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PREFACE 
In an earlier publication of the National Center for Health Statistics 

(Series 2, No. 14) the method of balanced half-sample pseudoreplication 
was introduced as a device for estimating precision of estimates which 
come from surveys of modern complex design. The technique was de­
veloped by Philip J. McCarthy of Cornell University. The report and 
McCarthy’s work are facets of a series of efforts by the Center to find 
appropriate methods for analyzing data from complex social and health 
surveys, in which the assumptions of standard classical techniques 
rarely are satisfied. 

The present study describes a number of ‘internal evaluation tech­
niques which aid in understanding the khavior of balanced half-sample 
replication as it relates not only to the variance of linear estimators 
but also to precision of ratios. And it extends the method to applications 
of a more analytic character, including adaptations to the sign test and 
to contingency tables. 

Replication and pseudoreplication are concepts that have deep roots 
in statistical theory and that have influenced the thinking of many people. 
Acknowledgment of all who have contributed is not feasible, but the list 
of those who have had special influence on the research presented here 
includes W. Edwards Deming, John Tukey, M.H. Quenouille, Leslie 
Kish, and several members of the staff of the U.S. Bureau of the Cen­
sus. Professor McCarthy Carried out the research and wrote the report. 
Walt R. Simmons has coordinated Center activities in the area of 
pseudoreplication and, as Project Officer has maintained close contact 
with the present undertaking. 
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A REPORT of the National Center fmHealth Statistics (Series2, No. 
14) introduced a pseudoreplicatwn procedure, called balanced half-
sample replicatwn, as a basis fir statistical analysis when dealing with 
data derived from complex sample designs and estimation processes. 
It appeared particularly suited fm variance estimation in connection 
with the commonly used multistage design of two primary units per 
stratum, with the individual observations being subjected to various 
kinds of ratio and posts tratipcation adjustments. 

The exact behavior of balanced half-sample replication as a variiance­
estimating procedure is known only fov a simple linear situation where 
it has no real utility. The fivst portions of this veport review this theory 
and descvibe a number of evaluation techniques which can provide evi­
dence concerning the behavior of balanced half-sample replication for a 
particular set of data. They are illustrated on data derived from the 
Centerts Health Examination Survey (Series 11, No, 1) relating to a 
vaviety of body measurements for a sample of approximately 3,000 U.S. 
adult males and involving estimates of population means, multiple re­
gression coefficients, and multiple correlation coe~cients. These tech­
niques are principally concerned with providing presumptive evidence 
relating to (1) the extent to which the average of a set of balanced half-
sample estimates “exhausts” the information in the entire set of 2 L 
half-samples, (2) the existence of bias in the entire-sample estimate, and 
(3) the adequacy of the mviance estimates produced by balmced hulf­
sample replication. Applications to the Health Examination Survey data 
seem to indicate that balanced half-sample replication is performing 
well as a vaviance estimating procedure. Also, as might be expected.on 
the basis of the sample size, there is no evidence of bias in the esti­
mates. The variables and subpopulations are less extensive than one 
might desire for an exploratory investigation, W this limitation was 
imposed by the fact that these habuhtions were produced as a byproduct 
of another study. 

The last two sections of the report suggest several applications of bal­
anced Mf-sample replication to problems of a more analytic chavacter. 
Thws an investigation of its use to test the hypothesis of independence 
in a contingency table is described, and the relationship of balanced 
half-sample replication to the sign testis explored. 



PSEUDOREPLICATION 
FURTHER EVALUATION AND APPLICATIONS OF THE 

BALANCED HALF-SAMPLE TECHNIQUE 

Philip J. McCarthy, New York State Sckool of Industrial and Labor Relations, Cornell University 

INTRODUCTION 

The extensive literature on theory of sample 
surveys well documents the fact that commonly 
used complex sample designs and estimation 
procedures lead to approximate and extremely 
complicated expressions for variance estimation. 
Furthermore, the survey data often do not satisfy 
the conditions required for the application of even 
elementary statistical techniques of analysis. In 
the absence of simple methods for handling these 
problems, the ordinary researcher will ignore the 
complexities of design and merely treat the data 
as though they had been obtained by simple random 
sampling, the more sophisticated researcher will 
be frustrated in not being able to account for all 
the effects of design in his analysis. These points 
have been discussed in some detail in a publi­
cation of the National Center for Health Statistics 
(Series 2, No. 14). 

Durbin (1967) has developed methods for 
designing multistage surveys in such a manner 
that error computations will be relatively simple, 
where the emphasis is on the estimation of popu­
lation means, percentages, or totals. However, 
it is unlikely that these methods can ever be ex-
tended to handle more complicated problems of 
statistical analysis, such as the use of multiple 
regression techniques. Another possible avenue 
of approach to these problems is through the use 
of independent replications of the sample design, 

variously referred to as interpenetrating samples, 
duplicated samples, or random groups. Deming, 
for example, has been a consistent advocate of 
replicated sampling. He first wrote of it as the 
Tukey plan (1950), and his recent book (1960) 
presents references and descriptions of the appli­
cations of replicated sampling” to many different 
situations and contains a wide variety of ingenious 
devices that he has developed for solving partic­
ular problems. 

A major disadvantage of replicated sampling 
arises from the difficulty of obtaining a sufficient 
number of independent replicates to provide 
adequate sampling stability for estimating var­
iances and for other purposes. Thus the ,commonly 
used design of two primary units per stratum 
(frequently obtained by collapsing strata from 
each of which only a single unit has been drawn) 
gives only two independent replicates. To over-
come this problem of having only one degree of 
freedom available for variance estimation, the 
U.S. Bureau of the Census originated a pseudo-
replication scheme called half - sample replica­
tion. The scheme was adapted and modified by the 
staff of the National Center for Health Statistics 
(NCHS) and has heen used in their Health Exami­
nation Survey reliability measurements. A brief 
description of this approach is given in a report 
of the U.S. Bureau of the Census (Technical Paper 
No. 7, 1963, p. 57), and a reference to the Census 
method of half-sample replication was made by 
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Kish (1957, p. 164). The basic characteristics of 
this procedure have been described by Gurney 
(1962) and in the NCHS publication (Series 2, No. 
14). 

A refinement of this pseudoreplication tech­
nique, called balimced hulf-sample replication, 
that increases the precision of variance estimates 
was also introduced in NCHS (Series 2, No. 14) 
and was applied to the analysis of data derived 
from the Health Examination Survey (NCHS, 
Series 11, No. 1). The present report carries 
further the evaluation of the balanced half-sample 
technique, with illustrative data drawn from the 
Health Examination Survey. In addition, several 
applications to problems of a more analytic 
character are suggested. ~hus an investigation 
of the use of balanced half-sample replication 
to test the hypothesis of independence in a 
contingency table is described, and the relation-
ship of balanced half-sample replication to the 
sign test is investigated. 

BACKGROUND FOR EVALUATION 
STUDIES 

In simplest terms, the idea of half-sample 
replication is as follows. Consider a stratified 
sampling procedure where two independent se­
lections are made from within each of L strata. 
Denote the strata weights by W~, h = 1, 2, . . ., L, 
and the observations by Yh,, h = 1, 2, . . . , L and 
i= 1,2. Under these circumstances, a half-
sample replicate is obtained by choosing one of 

Yll and Ylz, one of Y21 and YZZ~.. ., and one 
of yLl and YL2. A half-sample estimate of the 
population mean is Y~, = ; W~yh,, where i is 
either 1 or 2 for each h. There are 2L 

possible half samples, If the estimate made from 
the entire sample is denoted by Yst = ~ W~(Y~l + 

Yh2)/2 , then it can be demonstrated that if 
k half samples are independently selected from 
the entire set of 2L possible half samples, with 
means denoted by ~h~,l~ ~h=,z ~. - .) ~hs,k$ 

then l?[~$l(yh,, - yst)~k] is equal to the or­
dinary varianc~ estimate of Y,t, where the ex­
pectation is taken over the entire set of 2L half 
samples. As is explained in NCHS (Series 2, No. 
14), a balanced set of half samples is obtained by 

appropriately choosing the half samples so as to 
eliminate a between-strata contribution which 
influences the stability of this estimate of vari­
ance. 

The basic characteristics of balanced half-
sample replication, as outlined in the preceding 
paragraph, have been investigated in relation to 
a linear situation where the method obviously 
has no real utility, at least as far as ordinary 
variance estimation is concerned. Under these 
circumstances the method merely reproduces 
results that can be obtained by direct and simple 
methods of analysis. If, however, more com­
plicated methods of sampling and estimation are 
employed, then direct methods of analysis may 
not be available or may require a prohibitive 
amount of computation in comparison with half-
sample replication. For example, suppose that a 
multiple regression coefficient is estimated from 
a complex sampling and estimation operation. No 
known theory leads to an estimate of its sampling 
variability. Nevertheless, one may compute a 
value of the regression coefficient from each 
balanced half sample and use the comparisons 
among the computed regression coefficients to 
estimate the variability of the overall coefficient. 
Troublesome tIdomain of study” problems> as 

described by Hartley (1959) or Kish (1965), may 
also be handled in the same way. The simplicity 
of the approach is most appealing in that one has 
only to apply the appropriate estimation procedure 
to each half sample, followed by a simple vari­
ance computation on the separate half-sample 
estimates. 

Since balanced half-sample replication does 
permit the “easy” com~utation of variance esti­
mates which intuitively seem to mirror most of 
the complexities in survey sampling, estimation, 
and analysis, one would like to argue that it can 
j!correctlYl! account for all of these features. This 

is clearly not the case. For example: 
1. If the y~l represent values of a variable 

associated with individual population elements, if 
the two elements per stratum are selected with 
equal probabilities and without replacement, and 
if the sampling fractions are the same in all 
strata, then a finite population correction can 
easily be inserted at the” end of the variance 
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estimation process. The effect of differing 
sampling fractions in the separate strata could 
be taken into account by working with W\’s 
where W; is equal to W~ multiplied by the square 
root of the appropriate finite population cor­
rection, but even this simple change effectively 
divorces the estimation procedure from the 
variance estimation process. The situation be-
comes more involved if the two units are selected 
with unequal probabilities and without replace­
ment. 

