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Abstract

Many ski areas, backcountry avalanche centers, highway departments, and helicopter ski operations record and archive

daily weather and avalanche data. This paper presents a probabilistic method that allows avalanche forecasters to better

utilize historical data by incorporating a Geographic Information System (GIS) with a modified meteorological nearest

neighbors approach. This nearest neighbor approach utilizes evolving concepts related to visualizing geographic

information stored in large databases. The resulting interactive database tool, Geographic Weather and Avalanche Explorer,

allows the investigation of the relationships between specific weather parameters and the spatial pattern of avalanche

activity. We present an example of this method using over 10,000 individual avalanche events from the past 23 years to

analyze the effect of new snowfall, wind speed, and wind direction on the spatial patterns of avalanche activity. Patterns

exist at the slide path scale, and for groups of adjacent slide paths, but not for either the entire region as a whole or when

slide paths are grouped by aspect. Since wind instrumentation is typically located to measure an approximation of the free

air winds, specific topography around a given path, and not simply aspect, is more important when relating wind direction

to avalanche activity.
D 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Avalanche forecasting utilizes inductive and de-

ductive reasoning along with data and knowledge to

reduce the uncertainty of the avalanche hazard for a

given area (LaChapelle, 1980; McClung, 2002a,b).
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Data used for avalanche forecasting can be catego-

rized as meteorological, snow pack structure, or direct

stability data (LaChapelle, 1980). These data are

typically used in real time and are incorporated into

the day’s forecast. When these data are recorded and

archived, they can be analyzed to gain intrinsic

knowledge about the local area. The purpose of this

paper is twofold. First, we present a technique for

analyzing avalanche and weather data. Second, by

implementing that technique using our program Geo-
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graphic Weather and Avalanche EXplorer (Geo-

WAX), we investigate relationships between new

snowfall, wind speed, and wind direction on the

avalanche activity at the Jackson Hole Mountain

Resort at three scales: (1) the entire ski area (107

m2), (2) groups of adjacent slide paths and groups

based on aspect and elevation (103–104 m2), and (3)

individual avalanche paths (102–103 m2).

A scientific understanding of avalanches, as well

as knowledge of the local patterns of avalanche

activity (gained through experience) is crucial for

avalanche forecasters (McClung, 2002a). The former

can be taught, but the latter is much more difficult

to teach, communicate, or even define. For example,

how new snowfall, wind speed, and wind direction

conceptually lead to selective wind loading and the

formation of slab avalanches is relatively easy to

teach and understand. However, an understanding of

which slide paths load under specific conditions of

new snowfall, wind speed, and wind direction

requires additional knowledge that may require

decades of local individual observations and expe-

rience. Our method utilizes historical data to help

aid in the visualization of the data, and to generate

hypotheses regarding the role that different meteo-

rological parameters play in creating spatial patterns

of avalanche activity at Jackson Hole Mountain

Resort.

This study utilizes meteorological data for two

reasons. First, they are directly related to historical

avalanche data. Second, they are readily available

and highly abundant. In addition, due primarily to

the automation of data collection, the volume of

these data is increasing exponentially as a function

of time and amount of daily data being recorded.

Each year more data are being recorded by increas-

ing the number of different weather parameters,

adding new data collection site locations, and in-

creasing the rate of taking measurements. These

typical weather parameters include, but are not

limited to, precipitation (new snowfall, snow water

equivalent, snow depth), wind (speed and direction,

maximum gust), and temperature (maximum, mini-

mum, mean).

A number of techniques have been and are being

used to help forecast avalanches utilizing historical

weather and avalanche data. These include discrim-

inant analysis, cluster analysis, nearest neighbors,
and binary decision trees. Obled and Good (1980)

present an overview and comparison of the first

three methods, Buser (1983, 1989) details the near-

est neighbor method, and Davis et al. (1996)

present an example of binary decision trees. Nearest

neighbor and binary decision tree methods are now

operationally used by a number of avalanche fore-

cast operations. Recently, other tools have been

developed to aid data visualization and hypothesis

generation. Cornice, a model currently used by the

Scottish Avalanche Warning Service (Purves et al.,

2002), facilitates both of these goals. SNOWBASE

(Hägeli and Atkins, 2002), a program used by

Canadian Mountain Holidays helicopter-skiing oper-

ation, focuses on visualization and data storage.

