional Status. ${ }^{2}$ The precision of the caliper was tested daily against metal standards of known widths.

Triceps-The skinfold caliper measure was read to the nearest half of a millimeter. The thickness of a skinfold plus subcutaneous tissue (but no muscle) was taken over the right midtriceps at the level previously marked. The crest of the skinfold was parallel to the long axis of the arm. The technician held the calipers about 1 cm below thumb and forefinger. The fingers were not released when taking the triceps or any other skinfold measurements. A second measurement was taken and, if the two measurements disagreed by more than 1 mm , they were repeated until they agreed within 1 mm . If a skinfold was too tight to be measured, "too tight" was written in the recording space for that measurement.

Subscapular-The thickness of a skinfold was taken just below the angle of the right scapula, with the subject's shoulder and arm relaxed. The subscapular measurement was recorded to the nearest mm . The fold was parallel to the natural cleavage lines of the skin-often a line about 45 degrees from the horizontal extending medially upward. As previously, two measures were taken until two were obtained that agreed within 1 mm .

Several methods are currently used to determine the amount of fat in individuals. Some methods require expensive and elaborate laboratory procedures; ${ }^{3}$ others need minimum hardware, yet yield suitably accurate results if performed properly, such as measurement of skinfold thickness. Rather than measuring chemically extracted fat, this method in-
volves the measurement of a double fold of subcutaneous tissue plus skin, pulled away from the underlying tissue by the observer at a selected site on the body.

The validity of skinfold measurements rests upon two assumptions: (1) the measurement of the thickness of the subcutaneous layer of fat will reflect suitably the total body fat of an individual, and (2) certain sites are correlated well enough with the entire subcutaneous layer so that relatively few measurements will accurately estimate its thickness. Both of these assumptions are considered sound enough that the exceptions to them do not vitiate the use of skinfold measurements in the study of body composition in large population samples.

Taking skinfold measurements has distinct advantages. The measurement does not require elaborate, expensive, or time-consuming procedures. Rather, trained technicians, using standardized calipers spring loaded to a constant tension to ensure uniform compression of the tissue, are able to measure skinfolds quickly and at an acceptable level of accuracy and replicability, if the measurement is performed with suitable skill and care. This method is the most applicable method for the large-scale studies necessary to determine within and between population studies. It is also the method suited for studies that are conducted away from sophisticated physiological laboratories. ${ }^{3-5}$

Obesity measurement-skinfold thickness

Cumulative percent distributions of triceps plus subscapular skinfold measurements for men and women ages 20-74 years are presented in tables 3 and 4. Table 5 summarizes the distributions in terms of basic statistics for men and women by age. In addition to listing the number of adults examined and the estimated number in the United States population, the tables include means, standard deviations, and selected percentiles. Table 5 also presents the skinfold thickness values of men and women 20-29 years of age at the 85 th, 90 th, and 95 th percentiles. The values at these percentiles were the cutoff levels to estimate the prevalence of obesity. Table 6 presents the estimates of obesity in the United States for all three percentiles by sex and age. Estimates of the standard error are presented in appendix I, table III.

In the United States, 19.4 percent of the men (an estimated 11.1 million) ages $20-74$ years were obese at the 85 th percentile criterion ($\geqslant 38.0 \mathrm{~mm}$) in $1971-$ 74. At the 85 th percentile or more criterion $\geqslant 52.0$ mm), obesity was significantly more prevalent among women-27.7 percent, or an estimated 17.7 millionthan among men of comparable ages. In each age group, 35-74 years, the proportions of women obese were significantly higher than the proportions of men with the highest prevalence of obesity at ages 45-54 years for men and women.

At the 95 th percentile criterion $\geqslant 51.0 \mathrm{~mm}), 5.1$ percent (an estimated 2.9 million) of the men were obese. The corresponding estimate for women $\geqslant 68.0$ mm) was 8.5 percent (an estimated 5.5 million). The percent of women who were obese significantly exceeded that among men at the 95th percentile. In each age group, 35-74 years, the proportion of women obese was significantly higher than the proportion of men obese. There was no significant or consistent age-related trend for men. For women, the percent increased significantly from ages 20-24 to 25-34 years. Thereafter, the increase was slight and
inconsistent with a significant decline occurring in the oldest age group.

Overweight measurements

Overwerght implies excessive weight relative to some standard, with no direct measurement of fat. These standards are of two types. One is overweight obtained by comparing the observed weight with those shown in the NHANES I table of desirable weights for given height and sex (table D). Overweight status is the deviation of observed weight from desirable weight multiplied by 100 (referred to as

Table D. Desirable weights ${ }^{1}$ for men and women ages $20-74$ years by height: United States, 1971-74

Height		Weight in pounds	
		Men	Women
57 inches		-. -	113
58 inches		-. -	117
59 inches		---	120
60 inches		--	123
61 inches		---	127
62 inches		136	130
63 inches		140	134
64 inches		145	137
65 inches		150	140
66 inches		155	144
67 inches		159	147
68 inches		163	151
69 inches		168	154
70 inches		173	158
71 inches		178	-. -
72 inches		182	-
73 inches		187	-
74 inches		192	--.

[^2]relative desirable weight). The desirable weight was developed using regression equations of weight on height measurements for men and women ages 20-29 years. The result was used as the standard for desirable weight (appendix I, table IV). These desirable weights were used to predict relative desirable weights for all persons in the NHANES I population 20-74 years of age.

The second standard weight uses the average weight of men and women of specific age groups as the standard to calculate relative weights. Standard weights were developed using regression equations of weight on height for men and women for each age group (appendix I, table IV). This type of standard assumes that average weight increases with age.

Standards derived from sex and age-specific mean weight for height in this report are not presumed to indicate desirable weight but only to present a reference base for an individual's observed weight. They show estimates under and over excess body weights of men and women based on selective body measurements by age and were not used to estimate the prevalence of overweight in the U.S. population from NHANES I data. For this purpose, desirable weights of men and women ages $20-29$ years were used as the standards or criteria. Desirable weights are based on the concept that after growth in height in adults has stopped, there is no need to gain weight, presumably fat, in adulthood. However, no estimates of fat other than what can be inferred from the deviation of observed weight from desirable weight are available. Such gross estimates will not yield information of how much of the weight difference is accounted for by excess fat.

Relative desirable weight

The cumulative percent distribution of relative standard and desirable weights of men and women ages 20-74 years are presented in tables 7-10. Tables 7 and 8 show the relative standard weight values when the standard is based on the average weight for height, sex, and age. Tables 9 and 10 show the relative desirable weight values when the standard is based on the average weight for height of men and women ages $20-29$ years.

Tables 11 and 12 summarize the distributions of the relative standard and desirable weight in terms of basic statistics for examined persons by age and sex. In addition to listing the number of persons examined and the estimated number in the U.S. population, the tables include means, standard deviations, and selected percentiles. Table 12 presents the relative weight values of men and women ages 20-29 years at the 85 th, 90 th, and 95 th percentile. The values at these percentiles were the criteria selected to estimate the proportion of overweight persons in the U.S. population. Table 13 presents the estimates of over-
weight persons at the selected cutoff levels by sex and age. Estimates of standard error are presented in appendix I, table III.

At the cutting point of the 85th percentile (14 percent or more above desirable weight), 23.2 percent (13.3 million) of the men ages 20-74 years were overweight. The corresponding value for women at this cutoff point (15 percent or more above the desirable weight) was 29.5 percent (18.9 million). In each age group 35-74 years, the percent of women overweight significantly exceeded that of overweight men.

The percent of men overweight increased significantly from ages 20-24 to 25-34 years. No significant differences or age-related trends were tound thereafter. The percent of women overweight increased significantly only to $35-44$ years; changes in percents were not significant after this decade.

Among men ages $20-74$ years, 6.0 percent (3.5 million) were overweight based on relative desirable weight at the 95 th percentile (30 percent or more above desirable weight). At the same percentile (39 percent or more above desirable weight, 9.6 percent (6.2 million) of the women were overwerght. The difference between proportions of men and women overweight was statistically significant.

In each age, higher proportions of women than men were overweight, but the differences in proportions were significant only at ages $35-44$ and 65-74 years. By this criterion, a significant age-related trend for overweight among men ages $25-34$ years was found. Thereafter, the percent of overweight men remained level and declined in the oldest age group. Overweight among women increased significantly to 35-44 years, after which the values declined and then remained fairly stable.

Weight-height index

Another approach to relative weight indices to estimate the prevalence of overweight is by the use of weight-height index $\left(W / H^{P}\right) \cdot{ }^{6,7}$ The index is obtained by dividing weight in kilograms by the power of height in meters squared ($\mathrm{kg} / \mathrm{m}^{2}$). Womersley and Durnin ${ }^{8}$ agree with Keys, et al., ${ }^{9}$ that, in the absence of skinfold measurements, the most satisfactory relative weight index is $\mathrm{W} / \mathrm{H}^{2}$. Goldbourt and Medalie ${ }^{10}$ used data from Birmingham, Framingham, and Israel and found that the weight-height index of choice for men was also W/H ${ }^{2}$. Renn ${ }^{11}$ questioned the validity of applying a specified power of H to different populations and suggested that the power value of H should be examined for each population studied. This suggestion was followed for this study, and a value of p was calculated in the range of 1.75 to 2.06 for men by age group; the corresponding values for women by age group were 1.44 to 1.63 . The power value of choice was a value of $p=2$ for men and $p=1.5$ for women (see appendix I). Thus the weight-height
index used in this report is $\mathrm{W} / \mathrm{H}^{2}$ for men and $\mathrm{W} / \mathrm{H}^{1.5}$ for women.

Cumulative percent distributions of the weightheight index are presented in table 14 for men and in table 15 for women. Table 16 summarizes the distribution in terms of basic statistics for men and women by age. In addition to the number of examined persons and the estimated number in the U.S. population, the tables include the means, standard deviations, and selective percentiles. Table 16 also shows the weight-height index values of men and women ages $20-29$ years at the 85 th, 90 th, and 95 th percentiles. The values at these selected percentiles were the criteria to estimate the proportions of overweight persons for this measure. Table 17 shows estimates of overweight persons in the United States using these cutoff levels by sex and age. Estimates of the standard errors of percents are presented in appendix I, table III.

In 1971-74, 22.8 percent (13.1 million) of the
men ages 20-74 years were overweight at the 85th percentile and 5.8 percent (3.3 million) at the 95 th percentile, where the weight-height index was greater than or equal to 28.0 and 32.0, respectively. For women, the percent overweight was significantly higher than that for men, 29.5 percent (19.0 million) at the 85 th percentile and 8.3 percent (5.4 million) at the 95 th percentile, where the weight-height index was greater than or equal to 34.0 and 42.0 , respectively.

In each age group 35-74 years at the 85 th percentile, the percent of women overweight was higher than that for men overweight. All differences were large enough to be considered significant. For each age group at the 95 th percentile, the percent of women overweight was consistently higher than that for men overweight; however, the differences were large enough to be statistically significant only for ages 35-44 and 65-74 years.

Comparability of obesity and overweight measures

Analyses were made of the comparability of triceps plus subscapular skinfold measurements, the measure of obesity with the relative desirable weight, and the weight-height indexes-the measures of overweight. Several approaches were used. The first approach was that all measures were independent of height. There was a low coefficient of correlation between these measures and height (table 18); whether obese or overweight, smaller persons did not have more or less excess weight than taller persons did.

The second approach was to demonstrate that measures of overweight were associated with total body weight. Table 18 shows the high coefficients of correlation between the obesity measure and each of the overweight measures with total body weight.

A third approach to examine the comparability of the obese measure with each of the overweight measures was to compare prevalence estimates. Comparable results would suggest that overweight measures may be used interchangeably with obesity measures for population estimates. The estimates of the proportion of obese and overweight persons at the 85th, 90 th, and 95 th percentiles or more are summarized in table 19 and graphically shown in figures 2 and 3.

Regardless of approach, the percents of men ages 20-74 years and overweight at the 85 th and 90 th percentiles were significantly higher than percents of men obese. At the 95 th percentile, the differences in percents were no more than expected from sampling variability.

Among women of comparable age, the percents overweight at the 85 th percentile, independent of overweight method, were significantly higher than percents of the women obese. At the 90th percentile, the same pattern was observed in comparing the differences in proportions between women obese and women overweight based on the two methods of classifying overweight status. At the 95th percentile, the magnitude of the difference between the percent of women obese and women overweight was not large enough to be statistically significant.

In each age group, the percent of men overweight was generally higher than that of men obese at the 95 th percentile. However, differences in proportions were not large enough to be statistically significant, except for men ages 55-64 years.

In each age group, the proportions of men overweight were also generally larger than proportions of men obese at the 85th and 90th percentiles. The differences were too large to reflect sampling variability alone.

Among women ages $20-54$ years, the proportions obese and overweight were within sampling variability, regardless of method of measurement or percentile cutoff point. Among women ages 55-64 years, a significantly higher proportion were overweight than were obese at the 85 th and 90 th percentiles but not at the 95 th percentile. At ages 65-74 years, a significantly higher proportion of women were overweight than were obese, regardless of method of measurement or cutoff point.

The final approach of comparing the obesity measure with the overweight measure was to determine the relationship of overweight measures with the laboratory measure of obesity, such as body fat estimated by densitometry, and use this method as the standard. Because densitometry was not available, leanness to fatness was estimated by triceps plus subscapular skinfold measurements, which is in "good" agreement with laboratory indices of obesity. 8,9 Table 20 shows the correlation coefficients of the relationship between triceps plus subscapular skinfold criteria, the obesity measure, and each of the overweight measures (relative desirable weight and weightheight index).

The coefficients of correlation between relative desirable weight adjusted for height and triceps plus subscapular skinfold measurements ranged from 0.729 to 0.828 for men and from 0.769 to 0.857 for women ages 20-74 years. The corresponding values for weight-height indexes were almost identical for men and women in the same age ranges. The differences between coefficients of correlation were small.

Figure 2. Percent of men obese and overweight at selected percentiles of criteria measures, by age, with confidence intervals: United States, 1971-74

The highest coefficient of correlation was $r=0.857$. The coefficient of determination of this relationship, r^{2}, indicated that about 73 percent of the total variance of the obesity measure was accounted for by the regression of obesity on the overweight measure.

On the basis of the high values of the coefficients of correlation, it appears that overweight measures may be used interchangeably with obesity measures. However, according to Florey, ${ }^{12}$ the coefficient of correlation does not consider the increase in variabil-
ity of skinfold values with increasing weight-height indexes. Therefore, the coefficient of correlation is of little value as a valid statistic to measure the relationship between overweight and obesity measures. The coefficient of correlation considers individuals in the total range of leanness and fatness (that is, extreme leanness to extreme fatness). In this range, a high correlation between obesity and overweight measures was expected and observed.

The agreement between obesity and overweight measures also was examined by arraying the distri-

\square	Triceps plus subscapular skinfold
\square	Relative desirable weight
\square	Weight-height index
工 Confidence intervals	

95th percentile or more

90th percentile or more

85th percentile or more

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 3. Percent of women obese and overweight at selected percentiles of criteria measures, by age, with confidence intervals: United States, $1971-74$
bution of the obesity values according to overweight values. The variability of the triceps plus subscapular skinfold values indicated by the standard deviation increased with the increase in relative desirable weight. At the relative desirable weight of less than 85 , the standard deviation of triceps plus subscapular skinfold for men ages 20-74 years was 4.2 (table 21). The corresponding standard deviation for the relative desirable weight of 130 and more was 15.2. Low values of relative desirable weight generally were found among lean persons, and higher relative weights were found among men in a wider range of triceps plus subscapular skinfold values.

The standard deviation of the triceps plus subscapular skinfold also increased for women with increased relative desirable weight (table 22). Among women ages $20-74$ years, at relative desirable weight of less than 85 , the standard deviation of triceps plus subscapular skinfold was 6.8 compared with the standard deviation of 15.2 at relative desirable weight of 130 and more. As shown in tables 23 and 24, a similar pattern was observed for the relationship between triceps plus subscapular skinfold measurements and weight-height index. (Tables that show the distributions of triceps plus subscapular skinfold values according to relative desirable weight or weight-height index for men and women by specific age groups are too numerous to include in this report but are available upon request from NCHS.)

Further analysis of the agreement between obesity and overweight measures showed men and
women with relative desirable weight values less than 100 , that is, less than $85,85-89,90-94$, and $95-99$, also have a very low proportion of obese persons (tables 25 and 26). At higher relative weight values, the proportion of obese persons increased with increased relative desirable weight values. However, an appreciable proportion of persons with high relative desirable weight values were not obese. At the highest relative desirable weight value (30 percent or more above the desirable weight of men and 39 percent or more above the desirable weight of women), 46.9 percent of the men and 55.5 percent of the women were obese.

The pattern of relationships previously found between triceps plus subscapular skinfold values and relative desirable weight also was found between triceps plus subscapular skinfold measurements and weight-height index (tables 27 and 28).

When similar data were examined separately for each age group, the same relationship appeared between obese and overweight measures that previously was observed for men and women across the age range 20-74 years. Low values of weight-height indexes were in categories of lean skinfold measurements, and high values occurred more often in a very wide range of triceps plus subscapular skinfold values. (Tables that show the relationship of triceps plus subscapular skinfold measurements and relative desirable weight or weight-height indexes at selected percentiles by specific sex-age groups are available upon request from NCHS.)

Interrelationship of overweight and obesity

The estimated number and percent of men and women ages $20-74$ years in each of the overweight and/or obesity categories at selected percentile cutting points are presented in tables 29-31 and are graphically shown in figures $4-9$ by method of assessing overweight and obesity and summarized in tables 32 and 33. Estimates of standard error are presented in appendix I, tables V and Vı. At the 95 th percentile cutting point for men, a pooled value was needed because data for specific age groups did not meet standards of precision. Therefore, data were analyzed for ages $20-44,45-64$, and $65-74$ years in place of the six age groups analyzed for the 85 th and 90 th percentile cutting points. A profile of selected body measurements was done for those persons in weight categories obtained from the crossclassification of overweight and obesity measures (see appendix III).

For men at the 85 th percentile cutting point, 12.7 percent (7.3 million) were overweight and obese, 10.5 percent (6.0 million) were overweight but not obese, and 6.6 percent (3.8 million) were obese but not overweight (table 29). The percent of men overweight and obese (12.7 percent) was significantly higher than the percent of men overweight not obese (10.5 percent) and of men obese not overweight (6.6 percent). The percent of men overweight not obese (10.5 percent) was also significantly higher than that of men obese not overweight (6.6 percent). However, at the 95 th percentile, no differences were statistically significant (table 31).

Among women 20-74 years of age, at the 85th percentile cutting point the proportions were largest for women overweight and obese-21.5 percent or 13.8 million-followed by the proportions for women overweight not obese- 8.0 percent or 5.1 millionwith the lowest proportion recorded for women obese not overweight-6.1 percent or 3.9 million (table 29). Like the proportions for men, the percent of women overweight and obese was significantly higher than the percent of women obese not overweight and women overweight not obese. The percent
of women overweight not obese was significantly higher than that of women obese not overweight.

At the 85th percentile cutting point, the percent of men overweight and obese increased significantly from 8.7 percent for ages $20-24$ years to 15.0 percent for men ages $25-34$ years, peaked in this age group, and declined thereafter with no significant agespecific trend. The percent of women overweight and obese increased significantly to ages $35-44$ years, but the increase in percent after age 45 was not large enough to be statistically significant. The percents declined significantly from ages 55-64 to 65-74 years, a decrease of 8.1 percent.

The percent of women overweight and obese was higher than that of men across the age range 20-74 years as well as in each age group; however, only the higher age-specific differences in ages 20-24 and 2534 years were not large enough to be statistically significant. At the 95th percentile cutting point, only the percent of women overweight and obese was significantly higher than that of women obese not overweight.

Sex and age

At the 85th percentile cutting point, the percent of men overweight not obese increased significantly with age only from ages $20-24$ to $35-44$ years. A different pattern was found for women overweight not obese. Significant or consistent age-related trends were shown from ages $25-34$ to $35-44$ years. Similar significant trends were noted from ages $55-64$ to $65-$ 74 years.

The percent of men overweight not obese was higher than that of women overweight not obese across the age range $20-74$ years and in each age group except in ages 65-74 years, but were significantly different only for ages $35-44$ years. A significantly higher percent of women were overweight not obese for ages 65-74 years than men.

At the 85th percentile cutting point, the percents of men and women obese not overweight showed no significant age-related pattern. A slight exception was
Triceps plus subscapular skinfold
and relative desirable weight

Obese not overweight

Overweight not obese

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 4. Percent of men overweight and/ar obese at the 85th percentile estimated from cross-classification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74
noted for women-there was a significant increase in percents between ages $25-34$ and 35-44 years. After the percents peaked at ages 45-54 years, the percents declined slightly with no significant trends. Overall and in each age group, the differences in percents between men and women obese not overweight differed no more than expected from sampling variability.

Across the age range $20-74$ years and in ages 2044 and $45-64$ years at the 95 th percentile cutoff point, the differences in percents of men and women overweight not obese were small enough to be due to
sampling variability. This pattern was not evident for ages 65-74 years for which the difference in percents between sexes was statistically significant. The difference in the percent of men and women obese not overweight at the 95th percentile cutting point was not statistically significant across the age range 20-74 years and in ages $20-44$ and 65-74 years. However, at ages 45-64 years, the difference in percents for men and women was statistically significant. The percent of women overweight and obese was significantly higher than that of men overweight and obese

Figure 5. Percent of men overweight and/or obese at the 90 th percentile estimated from cross-classification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74
at the 95 th percentile cutting point across the age range 20-74 years and at ages 20-44 and 45-64 years. At ages 65-74 years, the difference in percents between men and women was not statistically significant.

Tables 29-31, summarized in tables 32 and 33, show the percents of men and women overweight and/or obese based on cross-classification of triceps plus subscapular skinfold values and weight-height indexes. At all selected percentile cutting points, the direction and the magnitude of the difference between three subsets of overweight and/or obese categories for men and women were found to be the same
as when overweight and/or obesity categories for men and women were based on the cross-classification of relative desirable weight and triceps plus subscapular skinfold values. The significance of the differences in percents between each of the three pairs of categories from the overweight and/or obesity classifications also generally held true. The exceptions were the differences in proportions of women overweight and obese and women obese not overweight at the 95th percentile cutting point and proportions of women overweight not obese and women obese not overweight at the 90th percentile cutting point.

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 6. Percent of men overweight and/or obese at the 95th percentile estimated from cross-classification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74
Triceps plus subscapular skinfold
and relative desirable weight
Obese not overweight

Overweight and obese

Overweight not obese

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 7. Percent of women overweight and/or obese at the 85th percentile estimated from cross-clessification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74
Triceps plus subscapular skinfold
and relative desirable weight

Obese not overweight

Overweight and obese

Overweight not obese

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 8. Percent of women overweight and/or obese at the 90 th percentile estimated from cross-classification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74

NOTE: The confidence intervals are the percent ± 1.96 (for the 95 percent confidence interval) times the standard error of the percent.

Figure 9. Percent of women overweight and/or obese at the 95 th percentile estimated from cross-classification of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by age, with confidence intervals: United States, 1971-74

Discussion

This report presents national estimates of the prevalence of obesity and overweight among adults in the U.S. civilian noninstitutionalized population ages 20-74 years. Estimates were developed from body measurements obtained as part of the first National Health and Nutrition Examination Survey conducted during 1971-74. A distinction was made between estimates of obesity based on triceps plus subscapular skinfold measurements to indicate the amount of subcutaneous adipose tissue and estimates of overweight based on weight indexes, independent of relative fat content.

This report also shows, at one point in time, that estimates of obesity and overweight differ depending on which measure is used and also shows the interrelationship between these measures. The results provide a basis for comparison of estimates over time among the U.S. population. Comparisons will be made in a future report using data from three cycles of this survey: NHANES I 1971-74, National Health Examination Survey (NHES) 1960-62, and NHANES II 1976-80.

The first National Health and Nutrition Examination Survey supplied data to make a comparative analysis of national estimates of obesity and overweight. These data provided cross-sectional estimates for different birth cohorts representative of the U.S. population. The age differences represented data for successive cohorts of persons of different ages when examined and reflect the effect of different environmental and hereditary influences. The limitations of cross-sectional data in contrast to longitudinal data are recognized in considering differences among age categories. The quality of selected body measurements was maintained throughout the survey by trained technicians who followed standardized measurements procedures.

Estimates of prevalence of obesity varied in the literature depending on the method of classifying obesity. Estimates were obtained from two major
sources-life insurance data and epidemiologic surveys taken from selected segments of the population and special study groups-and cannot be easily generalized to the U.S. population. ${ }^{13-18}$ These sources indicated that obesity is a common disorder, but comparisons of estimates are difficult and do not represent a true cross-section of the country's population. Other factors that substantially affect comparability among studies are the different type and quality of techniques and measurements used and the criteria selected to classify obesity.

The earliest and most commonly used method for measuring obesity is to compare heights and weights with established tabulated standards. Life insurance studies determined excess body weight status defined as the deviation of observed weight from standard weight for a given sex, age, and height multiplied by 100. These data initially were obtained from the Medico-Actuarial Investigations (1912) ${ }^{13}$ and later from the Build and Blood Pressure Study, 195914 and the Build Study, 1979.15 Others, such as the Framingham Heart Study, defined obesity as a relative weight of 20 percent or more above the median weight for a given height and sex. ${ }^{16}$

Because it is recognized that height and weight alone are incomplete indicators of obesity, "desirable" weight tables that consider measurements of body build were developed by the Metropolitan Life Insurance Company for adults 25 years of age and over. ${ }^{17-19}$ The tables were devised in response to criticism that weight-height tables ignored the disadvantages of gains in body weight with advancing years as well as variations in body build that influence weight.

Largely by necessity, life insurance studies of association of obesity and mortality have been limited to use of height and weight as measures of body fat. However, these measures are not satisfactory for studying the influence of obesity on mortality. Obesity, an excess accumulation of fat,
has been used interchangeably with overweight or excess body weight above average or desirable weight. Total body weight is a measure of bone, muscle, and fat, and departure from average weight may be due to one or a combination of these components. Overweight prevention and control is directed against overweight due to fat, which is primarily the result of food intake in excess of the energy requirements of the individual.

Although direct anatomical and chemical methods for estimation of body fat are not suitable for large-scale epidemiologic surveys, the indirect method, such as measurement of skinfold thickness, meets the need for a simple test of relative fatness as basis for estimation of prevalence of obesity. If skinfold measurements are not available, the most satisfactory index is the body mass index, W/H ${ }^{P} .{ }^{8,9}$ This index is easy to compute and applies to all populations without the need for a reference population. A reference population is necessary for obtaining relative desirable weight, the ratio of a subject's weight to desirable weight for height and sex.

Among men and women, at the 95th percentile cutoff point, there were no significant differences in the percents of individuals assessed obese and overweight using the skinfold thickness values and weightheight index methods of assessing obesity. These findings also were found generally by age except at ages 55-64 years for men and at ages 65-74 years for women, where the differences in prevalence of obesity as estimated by the overweight methods (relative desirable weight and weight-height index) and the obese method (skinfold thickness) were significant.

