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ABSTRACT 

The objective of this study was to investigate the importance of topography in 
controlling the geographic patterns of deep snow temperature gradients within a seasonal 
snowpack.  Demonstration of the relative importance of topography in influencing spatial 
snowpack temperature gradients could aid future modeling of snow layer development 
and behavior, with benefits for avalanche and snowmelt modeling.  This spatial, or 
geographic, analysis of the relationship of snow temperature gradient patterns to 
topography utilized landscape-scale modeling in an attempt to identify responses in 
complex, mountainous terrain.   

During the snow season of 2001-2002, 30 temperature profiles were sampled on each 
of nine sample days.  Profiles were collected using a portable snow temperature profile 
probe.  These data were used to calculate temperature gradients for each profile.  
Topographic attributes were derived from a digital elevation model using a geographic 
information system.  Linear regression models were used to quantify the relationships 
between the topographic variables and snow temperature gradient patterns in the spatially 
distributed dataset, and to demonstrate the relative importance of the terrain variables in 
determining spatial patterns of temperature gradients.  Analysis showed a complex 
pattern of relationships between temperature gradients and the static topographic 
variables.  A qualitative assessment of weather variables recorded onsite suggested the 
utility of using more dynamic variables such as weather data in future modeling efforts. 
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INTRODUCTION 

Snow temperature is a dominant variable in many physical processes in a seasonal 

snowpack.  The snow temperature through the depth or profile of the snowpack reveals 

much about both the physical state of the snowpack and its likely future behavior.  

Temperature gradient-driven metamorphic processes within a cold snowpack can 

stabilize or weaken individual layers, and hence determine the likelihood of avalanche 

activity.  The temperature stratigraphy of the snowpack directly influences a mountain 

watershed's hydrology, and affects the ability of the snowpack to buffer extreme melt 

events.  The spatial geography of snow temperature gradients therefore influences 

snowmelt patterns through controls on snow layer texture (Blöschl et al, 1991), and 

influences avalanche hazard through the development of weak layers at many levels in 

the snowpack (Armstrong, 1976; McClung and Schaerer, 1993; Clarke and McClung, 

1999).  This project measured spatial variation in snow temperature gradients, and 

explored regression relationships between these gradients and the topographic attributes 

of the terrain in which they were measured. 

Spatial and temporal variation in snow properties, including temperature gradients, 

present significant challenges for operational modeling of and research into snowcover 

processes such as avalanche forecasting and snowmelt prediction.  Often the variation 

observed is recognized, but is not addressed explicitly; rather the observer or modeler 

relies on their experience to assess the representativity of a measurement or the 

applicability of a model.  The problems caused by this variation have often been avoided 
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by observing snow phenomena on scales where the variability is relatively small or 

quantifiable, such as an entire mountain range (Armstrong and Armstrong, 1987) or the 

individual snow crystal (Colbeck, 1982; Miller, 2002).  However, most modeling efforts 

and operational forecasting function on scales intermediate to those above.  Variation in 

snow properties between adjacent slopes, or within a single basin or watershed often 

provides the crux of the analysis (Blöschl et al., 1991; Birkeland et al. 1995; Cline et al., 

1997; Landry 2002). 

Topography exerts a significant control on spatial and temporal variation in snow 

temperature patterns (McClung and Schaerer, 1993; Gerrard, 1990).  The amount of solar 

radiation incident on a snow surface varies with slope aspect, and will vary within a given 

aspect as a function of slope angle.  Elevation influences the amount of snowfall through 

both orographic effects and the ambient air temperature, influenced by the environmental 

lapse rate (Armstrong and Williams, 1986).  Topographic profile and planform curvature 

are other measures of topography that could prove important, as they describe the relative 

"sharpness" or exposure of the terrain.  Vegetation and ground surface material may also 

have significant effects on snow temperature and snow temperature gradients. 

Solar input and air temperature are directly related to snowpack temperature (Gray 

and Male, 1981).  Both duration and intensity of sun exposure, as well as air temperature, 

increase from the winter solstice until the summer solstice.  Additionally, as the melt 

season approaches and snow temperatures continue to increase, temperature gradients 

within the snowpack tend to decrease (McClung and Schaerer, 1993).  Therefore, snow 

temperature gradients show a relationship to date of season. 
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An exploration of the relationship of snow temperature patterns to topography, 

utilizing spatial analysis and landscape-scale modeling, can potentially explain 

temperature variability in complex terrain.  Quantification of the relationship between 

temperature gradients and topography could aid in explaining some of the variation 

observed in snow properties.  Ferguson (1999) suggested that Geographic Information 

System (GIS) analysis of digital terrain data be used to establish a topographic attributes-

based modeling approach for snowmelt prediction.  Specifically, Ferguson (1999, p. 220) 

suggested “clear possibilities of using GIS tools and gridded Digital Elevation Model 

(DEM) data to set up zonal models distributed not just by elevation but also slope aspect 

and other topographic controls of snow accumulation and snowmelt.” 

Knowledge of the relative importance of topographic factors in influencing 

snowpack temperature gradient patterns through space and time could aid in development 

and refinement of snowmelt and avalanche forecasting models.  If snow temperature 

gradients do indeed exhibit a significant correlation to topographic attributes, the result 

would support the conventional beliefs about terrain influence on snow temperatures.  An 

assessment of the spatial variability of snow properties (i.e. temperature) as a function of 

terrain variables could also help link the spatial resolution of a theoretical (physical) 

model with the predictive ability of an operational, empirical model for snowmelt or 

avalanche prediction, combining process representation with reasonable data 

requirements. 
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RESEARCH HYPOTHESES 

The objective of this project was to observe variations in snow temperature gradients 

within a mountain basin, and to use topographic variables in an attempt to explain that 

variation.  Specifically, this project tests the following hypotheses based on previous 

literature: 

1. Snow profile temperature gradients will show a significant correlation to the 

topography.  The largest temperature gradients will be observed on highest 

elevation, north-facing slopes, while the smallest temperature gradients will 

be found on south-facing slopes at all elevations. 