Our methods attempt to build on this past research

in three ways. First, we incorporate the geographic

component (i.e., the location, aspect, and elevation) of

the slide paths. Second, we analyze the data at the

individual slide path scale, which is of primary

importance to ski patrollers and others doing ava-

lanche hazard reduction work. Finally, instead of

treating a day as either a day with avalanches or

without, we create a probability of avalanching for

each individual slide path, which can be geographi-

cally viewed using a GIS. Our primary goal is to

create a tool to visualize, explore, and ask questions

of weather and avalanche data sets, thereby allowing

us to find spatial patterns and facilitate hypotheses

generation.

Geographic Visualization and Geographic Knowl-

edge Discovery are two emerging fields that share

our primary goal of finding patterns and relationships

in large spatial data sets. Both fields have several

underlying concepts in common (MacEachren et al.,

1999). First, both involve the interaction of com-

puters and humans and see this interaction as a

process, attempting to capitalize on the strengths of

both (Miller and Han, 2001; MacEachren et al., 1999;

Andrienko and Andrienko, 1999; Ramakrishnan and

Grama, 1999; Fayyad et al., 1996; Hibbard and

Santek, 1989). Second, iteration allows visualization

of patterns with different attributes, at different times,

or at different scales that may illuminate trends that

would not be obvious in a static view (Andrienko et

al., 2001; Ramakrishnan and Grama, 1999; MacEach-

ren et al., 1999). Iteration is also familiar to ava-

lanche forecasters, who typically use iteration while
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forecasting to reduce uncertainty and improve fore-

cast accuracy (LaChapelle, 1980). Third, high inter-

activity between the user and computer allows the

user to pose ‘‘what if’’ questions for hypothesis

generation (Gahegan et al., 2001; MacEachren et

al., 1999). Finally, multiple perspectives allow the

user to view the data at different scales, measures, or

even different concepts (Andrienko et al., 2001;

MacEachren et al., 1999). Purves et al. (2002) em-

phasize the importance of multiple perspectives for

avalanche forecasting tools.

The rest of this paper will outline the study area for

our project, the methods we used to develop Geo-

WAX, and provide an example of how we used

GeoWAX to investigate of the role of new snow,

wind speed, and wind direction on the spatial patterns

of avalanching at Jackson Hole Mountain Resort at a

variety of scales.
Fig. 1. Regional map displaying the location of the Jackson Hole

Mountain Resort, Wyoming, USA (43j36VN, 110j52V).
2. Study site

This study uses historical data recorded by the

Jackson Hole Mountain Resort, which is located on

Rendezvous Mountain in the southern end of the

Teton Range in northwestern Wyoming, USA (Fig.

1). The base elevation of the mountain is 1923 m,

rising to a summit elevation of 3185 m. The Jackson

Hole Mountain Resort is situated at 43j36VN lati-

tude and is roughly 1000 km from the nearest

moisture source (Pacific Ocean), giving the area an

intermountain climate (Mock and Birkeland, 2000).

In the winter, precipitation is mainly in the form of

snow. Mid-latitude cyclones from the Pacific are

intensified by orographic uplift as they encounter

the western side of the Teton Range, especially

when they travel along the relatively low and flat

Snake River Plain to the west. The yearly average

snowfall for the study plot at the top of the resort is

12.8 m of snow containing 1.5 m of snow water

equivalence, while the base receives 2.6 and 0.5 m,

respectively (Kozak, 2002). The predominant wind

direction for most storms affecting Jackson Hole

Mountain Resort is west–southwest (Birkeland et

al., 2001). The town of Jackson, WY, has kept

climatic records since 1948. The yearly average

high and low temperatures are 12.1 and � 5.1 jC,
with the coldest month being January (� 2.8 and
� 15.0 jC) and the warmest month being July (27.2

and 4.4 jC).
3. Methods

3.1. Applying Geographic Visualization and

Geographic Knowledge Discovery to historical

avalanche data

We applied the concepts of Geographic Visualiza-

tion and Geographic Knowledge Discovery to histor-

ical weather and avalanche data. Slide paths have a

geographic location along with geographic attributes,

such as aspect and elevation, and can therefore be

mapped, analyzed, and viewed with a GIS (Stoffel et

al., 1998). The k-nearest-neighbors technique is our
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data-mining algorithm, and is used to generate ava-