2, If the Yhi represent estimates of a cluster 
characteristic, as in two-stage sampling, then 
one must also worry about correctly accounting 
for the within-cluster contribution to the total 
variance. As is evident in Cochran (1963, ch. 10), 
the problem is not substantial if the first-stage 
units are selected with equal probabilities and with 
replacement and the first- stage sampling frac­
tions are small, or if the first-stage units are 
selected with unequal probabilities and with re-
placement. The situation in which two units are 
selected with unequal probabilities and without 
replacement is the variance estimating problem 
to which Durbin (1967) addressed himself. 

3. Most estimation problems are not linear 
but involve the use of ratios in one form or 
another. Under these circumstances, it will not 
even be necessarily true that the estimate made 
from the entire sample will be equal to the 
average of the balanced half-sample estimates 
and thus new dimensions of. complexity will be 
involved. 

As implied by the foregoing examples, the 
exact characteristics of estimates of variance 
obtained from balanced half - sample replication 
are, for the most part, unknown. These char­
acteristics may be investigated in a variety of 
ways, including the following: (a) exact analytic, 
in which one assumes the functional form of a 
distribution (or a joint distribution) and obtains 
straightforward, although possibly not simple, 
answers; (b) approximate analytic, in which one 
uses Taylor series approximations, obtains 
bounds by analytic methods, and the like; (c) em­
pirical studies, in which one employs data obtained 
from surveys to investigate the behavior of sta­
tistical procedures, frequently using such an 

approach to check on results obtained in (b); and 
(d) Monte Carlo sampling from synthetic popula­
tions, again usually to check on results obtained 
in (b). 

In the area of present concern, there appears 
to be little hope of obtaining exact analytic solu­
tions to problems. In particular, exact solutions 
require quite restrictive models as evidenced by 
a portion of the work of Durbin (1959) and the 
work of Rao and Webster (1965) on the Quenouille 
version of a ratio estimate. Their developments 
start with the assumption that Yi = a + B x ~ + 

u,, ~(uljxl) = 0, V(uil xi) = nt5 where 13is a 
constant for each n such that n~ is bounded, and 
the variates X,/n have the gamma distribution 
with parameter h. Such investigations are ex­
tremely valuable in providing clues concerning 
the behavior of a particular method, but it is not 
possible to devise specific models for the many 
different types of data studied by large survey 
organizations. 

Taylor series approximations have also been 
used extensively to investigate the properties 
of a wide variety of ratio estimators, both with 
and without models. One of the more recent 
accounts and summaries of this type of approach 
is that of Tin (1965). In general, results are ob­
tained on bias and variance estimation which one 
wishes to check against data obtained either 
from actual studies or from Monte Carlo experi­
ments, particularly when the samples are sin-all 
or moderate in size. Thus Kish, Namboodiri, and 
Pillai (1962) use actual survey data while Tin 
(1965) and Lauh and Williams (1963) use Monte 
Carlo techniques. 

In this report, the general view is adopted 
that .the behavior of estimates and of variance 
estimates should be investigated, if possible, on 
the basis of actual survey results. This enables 
one to consider a wide variety of types of data 
that are of current interest and avoids the 
problem of having to construct “representative” 
synthetic populations and having the results 
refer only to these populations. Even the con­
struction of appropriate synthetic populations, 
to which one could apply complex sample de-
signs and estimation procedures, would k a 
difficult undertaking. 



DESCRIPTION AND APPLICATION 
OF EVALUATION TECHNIQUES 

This section of the report will describe a 
number of internal evaluation techniques which 
can provide evidence concerning the behavior 
of balanced half-sample replication. These tech­
niques will be illustrated on data derived from 
the Health Examination Survey (NCHS, Series 11, 
No. 1, and the appendix to NCHS, Series 2, No. 
14) relating to a variety of body measurements 
for a sample of approximately 3,000 U.S. adult 
males. (The total sample also contained approxi­
mately 4,000 U.S. adult females.) Two different 
types of estimates will be considered: (1) Esti­
mates of population means and (2) Estimates of 
multiple regression coefficients and multiple 
correlation coefficients. The original tabulations 
upon which these results are based were pro­
vided by the Survey Research Center of the 
University of Michigan as a portion of the work 
performed under a contract ketween the Survey 
Research Center and the National Center for 
Health Statistics. The variables and subpopula­
tions are less extensive than one might desire 
for an exploratory investigation, but this limita­
tion was imposed by the fact that these tabu­
lations were produced as a byproduct of another 
study. 

The Health Examination Survey is an example 
of the combination of a highly complex sample 
design and estimation procedure. In brief sum­
mary, the roughly 1,900 primary sampling units 
(PSU’S) of the Current Population Survey were 
grouped into 42 strata, some of which contained 
only a single PSU that was then included in the 
sample with certainty. From each of the strata 
containing more than one PSU, a single PSU was 
selected and then subsampled in accordance with 
customary practice to obtain a sample of about 
160 persons (75 males). The estimation procedure 
included four principal operations: (1) Inflation 
by the reciprocal of the probability of selection, 
(2) a first-stage ratio adjustment to 1960 popula­
tion for eight geographic and population concen­
tration classes, (3) an adjustment for nonresponse 
carried out in 294 age-sex- PSU cells, and (4) a 
poststratification by 12 age-sex cells. These 

observations were forced into a “two observa­
tions from each of 27 strata” format by pairing 
“adjacent” noncertainty strata and by defining 
“similar” subsamples from within the certainty 
Psu’s. 

Average of Half-Sample Estimates 

As mentioned earlier, the formal consider­
ation of balanced half samples has been restricted 
to the. ordinary linear situation. One can move 
away from the linear case in a variety of ways, 
but only the ordinary combined ratio estimate will 
be discussed here. The points raised, however, 
apply to any nonlinear situation and will be 
illustrated in Health Examination Survey data. 
In the case of stratified simple random sampling, 
with two units selected from within each of L 
strata, there are a totality of 2L half samples, 
from each of which one may compute a combined 
ratio estimate, say r,. For the linear case, it 
has been shown that analyses carried out on a 
set of balanced half samples give the same re­
sults as would be obtained by carrying out the 
same half- sample analyses on the entire set of 
2L elements. We shall now investigate the man­
ner in which this carries over to the case of 
half-sample ratio estimates. 

In the linear case, denote the means of a 
balanced set of half samples by Y~?,l,Yhs,z, . . . , 

Yh~,k> and the mean of the entree sample by 

Y=t. Denote the means of the complementary 
set of half samples by Y&~, y;~ *, . . . P y~,,k * 

~where Y;*O, is the mean &f the’half sample ob­
tained using the L elements left out of the ith 
original half sample. If k is greater than L— 

so that each observation appears in half of the 
samples— certain relationships hold among these 
means. In particular, we have that (Y~$, + y#I ,1/2 

= ,~1 Y~S,~/k= & Y;~,i/k = Y.t . In ‘a sen~e, 
we can say that the set of k balanced half sam­
ples “exhausts” the information in the totality of 
2L half samples, as far as estimation is con­
cerned. The question can then be raised of whether 
the half -sample combined ratio estimators 
rl, r2, . .. Jr~j separately from or in com­
bination with their complementary estimators 
r;,’ r2, . . ..r~. also “exhaust” the totality of 
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all 2L half-sample ratio estimators. Notice that 
we are~here asking about the relationship be-
tween ,~lr,/k, ,~lri/k, and the average of the 
ri’s for all 2L half samples and notabout t~e 
relationship between these quantities and” R, 

the combined ratio estimator for the entire 
sample. The latter is a separate question which 
will be discussed shortly. 

It appears that this problem can be attacked 
empirically by the following argument. Consider 
by way of illustration, the three-strata example 
discussed in the NCHS report (Series 2, No. 14, 
p.	 17), where the observations are denoted by 
(x~1, y~l), h= 1, 2, 3, i = 1,2, and WI = W2 = 

W3 = 1/3. Translated into combined ratio estimate 
terms, for a set of four balanced half samples, 
this is 

Yll + Y21 + Y31 Y12 + Y22 + Y32 

‘1= 4 = 
’11 + ’21 + ’31 %2 + ’22 + ’32 

Yll + Y22 + Y32 Y12 + Y21 + Y31 

‘2= 
r; = 

X1l + X2* + x32 ’12 + ’21 + ’31 

r - Y12 + Y22 + Y31 Y~~ + Y21 + Y32 
r; = 

%2 + X22 + X31 %1 + ’21 + ’32 

Y12 + Y21 + Y32 Y~~+ Y22 + Y31 
r4= r~ = 

XII + X22 + X31 
’12 + ’21 + ’32 

In the r~ set, note that each observation 
(Xhl> y~l) occurs in two of the four samples. 
Furthermore, if we look at any two of the three 
strata, say strata h and k, then each of the four 
possible pairs of observations 

(Xhl, Yhl)and (Xkl, Ykl) 

(x ~1, y~l) and (x~2, yk2) 

‘xh2 ! Yh2 ) and (xkl , ykl) 

‘xh2 J yh2) and (xk2, Yk2) 

appears in one of the four samples. It is this 
“balancing of pairs of observations” which char­

acterizes any set of balanced half samples and, 
in the linear case, makes them so suitable as 
the basis for variance-estimation. The set of 
r,’s is not, however, balanced on triplets of ob­
servations. Thus the triplet ( x~z~YIJJ (X22) Y22)) 
(X32, y32 ), - obtained by taking one observation 
from each of The three strata, does not appear in 
the ri set. Similar observations hold for the r; 
set. The combined set of ri’s and r: ‘S in this 

case does account for all possible half- sample 
ratio estimates and is therefore balanced on 
triplets. If, in a particular example involving three 
strata, we found that F and F, the averages of 
the r,’s and r; ‘s, respectively, were in close 
agreement, this would indicate that the effect 
of the balancing of triplets was negligible. Of 
course, the average of F and F’ is in this in-
stance the actual value that one wishes to esti­
mate. Even for the artificial and extreme example 
given in NCHS report (Series 2, No. 14, p. 27), 
E (7) = 1.1985 and E(P) = 1.1968, thus indicat­
ing that the effect of triplet balancing is ex­
tremely small. 

