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Abstract 
 
 A diagnostic analysis of climate model data examined precipitation, surface air 
temperature, and related atmospheric features for Illinois and the central US.  Data were obtained 
for 21 global general circulation models (GCMs) participating in the Atmospheric Model 
Intercomparison Project (AMIP) and 9 models participating in the Coupled-Model 
Intercomparison Project (CMIP).  Comparisons between models and observations included 
annual and seasonal means of precipitation, surface air temperature, southerly flow at 850 hPa, 
westerly flow at 200 hPa, specific humidity at 850 hPa, and total precipitable water.  Model 
values of annual mean precipitation range from 1.5 to 3.4 mm/day (548 to 1240 mm/year, 21.5 to 
48.9 inches/year) for AMIP models and from 2.0 to 3.2 mm/day (730 to 1168 mm/year, 21.5 to 
46.0 inches/year) for CMIP models, compared to an observed value of 2.7 mm/day (986 
mm/year, 38.8 inches/year).  Model values of the mean annual temperature range from 8.9 to 
14.2°C (48.0 to 57.5°F) for AMIP models and from 9.1 to 12.3°C (48.3 to 54.1°F) for CMIP 
models, compared to an observed value of 10.8°C (51.4°F).  Nearly all models reproduce the 
timing of the extremes in the seasonal cycles of these variables, although amplitudes of the 
seasonal cycles vary considerably.  There are no specific systematic biases that characterize all 
models with one prominent exception:  all AMIP and all but one CMIP models are drier than 
observed in the fall.  Composite maps indicated that both AMIP and CMIP models produce 
simulations of the 850 hPa and 200 hPa flow patterns that contain the essential features of the 
observed flow, although there are subtle differences that may be important to the simulation of 
Illinois climate conditions.  Although a number of the models reproduce many observed features, 
no single model is clearly superior to all others.  A few models exhibit glaring biases that reduce 
confidence in their use.  Precipitation biases appear to be related in a systematic manner to biases 
in circulation patterns. In particular, biases in 850 hPa southerly flow over the Gulf of Mexico 
and southern Gulf coast states are correlated to the biases in the central US precipitation.  The 
results do not clearly indicate whether the AMIP or CMIP model simulations are superior in 
simulating the present-day climate. 

The CMIP doubled-CO2 (inclusion of other greenhouse gases and aerosols varied among 
models) transient runs show warming for all models and seasons, ranging from 2-7°C in summer 
to 6-9°C in winter with respect to their control simulations.  These changes are larger than the 
natural variations that are observed in the 20th Century and the model variations in the control 
simulations.  Precipitation changes with respect to the control simulations are mostly upward, but 
the magnitudes of changes are mostly less than the natural variations that are observed in the 20th 
Century and less than the model variations in the control simulations.  Model simulations of time 
series of 20th Century climate conditions were not available.  These simulations did not include 
all forcings and thus are not appropriate for projecting the magnitude of future changes. 

A comparison of an NCAR PCM (a coupled GCM) simulation with a mesoscale regional 
climate model (RCM) simulation driven by the PCM indicates that the higher resolution and 
more detailed physics in the RCM produces a more credible simulation of the central US climate, 
especially precipitation. The RCM downscaling provides a credible tool to improve the GCM 
climate simulations and projections, and hopefully reduce the uncertainties among GCMs, for 
local-regional climate change and impact assessments. 
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1.  Introduction 
 
 The mission of the Illinois State Water Surveys (ISWS) is to evaluate the availability, 
quality, and use of the water resources of the State, and to make resulting data and information 
available to the public, decision makers, planners, and managers.  Illinois receives almost 40 
inches of precipitation per year and is well endowed with water resources. About 20 billion 
gallons of water are used each day for domestic, municipal, commercial, manufacturing, 
industrial, mining, livestock, irrigation, power generation, recreation, navigation, and waste 
dilution purposes.  Large quantities of water are also needed to sustain healthy ecosystems, 
including habitat, fish and wildlife.  The sources of water in Illinois are Lake Michigan, rivers, 
streams, lakes, reservoirs, shallow aquifers, and deep aquifers.  All these sources are dependent 
on precipitation, and variations or changes in precipitation can affect the supply and demand for 
public and private water supplies.  Temperature also affects supply and demand through its 
impact on evaporation rates.  Data and information on precipitation amount, evaporation rates, 
recharge rates, and other variables are needed by water resource managers to determine available 
quantities of water and to design reservoirs, well-fields, and water distribution systems. This 
information is also needed to prevent over-use and depletion of the precious water resources of 
the state.  A major issue confronting the future of Illinois water supplies is climate change due to 
changes in atmospheric composition and land use.  Reliable estimates of future precipitation and 
evaporation rates with uncertainty bounds are needed for management of the state’s water 
supplies. 

General Circulation Models (GCMs) are sophisticated computer models of the earth’s 
climate system.  They are the principal tools used by scientists to study the potential effects of 
increasing greenhouse gas concentrations and changes in aerosol concentrations and land use on 
the climate.  The Intergovernmental Panel on Climate Change (IPCC), a United Nations body, 
has recently released its Third Assessment Report (TAR, IPCC 2001), a comprehensive analysis 
of all aspects of the climate change issue. The IPCC conclusions rely in large part on GCM 
projections of significant climate change during the 21st Century.  However, there remains 
considerable uncertainty and lack of consistency on a global scale about the rate of warming and 
changes in other aspects of the climate, such as precipitation.  Furthermore, the TAR recognizes 
that uncertainties and lack of consistency on a regional scale are greater than those on a global 
scale.  Since most impacts are realized on the local and regional scale, these uncertainties are 
critical for assessing the impacts of future climate change and evaluating management strategies 
and policy options. 
 GCM simulations of 21st Century performed during the 1990s had widely varying 
projections of Illinois precipitation in the 21st Century.  Since precipitation is the primary source 
of surface and groundwater resources, it is critical to understand the reasons for the wide 
variations and perform research to narrow the uncertainties.  The principal objective of this 
project is to contribute to assessment and understanding of uncertainties in GCM projections of 
21st Century precipitation and temperature in Illinois and the central US by documenting and 
analyzing differences among models in controlled experiments.  Thus, this study focuses on 
uncertainties arising from model-to-model differences in how the current climate system is 
represented, but not uncertainties arising from external factors, such as future emissions 
scenarios, land use changes, or aerosol concentrations.  Also, the experiments do not explore the 
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full range of possible model-to-model differences that might affect future projections, but are 
targeted to some basic model aspects. 
 
2.  Background 
 
 Precipitation occurs when atmospheric water vapor rises and is cooled to its saturation 
point.  Thus, precipitation requires a source of water vapor and a mechanism to lift the water 
vapor for condensation.   
 Evaporation of water from oceans is the primary source of water vapor.  For Illinois, the 
most important source is the moisture transport from the Gulf of Mexico via southerly wind 
flows.  Although water vapor can be transported by westerly winds from the Pacific Ocean into 
Illinois, this is minor because most of that water vapor is removed when the winds rise over the 
several mountain ranges to the west.  An additional source is evaporation of soil moisture from 
local and regional (accompanying advection) land surfaces; however, this is a secondary source 
in the sense that the soil moisture resulted from precipitated water vapor originating in the 
oceans. 
 In Illinois, the primary mechanism for lifting condensation of water vapor is the 
atmospheric imbalances occurring in the extratropical cyclone (EC), more familiar as the low 
pressure system on weather maps.  In these low pressure systems, there is general rising motion, 
often concentrated along the warm and cold fronts that are part of these systems, that leads to the 
condensation and precipitation of water vapor.  ECs are a consequence of the differences in 
temperature between the equatorial and polar regions.  The resulting differences in air density 
create forces that tend to equalize these differences by moving warm air to the poles and cold air 
toward the equator.  The EC is the manifestation of this equator-pole exchange of air.  The EC 
typically develops in the vicinity of the mid-latitude westerly upper-level jet stream and is 
manifested in the jet stream by a wave pattern. It is often accompanied with the Great Plains 
southerly low-level jet, especially in summer. 
 Our diagnoses focused on these dominant processes to assess and understand the 
performance of GCMs, including their climate biases as compared with observations, future 
climate projections in response to greenhouse gas increases and inter-model differences.  
McAvaney et al. (2001) have provided a multi-faceted description of the strengths and 
weaknesses of models used for climate change assessments.  This study focuses on a particular 
geographical region and is more specific and detailed in its analysis for that region.  
 