lanche probabilities. We base these avalanche proba-

bilities, which are related to a given set of input

parameters for each slide path, on a set of the most

similar historical days found by the nearest neighbor

search. Multiple perspectives of the data included a

GIS representation of the slide paths to display

individual slide path probabilities for each slide path

(Fig. 2), a rose diagram to relate average probabilities

for aspect and elevation categories to the search

parameters, and graphical displays of the total nearest

neighbor distance, the inverse distance weighting, and

the partial distances for the nearest days.

The meteorological parameters used for this study

include new snowfall, wind speed, and wind direction.

We are interested in these parameters because the

daily disruption of the snow pack due to skier traffic

and avalanche hazard reduction activities minimizes

the importance of older layers in the snow pack. We

also only used three search parameters to minimize

the potential problematic effects of high dimensional-

ity, which can occur in nearest neighbor techniques
Fig. 2. A GIS representation of the upper mountain at the Jackson Hole Mo

to display avalanche probability, and specific slide paths mentioned in t

diamond symbols and labeled in bold type.
using as few as 10–15 weather parameters (Aggarwal

et al., 2001; Hand et al., 2001; Hinneburg et al., 2000;

Beyer et al., 1999).

For each of the three weather parameters, we

analyzed how they affected the pattern of avalanche

activity for individual slide paths, for aspect–eleva-

tion categories, and for the average avalanche proba-

bility. After investigating the effects of the individual

weather parameters, we analyzed them together to

find wind loading patterns associated with new snow-

fall. When analyzed together, a specific pattern is

created for each slide path, each aspect–elevation

category, and for the average avalanche probability.

This pattern is a specific signature for each feature and

can be used to identify similarities and differences

between similar feature types such as two slide paths.

Next, we analyzed these signatures to identify the

scales on which these three weather parameters oper-

ate. Hägeli and McClung (2000) concluded that the

scales of weather parameters used in avalanche mod-

els might not be representative of the scales of natural

processes in this complex earth system.
untain Resort, Wyoming, USA. Avalanche starting zones are shaded

he text are labeled with italics. Weather stations are designated by
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3.2. Data

The data for this project include both historical and

geographic data. The historical data are composed of

daily weather measurements and the associated ava-

lanche activity from the Jackson Hole Mountain

Resort, Wyoming. The historical weather and ava-

lanche data span 23 winter seasons, from 1978–1979

to 2001–2002, which include 3304 days and over

10,000 individual avalanche events.

By the 1978–1979 season, 34 parameters consist-

ing of 204 weather measurements were recorded

daily along with the associated avalanche activity.

These weather data included measurements from

four precipitation sites (Rendezvous Bowl, SSTV,

Mid-Mountain, and Base, see Fig. 2) that recorded

new snowfall, snow water equivalent (SWE), and

total snow depth; three temperature sites recording

6:00 AM, 24 h minimum, and maximum temper-

atures; one summit wind site (4� 6-h average speed

and direction); and numerous subjective parameters

such as snow available for wind transport and daily

warming. Throughout subsequent seasons, those

original weather parameters have been recorded

along with new additional weather parameters. To-

day, over 50 parameters, consisting of hundreds of

individual weather measurements, are recorded daily,

which include data from five precipitation sites, four

temperature sites, and three wind sites, most of

which are remote and automatically recorded up to

four times per hour. Precipitation measurements are

manually verified at each site daily. The historical

avalanche data consists of 10,232 avalanche events

within the ski area. Avalanche events are recorded

using standard U.S. methods (Perla and Martinelli,

1978), which include the date, slide path name, time,

type, trigger, depth, U.S. size, and sliding surface as

attributes. These data reside at the Jackson Hole

Mountain Resort.