In general, a set of k half samples, where 
k is a multiple of four, will be balanced on the 
number of strata corresponding to the highest 
power of two that is an exact divisor of k. Thus 
if a set of eight balanced half samples is used 
for five strata, then the r, and r; sets will each 
be balanced on singles, pairs, and triplets of 
observations while the combined set will also 
be balanced on quadruplets. Under these circum­
stances, if F and 7’ agree, then one can argue 
that quadruplet balancing is unnecessary, al­
though this can be achieved by combining the two 
sets. 

When k is not exactly equal to two raised to 
an integer power, and the Plackett- Burman 
(1943-46) method of constructing an orthogonal 
matrix is used, the balancing situation is not 
as clear cut. For example, the case of k=12 

has been completely investigated. Thus the r i 

and r; sets are both balanced for pairs of obser­
vations since 12 is divisible by four. Furthermore, 
the combined ri and r: sets, which contain 24 
half samples, are balanced on triplets of obser­
vations. On the other hand, f~r the case of 
k = 24 which is given in NCHS report (Series 
2, No. 14, p. 19), the r, and r: sets are each 
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balanced on triplets of observations, since 24 
is divisible by eight, but the combined set of 48 
half samples is not balanced on quadruplets of 
observations even though 48 is divisible by 16. 
Nevertheless, a small investigation has indicated 
that the- combined sets will be b&ter balanced on 
quadruplets than will either set separately. 

In ordinary practice one would perform all 
computations on a single set of k balanced half 
samples and would not be concerned with the 
complementary set. The two sets can, however, 
be compared if there is any doubt concerning 
the adequacy of a single set. This comparison 
has been made, for methodological purposes, 
with data derived from the Health Examination 
Survey which, as noted earlier, was based on 
approximately 3,000 adult males. The analyses 
were performed on a set of 28 balanced half 
samples, the sample being treated as if two 
independent selections had been made within 
each of 27 strata, together with the complementary 
set of 28 half samples, Two different types of 
estimates were considered: 

1. Ratio estimates of population means were 
made for 15 physical body characteristics (e.g., 
chest girth, waist girth, and knee height). 

2. Each of eight body characteristics were 
separately regressed on the independenrvariables 
of age, height, and weight. Estimates were made 
of the partial regression coefficients and of the 
multiple correlation coefficient. 

In each case— 15 means, 24 partial regression 
coefficients, and eight multiple correlation co­
efficients—the average of the estimates made 
from the original set of 28 balanced half samples 
can be compared with the average of the esti­
mates made from the complementary set. These 
comparisons are given in tables 1 and 2. In only 
seven of the 47 comparisons do the two means 
differ by more than .03 percent of their average 
and these instances could well have arisen from 
rounding error. Hence we conclude that for this 
situation half - sample estimates, based on a set of 
28 half samples, effectively give the same re­

lTen groups of four columns were selected randomly from 
the population of *1C4 possible groups of four columns. Per­
fect balance was achieved by combining the r, and r; sete 
in five of the 10. Improved balance was achieved in four of 
the 10; and in only one of the 10 did no improvement occur. 

suits as would be obtained by working with the 
entire set of 227 half samples. 

Bias of a Ratio Estimator 

The estimate that is customarily used for 
the type of sample design to which the present 
discussion refers is the combined ratio esti­
mator which, when hAsed on the total sample, 
will be designated by R. This estimator may be 
biased, especially for small samples, and this 
topic has been extensively researched in a wide 
variety of ways, e.g., Kish, Namboodiri, and 
Pillai (1962) and Tin (1965). When balanced half 
samples are used for variance estimation, it is 
possible to obtain, as a byproduct, an empirical 
check on the existence and magnitude of bias. 

The quantities 7, F!, and their average, de-
noted by 7*, are of exactly the same form as 
1$, but are based on half samples. Since the 
bias of a ratio estimator decreases with in-
creasing sample size, we ca~n expect F* to be 
subject to greater bias than R. If, for a given 
set of data, 7, T’, F* and ~ are essentially the 
same, this is presumptive evidence that the dif­
ferential bias is close to zero and it therefore 
follows that the absolute bias of either estimator 
is essentially zero. For the artificial example 
used in NCHS report (Series 2, No. 14, p. 27), 
this is clearly not :he- case since E ( n = 1.1985, 

13( F’) = 1.1968, E(R) = 1.1666, and R = 1.1548. 

It is true that the bias in ~ may be small even 
though there is differential bias between F and 
k. 

On the basis of previously cited empirical 
investigations and on the basis of the size of the 
sample upon which the illustrative data of this 
paper are based, one would expect little, if any, 
evidence of bias. This expectation is borne out 
by the summary results presented in table A, which 
is based on the individual values given in column 
7 of table 1 and column 8 of table 2. As can be 
observed from the table, the differential bias of 
the 15 ratio estimates of population means is 
negligible, although one does observe that the 
sign of the difference is negative in 12 of the 15 
cases, possibly indicating some small residual 
bias in the half-sample estimators. The results 
for the estimates of partial regression coeffi­
cients and multiple correlation coefficients lead 
to the same general conclusion, although the 
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Table A. Differential bias of F* and l?, 
as a fract$on of the estimated standard 
error of R 1 

(P - ii)/s (k) 

-.30 to -.25-----
;:;: : -.20-----

-.15-----
-.15 to -.lo 
-.10 to -.05-----
-.05 to .oo------
.00 to +.05------
+.05 to+.lo 
I-.1O to +.15-----

Estimates 
of partial 
regression 

Ratio coeffi­
estimates cients and 
of popula- multiple 
tion means correla­

tion 
coeffi­

cients 

1 
1 

; 

1: 
5 
7 
1 

-.0?: 
-.011 

Isee the text for a description of the 
data upon which these estimates of dif­
ferential bias are used. Individual val­
ues from which these distributions are 
derived are given in column 7 of table 1 
and column 8 of table 2. 

values of the differential bias (relative to the 
standard error) tendto be somewhat larger than 
in the former case. The three largest (in ab­
solute value) of these arise from the independent 
variable, height, but no specific reason for this 
could be found. In general, one must conclude 
that, for this type of data and for this size of 
sample, there is no need to be concerned about 
bias in either the half-sample estimators or, 
more particularly, in the entire-sample esti­
mator. 

If the possibility of “serious” bias ap~ars 
to exist for any or all of 7, T’, 7“ and R, as 
evidenced by large differences amongthesequan­
tities in a specific situation, one can consider 
the alternative of moving to a Quenouille-type 
(or Jackknife-type) transformation. There is some 

evidence, primarily based on Taylor series 
investigations of the ordinary ratio estimate, 
that such transformations may reduce bias with-
out having deleterious effects on the varianceof 
the estimate. (See, forexample, Brilltiger(1964), 
Durbin(1959), NCHS (Series2,No. 14), Quenouille 
(1956), Rao (1965), and Tin (1965). There have 
been no theoretical or empirical investigations 
of complex design and estimation situations 
similar to the one being discussed in this paper. 

Estimating the Variance ofT 

Under ordinary circumstances, onehas aset 
ofk IMancedh alfs amplesand the accompanying 
half- sample ratio estimates, rl , r2, . . ., rk. 
Carrying over the argument out~ned earlier for 
the linear case, the variance of R(ratioestitnate 
computed f:om the entire sample) would be esti­
mated as i>l(ri–~J2/k. To keep the argument 
in simplest terms, we shall first restrict atten­
tion to the prob~em of estimating the variance 
of 7 inste~d of R and hence use the varia:ce 
estimate ~~l(ri –F)2/k, here denoted by V5H~ 
(F).If the data for the complementary set of 
half samples are also processed, as is the case for 
the illustrative example being used in this paper, 
then a second estimate of the same form ca: k 
computed from r!, r;, . . ., r;, namely V~Hs 
@).In the linear case, these two estimates are 
identical. 

‘Another estimate of variance with which to 
compare V5H~m and VSHS(F’)may be obtained 
by the following argument. Viewing a particular 
half sample and its complement as two independ­
ent samples, the variance of a half-sample ratio 
can be estimated with a single degree of free­
dom as 

= (lA ) (r, - r/)2 

The average of ri and r;, say ~“, makes use 
of all the sample information and has estimated 
variance 

(~4)(ri – r~)2 
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If this estimate of variance is obtained from a 
single half sample and its complement, then it is 
the simplest form of a replicated estimate of 
variance and has often been suggested as a crude 
first approximation to such variances. In the 
linear case, the value of ~“ would be equal to 
the whole-sample estimator for any i and hence 
we shall regard ( % ) (r, - r; )2 as an approxi­
mation to the variance of the whole-sample esti­
mator, whether it be computed as F, F‘, or as 
F* . 

If the foregoing estimate of variance could 
be computed for each of the 2‘- 1 complementary 
pairs of half samples in the entire set of 2L half 
samples, then the averagq of these estimates, 
each of which has the correct expected value, 
would appear to provide an “excellent” estimate 
of the variance F*. Since this is impossible, we 
shall substitute its computation over a set of k 

Table B. Difference between ~BH~(F), o 

balanced half samples, together of course with 
the complementary set. Thus 

(7*)=ocBH~ (lA) i~l(ri – r/)2/k . 

It seems likely, on the basis of the argument 
previously set forth on the balancing of singles, 
pairs, and triplets, and of computations carried 
out on simple examples, that these estimates are 
extremely close to those that would be obtained 
by working with the entire set of 2L half sam­
ples. 