3.  Data 
 
 Different GCMs have been developed by a number of research groups around the world.  
For the purposes of this project, it was necessary to obtain detailed data from a large number of 
models.  Fortunately, two recent projects have been undertaken that provided the needed data.  
These are described below. 
 The Atmospheric Model Intercomparison Project (AMIP, Gates et al. 1998) was 
undertaken to provide a framework for comparisons of atmospheric GCMs (AGCMs).  AGCMs 
do not simulate ocean circulations; instead, the ocean surface conditions, which are needed by 
the atmospheric model to determine transfers of heat, moisture, and momentum, are specified 
from data or an idealized situation.  In general, it can be difficult to compare simulations from 
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different models.  For example, when examining 21st Century simulations, different projections 
may be due to differences in model formulations or different assumptions about increases in 
greenhouse gas concentrations and other forcings (it should be noted that 21st Century 
simulations require coupling with an ocean model; AMIP only examines the atmospheric 
component).  The underlying principal of AMIP is that each participating modeling group agrees 
to undertake the identical experiments.  Thus, differences in simulations will be due solely to 
differences in model formulations.  One of the experiments was an historical simulation of the 
period 1979-1995.  The sea surface temperatures (SSTs) were specified as monthly mean 
variations based on actual observations.  In this experiment, all AGCMs use the same “perfect” 
ocean surface conditions to determine the fluxes of heat, moisture, and momentum needed to 
drive the atmosphere.  (“Perfect” here refers to the use of actual data, as compared to the use of 
ocean model output which usually contain some biases.)  Each model also used the same values 
of atmospheric CO2 concentration (345 parts per million) and solar constant (1365 W m-2).  
Specification of the land surface and inclusion of the radiative effects of other greenhouse gases 
and aerosols was left up to each modeling group and thus varied among models.  Data from this 
experiment include 21 AGCMs, all of which were used for this diagnostic analysis. 
 The Coupled Model Intercomparison Project (CMIP, Meehl et al. 2000) is similar to 
AMIP except that the models include both an atmospheric component and an ocean component 
that are fully coupled.  Coupled models (CGCMs) are the state-of-the-art for climate change 
studies and perhaps more relevant for assessing differences in future projections.  However, the 
results can be more difficult to interpret.  Differences between models can result from 
differences in the atmospheric models, the ocean models, or both.  One of the experiments 
consisted of a control run of at least 80 years duration in which greenhouse gas concentrations 
were fixed followed by a transient run of at least 80 years duration in which CO2-equivalent  
concentration increases at the rate of 1%/year.  A variety of methods are used to determine the 
initial state of the atmosphere and ocean at the beginning of the control run; these are briefly 
described at  
http://www-pcmdi.llnl.gov/modeldoc/cmip/table2.html.  In both runs, the solar constant and land 
use did not change and the inclusion of aerosol effects other greenhouse gases varied among 
models.  Thus, these simulations are not appropriate for comparing with historical variations or 
for projecting the magnitude of future climate changes.  Rather, they are meant for use in 
evaluating models’ ability to simulate the present climate and for comparing models’ sensitivities 
to certain changes in forcing.  In the transient run, CO2-equivalent concentrations reach a 
doubling compared to initial concentrations around year 70.  Data from this experiment include 9 
CGCMs, all of which were used for this diagnostic analysis.  Several of the models participating 
in both AMIP and CMIP use the same or a very similar atmospheric component. 
 Table 1 lists the AMIP climate models used in this study along with certain model 
characteristics.  The spatial resolution of the models varies considerably.  For example, the 
horizontal grid spacing of the Japan Meteorological Agency (JMA) GCM is 1.875°  (or grid 
boxes of about 130 miles in latitude by 100 miles in longitude) compared to 5.6° (or grid boxes 
of about 400 miles in latitude by 300 miles in longitude) for the Center for Climate System 
Research (CCSR) GCM.  The number of vertical levels varies from 7 to 30.  One might expect 
that models with smaller grid boxes would perform better because they are able to simulate 
smaller scale features of climate.  However, other studies do not show a consistent relationship 
between resolution and model performance.  Physics parameterizations can play a more critical 

http://www-pcmdi.llnl.gov/modeldoc/cmip/table2.html
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role in model performance.  The table shows that there are differences among the models in 
physics parameterizations for convection, cloud formation, precipitation, the planetary boundary 
layer, the land surface, and the soil.  The models have been shown to be very sensitive to 
differences in these parameterizations. 
 Table 2 lists the CMIP climate models used in this study along with certain model 
characteristics.  Since these models contain an ocean component and ocean surface conditions 
are computed by the model rather than specified, the SSTs can differ among models and from 
observations.  In fact, most of the early generation CGCMs tended to drift in temperature away 
from observations.  This presumably resulted from errors in the exchange (flux) of energy 
between the atmosphere and ocean.  To prevent such errors from becoming too large, modelers 
introduced a correction factor (called a “flux adjustment”) to keep temperatures close to 
observed.  More recent versions of these models have improved to the extent that flux 
adjustments are no longer considered necessary.  The first line in the table indicates which 
models have eliminated this adjustment. 
 There are some notable differences between the CMIP and AMIP experiments.  In the 
AMIP experiment, the CO2-equivalent concentration was fixed at 345 ppm while in the CMIP 
control simulation it varies from 290 to 355 ppm.  Likewise, the solar constant was fixed in 
AMIP at 1365 W m-2 while in CMIP it varies from 1365 to 1370 W m-2.   
 Two major sources of observational data were used.  For comparison of wind, humidity 
and pressure patterns, the reanalysis data set of Kanamitsu et al. (2002) was used.  For 
comparison of surface air temperature and precipitation, data from the National Weather 
Service’s cooperative observer network, as archived in the TD-3200 data set of the National 
Climatic Data Center, was used. 
  
 
4.  Results 
 
 The impacts of climate on society occur primarily as the result of the characteristics of 
the surface climate.  Thus, one focus of the analysis was on a comparison of the model’s ability 
to reproduce major features of the surface climate, specifically precipitation and temperature.  
However, we were also interested in understanding the reasons for GCMs’ performance.  Thus, a 
second focus of the analysis was on characteristics of the atmospheric circulation on a 
continental scale to understand possible causes for any model differences. 
 For both AMIP and CMIP, various climate elements were available as monthly means at 
each grid point with varying grid spacings (see Tables 1 and 2).  The following climate elements 
were chosen for diagnostic analysis: 

 precipitation 
 surface air temperature 
 wind and pressure level height at 850 hPa (about 5000 ft above sea level) 
 wind and pressure level height at 200 hPa (about 35,000 ft above sea level) 

The analysis at 850 hPa was chosen because much of the moisture transport into Illinois from the 
Gulf of Mexico occurs at and below this level.  The analysis at 200 hPa was chosen because this 
is near the usual high-level jet stream and jet stream patterns will be reflective of EC activity. 
 Analyses were done for different regions.  One region was the state of Illinois; only grid 
boxes located within the state boundaries were used.  The second region was larger, including 
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Illinois but also parts of several surrounding states (southern Wisconsin, southwestern Michigan, 
most of Indiana, eastern Iowa, eastern Missouri, western Kentucky).  Most of the figures present 
results for the larger (“central US”) region.  The reason is that the state of Illinois typically 
encompasses very fewer grid boxes.  The larger region obviously contains more boxes, more 
likely to be resolved by the coarse resolution GCMs, and the statistical reliability of the results is 
therefore better.  Also, the main climatic features of Illinois are common to the larger central US 
region 
 
a. Precipitation 
(1) AMIP results 
 Figure 1 compares AMIP annual precipitation values for the central US region with 
values for Illinois for the 1979-1995 simulation period.  In most cases, there is very little 
difference between values for the two regions.  Seasonal comparisons (not shown) exhibit similar 
close agreement.  This provides confidence that our assessment for the central US region will be 
applicable to Illinois. Of course, there are some small-scale climatic features specific to Illinois 
that are not captured in a larger region average.  However, the resolution of GCMs is too coarse 
to capture these.  Figure 2 shows annual precipitation values for AMIP models for the central US 
ranked in order of increasing precipitation and compared with observations for the period 1979-
1995.  The same order is used in subsequent model comparisons.  Model values of annual mean 
precipitation range from 1.5 to 3.4 mm/day (548 to 1240 mm/year, 21.5 to 48.9 inches/year), 
compared to an observed value of 2.7 mm/day (986 mm/year, 38.8 inches/year).  About half of 
the models are within 10% of observed.  Figure 3 displays the seasonal precipitation values for 
the AMIP models.  Model values of winter precipitation range from 1.0 to 2.9 mm/day (91 to 
260 mm/season, 3.6 to 10.2 inches/season), compared to an observed value of 1.6 mm/day (147 
mm/season, 5.8 inches/season.  Model values of spring precipitation range from 2.3 to 5.0 
mm/day (214 to 458 mm/season, 8.4 to 18.0 inches/season), compared to an observed value of 
3.0 mm/day (272 mm/season, 10.7 inches/season.  Model values of summer precipitation range 
from 1.1 to 4.5 mm/day (99 to 418 mm/season, 3.9 to 16.4 inches/season), compared to an 
observed value of 3.4 mm/day (311 mm/season, 12.2 inches/season.  Model values of fall 
precipitation range from 1.0 to 2.7 mm/day (94 to 248 mm/season, 3.7 to 9.8 inches/season), 
compared to an observed value of 2.8 mm/day (254 mm/season, 10.0 inches/season.  The 
behavior is not always consistent across seasons.  For example, the NCAR model had the best 
results for annual precipitation, but the model produces too much precipitation in summer and 
not enough in the fall.  This is an example where a good simulation of annual precipitation may 
be for the wrong reasons.  All models are too dry in the fall and most are too wet in the spring, 
although in several models the differences are not too large.  In addition, almost all models 
produce the correct shape of the seasonal variations with high values in the warm season and low 
values in the cold season. 
 Figure 4 shows the pattern of precipitation for the winter season for observations, the 
GLA (driest) model, the ECMWF (wettest) model, and the NCAR model (closest to observations 
for annual values).  The observed pattern exhibits wetness along the west coast and in the 
southeast US.  Over the central US, there is a rapid decrease in values from southeast to 
northwest.  All three models exhibit these general characteristics.  However, both the GLA and 
NCAR models are too dry in the southeast.  The ECMWF is most similar to observations in the 
general spatial pattern over the eastern and central US, although wetter than observed. 
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 Figures 5-7 show similar maps for spring, summer, and fall, respectively.  For spring 
(Fig. 5), the observed pattern is similar to that in winter although precipitation amounts are 
higher in the central US and lower along the west coast.  This increase of precipitation in the 
central US is simulated by all models to some extent.  The pattern of increase in ECMWF 
matches observations very well, although again the absolute magnitudes are high.  The increase 
in the dry GLA is smaller than observed while the increase in NCAR is similar to observed.  For 
summer (Fig. 6), the observed distribution of precipitation is rather uniform in the central US 
with amounts adequate to support rainfed agriculture.  The GLA is much drier, failing to 
reproduce the basic features of the summertime precipitation climate.  Both NCAR and ECMWF 
simulated precipitation is somewhat greater than observed.  Again, the spatial pattern in 
ECMWF is close to observed.  In the NCAR, there is a maximum in the central Great Plains that 
is not observed.  For fall (Fig. 7), the observed pattern is similar to that of spring over the central 
US.  Both the GLA and NCAR are too dry, failing to reproduce the basic pattern.  The ECMWF 
is somewhat wetter, but the observed north to south gradient is not reproduced. 
 A key factor that influences precipitation in the central US is the transport of water vapor 
from the Gulf of Mexico by the wind.  This movement takes place primarily in the lower levels 
of the atmosphere below 10,000 ft.  Figure 8 shows observed average flow patterns at a pressure 
level of 850 hPa, which is located around 5,000 ft above sea level.  In winter, the average flow in 
the central US is from the west and northwest.  Because flow from the Gulf of Mexico does not 
usually penetrate into the central US, the winter season is relatively dry.  Significant winter 
precipitation can occur during transient episodes when flow from the Gulf of Mexico penetrates 
into the central US.  During the spring, summer, and fall, the mean flow is still from the west, but 
it is part of a curved pattern that originates in the Gulf of Mexico, moves across Texas, and 
curves northeastward into the central US.  Thus, moisture is more abundant in these three 
seasons.  This pattern is most pronounced in the summer, the wettest season. 
 A second key factor is the location and orientation of the high-level jet stream, which 
reflects the frequency and intensity of EC activity.  Fig. 9 shows average flow patterns at a 
pressure level of 200 hPa, which is around 39,000 feet above sea level.  In all seasons, the 
average flow is westerly over the central U.S.  The average position of the jet stream, the region 
of highest wind speeds, is to the south of the central US in winter and spring, over the region in 
fall, and to the north in summer.  Highest wind speeds occur in the winter when the north-to-
south temperature gradient is strongest. 
 Analysis of observed precipitation and flow indicated that precipitation episodes were 
highly correlated with southerly flow over the Mississippi River valley at the pressure level of 
850 hPa (Fig. 10).  Correlations of greater than 75% are seen for some areas.  There are slight 
variations by season with a westward shift in the pattern in the summer.  However, high 
correlations are seen in all seasons from central Texas to Louisiana.  At a pressure level of 200 
hPa (high-level jet stream), high correlations are found generally in a belt from California to the 
Great Lakes (Fig. 11).  This reflects the average location of the jet stream during periods when 
extratropical cyclones are causing precipitation over the central U.S.  There are some seasonal 
variations in the strength of the correlations, but the location of the high correlations is about the 
same in all seasons, although correlations in the central US are very low in the fall.  The results 
shown in Figs. 10 and 11 were used to identify 3 regions for analysis of the GCM data (Fig. 12).  
The box covering eastern Texas and Oklahoma corresponds to an area of high correlations 
illustrated on the 850 hPa map (Fig. 10) and reflects the importance of low level moisture 
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transport from the Gulf of Mexico; this area will be referred to as the “LLJ” (low level jet) 
region.  The box covering Iowa and portions of adjacent states corresponds to an area of high 
correlations illustrated on the 200 hPa map (Fig. 11) in 3 of the 4 seasons (except for fall); this 
will be referred to as the “IA” (Iowa) region.  The box covering California and Nevada 
corresponds to a second area of high correlations illustrated on the 200 hPa map (Fig. 11); this 
area will be referred to as the “CA” (California) region. 