Findings at the 95 th percentile that the terms "overweight" and "obesity" may be used interchangeably were not evident at the 85th and 90th percentile cutoff levels. Among men, the prevalence of overweight determined by the overweight methods generally overestimated the prevalence of obesity as determined by skinfold thickness measurements.

Among women ages 20-74 years at the 85 th and 90 th percentiles, the prevalence of women overweight determined by the overweight methods also was higher than the prevalence of women obese determined by skinfold thickness. The differences in prevalence rates were too large to reflect sampling variability alone.

The differences in prevalence rates of obesity between the overweight methods and the obese method in ages 55-74 years also were large enough to be statistically significant. The differences in percents between methods among women ages 20-54 years were not statistically significant.

The lack of agreement between the overweight measure and the obesity measure also was noted when triceps plus subscapular skinfold values were distributed according to relative desirable weight values using triceps plus subscapular skinfold measurements as the criterion of obesity. A large percent
of men and women who have a high relative desirable weight were not excessively obese.

At 20 percent or more above the desirable weight, an arbitrary estimate that presumes obesity, only about a quarter of the men and a third of the women were classified as obese at skinfold criterion of the 95 percentile. At the same percent or more above the desirable weight and a lower criterion of obesity of the 85 percentile, an appreciable percent of men and women could not be characterized as obese. Similar findings were observed when triceps plus subscapular skinfold values were distributed according to weightheight indexes using triceps and subscapular skinfold as the criterion of obesity.

One shortcoming in any effort to define an association between weight status and morbidity or mortality is the lack of information on obesity, contrasted with overweight. The estimates of obesity based on studies of the relationship of obesity to heart disease all measure obesity in terms of departure of observed weight from a weight-height standard; the departure from such a standard may be due to body components other than fat.

This possibility was suggested in reports by several investigators. A study by Seltzer and Mayer reported that, at least among females, there may be an association between increased mortality and body type, without regard to obesity. ${ }^{20}$ Gertler and associates in clinical studies on young adults with coronary heart disease also found more dominant mesomorphs than endomorphs. ${ }^{21}$ A necropsy study by Spain and others with special reference to somatotypes (body build classification) also suggested the association of dominant mesomorphs (tendency toward muscularity) with coronary heart disease. ${ }^{22}$ Robinson and Brucer studied the relationship of obesity and body build to hypertension and concluded that body build is an important predisposing factor, and obesity was a small factor. ${ }^{23}$ Harlan and others ${ }^{24}$ reported that independent measures of body mass index and skinfold thickness (triceps plus subscapular) showed a consistent and strong relationship with blood pressure (systolic and diastolic levels). However, it is likely that primary relationship of body mass index to blood pressure represents a relationship between adiposity and blood pressure.

Because of this interest in the interrelationship of obesity and overweight, further estimates of obesity, as suggested by others, 25,26 were obtained by combining triceps plus subscapular skinfold values with each of the weight indexes, relative desirable weight or weight-height index. Although the weight indexes accounted only for height, with no special reference to body build, skeletal framework, and muscular development, the profile of weight indexes of individuals from NHANES I data suggested that, on the average, the higher weight index categories have larger mean body build values than lower weight index categories. The cross-classification of triceps
plus subscapular skinfold values with relative desirable weight or weight-height index produced categories of overweight and/or obesity, overweight not obese, overweight and obese, and obese not over-
weight. The height, weight, and a measurement of subcutaneous fat have been suggested as the "irreducible" basic data in the application of body measurements in nutritional research and appraisal. ${ }^{2}$

References

${ }^{1}$ National Center for Health Statistics: Plan and operation of the Health and Nutrition Examination Survey, United States, 1971-73, by Vital and Health Statistics. Series 1-Nos. 10a and 10b. DHEW Pub. No. (HSM) 73-1310. Health Services and Mental Health Administration. Washington. U.S. Government Printing Office, Feb. 1973.
${ }^{2}$ Committee on Nutritional Anthropometry, Food and Nutrition Board: National Research Council Recommendations concerning body measurements for the characterization of nutritional status, in J. Brozek, ed., Body Measurements and Human Nutrition. Wayne University Press, 1956.
${ }^{3}$ A. Keys and F. Grande: Body weıght, body composition and calorie status, in R. S. Goodhart, and M. S. Shils, eds., Modern Nutrition in Health and Disease. Philadelphia. Lea and Febiger, 1973, pp. 1-27.
${ }^{4}$ A. Keys and J. Brozek: Body Fat in Adult Man, Physiol. Rev. 33:245-323, 1953.
${ }^{5}$ R. M. Malina: Quantifications of fat, muscle and bone in man. Clin. Orthop. 65:9-38, 1969.
${ }^{6}$ T. Khosla and C. R. Lowe: Indices of obesity derived from body weight and height. Brit. J. Prev. Soc. Med. 21:122-128, 1967.
${ }^{7}$ W. Z. Billewicz, W. F. F. Kemsley, and A. M. Thomson: Indices of adiposity. Brit. J. Prev. Soc. Med. 16:183-188, 1962.
8 J . Womersley and J. V. G. A. Durnin: A comparison of the skinfold method with extent of "overweight" and various weight-height relationships in the assessment of obesity. Brit. J. Nutr. 38:271, 1977.
${ }^{9}$ A. F. Keys, M. J. Fidanza, Karvonen, N. Kimura, and H. L. Taylor: Indices of relative weight and obesity.J. Chrom. Dis. 25:329-343, 1972.
${ }^{10}$ U. Goldbourt and J. H. Medalie: Weight-Height Indices: Choice of the most suitable index and its association with selected variables among 10,000 adult males of heterogeneous origin. Brit. J. Prev. Soc. Med. 28:116-126, 1974.
11R. J. Benn: Some mathematical properties of weight for height indices as measures of adiposity. Brit. J. Prev. Soc. Med. 25:42-50, 1971.
${ }^{12}$ C. DuV. Florey: The use and interpretation of ponderal index and other weight-height ratios in epidemiological studies. J. Chron. Dis. 23:99-103, 1970.
${ }^{13}$ The Association of Life Insurance Medical Directors and the Actuarial Society of America: Medico-Actuarial Mortality Investigation. Vol. 1. New York, 1912.
${ }^{14}$ Society of Actuaries: Build and Blood Pressure Study. Vol. 1. Chicago, 1959.
${ }^{15}$ Society of Actuaries and Association of Life Insurance Medical Directors of America: Build Study 1979. Recording and Statistical Corporation. Mar. 1980.
${ }^{16}$ W. B. Kannel, G. Pearson, and P. M. McNamara: Obesity as a force of morbidity and mortality, in F. P. Heald, ed., Adolescent Nutrition and Growth. New York. Appleton-CenturyCrofts, 1969.
${ }^{17}$ Metropolitan Life Insurance Co.: Ideal Weights for Men. Statistical Bulletin 23:6, 1942.
${ }^{18}$ Metropolitan Life Insurance Co.: Ideal Weights for Women. Statistical Bulletin 24:6, 1943.
${ }^{19}$ Metropolitan Life Insurance Co.: New Weight Standards for Men and Women. Statistical Bulletin 40:1, 1959.
${ }^{20}$ C. C. Seltzer and J. Mayer: Body build and obesity-Who are the obese? JAMA 189:677-684, 1964.
${ }^{21}$ M. M. Gertler, S. M. Garn, and P. D. White: Young candidates for coronary heart disease, JAMA 1947:621-625, 1951.
${ }^{22}$ D. M. Spain, V. A. Bradess, and G. Huss: Observations on atherosclerosis of the coronary arteries in males under age 46. A necropsy study with special reference to somatotypes. Ann. Intern. Med. 38:254-277, 1953.
${ }^{23}$ S. C. Robinson and M. Brucer: Hypertension, body build and obesity. Am J. Med. Sci. 199:819-829, 1940.
${ }^{24}$ National Center for Health Statistics, W. R. Harlan, A. L. Hull, R. P. Schmonder, and others. Dietary intake and cardiovascular risk factors: United States, 1971-74, by Vital and Health Statistics. Series 11-No. 226. DHHS Pub. No. (PHS) 821676. Public Health Service. Washington. U.S. Government Printing Office. In press.
${ }^{25}$ A. Keys and J. Brozek: Overweight versus obesity and the evaluation of calorie needs. Metabolism 5:425-434, 1957.
${ }^{26}$ E. J. Boothby, M. A. Guy, and T. A. L. Davies: Monthly Bulletin, Ministry of Health 11:208, Great Britain, 1952.
${ }^{27}$ Institute for Survey Research: The HANES Study, Final Report. Contract No. ESM 110-73-376. Philadelphia. Temple University of the Commonwealth System of Higher Education.
28 A Comparison and Analysis of Examined and Unexamined Persons on Medical History Characteristics for the First Round of the Health and Nutrition Examination Study. Contract No. HSM-1 10-73-371. Rockville, Md. Westat, Inc., Jan. 24, 1974.
${ }^{29}$ National Center for Health Statistics: Factors related to response in a health examination survey: United States, 19601962, by Vital and Health Statistics. Series 2-No. 6. DHEW Pub. No. (HSM) 73-1263. Health Services and Mental Health Administration. Washington. U.S. Government Printing Office, Aug. 1969.
${ }^{30}$ Memorandum from Wesley L. Schaible, Acting Chief, Methodological Research Branch to Arthur J. McDowell, Director: re: same evidence regarding nonresponse bias in DHES data. June 21, 1974.
${ }^{31}$ National Center for Health Statistics, P. S. McCarthy: Replication, an approach to the analysis of data from complex surveys, by Vital and Health Statistics. PHS Pub. No. 1000-Series 2-No. 14. Public Health Service. Washington. U.S. Government Printing Office, Apr. 1966.
${ }^{32}$ National Center for Health Statistics, G. Jones: HES Variance and Cross Tabulation Program (In House Program), Version 2. Mar. 10, 1977, p. 11.
${ }^{33}$ A. R. Behnke and J. H. Wilmore: Evaluation and Regulation of Body Build and Composition. Englewood Cliffs, N.J. Prentice Hall, Inc., 1974.
${ }^{34}$ National Center for Health Statistics, S. Abraham, C. L. Johnson, and M. F. Najjar: Weight and height of adults, 18-74 years of age, United States, 1971-74, by Vital and Health Statistics. Series 11-No. 211. DHEW Pub. No. (PHS) 79-1659. Public Health Service. Washington. U.S. Government Printing Office, May 1979.

List of detailed tables

1. Mean values of relative desirable weight and triceps plus subscapular skinfold for persons overweight and/or obese below and above selected percentiles of criteria measures, by sex and age: United States, 1971-74
2. Mean values of weight-height index and triceps plus subscapular skinfold for persons overweight and/or obese below and above selected percentiles of criteria measures, by sex and age: United States, 1971-74
3. Cumulative percent distribution of triceps plus subscapular skinfold of men, by age: United States, 1971-74
4. Cumulative percent distribution of triceps plus subscapular skinfold of women, by age: United States, 1971-74
5. Number of examined persons, estimated population in thousands, and means, standard deviations, and selected percentiles of triceps plus subscapular skinfold of adults, by sex and age: United States, 1971-74
6. Number of examined persons, estimated population in thousands, and number and percent of persons obese at selected percentiles based on triceps plus subscapular skinfold, by sex and age: United States, 1971-74
7. Cumulative percent distribution of relative standard weight of men, by age: United States, 1971-74
8. Cumulative percent distribution of relative standard weight
of women, by age: United States, 1971-74
9. Cumulative percent distribution of relative desirable weight of men, by age: United States, 1971-74
10. Cumulative percent distribution of relative desirable weight of women, by age: United States, 1971-74
11. Number of examined persons, estimated population in thousands, and mean, standard deviation, and selected percentiles of relative standard weight of adults, by sex and age: United States, 1971-74
12. Number of examined persons, estimated population in thousands, and mean, standard deviation, and selected percentiles of relative desirable weight of adults, by sex and age: United States, 1971-74
13. Number of examined persons, estimated population in thousands, and number and percent of persons overweight at selected percentiles based on relative desirable weight, by sex and age: United States, 1971-74
14. Cumulative percent distribution of the weight-height index
of men, by age: United States, 1971-74 37
15. Cumulative percent distribution of the weight-height index of women, by age: United States, 1971-74 38
16. Number of examined persons, estimated population in thousands, and mean, standard deviation, and selected percentiles of weight-height index, by sex and age: United States, 1971-74
17. Number of examined persons, estimated population in thousands and number and percent of persons overweight at selected percentiles based on the weight-height index, by sex and age: United States, 1971-74
18. Correlation coefficient of height and of weight with obasity and overweight measures, by sex and age: United States, 1971-74
19. Percent of men and women obese and overweight at selected percentile cutting points, by sex and age: United States, 1971-74
20. Number of examined persons, estimated population in thousands, and coefficients of correlation of triceps plus subscapular skinfold with relative desirable weight and weightheight index, by sex and age: United States, 1971-74
21. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for relative desirable weights of men ages 20-74 years, with mean and standard deviation: United States, 1971-74
22. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for relative desirable weights of women ages 20-74 years, with mean and standard deviation: United States, 1971-74
23. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of men ages 20-74 years, with mean and standard deviation: United States, 1971-74
24. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of women ages 20-74 years, with mean and standard deviation: United States, 1971-74
25. Number of examined persons, estimated population in thousands, and number and percent of men obese for relative desirable weight according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971.74
26. Number of examined persons, estimated population in thousands, and number and percent of women obese for relative
desirable weight according to triceps plus subscapular skinfold levels of obesity for ages $20-74$ years: United States, 1971-74
27. Number of examined persons, estimated population in thousands, and number and percent of men obese for weightheight index according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971-74
28. Number of examined persons, estimated population in thousands, and number and percent of women obese for weightheight index according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971-74
29. Number of examined persons, estimated population in thousands, and number and percent of persons overweight and/or obese at below and above the 85th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weightheight index, by sex and age: United States, 1971-74
30. Number of examined persons, estimated population in thousands, and number and percent of persons overweight and/or obese at below and above 90th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weight-height index, by sex and age: United States, 1971-74
31. Number of examined persons, estimated population in thousands, and number and percent of persons of overweight and/ or obese at below and above 95th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weightheight index, by sex and age: United States, 1971-74
32. Percent of men overweight and/or obese at below and above selected percentile cuting points, by age and method of determining weight status: United States, 1971-74
33. Percent of women overweight and/or obese at below and stbove selected percentile cutting points, by age and method of determining weight status: United States, 1971-74

Table 1. Mean values of relative desirable weight ${ }^{1}$ and triceps plus subscapular skinfold ${ }^{2}$ for persons overweight and/or obese below and above selected percentiles of criteria measures, by sex and age: United States, 1971-74

2Obesity-triceps plus subscapular skinfold

Table 2. Mean values of weight-height index ${ }^{1}$ and triceps plus subscapular skinfold ${ }^{2}$ for persons overweight and/or obese below and above selected percentiles of criteria measures, by sex and age: United States, 1971-74

	Age	Men						Women					
		Overweight				Not overweight		Overweight				Not overweight	
		Not obese		Obese		Obese		Not obese		Obese		Obese	
		Weightheight index	Triceps plus subscapular skinfold										
		85th percentile											
20-74 years	-	30	31	32	50	26	43	37	45	42	67	32	58
20-24 years	-	29	31	32	53	26	45	37	44	42	68	32	57
25-34 years	.	30	30	26	52	33	43	37	45	42	69	31	58
35-44 years	-	30	30	32	47	27	44	37	44	42	68	31	57
45-54 years	.	30	31	32	50	26	43	37	46	41	67	32	57
55-64 years		30	31	33	49	26	44	37	45	41	65	32	58
65-74 years		30	30	31	49	26	43	37	43	41	64	32	58
		90th percentile											
20-74 years	-	31	34	34	55	27	48	40	50	44	73	34	64
20-24 years	. .	31	36	33	58	28	49	41	52	45	75	35	65
25-34 years	.	31	34	34	56	27	48	40	52	45	75	34	65
35-44 years	. .	31	34	34	54	27	48	41	51	45	74	34	64
45-54 years	.	31	33	34	56	27	47	40	51	44	73	34	63
55-64 years		31	33	35	52	25	47	40	51	44	72	34	64
65-74 years		31	33	32	53	27	48	40	48	44	69	35	64
		95th percentile											
20-74 years	-•	34	40	37	64	29	57	46	59	49	83	38	73
20-24 years	. .	34	48	35	68	29	56	45	62	52	86	37	75
25-34 years	-•	34	42	38	66	29	57	46	60	49	82	38	73
35-44 years	. .	34	39	39	67	29	57	47	60	49	83	38	73
45-54 years		34	40	37	63	30	58	46	60	50	83	39	74
55-64 years	. .	35	38	37	61	30	54	45	58	50	84	38	71
65-74 years	.	34	39	34	63	29	57	45	57	48	80	39	73

[^3]Table 3. Cumulative percent distribution of triceps plus subscapular skinfold of men, by age: United States, 1971-74

Triceps plus subscapular skinfold (in millimeters)	Age							
	$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	55-64 years	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$	$\begin{gathered} 20-29 \\ \text { years } \end{gathered}$
	Percent distribution							
Under 8	0.5	0.7	0.3	0.3	0.5	0.8	0.4	0.5
Under 10	2.0	2.4	1.8	1.5	2.2	2.1	2.1	1.6
Under 12	5.5	9.8	5.5	4.5	4.0	4.6	5.4	8.2
Under 14	9.7	16.8	10.2	7.9	7.1	8.5	9.0	14.8
Under 16	15.2	26.5	16.8	11.2	11.2	13.0	13.8	24.0
Under 18	20.6	34.9	22.6	15.3	15.6	18.0	19.3	31.0
Under 20	26.3	42.3	27.9	21.1	20.8	22.7	25.8	37.6
Under 22	33.0	48.9	33.8	26.8	26.4	32.7	33.2	44.6
Under 24	39.5	53.9	41.0	33.3	34.9	37.6	39.6	51.1
Under 26	46.6	59.0	47.3	41.3	41.0	47.3	46.9	56.9
Under 28	53.2	65.0	53.9	47.8	47.6	53.4	55.2	62.6
Under 30	59.3	70.5	60.4	54.1	53.6	59.8	61.6	68.7
Under 32	65.6	75.3	65.8	64.0	59.4	64.7	67.4	73.2
Under 34	71.5	79.4	70.7	71.0	65.7	72.7	72.5	77.4
Under 36	76.9	84.1	75.3	74.9	73.3	78.0	79.4	81.8
Under 38	80.6	87.3	79.2	78.8	77.2	81.5	83.4	84.7
Under 40	84.1	89.7	82.8	83.7	80.7	84.1	87.3	87.4
Under 42	86.4	90.6	85.2	86.0	83.8	86.6	89.1	88.9
Under 44	89.0	91.2	87.6	89.3	87.9	88.9	91.3	90.4
Under 46	91.0	92.3	90.4	91.2	89.7	91.0	93.1	91.6
Under 48	92.9	93.6	91.5	94.2	91.3	93.7	94.4	92.6
Under 50	94.3	94.8	93.3	95.4	92.8	95.4	95.6	94.3
Under 52	95.3	95.6	94.0	96.4	93.9	96.5	96.2	95.2
Under 54	96.2	96.6	94.9	97.5	95.1	97.1	96.9	95.9
Under 56	96.7	97.1	95.3	97.6	95.8	98.1	97.6	96.4
Under 58	97.4	97.7	96.2	98.0	96.6	98.7	98.2	97.3
Under 60	97.9	97.8	97.1	98.1	97.6	98.9	98.6	97.5
Under 62	98.3	98.1	97.5	98.6	98.1	99.3	99.0	97.9
Under 64	98.6	98.1	98.1	98.6	98.6	99.4	99.2	98.0

Table 4. Cumulative percent distribution of triceps plus subscapular skinfold of women, by age: United States, 1971-74

Triceps plus subscapular skinfold (in millimeters)	Age							
	20-74 years	$20-24$ years	25-34 years	35-44 years	45-54 years	55-64 years	$65-74$ years	$\begin{aligned} & 20-29 \\ & \text { years } \end{aligned}$
	Percent distribution							
Under 8	0.0	0.1	-	0.0	0.1	0.0	-	0.0
Under 10	0.3	0.3	0.0	0.2	0.2	0.6	0.3	0.2
Under 12	0.6	0.8	0.2	0.6	0.4	0.6	1.1	0.6
Under 14	1.0	1.4	0.7	1.0	0.8	0.8	1.6	1.2
Under 16	2.1	3.4	2.1	1.6	1.6	1.8	2.6	2.9
Under 18	3.7	6.6	3.9	3.2	2.4	3.3	3.8	5.4
Under 20	6.2	11.2	7.7	4.7	3.3	5.6	4.8	10.2
Under 22	9.4	17.8	12.6	7.4	4.7	7.5	6.3	16.5
Under 24	13.1	23.8	17.8	11.1	7.2	9.5	8.5	22.5
Under 26	17.0	29.5	22.4	15.5	11.5	11.0	10.8	27.9
Under 28	21.9	37.9	28.2	19.4	14.3	15.5	15.2	35.3
Under 30	26.6	45.1	34.4	24.1	16.7	19.1	18.7	42.0
Under 32	31.6	50.3	40.4	29.4	21.0	23.8	23.2	47.5
Under 34	36.3	56.2	45.5	33.8	25.5	27.0	28.3	53.1
Under 36	41.2	60.4	50.8	39.3	28.9	32.3	34.1	57.9
Under 38	45.2	63.8	55.2	43.2	32.5	36.0	39.2	61.5
Under 40	49.7	68.7	59.1	48.4	37.5	39.2	44.7	65.6
Under 42	54.2	73.4	63.4	52.1	41.7	43.5	51.5	70.1
Under 44	58.0	76.5	67.3	55.6	45.5	46.8	57.0	73.8
Under 46	62.1	79.8	71.0	59.5	51.6	49.6	61.2	77.3
Under 48	65.7	82.4	73.8	62.7	55.9	54.6	65.5	79.8
Under 50	69.2	84.7	77.1	66.3	59.1	58.5	70.3	82.6
Under 52	72.4	86.8	79.0	69.3	62.9	63.6	73.9	84.4
Under 54	75.2	88.3	80.8	72.9	66.5	67.4	76.5	86.1
Under 56	78.6	89.6	82.8	76.2	72.3	72.5	79.1	87.8
Under 58	81.0	91.4	84.9	78.7	74.7	75.0	83.1	89.3
Under 60	83.9	92.1	86.8	81.8	78.6	79.1	86.4	90.6
Under 62	85.9	92.6	88.0	84.4	81.8	81.6	88.9	91.4
Under 64	88.2	93.9	89.2	86.7	84.8	85.6	90.5	92.4
Under 66	90.3	95.7	91.2	88.2	87.5	88.0	92.6	94.2
Under 68	91.5	96.4	92.0	89.7	89.0	89.4	93.8	94.9
Under 70	92.9	96.7	93.1	92.1	90.1	92.1	94.9	95.7
Under 72	94.1	97.1	94.4	93.1	91.6	93.3	96.1	96.4
Under 74.	94.9	97.4	95.3	93.9	92.4	95.0	96.7	97.0
Under 76	95.9	97.8	96.0	95.3	93.9	95.9	97.3	97.6
Under 78	96.4	98.1	96.4	96.0	94.6	96.4	98.3	97.9
Under 80	97.1	98.4	96.7	96.7	96.1	96.9	98.6	98.2
Under 82	97.6	98.5	97.3	97.1	96.8	97.7	98.8	98.3
Under 84	97.9	99.0	97.9	97.2	97.1	98.0	98.9	98.9
Under 86	98.2	99.2	98.2	97.4	97.4	98.4	99.3	99.1
Under 88	98.5	99.3	98.7	97.9	97.7	98.5	99.3	99.3
Under 90	98.8	99.3	98.8	98.0	98.8	98.7	99.5	99.3

Table 5. Number of examined persons, estimated population in thousands, and means, standard deviations, and selected percentiles of triceps plus subscapular skinfold of adults, by sex and age: United States, 1971-74

Sex and age	Number in sample	Estimated population in thousands	Mean	Standard deviation	Percentile								
					5th	10th	15th	$25 t h$	50th	75th	85th	90th	95th
Nien			Triceps plus subscapular skinfold (in millimeters)										
20-74 years	5,001	57,507	28.3	12.5	11.5	14.0	15.5	19.0	26.5	35.0	40.5	44.5	51.0
20-24 years	513	8,110	24.9	12.7	10.0	12.0	13.0	15.0	22.0	31.0	36.1	40.0	50.1
25-34 years	804	13,003	28.5	13.6	11.5	13.5	15.0	19.0	26.0	35.5	41.1	45.0	54.0
35-44 years	664	10,676	29.2	11.6	12.0	15.0	17.5	21.0	28.0	36.0	41.0	44.0	48.5
45-54 years	765	11.150	29.9	12.6	13.0	15.0	17.5	21.0	28.0	37.0	42.0	46.0	53.0
55-64 years	598	9,073	28.2	11.7	12.0	14.0	16.5	20.0	26.0	34.1	40.1	44.0	48.1
65-74 years	1,657	5,496	27.7	11.5	11.5	14.0	16.0	19.5	26.0	34.1	38.5	42.6	49.0
20-29 years	984	15,458	25.9	13.0	10.5	12.0	14.0	16.0	23.0	32.0	38.0	43.0	51.1
Women													
20-74 years	8,130	64,158	42.3	17.4	18.5	22.0	24.8	29.0	40.0	53.5	60.6	65.1	74.0
20-24 years	1,243	9.215	35.1	15.4	17.0	19.0	21.0	24.0	31.5	43.0	50.0	56.0	65.0
25-34 years	1,896	13,933	39.3	17.3	18.5	20.5	22.5	26.5	35.1	48.1	58.0	64.1	73.0
35-44 years	1,664	11,593	43.6	18.0	20.0	23.0	25.5	30.0	40.5	55.0	62.0	68.0	75.1
45-54 years	836	12,163	46.6	17.4	22.0	25.0	28.0	33.5	45.0	58.0	64.0	69.5	78.6
55-64 years	669	9,976	45.8	17.5	19.0	25.0	27.5	33.0	46.0	58.0	63.5	68.0	73.1
65-74 years	1,822	7,277	42.8	15.3	20.0	25.0	27.5	32.1	41.0	52.5	59.0	63.0	70.0
20-29 years	2,280	16,789	36.2	16.0	17.5	19.5	21.1	24.5	32.5	44.0	52.0	58.5	68.0

Table 6. Number of examined persons, estimated population in thousands, and number and percent of persons obese at selected percentiles based on triceps plus subscapular skinfold, by sex and age: United States, 1971-74

Sex and age		Number of examined persons	Estimated population in thousancs	Obesity at selected percentile ${ }^{1}$						
		85th percentile or more		90th percentile or more		95th percentile or more				
		Number		Percent	Number	Percent	Number	Percent		
Men										
20-74 years	- - . . - . -		5,001	57,507	11.133	19.4	6,900	12.0	2,929	5.1
20-24 years			513	8,110	1,026	12.7	735	9.1	369	4.5
25-34 years	-•••••	804	13,003	2,706	20.8	1,768	13.6	853	6.6	
35-44 years	- - . . -	664	10,676	2,264	21.2	1,186	11.1	404	3.8	
45-54 years		765	11,150	2,544	22.8	1,574	14.1	708	6.3	
55-64 years		598	9,073	1,681	18.5	1,089	12.0	382	4.2	
65-74 years	-•••••••	1,657	5,496	911	16.6	549	10.0	214	3.9	
Women										
20-74 years	-••••••••	8,130	64,158	17,740	27.7	11,424	17.8	5,480	8.5	
20-24 years	-•••••••	1,243	9,215	1,220	13.2	751	8.1	334	3.6	
25-34 years	1,896	13,933	2,921	21.0	2,008	14.4	1,109	8.0	
35-44 years	-••••••••	1,664	11,593	3,554	30.7	2,310	19.9	1,190	10.3	
$45-54$ years		836	12,163	4,510	37.1	2,900	23.8	1,339	11.0	
55-64 years	- \cdot •	669	9,976	3,632	36.4	2,318	23.2	1,053	10.6	
65-74 years	-••••••••	1,822	7,277	1,902	26.1	1,139	15.7	455	6.3	

1 Obesity measure is based on triceps plus subscapular skinfold and is defined at the sex-specific 85 th, 90 th, and 95 th percentiles for persons ages 20-29 years.

