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ABSTRACT: This research uses a two-dimensional cellular automaton model, with inputs taken from field 
data, to mimic snow slab avalanche release. The initial weak layer shear strength in the model follows a 
normal distribution with known mean and standard deviation. For each realization of the spatial 
distribution of weak layer shear strength, the model stresses all cells equally until the weakest cell 
fractures. The stress from the fractured cell is transferred to cells in the neighborhood of the fractured cell, 
possibly causing a propagation of the fracture and a model avalanche. The stochastic shear strength field 
makes the model avalanche size stochastic for statistically constant initial conditions. The standard 
deviation of shear strength strongly affects the proportion of model avalanches covering nearly all cells in 
the model, with low variability leading to a high proportion of large model avalanches, a result that 
supports previous conceptual models. Stress transfer properties in the model are also important for the 
proportion of large model avalanches, but no field data exist to constrain these values. Spatial auto-
correlation of shear strength is likely to be important for the size of model avalanches, and will be built 
into a future version of the model.  
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1. INTRODUCTION 

 
Numerous studies over the past two 

decades show that spatial variability in snow 
stability and snow structure exists at the slope 
scale (Conway and Abrahamson, 1984; Birkeland 
and others, 1995), and recent work quantifies 
those patterns (Kronholm and Schweizer, 2003; 
Logan and others, 2004; Kronholm and others, in 
press). However, the connection between spatial 
variability and the stability of a particular slope is 
still poorly understood, although Kronholm and 
Schweizer (2003) recently put forth a qualitative 
hypothesis. Knowledge of this relationship is 
critical for those assessing avalanche danger, but 
testing such hypotheses in the field is difficult due 
to the destructive sampling of slopes for spatial 
variability measurements and the hazards 
associated with sampling unstable slopes.  

Numerical experiments such as cellular 
automaton (CA) models are one way to overcome 
these difficulties and tie well into the stochastic 
approach suggested by Schweizer (1999). CA 
models involve a number of discrete cells which 
interact according a set of rules applied iteratively 
until a certain condition (e.g. fracture of all cells in 

the model) is met. Recently, CA models have 
been used to investigate avalanche release 
processes (Faillettaz and others, 2002; Zaiser, in 
press). However, these studies differ from 
approach presented here, since they were not 
initialized with field data, and they did not focus on 
the possible relations between snow cover spatial 
variability and stability.  

In this paper we use a simple two-
dimensional CA model to mimic dry snow slab 
release processes. Our goal is not to model all the 
details of how avalanches release, but to use this 
model to investigate how the size of model 
avalanches change with changing spatial 
variability of weak layer strength and changing 
slab properties. The model inputs are based on 
results from field measurements. We find that the 
standard deviation of the distribution plays a very 
significant role for the release probability of large 
model avalanches, with larger standard deviations 
leading to fewer large model avalanches. The 
model is also quite sensitive to the slab properties 
which control the stress transfer away from 
fractured areas of a slope. 

 
2. THE MODEL 

 
The two-dimensional CA model is similar to 

the Burridge – Knopoff model described by 
Ferguson and others (1998) for modeling 
earthquakes. For our purposes, the model can be 
thought of as two layers where the upper is the 
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slab and the lower is the buried weak layer. The 
model consisted of 100 x 100 cells denoted by the 
coordinates (x, y). Each cell was assigned a initial 
shear stress value ,

init
x yτ  and a shear strength value 

 so that its static stability could be calculated 

as 
,x yΣ

, ,
init

x y x y x yS ,τ= Σ . The initial shear strength 
values were stochastic and their simulation is 
described in detail below. In this paper we used a 
globally constant initial stress field, such that ,

init
x yτ  

was constant for all (x, y) and ( ), mininit
x y x yτ = Σ , . 

This initial setup ensured that the static stability 
Sx,y of the weakest cell was 1, causing it to 
fracture. After fracture of a cell the stress on that 
cell was transferred to any non-fractured 
neighboring cells within a certain distance thus 
possibly causing other cells to fracture as 
described in detail below.  