We compared the low level southerly flow at 850 hPa (v850) by season for the AMIP 
models with observations (Fig. 13).  In winter, the observed flow is slightly northerly (-0.6 m s-1, 
-1.2 mph).  In spring, the average flow is southerly at 2.0 m s-1 (4.5 mph).  The southerly flow 
increases to about 4.4 m s-1 (9.8 mph) in the summer and then decreases to 1.9 m s-1 (4.5 mph) in 
the fall.  Most models exhibit this same qualitative behavior of northerly flow in the winter and 
southerly flow in the other 3 seasons, reaching a maximum value in the summer.  The wind 
speeds are also similar to observed in many of the models, indicating that the large scale 
circulation features are in basic agreement with observations.  The UIUC model does not exhibit 
a seasonal cycle.  The CCSR model exhibits weak northerly flow in the spring and fall.  Several 
models also exhibit weak (near zero mean southerly wind speed) flow in the fall, which may 
account in part for the general model tendency to underestimate precipitation in that season.  
Model values of winter southerly flow range from –5.1 m s-1 (-11.4 mph) to 0.3 m s-1 (0.6 mph).  
Model values of spring southerly flow range from –0.6 m s-1 (-1.4 mph) to 3.6 m s-1 (8.1 mph).  
Model values of summer southerly flow range from –0.7 m s-1 (-1.6 mph) to 7.3 m s-1 (16.4 
mph).  Model values of fall southerly flow range from –1.2 m s-1 (-2.7 mph) to 3.2 m s-1 (7.2 
mph). 
 In addition to the southerly wind flow, a second factor that is required for precipitation is 
the presence of water vapor.  We analyzed specific humidity (mass of water vapor in a volume 
divided by the total mass of air in the volume) values at the 850 hPa pressure level at the same 
location as the southerly mean flow (Fig. 14; no values were available for GISS).  The observed 
values exhibit a strong seasonal dependence with a minimum value in the winter (0.0029 kg  
H2O /kg air) and a maximum value in the summer (0.010 kg H2O/kg air).  All models exhibit this 
same qualitative behavior.  The UIUC model is inconsistent in lacking the proper seasonal cycle 
for southerly flow at 850 hPa but exhibiting a reasonable seasonal cycle for specific humidity; 
the reasons for this inconsistency are not clear.  The magnitudes of the minimum (winter) values 
are about the same as observations.  The magnitudes of the maximum (summer) values are more 
variable, ranging from about 0.006 kg  H2O /kg air to 0.012 kg  H2O /kg air.  The CCSR and 
COLA are quite dry while the CNRM is very moist.  Interestingly, the values in the fall are 
relatively close to observations, suggesting that the deficiency in precipitation is not completely 
related to the humidity of the air flowing from the Gulf of Mexico.  However, there is a general 
tendency for increasing moisture from left to right in Fig. 15, particularly in spring and summer.  
Thus, the models with higher precipitation have greater amounts of water vapor in the northward 
flow from the Gulf of Mexico.  Model values of winter specific humidity range from 0.0022 to 
0.0037 kg H2O/kg air.  Model values of spring specific humidity range from 0.0037 to 0.0066 kg 
H2O/kg air.  Model values of summer specific humidity range from 0.0066 to 0.0122 kg H2O/kg 
air.  Model values of fall specific humidity range from 0.0043 to 0.0075 kg H2O/kg air. 
 Another way to examine availability of water vapor is through a variable called total 
precipitable water (TPW), which is the total amount of water vapor in a vertical column from the 
surface to the top of the atmosphere.  This is the maximum water vapor that can be condensed by 
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precipitation-producing systems.  A comparison of TPW values for AMIP models is shown in 
Fig. 15 for the central US region.  The seasonal cycle is similar to that of 850 hPa specific 
humidity (Fig. 14).  Observed values range from a winter minimum of 9 kg m-2 to a summer 
maximum of 30 kg m-2.  All models produce the basic seasonal cycle.  In most cases, model 
values are close to observed in winter, spring, and fall.  There is somewhat more model 
variability in summer.  Eight models have values of 5-10 kg m-2 higher than observed while two 
models are about 6 kg m-2 lower than observed.  Again, there is a tendency for increasing values 
of TPW from left to right, although there are exceptions.  Model values of winter TPW range 
from 6 to 12 kg m-2.  Model values of spring TPW range from 13 to 23 kg m-2.  Model values of 
summer TPW range from 24 to 40 kg m-2 while fall TPW range from 14 to 28 kg m-2. 
 Correlations between central US precipitation and the 850 hPa southerly wind component 
in the LLJ region (Fig. 12) were calculated for AMIP models by season (Fig. 16).  Observed 
correlations range from 33% in the spring and 54% in the winter to around 60% in the summer 
and fall.  There is considerable variability in model results.  Many models have similar high 
correlations, particularly in winter, spring, and fall, but in each season there are models with low 
correlations.  There is not always consistency in the behavior.   For example, the correlations in 
SUNYA are close to observed in winter and fall, but they are near zero in spring.  The 
correlations in UKMO are too low in the summer, but reasonably close to observations in the 
winter and fall.  The correlations in NCAR are low in spring and summer.  In summer, all 
models have correlations that are lower than observed.  Model values of winter correlations 
range from 18 to 67%.  Model values of spring correlations range from -14 to 53%.  Model 
values of summer correlations range from -11 to 46%.  Model values of fall correlations range 
from 13 to 65%.   

Correlations for the Iowa region between central US precipitation and the westerly wind 
component at the 200 hPa level are shown in Fig. 17.  Observed correlations are 44% in winter, 
39% in spring , 67% in summer, and 29% in fall.  Most models have correlations lower than 
observed in winter.  The models exhibit the most variation in the spring, with 9 having negative 
correlations, but several having values close to the observed value.  All models but one have a 
positive correlation in the summer, about half of them above 30%.  Interestingly, most models 
have rather large positive correlations in the fall, in contrast to the rather low observed 
correlation.  Model values of winter correlations range from -13 to 60%.  Model values of spring 
correlations range from -30 to 39%.  Model values of summer correlations range from -9 to 58%.  
Model values of fall correlations range from -1 to 56%. 