2. The magnitude of snow profile temperature gradients will show a significant 

correlation to the date within an individual snow season.  The largest snow 

temperature gradient values will occur early in the snow season and will 

decrease towards late season.   

Hypothesis #1 is based on the atmospheric lapse rate, which predicts the occurrence 

of lower air temperatures at higher elevations, which would affect snow surface 

temperatures at these locations.  It is also based on the differences in solar input among 

differing aspects.   

Hypothesis #2 relies upon the general increase in air temperature throughout the 

season, as well as an increase in snow depth.  These two factors combine to produce 

lower temperature gradients, as the temperature difference between the ground surface 

and air is distributed over a deeper snow cover.   
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LITERATURE REVIEW 

This review is an examination of previous research concerning snow temperature 

gradients and associated applications.  Previous investigators (e.g. Akitaya, 1974; 

Colbeck, 1982)  have established that temperature gradients are a driving force 

controlling dry snow metamorphism, with important ramifications for avalanche hazard  

via the development of weak layers, and for meltwater drainage, by influencing snow 

texture (Kattelmann, 1984).  Other research (e.g. Armstrong, 1985; Birkeland, 1998) has 

shown that diurnal fluctuations in near-surface snow temperatures produce large 

temperature gradients over small changes in depth.  Spatial variability in snow 

temperature gradients has been linked to topographic variables (Dexter, 1986), and 

requires a consideration of the scale of observation relative to the scale(s) upon which the 

temperature gradients change (Blöschl, 1999).  It is in the context of these issues that this 

project was designed to explore the topographic influence on the spatial variability in 

snow temperature gradients. 

Temperature Gradients and Dry Snow Metamorphism  

Temperature gradients in a snowpack generally result from a temperature differential 

between the air and the ground surface.  Ground temperatures are typically at or near 0°C 

in midlatitude mountain environments where permanent snow or ice is not present 

(McClung and Schaerer, 1993).  Winter air temperatures in this environment often drop 

below 0°C, creating a temperature gradient within the snowpack, between the ground and 
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air.  The magnitude of this gradient also depends upon the thickness of the snow cover 

and the character of the snow layers contained within.  Local variations in topography, 

vegetation, or surface roughness (i.e. the presence of boulders or rocky outcrops) can 

affect the flow of heat energy through the snowpack and thereby affect snow 

temperatures and temperature gradients (Dexter, 1986; McClung and Schaerer. 1993; 

Aarons et al., 1998). 

Snow temperature gradients can be measured in different ways, depending on the 

purpose in studying them.  Often, for coarse-scale spatial or temporal assessment, a 

gradient over the full snow depth is determined from a measured air temperature and an 

assumption that the ground temperature is 0°C.  This type of measurement is often used 

for characterization of snow climate effects (Armstrong and Armstrong, 1987; Mock and 

Kay, 1992; McClung and Schaerer, 1993).  When studies call for the interpretation or 

prediction of snow crystal metamorphism, a smaller-scale gradient, usually on the order 

of a 5 to 10cm interval, is commonly used (McClung and Schaerer, 1993).  Temperature 

gradients near the snow surface can be many times greater than are commonly found 

deeper in the snowpack (Birkeland, 1998).  To measure near-surface temperature 

gradients, sensors may be arrayed over intervals smaller than a centimeter (Birkeland et 

al., 1998). 

The magnitude of a temperature gradient within a snow layer directly affects the 

magnitude of the vapor pressure gradient within that layer, and consequently the rate and 

type of snow crystal metamorphism (Armstrong, 1985; Dexter, 1986).  It has been found 

to be the controlling factor in dry snow metamorphism (McClung and Schaerer, 1993).  
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Large temperature gradients produce rapid crystal growth and the associated "kinetic" or 

"faceted" forms, while slower growth rates stem from smaller temperature gradients and 

tend to produce rounded, well-bonded snow grains (McClung and Schaerer, 1993).  

Armstrong, (1977) found that a temperature gradient of 10 °C/m produced a sufficient 

vapor pressure gradient to produce faceted crystals, given the conditions of his study in 

the San Juan Mountains in Colorado, and this is often cited as the boundary between 

faceting and rounding growth rate regimes.  Other factors, such as snow temperature and 

density, also have a strong effect on snow metamorphism; however, the magnitude of the 

temperature gradient remains the most critical influence (Miller, 2002). 

A conventional assumption holds that the highest temperature gradients are found on 

high elevation, north-facing (Northern Hemisphere), shaded slopes, where there is less 

solar input than sun-exposed slopes, and colder air temperatures due to the standard 

atmospheric lapse rate (Dexter, 1986; McClung and Schaerer, 1993).  LaChapelle and 

Armstrong (1977), however, found that various combinations of air temperature and 

snow depth resulted in similar temperature gradients on north-facing and south-facing 

aspects, at similar elevations.  Dexter (1986) observed highest temperature gradients at 

lower elevations on south-facing slopes, which he attributed to the shallower snow depths 

at those locations.  Other factors, such as areas of increased heat flow or conduction from 

the ground surface, can influence the distribution of temperature gradients on a scale 

smaller than an entire slope (McClung and Schaerer, 1993; Tremper, 1995; Aarons et al., 

1998).  Snow temperatures and temperature gradients are also influenced by forest 
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canopy cover, which limits incoming shortwave radiation traps outgoing longwave 

radiation, dependent on the density of the canopy (McClung and Schaerer, 1993). 

Diurnal Temperature Fluctuations 

The daily cycle of air temperatures produces fluctuations in snow temperatures, the 

magnitude of which diminishes with increasing depth in the snowpack (McClung and 

Schaerer, 1993).  Snow depths greater than about 30 cm show little to no diurnal snow 

temperature change, due to the insulating capacity of the overlying snow (Armstrong, 

1985).  The near surface, diurnal temperature fluctuations are capable of producing large 

or extreme temperature gradients over small distances, driving rapid faceted crystal 

growth (Birkeland, 1998).  These faceted crystals, if buried by subsequent snowfall, can 

form persistent weak layers leading to increased avalanche hazard (Birkeland et al., 

1998).  Warm air temperatures can form melt-freeze layers at or near the surface, 

affecting crystal growth (Birkeland, 1998) and later influencing meltwater runoff (Marsh 

and Woo, 1984a; Kattelmann and Dozier, 1999). 