Table 7. Cumulative percent distribution of relative standard weight of men, by age: United States, 1971-74

Relative standard weight ${ }^{1}$	Age							
	$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	55-64 years	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-29 \\ & \text { years } \end{aligned}$
	Percent distribution							
Under 85	15.0	16.2	15.0	13.6	13.9	17.1	14.9	16.7
Under 90	26.3	28.9	29.3	24.5	23.1	27.1	23.8	31.2
Under 95	38.5	43.0	42.6	35.2	34.8	38.3	36.3	44.7
Under 100	52.1	56.0	55.6	48.9	49.4	51.9	49.6	57.6
Under 105	66.8	67.8	66.8	65.8	67.5	68.3	63.7	69.4
Under 110	77.6	78.7	77.3	77.7	76.4	78.5	77.4	80.0
Under 115	85.7	86.4	84.3	86.8	85.9	85.6	85.4	87.0
Under 120	91.0	91.6	89.6	92.6	91.4	90.2	91.0	91.5
Under 125	94.2	93.1	93.1	95.7	93.9	94.8	94.9	93.2
Under 130	96.1	95.7	94.9	97.6	96.2	95.9	97.0	95.1
Under 135	97.2	96.7	95.9	98.1	97.9	97.2	98.5	96.2
Under 140	98.1	98.4	97.1	98.7	97.9	98.4	98.9	98.0
Under 145	98.8	98.6	98.2	99.0	98.8	99.3	99.5	98.4
Under 150	99.0	98.7	98.5	99.2	99.0	99.4	99.6	98.6
Under 155	99.3	99.7	98.7	99.2	99.2	99.4	99.7	99.2
Under 160	99.4	99.7	99.0	99.2	99.5	99.4	99.9	99.4

${ }^{1}$ Based on average weights estimated from regression equations of weight on height for men of age-specific groups.

Table 8. Cumulative percent distribution of relative standard weight ${ }^{1}$ of women, by age : United States, 1971-74

Relative standard weight ${ }^{1}$	Age							
	$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	55-64 years	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$	$\begin{gathered} 20-29 \\ \text { years } \end{gathered}$
	Percent distribution							
Under 85	26.2	20.2	26.9	29.9	28.2	26.7	22.9	24.8
Under 90	38.7	34.4	40.2	44.8	38.1	37.4	34.7	38.9
Under 95	51.9	50.9	55.0	56.2	50.3	49.4	46.5	54.3
Under 100	61.7	62.2	64.4	64.2	60.9	58.4	57.5	64.8
Under 105	70.6	72.9	73.9	71.8	68.9	67.4	66.5	74.8
Under 110	77.3	79.5	79.1	77.2	76.5	75.3	74.9	80.4
Under 115	82.5	85.3	82.7	81.9	82.6	80.9	81.9	85.1
Under 120	86.8	90.3	85.7	85.3	86.5	87.0	87.0	88.9
Under 125	89.8	92.0	88.1	88.0	90.6	90.5	90.5	90.7
Under 130	92.2	93.7	91.1	90.6	92.3	92.9	93.5	92.8
Under 135	94.0	94.8	92.7	92.9	93.8	95.6	95.2	94.3
Under 140	95.3	95.7	93.8	94.2	95.3	96.8	97.1	95.2
Under 145	96.4	96.3	95.4	96.0	96.0	97.5	97.9	96.3
Under 150	97.3	97.1	96.6	97.1	96.5	98.4	98.6	97.1
Under 155	98.1	97.7	97.3	97.5	98.6	98.7	99.1	97.9
Under 160	98.5	98.3	98.1	98.0	98.7	98.8	99.3	98.5
Under 170	99.0	99.1	98.7	98.7	99.4	98.9	99.7	99.2
Under 180	99.3	99.2	99.1	98.9	99.5	99.4	99.8	99.4
Under 190	99.6	99.5	99.5	99.5	99.8	99.6	99.9	99.6

[^4]Table 9. Cumulative percent distribution of relative desirable weight of men, by age: United States, 1971-74

Relative desirable weight ${ }^{1}$	Age						
	$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{gathered} 35-44 \\ \text { years } \end{gathered}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	$55-64$ years	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$
	Percent distribution						
Under 85	10.5	20.3	9.6	6.4	8.5	9.7	11.2
Under 90	18.4	32.1	18.9	12.6	14.6	17.2	18.4
Under 95	29.9	48.1	32.8	23.0	23.2	27.0	27.9
Under 100	41.5	60.5	46.7	32.1	33.8	38.0	40.9
Under 105	54.0	71.7	58.4	44.8	48.2	49.7	53.7
Under 110	67.8	81.4	69.7	60.9	64.3	65.5	67.5
Under 115	78.0	89.0	78.6	73.0	74.4	76.7	79.4
Under 120	85.9	92.6	86.4	82.8	84.2	84.2	86.6
Under 125	90.7	94.7	90.2	89.6	89.5	89.6	91.9
Under 130	94.0	96.6	93.1	94.8	92.9	92.4	95.5
Under 135	95.8	98.0	94.9	96.4	95.2	94.5	97.3
Under 140	97.2	98.6	96.3	97.6	97.3	96.1	98.5
Under 145	97.9	98.6	97.1	98.1	97.9	97.6	98.8
Under 150	98.7	99.2	98.2	99.0	98.0	99.0	99.5
Under 155	99.1	99.7	98.5	99.0	98.8	99.3	99.7
Under 160	99.3	100.0	98.7	99.2	99.0	99.4	99.9

${ }^{1}$ Relative desirable weight is observed weight divided by desirable weight times 100 , based on average weights estimated from regression equation of weight based on height for men ages 20-29 years.

Table 10. Cumulative percent distribution of relative desirable weight of women, by age: United States, 1971-74

Relative desirable weight ${ }^{1}$	Age						
	$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25.34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 55-64 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$
	Percent distribution						
Under 85	12.7	23.6	18.0	10.3	7.5	9.2	6.4
Under 90	22.2	37.0	31.4	19.5	14.9	14.5	13.0
Under 95	34.1	53.9	44.2	31.8	26.8	23.5	20.3
Under 100	45.3	65.7	57.4	45.2	36.4	31.5	30.3
Under 105	55.3	75.5	66.0	55.7	46.3	41.5	42.2
Under 110	63.7	80.7	74.7	63.5	56.8	50.4	51.0
Under 115	70.5	87.5	79.4	69.9	64.0	58.8	59.7
Under 120	76.4	90.5	82.8	75.7	72.0	66.0	68.5
Under 125	81.1	92.8	85.7	80.2	77.5	73.2	75.6
Under 130	84.7	93.8	88.1	82.8	83.1	78.1	81.5
Under 135	88.2	95.2	90.8	86.1	86.5	84.0	85.8
Under 140	90.8	95.9	92.4	88.7	89.7	88.3	89.9
Under 145	92.8	97.0	93.7	91.1	92.0	90.9	92.4
Under 150	94.4	97.2	95.2	93.1	93.3	93.3	94.5
Under 155	95.8	97.8	96.5	94.1	94.9	95.4	96.1
Under 160	96.6	98.4	97.0	95.8	95.5	96.6	97.2
Under 170	98.0	99.1	98.2	97.5	97.0	98.0	98.5
Under 180	98.8	99.3	98.8	98.0	98.8	98.7	99.3
Under 190	99.2	99.5	99.3	98.8	99.4	98.8	99.5

${ }^{1}$ Relative desirable weight is observed weight divided by desirable weight times 100 , based on average weights estimated from regression equation of weight based on height for women ages $20-29$ years.

Table 11. Number of examined persons, estimated population in thousands, and means, standard deviations, and selected percentiles of relative standard weight of adults, by sex and age: United States, 1971-74

Sex and age	Number in sample	Estimated population in thousands	Mean	Standard deviation	Percentile								
					5th	10th	15th	25th	50th	75th	85th	90th	95th
Men			Relative standard weight ${ }^{1}$										
20-74 years	5,001	57,507	100	16	77	82	85	89	99	109	114	119	127
20-24 years	513	8,110	100	16	78	82	84	88	97	108	114	119	128
25-34 years	804	13,003	101	18	79	82	85	89	98	109	115	121	131
35-44 years	664	10,676	101	15	78	83	85	91	100	109	114	118	123
45-54 years	765	11,150	100	16	75	82	86	91	100	109	114	118	127
55-64 years	598	9,073	100	16	75	81	83	89	99	107	114	119	126
65-74 years	1,657	5,496	100	15	76	82	85	91	100	109	115	119	125
20-29 years	984	15,458	99	16	79	82	84	88	97	108	114	118	130
Women													
20-74 years	8,130	64,158	99	21	74	78	80	84	94	108	118	125	139
20-24 years	1,243	9,215	99	20	76	80	83	87	95	106	115	120	136
25-34 years	1,896	13,933	99	22	75	78	80	84	93	106	119	128	143
35-44 years	1,664	11,593	98	22	74	77	79	83	92	108	120	129	142
45-54 years	836	12,163	99	21	74	77	80	84	95	109	118	124	139
55-64 years	669	9,976	98	21	69	74	79	84	95	110	118	125	133
65-74 years	1,822	7,277	99	19	73	78	81	86	97	110	118	124	134
20-29 years .	2,280	16,789	98	20	76	78	81	85	93	105	115	123	139

${ }^{1}$ Based on average weights estimated from regression of weight on height, of men and women for specified age groups.

Table 12. Number of examined persons, estimated populations in thousands, and means, standard deviations, and selected percentiles of relative desirable weight of adul ts, by sex and age: United States, 1971-74

Sex and age	Number in sample	Estimated population in thousands	Mean	Standard deviation	Percentile								
					5th	10th	15th	25th	50th	75th	85th	90th	95th
Men			Relative desirable weight ${ }^{1}$										
20.74 years	5,001	57,507	104	17	80	85	88	93	103	113	119	124	133
20-24 years	513	8,110	98	15	76	80	82	87	96	106	112	116	126
25-34 years	804	13,003	104	19	82	85	88	92	101	113	119	125	136
35-44 years.	664	10,676	107	16	83	88	91	96	107	116	122	126	130
45-54 years .	765	11,150	106	16	79	86	91	96	106	115	121	125	134
55-64 years	598	9,073	105	17	79	85	88	94	105	113	120	125	138
65-74 vears .	1,657	5,496	104	15	79	84	88	94	104	113	119	123	129
Women													
20-74 years	8,130	64,158	107	24	79	83	86	91	102	119	130	139	152
20-24 years	1,243	9,215	98	20	75	79	82	86	94	105	113	118	134
25-34 years .	1,896	13,933	103	23	78	81	84	88	97	110	123	134	149
35-44 years	1,664	11,593	109	25	82	85	88	92	102	119	133	143	157
45-54 years	836	12,163	111	24	83	87	90	94	107	123	133	140	156
55-64 years	669	9,976	113	24	80	86	90	97	109	127	136	144	153
65-74 years	1,822	7,277	112	22	82	88	91	98	110	125	134	141	153

[^5]Table 13. Number of examined persons, estimated population in thousands, and number and percent of persons overweight at selected percentiles based on relative desirable weight ${ }^{1}$, by sex and age: United States, 1971-74

	Sex and age	Number of examined persons	Estimated population in thousands	Overweight at selected percentile					
				85th percentile or more		90th percentile or more		95th percentile or more	
				Number	Percent	Number	Percent	Number	Percent
Men									
20-74 years		5,001	57,507	13,340	23.2	9,850	17.1	3.454	6.0
20-24 years		513	8,110	987	12.2	673	8.3	278	3.4
25-34 years		804	13,003	2,950	22.7	2,356	18.1	897	6.9
35-44 years		664	10,676	3,015	28.2	2,139	20.0	550	5.2
45-54 years		765	11,150	3,013	27.0	2,177	19.5	790	7.1
$55-64$ years		598	9,073	2,158	23.8	1,609	17.7	688	7.6
65-74 years		1,657	5,496	1,217	22.1	897	16.3	250	4.5
Women									
20-74 years		8,130	64,158	18,935	29.5	13,353	20.8	6,153	9.6
20-24 years		1,243	9,215	1,153	12.5	740	8.0	391	4.2
25-34 years		1,896	13,933	2,867	20.6	2,149	15.4	1,118	8.0
35-44 years		1,664	11,593	3,488	30.1	2,540	21.9	1,366	11.8
45-54 years		836	12,163	4,383	36.0	3.016	24.8	1,328	10.9
55-64 years		669	9,976	4,112	41.2	2,936	29.4	1,194	12.0
$65-74$ years		1,822	7,277	2,931	40.3	1,972	27.1	756	10.4

Table 14. Cumulative percent distribution of the weight-height index of men, by age: United States, 1971-74

Weight-height index ${ }^{1}$ (in kilogram/meter ${ }^{\text {² }}$)		Age							
		$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 45-54 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 55-64 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 65.74 \\ & y \text { years } \end{aligned}$	$\begin{gathered} 20-29 \\ \text { years } \end{gathered}$
		Percent distribution							
Under 16		0.1	-	0.1	-	0.3	0.3	0.1	-
Under 17		0.7	0.3	0.5	0.4	1.0	1.0	1.3	0.2
Under 18		1.7	2.1	1.0	1.2	1.3	2.8	2.2	1.5
Under 19		3.5	5.7	2.4	2.3	4.2	3.4	4.2	4.3
Under 20		6.9	13.2	5.2	4.2	6.5	7.2	6.7	9.2
Under 21		11.4	23.0	10.2	7.1	8.9	10.2	12.2	17.5
Under 22		18.1	31.7	18.7	12.1	14.5	16.7	18.3	26.7
Under 23		27.4	44.6	31.1	20.3	20.8	24.7	25.3	40.8
Under 24		36.5	55.8	41.1	28.4	28.5	32.8	35.1	50.9
Under 25		47.0	66.2	51.9	37.5	40.9	42.5	46.0	61.8
Under 26		56.6	75.0	60.3	48.2	50.7	52.0	56.6	69.9
Under 27		68.3	81.8	70.1	61.2	64.9	66.5	68.1	78.0
Under 28		77.2	88.5	78.2	71.8	73.1	76.2	78.1	85.6
Under 29		83.5	92.4	82.7	80.9	81.2	82.3	84.0	89.7
Under 30		88.2	93.5	88.4	86.9	86.6	86.2	89.2	92.0
Under 31		91.8	95.4	90.7	91.9	91.0	90.2	93.2	93.6
Under 32		94.2	96.6	93.4	94.9	93.2	92.6	95.6	95.1
Under 33		95.7	98.0	94.2	96.4	95.1	94.5	97.1	96.4
Under 34		97.0	98.6	95.7	97.6	97.3	95.5	98.3	97.0
Under 35		97.6	98.6	96.8	98.1	97.9	96.4	98.8	97.9
Under 36		98.0	98.6	97.5	98.1	97.9	97.5	99.2	98.2
Under 37		98.8	99.7	98.5	99.0	98.3	98.5	99.5	99.1
Under 38		99.0	99.7	98.5	99.0	98.8	98.5	99.7	99.1

[^6]Table 15. Cumulative percent distribution of the weight-height index of women, by age: United States, 1971-74

	Weight-height index ${ }^{1}$ (in kilogram/meter ${ }^{\text {P }}$)	Age							
		$\begin{aligned} & 20-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-24 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 25-34 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 35-44 \\ & \text { years } \end{aligned}$	45-54 years	55-64 years	$\begin{aligned} & 65-74 \\ & \text { years } \end{aligned}$	$\begin{aligned} & 20-29 \\ & \text { years } \end{aligned}$
		Percent distribution							
Under 16		-	-	-	-	0.1	-	0.1	-
Under 17		-	-	-	-	0.1	-	0.1	-
Under 18		0.1	0.1	-	-	0.1	-	0.3	-
Under 19		0.2	0.2	-	-	0.1	0.5	0.6	0.1
Under 20		0.4	0.5	0.4	0.1	0.1	0.7	0.8	0.6
Under 21		0.8	1.4	0.8	0.5	0.5	0.9	1.2	1.1
Under 22	. . . - . . . \cdot	1.7	3.4	2.0	1.0	0.8	1.5	2.0	3.0
Under 23		3.7	8.2	4.3	1.7	1.7	4.0	3.3	6.8
Under 24		6.8	13.3	9.0	4.5	3.1	6.6	4.7	12.3
Under 25		11.7	21.8	16.3	9.0	7.1	8.5	6.3	20.6
Under 26	17.8	31.1	25.2	14.8	11.8	11.3	10.3	29.9
Under 27		25.0	40.7	34.0	22.5	17.8	16.8	15.2	39.1
Under 28		33.2	53.1	42.8	30.7	25.7	22.5	20.4	50.5
Under 29		40.7	60.5	52.4	39.8	32.5	27.1	26.8	58.8
Under 30		48.3	68.8	60.3	48.2	38.2	35.6	33.9	66.5
Under 31		54.8	74.9	65.5	55.6	44.9	41.7	41.8	72.2
Under 32		60.9	78.7	72.0	60.0	53.5	48.7	47.9	77.2
Under 33		66.1	82.6	76.1	65.3	59.4	53.7	55.4	81.1
Under 34		70.5	87.3	79.2	69.7	64.2	58.7	60.1	84.7
Under 35		74.3	89.9	81.5	73.7	68.8	63.7	65.6	87.1
Under 36		78.1	91.5	83.7	77.2	73.8	68.8	71.6	88.8
Under 37		81.2	92.9	85.7	80.5	77.6	73.2	76.4	90.3
Under 38		83.9	93.7	87.3	82.0	81.8	77.8	79.9	91.4
Under 39		86.0	94.3	88.8	84.4	83.8	80.6	83.6	92.3
Under 40		88.4	95.3	91.0	86.2	86.5	84.9	86.5	93.7
Under 41		90.3	95.8	91.8	88.0	89.0	87.7	89.5	94.4
Under 42		91.7	96.2	93.0	89.5	90.9	89.5	90.9	95.2
Under 43		92.9	97.0	93.8	91.0	92.3	91.1	92.9	95.9
Under 44		94.0	97.1	95.0	92.4	92.6	92.8	94.4	96.5
Under 45		94.9	97.4	95.7	93.5	93.8	94.6	95.2	96.9
Under 50		97.8	99.1	98.2	97.5	96.5	97.6	98.5	99.0
Under 55		99.0	99.5	99.1	98.4	98.9	98.8	99.4	99.5
Under 60		99.5	99.7	99.7	99.0	99.5	99.4	99.8	99.7

[^7]Table 16. Number of examined persons, estimated population in thousands, and means, standard deviations, and selected percentiles of weight-height index, by sex and age: United States, 1971-74

Sex and age	Number in sample	Estimated population in thousands	Mean	Standard deviation	Percentile								
					5th	10th	15th	25th	50th	75th	85th	90th	95th
Men			Weight-height index ${ }^{1}$										
20-74 years	5,001	57,507	26	4	20	21	22	23	25	28	29	30	33
20-24 years	513	8,110	24	4	19	20	20	21	23	26	27	28	31
25-34 years	804	13,003	25	5	20	21	22	23	25	28	29	31	33
35-44 years	664	10,676	26	4	20	22	22	24	26	28	30	31	32
45-54 years	765	11,150	26	4	19	21	22	24	26	28	30	31	33
55-64 years	598	9,073	26	4	19	21	22	23	26	28	30	31	34
65-74 years	1,657	5,496	25	4	19	21	22	23	25	28	29	30	32
20-29 years	984	15,458	24	4	19	20	21	22	24	27	28	29	32
Women													
20-74 years	8,130	64,158	32	7	23	25	26	27	30	35	39	41	45
20-24 years	1,243	9,215	29	6	22	23	24	25	28	31	34	35	40
25-34 years	1,896	13,933	30	7	23	24	25	26	29	33	37	40	44
35-44 years	1,664	11,593	32	7	24	25	26	27	30	35	39	42	47
45-54 years	836	12,163	33	7	25	26	27	28	32	36	40	41	46
55-64 years	669	9,976	33	7	24	25	27	29	32	37	40	42	45
65-74 years	1,822	7,277	33	6	24	26	27	29	32	37	40	41	45
20-29 years	2,280	16,789	29	6	23	24	24	26	28	32	34	37	42

${ }^{1}$ Weight-height in kilogram $/\left(\right.$ meter $\left.^{p}\right)$, where $p=2$ for male, and $p=1.5$ for female.

Table 17. Number of examined persons, estimated population in thousands, and number and percent of persons overweight at selected percentiles based on the weight-height index, by sex and age: United States, 1971-74

Sex and age		Number of examined persons	Estimated population in thousands	Overweight at selected percentile ${ }^{1}$						
		85th percentile or more		90th percentile or more		95th percentile or more				
		Number		Percent	Number	Percent	Number	Percent		
	Men				Weight-height index					
20-74 years	- .		5,001	57,507	13,136	22.8	9,476	16.5	3,347	5.8
20-24 years	-•••••••	513	8,110	933	11.5	619	7.6	274	3.4	
25-34 years	804	13,003	2,829	21.8	2,245	17.3	861	6.6	
35-44 years	664	10,676	3,010	28.2	2,034	19.1	541	5.1	
45-54 years	765	11,150	3,002	26.9	2,093	18.8	758	6.8	
55-64 years	598	9,073	2,158	23.8	1,602	17.7	668	7.4	
65-74 years	. . .	1,657	5,496	1,204	21.9	882	16.0	243	4.4	
Women										
20-74 years	-	8,130	64,158	18,953	29.5	12,034	18.8	5,351	8.3	
20-24 years	-••••••••	1,243	9,215	1,169	12.7	659	7.2	351	3.8	
25-34 years	1,896	13,933	2,902	20.8	1,995	14.3	982	7.0	
35-44 years	1,664	11,593	3,512	30.3	2,263	19.5	1,212	10.5	
45-54 years	836	12,163	4,351	35.8	2,729	22.4	1,102	9.1	
55-64 years	- •	669	9,976	4,116	41.3	2,671	26.8	1,044	10.5	
65-74 years	1,822	7,277	2,903	39.9	1,717	23.6	659	9.1	

1Overweight measure is based on weight-height index, a power function of height in relation to weight where the optimal power value from NHANES
data showed a value of $p=2$ for men and $p=1.5$ for women and is defined as at the sex-specific 85 th, 90 , data showed a value of $p=2$ for men and $p=1.5$ for women and is defined as at the sex-specific 85 th, 90 th, and 95 th percentile for persons ages 20-29 years.

Table 18. Correlation coefficient of height and of weight with obesity and overweight measures, by sex and age: United States, 1971-74

	Sex and age	Correlation coefficient of height with:			Correlation coefficient of weight with:		
		Triceps plus subscapular skinford ${ }^{1}$	Relative desirable weight 2	Weightheight index ${ }^{3}$	Triceps plus subscapular skinfold	Relative desirable weight	Weightheight index
Men							
20-74 years		0.0173	-0.0316	-0.0439	0.7109	0.8914	0.8824
20-24 years		0.0516	0.0221	0.0058	0.7398	0.8840	0.8760
25-34 years		0.0175	0.0103	-0.0037	7574	0.9118	0.9057
35-44 years		0.0633	0.0028	-0.0068	0.6836	0.8868	0.8823
45-54 years		-0.0210	-0.0766	-0.0841	0.6850	0.8926	0.8890
$55-64$ years		0.0329	-0.0390	-0.0572	0.6846	0.9006	0.8743
65-74 years		0.0094	-0.0450	-0.0409	0.6633	0.8834	0.8854
Women							
20-74 years		-0.0696	-0.0655	0.0390	0.7932	0.9548	0.9625
20-24 years		-0.0608	-0.0086	0.0193	0.7824	0.9488	0.9574
25-34 years		-0.0251	0.0002	0.0238	0.8175	0.9612	0.9676
35-44 years		-0.0422	-0.0101	0.0133	0.7831	0.9599	0.9660
45-54 years		-0.0209	-0.0422	-0.0169	0.7916	0.9569	0.9641
55-64 years		-0.0719	-0.0473	-0.0184	0.7812	0.9581	0.9662
65-74 years		-0.0454	-0.0494	-0.0155	0.7277	0.9460	0.9566

1Obesity-triceps plus subscapular skinfold.
2Overweight-relative desirable weight is observed weight divided by desirable weight times $\mathbf{1 0 0}$, based on average weights estimated from regression equation of weight on height for men and women ages $20-29$ years.
3 Weight-height index in kilogram/(meterp), where $p=2$ for men, and $p=1.5$ for women.

Table 19. Percent of men and women obese and overweight at selected percentile cutting points, by sex and age: United States, 1971-74

${ }^{1}$ Obesity-triceps plus subscapular skinfold.
2Overweight-relative desirable weight is observed weight divided by desirable weight times 100 , based on average weights estimated from regression equation of weight on height for men and women ages $20-29$ years.
${ }^{3}$ Weightheight index in kilogram/(meterP), where $p=2$ for men, and $0=1.5$ for women. Criteria of obesity and overweight are at the 85 th, 90 th, and 95th percentiles for men and women ages 20-29 years.

Table 20. Number of examined persons, estimated population in thousands, and coefficients of correlation of triceps plus subscapular skinfold with relative desirable weight and weight-height index, by sex and age: United States, 1971-74

Sex and age		Number of examined persons n	Estimated population in thousands N	Correlation of sum of skinfold with: ${ }^{1}$		
		Relative desirable weight ${ }^{2}$ $\left(W / W_{H}\right)$		Weight-height index ${ }^{3}$ $\left(W / H^{2}\right)$		
Men						
20-24 years	.		513	8,110	0.819	0.819
25-34 years	.	804	13,003	0.828	0.827	
35-44 years	664	10,676	0.737	0.739	
45-54 years	- • - • • .	765	11,150	0.749	0.748	
55-64 years	598	9,073	0.730	0.723	
65-74 years	-	1,657	5,496	0.729	0.728	
Women						
20-24 years	-•••••••••••••	1,243	9,215	0.843	0.842	
25-34 years	- • - • - . - • • • •	1,896	13,933	0.857	0.857	
35-44 years	-•••••••••••	1,664	11,593	0.823	0.822	
45-54 years	836	12,163	0.824	0.824	
55-64 years		669	9,976	0.825	0.825	
65-74 years	-	1,822	7,277	0.769	0.770	

${ }^{1}$ Obesity-triceps plus subscapular skinfold.
2Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on regression equations of weight on height for men and women ages 20-29 years.
${ }^{3}$ Weight-height index in kilogram/(meter p), where $p=2$ for men, and $p=1.5$ for women.