Correlations for the California region between central US precipitation and the westerly 
wind component at the 200 hPa level are shown in Fig. 18.  Observed correlations are 19% in 
winter, 44% in spring, 49% in summer, and 36% in fall.  Although most models have positive 
correlations, the magnitudes of the correlations exhibit substantial variability.  Model values of 
winter correlations range from -12 to 49%.  Model values of spring correlations range from -20 
to 48%.  Model values of summer correlations range from -23 to 47%.  Model values of fall 
correlations range from -12 to 39%. 
 
(2) CMIP results 
 The annual precipitation results for the control runs of CMIP models are shown in Fig. 
19.  In the case of the AMIP simulations, the SSTs are specified from the period 1979-1995 and 
thus a direct comparison with observations for that same period is appropriate.  However, in the 
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CMIP control runs, the SSTs are calculated by the model and the CO2 concentration is fixed.  
Thus, it is not obvious what historical observational period should be chosen to compare with the 
model simulations.  We have chosen the same 1979-1995 period for convenience, but it should 
be recognized that small differences between a model and observations may not be physically 
significant.  Model values of annual mean precipitation range from 2.0 to 3.2 mm/day (730 to 
1168 mm/year, 21.5 to 46.0 inches/year), compared to an observed value of 2.7 mm/day (986 
mm/year, 38.8 inches/year).  Seven of the 9 models are within 10% of observations.  The CSIR 
is about 25% drier than observed and the HAD3 is about 20% too wet.  The comparison of 
seasonal precipitation (Fig. 20) indicates some inconsistencies across seasons.  Model values of 
winter precipitation range from 1.3 to 2.5 mm/day (117 to 221 mm/season, 4.6 to 8.7 
inches/season), compared to an observed value of 1.6 mm/day (147 mm/season, 5.8 
inches/season.  Model values of spring precipitation range from 3.0 to 3.9 mm/day (273 to 357 
mm/season, 10.8 to 14.1 inches/season), compared to an observed value of 3.0 mm/day (272 
mm/season, 10.7 inches/season.  Model values of summer precipitation range from 2.5 to 4.0 
mm/day (230 to 365 mm/season, 9.1 to 14.4 inches/season), compared to an observed value of 
3.4 mm/day (311 mm/season, 12.2 inches/season.  Model values of fall precipitation range from 
1.4 to 3.0 mm/day (127 to 271 mm/season, 5.0 to 10.7 inches/season), compared to an observed 
value of 2.8 mm/day (254 mm/season, 10.0 inches/season.  Similar to the AMIP results, most 
(but not all) models are drier than observed in fall.  The CSIR model (Australian) is within 15% 
of observed in winter and spring, but more than 20% drier in summer and fall.  Both the ECHA 
(European) and ECHO (European) models are within 10% of observed in winter, spring, and 
summer, but more than 20% drier in the fall.  The GFDL (US) model is within 10% of observed 
in the winter, 20% wetter in the spring, and more than 15% drier in the summer and fall.  The 
PCM (US) is within 10% of observed in the winter and spring, about 15% wetter in the summer, 
and more than 40% drier in the fall.  The CSM (US) model is within 10% of observed in winter, 
wetter in spring and summer, and 30% drier in the fall.  The CCCM (Canadian) model 
precipitation is within 10% of observed in winter and summer, about 20% wetter in spring and 
more than 20% drier in the fall.  The HAD2 (UK) model is about 20% wetter in the winter and 
spring, within 5% of observed in summer, and about 25% drier in the fall.  The HAD3 (UK) is 
about 50% wetter in the winter, 20% wetter in the spring, within 10% of observed in the summer, 
and about 10% wetter in the fall.   
 The results for the low level southerly component of the wind speed in the LLJ region are 
shown in Fig. 21 for CMIP models.  All models produce the correct seasonal cycle with a 
maximum in the summer and a minimum in the winter.  The amplitudes of the seasonal cycle are 
similar to observations for many models.  One notable exception is ECHO whose seasonal 
amplitude of 1.6 m s-1 is much less than the observed value of 4.8 m s-1.  Both CCCM and HAD2 
have somewhat larger amplitudes than observed.  Model values of winter southerly flow range 
from –3.3 m s-1 (-7.4 mph) to 1.5 m s-1 (3.4 mph).  Model values of spring southerly flow range 
from 0.5 m s-1 (1.0 mph) to 3.1 m s-1 (7.0 mph).  Model values of summer southerly flow range 
from 3.2 m s-1 (7.2 mph) to 5.6 m s-1 (12.5 mph).  Model values of fall southerly flow range from 
–0.4 m s-1 (-0.8 mph) to 2.2 m s-1 (4.8 mph). 
 For specific humidity at 850 hPa in the LLJ region (Fig. 22), the CMIP models generally 
simulate the seasonal cycle with a minimum in winter and a maximum in summer.  Although 
magnitudes are generally within 15% of observations, the CCCM and HAD3 are more than 15% 
moister in spring, summer and fall.  Model values of winter specific humidity range from 0.0026 
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to 0.0039 kg H2O/kg air.  Model values of spring specific humidity range from 0.0048 to 0.0054 
kg H2O/kg air.  Model values of summer specific humidity range from 0.0079 to 0.0135 kg 
H2O/kg air.  Model values of fall specific humidity range from 0.0049 to 0.0083 kg H2O/kg air. 

Correlations between central US precipitation and the southerly wind component in the 
LLJ region (Fig. 12) were calculated for CMIP models by season (Fig. 23).  The models are 
within 20% of observed in the winter except for HAD2.  In the spring, three models (ECHO, 
PCM, and HAD2) differ from observations by more than 30%.  In summer, CCCM, HAD2, and 
HAD3 differ from observations by more than 40%.  In fall, the ECHA differs by about 40% and 
HAD2 by about 55%.  Model values of winter correlations range from -6 to 68%.  Model values 
of spring correlations range from -5 to 37%.  Model values of summer correlations range from -5 
to 52%.  Model values of fall correlations range from 6 to 55%. 

Correlations for the Iowa region between Central US precipitation and the westerly wind 
component at the 200 hPa level are shown in Fig. 24 for CMIP models.  In winter, CSM and 
HAD2 differ from the observed correlation by more than 20%.  In spring, ECHO is about 40% 
lower than observed.  In summer, all models have somewhat lower correlations than observed.  
In fall, all correlations are within 20% of observed.  Model values of winter correlations range 
from 17 to 47%.  Model values of spring correlations range from 0 to 53%.  Model values of 
summer correlations range from 16 to 55%.  Model values of fall correlations range from 16 to 
45%.  

Correlations for the California region between central US precipitation and the westerly 
wind component at the 200 hPa level are shown in Fig. 25 for CMIP models.  There is more 
variability in the model results than was found for the LLJ and Iowa regions, perhaps reflecting 
the greater distance from the region of interest.  In winter, four models (ECHO, ECHA, HAD2, 
and HAD3) have correlations at least 20% more than observed.  In spring, the correlations in 
ECHO and PCM are at least 20% less than observed.  The CSM and CCCM have correlations at 
least 30% less than observed in summer.  In fall, the ECHA and PCM correlations are at least 
20% less than observed.  In the fall, the left to right increase in U200 CA correlations 
corresponds in a general way to the left to right increase in precipitation (Fig. 20).  Model values 
of winter correlations range from 15 to 61%.  Model values of spring correlations range from 8 
to 37%.  Model values of summer correlations range from -5 to 47%.  Model values of fall 
correlations range from 9 to 56%. 
 