Fukuzawa and Akitaya (1993) examined growth of near-surface faceted crystals, and 

found that strong temperature gradients in the 100-300 °C/m range drive the rapid crystal 

growth.  Meteorological conditions leading to these extreme gradients were also 

examined, with results indicating the largest temperature gradients were associated with 

clear-sky conditions permitting the escape of longwave radiation from the snow surface. 

The formation of a layer of near-surface facets and nearby avalanche activity was 

documented by Birkeland et al. (1998).  They measured temperature gradients greater 
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than 200 °C/m in the top 5 cm of the snowpack.  Gradients 15-20 cm below the surface 

were considerably weaker.  The faceted layer created by these gradients was observed to 

exist over a wide geographic area (on the order of 50 km).  Avalanche activity on the 

faceted crystals was reported at various elevations and on all aspects, implying that the 

conditions that created this weak layer were not differentiated by topographic influences.   

Hardy et al. (2000) reported observations of near-surface faceted crystals in a high 

elevation, tropical climate.  They attributed the crystal development to unique energy 

balance conditions in that environment, consisting of high solar input at high elevation, 

low albedo snow cover, and rapid longwave cooling associated with the thin atmosphere 

at high altitude. 

Snowmelt Processes and Wet Snow Metamorphism 

Snowmelt processes, like temperature gradients and dry snow processes, have been 

shown to be related to the nature of the topography involved (Coughlan and Running, 

1997; Carey and Woo, 1998).  While melt processes are not directly temperature gradient 

dependent (except on the microscale), the previous temperature profile history of the 

snowpack combines with terrain controls to affect snow texture, and, therefore, influence 

spatial melt patterns (Kattelmann, 1984). 

Isothermal snow is defined as snow at a temperature of 0°C in equilibrium with free, 

liquid water (Marsh and Woo, 1984; McClung and Schaerer, 1993).  An isothermal 

snowpack (or any part of a given snowpack deemed isothermal) is 0°C throughout, has 

free water at all depths, and contributes to the snowmelt hydrograph of its given basin 
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(Michaels, 1983).  A snowpack becomes isothermal differentially; therefore, isothermal, 

or ripe, snow can exist without having an entirely ripe snowpack. 

An isothermal snowpack is the result of melt metamorphism, also called maturing 

(Colbeck, 1977), aging, or ripening.  This process is initiated by the introduction of liquid 

water into the snowpack (either from snowmelt or rainfall), which can be distributed to 

the full-depth of the snowpack by the propagation of water through pore spaces and along 

strata within the snow structure (Kattelmann and Dozier, 1999).  The movement of water 

within the snowpack is largely controlled by the relative texture of different snow layers 

(Kattelmann, 1984).  Large-grained snow, like that which has been influenced by a large 

temperature gradient, exerts less capillary pressure on meltwater than does smaller-

grained snow.  At layer boundaries where small-grained snow overlies large-grained 

snow, meltwater may be impounded in the small-grained snow and move laterally until a 

suitable penetration location (i.e. smaller grains or a previously established meltwater 

channel) allows the water to progress downward through the snow strata.  Therefore, the 

spatial patterns of snow temperature gradients during the winter, by exerting a control on 

the snow texture, can have an effect on ripening and melt runoff patterns in the 

subsequent melt season. 

Snowpack ripening has been shown to depend on aspect, by Carey and Woo (1998).  

In a study in the Canadian subarctic, they found a time difference in snow ripening of 10 

days between north- and south-facing slopes, and attributed this largely to differences in 

solar radiation receipt on these slopes. 
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Snow depth and snowmelt are known to vary with elevation, an effect addressed in all 

snowmelt models (Ferguson, 1999).  In a study of snow depletion date (the date at which 

the snowcover is entirely melted at a given site), Coughlan and Running (1997) found a 

codependency on site orientation (aspect) and elevation.  Furthermore, their results 

showed that vegetation cover was more important than aspect as a snowmelt variable, due 

to the vegetation effects on shortwave energy input.  Snow depletion and snowpack 

ripening were found to share common variables, such as vegetation cover (leaf-area 

index) elevation, and aspect (Coughlan and Running, 1997; Carey and Woo, 1998).   

The presence of vegetation above the snowcover can distort or mute topographic 

snowmelt effects.  Coughlan and Running (1997) determined that a leaf-area index 

variable was the most important variable for modeling snow accumulation and melt at 

higher elevations.  Furthermore, the type of vegetative cover is important if its effect on 

snow temperature and melt patterns is to be determined.  Gary and Coltharp (1967) found 

that a spruce-fir forest type held snow 4-5 weeks longer than other tree and grassland 

cover types.  They also noted large differences in snow depletion date based on aspect.  

Hardy et al. (1990), studying logging effects, and Skidmore et al. (1994), studying 

fire effects, reported that snow accumulation decreased as canopy density increased, for 

their studies in southwest Montana.  Additionally, they related canopy density to snow 

ablation, with high canopy densities correlating to low ablation rates, and the highest 

ablation rates occurring in low canopy density areas. 
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Avalanche Forecasting and Snowmelt Modeling 

Computer-based avalanche forecasting models vary in their approach to the problem 

of accurate forecasting, due to the scale of forecast required and the type of data available 

for input.  Several tools attempt to model the evolution of the snowpack structure, using 

high-resolution meteorologic data, such as CROCUS (Durand, et al., 1999) and 

SNOWPACK (Lehning et al., 1999).  Temperature and temperature gradient data are 

critical to these models, which attempt to predict the formation of different snow crystal 

types in the snowpack.  Since these models operate on the point scale, some estimation of 

temperature gradients based on terrain relationships is needed if this data is to be 

available for applying the models at a regional scale. 

Judson et al. (1980) included a temperature gradient parameter in their "process-

oriented" avalanche danger model.  It was implemented in order to simulate the 

development of faceted crystals.  The thickness of the faceted layer was then factored 

into the overall avalanche danger assessment. 