Table 21. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for relative desirable weights ${ }^{1}$ of men ages 20-74 years, with mean and standard deviation: United States, 1971-74

	Triceps plus subscapular skinfold values (in millimeters)	Relative desirable weight ${ }^{1}$								
		All relative weight values			Less than 85			85-89		
		Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative' percent distribution
01	Total	5,001	57,507	100.0	591	6,029	100.0	409	4,569	100.0
02	Less than 8	33	287	0.5	29	251	4.2	2	30	0.6
03	8-11..	279	2,857	5.5	201	2,129	39.5	40	333	7.9
04	12-15	532	5,571	15.2	210	2,129	74.8	128	1,420	39.0
05	16-19	570	6,391	26.3	96	1,064	92.4	111	1,293	67.3
06	20-23	673	7,620	39.5	38	332	97.9	55	650	81.5
07	24-27	687	7,846	53.2	12	110	99.8	42	450	91.4
08	28.31	593	7,130	65.6	4	8	99.9	18	129	94.2
09	32-35	539	6,513	76.9	-	-	99.9	7	97	96.3
10	36-39	357	4,173	84.1	1	7	100.0	3	42	97.3
11	40-43	238	2,811	89.0	-	-	100.0	2	34	98.0
12	44-47	171	2,228	92.9	-	-	100.0	1	91	100.0
13	48-51	109	1,357	95.3	-	-	100.0	-	-	100.0
14	52-55	70	851	96.8	-	-	100.0	-	-	100.0
15	56-59	56	678	97.9	-	-	100.0	-	-	100.0
16	60-63	27	383	98.6	-	-	100.0	-	-	100.0
17	64-67	28	327	99.2	-	-	100.0	-	.	100.0
18	68-71	7	80	99.3	-	-	100.0	-	-	100.0
19	72-75	11	140	99.5	-	-	100.0	-	-	100.0
20	76 and over	21	265	100.0	-	-	100.0	-	-	100.0
21	Mean	28.3	...	\ldots	13.3	\ldots	\ldots	18.7
22	Standard devaition	...		12.5	\ldots	\ldots	4.2	6.9
	Triceps pius subscapular skinfold values (in millimeters)	Relative desirable weight ${ }^{1}$								
		110-114			115-119			120-124		
		Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distri bution
23	Total	499	5,862	100.0	367	4,531	100.0	257	2,753	100.0
24	Less than 8	-	.	-	-	-	-	-	.	-
25	8-11	-	-	-	-	-	-	-	-	-
26	12-15	8	42	0.7	2	5	0.1	-	-	-
27	16-19	17	192	4.0	6	59	1.4	1	31	1.1
28	20-23	62	672	15.4	13	167	5.1	14	92	4.5
29	24-27	77	770	28.6	49	605	18.4	22	220	12.5
30	28-31	88	1,133	47.9	68	814	36.4	35	393	26.7
31	32-35	82	1,025	65.4	63	668	51.1	54	554	46.9
32	36-39	64	751	78.2	60	772	68.2	40	507	65.3
33	40-43	44	470	86.2	37	498	79.2	34	321	76.9
34	44-47	27	383	92.8	31	375	87.4	24	298	87.8
35	48-51	16	252	97.1	16	190	91.6	13	121	92.1
36	52-55	7	77	98.4	9	159	95.1	7	87	95.3
37	56-59	3	30	98.9	9	132	98.1	6	87	98.5
38	60-63	3	56	99.9	3	78	99.8	5	34	99.7
39	64-67	1	8	100.0	1	10	100.0	1	1	99.8
40	68.71	-	8	100.0	-	-	100.0	-	-	99.8
41	72-75	-	-	100.0	-	-	100.0	1	7	99.8
42	76 and over	-	-	100.0	-	-	100.0	1	7	100.0
43	Mean	. \cdot	\ldots	33.0		...	36.3	37.5
44	Standard deviation	\cdots	. \cdot	9.0		...	9.5	\ldots	...	9.0

Table 21. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for relative desirable weights ${ }^{1}$ of men ages $20-74$ years, with mean and standard deviation: United States, 1971-74-Con.

Relative desirable weight ${ }^{1}$												
90-94			95-99			100-104			105-109			
Number of examined persons	Estimated population in thousancs	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	
530	6,589	100.0	602	6,681	100.0	614	7,166	100.0	651	7,949	100.0	01
-	-	-	2	7	0.1	-	-	-	-	-	-	02
25	276	4.2	8	93	1.5	4	24	0.3	1	2	-	03
93	1,268	23.4	58	397	7.4	23	238	3.6	9	49	0.6	04
120	1,445	45.4	104	1,056	23.3	68	626	12.4	46	618	8.4	05
124	1,581	69.4	141	1,494	45.6	116	1,333	31.0	102	1,210	23.6	06
86	1,085	85.8	108	1,239	64.2	138	1,753	55.5	140	1,536	42.9	07
33	367	91.4	90	1,164	81.6	114	1,357	74.4	117	1,507	61.9	08
27	358	96.8	57	900	95.1	76	906	87.0	105	1,356	79.0	09
16	165	99.3	23	222	98.4	35	424	93.0	58	688	87.6	10
5	42	100.0	5	67	99.4	23	318	97.4	40	610	95.3	11
1	1	100.0	5	36	99.9	12	160	99.6	21	238	98.3	12
-	-	100.0	,	,	99.9	3	6	99.7	9	94	99.5	13
-	-	100.0	1	4	100.0	2	20	100.0	1	20	99.7	14
-	-	100.0	-	-	100.0	-	-	100.0	-	-	99.7	15
-	-	100.0	-	-	100.0	-	-	100.0	-	-	99.7	16
-	-	100.0	-	-	100.0	-	-	100.0	2	23	100.0	17
-	-	100.0	-	-	100.0	-	-	100.0			100.0	18
-	-	100.0	-	-	100.0	-	-	100.0	-	-	100.0	19
-	-	100.0	-	-	100.0	-	-	100.0	-	-	100.0	20
-••	\cdots	21.1	. \cdot	. \cdot	25.0	\cdots	-	27.5	. \cdot	*	29.8	21
\cdots	-	6.6	. .	\cdots	6.8	\cdots	\cdots	7.3	\cdots	\cdots	7.9	22

Relative desirable weight ${ }^{1}$

125-129			110 and more			120 and more			130 and more			
Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	
167	1,923	100.0	1,604	18,523	100.0	738	8,130	100.0	314	3,454	100.0	23
-	-	-	-	-	-	-	-	-	-	-	-	24
-	-	-	-	-	-	-	-	-	-	-	-	25
-	-	-	11	69	7.4	1	23	0.3	1	23	0.7	26
1	6	0.3	25	288	23.3	2	37	0.7	-	-	0.7	27
5	82	4.6	97	1,020	45.6	22	181	3.0	3	7	0.9	28
8	65	8.0	161	1,673	64.2	35	298	6.6	5	13	1.3	29
13	103	13.3	217	2,599	81.6	61	652	14.7	13	156	5.8	30
31	325	30.2	267	2,895	95.1	122	1,201	29.4	37	322	15.1	31
29	242	42.8	221	2,626	98.4	97	1,103	43.0	28	353	25.3	32
18	225	54.5	163	1,739	99.4	82	771	52.5	30	224	31.8	33
20	263	68.2	131	1,702	99.9	73	944	64.1	29	382	42.9	34
15	236	80.5	97	1,257	99.9	65	815	74.1	37	458	56.1	35
14	241	93.0	66	807	100.0	50	571	81.1	29	243	63.2	36
5	40	95.1	56	678	100.0	44	516	87.5	33	388	74.4	37
3	17	96.0	27	383	100.0	21	249	90.5	13	197	80.1	38
4	38	98.0	26	304	100.0	24	286	94.0	19	247	87.3	39
-	-	98.0	7	80	100.0	7	80	95.0	7	80	89.6	40
1	39	100.0	11	140	100.0	11	140	96.7	10	102	92.5	41
-	-	100.0	21	265	100.0	21	265	100.0	20	258	100.0	42
- .	\cdots	42.2	\cdots	-••	38.9	.	-••	44.6	- .	-•	51.5	43
\cdots	*	10.7	-••	\cdots	12.6	-••	-••	13.8	\cdots	$\cdots \cdot$	15.2	44

[^8]Table 22. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for relative desirable weights of women agcs 20-74 years, with means and standard deviations: United States, 1971-74

Relative desirable weight ${ }^{1}$

	Triceps plus subscapular skinfold values (in millimeters)	110-114			115-119			120-124		
		Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distri bution
23	Total	572	4,367	100.0	491	3,769	100.0	388	3,031	100.0
24	Less than 8	-	-	-	-	-	-	-	-	-
25	8-11.	-	-	-	-	-	-	-	-	-
26	12-15	-	-	-	-	-	-	-	-	-
27	16-19	-	-	-	-	-	-	-	-	-
28	20-23	2	5	0.1	3	8	0.2	2	13	0.4
29	24-27	10	105	2.5	7	34	1.1	-	-	0.4
30	28-31	22	200	7.1	7	21	1.7	6	25	1.2
31	32-35	31	195	11.6	28	165	6.0	10	54	3.0
32	36-39	78	540	23.9	36	177	10.8	15	118	6.9
33	40-43	78	534	36.2	62	335	19.6	31	202	13.6
34	44-47	90	666	51.4	61	485	32.5	43	293	23.3
35	48-51	76	638	66.0	71	705	51.2	61	577	42.3
36	52-55	56	493	77.3	63	521	65.0	56	436	56.6
37	56-59	55	405	86.6	52	477	77.7	58	444	71.3
38	60-63	34	318	93.9	45	355	87.1	30	296	81.1
39	64-67	22	157	97.5	28	305	95.2	34	249	89.3
40	68-71	8	56	98.7	16	109	98.1	23	196	95.8
41	72-75	4	17	99.1	9	49	99.4	11	87	98.6
42	76 and over	6	38	100.0	3	21	100.0	8	41	100.0
43	Mean		.	47.6	...	-••	51.8	. \cdot	\cdots	54.3
44	Standard deviation			10.4		\cdot	9.9	. .	- \cdot	10.1

Table 22. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfoid for relative desirable weights of women ages 20-74 years, with mean and standard deviation: United States, 1971-74-Con.

Relative desirable weight ${ }^{1}$												
90.94			95-99			100-104			105-109			
Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated popula- tion in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	
874	7,661	100.0	894	7,185	100.0	781	6,369	100.0	677	5,403	100.0	01
-	-	-	-	-	-	-	-	-	-	-	-	02
1	1	0.0	-	-	-	-	-	-	-	-	-	03
8	120	1.6	1	8	0.1	2	13	0.2	-	-	-	04
28	184	4.0	16	106	1.6	1	4	0.3	3	22	0.4	05
102	890	15.6	47	255	5.1	10	56	1.1	10	85	2.0	06
157	1,335	33.0	101	794	16.2	44	376	7.0	26	126	4.3	07
179	1,571	53.5	144	1,160	32.3	85	714	18.3	36	226	8.5	08
146	1,224	69.5	162	1,299	50.4	139	1,197	37.1	77	541	18.5	09
107	924	81.6	145	1,313	68.7	134	1,016	53.0	93	700	31.5	10
74	729	91.1	125	999	82.6	135	1,054	69.6	93	776	45.8	11
38	358	95.7	76	638	91.5	86	683	80.3	125	1,196	68.0	12
21	185	98.2	33	275	95.3	65	461	87.5	73	623	79.5	13
6	48	98.8	22	188	97.9	41	467	94.8	63	512	89.0	14
5	39	99.3	12	76	99.0	29	228	98.4	40	334	95.1	15
2	54	100.0	6	44	99.6	7	69	99.5	20	158	98.1	16
-	-	100.0	3	28	100.0	1	29	100.0	9	62	99.2	17
-	-	100.0	-	-	100.0	2	3	100.0	3	16	99.5	18
-	-	100.0	-	-	100.0	-	.	100.0	3	16	99.8	19
-	-	100.0	1	3	100.0	-	-	100.0	3	10	100.0	20
...		32.0		\ldots	36.0		\ldots	39.8		\ldots	44.1	21
\cdots	\ldots	8.4		\ldots	8.5		\ldots	8.9	\ldots	\ldots	9.4	22

Relative desirable weight ${ }^{1}$

125-129			110 and more			120 and more			130 and more			
Number of examined persons	Estimated population in thousancts	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated popula tion in thousands	Cumulative percent distribution	Number of exam. ined persons	Estimated population in thousands	Cumulative percent distribution	
315	2,319	100.0	3,139	23,302	100.0	2,076	15,166	100.0	1,373	9,817	100.0	23
-	-	-	-	-	-	-	-	-	-	-	-	24
-	-	-	-	-	-	-	-	-	-	-	-	25
-	-	-	-	-	-	-	-	-	-	-	-	26
-	-	-	1	1	1.6	1	1	0.0	1	1	0.0	27
-	-	-	8	34	5.1	3	20	0.1	1	7	0.1	28
1	1	0.0	18	140	16.2	1	1	0.1	-	-	-	29
3	43	1.9	41	305	32.3	12	83	0.7	3	15	0.2	30
5	45	3.8	82	528	50.4	23	169	1.8	8	70	0.9	31
12	70	6.8	155	994	68.7	41	277	3.6	14	89	1.9	32
19	133	12.5	222	1,425	82.6	82	556	7.3	32	221	4.1	33
34	170	19.9	273	1,905	91.5	122	754	12.3	45	291	7.1	34
32	204	28.7	320	2,667	95.3	173	1,324	21.0	80	544	12.6	35
43	328	42.8	340	2,742	97.9	221	1,728	32.4	122	965	22.4	36
42	423	61.0	358	2,707	99.0	251	1,825	44.4	151	959	32.2	37
45	362	76.6	305	2,442	99.6	226	1,769	56.1	151	1,111	43.5	38
33	156	83.4	278	1,979	100.0	228	1,517	66.1	161	1,112	54.9	39
26	266	94.8	208	1,647	100.0	184	1,482	75.9	135	1,020	65.3	40
5	47	96.9	154	1,155	100.0	141	1,088	83.0	125	954	75.0	41
15	73	100.0	376	2,630	100.0	367	2,570	100.0	344	2,456	100.0	42
\ldots	\ldots	56.5	58.3	...	\ldots	63.1	\ldots		67.3	43
\cdots	...	10.5	...	\cdots	15.0	\ldots	...	14.9	. \cdot	\ldots	15.2	44

[^9]Table 23. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of men ages 20-74 years, with means and standard deviations: United States, 1971-74

	Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{1}$								
		All relative weight values			Less than 18			18-19		
		Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distri bution
01	Total	5,001	57,507	100.0	95	957	100.0	286	2,984	100.0
02	Less than 8	33	287	0.5	12	94	9.8	13	103	3.4
03	8-11.	279	2,857	5.5	56	610	73.5	98	1,074	39.4
04	12-15.	532	5,571	15.2	22	241	98.7	104	1,070	75.3
05	16-19.	570	6,391	26.3	3	8	99.5	44	572	94.5
06	20-23	673	7,620	39.5	2	4	100.0	18	116	98.4
07	24-27	687	7,846	53.2	-	-	100.0	5	35	99.5
08	28-31	593	7,130	65.6	-	-	100.0	3	7	99.8
09	32-35	539	6,513	76.9	-	-	100.0	-	-	99.8
10	36-39	357	4,173	84.1	-	-	100.0	1	7	100.0
11	40-43 .	238	2,811	89.0	-	-	100.0	-	-	100.0
12	44-47 .	171	2,228	92.9	-	-	100.0	-	-	100.0
13	48-51.	109	1,357	95.3	.	-	100.0	.	.	100.0
14	52-55	70	851	96.8	-	-	100.0	-	-	100.0
15	56-59 . .	56	678	97.9	-	-	100.0	.	-	100.0
16	60-63 .	27	383	98.6	-	-	100.0	-	-	100.0
17	64-67	28	327	99.2	-	.	100.0	.	-	100.0
18	68-71	7	80	99.3	-	.	100.0	-	.	100.0
19	72-75 . .	11	140	99.5	-	-	100.0	-	-	100.0
20	76 and over .	21	265	100.0	-	-	100.0	-	-	100.0
21	Mean	. \cdot	-	28.3	\cdots	. .	10.4	-	-••	13.3
22	Standard deviation	.		12.5	. .	\cdots	2.3	4.0

Weight-height index ${ }^{1}$

	Triceps plus subscapular skinfold values (in millimeters)	28-29			30-31			32 and over		
		Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distri bution
23	Total	540	6,364	100.0	311	3,425	100.0	299	3,347	100.0
24	Less than 8	-	.	-	-	-	-	-	.	-
25	8-11 . .	-	-	-	-	-	-	-	-	-
26	12-15	2	5	0.1	-	-	-	1	23	0.7
27	16-19	9	114	1.9	1	6	0.2	-	-	0.7
28	20-23	27	270	6.1	11	107	3.3	3	7	0.9
29	24-27	67	834	19.2	18	166	8.1	5	13	1.3
30	28-31	91	1,043	35.6	33	323	17.6	11	151	5.8
31	32-35	95	1,017	51.6	63	666	37.0	35	305	14.9
32	36-39	85	1,031	67.8	48	503	51.7	28	353	25.5
33	40-43	64	721	79.1	34	384	62.9	28	197	31.3
34	44-47	44	551	87.8	37	450	76.0	27	370	42.4
35	48-51	23	289	92.3	24	300	84.8	35	446	55.8
36	52-55	14	226	95.8	19	282	93.0	27	231	62.7
37	56-59	10	140	98.0	11	125	96.6	32	383	74.1
38	60-63	6	107	99.7	5	22	97.3	13	197	80.0
39	64-67	2	11	99.9	6	54	98.9	17	231	86.9
40	68-71	2	-	99.9			98.9	7	80	89.3
41	72-75	-	-	99.9	1	39	100.0	10	102	92.3
42	76 and over	1	7	100.0	-	-	100.0	20	258	100.0
43	Mean	-••	\cdots	36.2		-••	40.6	. \cdot	-••	51.6
44	Stanciard deviation ..	-••	\cdots	9.6	. \cdot	-••	10.1	\cdots	\cdots	15.3

[^10]Table 23. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of men ages 20-74 years, with mean and standard deviation: United States, 1971-74-Con.

Weight-height index ${ }^{1}$												
20-21			22-23			24-25			26-27			
Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of exam. ined persons	Estimated population in thousands	Cumulative percent distribution	
603	6,485	100.0	909	10,566	100.0	982	11,559	100.0	976	11,820	100.0	01
6	83	1.3	2	7	0.1	-	-	-	-	-	-	02
84	773	13.2	33	321	3.1	7	77	0.7	1	2	0.0	03
209	2,193	47.0	140	1,602	18.3	38	355	3.7	16	82	0.7	04
155	1,691	73.1	189	2,134	38.5	115	1,225	14.3	54	641	6.1	05
71	850	86.2	212	2,534	62.4	200	2,263	33.9	129	1,469	18.6	06
45	481	93.6	154	1,828	79.8	213	2,573	56.2	180	1,916	34.8	07
19	130	95.6	86	975	89.0	176	2,258	75.7	174	2,244	53.8	08
7	108	97.3	58	847	97.0	123	1,483	88.5	158	2,086	71.4	09
3	42	98.0	26	236	99.2	60	714	94.7	106	1,287	82.3	10
3	41	98.6	8	81	100.0	26	367	97.9	75	1,021	90.9	11
1	91	100.0	1	1	100.0	17	196	99.6	44	569	95.7	12
	-	100.0		-	100.0	4	24	99.8	23	297	98.3	13
-	-	100.0	$1-$	-	100.0	3	24	100.0	7	89	99.0	14
-	-	100.0	-	-	100.0	.	.	100.0	3	30	99.3	15
-	-	100.0	-	-	100.0	.	-	100.0	3	56	99.7	16
-	-	100.0	-	-	100.0	-	-	100.0	3	31	100.0	17
-	-	100.0	-	-	100.0	.	-	100.0	.	.	100.0	18
-	-	100.0	-	-	100.0	.	.	100.0	-	-	100.0	19
-	-	100.0	-	-	100.0	.	-	100.0	-	-	100.0	20
\ldots		17.5			22.2		...	27.0	...		31.6	21
...	\ldots	6.6	. \cdot	\ldots	6.8	. \cdot	. \cdot	7.2	8.6	22

Table 24. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of women ages 20-74 years, with means and standard deviations: United States, 1971-74

Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{1}$								
	All relative weight values			Less than 18			18-19		
	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examincd persons	Estimated population in thousands	Cumulative percent distrjbution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution
Total	8,130	64,158	100.0	7	40	100.0	27	221	100.0
Less than 8	4	18	00	2	14	34.2	1	3	1.2
8-11	58	349	0.6	3	19	82.6	10	33	16.0
12-15	140	981	2.1	-	-	82.6	8	98	60.5
16-19	349	2,615	6.2	1	3	91.0	4	36	76.9
20-23	560	4,434	13.1	1	4	100.0	3	33	91.8
24-27	674	5,671	21.9	.	-	100.0	1	18	100.0
28.31	754	6,219	31.6	-	-	100.0	-	-	100.0
32-35	756	6,136	41.2	-	*	100.0	-	-	100.0
36-39	711	5,480	49.7	-	-	100.0	-	-	100.0
40-43	683	5,320	58.0	-	-	100.0	-	-	100.0
44-47	615	4,932	65.7	-	-	100.0	-	-	100.0
48-51	521	4,264	72.3	-	-	100.0	-	-	100.0
52-55 .	474	3,988	78.6	-	-	100.0	-	-	100.0
56-59	446	3,397	83.9	-	-	100.0	-	-	100.0
60-63	344	2,776	88.2	-	-	100.0	-	-	100.0
$64-67$	291	2,098	91.5	.	-	100.0	-	-	100.0
68.71	213	1,666	94.1	-	-	100.0	-	-	100.0
72-75 . .	157	1,171	95.9	-	-	100.0	-	-	100.0
76 and over	380	2,643	100.0	-	-	100.0	-	.	100.0
Mean	42.3	9.8	. .	- .	16.7
Standard deviation	17.4	. .	.	5.0	. \cdot	-••	4.9

Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{1}$								
	20-21			22-23			24-25		
	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thouse:nds	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumula tive percent distribution
Total	116	832	100.0	412	3,285	100.0	859	7,024	100.0
Less than 8	1	2	0.2	-	-	-	-	-	-
8-11	17	88	10.8	18	127	3.9	5	36	0.5
12-15	30	161	30.1	46	322	13.6	42	238	3.9
16-19	31	250	60.1	111	853	39.6	124	934	17.2
20.23	18	128	75.5	115	894	66.8	195	1,626	40.3
24-27	16	173	96.3	57	506	82.3	176	1,545	62.3
28-31	2	22	98.9	34	289	91.1	152	1,259	80.3
32-35	-	-	98.9	19	181	96.6	94	862	92.5
36-39	1	9	100.0	9	55	98.2	42	281	96.5
40-43	-	-	100.0	2	40	99.5	16	138	98.5
44-47	-	-	100.0	-	-	99.5	6	68	99.5
48-51	-	-	100.0	1	18	100.0	4	25	99.8
52-55	-	-	100.0	.	-	100.0	-	-	99.8
56-59	-	-	100.0	-	-	100.0	1	8	99.9
60-63	-	-	100.0	-	-	100.0	2	5	100.0
64-67	-	-	100.0	-	-	100.0	-	-	100.0
68-71	-	-	100.0	-	-	100.0	-	-	100.0
72-75	-	-	100.0	-	-	100.0	-	-	100.0
76 and over	-	-	100.0	-	*	100.0	-	-	100.0
Mean			18.7	22.0	-••	. \cdot	26.0
Standard deviation			5.4	- .		6.7	-••	. \cdot	6.9

See footnote at end of table.

Table 24. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of women ages $20-74$ years, with means and standard deviations: United States, 1971-74-Con.

Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{1}$								
	26-27			28-29			30-31		
	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution
Total	1,151	9,880	100.0	1,200	9,703	100.0	978	8,100	100.0
Less than 8	-	-	-	-	-	-	-	-	-
8-11. .	5	46	0.5	-	-	-	-	-	-
12-15 .	11	141	1.9	2	18	0.2	1	4	0.0
16-19.	53	383	5.8	20	128	1.5	3	21	0.3
20-23	146	1,281	18.7	60	330	4.9	12	94	1.5
24-27	228	1,931	38.3	125	954	14.7	43	352	5.8
28-31	246	2,120	59.7	189	1,544	30.6	76	597	13.2
32-35	167	1,388	73.8	223	1,832	49.5	145	1,196	27.9
$36-39$	127	1,047	84.4	194	1,691	66.9	156	1,235	43.2
40-43	85	828	92.8	160	1,284	80.2	162	1,330	59.6
44-47	44	397	96.8	107	953	90.0	137	1,121	73.4
$48-51$, 23	166	98.5	55	411	94.2	95	828	83.7
52-55	18	79	99.3	32	304	97.4	72	688	92.2
56-59	5	43	99.7	18	123	98.6	49	397	97.1
$60-63$	3	30	100.0	10	101	99.7	14	137	98.8
64-67	-	-	100.0	3	28	99.9	9	88	99.8
$68-71 \text {. . }$	-	-	100.0	1	2	100.0	1	1	99.8
72-75 . . .	-	-	100.0	-	-	100.0	1	3	99.9
76 and over .	-	-	100.0	1	3	100.0	2	9	100.0
Mean	\cdots		30.9	36.5	41.8
Standard deviation			8.3	. .	\cdots	8.7	\cdots	. .	9.3

Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{7}$								
	32-33			34-35			36-37		
	Number of examined persons	Estimated population in thousands	Cumuiative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution
Total	817	6,120	100.0	629	4,890	100.0	471	3.739	100.0
Less than 8	-	-	-	-	-	-	-	-	-
8-11	-	-	-	-	-	-	-	-	-
12-15	-	-	-	-	-	-	-	-	-
16-19	1	5	0.1	-	-	-	-	-	-
20-23	5	22	0.4	3	12	0.3	1	3	0.1
24-27	21	165	3.1	7	26	0.8	-	-	0.1
28-31	34	269	7.5	11	42	1.6	7	63	1.8
32-35	56	343	13.1	32	193	5.6	11	65	3.5
36-39	107	711	24.8	41	239	10.5	16	93	6.0
40-43	117	821	38.2	73	424	19.1	32	215	11.7
44-47	137	1,123	56.5	79	619	31.8	51	324	20.4
48-51	105	842	70.3	95	909	50.4	52	449	32.4
52-55	77	682	81.4	82	627	63.2	73	619	48.9
56-59	70	493	89.5	72	682	77.2	64	572	64.2
60-63	44	369	95.5	53	450	86.4	53	505	77.8
64-67	22	147	97.9	39	395	94.5	48	323	86.4
68-71	9	60	98.9	25	178	98.1	33	303	94.5
72-75	6	30	99.4	10	58	99.3	13	112	97.5
76 and over	6	36	100.0	7	36	100.0	17	94	100.0
Mean		...	46.5	.	\ldots	52.1-	55.9
Standard deviatinn	\cdots	\ldots	10.1	\ldots		10.0			10.2

Table 24. Number of examined persons, estimated population in thousands, and cumulative percent distribution of triceps plus subscapular skinfold for weight-height index of women ages 20-74 years, with means and standard deviations: United States, 1971-74-Con.