b. Temperature 
 Figure 26 compares AMIP annual temperature values for the central US with values for 
Illinois averaged for 1979-1995.  There is a very consistent relationship.  In all cases, the 
difference between values for the two regions is less than 1.0°C (1.8°F).  Seasonal results (not 
shown) exhibit similar close correspondence.  This provides confidence that our assessment for 
the central US region will be applicable to Illinois, similar to the results for precipitation (Fig. 1).  
Figure 27 shows annual temperature values for AMIP models for the central US region ranked in 
order of increasing temperature and compared with the observed value for 1979-1995.  The 
difference between model and observations is less than 1°C (1.8°F) for 8 of the models.  There is 
a tendency for the models to be warmer than observations.  The largest difference between model 
and observations is about 3.3°C (6°F).  Model values of annual temperature range from 8.9 to 
14.2°C (48.0 to 57.5°F), compared to an observed value of 10.8°C (51.4°F).  
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 Seasonal temperature values (Fig. 28) are plotted in the same order as Fig. 27 to facilitate 
identification of variations in the order by season.  The ordering (increasing temperature from 
left to right) is roughly the same as the annual ordering for spring, summer, and fall, but not in 
winter; however, the difference among models in winter is not large.  The GLA model is notable 
for a much larger seasonal amplitude with the coldest temperatures in winter among all models 
and rather warm temperatures in summer.  Model values of winter mean temperature range from 
–8.4 to 0.8°C (16.8 to 33.4°F), compared to an observed value of –2.3°C (27.7°F) .  Model 
values of spring mean temperature range from 7.3 to 12.7°C (45.1 to 54.9°F), compared to an 
observed value of 10.7°C (51.2°F) .  Model values of summer mean temperature range from 21.8 
to 30.6°C (71.2 to 87.1°F), compared to an observed value of 22.8°C (73.0°F) .  Model values of 
fall mean temperature range from 10.9 to 16.1°C (51.6 to 60.9°F), compared to an observed 
value of 11.9°C (53.4°F).  In summer, 12 models are more than 2°C (4°F) warmer than 
observations. 
 Figure 29 shows the pattern of surface air temperature for the winter season for 
observations, the GLA (coldest) model, the MRI (warmest) model, and the UKMO model (an 
intermediate model close to observations).  The observed pattern exhibits the expected strong 
north-to-south gradient; coldest temperatures occur in the central US near the Canadian border 
with the warmest temperatures over Florida.  The model maps do not have the observed small 
scale features (such as are observed over the western mountains) which reflects the coarse 
resolution of the model grids.  Over the central US, the general spatial pattern is similar to 
observed for all 3 models.  A closer examination shows that the magnitude of the spatial gradient 
is slightly smaller than observed in the models. 
 Figures 30-32 show similar maps for spring, summer, and fall, respectively.  For spring 
(Fig. 30), the observed pattern shows considerable warming, compared to winter, over the north-
central US so that the north-to-south gradient is smaller than in winter.  Again, the model 
patterns are very similar.  The magnitude of the gradients is similar to observed for GLA and 
UKMO and somewhat larger than observed for MRI.  For summer (Fig. 31), the observed pattern 
shows a further decrease in the magnitude of the north-to-south gradient.  The spatial pattern 
over the central US is similar to observed.  Interestingly, all 3 models show a center of warmth 
over eastern Texas and surrounding areas that is considerably warmer than observed.  The 
extension of this warm area into southern areas of the central US results in a north-to-south 
gradient whose magnitude is somewhat larger than observed.  For fall (Fig. 32), the observed 
pattern exhibits an increase in the magnitude of the gradient compared to summer.  The GLA’s 
gradient over the central US is slightly larger than observed while the gradients in UKMO and 
MRI are similar to observed. 
 The comparison of mean annual temperature in CMIP models, shown in Fig. 33, 
indicates that all models are within 1.5°C (2.8°F) of the 1979-1995 observed mean.  Model 
values range from 9.1 to 12.3°C (48.3 to 54.1°F).  This range is smaller than that for the AMIP 
models, principally because there are no very warm models in the CMIP group.  Somewhat 
larger differences are observed for the seasonal values (Fig. 34), although the amplitude of the 
seasonal cycle is similar to observed for most models.  The HAD3 and CSIR models exhibit a 
somewhat larger amplitude in the seasonal cycle with colder temperatures in the winter and 
warmer temperatures in the summer compared to observations.  The CCCM model exhibits very 
cold temperatures [about 5°C (9°F) less than observed] in the spring, but is within 2.0°C (3.6°F) 
of observations in the other 3 seasons.  Model values of winter mean temperature range from –
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6.4 to –0.4°C (20.5 to 31.2°F), compared to an observed value of –2.3°C (27.7°F) .  Model 
values of spring mean temperature range from 5.5 to 11.7°C (42.0 to 53.1°F), compared to an 
observed value of 10.7°C (51.2°F) .  Model values of summer mean temperature range from 21.3 
to 25.0°C (70.4 to 77.0°F), compared to an observed value of 22.8°C (73.0°F) .  Model values of 
fall mean temperature range from 9.7 to 13.7°C (49.4 to 56.6°F), compared to an observed value 
of 11.9°C (53.4°F). 
 
c. Regional Climate Model Downscaling Capability 
 Differences between GCMs and observations can arise from a number of sources.  GCMs 
may not simulate with enough fidelity the large-scale circulation patterns that are the principal 
determining factor in local climatic features.  However, regional and local influences are also 
important; the coarse spatial resolution and simplified physical parameterizations in GCMs may 
cause these local climatic influences to be inaccurately simulated.  An experiment was conducted 
to explore this issue using a Regional Climate Model (RCM, an updated version of Liang et al. 
2001).  This RCM, under development at the Water Survey, was run at a spatial resolution of 30 
km covering a rectangular domain that includes the entire US, southern Canada, most of Mexico, 
the Gulf of Mexico, the eastern Pacific Ocean, and the western Atlantic Ocean.  An RCM 
requires a GCM or observations to provide the boundary conditions on the 4 sides of the domain. 
 The experiment consisted of two RCM simulations.  In one simulation, the boundary 
conditions were provided by the NCEP-DOE AMIP-II reanalysis (R-2, Kanamitsu et al. 2002), 
which is based on observations.  Because it is driven by actual observations, this simulation 
provides an upper bound on the accuracy of the RCM.  In the second simulation, the boundary 
conditions were provided by one of the coupled GCMs, NCAR’s Parallel Climate Model (PCM).  
Any biases in these boundary conditions may be reflected in the RCM simulation by lesser 
accuracy.  A comparison between the PCM and PCM-driven RCM simulations provides an 
assessment of the additional accuracy provided by the RCM.  Both simulations were run for the 
period 1991-1995. 
 Figure 35 illustrates results for winter precipitation.  The RCM driven by R-2 is able to 
simulate some important features of the US climate.  The accurate simulation of many small-
scale features in the west illustrates that topographic forcing is quite accurate in the RCM.  The 
gradient across the central US and the peak precipitation in the southeast are simulated, although 
the RCM produces too little precipitation in the southeast.  In the PCM, the spatial details in the 
west are not simulated because of the coarse resolution.  Also, precipitation in the southeast is 
considerably less than observed.  The RCM driven by the PCM produces a rather accurate 
depiction of the spatial details in the west.  Also, the RCM precipitation in the southeast is still 
less than observed, but is closer than the PCM to observed. 
 Figure 36-38 show similar results for spring, summer, and fall, respectively.  In spring, 
the RCM driven by R-2 produces a generally accurate simulation including the spatial variations 
in the west and the high values in the southeast.  The PCM has too much precipitation in the 
Great Plains and not enough in the southeast.  The RCM driven by PCM produces a much 
improved simulation of precipitation in these areas.  In summer, the RCM driven by R-2 
accurately captures the maximum of precipitation in the central US.  The PCM simulates the 
correct amount of precipitation in the central US, but the maximum precipitation is far too high 
and displaced well to the west.  The RCM driven by the PCM has a much improved simulation 
with the peak moved back to the east close to the observed position.  However, the RCM does 
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not capture the peak in precipitation over Florida in either simulation.  In fall, the RCM driven 
by R-2 has a maximum over the central US that is similar to observed in location although the 
magnitude of precipitation is smaller than observed.  However, the RCM is too dry along the east 
coast.  The PCM is too dry in the central US, a characteristic of almost all of the GCMs.  The 
RCM driven by PCM is wetter in the central US, an improvement, but still drier than observed. 
 Figure 39 illustrates results for winter temperature.  The RCM driven by R-2 is able to 
simulate many small-scale features in the west, as was the case for precipitation.  The gradient 
across the central US is simulated, although the RCM is slightly warmer in the northern portions 
of this region.  In the PCM, the spatial details in the west are not simulated because of the coarse 
resolution.  Also, the PCM is somewhat cooler than observed.  The RCM driven by the PCM 
produces a rather accurate depiction of the spatial details in the west.  Also, the RCM is 
somewhat warmer and closer to observations. 

Figure 40-42 show similar results for spring, summer, and fall, respectively.  In all three 
season, the results are similar.  The RCM driven by observations reproduces the observed spatial 
features in the west and the spatial gradient in the central U.S., although it is slightly cooler than 
observations in the northern central U.S.  The PCM does not capture the spatial detail in the west 
and is somewhat cooler than observed in the central U.S.  The RCM driven by the PCM 
reproduces the spatial detail in the west.  Also, the RCM is warmer than the PCM and closer to 
observations in the central U.S. 
 Overall, the RCM provides an improved simulation of precipitation and temperature in 
all seasons.  This suggests that regional and local forcing is important and the RCM is able to 
improve on the simulation of these forcing factors. Therefore the RCM provides a credible tool 
for downscaling the GCM climate simulations. This is particularly important for climate 
projection studies. 
 
d. Model Sensitivity to Enhanced Greenhouse Gas Forcing 
 The sensitivity of CMIP models to certain changes in forcing was also analyzed.  Each 
CMIP model performed the following experiment.  Carbon dioxide concentrations were 
increased in the model by 1%/yr and a model simulation of at least 80 years was performed.  
With this rate of increase, there is a doubling of concentrations around year 70 of the simulation.  
We examined the period of years 65-75 and compared precipitation rates for this period with the 
last 30 years of the control (no increase in CO2) simulation.  The results are presented in terms of 
differences between the two periods, rather than displaying the absolute magnitudes of 
precipitation in years 65-75.  This approach to estimating changes due to anthropogenic forcing 
assumes that any model biases in simulating the present climate will also apply to model 
simulations of the future.  However, it is not possible to rigorously test this assumption and it is 
conceivable that model biases may be quite different for a climate system with different forcings 
than the present.  The alternative approach of displaying the absolute magnitudes of model 
simulations of the future and using that information as an estimate of the range of possible future 
outcomes assumes that any model biases in simulating the present climate become insignificant 
when simulating a future scenario.  That assumption may be less defensible than the assumption 
that the biases do not change significantly.   