The geographic data sources include a one-meter

resolution USGS Ortho Quad, a digital elevation

model (DEM), and a polygonal representation of the

starting zones of 220 in-bounds slide paths. The

elevation data for the Jackson Hole Mountain Resort,

in an Auto-CAD format (Schriber, 1998), was

imported into a GIS (ArcInfo 7.0, ESRI) and oriented

using common features in the Ortho Quad. Three-D

Analyst, an extension of Arc-View 3.2 (ESRI), was
used to create a 5-m DEM from the original 10-ft

contour data. An aspect grid was created from the

DEM using Spatial Analyst 2.0 (ESRI). Using the

GIS, the lead avalanche forecaster for the Jackson

Hole Mountain Resort digitized the slide path starting

zones on-screen using the Ortho Quad and contour

data for reference. The slide path starting zones were

in a polygonal (vector) format where each starting

zone was represented by an enclosed polygon with the

attributes of name, average elevation, and average

aspect of each starting zone. The average elevation

and aspect for each starting zone were calculated by

averaging all respective grid cells contained in that

starting zone’s polygon.

3.3. Creating slide path avalanche probabilities

Creating individual avalanche probabilities for

each slide path is a seven-step process. First, a set

of weather parameters along with a set of values is

chosen as a basis for searching the historical data-

base. These criteria constitute a target day. An

example of a target day might be the following:

new snowfall = 25 cm, average wind direction =

270j, average wind speed = 5 m/s. Second, an op-

tional filter is applied to limit the historical days

used. For example, we might only consider days

with new snowfall greater than 15 cm but less than

35 cm. Third, as in other nearest neighbor ap-

proaches (i.e., Buser, 1983, 1989), all variables and

target day values are normalized by their standard

deviation. In step 4, optional parameter weights can

be chosen to increase differentiation of a specific

weather parameter.

Some nearest neighbor models optimize the pa-

rameter weights. Gassner et al. (2000) did this by

using a local expert to set the weights and then created

a measure of correctness to compare different weight-

ing schemes. Purves et al. (2002) used a genetic

algorithm to determine optimal weights. Though this

can be useful, we chose not to optimize weights for

two reasons. First, it was computationally expensive

for our analyses since we were analyzing individual

avalanche paths. Second, most nearest neighbor mod-

els define weight as relative importance, and therefore

when a weather parameter is weighted heavily, the

nearest days have less variation around the heavily

weighted target value.
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Step 5 involves the calculation of the nearest

neighbor distance for all days in the filtered, stan-

dardized database. This technique creates a distance

measurement for each day in the historical database

based on its similarity to the target day. The more

similar a historical day is to the target day, the shorter

the distance measurement. In step 6, similar days are

found in the historical database by ordering the

historical days by their nearest neighbor distances.

In the final step, slide path probabilities are calcu-

lated based on the actual avalanche activity of the

most similar days as defined by their nearest neighbor

distance. First, the user chooses the maximum number

of days to used. For example, if we consider the 100

nearest days, the number of avalanches is summed

and averaged for each slide path over those 100

nearest days. If one slide path had 10 avalanches

during those 100 nearest days, its avalanche probabil-

ity is 10%. Likewise, a slide path with 50 avalanche

events out of 100 nearest days has an avalanche

probability of 50%. Additionally, the nearest days

can be optionally weighted by an inverse function of

the nearest neighbor distance to count more similar

days more heavily. Our method creates a weighted

average of the nearest days using a nonlinear function

similar to methods described by Zhang et al. (1997)

and Stanfill and Waltz (1986) by weighting a day with

the inverse of the nearest neighbor distance (NNDist)

plus a zero distance value (ZDV) to avoid dividing by

zero, all raised to the inverse distance exponent (IDE).

An IDE value of 0 would count each nearest day

equally, while a IDE value of 1 would be traditional

inverse distance weighting. The numerator of Eq. (1)

is the summation of weighted avalanche events where

days with no avalanches receive a 0, and days with an

avalanche receive a 1. The denominator of Eq. (1) is

the 100% maximum probability of avalanching equal-

ing the weighted summation of an avalanche event on

each of the nearest days.

Slidepath Avalanche P

¼

XDayi¼1

MND

Avalanche EventDayij : f0; 1g
ðNNDistDayi þ ZDVÞIDE

XDayi¼1

MND

1

ðNNDistDayi þ ZDVÞIDE

ð1Þ
The resulting set of slide path avalanche probabilities

allowed the creation of the GIS representation (Fig. 2).