In response to concerns about the extreme heterogeneity that troubles energy-

balance snowmelt models, alternatives to purely physically based models have been 

proposed (Andersson, 1992; Ferguson, 1999).  A combination of measured snow 

variables and inclusion of topographic parameters, such as aspect, as modifications to 

existing conceptual models could prove effective in simulating melt patterns.  According 

to Andersson (1992), future model development should strike a balance between 

conceptual and physically based models, utilizing simple inputs and implicit variable 

representation while working at relatively high spatial and temporal resolutions.  
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Ferguson (1999) recommended incorporating multiple topographic variables such as 

elevation and aspect to enhance conceptually based models.   

The ability to predict snowmelt response (including ripening patterns) depends on 

the understanding of the relative importance of melt-controlling variables, particularly 

those related to topography (Michaels, 1983).  The scale used must have a sampling grid 

or mosaic of a size small enough to detect changes due to topographic influence.  

Variability of snowpack attributes such as density, grain types, porosity, and finger flow 

paths within grid elements must be implicit in the size of mosaic chosen (Blöschl, 1991).  

Field measurements should include multiple elevations, slopes and aspects, and be 

designed to statistically represent grid size (Blöschl et al, 1991).  A model of this type 

could find application in many aspects of study and development in mountainous regions, 

“including ski development, avalanche forecasting, montane ecology and climate 

change” (Ferguson, 1999, p.220). 

Spatial Variability 

Spatial variability in the seasonal snow cover’s many properties and scales has been 

noted.  Dexter (1986) tested the observations of previous researchers involving 

elevational and aspect controls on depth, snow-water equivalent (SWE), temperature, 

temperature gradient, and density.  During one field season in the Colorado Front Range, 

Dexter noted that high elevation, north-facing slopes remained coldest for the duration of 

the season.  The steepest temperature gradients occurred in the early portion of the snow 

season, during cold air and shallow snow conditions.  For the majority of the season, the 
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low elevations held the steepest temperature gradients, likely due to shallower snow 

depths at these locations. 

Birkeland et al. (1995) examined spatial variation in snow resistance on single slopes.  

They found that while snow depth and average temperature gradient were important in 

determining snow resistance, these variables were in turn controlled by complex 

relationships with wind, vegetation, and microtopography.   

Variability in SWE was shown to change with elevation (Ingersoll et al., 1996), with 

high elevation sites showing dramatically more spatial variation than lower, forested 

sites.  Based on their results, they suggest dividing the basin into zones of similar terrain, 

thereby enabling different sampling schemes based on the anticipated level of variation in 

the snowcover for each zone. 

Elder et al. (1998) used a regression tree analysis to estimate the spatial variability of 

SWE in an alpine basin.  They found deepest snowpacks on high elevation, north-facing 

slopes.  Additionally, sites receiving highest net radiation input had lower snow depths.  

They also found a slope threshold at around 37° that separated higher and lower 

accumulation zones. 

Conway and Wilbour (1999) addressed temporal variation in snow stability with their 

stability index model by including the rate of snow accumulation.  It was recognized, 

however, that complex interactions between wind and topography made accurate 

accumulation predictions difficult.   

Birkeland (2001) considered spatial variation in snow stability over the mesoscale, 

comparing terrain, snowpack, strength, and stability data.  Results were mixed, showing 
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different relationships between sampling days, which was attributed to differing weather 

patterns.  Observed spatial patterns at the regional scale were confounded by microscale 

variations in snowcover properties, attributed to terrain fluctuations.  However, some 

generalizations were possible, indicating a differing degree of predictability based on the 

appropriate scale of observation. 

The research cited above represents most of the efforts addressing spatial variation in 

various snow properties.  In all cases, relationship with or dependence on topography was 

addressed or noted.  While Dexter (1986) is the only study specifically addressing 

temperature gradients, it can be inferred that since topographic effects are important 

influences on the spatial variation in snow properties, spatial patterns of snow 

temperature gradients must also be influenced by topography to some degree. 

Scale Issues 

Issues of scale are inherent in studying snow processes.  Small areas studied in detail 

may exhibit extreme heterogeneity, while larger areas studied in less detail may allow for 

identification of patterns and homogeneity (Blöschl, 1999).  A more accurate 

understanding of the processes of interest, however, would integrate several scales of 

observation, including the linkages between the scales (Hägeli and McClung, 2000).  To 

study the geography of snowpack temperature gradients within a given basin, the scale of 

observation must be of sufficient detail or resolution to measure differences in inputs (i.e. 

elevation, aspect, slope, or snow depth) yet of low enough resolution to exclude 

microscale effects such as grain size and type differences, small variations in water flow 



 16

paths, density horizons, and differences in porosity.  In other words, topographic effects 

must be addressed explicitly, while heterogeneity in the microscale must be implicit in 

the size of the observational unit chosen (Blöschl et al, 1991). 

The relationship between microscale snow structure, macroscale climatic factors, and 

mesoscale avalanche formation has been examined (Armstrong, 1977; Jamieson and 

Johnston, 2001).  They observed the importance of including microscale snow 

information in response to observations of nonlinear interactions between weather 

patterns and avalanche formation, with the size of avalanche showing little correlation to 

the size of precipitation event. 

Temperature gradient data is categorized as Class II (snowpack) data, of intermediate 

level entropy between Class III (meteorologic data) and Class I (snow stability data) 

(McClung and Schaerer, 1993).  Therefore, temperature gradient data, which are point 

data, could only be applied at one scale of observation and analysis (the scale at which 

they are measured) unless a scaling factor is applied (Blöschl, 1999; Hägeli and 

McClung, 2000).  Topographic data, however, spans several scale orders, and thus holds 

potential as a scaling factor, if a relationship between temperature gradients and 

topography can be known. 
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METHODS 

In order to assess spatial variability in snow temperature gradients, some measure 

of that variability had to be obtained.  This required a study site with a wide variety of 

potential sample locations, as well as easy, consistent access.  Additionally, a method of 

sampling was needed that enabled rapid data collection and portability of measuring 

devices from site to site.  Once the spatial dataset was obtained, correlation and 

regression procedures were applied.  Finally, weather data collected within the study area 

were qualitatively analyzed to explain some of the regression relationships developed. 