Figure 43 shows the difference in precipitation rates for the 4 seasons.  The models show 
either little change or increases of at least 0.2 mm/day (0.7 inches/season) in winter and spring.  
In fall, the models show either little change or decreases of more than 0.2 mm/day (0.7 
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inches/season) except for increases of about 0.3 mm/day (1.1 inches/season) for HAD3.  There is 
more variability in summer.  The ECHO, HAD3 and ECHA show increases of at least 0.2 
mm/day (0.7 inches/season).  By contrast, the CCCM and HAD2 show sizeable decreases 0.6 
mm/day (2.1 inches/season).  How do these changes compare to precipitation variations that 
would occur naturally, that is, without enhanced greenhouse warming?  This question was 
investigated by performing a more detailed analysis of the control simulations of the CMIP 
models.  The length of the control simulation varied among models, but was at least 79 years in 
length.  Time series of seasonal precipitation were smoothed with a 11-year running average 
filter.  The maximum, minimum, and mean values were identified and plotted (Fig. 44).  A 
smoothing window of 11 years was chosen to match the length of the analyzed portion of the 
transient simulation plotted in Fig. 21.  In winter, spring, and fall, the maximum and minimum 
values are generally 0.2-0.4 mm/day (0.7-1.4 inches/season) above and below the mean.  In 
summer, the maximum and minimum values are mostly in the range of 0.3-0.8 mm/day (1.1-2.8 
inches/season) above and below the mean.  When comparing these variations to the transient 
changes shown in Fig. 43, in most cases the transient changes are within the envelope of the 
natural variations summarized in Fig. 44.  Although rigorous statistical testing is necessary to 
verify, these results suggest that the transient simulations changes due to the specified 
anthropogenic forcing are in most cases not unambiguously different than natural variations 
observed in the 20th Century or simulated in the control runs. 
 Figure 45 shows the seasonal results of the transient simulation for temperature, 
specifically the difference between the average temperature for years 65-75 and the average 
temperature for the last 30 years of the control run.  As expected, all models show warming in all 
seasons.  The results are rather consistent for winter, the models being in the range of about 6-
9°C (11-17°F) warming.  In spring, there is considerable variation, the models ranging from 3 to 
9°C (5-17°F) warming.  In summer, warming is in the range of 2-7°C (4-13°F).  In fall, warming 
ranges from about 4°C (7°F) to slightly more than 7°C (13°F).  As was done for precipitation, an 
11-yr running average filter was applied to the temperature time series of the control simulations 
to examine the internal variations of the models.  The maximum and minimum values of the 11-
yr running average time series (Fig. 46) indicate variations about the average of 0.4-1.3°C (0.7-
2.1°F).  All of the temperature increases found in the transient simulations exceed the range of 
internal model variations found in the control simulations, suggesting that warming in the models 
is unambiguously due to the models’ anthropogenic forcing. 

A simulation was performed for the period 2046-2050 (for the 1%/year increasing CO2 
experiment) using the PCM to drive the RCM.  Precipitation and temperature differences 
between that period and 1991-1995 were analyzed.  For winter precipitation (Fig. 47), the PCM 
shows changes of 0.1-0.5 mm/day (0.4-1.8 inches/season) between the present and future 
periods.  However, the RCM driven by the PCM shows larger changes over the central US with 
some areas experiencing increases of up to 1 mm day-1 (3.5 inches/season).  The southeastern 
portion of the central US exhibits decreases of about 0.3 mm day-1 (1.1 inches/season).  For 
spring precipitation (Fig. 48), the PCM produces mostly decreases of 0.1-0.5 mm/day (0.4-1.8 
inches/season).  The RCM driven by the PCM is not too different except that there is more small-
scale structure in the pattern.  For summer precipitation (Fig. 49), the PCM changes in the central 
US are small or slightly negative.  The RCM driven by the PCM shows a mix of positive and 
negative changes although negative changes predominate and the magnitudes are small.  For fall 
precipitation (Fig. 50), the PCM generally shows decreases over the central US.  The RCM 
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driven by the PCM is wetter, exhibiting little change.  In summary, the RCM results for 2046-
2050 are wetter in the fall and winter than the PCM and similar to the PCM for spring and 
summer. 
 For winter temperature (Fig. 51 top), the PCM produces increases of around 3°C (5°F) in 
the central US.  The RCM driven by the PCM shows smaller changes, in the range of 1-2°C (2-
4°C).  For spring temperature (Fig. 51 bottom), the PCM produces increases of 2-3°C (4-6°F) in 
the central US, very similar to the changes simulated by the RCM driven by the PCM.  For 
summer temperature (Fig. 52 top), the PCM produces increases of around 2-3°C (4-6°F) in the 
central US.  The RCM driven by the PCM shows much smaller changes, in the range of 0-1°C 
(0-2°F).  For fall temperature (Fig. 52 bottom), the PCM produces increases of around 1-3°C (2-
6°F) in the central US.  The RCM driven by the PCM shows little or no changes.  In summary, 
the RCM results for 2046-2050 are cooler than the PCM except for spring where they are 
similar. 
 
5. Discussion 
  

The major findings of this study are as follows: 
(1) Annual precipitation in AMIP models ranges from 1.5 to 3.4 mm/day (548 to 1240 mm/year, 
21.5 to 48.9 inches/year), compared to an observed value of 2.7 mm/day (986 mm/year, 38.8 
inches/year), with about half of the models within +/- 10% of observed. 
(2) The seasonal precipitation cycle in all AMIP models exhibits a minimum in the cold season 
and a maximum in the warm season.  The amplitude of the seasonal cycle ranges from 0.9 to 3.5 
mm/day (81 to 315 mm/season, 3.2 to 12.4 inches/season), compared to an observed value of 1.8 
mm/day (158 mm/season, 6.2 inches/season). 
(3) All AMIP models are drier than observed in the fall, with precipitation ranging from 1.0 to 
2.7 mm/day (94 to 248 mm/season, 3.7 to 9.8 inches/season), compared to an observed value of 
2.8 mm/day (254 mm/season, 10.0 inches/season). 
(4) The seasonal cycle of southerly wind flow at 850 hPa in the LLJ region for AMIP models 
exhibits a cold season minimum and warm season maximum, except for the UIUC model.  Three 
other models (GISS, YONU, UGAMP) have quite weak southerly flow in the summer.  Thirteen 
models have weaker than observed southerly flow in the fall.  The amplitude of the seasonal 
cycle varies from 2.3 to 11.1 m s-1 (5.3 to 25.3 mph), compared to an observed value of 4.9 m s-1 
(11.2 mph). 
(5) The seasonal cycle of specific humidity at 850 hPa in the LLJ region exhibits a cold season 
minimum and warm season maximum for all AMIP models.  Model values of winter specific 
humidity range from 0.0022 to 0.0037 kg H2O/kg air.  Model values of spring specific humidity 
range from 0.0037 to 0.0066 kg H2O/kg air.  Model values of summer specific humidity range 
from 0.0066 to 0.0122 kg H2O/kg air.  Model values of fall specific humidity range from 0.0043 
to 0.0075 kg H2O/kg air.  The amplitude of the seasonal cycle ranges from 0.0043 to 0.0093 kg 
H2O/kg air, compared to an observed value of 0.0074 kg H2O/kg air. 
(6) Total precipitable water (TPW) in the central US in AMIP models exhibits the observed 
pattern of minimum values in the winter and maximum values in the summer.  Model values of 
winter TPW range from 6 to 12 kg m-2, compared to the observed  value of 9 kg m-2.  Model 
values of spring TPW range from 13 to 23 kg m-2, compared to the observed  value of 17 kg m-2.  
Model values of summer TPW range from 24 to 40 kg m-2, compared to the observed  value of 
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30 kg m-2.  Model values of fall TPW range from 14 to 28 kg m-2, compared to the observed 
value of 19 kg m-2.  The amplitude of the seasonal cycle ranges from 17.4 to 31.2 kg m-2, 
compared to an observed value of 21.4 kg m-2. 
(7) Correlations between precipitation and various circulation indices are mixed.  For southerly 
flow at 850 hPa in the LLJ region, in each season except summer there are several models with 
correlations within 10% of observed values.  In summer, two models are within 20% of the 
observed value.  Only the PNNL model has correlations within 20% of observed in all four 
seasons.  For westerly flow at 200 hPa in the California and Iowa regions, the average 
differences between model and observations are greater than for southerly flow at 850 hPa.  No 
single model has correlations within 20% of observed in all 4 seasons. 
(8) Annual precipitation in CMIP models is within 10% of observed in 7 of the 9 available 
models.  The CSIRO and HAD3 models are 25% drier and 20% wetter than observed, 
respectively. 
(9) The seasonal precipitation cycle in CMIP models ranges from 1.4 to 2.4 mm/day (130 to 220 
mm/season,  5.1 to 8.7 inches/season), compared to an observed value of 1.8 mm/day (158 
mm/season, 6.2 inches/season).  Except for the fall season, the magnitudes of seasonal 
precipitation are within 0.5 mm/day (45 mm/season, 1.8 inches/season) of observed in most 
cases.  However, each model exhibits a difference of greater than 20% in at least one season.  In 
one case, the difference is about 50%. 
(10) All CMIP models but one (HAD3) are drier than observed in the fall. 
(11) The seasonal cycle of southerly wind flow at 850 hPa in the LLJ region exhibits a cold 
season minimum and warm season maximum in all CMIP models.  The amplitude of the 
seasonal cycle varies from 1.7 to 8.8 m s-1 (3.9 to 20 mph), compared to the observed value of 
about 4.9 m s-1 (11.2 mph). 
(12) The seasonal cycle of specific humidity at 850 hPa in the LLJ region exhibits a cold season 
minimum and warm season maximum for all CMIP models.  The amplitude of the seasonal cycle 
varies from 0.005 to 0.011 kg H2O/kg air, compared to an observed value of 0.007 kg H2O/kg 
air.   
(13) The correlations between precipitation and southerly flow at 850 hPa in the LLJ region are 
within 25% of observed in the winter for all CMIP models except HAD2.  In the other 3 seasons, 
differences of greater than 25% are found for several models.  The CSM is the only model within 
25% of observations in all four seasons.  For westerly flow at 200 hPa in the Iowa region, the 
correlations are within 25% of values for several models.  However, correlations lower than 
observed in the summer for all models.  The HAD2 has correlations within 25% of observed in 
all four seasons.  For westerly flow at 200 hPa in the CA region, no model is within 25% of 
observed values in all four seasons. 
(14) In the transient simulations, there is a mix of conditions at the time of CO2 doubling, with 
some models simulating higher precipitation compared to the control simulation and others 
simulating decreased precipitation compared to the control simulation.  However, in almost all 
cases the changes are smaller than the natural variations observed in the control simulations. 
(15) Mean annual temperature in the AMIP models is within 1°C (1.8°F) of observed for 8 
models.  The largest error is about 3°C (5.4°F).  The amplitude of the seasonal cycle varies from 
23.4 to 32.2°C (42 to 61°F), compared to an observed value of 25.1°C (45°F). 
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(16) Mean annual temperature in the CMIP models is within 1.5°C (2.8°F) of observed for all 
models.   The amplitude of the seasonal cycle varies from 23.1 to 30.5°C (42 to 55°F), compared 
to an observed value of 25.1°C (45°F). 
(17) In the transient simulations, all models show substantial warming, compared with the 
control simulation, in all seasons at the time of CO2 doubling with the typical pattern of 
maximum warming in the winter and minimum warming in the summer.  Overall, HAD3 is the 
warmest model while CSM and PCM are the coolest.  In almost all cases, the temperature 
changes are larger than the natural variations observed in the control simulations. 
(18) A comparison of the data from the PCM with data from an RCM driven by the PCM 
indicates the RCM is superior in simulating the present-day climate.  Thus, the higher resolution 
RCM is likely to produce more reliable estimates of the future climate. 
(19) A brief simulation for a climate sensitivity experiment indicates that the RCM produces 
higher precipitation in the central US for winter and spring and is cooler in winter, summer and 
fall, compared to the direct output of the PCM. 
(20) There is a high correlation between values for Illinois and for the central US region.  Thus, 
the above findings, based on analysis of the central US region, will also be applicable to Illinois. 