 
2.1. Stress transfer 

 
When the static stability of a cell at (i, j), Si,j 

≤ 1, the stress on the fractured cell was 
transferred to its neighbors without loss, except at 
the model boundaries where stress could ‘leak’ 
because all cells outside the model boundaries 
were assumed to be non-fractured. Stress was 
transferred equally well in the cross-slope direction 
(x) as in the up/down-slope direction (y).  

All non-fractured cells within a distance D of 
the fractured cell (called the neighborhood) 
received a fraction of the stress. Thus, a stress 
transfer distance of D = 1 gives 4 neighbors while 
D = 1.5 gives 8 neighbors. In this paper we 
investigate how the model avalanche size 
changes when changing D. Only non-fractured 
cells in the neighborhood received transferred 
stress. In case the fractured cell did not have any 
non-fractured neighbors within the neighborhood, 
no stress was transferred away from the fractured 
cell.  

The fraction of stress received by a cell from 
a fractured neighbor was taken to be a function of 
the inverse distance between the cells to a power 
P. In this paper we investigate how P affects the 
proportion of large avalanches. Applications of CA 
models in earthquake research generally use 
P = 3 (e.g. Ferguson and others, 1998). Cells in 
the neighborhood of (i, j) were stressed by the 
transferred stress  added to the initial shear 

stress 
,

trans
x yτ

,
init
x yτ .  

The two parameters D and P represent the 
stiffness of the slab in the model. 

 
2.2. Initial shear strength 

 
The marginal statistical distribution of weak 

layer shear strength values in the field has been 
investigated most thoroughly by Jamieson and 
Johnston (2001). They report on 28 data sets, 
each with 30 to 38 shear frame tests. Depending 
on the goodness-of-fit test used, they found that 
20 to 24 of the 28 data sets were normally 
distributed. They did not comment on the spatial 
variation of shear strength. Their values vary 
widely from 219 to nearly 6000 Pa, with a mean 
close to 2000 Pa. Föhn (1987) also found normally 
distributed shear frame results. Our own 
measurements with sets of more than 60 shear 
frame tests are also described reasonably well by 
a normal distribution (Logan and others, 2004). 
Based on these findings, all numerical 
experiments were made with a normally 
distributed marginal strength field with a specified 
mean Σ  = 1500 Pa and standard deviation σΣ  
(Figure 1a). In the model runs for this paper we did 
not introduce spatial auto-correlation in the initial 
shear strength field, so the shear strengths were 
completely randomly distributed over the model 
cells (Figure 1b).  
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Figure 1: a) Histogram of the theoretical (line) and actual (bars) initial shear strength distribution for one 
model realization. b) Spatial distribution of the initial shear strength for the realization shown in a). 

 
 

 
2.3. Numerical experiments 

 
The model was run a number of times, each 

time involving a new realization of the initial 
strength and stress fields. Each realization 
resulted in one avalanche which involved from 1 
(the initial fracture) to all 104 cells in the model. We 
refer to the number of cells that fractured during a 
realization as the model avalanche size A.  

A fracture spreads by propagating away 
from an initial fracture through its neighbor cells. 
The spatial distribution of shear strength values in 
the model cells, and not just the marginal 
distribution (non-spatial) is therefore important for 
A. Because the spatial distribution of the initial 
shear strength was stochastic, so was A. In order 
to investigate the model avalanche size 
distribution (and especially the non-frequent 
extreme outcomes) for varying standard deviations 

in the initial shear strength field, each model run 
consisted of 106 realizations of the strength and 
the stress fields with the same shear strength 
standard deviation. For each realization we 
recorded a) the model avalanche size A and b) the 
mean stability S  of all cells in the model at the 
time of the initial fracture.  

To test the sensitivity of the model to 
changing some of the input parameters, we ran 
three different numerical experiments (Table 1). In 
the first experiment we changed the standard 
deviation of the shear strength distribution and 
investigated how A changed. In experiment 2 the 
effect of the distance D over which the stress was 
transferred was studied. In the last experiment we 
investigated the effect of changing the decay 
power P on A.  