Triceps plus subscapular skinfold values (in millimeters)	Weight-height index ${ }^{1}$								
	38-39			40-41			42 and over		
	Number of examined persons	Estimated population in thousands	Cumulative percent distribution	Number of examined persons	Estimated population in thousands	Cumula tive percent distribution	Number of examined persons	Estimated population in thousands	Cumulative percent distribution
Total	412	2,898	100.0	284	2,076	100.0	767	5,351	100.0
Less than 8	-		.	.	.	-	-	-	-
$8-17$.	-	-	-	-	-	-	-	-
12-15	-	-	-	-	-	-	-	-	-
16-19	-	-	-	1	1	-	-	-	-
20-23	1	7	0.3	.	-	-	-	-	-
24-27	-		-	-	-	-	-	-	-
28-31	2	9	0.6	1	6	0.4	-	7	-
$32 \cdot 35$	6	64	2.8	2	7	0.7	1	7	0.1
36-39	10	81	5.5	3	23	1.8	5	16	0.4
40-43	19	122	9.8	11	92	6.2	6	24	0.9
44.47	28	131	14.3	14	111	11.6	12	85	2.5
48-51	38	246	22.8	25	209	21.7	28	161	5.5
52-55	49	366	35.4	32	292	35.7	49	333	11.7
56-59	59	371	48.2	54	341	52.2	54	368	18.6
60-63	56	397	61.9	28	189	61.3	81	593	29.7
64-67	48	285	71.7	37	268	74.2	85	563	40.2
68-71	42	419	86.2	26	199	83.8	76	504	49.6
72-75	22	198	93.0	21	151	91.1	84	620	61.2
76 and over	32	203	100.0	29	186	100.0	286	2,076	100.0
Mean	59.6	\ldots	.	60.4	73.3
Standard deviation	\ldots	\ldots	11.4	. .	\ldots	10.8	.	.	15.6

${ }^{1}$ Weight/height ${ }^{p}$ in kilograms $/($ meter P$)$, where $p=1.5$.

Table 25. Number of examined persons, estimated population in thousands, and number and percent of men obese for relative desirable weight according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971-74

Relative desirable weight categories and selected percentiles ${ }^{1}$	Number of examined persons	Estimated population in thousands	Triceps plus subscapular skinfold level of obesity							
			$\begin{gathered} \geqslant 85 t h \\ \text { (} \geqslant 38 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} \geqslant 85 t h-<90 t h \\ \text { (} \geqslant 38-\leqslant 42.9 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} >90 \text { th }-<95 t h \\ \text { (}>43.0-<50.9 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} >95 t h \\ \text { (}>51.0 \\ \text { millimeters) } \end{gathered}$	
			Number	Percent	Number	Percent	Number	Percent	Number	Percent
Less than 85	591	6,029	7	0.1	7	0.1	-	-	-	-
85-89	409	4,569	137	3.0	46	1.0	91	2.0	-	-
90-94	530	6,589	115	1.7	96	1.5	19	0.3	-	-
95-99	602	6,681	253	3.8	181	2.7	68	1.0	4	0.1
100-104	614	7,166	609	8.5	375	5.2	211	2.9	23	0.3
105-109	651	7.949	1,275	16.0	725	9.1	484	6.1	67	0.8
110-114	499	5,862	1,588	27.1	738	12.6	647	11.0	203	3.5
115-119	367	4,531	1,953	43.1	942	20.8	632	13.9	379	8.4
120 or more .	738	8,130	5,196	63.9	1,123	13.8	1,819	22.4	2,254	27.7
130 or more.	314	3,454	2,722	78.8	275	8.0	826	23.9	1,621	46.9
140 or more	143	1,592	1,519	95.4	75	4.7	424	26.6	1,020	64.1
Selected percentiles										
Greater than or equal to 85th - less than 90th (114-less than or equal to 117.9)	295	3,490	1,266	36.3	595	17.0	474	13.6	197	5.6
Greater than or equal to 90th - less than 95th (118-less than or equal to 129.9)	559	6,397	3,335	52.1	1,253	19.6	1,258	19.7	824	12.9
Greater than or equal to 95th (greater than or equal to 130)	314	3,454	2,722	78.8	275	8.0	826	23.9	1,621	46.9

1 Relative desirable weight is observed weight divided by desirable weight times 100, based on average weights estimated from regression equation of weight on height for men ages $20-29$ years.

Table 26. Number of examined persons, estimated population in thousands, and number and percent of women obese for relative desirable weight according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971-74

Relative desirable weight categories and selected percentiles ${ }^{1}$	Number of examined persons	Estimated population in thousands	Triceps plus subscapular skinfold level of obesity							
			$\begin{gathered} \geqslant 85 t h \\ (\geqslant 52.0 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} \geqslant 85 \text { th }-<90 \text { th } \\ (\geqslant 52.0-\leqslant 58.4 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} \geqslant 90 \text { th }-<95 t h \\ (\geqslant 58.5-\leqslant 67.0 \\ \text { millimeters }) \end{gathered}$		$\begin{gathered} \geqslant 95 t h \\ (\geqslant 68.0 \\ \text { millimeters }) \end{gathered}$	
			Number	Percent	Number	Percent	Number	Percent	Number	Percent
Less than 85	1,008	8,180	8	0.1	-	-	8	0.1	-	-
85-89	757	6,059	47	0.8	36	0.6	11	0.2	-	-
90-94	874	7,661	142	1.9	77	1.0	65	0.9	-	-
95-99 .	894	7,185	338	4.7	264	3.7	71	1.0	3	-
100-104	781	6,369	795	12.5	636	10.0	156	2.4	3	$\stackrel{-}{-}$
105-109	677	5,403	1,107	20.5	765	14.2	300	5.6	42	0.8
110-114	572	4,367	1,484	34.0	852	19.5	521	11.9	111	2.5
115-119	491	3,769	1,839	48.8	798	21.2	861	22.8	180	4.8
120 and more	2,076	15,166	11,980	79.0	2,886	19.0	3,953	26.1	5,141	33.9
130 and more	1,373	9,817	8,577	87.4	1,575	16.0	2,571	26.2	4,431	45.1
140 and more	848	5,898	5,519	93.6	730	12.4	1,431	24.3	3,358	56.9
Selected percentiles										
Greater than or equal to 85th - less than 90th (115-less than or equal to 122.9)	728	5,581	2,916	52.2	1,228	22.0	1,337	24.0	351	6.3
Greater than or equal to 90th - less than 95th (123 - less than or equal to 138.9)	961	7,200	5,164	71.7	1,647	22.9	1,960	27.2	1,557	21.6
Greater than or equal to 95th (greater than or equal to 139)	878	6,153	5,739	93.3	809	13.1	1,517	24.7	3,414	55.5

1 Relative desirable weight is observed weight divided by desirable weight times 100 , based on average weights estimated from regression equation of weight on height for women ages $20-29$ years.

Table 27. Number of examined persons, estimated population in thousands, and number and percent of men obese for weight-height index according to triceps plus subscapular skinfold levels of obesity for ages $20-74$ years: United States, 1971-74

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Weight-height index categories and selected percentiles ${ }^{1}$} \& \multirow{3}{*}{Number of examined persons} \& \multirow{3}{*}{Estimated population in thousands} \& \multicolumn{8}{|c|}{Triceps plus subscapular skinfold level of obesity}

\hline \& \& \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \geqslant 85 t h \\
& 1 \geqslant 38
\end{aligned}
$$
millimeters)} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \leqslant 85 t h-<90 \text { th } \\
& \text { (} \geqslant 38-\leq 42.9 \\
& \text { millimeters) }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \geqslant 90 \text { th }-<95 \text { th } \\
& (\geqslant 43-\leqslant 50.9 \\
& \text { millimeters) }
\end{aligned}
$$} \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\geqslant 95 t h \\
\quad>51 \\
\text { millimeters) }
\end{gathered}
$$}

\hline \& \& \& Number \& Percent \& Number \& Percent \& Number \& Percent \& Number \& Percent

\hline Less than 16 \& 9 \& 78 \& - \& - \& - \& - \& - \& - \& \&

\hline 16-17 \& 62 \& 660 \& - \& - \& - \& - \& - \& - \& \&

\hline 18-19 \& 286 \& 2,984 \& 7 \& 0.2 \& 7 \& 0.2 \& - \& - \& \&

\hline 20-21 \& 603 \& 6.485 \& 145 \& 2.2 \& 54 \& 0.8 \& 91 \& 1.4 \& \&

\hline 22-23 \& 909 \& 10,566 \& 221 \& 2.1 \& 192 \& 1.8 \& 29 \& 0.3 \& - \&

\hline 24-25 \& 982 \& 11,559 \& 823 \& 7.1 \& 50 \& 4.3 \& 30 \& 2.6 \& 27 \& 0.2

\hline 26-27 \& 976 \& 11,820 \& 2,663 \& 22.5 \& 1,382 \& 11.7 \& 1,021 \& 8.6 \& 260 \& 2.2

\hline 28-29 \& 540 \& 6,364 \& 2,687 \& 42.2 \& 1,239 \& 19.5 \& 951 \& 14.9 \& 497 \& 7.8

\hline 30-31 \& 311 \& 3,425 \& 1,951 \& 57.0 \& 612 \& 17.9 \& 768 \& 22.4 \& 571 \& 16.7

\hline 32-33 \& 148 \& 1,612 \& 1,003 \& 62.2 \& 172 \& 10.7 \& 389 \& 24.1 \& 442 \& 27.4

\hline 34-35 \& 62 \& 583 \& 522 \& 89.5 \& 30 \& 5.1 \& 108 \& 18.5 \& 384 \& 65.9

\hline 36-37 \& 45 \& 549 \& 509 \& 92.7 \& 40 \& 7.3 \& 160 \& 29.1 \& 309 \& 56.3

\hline 38-39 \& 17 \& 170 \& 170 \& 100.0 \& 5 \& 2.9 \& 37 \& 21.8 \& 128 \& 75.3

\hline 40-41 \& 9 \& 79 \& 79 \& 100.0 \& 0 \& - \& 22 \& 27.8 \& 56 \& 70.9

\hline 42-43 \& 7 \& 199 \& 199 \& 100.0 \& 0 \& - \& 96 \& 48.2 \& 103 \& 51.8

\hline 44-45 \& 3 \& 25 \& 25 \& 100.0 \& 0 \& - \& 0 \& . \& 25 \& 100.0

\hline 46 and more \& 8 \& 128 \& 128 \& 100.0 \& 0 \& - \& 0 \& - \& 128 \& 100.0

\hline Selected percentiles \& \& \& \& \& \& \& \& \& \&

\hline Greater than or equal to 85th - less than 90th (28-less than or equal to 28.9) \& 303 \& 3,660 \& 1,404 \& 38.4 \& 642 \& 17.5 \& 513 \& 14.0 \& 249 \& 6.8

\hline Greater than or equal to 90th - less than 95th 129 - less than or equal to 31.9) \& 548 \& 6.129 \& 1,404
3,132 \& 51.1 \& 1,209 \& 19.7 \& 1105 \& 18.0 \& 248
818 \& 6.8
133

\hline Greater than or equal to 95th (greater than or equal to 32) \qquad \& 299 \& 3,347 \& 2,637 \& 78.8 \& 1,209
247 \& 19.7
7.4 \& 1,105
814 \& 18.0

24.3 \& 818
1,575 \& 13.3
47.1

\hline
\end{tabular}

[^11]Table 28. Number of examined persons, estimated population in thousands, and number and percent of women obese for weight-height index according to triceps plus subscapular skinfold levels of obesity for ages 20-74 years: United States, 1971-74

Weight-height index categories and selected percentiles ${ }^{1}$	Number of examined persons	Estimated population in thousands	Triceps plus subscapular skinfold level of obesity							
			$\begin{gathered} \geqslant 85 t h \\ (\geqslant 52.0 \\ \text { millimeters }) \end{gathered}$		$\begin{gathered} \geqslant 85 t h-<90 t h \\ (\geqslant 52-\leqslant 58.4 \\ \text { millimeters) } \end{gathered}$		$\begin{gathered} \geqslant 90 t h-<95 t h \\ (\geqslant 85-\leqslant 67.9 \\ \text { mil/imeters) } \end{gathered}$		$\begin{gathered} \geqslant 95 t h \\ (\geqslant 68.0 \\ \text { millimeters) } \end{gathered}$	
			Number	Percent	Number	Percent	Number	Percent	Number	Percent
Less than 16	2	18	-	-	-	-	-	-	-	-
16-17	5	22	-	-	-	-	-	-	-	
18-19	27	221	-	-	-	-	-	-	-	-
20-21	116	832	-	-	-	-	-	-	-	-
22-23	412	3,285	-	-	-	-	-	-	-	-
24-25	859	7,024	12	0.2	12	0.2	\bullet	-	-	-
26-27	1,151	9,880	152	1.5	111	1.1	41	0.4	-	$\stackrel{*}{*}$
28-29	1,200	9,703	560	5.8	391	4.0	164	1.7	5	0.1
30-31	978	8,100	1,322	16.3	1,014	12.5	295	3.6	13	0.2
32-33	817	6,120	1,818	29.7	1,099	18.0	593	9.7	126	2.1
34-35	629	4,890	2,426	49.6	1,043	21.3	1,112	22.7	271	5.5
36-37	471	3,739	2,528	67.6	986	26.4	1,033	27.6	509	13.6
38-39	412	2,898	2,239	77.3	611	21.1	807	27.8	820	28.3
40-41	284	2,076	1,626	78.3	456	22.0	634	30.5	536	25.8
42-43	221	1,485	1,367	92.1	275	18.5	458	30.8	634	42.7
44-45	179	1,235	1,118	90.5	199	16.1	320	25.9	599	48.5
46 and more	367	2,631	2,571	97.7	129	4.9	475	18.1	1,967	74.8
Selected percentiles										
Greater than or equal to 85th - less than 90th (43 - less than or equal to 36.9)	893	6,919	3,681	53.2	1,498	21.7	1,685	24.4	498	7.2
Greater than or equal to 90th - less than 95th (37 - less than or equal to 41.9)	903	6,684	5,138	76.9	1,599	23.9	1,901	28.4	1,638	24.5
Greater than or equal to 95th - (greater than or equal to 42)	767	5,351	5,056	94.5	603	11.3	1,253	23.4	3,200	59.8

[^12]Table 29. Number of examined persons, estimated population in thousands, and number and percent of persons overweight and/or obese at below and above the 85 th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weight-height index, by sex and age: United States, $1971-74$

Sex and age	Number of persons examined	Estimated population in thousands	Skinfold thickness ${ }^{1}$ and relative desirable weight ${ }^{2}$						Skinfold thickness ${ }^{1}$ and weight-height index ${ }^{3}$					
			Overweight				Not overweight		Overweight				Not averweight	
			Not obese		Obese		Obese		Not obese		Obese		Obese	
			Number	Percent										
Men														
20-74 years	5,001	57,507	6,016	10.5	7,324	12.7	3,802	6.6	5,862	10.2	7,274	12.6	3,852	6.7
20-24 years	513	8,110	283	3.5	705	8.7	321	4.0	228	$\times 2.8$	705	8.7	321	4.0
25-34 years	804	13,003	1,001	7.7	1,949	15.0	757	5.8	916	7.0	1,913	14.7	793	6.1
35-44 years	664	10,676	1,582	14.8	1,433	13.4	831	7.8	1,582	14.8	1,428	13.4	835	7.8
45-54 years	765	11,150	1,357	12.2	1,656	14.9	889	8.0	1,352	12.1	1,650	14.8	895	8.0
55-64 years	597	9,073	1,152	12.7	1,006	11.1	675	7.4	1,152	12.7	1,006	11.1	675	7.4
65-74 years	1,657	5,496	654	11.9	575	10.5	330	6.0	632	11.5	572	10.4	332	6.0
Women														
20.74 years	8,130	64,158	5,109	8.0	13,817	21.5	3,921	6.1	5,078	7.9	13,875	21.6	3,864	6.0
20-24 years	1,243	9,215	304	3.3	849	9.2	371	4.0	294	3.2	875	9.5	344	3.7
25-34 years	1,896	13,933	543	3.9	2,318	16.6	603	4.3	580	4.2	2,321	16.7	600	4.3
35-44 years	1,664	11,593	773	6.7	2,713	23.4	841	7.3	764	6.6	2,748	23.7	806	7.0
$45-54$ years	836	12,163	1,034	8.5	3,349	27.5	1,161	9.5	1,007	8.3	3,344	27.5	1,166	9.6
55-64 years	670	9,976	1.118	11.2	2,994	30.0	638	6.4	1,111	11.1	3,005	30.1	627	6.3
65.74 years .	1,822	7,277	1,335	18.3	1,595	21.9	307	4.2	1,323	18.2	1,581	21.7	321	4.4

1Obesity-triceps plus subscapular skinfold.
${ }^{2}$ Overweight-relative desirable weight is obsenved weight divided by desirable weight times 100 , based on regression equations of weight on height for men and women ages $20-29$ years. $3_{\text {Weight-height index in }}$ kilogram $/\left(\right.$ meter $\left.^{p}\right)$, where $p=2$ for men, and $p=1.5$ for women.
 ard error was more than 30 percent.

Table 30. Number of examined persons, estimated population in thousands, and number and percent of persons overweight and/or obese at below and above the 90 th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weight-height index, by sex and age: United States, 1971-74

Sex and age	Number of persons examined	Estimated population in thousands	Skinfold thickness ${ }^{1}$ and relative desirable weight ${ }^{2}$						Skinfold thickness ${ }^{1}$ and weight-height index ${ }^{3}$					
			Overweight				Not overweight		Overweight				Not overweight	
			Not obese		Obese		Obese		Not obese		Obese		Obese	
			Number	Percent										
Men														
20-74 years	5,001	57.507	5,322	9.3	4,529	7.9	2,371	4.1	5,063	8.8	4,413	7.7	2,487	4.3
20-24 years	513	8,110	201	2.5	471	5.8	264	*3.3	175	*2.2	414	5.1	291	3.6
25-34 years	804	13,003	1,072	8.2	1,285	9.9	483	3.7	984	7.6	1,261	9.7	507	3.9
35-44 years	664	10,676	1,401	13.1	738	6.9	448	4.2	1,355	12.7	679	6.4	507	4.7
45-54 years	765	11,150	1,210	10.9	967	8.7	607	5.4	1,125	10.1	967	8.7	607	5.4
55-64 years	597	9,073	891	9.8	718	7.9	371	4.1	884	9.7	718	7.9	371	4.1
65-74 years	1,657	5,496	548	10.0	350	6.4	199	3.6	539	9.8	343	6.2	205	3.7
Women														
20-74 years.	8,130	64,158	4,905	7.6	8,447	13.2	2,977	4.6	4,042	6.3	7,993	12.5	3,431	5.3
20-24 years	1,243	9,215	201	2.2	539	5.8	212	2.3	181	2.0	478	5.2	273	3.0
25-34 years	1,896	13,933	671	4.8	1,478	10.6	529	3.8	563	4.0	1,432	10.3	576	4.1
$35-44$ years	1,664	11,593	767	6.6	1,773	15.3	537	4.6	561	4.8	1,702	14.7	608	5.2
45-54 years	836	12,163	958	7.9	2,059	16.9	841	6.9	746	6.1	1,983	16.3	917	7.5
55-64 years	670	9,976	1,253	12.6	1,683	16.9	635	6.4	1,116	11.2	1,555	15.6	762	7.6
65-74 years .	1,822	7.277	1,056	14.5	915	12.6	223	3.1	873	12.0	843	11.6	296	4.1

${ }^{1}$ Obesity-triceps plus subscapular skinfold.
2Overweight-relative desirable weight is observed weight divided by desirable weight times $\mathbf{1 0 0}$, based on regression equaticns of weight on height for men and women ages $20-29$ years. ${ }^{3}$ Weight-height index in kilogram/(meter P), where $p=2$ for men, and $p=1.5$ for women.
 ard error was more than 30 percent.

Table 31. Number of examined persons, estimated population in thousands, and number and percent of persons overweight and/or obese at below and above the 95 th percentile cutting point estimated from the cross-classification of triceps plus subscapular skinfold and relative desirable weight and weight-height index, by sex and age: United States, 1971 - 74

Sex and age	Number of persons examined	Estimated population in thousands	Skinfold thickness ${ }^{1}$ and relative desirable weight ${ }^{2}$						Skinfold thickness ${ }^{1}$ and weight-height index ${ }^{3}$					
			Overweight				Not overweight		Overweight				Not overweight	
			Not obese		Obese		Obese		Not obese		Obese		Obese	
			Number	Percent										
Men														
20-74 years	5,001	57,507	1,833	3.2	1,620	2.8	1,309	2.3	1,772	3.1	1,575	2.7	1,354	2.4
20-44 years	1,981	31,788	807	42.5	918	$4_{2.9}$	707	$4_{2.2}$	797	${ }^{4} 2.5$	879	${ }^{4} 2.8$	746	42.3
20-24 years	513	8,110	103	*1.3	175	*2.2	194	*2.4	103	*1.3	171	*2.1	198	*2.4
25-34 years	804	13,003	345	*2.7	552	4.2	301	*2.3	335	*2.6	526	4.0	327	*2.5
35-44 years	664	10,675	359	3.4	191	1.8	212	${ }^{*} 2.0$	359	3.4	182	*1.7	221	*2.1
$45-64$ years. .	1,363	20,223	880	44.4	598	${ }^{4} 3.0$	492	42.4	834	44.1	593	42.9	497	42.5
45-54 years	765	11,150	440	3.9	351	3.1	357	3.2	414	3.7	345	3.1	362	3.3
55-64 years	598	9,073	440	4.9	248	2.7	135	*1.5	420	4.6	248	2.7	135	*1.5
65-74 years . .	1,657	5,496	146	2.7	104	1.9	110	2.0	141	2.6	103	1.9	111	2.0
Women														
20-74 years.	8,130	64,158	2,739	4.3	3,414	5.3	2,066	3.2	2,150	3.4	3,200	5.0	2,279	3.6
$20-44$ years	4,803	34,741	1,125	3.2	1,750	5.0	883	2.5	892	2.6	1,654	4.8	979	2.8
20-24 years	1.243	9,215	208	2.3	183	2.0	151	1.6	172	1.9	180	1.9	155	1.7
25.34 years	1,896	13,933	372	2.7	746	5.4	363	2.6	275	2.0	707	5.1	402	2.9
35.44 years	1,664	11,593	545	4.7	821	7.1	369	3.2	445	3.8	767	6.6	422	3.6
45-64 years . .	1,505	22,140	1,118	5.0	1,404	6.3	988	4.5	839	3.8	1,307	5.9	1,086	4.9
45-54 years	836	12,163	499	4.1	829	6.8	510	4.2	334	2.7	768	6.3	571	4.7
55-64 years	670	9,976	619	6.2	575	5.8	478	4.8	505	5.1	539	5.4	515	5.2
65-74 years	1,822	7,277	496	6.8	260	3.6	195	2.7	420	5.8	240	3.3	215	3.0

1Obesity-triceps plus subscapular skinfold.
2Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on regression equations of weight on height for men and women ages $20-29$ years.
3 Weight-height index in kilogram/(meter p), where $p=2$ for men, and $p=1.5$ for women.

 the relative standard error was more than 30 percent.