Although no way has been found to put the 
foregoing considerations on a formal basis, it 
would appear that V~BH~(~*) if a “better” esti­
mate of variance than either VBH~(7) or ~BH~(F’). 
In practice, of course, one would have avail-
able only one of the latter two estimates. In the 

+CBH5(F*), as a fraction 

Estimates of partial
estimates coefficients 

.-44=$


Ratio 

Fractional difference 

-.08 to -.07 
-.07 to -.06 
-.06 to -.05 
-.05 to -.04 
-.04 to -.03 
~::; : -.02 

-.01 
-.O1 to .00----------------------

,00 to .01----------------------
.01 to .02----------------------
.02 to .03----------------------
.03 to .04----------------------
.04 to .05----------------------
.05 to .06----------------------
.06 to .07----------------------
J& : .;;----------------------

regression
of population means and multiple correlation 

coefficients 

g“p 

1 
2 
2 
4 
2 

Total 15 32 32 
Mean -.0:? +. 019 +. 010 +0 001 
Median --.----- . ------- . . . -.018 +. 017 +* 012 -.001 



present investigation, all three estimates have 
been computed for the 15 ratio estimates of 
population means and for the previously de-
scribed regression coefficients and multiple cor­
relation coefficients. Agreement of these three 
variance estimators will be taken as presumptive 
evidence that the balanced half- sample variance 
estimation procedure is appropriate for a given 
set of data. A summary of the results of this 
comparison is given in table B, while the actual 
values on which these distributions are based are 
presented in tables 3 and 4. It will be observed 
that the distributions of fractional differences 
show the three estimates to be in relatively close 
agreement. Several further observations con­
cerning these distributions are: 

1. For any given estimate ~c~H~(T*) tends 
to be between I$~H~m and #~H~@). 

2. For the ratio estimates of population 
means (physical body characteristics of U.S. 
adult males), the estimates #~H&F J tend to be 
on the same side of ~~~~~(F*). In other words, 
the values of #~~~(~) are correlated with one 
another. This effect is not as pronounced for the 
estimates of partial regression coefficients and 
multiple correlation coefficients. 

3, The effects of (1) and (2) show up in the 
two distributions on the left of table B, one 
distribution being located somewhat below zero 
and the other somewhat above zero. 

4. If the comparison were made on the basis 
of estimated standard errors, the distributions 
would show less dispersion. This follows im­
mediately from the fact that (/a - /b )/~b = (~a/ 
~b)- 1 is always smaller in absolute value than 
iS (a - b)/b = (a/b) -1. 

The foregoing results can be presented in a 
slightly different manner by introducing the con­
cept of correlated variables. Walsh (1947) sum­
marizes the following results. If x ~, X2,. . ., Xn 
are observations where E(X, ) = ~, V(Xi ) = U*, 

and E(x1 - p) (x,-p)= PU2, then V(Y) =-$ 
[1+ (n - l)p] and EIZ(XI - Y)*/(n - l)]= u2(l- p). 

Furthermore, if the x, ‘S are normal, the quanti­
ty 

(X – K)[(l-p)/ (l+(n- l)p)]7* 

[Z(x, -Y)2/n (n - 1)] ~ 

has a Student’s distribution with (n – 1) degrees 
of freedom. For present purposes, we replace 
the X,’s by the balanced half-sample ratio esti­

mators ‘1? ‘z) . . .) ‘k. The r,’s do have a 
common variance, and they are correlated since 
the half samples within a balanced set do have 
elements in common. For the moment, the com­
plementary set is ignored. 

The ordinary practice for balanced half-
sample replication has been to take z (ri - k )*/k 

as an estimate of the variance of *. As has been 
done earlier in ~his discussion, let us consider 
F rather than R and see under what circum­
stances we can treat 

T-Pr 

as having a Student’s t distribution with ( k -1 ) 
degrees of freedom, at least as far as variance 
considerations are concerned. 

If the aforementioned equality is to hold, then 
it is necessary that 

1+ (k-l)p 

(1 - p) 
=( JC-1) 

which means that 

k-2 
‘= 2(k-1) . 

This condition can be shown to hold, through 
the use of a common-element argument set forth 
in NCHS (Series 2, No. 14, pp. 20-21), if 

1. We are dealing with a linear situation in 
which W1=W2=. ..= WL,and S;=.$ =. . .=S~. 

2. The number of strata, L, is one less than 
a multiple of four and the set of k = L + 1 bal­
anced half samples is obtained by deleting the 
column whose sign entries are all the same from 
a k x k orthogonal matrix. 

In the present instance, and in more complicated 
ones, these conditions cannot be expected to hold 
exactly. The strata weights and variances will 
not be equal; the half samples may not have 
exactly the same number of elements in common, 
which was required for the “common element” 
argument leading to a theoretical value of P; and 
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a ratio estimator may behave in a different 
fashion from a linear estimator. Nevertheless, 
one would expect these results to hold in some 
average sense, especially when there is a reason-
able number of strata. It is possible to investi­
gate this matter empirically. 

Suppose we consider a set of balanced half 
samples and their complements, together with 
the half - sample ratio estimators rl , r2, ..., 
r~ and r;, r; , . . ., r:. Then take 

2oc8H~(7*) = (1/2) ,~1 (r, - r;) 2/k 

as an estimate of u2, the variance of a single 
half-sample estimator, Furthermore, take 

$ (r, - F)2 ,$1(r/ -F’)2
i=l 

and 
k-1 k-1 

as estimators of u2 ( 1- P), The correlation o 
can then be estimated as 

! (ri - 7)2/(k - 1) 
2-1- ‘=1 

(Y2) ,~1 (r, - r~)~k 

or as 

d=~ _ ,i, +~’-l, 
(1/2)$1(r, - r{)2/k 

and these values, or their average, can be 
checked against the theoretical value of 

(k - 2)/2(k - 1). 
The foregoing estimates of P have been com­

puted for the illustrative data used in this paper. 
Their distributions are shown in table C and the 
individual values are given in tables 3 and 4. The 
left portion of table C presents the results for 
ratio estimates of mean body characteristics of 
U.S. adult males, while the right portion gives the 
same data for regression coefficients and mul­
tiple correlation coefficients. The theoretical 
value of P with which these can be compared is 

(k- 2)/2( k- 1) = 26/54 = .4815. The general 
agreement of the empirical results with the 
theoretical value again leads to the conclusion 
that, for the illustrative data being used in this 
paper, one can take ~Z1(ri- n2/k as an approxi­. 
mation to 

,&(rl-F)2 
. [1+ (k- l)P] 

k(k-1) (1 -p) 

in estimating the variance of 7. The general ob­
servations made concerning the relationship 
among distrilmtions in table B also appl here 

. :ince the $‘s are simple functions of J’
BHS(7)’ 

VBHS (F1), and $ 
CBHS(Fb-

Estimating the Variance of k 

Thus- far the discussion of variance esti­
mation has focused on 7, F’, and F*, rather than 
R, for the simple reason that we are actually 
dealing with half-sample ratio estimators. The 
ordinary procedure in either half-sample or 
balanced half-~ampl: replication has ken to use 
the quantity ,~l(ri~- R)2/k as an estimator of 
the variance ;f R. This es~imate of variance is 
larger than the estimate Zl(ri - F )~k by the 
amount (F - A )2. Since we have already ob­
served that 7 and F 1do not differ by an appreci­
able amount from ~ for the illustrative data of 
this paper, it makes little difference which esti­
mate is used. In general, it would seem that 

,~1 (ri - * )?k would overestimate even the 
mean square error of R since it contains a 
contribution for the differential bias of 7 and 
R, and this differential bias may well be larger 
than the absolute bias in ~. 

It is possible to obtain ~ formal relation-
ship connecting V(r) and v(R). Consider the ex­
pression E(F - ~ )2. It follows that 

E(T-A)2== V(F)+ VA -2 CO”(7, 4) 

+[E(T) - A]* 

- V(F)+ V(fi) -2 p_@ra V(79 

+ [Em- E(A)]*. 
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Table C. Estimated value of the intraclass correlation coefficient for a set of 28 
balanced half-sample estimators 

Estimates of partial 
Ratio estimates regression coefficients 

of population means md multiple correlation 
coefficientsEstimated value of p 

.43 to 

.44 to 

.45 to 

.46 to 

.47 to 

.48 to 

.49 to 

.50 to 

.51 to 
-.52 to 

.44-----------------------


.45-----------------------

.46-----------------------

.47-----------------------

.48-----------------------

.49-----------------------

.50-----------------------

.51-----------------------

.52-----------------------

.53-----------------------

1 
2 2

3 2

5

8 

.48% .48?:


.4890 a .4838 

V(F) and v(A) on the basis of a single sample. 
The bounds obtained will not bepartic;larly good 
if the neglected term [E(F) - E (J%]* is at all 
appreciable in relation to E(T - A) 2, andthishas 

Total ---.----

Mean

Median


Regrouping ofterms leadsto 

V(F)+ v(A)- 2P7,# V!Xm 

= E(F - R) 2- [E(F) - E(fi)]2 . 

Now we observe that P7A<I. Actually, it ap­
pears that this correla~~on will bevery closeto 
one under almost any circumstances, and this 
conjecture has been confirmed by direct com­
putation in several ’’small,” synthetic examples. 
Thus 

< E(F - i%’ - [Em - E(#)]2 

or 

[6- @2 <E(F-~)2. 

Since, as shown earlier, we can estim:te 
V(F) from asingle sample, an$shce (F-”R)2 
is an approximation for E(F-R)2 this lastex­
pression provides a crude way of comparing 

been the case with.various synthetic examples 
that have been investigated. On the other hand, 
this may provide quite reasonable bounds in 
practical situations where theneglected termmay 
be expected to be small. It should be observed 
that the development of the final expression 
includes sampling withoutreplacementfromfinite 
populations. Furthermorei equality will hold 
throughout if (r, + r~)/2=R for each i, as it 
does in the linear case, and we then have there-
suit that V(F) = V(l?). For the illustrativedataof 
this paper, as summarized in tableA, allindica­
tions :rethat we are obtaining ’’good” estimates 
of V(R) aswellasof V(7). 