3.4. Creating avalanche probabilities for

aspect–elevation categories

Creating avalanche probabilities for the aspect–

elevation categories is a two-step process. In the first

step, the combined geographic attributes of the

aspect and elevation of slide paths are related to

weather parameters for the entire ski area rather than

for individual avalanche paths, with each slide path

being categorized based on its average elevation and

average aspect. Low (1829–2286 m), middle (2286–

2743 m), and high (2743+ m) are used as three

elevation categories along with eight aspect catego-

ries (N, NE, E, SE, S, SW, W, NW) for a total of 24

possible categories. Next, the slide path probabilities

are averaged for all slide paths based on their

aspect–elevation category, and are viewed using a

rose diagram.

3.5. Creating series signatures

The combination of the target day and the set of

resulting output (slide path avalanche probabilities,

aspect–elevation probabilities, and the average slide

path probability) constitute what we define as a

Nearest Neighbor Avalanche Probability Profile

(NNAPP). A NNAPP encapsulates the total response

of the system for a set of search parameters.

The effects of weather parameters on avalanche

activity can be visualized as a multi-dimensional

space where each weather parameter is represented

by a different dimension. New snowfall, wind direc-

tion, and wind speed define a three-dimensional

space. To explore the response to changes of new

snowfall, wind direction, and wind speed, a NNAPP

is created for each set of search parameters by

systematically varying one weather parameter at a

time, eventually creating a NNAPP to populate each

location (variation of parameters) in the three-dimen-

sional series space. We call this a series signature. The

NNAPP attribute avalanche probability now consti-

tutes a fourth dimension. Two of the three weather

parameters and an avalanche probability are graphed,

visualized, and analyzed. Examples of series signa-

tures start in Section 4.1.



Fig. 3. Series signatures for Buffalo Bowl in low (a), moderate (b),

and high (c) wind showing a dramatic increase in avalanche

probability with an increase in wind speed. The mean avalanche

probability for the series signatures are significantly different

( p< 0.001).
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3.6. GeoWAX

We developed GeoWAX to implement the previous

methods using Microsoft’s Visual Basic 6.0 along

with ESRI’s Map Control in ArcView 8.1 to imple-

ment the embedded map. GeoWAX is an interactive

program to enable avalanche forecasters to explore

their historical data and aid in visualization of data

and hypotheses generation. The forecaster can vary

the search parameters used in the nearest neighbors

search and the parameter weights, and can filter the

weather data based on a range of each search param-

eter or any set of fixed values. When creating the slide

path probabilities, the forecaster can also vary the

number of nearest days to be used along with the

nearest neighbor distance weighting function.

Since GeoWAX was developed for the exploration

of data, all levels of interconnectivity of the data

representations are retained and available to the fore-

caster. For example, when viewing a series signature,

all of the NNAPPs are retained and can be viewed

(GIS representation of slide paths, aspect–elevation

rose-diagram, and mean avalanche probabilities).

Likewise, the actual weather and avalanche events

for all nearest days can be viewed along with a GIS

representation of a day’s avalanche events.

3.7. Case study: wind loading of new snowfall

We chose new snowfall, wind speed, and wind

direction to explore their effect on avalanche activity

for the Jackson Hole Mountain Resort. New snowfall

(Rendezvous Bowl precipitation) values ranged from

0 to 35 cm in 5-cm increments for a total of eight steps

in the new snowfall dimension. Wind direction (sum-

mit wind) was varied from 0j to 360j in 20j incre-

ments for a total of 19 steps and was weighted twice

as heavily as new snowfall and wind speed to help

differentiate the different wind direction categories.

The wind speed dimension had three categories: 5 m/s

(low), 10 m/s (moderate), and 15 m/s (high). All

variables were normalized with their standard devia-

tion to normalize distance measurements. Days were

filtered with ranges based on the target values. New

snowfall ranged F 15 cm, wind speed F 4 m/s, wind

direction F 30j around their respective target values

and the inverse of the square root of the nearest

neighbor distance was used to weight more similar
days. A minimum of 10 days and a maximum of 100

days were used to create the 456 NNAPPs. Every

slide path, aspect/elevation category, and the average

probability were available for analysis, producing

individual, unique series signatures.