Table 32. Percent of men overweight and/or obese at below and above selected percentile cutting points, by age and method of determining weight status: United States, 1971-74

[^13]Table 33. Percent of women overweight and/or obese at below and above selected percentile cutting points, by age and method of determining weight status: United States, 1971-74

		Overweight				$\frac{\text { Not overweight }}{\text { Obese }}$	
		Not obese		Obese			
	Age	Cross-classification of triceps plus subscapular skinfold ${ }^{1}$ with:		Cross-classification of triceps plus subscapular skinfold ${ }^{1}$ with:		Cross-classification of triceps plus subscapular skinfold ${ }^{1}$ with:	
		Relative desirable weight ${ }^{2}$	Weightheight index ${ }^{3}$	Relative desirable weight ${ }^{2}$	Weightheight index ${ }^{3}$	Relative desirable weight ${ }^{2}$	Weight height index ${ }^{3}$
		Below and above 85th percentile					
20-74 years		8.0	7.9	21.5	21.6	6.1	6.0
20-24 years		3.3	3.2	9.2	9.5	4.0	3.7
25-34 years		3.9	4.2	16.6	16.7	4.3	4.3
35-44 years		6.7	6.6	23.4	23.7	7.3	7.0
$45-54$ years		8.5	8.3	27.5	27.5	9.5	9.6
$55-64$ years		11.2	11.1	30.0	30.1	6.4	6.3
65.74 years		18.3	18.2	21.9	21.7	4.2	4.4
		Below and above 90th percentile					
20-74 years		7.6	6.3	13.2	12.5	4.6	5.3
20-24 years		2.2	2.0	5.8	5.2	2.3	3.0
25-34 years		4.8	4.0	10.6	10.3	3.8	4.1
$35-44$ years		6.6	4.8	15.3	14.7	4.6	5.2
$45-54$ years		7.9	6.1	16.9	16.3	6.9	7.5
$55-64$ years		12.6	11.2	16.9	15.6	6.4	7.6
65-74 years		14.5	12.0	12.6	11.6	3.1	4.1
		Below and above 95th percentile					
20-74 years		4.3	3.4	5.3	5.0	3.2	3.6
20-44 years		3.2	2.6	5.0	4.8	2.5	2.8
20-24 years		2.3	1.9	2.0	1.9	1.6	1.7
25-34 years		2.7	2.0	5.4	5.1	2.6	2.9
35-44 years		4.7	3.8	7.1	6.6	3.2	3.6
45-64 years.		5.0	3.8	6.3	5.9	4.5	4.9
45-54 years		4.1	2.7	6.8	6.3	4.2	4.7
55-64 years		6.2	5.1	5.8	5.4	4.8	5.2
$65-74$ years		6.8	5.8	3.6	3.3	2.7	3.0

[^14]
Appendixes

Contents

1. Statistical notes 64
Survey design 64
Nonresponse. 65
Missing data 66
Standard errors of reliability and precision 66
Data limitations and reliability 67
Hypothesis testing 67
Derivation of regression coefficients 70
Weight-height index 71
II. Demographic terms 76
III. Profile of body measurements of persons from cross-classification of overweight and obesity measures 77
Upper arm girth 78
Elbow breadth 79
List of appendix figures
I. Diagram of anthropometric measurements 77
II. Mean arm muscle diameter and elbow breadth measurements of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74 81
1il. Mean weight and height of men by weight category at selected percentile cutting points based on cross-classificatlon of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74 82
IV. Mean arm muscle diameter and elbow breadth measurements of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74 84
V. Mean weight and height of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74 85
VI. Mean arm muscle diameter and elbow breadth measurements of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74 88
VII. Mean weight and height of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74 89
VIII. Mean arm muscle diameter and elbow breadth measurements of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74 90
IX. Mean weight and height of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74 91
List of appendix tables
2. Percent distribution of nonresponse adjustment factors: United States, 1971-74 66
II. Number of examinees with one or more missing anthropometric measurements: National Health and Nutrition Ex- amination Survey-United States, 1971-74 66
III. Standard error of the prevalence of persons obese and overweight for selected percentiles, by age: United States, 1971-74 67
IV. Coefficient of correlation estimates and parameter estimates for linear regression equations and standard error of esti- mate of weight (y) on height (x) of adults ages 20-74 years, by sex and age: United States, 1971-74 68
V. Standard error of the prevalence of men overweight and/or obese for selected percentiles, by age: United States, 1971-74 69
VI. Standard error of the prevalence of women overweight and/or obese for selected percentiles, by age: United States, 1971-74 72
VII. Mid-range of height $\left(H_{0}\right)$, mean weight at height H_{0}, regression coefficient of weight on height, power of height, and nearest half integer for p_{r} by sex and age: United States, 1971-74 73
VIII. Calculated mean weight from mean group weight relative to mean group height and mean weight estimated from regression equation of weight on height by sex and age: United States, 1971-74 74
IX. Calculated mean weight from group weight relative to mean group weight and mean weight estimated from regression equation of weight on height, by sex and age of women: United States, 1971-74 75
X. Elbow breadth of adults, number of examined persons, estimated population in thousands, mean, standard deviation, and selected percentiles, by sex and age: United States, 1971-74 78
XI. Arm muscle diameter of adults, number of examined persons, estimated population in thousands, mean, standard deviation and selected percentiles, by sex and age: United States, 1971-74 78
XII. Mean body measurements of men by weight categories at selected percentile cutting points based on cross-classification of relative desirable weight and triceps plus subscapular skinfold, by age: United States, 1971-74 80
XIII. Mean body measurements of women by weight categories at selected percentile cutting points based on cross- classification of relative desirable weight and triceps plus subscapular skinfold, by age: United States, 1971-74 83
XIV. Mean body measurements of men by weight categories at selected percentile cutting points based on cross-classification of weight-height index and triceps plus subscapular skinfold, by age: United States, 1971-74 86
XV. Mean body measurements of women by weight categories at selected percentile cutting points based on cross- classification of weight-height index and triceps plus subscapular skinfold, by age: United States, 1971-74 87
XVI. Mean body measurements of overweight and obese men and women ages 20-74 years, by weight categories at selected percentile cutting points based on the cross-classification of triceps plus subscapular skinfold and relative desirable weight: United States, 1971-74 92
XVII. Mean body measurements of overweight and obese men and women ages $20-74$ years, by weight categories at selected percentile cutting points based on the cross-classification of triceps plus subscapular skinfold and weight-height index: United States, 1971-74 93

Appendix I. Statistical notes

Survey design

Individuals examined during NHANES I were selected by means of a three-stage, stratified probability sample of loose clusters of persons by geographic location. The sample was designed to be representative of the civilian noninstitutionalized population ages 1-74 years living in the coterminous United States. All persons residing upon reservation lands set aside for use of American Indians were excluded.

In the first stage of the design, 1960 decennial census lists of addresses and the almost 1,900 primary sampling units (PSU's) into which the coterminous United States is divided were examined. (Each PSU is either a standard metropolitan statistical area, a single county, or two or three contiguous counties.) These PSU's were then grouped into 40 strata based on geographic region and population density to select target PSU's for NHANES I.

Of the 40 strata, 15 were composed of single large metropolitan areas with more than 2 million persons. These 15 metropolitan areas were chosen for the sample with certainty. A modified Goodman-Kish controlled selection technique was used to choose two PSU's from each of the remaining 25 noncertainty strata with probability proportionate to the 1960 PSU population. In this manner, a total firststage sample of $65(15+(2 \times 25))$ PSU's or "stands" were selected for study.

Within each PSU, a systematic sample of segments (loose clusters of households) was chosen. Selection was made using the most up-to-date information on census enumeration districts (ED's) at the time of the visit-1960 census data for the first 44 stands and 1970 data for the remaining 21 stands. To make the sample representative of the current U.S. population, lists were supplemented by a sample of housing units that had been constructed since the most recent decennial census.

ED's having addresses (the majority of the areas visited) were divided into segments containing an average of six households each (in the first 44
stands) or eight households each (in the remaining 21 stands). The change was made primarily for operational advantages and was supported by research by the U.S. Bureau of the Census indicating that the precision of estimates would not be affected appreciably. For ED's without addresses that could be used (generally located in rural areas), area sampling was employed.

Enumeration districts were divided into two economic classes. The first class, identified as the "poverty stratum," was composed of "current poverty areas" that had been identified by the U.S. Bureau of the Census in 1960 or 1970 and other ED's in the PSU with a mean family income of less than $\$ 3,000$ in 1959 (based on the 1960 census). The second economic class, the "nonpoverty stratum," comprised all ED's not designated as belonging to the poverty stratum.

Target segments were then selected from each of the two strata. All sample segments classified into the poverty stratum were sampled with probability 1 . For the first 42 stands, sample segments in nonpoverty stratum ED's were divided into eight random subgroups, and one of the subgroups was chosen to remain in the NHANES I sample. Ongoing research indicated that the efficiency of estimates could be increased by changing the ratio of poverty to nonpoverty segments from $8: 1$ to $2: 1$. Therefore, in the remaining 23 stands, the selected segments in the nonpoverty ED's were divided into two random subgroups, and one of the subgroups was chosen to remain in the sample.

After identification of the sample segments, a list of all current addresses within the segment boundaries was made, and a person in the household was interviewed to determine the age and sex of each person as well as demographic and socioeconomic information required for the survey. If no one was at home after repeated calls or if the household members refused to be interviewed, the interviewer tried to determine the household composition from neighbors.

To select the persons in sample segments to be examined in NHANES I and oversample certain groups at high risk of malnutrition, all household members ages $1-74$ in each segment were first listed on a sample selection worksheet with each household in the segment listed serially. The number of household members in each of six age-sex groups were then listed on the worksheet under the appropriate age-sex group column. The sample selection worksheets were put in segment-number order, and a systematic random sample of persons in each age-sex group was selected to be examined using the following sampling

Age and sex	Rate
1-5 years (males and females).	1/2
6-19 years (males and females)	1/4
20-44 years (males)	1/4
20-44 years (females)	1/2
45-64 years (males and females).	1/4
65-74 years (males and females).	1

The persons selected in the 65 -stand sample of NHANES I constituted a representative sample of the target population. The sample was composed of 28,043 persons ages 1-74 years, of whom 20,749 (74 percent) were examined. When adjustments were made for differential sampling for high-risk groups, the response rate was 75 percent.

All data presented in this report are based on weighted observations-data recorded for each person were inflated to characterize the subuniverse from which that person was drawn. The weight for each examined person is a product of the reciprocal of the probability of selecting the person, an adjustment for nonresponse cases (i.e., persons not examined), and a poststratified ratio adjustment that increases precision by closely alining survey results with U.S. Bureau of the Census population figures for 20 age, race, and sex groups in the United States as of November 1, 1972 (the approximate midpoint of NHANES I).

A more detailed description of the survey design and selection technique may be found in a previous Vital and Health Statistics report.

Nonresponse

In any survey, after the sample is identified and the sample persons are requested to participate, the survey meets one of its more severe problems-nonresponse. The problem is more severe in a health examination survey; often many persons will not participate in the examination. A potential for bias results if the persons in the sample who do not participate differ from the persons in the sample examined with respect to the characteristics under investigation. Intensive efforts were made in NHANES I to develop and implement procedures and inducements that would reduce the number of nonrespondents and
thereby reduce the potential bias due to nonresponse. ${ }^{1}$

Despite these intensive efforts, 26 percent of the persons in the 65 -location nutrition sample, and 30 percent of the persons from the 100 -location detailed sample were not examined. Consequently, the potential for sizable bias exists in the estimates in this publication. However, because the response rate for the medical questionnaire was more than 95 percent, the characteristics of the nonrespondents and the nature of nonresponse could be examined. This examination indicated that the likelihood of sizable bias is small.

Efforts have been made using data from NHANES I and an earlier survey to examine possible healthrelated differences between examined and nonexamined persons. Reasons for nonparticipation in NHANES I were investigated ${ }^{27}$ for a sample of 406 people (290 examined persons, 35 who had appointments for examinations but never came to the mobile examination center for examination, and 81 persons who refused to participate in the survey). The people in the sample for this study came from four stand locations-St. Louis, Monterey, New York, and Philadelphia. People in the study were asked to indicate why they did not choose to be examined in NHANES I. The primary reasons given were (1) they had no need for a physical (48 percent) and (2) examination times were inconvenient because of work schedule or other demands (15 percent). Only 6 percent of the persons not examined in the NHANES I subsample (4 stands) indicated that they refused the examination because of sickness, and 3 percent based their refusal on a fear of possible findings.

An analysis using data on examined and unexamined (but interviewed) persons was conducted ${ }^{28}$ using data from the first 35 stands of NHANES I. This study found that for health characteristics compared, the two groups of people were quite similar. For example, 20 percent of the examined people reported that a doctor told them they had arthritis compared with 17 percent for the unexamined people; similarily, 18 percent of the examined and the unexamined people were told by a doctor that they had high blood pressure. Twelve percent of both groups reported that they were on a special diet, and 6 percent of both groups said they regularly used medication for nerves.

A study ${ }^{29}$ in which factors relating to response in a health examination survey were investigated and that used data from Cycle I of the Health Examination Survey found that 36 percent of the unexamined people believed they were in excellent health compared with 31 percent of the examined people. A self-appraisal of poor health was made by 5 percent of the unexamined persons and by 6 percent of the people examined. In addition, a different study of the Cycle I data ${ }^{30}$ found that comparisons between
two extreme groups-persons who participated in the survey with no persuasion efforts and those who participated only after a great deal of persuasion-indicated that differences between these two groups generally had little effect on estimates based on numerous selected examination and questionnaire items. This was interpreted as evidence that no large bias existed between these two groups for the items investigated and was offered as further support for the belief that little bias was introduced to the findings because of differences in health characteristics between examined and unexamined people.

As was mentioned earlier, the data in this report were based on weighted observations, and one of the components of the weight assigned to an examined person was an adjustment for nonresponse. A procedure was adopted that multiplied the reciprocal of the probability of selection of examined persons in the sample by a factor that raised estimates based on examined persons to a level that would have been achieved if all persons in the sample had been examined. The nonresponse adjustment factor was calculated by dividing the sum of the reciprocals of the probability of selection for all selected persons in each of five income groups within each stand by the sum of the reciprocals of the probability of selection for examined persons in the same stand and income group. The five income groups were (1) under $\$ 3,000$, (2) $\$ 3,000-\$ 6,999$, (3) $\$ 7,000-\$ 9,999$, (4) $\$ 10,000-\$ 14,999$, and (5) $\$ 15,000$ and over. To weight the sample, income group was imputed for 5.6 percent of the persons in the sample using educational level of the head of household. To the extent that the income-within-stand classes were homogenous with respect to the health characteristics under study, the adjustment procedure was effective in reducing the bias due to nonresponse. The percent distribution of the nonresponse adjustment factors computed for the 65 -stand sample of NHANES I is shown in table I.

Missing data

Examination surveys are subject to loss of information not only through failure to examine all persons in a sample but also from failure to obtain and record all items of information for examined persons. Age, sex, and race were known for every examined person. However, for several examinees, one or more of the anthropometric measurements were not available. The number of missing measurements is indicated in table II.

Estimates for missing anthropometric data generally were made based on a multiple-regression decision, substituting measurements of an individual of the same age, sex, and race who had other dimensions similar to those available for the examinee with incomplete data. For examined persons with no anthropometric measurements, a respondent of the

Table I. Percent distribution of nonresponse adjustment factors: United States, 1971-74

Size of factor	Percent distribution
Total	100.0
1.00-1.24.	32.6
1.25-1.49.	38.5
1.50-1.74.	18.2
1.75-1.99.	7.4
2.00-2.49.	2.8
2.50-2.99.	0.3
$3.00{ }^{1}$.	0.3

${ }^{1}$ A size of 3.00 was assigned for all factors greater than 3.00. The final poststratified ratio adjustment corrects for this truncation.

Table II. Number of examinees with one or more missing anthropometric measurements: National Health and Nutrition Examination Survey-United States, 1971-74

Measurement missing	Number of examinees
Height	40
Weight	69
Elbow breadth.	36
Triceps skinfold.	114
Subscapular skinfold	164
Upper arm girth . .	41

same age, sex, and race group was selected at random and the measurements assigned to the unexamined person.

Skinfold thickness values also were imputed in circumstances in which the skin was so tightly bound to the underlying skin that it could not be pulled into a double fold by the technician. The technician recorded that the skinfold thickness measurement could not be read rather than implying that the skinfold existed but was so small that it measured zero.

Standard errors

The probability design of this survey determined the estimation of standard errors that corresponded to the weighted estimates. The NHANES I sampling design was a highly clustered, multistage probability sample of the U.S. civilian noninstitutionalized population. Estimates from this type of design are different from and generally larger than standard errors calculated under the assumption of simple random sampling.

The standard error is primarily a measure of sampling variability, that is, the variations that might occur by chance because only a sample of the population is surveyed. As calculated for this report, the standard error also reflects part of the variation that arises in the measurement process. Estimates of any biases that might lie in the data are not included. The chances are about 68 out of 100 that an estimate
from the sample would differ from a complete census by less than the standard error. The chances are about 95 out of 100 that the difference would be less than twice the standard error and about 99 out of 100 that it would be less than $21 / 2$ times as large.

Estimates of the standard errors of the percents used in this report are presented in tables III-V. Standard errors of the percents were calculated by a technique referred to as "balanced repeated replication." ${ }^{31}$ The need for this specialized technique for estimating standard errors arose because of the complex sample design of NHANES I; it was inappropriate to calculate standard errors by a technique that would not account for the multistage cluster sample design. (It must be noted that estimates of standard errors are subject to errors that may be large if the number of cases upon which the estimates are based is small or the number of PSU's and number of strata used in the variance calculation is small.)

Data limitations and reliability

The first criterion for reliability of percents was that a sample size of at least 25 was required. If the first criterion of sample size was satisfied, then the second criterion must have been demonstrated as well. If the coefficient of variation, that is, the standard error of the percent divided by the percent times 100 was greater than 30 percent, the variation with respect to the percent was considered too large, and
the estimate was neither precise nor stable enough to meet the standards.

Asterisks in the tables denote failure to meet the second criterion. When successive cells contained an unreliable estimate, the cells containing the unreliable percents were pooled with either the adjacent cell or cells. The percents reported met the specified criteria for inclusion after pooling.

Hypothesis testing

In testing the equality of two proportions, p_{A} and p_{B}, i.e., in testing the hypothesis

$$
H_{\mathrm{o}}: p_{\mathrm{A}}=p_{\mathrm{B}}
$$

against an alternative such as

$$
\begin{aligned}
& H_{\mathrm{A}}: p_{\mathrm{A}} \neq p_{\mathrm{B}} \\
& H_{\mathrm{A}}: p_{\mathrm{A}}>p_{\mathrm{B}}
\end{aligned}
$$

the statistic

$$
\begin{equation*}
Z=\frac{\hat{p}_{A}-\hat{p}_{\mathrm{B}}}{\text { S.E. }\left(\hat{p}_{\mathrm{A}}-\hat{p}_{\mathrm{B}}\right)} \tag{1}
\end{equation*}
$$

was used. \hat{p}_{A} and \hat{p}_{B} are estimates of p_{A} and p_{B}, respectively, and S.E. $\left(\hat{p}_{A}-\hat{p}_{B}\right)$, the standard error of $\hat{p}_{A}-\hat{p}_{B}$, can be estimated by

Table III. Standard error of the prevalence of persons obese and overweight for selected percentiles, by age: United States, 1971-74

Sex and age		85th percentile or more			90th percentile or more			95th percentile or more		
		Skinfold thickness ${ }^{1}$	Relative desirable weight ${ }^{2}$	Weightheigit: index ${ }^{3}$	Skinfold thicknes: 7	Relative desirable weight 2	Weightheight index ${ }^{3}$	Skinfold thickness ${ }^{1}$	Relative desirable weight 2	Weightheight index ${ }^{3}$
	Men	Standard error in percent								
20-74 years		0.80	0.82	0.86	0.69	0.69	0.65	0.41	0.44	0.46
20-24 years		1.97	1.83	1.71	1.46	1.41	1.38	1.14	0.76	0.76
25-34 years		1.51	2.05	2.08	1.61	1.91	1.84	1.28	1.16	1.16
35-44 years		2.43	2.25	2.25	1.53	2.01	2.04	0.92	1.07	1.10
45-54 years		1.91	2.06	2.04	1.73	1.55	1.65	1.03	1.10	1.10
55-64 years		2.17	1.90	1.90	1.96	1.73	1.73	0.90	1.23	1.22
65-74 years		1.36	1.34	1.33	0.92	0.99	1.04	0.58	0.61	0.61
Women										
20-74 years		0.82	0.74	0.73	0.72	0.78	0.76	0.55	0.54	0.49
20-24 years		1.29	1.21	1.14	0.96	0.90	0.87	0.61	0.59	0.53
25-34 years		0.98	0.85	0.85	0.84	0.93	0.90	0.67	0.69	0.69
35-44 years .		1.58	1.46	1.48	1.39	1.24	1.17	0.94	1.04	0.97
$45-54$ years.		2.02	2.32	2.29	1.97	2.02	2.12	1.58	1.51	1.43
55-64 years		2.03	1.96	1.99	1.60	2.08	1.82	1.26	1.39	1.31
65-74 years		1.51	1.81	1.84	1.15	1.59	1.60	0.83	1.02	0.94

[^15]Table IV. Coefficient of correlation estimates and parameter estimates for linear regression equations and standard error of estimate of weight (y) on height (x) of adults ages 20-74 years, by sex and age: United States, 1971-74

	Sex and age	Coefficient of correlation 1_{r}	${ }^{2} b_{0}$	$b_{1}{ }^{3}$	$s_{y \cdot x}{ }^{4}$
Men					
20-24 years		0.417	-143.30	4.441	27.3
25-34 years		0.420	-168.67	4.941	30.5
35-44 years		0.460	-187.49	5.277	27.4
45-54 years		0.390	-131.83	4.454	28.4
55-64 years		0.426	-173.99	5.069	28.5
$65-74$ years		0.404	-131.64	4.385	26.0
20-29 years		0.381	-160.88	4.697	28.4
Women					
20-24 years		0.274	-70.82	3.197	28.7
25-34 years		0.263	-88.62	3.587	32.1
35-44 years		0.270	-94.02	3.815	35.0
45-54 years		0.246	-77.17	3.587	33.8
55-64 years		0.249	-68.24	3.492	33.4
65-74 years		0.285	-76.38	3.583	29.0
20-29 years		0.247	-67.64	3.167	29.2

$1_{r}=$ coefficient of correlation.
$2_{b_{0}}=$ intercept in regression equation.
$3_{b_{1}}=$ regression coefficient.
${ }^{4} \mathrm{~S}_{\mathrm{Y} \cdot \mathrm{X}}=$ standard error of estimate.

$$
\text { S.E. }\left(\hat{p}_{\mathrm{A}}-\hat{p}_{\mathrm{B}}\right)=\sqrt{s_{\mathrm{A}}^{2}+s_{\mathrm{B}}^{2}-2 \operatorname{cov}\left(\hat{p}_{\mathrm{A}}, \hat{p}_{\mathrm{B}}\right)}
$$

where

$$
\begin{aligned}
s_{\mathrm{A}}= & \text { estimated standard error of } p_{\mathrm{A}} \\
s_{\mathrm{B}}= & \text { estimated standard error of } p_{\mathrm{B}}, \\
& \text { and } \\
\operatorname{cov}\left(\hat{p}_{\mathrm{A}}, \hat{p}_{\mathrm{B}}\right)= & \text { the estimated covariance of } p_{\mathrm{A}} \\
& \text { and } p_{\mathrm{B}} .
\end{aligned}
$$

s_{A} and s_{B} were estimated using the balanced half sample replication method.

The calculation of the covariance of \hat{p}_{A} and \hat{p}_{B} depended on the type of hypothesis tested. Basically, the hypotheses may be classified as follows:

1. Testing for the equality of the proportion of obese in a given sex and age subgroup and the proportion of overweight on the basis of a given method in that same subgroup.
2. Testing for the equality of proportions of persons in different overweight and/or obesity categories for a given age and sex subgroup on the basis of methods A and B, respectively, (for example, one might be interested in testing for the equality of percentages of men 20-24 years who are overweight not obese and obese not overweight on the basis of method A or B).
3. Testing the equality of the percents of men and women for a given overweight and/or obesity category on the basis of method A or B.

In testing hypotheses of type 1, the covariance of p_{A} and p_{B} is calculated by the identity

$$
\operatorname{cov}\left(\hat{p}_{\mathrm{A}}, \hat{p}_{\mathrm{B}}\right)=s_{\mathrm{A}}^{2} s_{\mathrm{B}}^{2} r_{\mathrm{A}, \mathrm{~B}}
$$

where

$$
r_{\mathrm{A}, \mathrm{~B}}=\frac{\sum\left(x_{i, \mathrm{~A}}-\hat{p}_{\mathrm{A}}\right)\left(x_{i, \mathrm{~B}}-\hat{p}_{\mathrm{B}}\right) w_{i}}{\sqrt{\sum w_{i}\left(x_{i, \mathrm{~A}}-\hat{p}_{\mathrm{A}}\right)^{2} \sum w_{i}\left(x_{i, \mathrm{~B}}-\hat{p}_{\mathrm{B}}\right)^{2}}}
$$

and

$$
x_{i, j}=\left\{\begin{array}{l}
1 \text { if the } i \text { th sampled person in a given } \\
\text { age-sex group is } j \text { on the basis of a given } \\
\text { method } \\
0 \text { otherwise }
\end{array}\right.
$$ and

$$
j=\mathrm{A} \text { (overweight), B (obese). }
$$

in testing hypotneses of type $2, \operatorname{cov}\left(\hat{p}_{\mathrm{A}}, \hat{p}_{\mathrm{B}}\right)$ was estimated using the identity

$$
\operatorname{Var}\left(\hat{p}_{\mathrm{A}}+\hat{p}_{\mathrm{B}}\right)=\operatorname{Var}\left(\hat{p}_{\mathrm{A}}\right)+\operatorname{Var}\left(\hat{p}_{\mathrm{B}}\right)+2 \operatorname{cov}\left(\hat{p}_{\mathrm{A}}, \hat{p}_{\mathrm{B}}\right)
$$

where

$$
\operatorname{Var}\left(\hat{p}_{\mathrm{A}}\right)=s_{\mathrm{A}}^{2}, \operatorname{Var}\left(\hat{p}_{\mathrm{B}}\right)=s_{\mathrm{B}}^{2}
$$

and

$$
\operatorname{Var}\left(\hat{p}_{\mathrm{A}}+\hat{p}_{\mathrm{B}}\right)=\left[\text { S.E. }\left(\hat{p}_{\mathrm{A}}+\hat{p}_{\mathrm{B}}\right)\right]^{2}
$$

were estimated using the NCHS variance program. ${ }^{32}$

Age		Overweight				Not overweight Obese	
		Not obese		Obese			
		Cross-classification of triceps plus subscapular skinfold ${ }^{1}$ with:		Cross-classification of triceps plus subscapular skinfold with:		Cross-classification of triceps plus subscapular skinfold with:	
		Relative desirable weight ${ }^{2}$	Weightheight index ${ }^{3}$	Relative desirable weight	Weightheight index	Relative desirable weight	Weightheight index
		Below and above 85th percentile					
20-74 years		0.59	0.59	0.58	0.60	0.56	0.56
20-24 years		0.97	0.79	1.51	1.51	1.02	1.02
25-34 years		1.22	1.15	1.62	1.66	0.98	1.03
35-44 years		1.77	1.77	1.79	1.79	1.41	1.41
45-54 years .		1.22	1.22	1.59	1.58	1.51	1.51
55-64 years		1.39	1.39	1.53	1.53	1.48	1.48
$65-74$ years		1.06	1.04	0.96	0.95	0.76	0.76
		Below and above 90th percentile					
20-74 years		0.60	0.58	0.43	0.42	0.49	0.49
20-24 years		0.72	0.69	1.16	1.14	1.03	1.06
25-34 years		1.39	1.30	1.35	1.35	0.76	0.77
35-44 years		1.71	1.70	1.15	1.19	1.07	1.11
45-54 years		1.17	1.27	1.16	1.16	1.56	1.56
55-64 years		1.26	1.26	1.48	1.48	1.24	1.24
65-74 years		0.97	0.97	0.74	0.75	0.46	0.47
		Below and above 95th percentile					
20-74 years		0.36	0.36	0.28	0.27	0.36	0.36
20-44 years		0.48	0.48	0.43	0.44	0.39	0.40
20-24 years		0.58	0.58	0.74	0.74	0.76	0.77
25-34 years		0.93	0.93	0.90	0.89	0.77	0.79
35-44 years		0.84	0.84	0.51	0.55	0.67	0.68
45-64 years.		0.72	0.71	0.41	0.41	0.55	0.55
45-54 years		0.89	0.89	0.77	0.77	0.82	0.83
55-64 years		1.12	1.10	0.73	0.73	0.55	0.55
65-74 years .		0.48	0.47	0.49	0.49	0.40	0.40

1Obesity-triceps plus subscapular skinfold thickness.
2Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on average weights estimated from regression equation of weight on height for men and women ages $\mathbf{2 0 - 2 9}$ years.
3 Weight-height index in kilogram/(meterp), where $p=2$ for men, and $p=1.5$ for women.
NOTE: Criteria of obesity and overweight are at the 85 th, 90 th, and 95 th percentiles or more measurements for men and women ages $20-29$ years.

In testing hypotheses of type 3, the covariance was calculated directly from the HES variancecovariance program.

In testing hypotheses of types 1,2 , and 3 , more than one hypothesis is implied, because there are two sex groups and several age groups. It is desirable to have the overall probability of falsely rejecting the null hypothesis less than a predetermined α level. Therefore, in determining the critical value for each value defined in equation 1 , the Bonferroni method was used.

This method is applied in the following manner:
Let n denote the total number of age and sex subgroups for which the hypothesis is to be tested, and let $A_{i}(i=1, \ldots, n)$ represent the rejection of the hypothesis $\mathrm{H}_{\mathrm{o}}: p_{\mathrm{A}}=p_{\mathrm{B}}$ when it is true for the i th age and sex subgroup.