Design Effect 

As a final point, we note that column 2in 
table 3 and column 3 in :able 4 contain esti­
mates of variance, labeled V~AN(.), computed as 
if the observations had arisen from simple ran-
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dom sampling. Since the estimate ficBH~(.) takes 
into account most of the survey features (strati­
fication, clustering, po:tstratificati:n estimation, 
etc.), the ratio of v~BH~L) to VRAN(.) is an 
estimate of the design effect. These ratios are 
given in column 8 of table 3 and column 9 in 
table 4. In table 3, which refers to estimates of 
mean body characteristics based on approximately 
3,000 adult males, these ratios range from 1.158 
to 5.729 with an average value of 3.223. In table 
4, which refers to estimates of regression co­
efficients and multiple correlation coefficients, 
the ratios range from .570 to 3.675 with an 
average value of 1.807. The fact that design 
effect is smaller for the regression coefficients 
than for the mean body characteristics is con­
sistent with other studies. 

APPROXIMATE TEST OF 
INDEPENDENCE BASED ON A SET OF 

~BALANCED HALF-SAMPLE REPLICATES 

The statistical analysis of data that have 
been produced by the use of a complex sample 
design and then processed through an involved 
estimation procedure poses many difficult prob­
lems. Although it appears that the application of 
some form of pseudoreplication will provide 
a reasonable solution to the problem of esti­
mating the sampling variability of a statistic, 
it is not immediately apparent that one can use 
these same techniques to solve certain other 
commonly occurring problems of statistical 
analysis. This section gives a summary of the 
results of an investigation carried out by Chap-
man (1966) concerning the use of balanced half-
sample replications to test the hypothesis of 
independence in a contingency table. 

The contingency-table test of independence 
is ordinarily phrased in the following manner. 
Observations are classified jointly on each of two 
qualitative variables, the categories of variable 
one being denoted by i, i = 1, 2, . . .,r, and 
those of variable two by j, j = 1, 2,. . .,c. If 
P, i denotes the probability y of an observation 
falling in the ith category of variable one and 
in the jth category of variable two, then the 
hypothesis of independence states that I+j = p ~. 

p-j where pi refers to the marginal distribution 

of the first variable and p.~ refers to the mar­
ginal distribution of the second variable. As­
suming that a “large” sample of n independent 
observations is available, the statistic 

(nij– ni.nj )2
n.


X2=	 ; ‘ 
i=l j21 ni

. 
n

.j 
n 

is approximately distributed as Chi- square with 
(r – 1) (c – 1) degrees of freedom when the 
hypothesis is true, and the hypothesis is re­
jected for “large” values of X2. Data derived 
from a complex survey operation certainly do 
not conform to this model, particularly in view 
of the dependencies that are introduced by the 
use of stratification and clustering techniques. 
Furthermore, the effects of commonly used 
estimation procedures would add to these com­
plications. 

One might attempt to find a solution to this 
problem in the following manner. If large samples 
are used, the distribution of the sample esti­
mates of (rc - 1) of the pijfs, which will be 
denoted by j,j, can be approximated by a non-
degenerate, normal, multivariate distribution. 
The exponent (ignoring the - 1/2) in this distribu­
tion is a quadratic form in the 4, j’s and the 
coefficients of this form are the elements in the 
inverse of the variance- covariance matrix of the 
:i, ‘s. The variance- covariance matrix of the 
Pij ‘s can be estimated by a pseudoreplication 
method, such as balanced half samples, and these 
estimates would mirror the effects of the design 
and estimation. It should be observed, however, 
that the volume of computation would be large 
since even for r = 3 and c = 3 there would be 
eight variances and 28 covariances. It would then 
be necessary to invert this matrix and evaluate 
the quadratic form to take the hypothesis Pi, = 
Pi p.j into account. The resulting statistic would 
be treated as a Chi-square variable with some 
appropriate number of degrees of freedom. This 
approach has not been pursued since we shall now 
describe a “simpler” alternative. 

The basic idea upon which the proposed test 
procedure rests is the following, Suppose that an 
estimate #lj is obtained from a sample and that 
a product estimate, ~~ # j, is obtained from an . . 

12 



1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

------

--

--

independent sample. Form the difference of these 
two estimates ($1, - ~,. j! j ), and consider the 
sign of the difference. Define the variable Sij to 
be one when the sign is plus and zero when it is 
minus. If the hypothesis of independence does 
hold, then this is the difference of two independent 
estimates of the parameter, Pi ~, and one would 
intuitively expect the sign of this difference to be 
plus or minus with equal probability. Actually, 
even with two independent random samples, each 
of size n, it can be shown that this result does 
not generally hold. In particular, 

1. If n is “small,” then there may be an 
appreciable probability that the difference is 
exactly equal to zero. 

2. The distributions o~ ~ij and ~; j: j will 
not be identical and therefore the distribution of 
the difference may not have a median at zero. 
For example, it can be demonstrated that 

v(f),,)= (l/n)p,,(l - pi, ) 

V(fy,$:,)= (l/n) p,, (1 - p,]) 

- [(n -l)\n2] pij(l - p,c)(l-poj). 

On the other hand, if we can assume that both 
Al, and fl; A:, are approximately normally 
distributed, ”then their difference will also be 
approximately normally distributed and the mean 
of this distribution will be ze~o when the hypothe­
sis of independence is true. Hereafter, we shall 
make this assumption of approximate normality. 

Now suppose that it were possible to repli­
cate this situation k times and thus obtain k 
independent observations on the variable S,j. 
The sum of the k S,, ‘s, X,, , is a binomial vari­

,1 II 

abIe with 

E(X,j) =(kt2) 

V(xi,) = ( V4M 

when the null hypothesis is true and, if k is 
“large,” the quantity 

is distributed approximately as Chi- square with 
one degree of freedom. 

In general it would be impossible to con­
sider using this form of analysis since it re-
quires 2k independent replicates, each of which 
is large enough to ensure that jij and ~; 3:, 
are approximately normally distributed. Further-
more, it is also desirable that k be sufficiently 
large so that the test will have adequate power. 
However, if one is using a sample design for 
which a balanced half-sample replication method 
of estimating variances is appropriate, it appears 
that these circumstances can be realized in an 
approximate manner. Consider, as an example, 
a situation in which there are two independent 
selections from within each of seven strata and 
that one is therefore using a set of eight bal­
anced half samples. Denoting the first element 
selected in each stratum by a + and the second 
by a -, the following table shows one set of 
eight balanced half samples and their comple­
ments: 

Half Strata Comple- Strata 
samples 1234567 ments 1234567 

+++++-!-+- -

--E-i--+- + -i---!-. + 

+- ..+-+-. -++ i-+ 

-.++-.+- ++ --+-+-

-F ++---- -i-++”+­

-+-- +-+ ?-- ++-+--

+---.++ --P i-++-­

s --i--+-F- ++ -+ --+ 

It will be observed that a half sample and its 
complement have no elements in common, that a 
half sample and any other half sample in the 
same set have three elements in common, and 
that a half sample and any half sample from the 
complementary set, other than the complement 
itself, have four elements in common. In general, 
if there are L strata and one can use a set of 
(L+l)=k balanced half samples, where k 
is a multiple of four, these numbers of common 
elements will be zero, (k/2) - 1, and (k/2), 
respectively. 
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Now consider the following simplified ver­
sion of the stated problem: 

1. Jjj is the estimate of Plj made from 
half- sample one and #j, ~fi.\ is the corre­
sponding product estimate obtained from the 
complementary half sample. These are independ­
ent estimators. 

2. Jl,j is the estimate of pi] made from 
half sample two and .#~. z~~j is the corre­
sponding product estimate obtained from the 
complementary half sample. 

3. Assume that ~J$ll and ~~~j are ordinary 
linear estimates based on L strata of equal weight 
and that the within- strata estimates have common 
variance S;. It then follows, using the argument 
set forth in NCHS (Series 2, No. 14, p. 21), that 

Cov (12,1,#,,) ={[(~-da}{v’’’’}s: 