In summary, the current status of the ability of GCMs to simulate the regional climate of 
the central US exhibits considerable model-to-model variability, particularly among the greater 
number of models participating in AMIP. 
 For precipitation-related variables, most models reproduce certain basic features of the 
climate.  The general shape of the seasonal cycle is simulated.  Most models are able to simulate 
the seasonal changes in southerly flow from the Gulf of Mexico and the atmospheric water vapor 
content there and in the central US.  These results reflect the models’ ability to reproduce the 
large-scale circulation patterns and basic processes of the hydrologic cycle.  There is more 
variation among the models in reproducing the connections between specific circulation patterns 
and precipitation episodes in the central US.  One question is whether a specific model’s biases 
can be related in a quantitative manner to biases in other aspects of the climate system.  An 
examination of the results reveals the following.  For AMIP models, precipitation magnitude is 
generally correlated with specific humidity at 850 hPa in the LLJ region and with total 
precipitable water in the central US, although there are some exceptions.  Thus, the availability 
of water vapor appears to be an important modulating factor.  A relationship with southerly flow 
at 850 hPa in the Great Plains LLJ region or with the various circulation pattern correlations is 
not clear.  In spring, the season with the strongest correlation between its precipitation and 
annual precipitation, the LLJ correlations are somewhat related to precipitation with many low 
correlations for models with low precipitation and many of the high precipitation models 
showing rather high correlations.  The other seasons do not show an obvious relationship.  
However, the regions for which the correlations are calculated are rather small in spatial extent 
and any slight spatial shifts in precipitation-correlation patterns could confuse such relationships.  
A different analysis, discussed below, provides a broader perspective.  For CMIP models, no 
relationship was found with any of the above variables, but the precipitation differences among 
CMIP models is somewhat smaller than for the AMIP models.   

Composite (averages of all models) maps were produced to provide additional insights.  
The model composite maps for 850 hPa and 200 hPa flow are quite similar for the 1979-1995 
AMIP period (Figs 53 and 54) and for the 30-year control CMIP period (Figs. 55 and 56) and are 
in impressively close correspondence with the observed patterns (Figs. 8 and 9).  However, there 
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are subtle differences that may be important for precipitation processes in the central US.  In the 
winter, the minimum 850 hPa wind speed in the Gulf of Mexico extends further to the west to 
the Texas coast.  In the spring, the 850 hPa comparison is quite close.  In the summer, the 850 
hPa minimum is shifted to the east and the high wind speed core over Texas is weaker and 
broader compared to the observed.  This may explain in part the more variable correlation 
patterns in the models.  In the fall, the 850 hPa minimum is shifted to the north and extended to 
the west.  This shift in the fall may explain the low precipitation because the model composite 
pattern would lead to an overall weaker advection of moisture from the Gulf of Mexico.  At 200 
hPa, the location of the spring maximum wind speed is slightly to the north of observed.  In 
summer, the 200 hPa maximum is somewhat higher than observed.  The 200 hPa comparison for 
fall and winter is quite close. 

Model composite maps were prepared for the correlation between precipitation biases 
and wind flow biases (model minus observed monthly means averaged over all years).  These 
maps may help to identify mechanisms causing the precipitation biases.  In the following 
discussion they are compared with the correlations maps between observed precipitation and 
observed wind shown in Figs. 10 and 11, even though the model composite maps show 
correlations among models for climatological mean biases while Fig. 10 and 11 show 
correlations among different years in the observed data.  If the physical representation of 
precipitation processes is basically correct, then we might expect that model-to-model 
differences may be similar to the temporal variations occurring in the observed pattern.  For 
southerly flow at 850 hPa (Fig. 57), the models on average have positive correlations in the same 
general regions as are found in the observed correlation maps (Fig. 10) during winter, spring, and 
fall.  This suggests that model precipitation biases are related to biases in the 850 hPa southerly 
flow in these seasons.  In summer, the composite high correlations in the eastern portion of the 
central US are located in the same area as observed high correlations (Fig. 10), but the composite 
correlations are near zero over Texas, an area of high correlations in the observed map (Fig. 10). 
This may indicate unrealistic or inconsistent representation of the LLJ-central US precipitation 
relationship among GCMs. Model composite maps for the correlation between precipitation and 
westerly flow at 200 hPa (Fig. 58) show a mixed picture.  In the winter, the composite bias 
correlations are high over the eastern subtropical Pacific and low over the northwest US, in 
different positions than the observed maximum over the Great Lakes and minimum over the Gulf 
of Mexico.  In the spring, the minimum over the northwest and maximum over the southwest are 
in similar positions to observed correlations, but the observed maximum extends into the Great 
Lakes region, a feature not seen in the bias correlations.  In the summer, the maximum over the 
central U.S. and the minimum over the subtropics are in similar positions to the observed 
correlation pattern.  In the fall, the minima over the northwest and the southeast are in similar 
positions to observed correlation minima, but the observed weak maximum over the central U.S. 
is not seen in the bias correlation map.  Model composite maps of correlations were not produced 
for CMIP because of the small number of models available resulting in low statistical reliability. 

The number of basic similarities between Figs. 10 and 11 and 57 and 58 suggest that 
fundamental physical processes are being simulated correctly in a general sense.  The differences 
between Figs. 10 and 11 and 57 and 58 may arise from several sources.  One is topography.  The 
mountain chains in the western US play an important role in key features such as the LLJ and the 
development and path of ECs, especially in summer.  The topographic variations in GCMs are a 
rather crude approximation of reality because of their coarse spatial resolution.  A second source 
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is the models’ representation of precipitation.  The parameterization of the precipitation 
processes occurring within a grid box are known to be one of the most challenging aspects of 
climate system modeling because many processes, such as individual thunderstorm cells, are of a 
much smaller scale than the size of a grid, yet are extremely important to the magnitude of 
precipitation.  In the case of both topography and precipitation parameterizations, regional 
climate models, with their much smaller grid boxes, have the potential to greatly improve on the 
results of global models, as we demonstrated in this study. 
 For temperature, both AMIP and CMIP models generally reproduce the basic observed 
features.  The seasonal cycle is well-simulated in most models.  There is some variation in the 
magnitude of the spatial gradient across the central US, but the general spatial pattern is well 
simulated. 
 The experiment with the RCM, although limited to a single GCM, provides confidence 
that the RCM will produce significantly improved simulations, particularly for precipitation.  
This experiment appears to show the importance of regional and local factors that are simulated 
in the RCM but not in GCMs. 
 
6. Conclusions 
 
 The following are the main conclusions of this study: 

• Most models reproduce basic features of the circulation, temperature, and precipitation 
patterns in the central US, including the pronounced seasonal cycles that are 
characteristic of this region and the general flow patterns, although all models exhibit 
sizeable differences from observations for at least a few characteristics.  The use of these 
models for regional climate change assessments must recognize that there will remain 
important uncertainties in such assessments because of the model biases documented in 
this study.  The findings of this study can provide a foundation for such assessments since 
in each season there are some models whose performances are inferior to others, reducing 
confidence in their simulations.  A few models, such as GLA and UIUC, have glaring 
biases and would be suspect for use in climate change assessments for the central US. 

• No single model, either in the AMIP or CMIP, is unambiguously superior to all other 
models.  As such, studies of the future climate of Illinois should use 2 or more models to 
represent uncertainties and biases due to model differences.  The results do not indicate 
clearly whether the AMIP or CMIP models are superior as a group to the other group.  
Among AMIP models, as noted above the UIUC and GLA models stand out for certain 
glaring problems that make them less suitable.  Among CMIP models, the CSIR and 
HAD3 models exhibit the largest precipitation biases.  The HAD3 is also the coolest 
CMIP model.  Although on the surface these problems seem to reduce confidence in use 
of HAD3, it is the only model to produce enough precipitation in the fall.  On this basis 
alone, the model warrants consideration for use in evaluating uncertainties.  A strategy 
worthy of consideration is to choose models whose performances are complementary and 
as a set has at least one model providing a good simulation of the current climate in all 4 
seasons.  An examination of Figs. 19 and 20 suggest PCM and HAD3 or CSM and HAD3 
as possible pairs that fit this requirement and could be used for driving an RCM.   

• The RCM produces simulations of the present climate that are more accurate than the 
direct output of the PCM and thus provides an important tool to produce more credible 
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simulations of the future climate.  A 5-yr simulation shows that the RCM produces a 
wetter (compared to the direct output of the PCM) future precipitation climate for the 
central US and is generally cooler.  