Study Area 

The study area used for this project is a mountain basin referred to as Wolverine Basin, in 

the Bridger Mountains of southwest Montana (Figure 1).  The basin is located roughly 

one kilometer north of Bridger Bowl Ski Area, 15 miles north of Bozeman.  This study 

area was chosen for several reasons, but of first consideration was ease and safety of 

access.  The Bridger Bowl Ski Patrol provided ski lift access and authorized crossing the 

northern ski area boundary.  This accessibility facilitated installation of the weather 

instrumentation, promoted safety for the data collectors, and allowed a higher frequency 

of collection dates than would be possible with a more remote site.  Second, the study 

area provided a variety of slopes, aspects, and elevations as required for this project.  

Third, other researchers were using this area and adjacent sites, providing both a margin 

of safety as well as opportunities for collaboration in data collection efforts. 



 18

Figure 1:  Wolverine Basin, in the Bridger Mountain Range, Southwest Montana, USA. 
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The Bridger Mountains are in an intermountain snow climate (Mock and 

Birkeland, 2000), often exhibiting characteristics of both continental and maritime snow 

climates.  Lowest air temperatures generally occur December through February, and 

maximum precipitation and snowfall typically occur in February and March (Table 1). 

 

Table 1: Bridger Bowl Ski Area weather data summary, 1968-1995 (WAN, 1995) 

 

Maximum 
Daily Air 
Temperature 
(°C) 

Minimum 
Daily Air 
Temperature 
(°C)  

Average 
Daily Air 
Temperature 
(°C) 

Average 
Monthly 
Snowfall 
(m) 

Average 
Monthly 
Precipitation 
(mm) 

November 0.0 -7.4 -3.8 1.22 107.4 
December -4.9 -19.1 -12.0 2.68 168.3 
January -3.2 -10.9 -7.1 2.88 178.9 
February -1.1 -10.0 -5.7 2.99 204.6 
March 1.5 -7.9 -3.2 3.50 252.9 
Total    13.26 912.1 

Instrumentation 

Probe Design 

I designed the Snow Temperature Profile Probe (STPP) to enable rapid sampling 

of a large number of temperature profiles with minimal site disturbance.  A direct digital 

interface was desired to speed up sampling and to ease data transfer and processing.  The 

final design was lightweight and field portable, and was interfaced with a handheld, 

personal computer. 



 20

The probe was 2.3 m long, constructed of clear polycarbonate plastic, with an 

aluminum cutting tip for snowpack penetration.  Direct-to-digital temperature-sensing 

chips (Dallas Semiconductor DS18s20) extend through the plastic at 10cm intervals, 

beginning at 10cm from the ground surface, and continuing up the probe to 2 meters from 

the cutting tip.  The interior of the probe was filled with white foam beads, in order to 

insulate each sensor from internal temperature conduction by minimizing air circulation 

and solar input.  The chips were wired to a processing unit (Spiderplant Corp., Waltham, 

MA), which communicates directly with the handheld PC. 

Computer Interface 
The temperature sensor processing unit required a serial port interface (RS-232) 

to communicate with any platform compatible with that protocol.  For the purposes of 

this project, I chose a Compaq iPAQ 3650 for field use due to its size and programming 

versatility.  I designed a program in Visual Basic for Applications in MS Excel 

(Microsoft Corp., Seattle, WA) to communicate with the probe device.  The program 

prompted the user for manually measured variables, including site number, snow depth, 

snow surface temperature, air temperature, and any additional comments.  It then 

commanded the probe unit to sense temperatures, read data from the probe, and wrote the 

data to a text file.  The data text file was then available to import into a spreadsheet for 

data processing. 
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Probe Testing and Calibration 
The accuracy of the probe was critical to the interpretation and analysis of the 

field data.  To this end, it was necessary to calibrate the probe sensors in two respects: 

accuracy of the measured temperatures and time required for equilibration.  The 

measurement accuracy had a direct effect on the reliability of the field data, while the 

equilibration time was necessary for development of the sampling routine. 

The STPP was calibrated in an ice bath at 0°C.  This was accomplished by the 

construction of a shallow trough made of PVC drainpipe.  The trough was filled with ice 

water, measured with dial-stem and digital thermometers to be at or very near 0°C.  

While the trough was being filled, the probe was allowed to equalize to the ambient air 

temperature outdoors, approximately -3°C.  The probe temperatures were continuously 

logged during equilibration and testing. 

Once the trough was filled and the probe equalized to air temperature, the probe 

was inserted in the trough, with the individual sensors immersed in the ice bath.  The 

insertion time was noted.  The probe was allowed to remain in the bath for a full 20 

minutes. 

I analyzed the log file for equilibration temperatures and time to equilibration.  

The final, stable temperatures were noted, so that they may be used to adjust the readings 

from the field datasets.  It was determined that the sensors equilibrated to within 0.1°C of 

the final stabilization temperature within 3 minutes of immersion (Figure 2). 

.
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Figure 2:  Temperature Probe calibration data.  Each plot line represents a single 
temperature sensor. 
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Use of the Probe 
The point sampling routine using the STPP was as follows:  First, the probe was 

inserted into the snowpack perpendicular to the snow surface.  It was inserted in this 

manner in order to permit sampling of a full profile over the widest possible range of 

snow depths, as well as to sample temperatures along the shortest path to air.  Second, 

while the probe sensors were equilibrating, the user entered manual measurements of 

snow depth, snow surface temperature, and air temperature.  Once sufficient time had 

elapsed for sensor equilibration, the computer was instructed to log the probe data.  The 

entire routine required about 3-5 minutes to complete for each individual measurement 

site. 

Weather Instrumentation 

The weather station used in this project was located in the center of Wolverine 

Basin, in a low-angle (ca. 2° SE) clearing at an elevation of 2240 meters.  This site has 

been used for weather data collection in the past (Lundy et al, 2000). 