- (L-1) S2 

2L2 w “ 

4. Assume that the product estimates lpi.A‘ 
~~~i bshave in exactly the same manner as the 
A,, ‘s. As a result, we have 

and 

- {fL+I)/2}{1/L2}S~ 

(L+ 1) ~2 

2L2 w “ 

5. Using the foregoing results and assump­
tions, we find that 

Var(#,j - #~. #j) = Var(2$lj - 2?;. 24)= + s; 

and that the correlation between the two differ­
ences is equal to - l/L. For any reasonable num­

ber of strata this correlation will be very close 
to zero. Since the various estimates are assumed 
to be approximately normally distributed, it fol­
lows that the k differences (#1j - jj. ~~j), as 
computed from a set of balanced half samples, can 
be treated as independent observations. Some 
evidence concerning the reasonableness of this 
type of argument is provided by the data on the 
intraclass correlation coefficient given in table 
C.	 It was shown that the estimated values agreed 
quite well with the theoretical value predicted on 
the basis of the “common element” approach. 

The application of the foregoing procedure to 
a set of k balanced half samples leads to an ob­
served value of Xlj for each of the rc cells in the 
contingency table, where 

E(XI1) = k/2 

i=l,2, . . ..r 

{ ,“=1,2, . . ..C \ 

V(x,j) = (y4)k 

when the hypothesis of independence is true. We 
would, of course, like to combine these rc values 
into one overall test. However, such a combination 
cannot be carried out in a straightforward man­
ner since the + j are not independent of one 
another. Chapman (1966) presents an extensive 
analysis of this problem which culminates in the 
suggestion of an approximate test statistic that 
appears to have reasonable properties and which 
is simple to use in practice. The basic steps 
in the development of the statistic are: 

1. The rc variables X,j are assumed to 
have a nondegenerate, normal, multivariate dis­
tribution. Although there are constraints on the 
X,j‘s, namely that they cannot all be simul­
taneously equal to zero or one, these constraints 
are not of a form that reduces the rank of the 
quadratic form. 

2. Approximations to the covariance and the 
correlation of any two Xi j‘s are obtained in the 
following manner: 

a.	 If two normal variables, with zero 
means and unit variances, y and 
Y have a normal bivariate dis­
t;;bution with correlation p(q, ~), 
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then the correlation p (Si ,Sj ) between 4. Combining the preceding results, we ob­
their signs-i. e., Si=l if ~>0, tain the test statistic 
and S~= O if ~ <0, and similarly for 

i i - X)2~ —is given by 1=1 j=l
(x,, 

T=

P(SI,S,J = -# arc sin p(ylj~). (74)k [1 – # arc sin (- J-- ~ )] 

rc -

This result is given in Cram& which, when the hypothesis of independence is 
(1946, p. 290). true, has approximately a X2 distribution with 

(rc – 1) degrees of freedom. The hypothesis
b, Assuming that #1] and j: ~~ are 

of independence is rejected for “significantly”
based on random samples,’ each of 

large values of T. Since arc sin x = x when x

size n, from a population in which 

is small, this can usually be simplified to

% = (1/rc), p,. = (l/r), p., = (l/c),

it can be shown that the average

correlation between (~ij - j3~ j \ )

and (fi~t - fi~. fi:t 1 where either &

both of i 4 h and j 4 t are true, is (~4)k [1 + (2/r) (l~rc- 1))],


equal to - l/(rc – 1).


c.	 Thus we have the result that 
5. The use of the independent Chi- square 

with one degree of freedom 
k2 

,Xht)= -# arc sin [- l/(rc - 1)] rc(X - ~)P(x,,

T’= 

where either or both of i ~ h and 2 1
(1\4)k [1+ (rc -1) ~arc sin(- —)]

j * t hold. Chapman (1966) inves- rc–1 

tigates some aspects of this approxi-
is not recommended since ~(~) will tend to be

mation procedure. It appears to be 
close to k/2 whether the hypothesis is true or 

a reasonable one except under ex-
not. Under these circumstances, the inclusion 

treme circumstances, e.g., where 
of T‘ in the test statistic will weaken the power

one or more of the Pll are ex-
of the test.

tremely small and other PI, are ex­
tremely large. ORDER STATISTICS OF A SET OF 

3. Walsh (1947) proves that if one has n BALANCED HALF-SAMPLE ESTIMATES 
normal variables, Xl, X2, . . ., Xn, each with 
mean P and variance u2 and with a common cor- A discussion of the relationship between 
relation coefficient. P then balanced half-sample replication and the sign 

test is presented in NCHS (Series 2, No. 14, pp. 
T- ~ 

U* (1- p) 
,~1(xl - X)2 20- 23). The problem can briefly Ix stated as 

follows. Suppose that each half-sample replica-
has a X2distribution with (n - 1) degrees of tion provides an estimate, say d~.., , of a popu­... . . 
freedom and lation difference, and that one wishes to test the 

. hypothesis that the dh= ,‘s were drawn from 

T’= 
n(X– p)’ a population whose med;;n is equal to zero. If 

u2[l+(n-l)pJ the dh~, ‘s were independent of one another, 
then one’ solution to this problem would be ob­

has an independent X2distribution with one de- tained by a straightforward application of the 
gree of freedom. ordinary sign test. The half- sample estimates 
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are not, however, independent of one another, as 
is observed in the earlier sections of this paper, 
and the question can be raised of whether it 
is possible to devise some suitable modification 
of the sign test. 

As soon as one introduces dependence among 
the members of a set of observations, it is no 
longer possible in general to devise nonpara­
metric or distribution-free procedures. If, how-
ever, it is reasonable to assume that the ‘s 

‘hs, I 

have a ,normal multivariate distribution, then ex­
isting tables can, under certain circumstances, 
be applied to test the stated hypothesis. Thus, 
Gupta (1963, p. 817) provides a table which gives 
the “probability y that N standard normal random 
variables with common correlation p are simul­
taneously less than or equal to H.” In particular, 
if H is taken to be zero, the appropriate prob­
abilities form the basis for obtaining the levels 
of significance for an “extreme” sign test, i.e., 
all signs plus or all signs minus. 

For any reasonably large number of bal­
anced half- sample estimates, the Gupta tables 
are not especially helpful. To obtain meaningful 
levels of significance, one must be able to move 
in from the extremes on the distribution of the 
number of plus signs. Since such tables of the 
normal multivariate distribution do not presently 
exist, we shall here present a procedure for 
approximating these probabilities. The degree 
of approximation appears to be quite acceptable 
for ordinary applications of the sign test. 

Consider n independent and normally distrib­
uted variables Xl, X2, . . ., Xn with E (Xl) = O 

and E (X;) = 1. If the collection {Xl~ is ordered 
so that X(l) 2 X(2) 2 X(n), then certain moments 
of the X(’) have been extensively tabulated. In 
particular, Teichroew (1956) has tabulated E(X(’)) 

and E(X(i) X(l)) for n = 1 (1) 20 and Harter 
(1960) has tabulated E (X(’)) for n = 2 (1) 100, 

plus values for a number of additional n < 400. 
Furthermore, Owen and Steck (1962) have shown 
that the moments of the order statistics of a 
sample from the equicorrelated, multivariate, 
normal distribution can be readily obtained from 
the corresponding moments for n independent 
variables. Thus, if 21, 22,. . ., Zn are jointly 
distributed random variables with 

E(Z,) = O, E(Z,2) =1, and E(Zi Zj) = p for i ~j, 

E(Z(’)) = (1 – p)l/2E(x(i)) 

and 

E[(Z(’))– E(z(i))]2 = p + (1‘p) E[X(’)– E(X(’))]2. 

Our present concern is with the probability 
that U out of the n values 21,22,. . ., Zn are 
positive, where U takes on the values 0,1,2,... . 
For example, for the first three values, it is clear 
that 

Pr(U= O)= Pr(Z (1) < _ ~, 

Pr(U=O or l)= Pr(Z (*) <0, _ 

Pr(U = O or 1 or 2) =Pr(Z(3) < O). 

Under ordinary circumstances the calculation 
of the probabilities on the right side of these 
expressions would be extremely difficult since 
they must be obtained from the distributions 
of 2(1) 2(2) 

,. ... and this is the extreme-value 
problem’ that has been considered in some detail 
by Gumbel (1958). In the present problem, how-
ever, moderate values of p, i.e., in the neighbor-
hood of 1/2, appear to ensure tiiat the distribu­
tions of the Z(’) can be approximated reasonably 
well by a normal distribution. Some third and 
fourth moments of the extreme order statistic, 
for various values of P, are exhibited by Owen and 
Steck (1962), and these values confirm this 
observation. Owen and Steck note that this be­
havior is to be expected as p increases since 
z(i) has a unit normal distribution when p = 1. 

As an illustration of this approach consider 
the case where n=20 and p= .5o. From 
Teichroew’s table 

E@) = ~ &j74~ 

“
Ax(’))= .27568, 

therefore 

E(Z(l)) = 1.32051 

U2(Z(1))= .63784. 
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‘lable D. Probability that u or fewer, out of n normal correlated observations, will 
be greater than their common mean (less than their common mean) 

Number I 16 20 24 48 

obser­
vat~ons “ b--l-= .40 

I
.50 .40 

I
.50 

u I I 
0--------- - .0361 .0603 .0272 .0492 .0235 .0433 

1(.0335) ~(.0588) 1(.0251) 1(.0476) 1(.0197) 1(.0440) 
1 - .0806 .1178 .0607 .0956 .0487 .0809 
2 .1346 .1746 .1015 � 1430 .0808 .1204 
3 
4 
5 I I 

lThe values in parentheses are exact and are from Gupta’s tables. 

.40 .50 

+ 
.0096 I .0227 

. 019; , 041i 

.0321 .0615 

.0467 .0818 

.0628 . ;:;;: 

.0805 

Assuming a normal distribution for Z(l) , we 

obtain 

Pr(Z(l) SO)= .0492. 

The correct value for this probability, fromGup­
ta’s tables, is ,0476, This appears to be quite 
acceptable accuracy for ordinary purposes. Fur­
thermore, the approximation should be better 
for Z(2), Z(3), . . . since the distributions of 
these variables cannot be as skewed as is the 
distribution of Z ‘1). For n > ’20,it was also 
necessary to approximate U*(Z(’)). This was 
done byconverting J!?(X(’)), fromHarter’s table, 
to acumulative percentage and using theasymp­