 
7. Future Work 
 

This study is part of larger effort to reduce uncertainties in our knowledge of the future 
climate of Illinois.  These uncertainties arise principally from model differences and biases and 
uncertainties about future emissions paths.  This latter source cannot be reduced substantially 
because it depends on the unknown future of human society.  The former source can be reduced 
by model improvements and such reductions will likely be of value to decision-makers.  The 
improvement of CGCMs is a major effort by modeling groups around the world.  The AMIP and 
CMIP projects are very important catalysts for this effort by providing an objective forum for 
model comparisons.  We hope that this study’s identification of certain common biases (e.g. low 
precipitation in fall) will spur modeling groups to devote some resources to examine such 
important regional issues and hasten model improvements that will directly benefit our 
knowledge of this region’s climate future. 

This study also suggests a continuing value for use of RCMs to downscale the CGCM 
simulations.  The results here suggest that RCMs can measureably reduce that portion of the 
uncertainty due to inadequate physical resolution of local and regional processes in CGCMs.  At 
least two barriers exist that prevent a full application of RCMs to the problem.  One is the 
computational resources required to perform RCM simulations for multiple CGCMs; at present 
these are inadequate to carry this out.  The human resources required to manage and analyze 
such simulations is also substantial.  A second barrier is access to the required CGCM data.  The 
RCM requires CGCM data at a 6-hour resolution for lateral boundary conditions.  In some cases, 
CGCM data are not stored at this resolution.  In other cases, modeling groups may not be able or 
willing to provide access to such large volumes of data. 

Finally, the analysis performed here analyzed monthly data.  A detailed analysis of 
individual weather events requiring examination of daily data might provide more definitive 
identification of model deficiencies.  However, such a study would demand considerable 
resources. 
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Table 1. Characteristics of AMIP Models 
 

Center Name 
Model 

Abbrev Country 
Horizontal 
Resolution 

Vertical 
Resolution 

(levels) 
Solar 

Constant CO2 Convection Precipitation
Cloud 

Formation PBL Snow Soil
Vegetation 

Types 

Canadian Center 
for Modeling and 
Analysis CCCMA Canada 3.75° X 3.75° 10 1365 345 

moist convective 
adjustment local supersaturation Fc (R H) not explicit prognostic 1 layer, bucket 24 

Center for 
Climate System 
Research CCSR Japan 5.6° X 5.6° 20 1365 345 

relaxed 
Arakawa-
Schubert liquid water content 

convective 
mass 
flux/liquid 
water cont 

Mellor and 
Yamada 2nd 
order closure 
scheme  1 layer, bucket 32 

National Center 
for Meteorological 
Research CNRM France 300 km 30 1365 345 bulk mass flux 

convective mass 
flux/supersaturation Fc (RH) not explicit prognostic 

complex, 
Noilhan and 
Planton (1989) 13 

Center for Ocean-
Land-Atmosphere COLA US 1.8° X 2.8° 18 1365 345 

Kuo convective 
scheme supersaturation Fc (RH)  prognostic complex, SiB 12 

Department of 
Numerical 
Mathematics DNM Russia 4° X 5° 21 1365 348 

relaxed 
convective 
adjustment supersaturation Fc (RH) local diffusion prognostic 24 levels 11 

European Center 
for Medium-
Range Weather 
Forecasting ECMWF UK 2.8° X 2.8° 19 1365 345 

mass-flux 
convective 
scheme supersaturation Fc (RH) prognostic 2 layers

Geophysical Fluid 
Dynamics 
Laboratory GFDL US 2.25° X 3.75° 14 1365 345 

simple 
convection 
adjustment supersaturation Fc (RH) not explicit prognostic 1 layer, bucket  

Goddard Institute 
for Space Studies GISS US 4° X 5° 9 1365 345  liquid cloud water Fc (RH) 

similarity 
theory prognostic 

complex, 6 
layers 32 

Goddard 
Laboratory for 
Atmospheres GLA US 4° X 5° 17 1365 345 

Arakawa-
Schubert supersaturation Fc (RH)  prognostic complex, SiB 12 

Japan 
Meteorological 
Agency JMA Japan 1.875° X 1.875° 30 1365 348 

Arakawa-
Schubert supersaturation Fc (RH)

Nellor & 
Yamada 2nd 
order closure prognostic complex, SiB 8 
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Main Geophysical 
Observatory MGO Russia 3.75° X 3.75° 14 1365 345 Kuo scheme supersaturation Fc (RH) not explicit prognostic 3 layer   

Max-Planck 
Institute for 
Meteorology MPI Germany 2.8° X 2.8° 19 1365 345 

mass flux 
convection (tied 
the 1989) complex Fc (RH) 

similarity 
theory prognostic 3 layers  

Meteorological 
Research Institute MRI Japan 2.8° X 2.8° 30 1365 345 

Arakawa-
Schubert supersaturation Fc (RH)

Mellor and 
Yamada 2nd 
order closure 
scheme SiB

National Center 
for Atmospheric 
Research NCAR US 2.8° X 2.8° 

National Centers 
for Environmental 
Prediction NCEP US 3° X 3° 18 1365 345 

Kuo convective 
scheme supersaturation Fc (RH)  prognostic 3 layers 12 

Pacific Northwest 
National 
Laboratory PNNL US 2.8° X 2.8° 18 1365 348 

mass flux 
convection 

moist convective 
scheme complex Bulk Ri # prognostic BATS 18 

State University 
of New York at 
Albany SUNYA US 2.8° X 2.8° 

The UK 
Universities' 
Global 
Atmospheric 
Modelling 
Program UGAMP UK 2.5° X 3.75° 19 1365 348 

mass-flux 
scheme of 
Gregory (1990) complex complex Bulk Ri # prognostic 

4 layers, 
complex 23

University of 
Illinois at Urbana-
Champaign UIUC US 4° X 5° 7 1365 345 

Arakawa - 
Schubert liquid cloud water Fc (RH) not explicit prognostic   

United Kingdom 
Meteorological 
Office UKMO UK 2.5° X 3.75° 19 1365 348 

mass-flux 
scheme of 
Gregory (1990) complex complex Bulk Ri # prognostic 

4 layers, 
complex 23 

Yonsei University YONU Korea 4° X 5° 7 1365 345 
Arakawa-
Schubert  Fc (RH) not explicit    

.
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Table 2. Characteristics of CMIP Models 
 

CCCMA NCAR CSM CSIRO ECHAM-OPYC ECHO GFDL HADCM2 HADCM3 DOE PCM

Flux Adjustment 
Yes, heat, 
water No

Yes, heat, water, 
momentum Yes, heat, water Yes, heat, water Yes, heat, water Yes, heat, water No No 

Control Run CO2 (ppm) 330 355 330 353                     353 360 322.6 289.6 355

Solar Constant (Wm-2) 1370 1367 1367 1365                   1365 1365 1365 1365 1367

No Vertical Levels 10 18 9 19 19 14 19 19 18

Bottom, Top (hPa) 980, 5 992, 3 979, 21 996, 10 996,10 997, 15 997, 5 997, 5 992, 3

Cloud Vertical Overlap mixed random random mixed mixed full mixed mixed random

Connection 

moist 
convective 
adjustment 

mass flux 
scheme applied 
successively in 
three layers 

relaxed moist 
adjustment with 
shallow 
convection 

bulk mass flux 
scheme with 
shallow convection

bulk mass flux 
scheme with 
shallow 
convection 

moist convective 
adjustment 

bulk mass flux 
scheme with 
updrafts/downdrafts

bulk mass flux 
scheme with 
updrafts/downdrafts

mass flux scheme 
applied 
succesively in 
three layers 

Prognostic CLW No No No Yes Yes No Yes Yes No

Prognostic Snow Mass Yes No Yes Yes Yes Yes Yes Yes No 

Snow Thermal Effects Yes Yes Yes Yes Yes No Yes Yes Yes 

Sea Ice Snow 
Accumulation Yes Prescribed Yes No Yes Yes

No, but snow cover 
affects albedo 

No, but snow cover 
affects albedo Prescribed 

No of Soil Temperature 
Layers 1 4 3 5 5 0 4 4 4
No of Soil Moisture 
Layers 1 0 2 1 1 1 1 1 0

Soil Model Description 

Deardorff 
(1978) force 
restore, 
variable 
bucket and 
ET factor 

heat diffusion 
prescribed 
wetness 

Heat diffusion, 
Deardorff (1977) 
force restore  

Warrilow et al 
(1986), Duemenil 
and Todini (1992), 
Blondin & Boellger 
(1987) 

Warrilow et al 
(1986), 
Duemenil and 
Todini (1992), 
Blondin & 
Boellger (1987) 

no heat storage, 
bucket 

heat diffusion, 
single moisture 
reservoir, Warrilow 
et al (1986), 
Shuttleworth (1988) 

heat diffusion, 
single moisture 
reservoir,  Warrilow 
et al (1986), 
Shuttleworth (1986)

heat diffusion, 
prescribed 
wetness 

850 mb Field in July for 
1979-1995 

Pressure over 
Illinois is 
higher.  
Southerly flow 
over Great 
Plains is 
slightly 
stronger 

Close to 
observed Not available Close to observed  Not available Close to observed Close to observed 

Close to 
observed 

500 mb field in July for 
1979-1995 

Strong upper 
level high 
over Illinois 

Higher heights 
centered over 
southern Illinois Not available 

Higher heights but 
relative flow 
pattern may be 
similar to observed  Not available 

Relative trough 
over southern 
Great Lakes and 
eastern Midwest 

Relative trough 
over southern 
Great Lakes and 
eastern Midwest 

Higher heights 
centered over 
southern Illinois 
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