The weather station measured wind speed, snow surface temperature, snow depth, 

reflected shortwave radiation, and a full-depth snow temperature profile.  The data was 

logged using a Campbell Scientific CR10X Datalogger (Campbell Scientific Corp., 

Logan, UT).  The station collected data at 5-minute intervals, and output averages once 

per hour.  This sampling rate effectively covered the sample dates of this study, enabling 

an analysis of weather phenomena as related to snow temperature gradients. 
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Field Data Collection 

Sampling Design 
Of concern in the design of a sampling routine was the number and location of 

sampling points, frequency of repetition, order and efficiency of collection, and safety of 

field personnel.  These issues were addressed in the design phase of the project.   

A large sample size representing a variety of topographic variables was desired 

for statistical purposes, as indicated by the results of a pilot study.  Additionally, the 

sample point distribution needed to approximate the distribution of available sites in the 

field area.  This was assessed by comparing the distribution of terrain characteristics in 

the set of sample points to the distribution of terrain characteristics in the basin.   

Safety was of primary concern in the sampling design, as there were numerous 

avalanche slopes within the study area.  Sites which had slope values over 30 degrees or 

those which possessed a high exposure to avalanche danger (e.g. in a confined runout 

path) were omitted from sample consideration. 

The sampling route (Figure 3) was designed for once weekly repetition.  Data 

from all sample points was collected each field day.  This approach attempted to maintain 

a continuity of data collection throughout the season as well as sample the full range of 

topographic variables on a single day.  Thirty points were selected in the effort to balance 

all of the above factors, and their positions were recorded by a differentially corrected 

Global Positioning System (GPS) unit.  Topographic attributes for the sample points 

(Table 2) were calculated from a USGS 30m DEM, using ArcView GIS software with 

the Spatial Analyst extension (ESRI, Redlands, CA).  Profile was the profile curvature, or  
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Figure 3:  Study area and sample route.  Black dots represent sample point locations. 
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rate of change in Slope, showing the terrain “sharpness” in the vertical dimension.  

Planform was the planform curvature, or rate of change in Aspect, showing the exposure 

of a site in planform.  Aspect was also divided into sine, cosine, and degrees from north.  

These aspect derivatives potentially aided in interpretation of the regression models.  The 

existence of Aspect in a regression would suggest its importance, but due to the circular 

nature of aspect data, it was difficult to interpret in a linear relationship.  Degrees from 

north or cosine of aspect were more easily interpreted when utilized in a linear regression 

relationship. 

Interaction variables are two variables serving to amplify the effects of each other.  

Regression models in which an interaction variable was included represented a sampling 

day where the influence of terrain variables was more complex than a simple linear 

combination of variable effects. 

Canopy densities were collected manually, using a spherical densiometer (Forest 

Densiometers).  A percentage value for open canopy was used in order to facilitate 

interpretation of the canopy/solar interaction variable in the analysis.  Cumulative global 

solar radiation input was the modeled cumulative sum of direct and reflected shortwave 

solar input for each grid element, for the interval beginning on 11/28/01 and ending the 

day before each sample day.  This parameter was modeled from the DEM using the Solar 

Analyst extension for ArcView (HEMI, Los Alamos, NM). 
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Data Analysis 

Diurnal fluctuations in air temperature influenced shallow snow temperatures, and 

these changes were unavoidable in the temperature profiles sampled, due to the full day 

period required to collect a full dataset.  To eliminate this effect, only temperatures 

deeper than 30cm were used for temperature gradient calculations, as temperatures 

deeper than 30cm below the snow surface generally show little daily fluctuation 

(Armstrong, 1985; Birkeland et al., 1998).  Temperature gradients were calculated for 

each 10cm interval measured, and average (AvgTG) and maximum (MaxTG) 10cm 

gradients were calculated for each profile. 

A temperature gradient for the bottom 10cm interval was initially calculated using 

an assumed ground temperature of 0°C (the STTP does not record ground temperatures).  

However, preliminary assessment of the temperature data showed some significant 

outliers, all due to the gradient calculated for the 0 – 10cm interval.  Field investigation of 

one of these locations revealed a ground temperature much lower than the assumed 0°C.  

In light of this evidence, I removed the assumed ground temperatures from all profiles.  

Thus, the temperature intervals considered in this study are between 10cm above the 

ground surface and 30cm below the snow surface.  This constraint on usable temperature 

readings could have had an important effect especially in the early season datasets, where 

shallow snow depths limited the available data to a few intervals or none at all for some 

profiles. 
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Regression Modeling 

Model Development 
Predictor variables (Table 2) used in the development of the regression models 

were tested for correlation using a correlation matrix (Table 3).  Only variables that 

exhibited a low correlation (Pearson Correlation Coefficient < 0.5) were used in the same 

regression model.  Pairwise scatter plots of individual predictor variables versus each 

response variable were examined to look for possible necessary transformations.   

Table 2:  Topographic attributes of the sample points:  Variable codes, variable 
descriptions, and summary statistics.  N = 30. 

Variable Description Minimum Maximum Mean 

Elevation Elevation (m) 2230 2400 2318 

Slope Slope angle (degrees) 4 39 20.18 

Profile Profile curvature  
(Rate of change in Slope) 0 22 9.16 

Aspect Aspect (degrees) 2 354 169.3 

Planform Planform curvature 
(Rate of change in Aspect) 1 80 42.25 

DfN Degrees from north (degrees) 2 172 67.19 

Sine Sine of aspect -0.99 0.96 -0.11 

Cosine Cosine of aspect -0.98 0.99 -0.05 

SlpSine Slope X  sine aspect -36.03 20.24 -3.75 

SlpCos Slope X cosine aspect -23.88 33.63 -0.70 

SlpDfN Slope X degrees from north 34 4472 1351 

OCanopy Open forest canopy (%) 0 57.1 10.58 

Solar Cumulative global solar input (Wm-2) 4084 241341 45050 

CanSolar OCanopy X Solar 2356 240617 40832 
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Table 3: Correlation matrix of Pearson’s correlation coefficients for predictor variables.  
Bold values indicate coefficients of 0.5 or greater.  N = 30. 