3.8. Statistical analyses

The goal of our statistical analyses is to compare

the pattern observed for one series signature (for an



Fig. 4. Low (a), moderate (b), and high (c) wind series signatures for

Cajun Couloir showing different responses to wind direction for

different wind speeds. At some wind directions, high wind speeds

decrease the avalanche probability, suggesting that those wind

directions may scour this particular avalanche path.

Fig. 5. Series signature for Cheyenne 3 in high wind showing most

active avalanche activity with westerly winds (240–260j), which is

representative of other slide paths in the Cheyenne group in high

wind.
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avalanche path or groups of paths) to another series

signature. We use two types of nonparametric

statistics to analyze our data. First, we use a

Mann–Whitney U-test to compare the means of

two series signatures. This test is applicable when

we are interested in the effect of only one param-

eter, such as wind speed. When our primary

interest is in the pattern observed, we use Spear-

man’s rho, a nonparametric correlation analysis

similar to Pearson’s r, to compare the avalanche
probabilities in one series signature to the other

series signature.
4. Results and discussion

4.1. Individual weather parameters

Our investigation focuses on how snowfall, wind

speed and wind direction affect the spatial patterns

of avalanche activity at Jackson Hole Mountain

Resort. An increase in new snowfall leads to an

increase in the avalanche probability at all scales,

from individual paths to the entire ski area. More

new snowfall results in more stress added to buried

weak layers or interfaces, thereby increasing the

probability of avalanche activity (McClung and

Schaerer, 1993), and the effect of this can be seen

at all scales, ranging from individual paths to the

entire resort.

In contrast, the effect of wind speed differs depend-

ing on the scale of observation. At the scale of

individual avalanche paths, considerable variability

exists. Most slide paths exhibit an increase in ava-

lanche probability with an increase in wind, with a

few paths displaying a large increase, such as Buffalo

Bowl, a middle elevation (2404 m) slide path. The

series signatures for low, moderate, and high wind

situations for Buffalo Bowl show this large increase in

avalanche probability for increasing wind speed (Fig.

3), and all were significantly different ( p values

< 0.001). In contrast, some slide paths, such as Broad-

way, decrease in avalanche probability with an in-
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crease in wind; perhaps the higher wind speeds scours

those paths. Others, such as Cajun Couloir, increase in

avalanche probability under certain wind directions,

and decrease at other directions (Fig. 4). At the scale

of the entire ski area, there is a general increase in

avalanche probability between low and moderate

wind, but not between moderate and high wind, for

both the overall average and the aspect–elevation

categories. These results demonstrate how much var-

iability exists at the scale of single paths within the

overall average for the ski area.
Fig. 6. The high wind series signatures for the Laramie group. The Laramie

activity associated with southerly, westerly, and northerly winds.
The effect of wind direction also differs for

different scales. At the scale of individual slide

paths, changes in wind direction change the prob-

ability of avalanche activity. Although changes in

wind direction also lead to changes in avalanche

activity for slide paths grouped by aspect and

elevation, these changes are similar to each other

and the overall average computed for the entire ski

area. The responses of the individual avalanche

paths may cancel each other out and ‘‘smooth’’

the data.
group is the most active slide path group at Jackson Hole with high



Fig. 7. Probability–probability scatter plot for corresponding search

parameters in the series signatures for the Laramie group showing

strong relationships between slide paths. Correlation coefficients

(rho) between the series signatures ranged from 0.80 to 0.96.

Fig. 8. The high wind series signatures for the Casper group. The Casper

southerly and northerly winds, but not westerly winds.
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4.2. Series signature patterns

Our data exploration with GeoWAX shows that

many slide paths exhibit similar series signatures.

Additionally, slide paths with similar signatures are

often in the same geographic area. Examples of

grouped spatial similarity include the Cheyenne

group, the Laramie group, and the Casper group,

which gives us insight into possible scales of ava-

lanche processes that may exist at the Jackson Hole

Mountain Resort.