totic variance formula for the percentage point 
of a distribution (see Wilks, 1962, p. 273). 

The values of these probabilities for n= 16, 
20, 24, and48, and for P=.40and .50 have been 
computed and are presented in table D. Where 

possible, the exact values from Gupta’s table 
are given for purposes of comparison. Not only 
do these values lead toasigntesc, but they also 
lead to confidence intervals for the population 
mean (or median). Thus with 16 half-sample 
estimates, and with a P of .50, the largest and 
smallest estimates provide a 1 - (2 x .06) = 88 

percent confidence interval; similarly, the second 
smallest and second largest estimates provide 
a 1- (2 x .1178)= 76 percent confidence interval. 

In order to apply the foregoing theory it is, 
of course, necessary to have a value of p with 
which to enter the tables. The data given in table 
C on the intraclass correlation coefficient sug­
gest that a reasonable approach is to assume that 
P has the value suggested by the “common ele­
ment” argument. That is, if a set of k balanced 
half samples is used for (k – 1) strata, p would 
be assigned the value (k – 2)/2 (k - 1). 

Finally, we observe that if one is willing to 
use the set of complementary half samples, then 
still another approach to this problem is sug­
gested by some of the earlier arguments of this 
report. Suppose one wishes to com

J 
are the means 

of two variables X and Y. Let Xi be the esti­
mate of ~ made from the ith mAember of a set of 
k balanced half samples and Yi’ be the estimate 
of ~ made from the complementary half sample. 
The development on p. 15 suggests that the cor­
r.#atio~n between any two of the k differences 
(Xi – Y;) will be very small and that it would not 
be unreasonable to treat them as k independent 

observations. Thus the ordinary sign-test tables 
could be applied to the signs of the k differences. 
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Table 1. Estimates of mean body characteristics for population of U.S. adult males based ~

Health Examination Survey data


Variable 4 F ~1 F* (F* _*) 

(1) (2) (3) (4) (5) (6) (7) I 
39.76991 39.76854 39.76836 39.76845 -.00146 -.020 

-----.--..- 30.82899 30.82636 30.82650 30.82643 -.00256 -.025 

-.------ 99.57059 99.56900 99.56929 99.56914 -.00145 -.007 

89.00548 89.00882 89.00932 89.00907 .00359 .016 

1.26982 1.26907 1.26896 1.26902 -.00080 -.026 

1.50193 1.50136 1.50143 1.50140 -.00053 -.028 

----.------ 86.63670 86.63346 86.63346 86.63346 -.00324 -.026 

.------------.-- 90.60693 90.60443 90.60411 90.60427 -.00266 -.022 

-. 54.32630 54.32346 54.32339 54.32342 -.00288 -.028 

10-----------------------------44.02929 44.02836 44.02843 44.02840 -.00089 -.013 

11----------------------------- 14.51358 14.51357 14.51361 14.51359 .00001 .000 

12----------------------------- 59.22556 59.22364 59.22371 59.22368 -.00188 -.022 

13----------------------------- 49.45498 49.45439 49.45421 49.45430 -.00068 -.007 

14-----------------------------35.62331 

15-----------------------------42.22215 42.22332 42.22350 42.22341 .00126 .012 

16-----------------------------24.26486 24.26357 24.26364 24.26360 -.00126 -.012 

column 1 Variable 1. Biacromial diameter 9. Knee height


2. Right arm girth 10. Popliteal height 

3. Chest girth 11. Thigh clearance height


4. Waist girth 12. Buttock-knee length


5. Right arm skinfold 13. Buttock-popliteal length


6. Infrascapular skinfold 14. Seat breadth


7. Sitting height (normal) 15. Elbw-elbw breadth


8. Sitting height (erect) 16. Elbow rest height


column 2	 his the combined ratio estimate based on the entire sample, including adjustments for

nonresponse and poststratification.


column 3	 The estimate ~ is obtained for each member of a set of 28 balanced half samples. These 
estimates are denoted by r,,i-1, 2,. . .,28,and Fis their average. 

column 4	 If r,is the eatilnatefrom a half sample, then r;is the corresponding estimate made from

the complementary half sample. F is the average of these 28 complementary estimates.


column 5 F*ia obtained by averaging columns 3 and 4.


Column 6 column 5-column 2.


column 7 The difference G“-1$) expressed aa a fraction of the eatimsted standard error of


k. #(&is computed as (~4),~1(r1
– r~)2/28.


The actual valuea of the estimate of variance used in the computations are g ven in col­
umn 7 of table 3. In the text discussion, these estimstea are denoted by #

CBHS(F*) “ 
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Table 2. Estimates of regressioncoefficients and the multiple correlationcoefficientfor populationof 
U.S. adultmales based on Health ExaminationSurvey data 

Dependent Independent -*—0variable variable b b (7)/v(p)F­
(1) (2) (5) (6) (8)


1


2


3


4


5


6


8


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


Age-----------

Height

.Weight

Multiple R----


Age-----------

Height

Weight

Multiple R----


-.02551 -.02555

.05260 .05228

,02999 ,02999

.55033 .55024


-.02724 -.02733

-.12620 -.12689

.11140 .11142

.88439 .88481


+ 

.03889 .03885

-.20126 -.20248

.28900 .28908

.90431 .90470


.20804 .20781

-.38187 -.38291

.38092 .38117

.91499 .91529


-.002’/9 -.00275

-.02281 -.02283

,01766 .01764

.59132 .59274


, 
.00037 .00010

.34698 .34455

.02407 .02423

.73569 .73549


-.01787 -.01824

.37403 .37154

.01639 .01654

.78113 .78183


-.02555 -.02555 -.00004 -.016

.05227 .05228 -.00032 -.056

.02998 .02998 -.00001 -.011

.55028 .55026 -.00007 -.006


-.02734 -.02734 -.00010 -.038 
-.12688 -.12688 -.00068 -.127 
.11142 .11142 .00002 .016 
.88479 .88480 .00041 .103 

.03884 .03884 -.00005 -.007 
-.20247 -.20248 -.00122 -.075 
.28908 .28908 .00008 .026 
.90468 .90469 .00038 .092 

.20779 .20780 -.00024 -.028 
-.38293 -.38292 -.00105 -.068 
.38119 .38118 .00026 .075 
.91529 .91529 .00030 .069 

-.00276 -.00276 .00003 .037

-.02284 -.00284 -.00003 -.011

.01763 .01764 -.00002 -.037

.59282 .59278 .00146 .065


.00024 .00024 .00001 .011 
-.03650 -.03650 -.00009 -.042 
.02311 .02311 -.00002 -.035 
.77312 .77312 .00005 .015 

.00009 .00010 -.00027 -.084 

.34455 .34455 -.00243 -.232 

.02422 .02422 .00015 .058 

.73544 .73546 -.00023 -.019 

-.01824 -.01824 -.00037

.37152 .37153 -.00250

.01653 .01654 .00015

.78180 .78182 .00069


column 1


column 2 

column 3 

Column 4 

column 5 

cokIml 6 
column 7 
Cohlml 8 

Dependentvariable 1. Biacromialdiameter

2. Right arm girth


Chest girth

:: Waist girth

5. Right arm skinfold

6. Infrascarxtlar
skinfold


Sittingheight (normal)

:: Sittingheight (erect)


Independentvariables as identified. Note that the last entry in each set is the multiple corre­

lation coefficient.


These are the regressioncoefficients and the multiple correlationcoefficient as estimatedfrom

the entire sample,includingadjustmentsfor nonresponseand postsgratification.


The estimate ~ is obtained for each gember of a set of 28 balancedhalf samples. These esti~tes

are denotedby b,, i- 1,2,...,28,and b is their average.


If b, is the estimatefrom a half sample,then b;is the correspondingestimatemade from the comple­

mentary half sample. Etis the averageOf these 28 complementaryesti~tes.


Average of columns4 and 5.


COhnnn 6-column3.

The difference c~’-~) expressedas a fraction of the estimatedstandarderror of ~. ~(j)is cOm­


puted as (1/4)lfl(bl- b;)2/28.


7%&clyl values of the estimateof varianceused in the come tatiQnsare given in COIUmn 8 Of

. In the text discussion,these estimatesare denotedby ?csHs[b*)
.
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Table 3. Estimatedsamplingvariability of mean body characteristics for population of U.S. adult males

based on Health ExaminationSurvey data, and estimatedintraclass correlationcoefficientsamong pseudo-

replicatesamples


Intraclasscorrelations

Variable $RA@) 05H@) ;BH5m ;5H5(7) (7)/(2) 

; P 

(1) (2) (3) (4) (6) (8) (9) (lo) (11) 

1 .00143 .00551 .00551 .00564 .00564 .00556 3.888 
2----------- .00342 .01034 .01033 .01086 .01085 .01057 3.,090 

At ;*

----.------ .02265 .03740 .03740 .03943 .03943 .03833 1.692 
:----------- .04148 .04623 .04622 .05007 .05006 .04802 1.158 
5----------- .00019 .00096 .00096 .00100 .00100 .00098 5.158 
6----------- .00019 .00039 .00039 .00038 .00038 .00038 2.000 

.00449 .01591 .01590 .01599 .01598 .01592 3.546 
L---------- .00444 .01480 .01479 .01528 .01527 .01501 3.380 

-9---------- .00282 ,01012 .01011 .01083 .01082 .01045 3.706 
.00241 .00509 ,00509 .00503 .00503 .00505 2.096 

:L---------- .00096 .00556 .00556 .00546 .00546 .00550 5.729 
12----------- .00281 .00713 .00713 .00727 .00727 .00718 2.555 
13----------- .00310 .01061 .01061 .01111 .01111 .01084 3.496 

.00243 .01126 .01030 .01075 4.424 
K---------- .00707 .01109 .01109 .01156 .01156 .01129 1.596 
16----------- .00292 .01187 .01187 .01184 .01184 .01184 4.054 

column 1 Variable 1. Biacromia1 diameter Knee height
2. Right arm girth J: Poplitealheight

3. Chest girth Thigh clearanceheight

$.	 Waist girth +:: Buttock-kneelength

. Rizht arm skinfold 13. Buttock-popliteallength


6. In&ascaDular skinfold 14. Seat breadth

7. Sittingkeight (normal) 15; Elbow-elbowbreadth

8. Sittingheight (erect) 16. Elbow rpst height
. .


column 2 ~~AN(~)
is computedas if the sample had been drawn as a simple random sampleofapproximately3,000

adult males from the total U.S. population. The effectsof clustering,stratification,
and estima­

tion have been ignored.


column 3	 1$~~(~)is the varianceestimatethat is ordinarilycomputed from a setof 28 balancedhalf samples. 
If the individualhalf-sampleestimatesare denotedby rl, i = 1,2, ...,28 then 

= ,;l(r,
flsHs(Z$) – &2/28


(J%,
column 4 ~B~s(F)is similar to ts~~ except that deviationsare taken about the mean of the ri’s,namely F.


=
;BH~(r)~1 (ri- 7)2/28


column 5	 #~Hs(& correspondsto #sHs(fqexcept that it is computed from the complementaryhalf-eample esti­
mates. Denoting these by r:, i = 1, 2, . . ., 28 

-
fi&& = ,~l(r~i$)2/28


COh.nml6


=
;B~~(r’),~l(r~ - F’)2/28 

column 7 VC6HS,
(P) is an estimateof “variancebased on the comparison of a half-sample estimater,with its