 
 

Table 1. Specifications for the numerical experiments. All runs in an experiment included 106 realizations 
on 100 x 100 cells. Values marked in bold were varied through the experiments.  

 
Experiment Marginal distribution Stress transfer 

 Mean Σ  (Pa) Standard deviation σΣ  (Pa) Distance D (units) Decay power P 
1 1500 100 – 175 1.5 3 
2 1500 110 1 – 45 3 
3 1500 120 3 1 – 16 



 
 

3. RESULTS 
 
The model avalanche sizes for all model 

runs showed a tendency to either remain below a 
certain threshold Acrit, typically around 25 cells, or 
to become large, spreading to most of the 104 cells 
in the model. Only few realizations in a model run 
produced model avalanche sizes between the 
threshold Acrit and the full model size. Two typical 
runs showing this behavior are shown in Figure 2. 
A linear log-log relationship covered the small 
range of model avalanche sizes between 1 and 
Acrit. Previous studies using CA models have 
shown similar relationships (Faillettaz and others, 
2002; Zaiser, in press), and several authors have 
documented linear log-log size/frequency 
relationships for field measurements of 
avalanches (Birkeland and Landry, 2002; Faillettaz 
and others, 2002; Rosenthal and Elder, 2003).  

Changing the standard deviation in 
experiment 1 primarily changed the proportion of 
large model avalanches while the threshold Acrit 

did not vary much. We therefore investigated the 
effect on the proportion of ‘large’ avalanches that 
the model runs produced at the different standard 
deviations (Figure 3). All model avalanches that 
covered > 9500 cells (95%) in the model were 
considered ‘large’. Changing the definition of 
‘large’ to anywhere from 85% to 99% had no effect 
on the results.  

The proportion of large avalanches 
appeared very sensitive to the standard deviation 
of the shear strength distribution, especially for low 
standard deviations (Figure 3a). In the model 
coefficients of variation of the shear strength 
distribution above 10% rarely produces large 
avalanches. The proportion of large model 
avalanches is also very sensitive to the stress 
transfer distance D (Figure 3b). For stress transfer 
distances above 3, the model rarely produces 
large avalanches with the settings used in 
experiment 2.  
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Figure 2: Log-log plots of the size distribution for model avalanches for typical runs of 106 realizations with 
a standard deviation of a) 120 and b) 160. The best fit linear log-log relationship is shown for A ≤ 25. 
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Figure 3: The proportion of large model avalanches (> 95% of the model cells) after changing a) the 
standard deviation of the shear strength distribution, b) the stress transfer distance and c) the decay 
power. 

 
As the decay power P increases, the 

proportion of large model avalanches increases up 
to a maximum level that is approached 
asymptotically (Figure 3c). Increasing P causes 
the redistributed stress to be focused on a smaller 
neighborhood around a fractured cell, thus 
effectively decreasing the stress transfer distance 
D to 1 for high values of P.  

A relationship exists between the mean 
model stability S  and the model avalanche size A 
(Figure 4). This reflects the distribution of shear 

strength values; when the weakest shear strength 
in a realization is low, the initial shear stress in the 
model is also low. Large model avalanches 
generally happen when the lowest shear strength 
in the model is high, leading to a large loading of 
all cells in the model.  

Figure 4 also shows that the mean model 
stability at the first cell fracture is always > 1, 
suggesting that the mean stability of the model 
does not predict the stability of the model as a 
whole.  
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Figure 4: Mean (wide bar), maximum, and 
minimum (narrow bars) values of mean model 
stability at the first fracture for all avalanche sizes. 

 
4. DISCUSSION 

 
The stochastic initial shear strength values 

mean that the size of the model avalanches is also 
stochastic even for statistically constant initial 
conditions (Figure 2) as already noted by Faillettaz 
and others (2002). The stochastic strength values 
can cause large model avalanche to be released 
from weak cells although the mean stability of the 
model cells is well above the critical level (Figure 
4), what Zaiser (in press) calls a ‘knock-down’ 
effect. This has been shown for landslides 
(Hergarten, 2002), and is also true for actual 
avalanche slopes; McClung (2002) emphasizes 
targeted sampling and searching for unstable 
conditions rather than attempting to define the 
mean stability of a slope when assessing stability, 
and our model results support this important point. 