 

Elevation 

Slope

Profile

Planform

A
spect

D
fN

Sine

C
osine

SlpSine

SlpC
os

SlpD
fN

O
C

anopy

Sola r

C
anSolar

D
ate

Elevatio
n 1 0.19 0.22 -0.07 0.20 0.02 -0.25 0.16 -0.21 0.25 0.08 0.16 0.03 0.04 -0.02

                

Slope  1 0.58 -0.22 -0.31 -0.01 -0.26 0.05 -0.33 0.23 0.57 -0.01 -0.03 -0.04 0.00 

                

Profile   1 0.27 -0.23 -0.19 -0.30 0.27 -0.42 0.47 0.14 0.08 -0.05 -0.04 -0.01

                

Planform    1 -0.14 -0.31 0.51 0.15 0.40 0.09 -0.28 -0.16 -0.05 -0.07 -0.01

                

Aspect     1 -0.04 -0.22 0.24 -0.13 0.14 -0.16 -0.51 0.00 -0.05 0.00 

                

DfN      1 -0.21 -0.15 -0.15 -0.02 0.74 0.26 0.21 0.24 -0.01

                

Sine       1 -0.20 0.93 -0.27 -0.27 -0.09 -0.02 -0.03 -0.01

                

Cosine        1 -0.29 0.91 0.01 -0.04 -0.03 -0.03 0.00 

                

SlpSine         1 -0.38 -0.31 -0.10 -0.01 -0.02 0.00 

                

SlpCos          1 0.15 0.00 0.01 0.01 0.00 

                

SlpDfN           1 0.14 0.16 0.17 0.00 

                

OCanop
y            1 0.09 0.20 0.00 

                

Solar             1 0.99 0.89 

                

CanSolar              1 0.85 

                

Date               1 
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Stepwise, least-squares regression was used to build the regression models.  

Regressions were built for pooled data, as well as for each sample day, using AvgTG and 

MaxTG as the response variables.  A p-value of 0.15 was required for inclusion of a 

variable, in order to compensate for the small size of the dataset.  Although this sacrificed 

confidence in the predictive ability of the models, it increased freedom in exploration of 

the variable relationships to the response. 

 Sample Point Time Series Grouping 

Time series plots of MaxTG and AvgTG for each individual sample point were 

created, in an effort to explore for more relationships.  Each plot contained up to nine 

values measured at that sample location on subsequent sampling days.  The patterns of 

the time series graphs were compared, and groups of plots were constructed based on the 

shapes of the graphs.  The groups of plots were then mapped in order to observe any 

potential spatial clustering in the groups.  The terrain data for each sample point was 

examined to see if any of the predictor variables exhibited values common to all points in 

the group.  This analysis provided the opportunity to find general geographic patterns, 

such as locational bias within the basin, or sites oriented preferentially to a particular 

storm direction, that might not be exposed by the regression analysis. 

Evaluation of Weather Parameters 

Four-day moving averages of weather parameters (air temperature, snow surface 

temperature, snow depth, and reflected shortwave) recorded at the weather station in the 
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study area, were used to explore relationships between weather events and average and 

maximum temperature gradients measured at the weather station.  The four-day moving 

averages were chosen to represent a cumulative effect of weather factors on the 

snowpack, as short interval fluctuations can be effectively buffered by the insulating 

capacities of the snowpack (Armstrong and Williams, 1986).  The daily upper quartile of 

reflected shortwave radiation (the 75th percentile of all reflected shortwave measurements 

for each day) was used to represent maximum solar input.  While not a direct measure of 

incoming solar radiation, short-term fluctuations were taken to represent intervals of 

cloudy and non-cloudy periods.  Qualitative correlations aided explanation of the 

individual regression relationships derived for each dataset. 
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RESULTS AND DISCUSSION 

The correlation and regression results showed significant correlations of 

temperature gradients with topographic variables, supporting Hypothesis #1.  The date of 

season was also significantly correlated to the pooled average temperature gradient data, 

supporting Hypothesis #2.  However, the regression relationships developed did not 

explain the majority of the variability in either the average or maximum temperature 

gradient data.  A qualitative assessment of weather and snow temperature data collected 

at the Wolverine Basin weather station was revealing of potential dynamic weather 

controls on snow temperature gradients that could explain more of the variability 

observed in the data. 

Weather Context of Sample Days 

Sample days 1-4 were in the early part of the season, when snow depths were less 

than 1 meter (Figure 4).  In these conditions, the average and maximum deep temperature 

gradients show strong sensitivity to air or snow surface temperature.  Later in the season, 

when snow depths were greater, fluctuations in average temperature gradient at the 

weather station were more muted, despite large variation in air temperatures, which 

suggests a decreased sensitivity to air temperature.  In addition, in the latter part of the 

season, fluctuations in the maximum deep temperature gradients seem to show increased 

sensitivity following periods of settlement (decreasing snow depth). 
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A general increase in reflected shortwave energy was seen as the season 

progresses, as expected with an increase in sun angle and day length (Figure 5).  More 

solar input would serve to increase snow temperatures, and reduce average temperature 

gradients, as was evidenced by the general decrease in the average temperature gradients 

at the weather station throughout the season.   

Pairwise Variable Correlations 

The results of the pairwise variable correlations for AvgTG and MaxTG show a 

few significant relationships and some pattern in the type of predictors that were 

significant as the season progresses (Tables 4 and 5).  Both research hypotheses were 

supported by the correlations observed.   

Pooled Data 
In the pooled AvgTG data, temperature gradients were negatively correlated to 

solar and date variables, suggesting that temperature gradients generally decreased 

throughout the season and with greater solar input.  This agreed with previous literature 

(Dexter, 1986).  Notably, the elevation and aspect variables showed no significant 

correlation to the pooled average deep temperature gradients, as noted previously by 

Dexter, (1986) and McClung and Schaerer (1993).  The pooled MaxTG data shows no 

significant correlations, suggesting perhaps that the controlling mechanisms for 

maximum deep temperature gradients operate on a time scale shorter than the season of 
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Table 4: Pairwise Pearson correlation coefficients for Average deep temperature gradient 
(AvgTG).  Bold values indicate significant correlations 
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Table 5: Pairwise Pearson Correlation coefficients for maximum deep temperature 
gradient (MaxTG).  Bold values indicate significant correlations. 
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observation for this study, and that none of the predictors examined here were important 

in that relationship. 