Then if the critical value of α is chosen so that

$$
P\left(A_{i}\right) \leqslant \frac{\alpha}{n} \quad i=1, \ldots, n
$$

it follows immediately from Bonferroni's inequality

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right) \leqslant \sum_{i=1}^{n} P\left(A_{i}\right)
$$

that $p\left(\bigcup_{i=1}^{n} A_{i}\right) \leqslant \alpha$ is the desired overall rejection level. In this report, an α level of 0.05 was used.

In testing hypotheses of type 1, a two-sided alternative was used, and six comparisons were made-ages 20-24 years, $25-34$ years, $35-44$ years, $45-54$ years, 55-64 years, and 65-74 years. In addition, these hy-
potheses were tested for men and women separately. Hence a critical value of 2.64 from the normal tables was used. This also was true in testing hypotheses of type 2 for women at the 85th, 90th, and 95th percentiles or more and for men at the 85 th and 90th percentiles or more. In testing hypotheses of type 2 at the 95 th percentile or more for men, a two-sided alternative was used, and three comparisons were made-ages 20-44 years, 45-64 years, and 65-74 years. Hence a critical value of 2.39 was used.

Hypotheses of type 3 at the 85 th and 90th percentiles or more were tested against a two-sided alternative assuming six comparisons similar to the six age groups indicated above; again a critical value at 2.64 was used. Hypotheses of type 3 at the 95 th percentile or more were tested assuming three comparisons, with the three ages indicated previously. A critical value of 2.39 was used.

In testing for age-related trends, there were five implied comparisons and the null hypothesis: $H_{\circ}: p_{\mathrm{A}}=p_{\mathrm{B}}$ was tested against the one-sided alternative $H_{\mathrm{A}}: p_{\mathrm{A}}>p_{\mathrm{B}}$. Hence a critical value of 2.326 was used.

Derivation of regression coefficients

In this report, predicted values of weight $\left(\hat{y}_{i}\right)$ based on height (X_{i}) were used in the construction of a measurc of overweight. These values were calculated by means of the method of weighted least squares. In applying this method, the following assumptions were made.

Let y_{i} denote the observed weight of a person and w_{i} the sample weight (i.e., the number of persons in the population represented by the sample person). It is assumed that $y_{\text {; }}$ can be expressed as a linear combination of m continuous variables $X_{j i}$ plus error term e_{i}, that is:

$$
\begin{align*}
y_{i} & =\beta_{0}+X_{1} ; \beta_{1}+X_{2 ;} \beta_{2}+\ldots+X_{\mathrm{m} i} \beta_{\mathrm{m}} \\
& +e_{i} \quad i=1, \ldots, n \tag{2}
\end{align*}
$$

where the e_{i} are independent normally distributed random variables with zero mean and variance equal to $w_{i}^{-1} \sigma^{2}$.

Equation (2) can be written in matrix notation as follows:

$$
\begin{equation*}
\underset{\sim}{y}=X \underset{\sim}{\beta}+\underset{\sim}{e} \tag{3}
\end{equation*}
$$

where

$$
{\underset{\sim}{y}}^{\prime}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

$$
\begin{aligned}
& X=\left[\begin{array}{lllll}
1 & X_{11} & X_{21} & \ldots & X_{\mathrm{m} 1} \\
1 & X_{12} & X_{22} & \ldots & X_{\mathrm{m} 2} \\
1 & X_{13} & X_{23} & . & X_{\mathrm{m} 3} \\
\cdot & & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & X_{1 \mathrm{n}} & X_{2 \mathrm{n}} & \ldots & X_{\mathrm{mn}}
\end{array}\right] \\
& {\underset{\sim}{\beta}}^{\prime}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{m}}\right)
\end{aligned}
$$

ind

$$
{\underset{\sim}{e}}^{\prime}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)
$$

The estimators b_{j} of $\beta_{j}(j=0, \ldots, m)$ then can be calculated by the method of weighted least squares as follows:

$$
\begin{equation*}
\underset{\sim}{b}=\left(X^{\prime} V^{-1} X\right)^{-1} X^{\prime} V^{-1} \underset{\sim}{y} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \underset{\sim}{b}=\left(b_{0}, b_{1}, \ldots, b_{\mathrm{m}}\right) \\
& V=\left[\begin{array}{cccc}
\frac{1}{w_{1}} & 0 & \ldots & 0 \\
0 & \frac{1}{w_{2}} & \ldots & 0 \\
: & \vdots & & \\
: & \cdot & & \cdot \\
0 & 0 & \ldots & \frac{1}{w_{0}}
\end{array}\right]
\end{aligned}
$$

with

$$
\begin{equation*}
\operatorname{Var}(\underset{\sim}{b})=\left(X^{\prime} V^{-1} X\right)^{-1} \tag{5}
\end{equation*}
$$

In the case where predicted weight is based on height (X_{1}) alone equation (3) has the form

$$
\left[\begin{array}{c}
y_{1} \tag{6}\\
y_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & x_{11} \\
1 & x_{12} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
1 & x_{1 n}
\end{array}\right]\left[\begin{array}{l}
\\
b_{0} \\
b_{1}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
e_{n}
\end{array}\right]
$$

so that predicted values of weight $\left(\hat{y}_{i}\right)$ on height $\left(X_{i}\right)(i=1, \ldots, n)$ can be calculated by

$$
\hat{y}_{i}=b_{0}+X_{1 i} b_{1},(i=1, \ldots, n)
$$

where the estimators b_{1} of β_{1} and b_{0} of β_{0}

$$
b_{1}=\frac{\sum_{i=1}^{n} w_{i} X_{i} y_{i}-\frac{\left(\sum_{i=1}^{n} w_{i} X_{i}\right)\left(\sum_{i=1}^{n} w_{i} y_{i}\right)}{\sum_{i=1}^{n} w_{i}}}{\sum_{i=1}^{n} w_{i} X_{1}{ }^{2}-\frac{\left(\sum_{i=1}^{n} w_{i} X_{1 i}\right)^{2}}{\sum_{i=1}^{n} w_{i}}}
$$

and

$$
b_{0}=\bar{Y}-b_{1} \bar{X}_{1}
$$

where

$$
\bar{Y}=\frac{\sum_{i=1}^{n} w_{i} y_{i}}{\sum_{i=1}^{n} w_{i}}
$$

and

$$
\bar{X}_{1}=\frac{\sum_{i=1}^{n} w_{i} X_{1 i}}{\sum_{i=1}^{n} w_{i}}
$$

An estimate of the variance of b_{1} can be obtained from equation 4 as follows:

$$
\operatorname{Var}\left(b_{1}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n} w_{i}\left(X_{1 ;}-\bar{X}_{1}\right)^{2}}
$$

The goodness of fit of the regression lines given by these equations to the observed data is determined by the usual standard error of estimate formula

$$
S_{y \cdot x}=\sqrt{\frac{\sum_{i=1}^{n} w_{i}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{N-2}}
$$

where Y is the observed value of weight, \hat{Y} is the predicted value of weight, and $N=\sum_{i=1}^{n} W_{i}$

The resultant estimates for the regression coefficients for weight based on height alone are presented in table IV with the standard errors of the estimates for the 12 age and sex groups.

The standard mean weights for given heights of men and women were obtained from linear regression equations for the six age groups $20-24,25-34,35-44$, $45-54,55-64$, and $65-74$ years, and the mean desir-
able weights for given heights of men and women were obtained from the linear regression equation for the age group 20-29 years. The equations of weight on height were fitted by the least squares method, which holds that the line of "best fit" is the one for which the sum of the squares of the residual errors is a minimum. The linear regression of weight on height was used, which describes the change in weight that accompanied a unit of change in height. The estimates of the regression coetficient (β_{1}), the Y intercept (β_{0}) in the regression equation $Y=\beta_{0}+A_{1} x+e$, and the standard error of estimate around these regression lines for age and sex groups are shown in table IV.

This approach of predicting weight from height for each age group showed a correlation that ranged from the order of +0.460 at ages $35-44$ years to +0.390 at ages $45-54$ years for men of ages 20-74 years. Corresponding correlation values for women ranged from +0.285 at ages 65-74 years to +0.246 at ages $45-54$ years. The highest correlation for men showed that about 21 percent of the variance of weight is accounted for by the variance of height. For women, this value was about 8 percent.

Desirable weight predicted from the weight-height relationship of men and women ages $20-29$ years showed a correlation of +0.381 for men and +0.247 for women, with about 15 percent of the variance of weight explained by height for men and about 6 percent for women.

The subject's observed weight then was compared to the predicted weight, one based on each age, the other on desirable weight for ages 20-29 years, and an index of relative body weight was calculated.

Weight-height index

The weight-height index (W / H^{P}) used as a measure of overweight in this report was obtained by a method suggested by Benn. ${ }^{11}$ Assuming the existence of a linear relationship of weight W on height H of the form:

$$
\begin{equation*}
W(H)=W_{0}+\left(H-H_{0}\right) b \tag{7}
\end{equation*}
$$

where W_{o} and H_{o} represent some central locations of weight and height, and b is the slope of the regression line, Benn showed that p could be calculated as:

$$
\begin{equation*}
p=b \frac{H_{\circ}}{W_{\circ}} \tag{8}
\end{equation*}
$$

In applying Benn's method to NHANES I data, equations of the form given in (7) were derived for age groups 20-24, 25-34, 34-44, 45-54, 55-64, 65-74, and 20-29 years. H_{0} was interpreted as the mid-range of height values, and W_{\circ} was interpreted as the average weight for height H_{0}. Table VII shows the mid-range

Table VI. Standard error of the prevalence of women overweight and/or obese for selected percentiles, by age: United States, 1971-74

Sex and age		Overweight				Not overweight Obese	
		Not obese		Obese			
		Cross-classification of triceps plus subscapular skinfold ${ }^{1}$ with:		Cross-classification of triceps plus subscapular skinfold with:		Cross-classification of triceps plus subscapular skinfold with:	
		Relative desirable weight ${ }^{2}$	Weightheight index ${ }^{3}$	Relative desirable weight	Weightheight index	Relative desirable weight	Weightheight index
		Below and above 85th percentile					
20-74 years		0.57	0.57	0.77	0.75	0.44	0.46
20-24 years		0.58	0.59	1.08	1.05	0.77	0.73
25-34 years		0.45	0.50	0.88	0.88	0.50	0.49
35-44 years		0.86	0.86	1.39	1.39	0.80	0.80
45-54 years		1.28	1.29	2.21	2.19	1.58	1.55
55-64 years		1.64	1.66	1.94	1.94	1.16	1.17
65-74 years		1.58	1.58	1.36	1.37	0.55	0.66
		Below and above 90th percentile					
20-74 years		0.55	0.49	0.57	0.53	0.40	0.44
20-24 years		0.52	0.52	0.74	0.68	0.52	0.60
25-34 years		0.62	0.54	0.77	0.80	0.58	0.60
35-44 years		0.76	0.65	1.14	1.11	0.66	0.63
45-54 years		1.17	1.07	1.66	1.65	1.21	1.27
55.64 years		1.77	1.60	1.42	1.38	1.06	1.23
65-74 years		1.32	1.15	0.99	1.02	0.52	0.72
		Below and above 95th percentile					
20-74 years		0.37	0.29	0.41	0.41	0.25	0.26
20-44 years		0.34	0.27	0.40	0.39	0.24	0.26
20-24 years		0.47	0.43	0.40	0.40	0.46	0.46
25-34 years		0.50	0.44	0.59	0.61	0.34	0.37
35-44 years		0.64	0.53	0.78	0.74	0.49	0.51
45-64 years .		0.73	0.62	0.86	0.87	0.55	0.56
45.54 years		0.76	0.66	1.20	1.19	0.98	0.99
55-64 years		1.12	1.03	0.95	0.96	0.80	0.82
65-74 years . .		0.83	0.77	0.68	0.62	0.44	0.46

${ }^{1}$ Obesity-triceps plus subscapular skinfold thickness.
2Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on average weights estimated from regression equation of weight on height for men and women ages 20-29 years.
${ }^{3}$ Waight-height index in kilogram/(meterP), where $p=2$ for men, and $p=1.5$ for women.
NOTE: Criteria of obesity and overweight are at the 85th, 90th, and 95th percentiles or more measurements for men and women ages $20-29$ years.
of height H_{0}, mean weight for height H_{0}, regression coefficient b of weight on height, and calculated p for each sex-age subgroup.

The power value of $p=2$ was selected as a standard for men based on ages 20-29 years, and the power value of $p=1.5$ was selected as a standard for women based on ages 20-29 years.

The weight-height index described above was validated in the following manner. For a given height H in a given age and sex subgroup, a predicted weight W was calculated using the formula developed by Behnke ${ }^{33}$:

$$
W=H^{\mathfrak{p}} K
$$

where

$$
\begin{equation*}
K=\frac{W_{\mathrm{o}}}{H_{\mathrm{o}}^{\mathrm{p}}} \tag{9}
\end{equation*}
$$

H_{o} is the mid-range of values of height for a given sex and age group, and W_{\circ} is the average weight at height H_{0}. For each sex, age, and height group, the weight determined from the regression equation of weight on height was compared with the weight obtained from equation (9). Table VIII shows the difference between these two values. With the exception of taller men ages $45-54$ and 65-74 years, the maximum difference between these two values is 2 pounds. A similar comparison also was made for women when $p=2$. There were marked differences between the two values (table IX).

Table VII. Mid-range of height (H_{0}), mean weight at height H_{0}, regression coefficient of weight on height, power of height, and nearest half integer for p, by sex and age: United States, 1971-74

	Sex and age	Mid-range of height H_{0} (in inches)	Mean weight at height H_{0} (in pounds)	Regression coefficient b	Power of height p^{1}	p rounded to the nearest 0.5 integer
Men						
20-24 years		68	160	4.441	1.89	2.0
25-34 years		68	170	4.941	1.98	2.0
35-44 years		68	174	5.277	2.06	2.0
45-54 years		68	173	4.454	1.75	1.5 or 2.0
55-64 years		68	173	5.069	1.99	2.0
65-74 years		68	169	4.385	1.76	1.5
20-29 years		68	163	4.697	1.96	2.0
Women						
20-24 years		62.5	130.5	3.197	1.53	1.5
25-34 years		62.5	137.5	3.587	1.63	1.5
35-44 years		62.5	146	3.815	1.63	1.5
45-54 years		62.5	148.5	3.857	1.51	1.5
55-64 years		62.5	151.5	3.492	1.44	1.5
65-74 years		62.5	149	3.583	1.50	1.5
20-29 years		62.5	132	3.167	1.62	1.5

Table VIII. Calculated mean weight ${ }^{1}$ from mean group weight relative to mean group height and mean weight ${ }^{2}$ estimated from regression equation of weight on height by sex and age: United States, 1971-74

Sex and height	Calculated mean weight	Estimated mean weight	$\begin{aligned} & \text { Excess } \\ & 2 \text { over } 1 \end{aligned}$	Calculated mean weight	Estimated mean weight	Excess 2 over 1	Calculated mean weight	Estimated mean weight	$\begin{aligned} & \text { Excess } \\ & 2 \text { over } 1 \end{aligned}$	Calculated mean weight	Estimated mean weight	$\begin{aligned} & \text { Excess } \\ & 2 \text { over } 1 \end{aligned}$
	1	2		7	2		1	2		7	2	

	Weight in pounds											
Men		4 yea			4 yea			44 yea			44 yea	
62 inches	133	134	$+1$	141	141	-	145	143	-2	144	147	+3
63 inches	137	139	$+2$	146	145	-1	149	148	-1	148	152	+4
64 inches	142	143	$+1$	150	151	+1	154	153	-1	153	156	+3
65 inches	146	148	-2	155	156	$+1$	159	158	-1	158	160	+2
66 inches	151	152	+1	160	160	-	164	163	-1	163	164	+1
67 inches	155	157	$+2$	165	165	-	169	168	-1	168	169	+1
68 inches	160	160	-	170	170	-	174	174	-	173	173	-
69 inches	165	165	-	175	174	-1	179	179	*	178	177	-1
70 inches	170	169	-1	180	179	-1	184	184	*	183	182	-1
71 inches	174	174	-	185	184	-1	190	190	-	189	187	-2
72 inches	179	178	-1	191	189	-2	195	194	-1	194	191	-3
73 inches	184	183	-1	196	194	-2	201	200	-1	199	196	-3
74 inches	189	187	-2	201	199	-2	206	205	-1	205	200	-5
Women												
57 inches	114	112	-2	120	118	-2	127	125	-2	129	129	-
58 inches	117	116	-1	123	121	-2	131	129	-2	133	133	-
59 inches	120	120	-	126	125	-1	134	133	-1	136	136	-
60 inches	123	123	\bullet	129	128	-1	137	137	-	140	140	-
61 inches	126	126	-	133	132	-1	141	141	-	143	143	-
62 inches	129	129	-	136	135	-1	144	144	-	147	147	-
63 inches	132	132	-	139	139	-	148	148	-	150	150	-
64 inches	135	135	-	142	142	-	151	152	+1	154	154	-
65 inches	138	138	-	146	146	-	155	156	+1	157	158	$+1$
66 inches	142	142	-	149	150	+1	158	159	+1	161	161	-
67 inches	145	145	-	153	153	-	162	163	+1	165	164	-1
68 inches	148	148	\bullet	156	157	+1	166	167	+1	169	168	-1
Weight in pounds												
Men	55-64 years			65-74 years			20-29 years					
62 inches	144	143	-1	140	143	+3	136	136	-			
63 inches	148	147	-1	145	147	+2	140	140	-			
64 inches	153	153	-	150	151	+1	144	145	+1			
65 inches	158	158	-	154	156	+2	149	150	$+1$			
66 inches	163	163	-	159	160	+1	154	155	$+1$			
67 inches	168	168		164	164	-	158	159	+1			
68 inches	173	173	-	169	169	-	163	163	-			
69 inches	178	178	-	174	173	-1	168	168	*			
70 inches	183	183	-	179	177	-2	173	173	-			
71 inches	189	189	-	184	182	-2	178	178	-			
72 inches	194	193	-1	189	186	-3	183	182	-1			
73 inches	199	197	-2	195	190	-5	188	187	-1			
74 inches	205	203	-2	200	194	-6	193	192	-1			
Women												
57 inches	132	132	-	130	130	-	115	113	-2			
58 inches	135	136	+1	133	134	+1	118	117	-1			
59 inches	139	140	+1	137	137	-	121	120	-1			
60 inches	142	143	+1	140	140	-	124	123	-1			
61 inches	146	147	+1	144	144	-	127	127	-			
62 inches	150	150	-	147	147	-	130	130	-			
63 inches	153	153	-	151	151	-	134	134	-			
64 inches	157	157	-	154	154	-	137	137	-			
65 inches	161	160	-1	158	158	-	140	140	\bullet			
66 inches	164	164	-	162	161	-1	143	144	+1			
67 inches	168	167	-1	165	165	-	146	147	+1			
68 inches . .	172	171	-1	169	169	-	150	151	+1			

[^16]Table $1 X$. Calculated mean weight ${ }^{1}$ from group weight relative to mean group height and mean weight ${ }^{2}$ estimated from regression equation of weight on height, by sex and age for women: United States, 1971-74

Sex and height	Calculated mean weight	Estimated mean weight	Excess 2 over 1	Calculated maan weight	Estimated mean weight	Excess 2 over 7	Calculated mean weight	Estimated mean weight	Excess 2 over 1	Calculated mean weight	Estimated mean weight	Excess 2 over 7
	1	2		1	2		1	2		1	2	
Weight in pounds												
Women	20-24 years			25-34 years			$35-44$ years			$45-54$ years		
57 inches	109	112	+3	114	118	+4	121	125	+4	124	129	+5
58 inches	112	116	+4	118	121	+3	126	129	+3	128	133	+5
59 inches	116	120	+4	123	125	+2	130	133	+3	132	136	+4
60 inches	120	123	+3	127	128	+1	135	137	+2	137	140	+3
61 inches	124	126	+2	131	132	+1	139	141	+2	141	143	+2
62 inches	128	129	+1	135	136	+1	144	144	.	146	147	+1
63 inches	133	132	-1	140	139	-1	148	148	-	151	150	-1
64 inches	137	135	-2	144	142	-2	153	152	-1	156	154	-2
65 inches	141	138	-3	149	146	-3	158	156	-2	161	158	-3
66 inches	146	142	-4	153	150	-3	163	159	-4	166	161	-5
67 inches	150	145	-5	158	153	-5	168	163	-5	171	165	-6
68 inches	154	148	-6	163	157	-6	173	167	-6	176	168	-8
Women	55-64 years			65.74 years			20-29 years					
57 inches	126	132	+6	124	130	$+6$	110	113	+3			
58 inches	130	136	+6	128	134	$+6$	114	117	+3			
59 inches	135	140	+5	133	137	+4	118	120	+2			
60 inches	140	143	+3	137	140	+3	122	123	+1			
61 inches	144	147	+3	142	144	+2	126	127	+1			
62 inches	149	150	+1	147	147	.	130	130	-			
63 inches	154	153	-1	151	151	-	134	134	-			
64 inches	159	157	-2	156	154	-2	138	137	-1			
65 inches	164	160	-4	161	158	-3	143	140	-3			
66 inches	169	164	-5	166	161	-5	148	144	-4			
67 inches	174	167	-7	171	165	-6	152	147	-5			
68 inches	179	171	-8	176	169	-7	156	151	-5			

1 Mean weight calculated from weight (in pounds) $=K$ height p, where $p=2$ for women; K (constant) derived from mean group weight relative to mean group height.
2 Estimated from regression equations of weight (y) on height (x) for specified age groups.

Appendix II. Demographic terms

Age.-The age recorded for each examinee was the age at last birthday as of the date of examination. The age criterion for inclusion in the sample was age at time of census interview. Some persons 74 years old at the time of interview were 75 years old by the
time of examination; there were 20 such cases. In the adjustment and weighting procedures used to produce national estimates, these persons were included in the group of 74-year-olds.

Appendix III. Profile of body measurements of persons from cross-classification of overweight and obesity measures

A profile of selected body measurements of overweight and/or obese categories of persons was made at selected percentiles by sex and age. In addition to height and weight data from NHANES I, body build measurements, elbow breadth and arm muscle diameter were included (figure I). Elbow breadth was
selected as representative of bony dimensions (table X) and arm muscle diameter as representative of muscular development (table XI). The variations in body build measurements that influence weight were not identified specifically in the overweight measures (relative desirable weight and weight-height index).

Figure I. Diagram of anthropometric measurements

Table X. Elbow breadth of adults, number of examined persons, estimated population in thousands, mean, standard deviation, and selected percentiles, by sex and age: United States, 1971-74

Table XI. Arm muscle diameter of adults, number of examined persons, estimated population in thousands, mean, standard deviation and selected percentiles, by sex and age: United States, 1971-74

Sex and age	$\begin{aligned} & \text { Sample } \\ & \text { size } \end{aligned}$	Population in thousands	Mean	Standard deviation	Estimated percentile								
					5th	10th	15th	25th	50th	75th	85th	90th	95th
Men			Arm muscle diameter in millimeters										
20-74 years	5,001	57,507	89.3	8.5	76.0	79.1	81.1	84.0	89.1	95.0	98.1	100.1	104.0
$20-24$ years	513	8,110	87.8	8.1	76.0	78.1	80.1	83.0	87.1	92.1	96.0	99.0	103.1
25-34 years	804	13,003	90.1	8.5	77.0	80.1	82.1	84.1	89.1	96.0	99.1	101.1	105.0
35-44 years	664	10,676	91.7	8.2	80.0	81.1	83.1	86.1	91.1	96.1	101.0	102.1	105.1
45-54 years	765	11,150	89.7	8.5	76.1	79.1	82.0	84.1	89.1	96.1	98.1	100.1	104.1
55-64 years	598	9,073	88.6	8.5	73.1	78.0	81.0	83.1	89.0	94.1	97.0	99.1	101.1
65-74 years	1,657	5,496	85.3	8.1	71.1	75.1	77.1	80.1	86.0	91.0	93.1	95.1	98.0
20-29 years	984	15,458	88.8	8.3	76.0	79.1	81.1	83.1	88.1	94.0	98.0	99.1	104.1
Women													
20-74 years	8,130	64,158	70.8	9.5	59.0	61.0	62.0	65.0	69.1	75.1	79.1	83.0	87.1
20-24 years	1,243	9,215	66.8	7.8	57.0	89.0	60.0	62.0	66.0	71.0	73.1	75.1	80.0
25-34 years	1,896	13,933	69.1	8.5	58.1	60.0	62.0	64.0	68.0	73.0	77.0	79.1	85.0
35-44 years	1,664	11,593	71.5	10.2	59.0	61.0	63.0	66.0	70.1	76.1	80.1	83.1	87.1
45-54 years	836	12,163	72.3	9.3	60.0	62.0	63.1	66.0	71.1	77.1	82.0	85.0	89.0
55-64 years	669	9,976	72.7	10.0	59.0	62.0	64.0	66.1	72.1	78.0	81.1	84.0	89.1
65-74 years	1,822	7,277	72.6	9.4	59.1	62.0	64.0	66.1	72.0	78.0	82.0	84.1	89.1
20-29 years	2,280	16,789	67.5	8.0	57.1	59.1	61.0	62.1	66.1	71.1	74.1	76.1	81.0

Because this limits the overweight measures accounting only for height, the influence of the body build measures on the overweight measures was examined.

Upper arm girth

The examinee's right arm was flexed 90° at the elbow, and the distance from the acromion to the end
of the humerus was measured with a steel tape to the nearest 0.1 centimeter. The lateral part of the arm then was marked at the midpoint. With the examinee's arm hanging freely, a steel tape was used to measure the circumference of the upper arm at this level without compressing tissue. The recorder kept the tape horizontal and measured at the mark on the arm. This measurement was made at the same level as the triceps skinfold measurement.

Elbow breadth

In addition to gross body size, some dimensions provide measures of body breadth across bony land marks. Elbow breadth measures indicate skeletal breadth, unaffected by degree of adiposity, and are closely representative of bony dimensions. To measure this site, the examinee extended the right arm until it was perpendicular to the body. The arm was bent so the angle at the elbow was 90° with the fingers pointing up and the dorsal part of the wrist toward the examiner. With the sliding caliper along the axis of the upper arm, the greatest breadth across the elbow joint was measured to the nearest 0.1 cm .

Limb circumferences provide an estimate of relative muscularity, and thus, insight into the body's composition. The arm, for example, comprises successive layers of bone, muscle, and fat. When the upper arm circumference is corrected for the thickness of the outer layer of subcutaneous fat at the triceps site, an estimate of the lean component of the arm's composition is obtained.

Arm muscle diameter is obtained from the arm circumference when the thickness of the subcutaneous fat of the arm is measured at the same level, assuming that the arm is a cylinder for such measurements. The circumference of the upper arm was measured with a steel tape to measure triceps skinfold. The muscular development of the arm is calculated on the basis of the formula:

$$
d=\frac{c}{\pi}-S_{\mathrm{t}}
$$

where d is the muscle-bone diameter, c is the upper arm circumference, π is 3.1429, and S_{t} is the triceps skinfold measure.