While the weakest cell in any model 
realization is important for the initial fracture, the 
strength of its neighbors and the rest of the cells 
(i.e. the spatial structure) control whether the initial 
fracture will propagate. When the standard 
deviation of the initial shear strength distribution is 
low, all cells in the model will be closer to fracture 
as the initial fracture takes place. The transferred 
stress from the initially fractured cell thus has a 
higher chance of causing large avalanches than 
for an initial distribution with a higher standard 
deviation, where the mean model stability will be 
higher (Figure 3a). Although the relationship 
between the model and real avalanche slopes is 
not straightforward, this result supports the 
hypothesis put forth by Kronholm and Schweizer 
(2003) that for a specific mean initial shear 

strength the standard deviation is critically 
important for slope stability.  

Most observed values of standard 
deviations or coefficients of variations (e.g. 
Jamieson and Johnston, 2001) are not likely to 
produce large avalanches if used as input in the 
CA model. Since large loads (e.g. avalanche 
researchers) cannot be added to critically unstable 
avalanche slopes without them failing, this 
supports the idea of a direct relation between the 
model and real avalanche slopes. However, more 
work is needed to investigate this relationship 
because the model is sensitive to many factors, 
including the size of the grid.  

The spatial dimension of our model is 
scaled indirectly through the shear strength values 
which were measured with a 250 cm2 shear frame. 
However, because the model scales the absolute 
value of the initial shear strength with an initial 
shear stress, only the coefficient of variation of the 
shear strength values is important, and not the 
absolute values. It is therefore not possible to 
relate the model size of 100 x 100 cells to a 
specific scale in nature.  

Zaiser (in press) found that the maximum 
shear strength value was important for the release 
of large avalanches in his 1-dimensional model 
because the strong cells blocked a fracture from 
propagating past it. This is not the case in our 2-
dimensional model because a spreading fracture 
can move around a single cell or an area of high 
shear strength. Such ‘islands of safety’ have been 
observed to be standing back on a slope after a 
slab release. To explain such observations a 2-
dimensional model is necessary.  

The implemented model was sensitive to 
the three parameters tested here: standard 
deviation of the initial shear strength σΣ , the 
stress transfer distance D and the decay power P 
(Figure 3). Running the model with the correct 
values of these parameters is therefore important. 
Typical values of σΣ  and mean shear strength Σ  
were estimated from field measurements, but thus 
far only a few studies have attempted to measure 
the stress transfer properties of snow (e.g. 
Camponovo and Schweizer, 1997) and we are 
aware of no data to help determine the exact value 
of P and D. Another problem with the current 
implementation of the slab properties in the model 
is that they are spatially constant in the model, 
while field measurements show that slab 
properties as well as properties of individual layers 
in the slab may vary considerably over a slope 
(Conway and Abrahamson, 1984; Birkeland and 
others, in press; Kronholm and others, in press). 



Spatial variations in slab properties must be 
accounted for in a more realistic model.  

 
5. CONCLUSIONS 

 
This paper presents a CA model that 

attempts to mimic some avalanche release 
processes. The model is used to explore how 
spatial variations in shear strength and changing 
slab properties might affect slope stability. The 
model demonstrates sensitivity to changes in the 
standard deviation of shear strength values and to 
changes in stress transfer properties of the slab. 
Lower shear strength standard deviations and 
stress transfers over shorter distances are more 
likely to produce large model avalanches. Though 
our model only approximates avalanche release 
processes, our results agree with previous 
conceptual models relating snow cover variations 
and slope stability. Finally, the spatial structure of 
the initial shear strength must be important for the 
spread of fractures in the model. To investigate 
this further, future work must simulate spatial auto-
correlation in the initial shear strength values in 
the model.  
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