Slide paths in the Cheyenne group include Chey-

enne 3–9, The Snag, and Roadcut, and all exhibit

similar series signatures, with high avalanche activity

associated with winds out of 240–260j. When the

slide paths within the Cheyenne group are compared

to each other the Spearman’s correlations (rho) range

from 0.746 to 0.983 ( p values < 0.001), showing

strong inter-group similarities. The series signature

for Cheyenne 3 is a typical series signature for this

group (Fig. 5).
group is characterized with high avalanche activity associated with
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A similar situation exists for the slide paths in the

Laramie group, which include Laramies 1–5. These

are some of the most active slide paths on the

mountain, with series signatures displaying high ava-

lanche probabilities with winds from 180j to 360j
(Fig. 6). Their correlation values range from 0.801 to

0.962, with p values < 0.001 (Fig. 7), again showing

strong similarities within the group. There are also

some smaller scale (individual slide path) trends.

Laramie 5, an east–northeast-facing starting zone just

on the lee side of a small ridge, had its highest

avalanche probabilities with southerly winds. In con-

trast, Laramies 1–4 had their highest avalanche prob-

abilities with more westerly winds.

In contrast to both the Cheyenne and Laramie

groups, the slide paths in the Casper group (Caspers

10, 12, 14, 20) all experience their highest avalanche

activity with winds either more southerly or northerly

than the predominant west southwest winds (Fig. 8).

Although the correlation values are all significantly

correlated with p values < 0.001, the amount of

similarity is much less, ranging from 0.478 to 0.863

(Fig. 9). The two slide paths that are most dissimilar to

each other are also the farthest apart in distance

(Caspers 20 and 14). Here a sizable difference be-

tween slide paths in the same group exists. Both
Fig. 9. Probability–probability scatter plot for corresponding search

parameters in the series signatures for the Casper group showing

strong relationships between slide paths. Correlation coefficients

between the series signatures ranged from 0.48 to 0.86.

Fig. 10. Average high wind series signatures for the Cheyenne

group, the Laramie group, and the Casper group. The Casper group is

differentiated from the others by the marked decrease in avalanche

probability for winds out of the west.
Caspers 12 and 20 experience high avalanche activity

with southerly winds while Caspers 10 and 14 become

more active with northerly winds. We suspect this is

due to the geographic location of the slide paths.

Caspers 12 and 20 are both situated at the southern

end of Casper bowl, and are leeward of a ridge with

southerly winds. In contrast, Caspers 10 and 14 are in

the center of Casper bowl and may be more sheltered

from southerly winds. Similar to the Laramie group,

the Casper group also shows some differences at the



Fig. 11. Probability–probability scatter plot for corresponding search

parameters in the high wind series signatures for the Cheyenne group,

the Laramie group, and the Casper group showed the similarities

between the Cheyenne and Laramie groups and the marked differ-

ence between the Casper group and the other two groups.

Fig. 12. Series signatures for four high elevation, high wind aspect zones (

all similar and show no obvious relationship differences with wind direct
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slide path scale, yet still had similarities at the group

scale.

After finding similar series signatures for different

groups, we created an average series signature for

each group and compared these group averages with

each other using their series signatures (Figs. 10 and

11). The Cheyenne group and the Laramie group are

quite similar with a correlation of rho = 0.923. In

contrast, the Cheyenne group and the Laramie group

are more poorly correlated to the Casper group with

rho values of 0.496 and 0.591, respectively ( p values

< 0.001).

4.3. Compare aspect–elevation series signatures

Enlarging the scale of our analysis to sets of

avalanche paths grouped by aspect, rather than by

geographic location, gives us different results. A look

at four high-elevation aspect categories (northeast-

facing, east-facing, southeast-facing, and south-facing)

shows that their series signatures appear similar with

no obvious relationship to wind direction (Fig. 12).
northeast-facing, east-facing, southeast-facing, and south-facing) are

ion.