Table XII presents the mean body measurements of men by age in each of the weight categories at selected percentile cutting points based on the classification of relative desirable weight and triceps plus subscapular skinfold measurement. The mean values presented in this table are shown graphically in figures II and III. At all percentile cutting points, the mean heights of men in all ages were similar-about 69 inches. The National Center for Health Statistics has reported that the average height of men in the United States ages 20-74 years was 69 inches. ${ }^{34}$

The mean weight and mean arm muscle diameter values of weight categories were distinctly different from one another. The highest mean weights were observed for the overweight and obese men, followed in descending order by overweight not obese men, obese not overweight men, average weight or medium obese men, and underweight and lean men. Obese men not overweight ages 20-74 years at the 85 th percentile cutting point had an average weight of 179 pounds, which was an average of 6 pounds above the
reported average for men in the general population. ${ }^{34}$ Corresponding data for obese not overweight men at the 90 th percentile cutting points showed that the mean observed weight was 12 pounds above the mean weight of the general male population.

The highest mean arm muscle diameter values were found among overweight men with or without obesity. Although on the average, men overweight and obese weighed more than men overweight not obese, the muscular development of men overweight not obese, on the average was more than that of men overweight and obese. The mean arm muscle diameter of men average weight or medium obese was higher than that of men obese not overweight and men underweight and lean. In this comparison, another reversal in differences in mean body measurement between weight categories occurred. Although men obese not overweight, on the average weighed more than men average weight and medium obese men did, the muscle development of the men average or medium obese was more than that of the men obese not overweight. As expected, the lowest arm muscle diameter was observed for the men underweight and lean.

Observed differences in mean elbow breadth of men overweight and obese and men overweight not obese were small. The bony dimensions of both overweight categories, with or without obesity, were on the average higher than those of men obese not overweight, average weight and medium obese, and underweight and lean. The mean elbow breadth of men obese not overweight and men average weight and medium obese was higher than that of men underweight and lean. At the 85th and 90th percentile cutting points, in the older ages, the mean elbow breadth of men average weight and medium obese was generally higher than that of men obese not overweight.

A similar profile was made for women of comparable ages (table XIII and figures IV and V). The mean height of women in all weight categories at selected percentile cutting points was about 63 inches, which was about equal to the mean height of women of comparable ages in the general population. ${ }^{34}$

The pattern in differences in mean weight among weight categories found for men also were found for women. On the average, the heaviest women were women overweight and obese, followed by women overweight not obese. The weight of women obese not overweight was higher than that of women average weight and medium obese women and women underweight and lean women. Women obese not overweight ages $20-74$ years at the 85 th percentile cutting point had an average weight of 142 pounds, which was on the average 2 pounds below the reported average of 144 pounds for all women ages 20-74 years. For women obese not overweight at the 90 th percentile cutting point, the average weight was

Table XII. Mean body measurements of men by weight categories at selected percentile cutting points based on cross-classification of relative desirable weight ${ }^{1}$ and triceps plus subscapular skinfold, by age: United States, 1971-74

Age	Less than 15th percentile, underweight and lean	$\geqslant 15$ th $-<85$ th percentile Average weight and medium obese	Below and above 85th percentile			$\begin{aligned} & \geqslant 15 \text { th-<90th } \\ & \text { percentile } \end{aligned}$	Below and above 90th percentile			Below and above 95th percentile		
			Over	ight	Not overwoight	Average weight	Over	eight	Not over-	Over	ight	Not over-
			Not obese	Obese	Obese	medium obese	Not obese	Obese	Obese	Not obese	Obese	Obese
	Height in inches											
20-74 years.	69	69	69	69	69	69	69	69	69	69	69	69
20-24 years	70	70	72	70	70	70	70	70	69	69	70	71
25-34 years	70	70	70	70	69	70	69	70	70	70	69	71
35-44 years	70	69	69	70	70	69	69	69	70	71	69	69
45-54 years	68	69	69	69	69	69	69	69	69	69	68	70
55-64 years	68	68	68	68	69	68	68	68	68	68	68	68
65-74 years	68	67	67	68	68	67	67	67	67	67	67	67
	Weight in pounds											
20-74 years.	128	166	201	218	179	169	206	227	185	232	249	202
20-24 yeart	132	166	213	221	183	168	211	231	188	231	245	207
25-34 years	133	167	207	226	178	169	206	238	191	243	261	208
35-44 years	129	168	202	219	184	172	211	226	192	244	257	197
45-54 years	124	167	201	214	180	170	205	225	186	230	240	204
55-64 years	119	165	193	215	174	168	205	221	168	223	242	194
65-74 years	121	159	190	203	171	162	196	208	176	215	225	186
	Elbow breadth in centimeters											
20-74 years	7.0	7.2	7.5	7.5	7.2	7.2	7.5	7.5	7.2	7.6	7.6	7.3
20-24 years	6.9	7.1	7.5	7.3	7.3	7.1	7.5	7.3	7.4	7.5	7.3	7.4
25-34 years	6.9	7.1	7.5	7.4	7.1	7.1	7.4	7.4	7.2	7.6	7.5	7.4
35-44 years	7.1	7.2	7.4	7.5	7.2	7.2	7.5	7.4	7.2	7.7	7.7	7.2
45-54 years	7.2	7.3	7.4	7.5	7.2	7.2	7.5	7.6	7.1	7.6	7.8	7.3
55-64 years	7.0	7.3	7.5	7.5	7.3	7.3	7.6	7.5	7.1	7.5	7.7	7.3
65-74 years.	7.1	7.3	7.5	7.5	7.2	7.3	7.5	7.5	7.2	7.6	7.6	7.3
	Arm muscle diameter in millimeters											
20-74 years.	79	89	98	95	85	89	99	95	86	103	97	88
20-24 years	80	88	100	94	86	89	100	96	86	101	98	88
25-34 years	82	89	99	96	85	89	98	97	88	101	100	89
35-44 years	81	90	99	97	87	91	101	95	87	107	98	88
45-54 years	79	89	99	94	86	89	100	94	86	105	92	88
55-64 years	75	88	97	94	85	89	99	94	83	101	98	89
65-74 years	75	85	94	90	83	85	94	90	84	98	89	85

${ }^{1}$ Relative desirable weight is observed weight divided by desirable weight times 100 , based on regression equation of weight on height for men ages 20-29 years.

152 pounds, which was on the average 8 pounds above the average weight previously reported for women in the general population. 34

Overweight women with or without the obesity showed the highest mean arm muscle diameter values. The differences in mean values between these weight categories were small at the 85 th percentile cutting point and at the higher percentile cutting points; both weight categories showed about the same mean arm muscle diameter. Women average weight and medium obese at the 85 th percentile cutting point showed a slightly higher mean value than that of women obese not overweight did. At the 90th per-
centile, women in both weight categories had about the same mean arm muscle diameter. As expected, women underweight and lean showed the lowest mean arm muscle diameter.

Women overweight and obese showed the highest mean elbow breadth. The mean elbow breadth of women overweight not obese was lower than that of women overweight and obese. After these weight categories, in descending order of their mean value, the weight categories were generally obese not overweight, average weight and medium obese, and underweight and lean. At the 85 th percentile cutting point, most differences in mean elbow breadth between

Figure II. Mean arm muscle diameter and elbow breadth measurements of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74

Figure 111 . Mean weight and height of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74

Table XIII. Mean body measurements of women by weight categories at selected percentile cutting points based on cross-classification of relative desirable weight ${ }^{1}$ and triceps plus subscapular skinfold, by age: United States, 1971-74

${ }^{1}$ Relative desirable weight is observed weight divided by desirable weight times 100 , based on average weights estimated from regression equation of weight on height for women ages $\mathbf{2 0 - 2 9}$ years.
women obese not overweight and women average weight and medium obese occurred after ages 35 years and over.

A profile of selected body measurements of men and women also was prepared from the crossclassification of weight-height index and triceps plus subscapular skinfold measurement. Tables XIV and XV present body measurements for men and women by age at selected percentile cutting points. The mean values presented in these tables are shown graphically in figures VI-IX. The mean body measurements previously found for the weight categories obtained by
the cross-classification of relative desirable weight and triceps plus subscapular skinfold generally were found for similar weight categories obtained by the cross-classification of weight-height index and triceps plus subscapular skinfold measurement.

A limitation of the weight indexes, relative desirable weight and weight-height index is that the effect of variation in body build, bony dimensions and muscular development was not considered specifically. The influence of body build on the weight status of individuals defined by relative desirable weight and skinfold measurements is presented in

Figure IV. Mean arm muscle diameter and elbow breadth measurements of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74

Figure V. Mean weight and height of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and relative desirable weight, by age: United States, 1971-74

Table XIV. Mean body measurements of men by weight categories at selected percentile cutting points based on cross-classification of weight-height index ${ }^{1}$ and triceps plus subscapular skinfold, by age: United States, 1971-74

Age	Less than 15th percentile, underweight and lean	$\begin{gathered} \geqslant 15 \text { th }-<85 \text { th } \\ \text { percentile } \end{gathered}$	Below and above 85th percentile			$\begin{gathered} \geqslant 15 \text { th-<90th } \\ \text { percentile } \end{gathered}$	Below and above 90th percentile			Below and above 95th percentile		
		Average weight	Overweight		Not over-	Average weight and medium obese	Overweight		Not over-	Overweight		Nat over-
		medium obese	Not obese	Obese	Obese		Not obese	Obese	Obese	Not obese	Obese	Obese
	Height in inches											
20-74 years	69	69	69	69	69	69	69	69	70	69	69	70
20-24 years	70	70	70	70	70	70	70	70	70	69	70	71
25-34 years	70	70	69	70	69	70	69	70	70	70	69	71
35-44 years	70	69	69	70	70	69	69	69	71	71	69	69
45-54 years	68	69	69	69	69	69	69	69	69	69	68	70
55-64 years	68	68	68	68	69	68	68	68	68	68	68	68
65-74 years	68	67	67	68	68	67	67	67	67	67	67	67
	Weight in pounds											
20-74 years	130	167	201	218	179	170	206	228	186	233	250	203
20-24 years	135	168	207	221	183	170	211	230	192	231	245	207
35-44 years	134	168	208	226	179	170	206	238	192	243	263	209
35-44 years	130	168	202	219	184	172	211	228	194	244	258	199
45-54 years	124	167	201	214	180	171	205	225	186	230	240	205
55-64 years	122	165	199	215	174	168	205	221	168	223	242	194
65-74 years	123	160	191	203	171	163	196	208	176	217	225	186
	Elbow breadth in centimeters											
20-74 years	7.0	7.2	7.5	7.5	7.2	7.2	7.5	7.5	7.2	7.6	7.6	7.3
20-24 years	6.9	7.1	7.4	7.3	7.3	7.1	7.5	7.3	7.4	7.5	7.3	7.4
25-34 years	6.9	7.1	7.5	7.4	7.1	7.2	7.4	7.4	7.2	7.6	7.5	7.3
35-44 years	7.1	7.2	7.4	7.5	7.2	7.2	7.5	7.5	7.2	7.8	7.7	7.2
45-54 years	7.2	7.2	7.5	7.5	7.2	7.2	7.5	7.6	7.1	7.6	7.8	7.3
55-64 years	7.1	7.3	7.5	7.5	7.3	7.3	7.6	7.5	7.1	7.5	7.7	7.3
65-74 years	7.2	7.3	7.5	7.5	7.2	7.3	7.5	7.5	7.2	7.7	7.6	7.3
	Arm muscle diameter in millimeters											
20-74 years	80	89	98	95	85	89	99	97	86	103	97	88
20-24 years	81	89	98	94	86	89	100	96	87	101	99	88
25-34 years	82	90	99	96	85	90	98	97	88	101	101	89
35-44 years	82	90	99	97	87	91	101	96	88	107	98	88
45-54 years	79	89	99	94	86	89	100	94	86	105	92	89
55-64 years	77	89	97	94	85	89	94	94	83	101	98	89
65-74 years	76	85	94	90	83	86	94	90	84	98	89	85

${ }^{1}$ Weight-height index in kilogram/(meter $\left.{ }^{p}\right)$. where $p=2$ for men.
table XVI. Men and women with higher relative desirable weight categories, independent of obesity, on the average show higher body build values than lower relative desirable weight categories did. This observa-
tion also was evident when the average body build values of higher weight-height index categories were compared with those of lower weight-height index categories (table XVII).

Table XV. Mean body measurements of women by weight categories at selected percentile cutting points based on cross-classification of weightheight index ${ }^{1}$ and triceps plus subscapular skinfold, by age: United States, 1971-74

Age	Less than 15th percentile, underweight and lean	$\left.\begin{array}{c}\geqslant 15 \text { th-<85th } \\ \text { percentile }\end{array}\right]$Average weight and medium obese	Below and above 85th percentile			$\begin{gathered} \geqslant 15 \text { th }-<90 \text { th } \\ \text { percentile } \end{gathered}$	Below and above 90th percentile			Below and above 95th percentile		
			Overweight		Not over-	Average weight and medium obese	Overweight		Not over-	Overweight		Not over-
			Not obese	Obese	Obese		Not obese	Obese	Obese	Not obese	Obese	Obese
	Height in inches											
20-74 years	63	64	63	63	63	64	63	63	63	63	64	63
20-24 years	64	64	64	64	64	64	64	64	63	64	64	63
25-34 years	64	64	65	64	63	64	64	64	64	64	65	64
35-44 years	63	64	64	64	63	64	64	64	64	64	65	64
45-54 years	62	64	64	63	64	64	63	63	64	63	63	64
55-64 years	62	63	63	63	63	63	63	62	62	63	63	62
65-74 years.	62	63	62	62	62	62	62	62	62	62	62	62
	Weight in pounds											
20-74 years	100	131	167	187	142	135	181	201	154	205	225	172
20-24 years	102	130	168	190	145	132	188	208	156	209	238	165
25-34 years	103	130	171	193	141	133	182	206	155	208	227	173
35-44 years	102	132	168	194	141	136	188	208	153	215	228	174
45-54 years	97	132	169	185	144	137	179	199	155	207	222	177
55-64 years	96	132	164	181	139	137	179	194	152	199	223	166
65-74 years.	92	131	164	179	140	136	177	190	151	196	213	169
	Elbow breadth in centimeters											
20-74 years	5.9	6.2	6.5	6.7	6.3	6.2	6.6	6.8	6.4	6.8	7.0	6.5
20-24 years	5.9	6.0	6.4	6.5	6.1	6.1	6.3	6.6	6.2	6.4	6.9	6.4
25-34 years	5.9	6.1	6.3	6.5	6.1	6.1	6.4	6.6	6.3	6.6	6.9	6.3
35-44 years	5.9	6.2	6.5	6.6	6.2	6.2	6.5	6.8	6.4	6.7	7.0	6.5
45-54 years	6.0	6.2	6.6	6.7	6.4	6.3	6.6	6.8	6.4	6.8	7.1	6.6
55-64 years	6.0	6.3	6.6	6.8	6.4	6.4	6.8	6.9	6.5	6.9	7.3	6.6
65-74 years.	6.0	6.3	6.6	6.7	6.3	6.4	6.7	6.8	6.4	6.8	7.1	6.6
	Arm muscle diameter in millimeters											
20-74 years	63	68	78	79	67	69	82	82	70	87	87	74
20-24 years	62	66	77	78	65	66	79	82	68	85	87	70
25-34 years	64	67	78	78	65	68	81	81	67	86	85	71
35-44 years	64	68	78	81	67	69	83	83	70	88	87	74
45-54 years	64	69	79	80	68	70	83	82	71	89	86	77
55-64 years	62	69	78	80	67	70	82	82	71	85	88	74
65-74 years	60	69	78	79	69	71	82	82	71	88	85	73

${ }^{1}$ Weight-height index in kilogram/(meterp), where $p=1.5$ for women.

Figure VI. Mean arm muscle diameter and elbow breadth measurements of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74

Figure VII. Mean weight and height of men by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74

Figure VIII. Mean arm muscle diameter and elbow breadth measurements of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74

Figure IX. Mean weight and height of women by weight category at selected percentile cutting points based on cross-classification of triceps plus subscapular skinfold and weight-height index, by age: United States, 1971-74

Table XVI. Mean body measurements of overweight and obese men and women ages $20-74$ years, by weight categories at selected percentile cutting points based on the cross-classification of triceps plus subscapular skinfold and relative desirable weight: United States, 1971-74

Weight categories at percentile cutting points	Men				Women			
	Relative desirable weight ${ }^{1}$	Triceps plus subscapular skinfold ${ }^{2}$ (in millimeters)	Arm muscle diameter (in millimeters)	Elbow breadth (in centimeters)	Relative desirable weight ${ }^{1}$	Triceps plus subscapular skinfold ${ }^{2}$ (in millimeters)	Arm muscle diameter (in millimeters)	Elbow breadth (in centimeters)
Less than the 15 th percentile								
Underweight and lean	77	11	79	7.0	75	16	63	5.9
Greater than or equal to 15 th less than 85th percentile								
Average weight or medium obese	100	25	89	7.2	95	35	68	6.2
Below and above 85th percentile								
Obese not overweight	107	43	85	7.2	107	58	67	6.3
Overweight not obese	122	30	98	7.5	125	45	78	6.5
Overweight and obese	131	50	95	7.5	141	67	80	6.7
Greater than or equal to 15 th less than 90th percentile								
Average weight or medium obese	102	26	89	7.2	100	37	69	6.2
Below and above 90th percentile								
Obese not overweight	110	48	86	7.2	114	64	69	6.3
Overweight not obese	125	34	99	7.5	135	50	81	6.6
Overweight and obese	137	55	95	7.5	149	73	82	6.8
Below and above 95th percentile								
Obese not overweight	120	57	88	7.3	128	73	73	6.5
Overweight not obese	139	40	103	7.6	152	58	85	6.7
Overweight and obese	152	64	97	7.6	166	83	86	7.0

${ }^{1}$ Overwelght-relative deslrable weight is observed weight divided by desirable weight times 100 , based on regression equations of weight on height for men and women ages 20-29 years.
2 Obesity-triceps plus subscapular skinfold.

Table XVII. Mean body measurements of overweight and obese men and women ages 20-74 years, by weight categories at selected percentile cutting points based on the cross-classification of triceps plus subscapular skinfold and weightheight index: United States, 1971-74

Weight categories at percentile cutting points	Men				Women			
	Weightheight index 1	Triceps plus subscapular skinfold ${ }^{2}$ (in millimeters)	Arm muscle diameter (in millimeters)	Elbow breadth (in centimeters)	Weightheight index ${ }^{1}$	Triceps plus subscapular skinfold ${ }^{2}$ (in millimeters)	Arm musc/e diameter (in millimeters)	Elbow breadth (in centimeters)
Less than the 15th percentile								
Underweight and lean	19	11	80	7.0	22	16	63	5.9
Greater than or equal to 15 th less than 85th percentile								
Average weight or medium obese .	25	25	89	7.2	29	35	68	6.2
Below and above 85th percentile								
Obese not overweight	26	43	85	7.2	32	58	67	6.3
Overweight not obese	30	31	98	7.5	37	45	78	6.5
Overweight and obese	32	50	95	7.5	42	67	79	6.7
Greater than or equal to 15th less than 90th percentile								
Average weight or medium obese	25	27	89	7.2	30	38	69	6.2
Below and above 90th percentile								
Obese not overweight	27	48	86	7.2	34	64	70	6.4
Overweight not obese	31	34	99	7.5	40	50	82	6.6
Overweight and obese	34	55	97	7.5	44	73	82	6.8
Below and above 95th percentile								
Obese not overweight	29	57	88	7.3	38	73	74	6.5
Overweight not obese	34	40	103	7.6	46	59	87	6.8
Overweight and obese	37	64	97	7.6	49	83	87	7.0

[^17]
Vital and Health Statistics series descriptions

SERIES 1. Programs and Collection Procedures.-Reports describing the general programs of the National Center for Health Statistics and its offices and divisions and the data collection methods used. They also include definitions and other material necessary for understanding the data.

SERIES 2. Data Evaluation and Methods Research.-Studies of new statistical methodology including experimental tests of new survey methods, studies of vital statistics collection methods, new analytical techniques, objective evaluations of reliability of collected data, and contributions to statistical theory.
SERIES 3. Analytical and Epidemiological Studies.-Reports presenting analytical or interpretive studies based on vital and health statistics, carrying the analysis further than the expository types of reports in the other series.
SERIES 4. Documents and Committee Reports.-Final reports of major committees concerned with vital and health statistics and documents such as recommended model vital registration laws and revised birth and death certificates.
SERIES 10. Data from the National Health Interview Survey.-Statistics on illness, accidental injuries, disability, use of hospital, medical, dental, and other services, and other health-related topics, all based on data collected in the continuing national household interview survey.
SERIES 11. Data From the National Health Examination Survey and the National Health and Nutrition Examination Survey.Data from direct examination, testing, and measurement of national samples of the civilian noninstitutionalized population provide the basis for (1) estimates of the medically defined prevalence of specific diseases in the United States and the distributions of the population with respect to physical, physiological, and psychological characteristics and (2) analysis of relationships among the various measurements without reference to an explicit finite universe of persons.

SERIES 12. Data From the Institutionalized Population Surveys.—Discontinued in 1975. Reports from these surveys are included in Series 13.
SERIES 13. Data on Health Resources Utilization.-Statistics on the utilization of health manpower and facilities providing
long-term care, ambulatory care, hospital care, and family planning services.
SERIES 14. Data on Health Resources: Manpower and Facilities.Statistics on the numbers, geographic distribution, and characteristics of health resources including physicians, dentists, nurses, other health occupations, hospitals, nursing homes, and outpatient facilities.

SERIES 15. Data From Special Surveys.-Statistics on health and health-related topics collected in special surveys that are not a part of the continuing data systems of the National Center for Health Statistics.

SERIES 20. Data on Mortality.-Various statistics on mortality other than as included in regular annual or monthly reports. Special analyses by cause of death, age, and other demographic variables; geographic and time series analyses; and statistics on characteristics of deaths not available from the vital records based on sample surveys of those records.

SERIES 21. Data on Natality, Marriage, and Divorce.-Various statistics on natality, marriage, and divorce other than as included in regular annual or monthly reports. Special analyses by demographic variables; geographic and time series analyses; studies of fertility; and statistics on characteristics of births not available from the vital records based on sample surveys of those records.

SERIES 22. Data From the National Mortality and Natality Surveys.Discontinued in 1975. Reports from these sample surveys based on vital records are included in Series 20 and 21, respectively.

SERIES 23. Data From the National Survey of Family Growth.Statistics on fertility, family formation and dissolution, family planning, and related maternal and infant health topics derived from a periodic survey of a nationwide probability sample of ever-married women 15-44 years of age.

For a list of titles of reports published in these series, write to:
Scientific and Technical Information Branch
National Center for Health Statistics
Public Health Service
Hyattsville, Md. 20782

[^0]: Cooperation of the U.S. Bureau of the Census
 Under the legislation establishing the National Health Survey, the Public Health Service is authorized to use, insofar as possible, the services or facilities of other Federal, State, or private agencies. In accordance with specifications established by the National Center for Health Statistics, the U.S. Bureau of the Census participated in the design and selection of the sample and carried out the household interview stage of the data collection and certain parts of the statistical processing.

[^1]: 1 Obesity-triceps plus subscapular skinfold thickness.
 2 Overweight-relative desirable weight is observed weight divided by desirable weight adjusted for height times 100 based on average weights estimated from regression equations of weight on height for men and women ages $20-29$ years.
 ${ }^{3}$ Weight to the power of height ratio, where $p=2$ for men, and $p=1.5$ for women.

[^2]: ${ }^{1}$ Based on average weights estimated from regression equation of weight on height for men and women ages 20-29 years.
 NOTES: Height measured without shoes. Clothing ranged from 0.20 to 0.62 pounds, which was not deducted from weights shown. Derived from data of the National Health and Nutrition Examination Survey, 1971-74.

[^3]: 1 Overweight-weight-height index in kilogram/(meterp), where $p=2$ for men, and $p=1.5$ for women
 2Obesity-triceps plus subscapular skinfold.

[^4]: ${ }^{1}$ Based on average weights estimated from regression equations of weight on height for women of age-specific groups.

[^5]: 1 Based on average weights estimated from regression of weight on height, of men and women for ages 20-29 years.

[^6]: 1 Weight-height index, $\mathrm{W} / \mathrm{H}^{2}$, where $\mathrm{p}=2$ for men.

[^7]: ${ }^{1}$ Weightheight index, $W / H^{1.5}$, where $p=1.5$ for women.

[^8]: weight based on height for men and women ages $20-29$ years.

[^9]: weight based on height for men and women ages $\mathbf{2 0 - 2 9}$ years.

[^10]: $\mathbf{1}^{\text {Weight }}$ /height ${ }^{p}$ in kilograms $/\left(\right.$ meter $\left.^{\mathrm{P}}\right)$, where $\mathrm{p}=2$.

[^11]: 1 Weightheight index in kilogram $/\left(\right.$ meter $\left.^{p}\right)$, where $p=2$ for men.

[^12]: 1 Weight-height index in kilogram/(meterp), where $p=1.5$ for women.

[^13]: ${ }^{1}$ Obesity-triceps plus subscapular skinfold.
 2 Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on average weights estimated from regression equations of weight on height for men and women ages 20-29 years.
 3 Weight-height index in kilogram/(meterp), where $p=2$ for merl.
 4A pooled value necessitated bv unreliable estimates computed from smaller groupings (see standards of reliability and precision in appendix I).
 NOTES: Criteria of obesity and overweight are at the 85 th, 90 th, and 95 th percentiles or more measurements for men and women ages 20-29 years. Where an asterisk is printed next to the cell value, the relative standard error was more than 30 percent.

[^14]: 1Obesity-triceps plus subecapular skinfold.
 2Overwaight-relative desirable weight is observed weight divided by desirable weight times 100, based on regression equations of weight on height for men and women ages $20-29$ years.
 3 Weight-height index in kilogram/(meterp), where $p=2$ for men and $p=1.5$ for women.
 NOTE: Criteria of obesity and overweight are at the 85 th, 90 th, and 95 th percentile or more measurements for men and women ages 20-29 years.

[^15]: ${ }^{1}$ Obesity-triceps plus subscapular skinfold thickness.
 2Overweight-relative desirable weight is observed weight divided by desirable weight times 100, based on average weights estimated from regression equation of weight on height for men and women ages 20-29 years.
 3 Weight-height index in kilogram/(meter P), where $p=2$ for men, and $p=1.5$ for women
 NOTE: Criteria of obesity and overweight are at the 85 th, 90 th, and 95 th percentiles or more measurements for men and women ages $20-29$ years.

[^16]: ${ }^{1}$ Mean weight calculated from Weight (in pounds) $=K$ height p, where $p=2$ for men and $p=1.5$ for women; K (constant) derived from mean group weight relative to mean group
 height.
 ${ }^{2}$ Estimated from regression equations of weight (y) on neight (x) for spacified age groups.

[^17]: ${ }^{1}$ Overweight-weight-height index in kilogram/(meterP), where $p=2$ for men, and $p=1.5$ for women.
 2 Obesity-triceps plus subscapular skintold.