complementary estimater~.This estimateis not availablein the ordinaryapplicationof balanced

half-samplereplicationfor varianceestimation,


#c5H~(P)= (1%),~l(rl -r/)2/28 

Column 8	 The ratio of column 7tocoluum 2 estimatesthe effect on samplingvariabilityof sample design and

estimationin comparisonwith simple random sampling.


column 9 # is an estimateof the int~aclasscorrelationamong the rl’. $. It was computedas 
2 flc5H5(7*)- )fis@)(28/27


;=

2~sH&*)


Column 10 $’isan estimateof the int~aclasscorrelationamong the r~’s. It was computedas 
2Vc~Hs@)-(28/27)&(F)

# = 
2Vcmls(~’j


Column 11 j“is the average of$ and j’,
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Table 4. Estimated sampling variability of regression coefficients and the multiple correlation coefficient for popu­

lation of Us. adult males basedOn Health Examination Surveydata,l and eati~ted intraclass cOrrelatiOn coefficients

among pseudoreplicate samples


Intraclass correlation 
Dependenl 

(5) $s 
SHS(~) ;EHS(Z’) icBH~(r) :8)/(3~ * ;, )* 

(1) (2) (4) (5) (6) (7) (8) (9) (:0) (11) (12)” 

Age-------- .43432 ,59S23 .59807 .66892 .66876 .63165 1.454 .5091 .4510 .4800 

Height----- .26396T .32710T .32608t .33045t .32936T .32603T 1.235 .4814 .4762 .4788 

Independent 
I var iabh variable OSHJA tisH~ 

1 
Weight----- ,15524 ,08954 .08954 .08896 .08895 .08854 .570 .4756 .4791 .4774 

Multiple R- .15748TT .16116TT .16115tt .15374~t .15374tt .15669TT .995 .4667 .4913 .4790 

Age-------- .32395 .65564 .65483 .63545 .63445 .64223 1.982 .4713 .4878 .4796 

Height----- .19689T .31062+ .30586t .28883t .28421t .29365+ 1.491 .4599 .4982 .4790 
2 

Weight----- .11579 .17278 .L7274 .15962 .15958 .16537 1.428 .4584 .4997 .4790 

Multiple R- .01538TT .o1514tT .01496tt .01695tT .01679TT .o1575tt 1.024 .5075 .4473 .4774 

Age-------- .17959+ .39902T .39900
t 

.35124
t 

.35122
t 

.373277 2.078 .4458 .5121 .4790 

Height----- .109157T .28912~T .28763’fT .24561TT .24415‘T .26411tt 2.420 .4353 .5207 .4780 
3 

Weight----- .64194 .93129 .93065 .94957 .94893 .93292 1.453 .4828 .4726 .4777 

Multiple R- ,01076+t .01762Tt .o1747tt .01702tt .o1688+t .o1710tt 1.589 .4703 .4882 .4792 

Age-------- .29386T .71384t .71331’ .73237+ .73174‘ .72068T 2.452 .4868 .4735 .4802 

Height .17860TT 25191+T .25083TT ,23508Tt .23396‘T ,24096tt 1.349 .4603 .4966 .4784 
4 

Weight ,10504+ 11596+ .l1534t .129387 .12865t ,12097+ 1.152 .5056 .4486 .4771 

Multiple R- .00859tt 01870tT .o1861tt .o1994tt ,01985‘t ,o1914tt 2.228 .4959 .4623 .4791 

Age-------- .05323 ,09286 .09270 .08917 .08908 ,09038 1.698 .4682 .4890 .4786 

Height----- .03235+ ,05407’f .05407f .05597t .05596f ,05461+ 1.688 .4866 .4687 .4;76 
5 

Weight----- .01903 ,04491 .04487 .04726 .04717 ,04576 2.405 .4916 .4655 .4786 

Multiple R- .13705tt ,52915~t .52713tt .49128tt .48903T’f .503657r 3.675 .4573 .4966 .4770 

Age-------- .03276 ,04977 .04973 .05018 .05017 ,04982 1.521 .4824 .4779 .4802 

Height----- .o1991t ,04614t .046067 .04438t .04430t .04503t 2.262 .4696 .4899 .4798 
6 

Weight----- .01171 ,03260 .03256 .03196 .03192 .03216 2.746 .4751 .4854 .4802 

Multiple R- .05246Tt ,01384TT .01384TT .01416tT .01416tt .o1390tt 2.650 .4837 .4718 .4778 

Age-------- .08967T ,l1505t .11432+ .10333 
t 

.01255T .10774+ 1.202 .4498 .5065 .4782 

Height----- .05450tl ,11689tt ,11099TT .11577~t .10987t+ .lo991tt 2.017 .4764 .4817 .4790 
7 

Weight----- .32052 ,73399 .73143 .71576 .71351 .71920 2.244 .4727 .4856 .4792 

Multiple R- .06320‘1 ,12980TT .12976tT .139337t .13927+t .133757t 2.116 .4970 .4601 .4786 

Age-------- .07538t .13850t .13713t .13500+ .13486t .13500
t 

1.791 .4733 .4820 .4776 

Height----- .45812t .82611t .76411T ,80067T ,73767T .74612t 1.629 .4690 .4874 .4782 
8 

Weight----- .26943 .48075 .47850 .47475 .47279 .47351 1.757 .4760 .4823 .4792 

Multiple R- .04924T1 .07338t+ .07289tT .07896Tt .07851t7 ,07524TT 1.528 .4977 .4590 .4784 

See footnotes on next page.
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‘In columns 3-8, the absence of a dagger meana that the entry ia to be multiplied by 10-s,the presence of a single

dagger signifies multiplication by 10-4,and the presence of a double dagger aignifiea multiplication by 10-3.


Column 1 Dependent variable 1. Biacromial diameter

2. Right arm girth


Cheat girth

?: Waist girth

5. Right arm skinfold

6. Infrascapular akinfold


Sitting height (normal)

:: Sitting height (erect)


Column 2	 Independent variablea as identified. Note that the laat entry in each set is the multiple c~rr~lation 

coefficient. 

Column 3	 ~~(j) ia computed as if the sample had been drawn aa a simple random sample of approximately 3,000 adult

malea from the total U.S. population. The effects of clustering, stratification, and estimation have been

ignored.


Column 4	 ~BH5(~)ia the variance estimate that ia ordinarily computed from a aet of 28 balanced half ssmples. If the 
individual half-sample estimates are denoted by b,, i= 1,2,.. .,28 then 

i&(ii)= ,;l~ - ;)2/28


Colunm 5 $BH5(G) is similar to OBH~ (fi),exceptthat deviationa are taken about the mean of the hi’s, namely ~. 

#BH5(b) +(4 - ~)2/28 

Column 6 $~HS(fi)corresponda toI?BH~(~),
except that it LS computed from the complementary half-sample estimatea. 
Denoting these by b;, i=l,2, . . .,2g 

$;H@= #l(b; - ;)2/28 

column 7


Column 8	 Vce@)ia an estimate of variance basedon the comparison of a half-sample estimateh with its complementary 
eat‘!mate b~. This estimate ia not available in the ordinary application of balauced half-sample replication 
for variance estimation. 

$cBH~(&)= (~4),~l(bl -~;)2/28 

Column 9	 The ratio of column 8 to column 3 eatimatea the effect on sampling variability of sample design and eati­

awtion in comparison with simple random sampling.


Column 10 $ia an estim]te of the intraclass correlation among the bi’s. It waa computed as 

2; _(&)-- (28/27)
;&~(h

)= .


2 vcBH~(E*)


Column 11 j! is an estimate of the intraclaaAacorrelation among the b~ta. It was computed aa


p= 2 ‘CBHS(6*)-(28/27)
;BH@) 

2 t&H~(i%


Column 12 ~“ia the average of j and ;B,
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VITAL AND HEALTH STATISTICS PUBLICATION SERIES 

Originally fiblic Health Sewice tiblication No. 1000 

Sevies 1. Programs and collection procedures. — Reports which describe the general programs of the National 
Center for Health Statistics and its offices and divisions, data collection methods used, definitions, 
and other material necessary for under standing the data. 

Series 2.	 Data evaluation and methods research. — Studies of new statistical methodology including: experi­
mental tests of new survey methods, studies of vital statistics collection methods, new analytical 
techniques, objective evaluations of reliability of collected data, contributions to statistical theory. 

Series 3. Analytical stvdies. -Rep0rts presenting analytical or interpretive studies based on vital and health 
statistics, carrying the analysis further than the expository types of reports in the other series. 

Swies 4. Documents and committee veports. — Final reports of major committees concerned with vital and 
health statistics, and documents such as recommended model vital registration laws and revised 
birth and death certificates. 

Sevies 10.	 Data from the Health Interview Su?wev. —Statistics on illness, accidental injuries, disability, use 
of hospital, medical, dental, and other services, and other health-related topics, based on data 
collected in a continuing national household interview survey. 

Series 11. Data jvom the Health Examination Survey. —Data from direct examination, testing, and measure­
ment of national samples of the civilian, noninstitutional population provide the basis for two types 
of reports: (1) estimates of the medically defined prevalence of specific diseases in the United 
States and the distributions of the population with respect to physical, physiological, and psycho-
logical characteristics; and (2) analysis of relationships among the various measurements without 
reference to an explicit finite universe of persons. 

Series 12.	 Data from the Ins titutional Population Surveys. — Statistics relating to the health characteristics of 
persons in institutions, and their medical, nursing, and personal care received, based on national 
samples of establishments providing these services and samples of the residents or patients. 

Series 13.	 Data from the Hospital Discharge Survey. —Statistics relating to discharged patients in short-stay 
hospitals, based on a sample of patient records in a national sample of hospitals. 

Series 14.	 Data on health resources: manpower and facilities. —Statistics on the numbers, geographic distri­
bution, and characteristics of health resources including physicians, dentists, nurses, other health 
occupations, hospitals, nursing homes, and outpatient facilities. 

Sevies 20.	 Data on mortality. — Various statistics on mortality other than as included in regular annual or 
monthly reports —special analyses by cause of death, age, and other demographic variables, also 
geographic and time series analyses. 

Swies 21. Data on natality, marriage, and divorce. —Various statistics on natality, marriage, and divorce 

other than as included in regular annual or monthly reports+special analyses by demographic 
variables, also geographic and time series analyses, studies of fertility. 

Series 22. Data from the National Natality and Mortality Surveys. — Statistics on characteristics of births 
and deaths not available from the vital records, based on sample surveys stemming from these 
records, including such topics as mortality by socioeconomic class, hospital experience in the 
last year of life, medical care during pregnancy, health insurance coverage, etc. 

For a list of titles of reports published in these series, write to: Office of Information 
Nat ional Center for Health Statistics 
Public Health Service, HSMHA 
Rockville, Md. 20852 
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