Table 1

Series signature correlation rho values

Spearman’s rho p (two-tailed)

Cheyenne group 0.746–0.983 0.000

Laramie group 0.801–0.962 0.000

Casper group 0.478–0.863 0.000

Cheyenne vs. Laramie 0.923 0.000

Cheyenne vs. Casper 0.496 0.000

Laramie vs. Casper 0.591 0.000

NE-facing vs. E-facing 0.952 0.000

NE-facing vs. SE-facing 0.927 0.000

NE-facing vs. S-facing 0.899 0.000

E-facing vs. SE-facing 0.966 0.000

E-facing vs. S-facing 0.909 0.000

SE-facing vs. S-facing 0.888 0.000

Spearman’s rho values used as a measure of similarity among

grouped slide paths and between grouped slide paths.
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Further, a correlation and scatter plot analysis shows

that they all correlate well with each other, with

rho = 0.89–0.97 (Table 1; Fig. 13). Thus, while sizable

differences exist between some groups of slide paths

based on their location within the ski area (i.e.,

comparing the Cheyenne and Casper groups), those

sizable differences do not exist between sets of ava-

lanche paths grouped by aspect and elevation. The

differences at the scale of individual slide paths and
Fig. 13. Probability–probability scatter plot for corresponding

search parameters between four high-elevation, high-wind aspect–

elevation category series signatures (northeast-facing, east-facing,

southeast-facing, and south-facing) do not display a direct relation-

ship to wind direction.
groups of slide paths shown in the previous section

must cancel each other out when averaged based on

aspect–elevation categories. These results do not sup-

port a direct relationship between wind direction

collected at a central location and slide path aspect

for numerous slide paths in complex terrain.

4.4. Wind correlation between summit and Raymer

wind sites

Our results indicate that patterns emerge due to

changes in wind direction. We suspect specific wind

flow patterns cause the observed slide path differ-

ences. To explore the possibility that specific wind

flow patterns exist, we plotted the hourly mean wind

direction for our two wind sites over two seasons (Fig.

14). When the two seasons were plotted separately,

the same distinct pattern was observed. These distinct

wind patterns suggest specific wind flow patterns

develop around the mountain according to specific

upper air wind directions. Font et al. (2001) found

similar results when they created aeolian susceptibility

maps that categorized small-scale wind patterns by the

aeolian features created by different local wind direc-

tions and then related this to a centralized wind

station. In their work, specific centralized wind direc-
Fig. 14. Two-season hourly average (2000–2002) direction–

direction scatter plot for the summit and Raymer wind sites

showing the consistent wind direction relationship between the two

wind sites.
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tions led to consistent patterns of wind erosion and

deposition as determined by the maps, which is

consistent with our findings.
5. Conclusion

Each of the three weather parameters we investi-

gated affected the avalanche probabilities differently.

New snowfall increases avalanche activity at all

scales. However, it does not play a significant role

in differentiating avalanche activity between individ-

ual slide paths. In contrast, wind speed does have a

differentiating effect, depending on the avalanche path

location. For example, high wind is important in the

creation of avalanches at lower elevations, which may

be due to a wind threshold needed for slab develop-

ment that only occurs at lower elevations with high

summit winds. Of the three weather parameters, wind

direction is the most important for differentiating

individual slide path avalanche probabilities, probably

because winds are being redirected by topography,

and are selectively loading specific avalanche paths.

The combination of our three weather parameters,

along with their series signature representations, pro-

vides new knowledge about selective wind loading at a

variety of scales, from individual avalanche paths to

groups of paths. Analyzing series signatures was crit-

ical for our analyses, which resulted in a high correla-

tion between adjacent slide paths and relatively low

correlations between different groups of slide paths. In

addition to this interpolated knowledge, we can use the

series signatures for a given path, or groups of paths, to

extrapolate the wind loading effect for highly unusual

situations. For example, we would be much more

concerned with avalanche paths in the Casper group

than the Cheyenne group if we had high winds out of

140–160j (SSE) associated with a large storm.

All of our high-elevation aspect categories exhibit

similar series signatures. At the scale of the entire ski

resort (107 m2), there is no obvious relationship

between avalanche activity based on aspect and wind

direction. This result is important to demonstrate that

wind direction measured at a central, high elevation

location does not necessarily directly relate to the

specific aspects being wind loaded. We are not im-

plying that aspect with respect to wind direction does

not play a role in avalanche development; clearly, at
the scale of individual paths, wind direction is criti-

cally important. However, since wind instrumentation

is typically located to measure an approximation of

the free air winds, specific topography around a given

path, and not simply aspect, is more important when

relating wind direction to avalanche activity.
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