 
Individual Sample Days 

The individual sample days showed a more complex response.  For the AvgTG 

correlations, Solar, OCanopy, and CanSolar variables seemed to gain importance as the 

season progresses, though they were absent on 1/14 and 4/1.  Their absence from these 

two sample days might be due to the preceding period of higher air temperatures in each 

case, which would have decreased the influence of solar and canopy effects.  Elevation 

showed no significant correlation in any of the datasets, likely due to the relatively 

narrow range of elevations sampled (2230-2400m).  AvgTG was negatively correlated to 

Slope and Profile on 12/4 and Slope was again correlated on 1/14, but Slope and Profile 

were otherwise uncorrelated.  The aspect and interaction variables likewise showed 

infrequent correlations, although on 1/14 larger temperature gradients were observed on 

south and west aspects.  These results insinuate that other, non-terrain factors should be 

examined in addition to the terrain factors included here. 

Of all nine individual sample days, MaxTG was significantly correlated in only 

five instances, spread over four different days.  Aspect was negatively correlated on 12/4, 

showing the smallest MaxTG values on south-facing and west-facing slopes.  On 12/20, 

MaxTG was negatively correlated to OCanopy, indicating that maximum gradients 

decrease with increasing canopy cover.  Elevation was negatively correlated on 1/2, 

pointing to lower temperature gradients at higher elevations.  Negative correlations also 
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exist with Solar and CanSolar on 2/4, indicating that solar input resulting from lower 

canopy density reduces the temperature gradient.  Maximum gradients on that day were 

lowest at locations with high solar input and low canopy cover, while largest maximum 

gradients were observed in areas with forest cover and less solar input, where lowest air 

temperatures would be expected.   

Regression Modeling 

The results of the stepwise, least squares, multiple regressions were generally 

similar to the correlation results above.  However, linear combinations of multiple terrain 

variables showed more significant relationships to the temperature gradient data than did 

the individual correlations (Tables 6 and 7).   

Pooled Data 
For the pooled AvgTG data, a significant regression was generated for using Slope 

and Date (R2 = 0.32).  Date had a negative coefficient, showing a decrease in average 

deep temperature gradients as the season progressed, supporting Hypothesis #2.  This was 

confirmed as well by the average temperature gradient data collected at the weather 

station in Wolverine Basin.  The negative coefficient of Slope was interesting, as it 

indicated that average deep temperature gradients decrease with increasing slope.  This 

result perhaps indicates that cold air was pooling in the bottom of the basin, where the 

majority of the low slope sites were located. 
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Table 6: Standardized partial regression coefficients for average deep temperature 
gradients (AvgTG). 
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Table 7:  Standardized partial regression coefficients for maximum deep temperature 
gradients (MaxTG). 
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The regression relationship obtained for the pooled MaxTG data has poor 

explanatory capability (R2 of 0.02), indicating that spatial patterns of MaxTG change on a 

time scale shorter than that spanning the data collection season.  This was reinforced by 

the notable exclusion of the Date variable from the pooled regression.  A look at the 

weather station data (Figure 2, page 41) shows that the maximum temperature gradient 

varies about a mean of 0.73 °C/cm, with no decline in the mean during the measurement 

period.  While the variability about the mean through the season was of interest for the 

individual sample day regressions, the seasonal trend of the maximum temperature 

gradients was important for the analysis of the pooled data.  Since the trend in the 

maximum temperature gradient data was nearly flat over the entire data collection period, 

no relationship was evident in the regression.  If data had been collected past the 

isothermal date, a falloff in MaxTG would likely be evident, and perhaps a significant 

relationship with Date would have been observed.   

It appears, however, that aspect-related variables and canopy density do have 

some relationship to the spatial variability of maximum deep temperature gradients on the 

seasonal scale, as evidenced by the inclusion of Aspect and SlpDfN in the pooled 

regression model.  Aspect provides a significant energy balance control on snow 

temperatures, while the interaction term indicates that the smallest maximum gradients 

were found on low-angle, south-facing slopes.  This is in direct contrast to the results of 

the pooled AvgTG regression, indicating that the patterns of the maximum temperature 

gradients do not necessarily reflect the patterns of the average gradients over the course 

of the entire season.   
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Individual Sample Days 
Separate regression models for each sample day varied in their ability to explain 

variability in AvgTG, with R2 values between 0.0 (no models created) and 0.62.  The 

pattern of included variables showed no discernable trend according to time of season.  

Furthermore, coefficients of variables included in several models often were of opposite 

sign on different sample days, indicating that the relationships between temperature 

gradient and terrain vary through the season, perhaps under the influence of more 

dynamic factors. 

Elevation was notably absent from the majority of models, likely due to the 

limited range of elevations represented.  AvgTG exhibits a strong negative dependency on 

Slope on 12/4 and on 1/14, indicating highest average temperature gradients on lower-

angle slopes.  This could be due to sampling bias related to the relative topographic 

position of low-angle slopes in the study area, most of which are located on areas 

exposed to wind with low snow accumulation, or in the bottom of the basin where cold 

air would subside and pool during calm conditions. 

Aspect variables were difficult to assess, as the circular nature of the data makes 

interpretation in a linear relationship difficult.  However, the significant correlations with 

Aspect on 1/2 and 1/14 were meaningful in that they demonstrate some degree of 

temperature gradient dependency on aspect.  Cosine was represented in regressions for 

1/2 and 4/1, DfN was included on 12/20, and Sine was not present in any regressions, 

demonstrating that average temperature gradients were sensitive to the north/south 

orientation of a site, represented by DfN and Cosine, but not the east/west orientation 

represented by Sine.  The coefficient of Cosine changed sign from positive on 1/2 to 
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negative on 4/1, indicating that maximum average gradients were found on north-facing 

slopes on 1/2, and on south-facing slopes on 4/1.  This is potentially explained by the 

difference in air temperatures leading up to each of these sample days, as the four-day 

moving average of air temperature on 1/2 was much lower than that on 4/1.  

Solar and vegetation variables were important throughout the season, but in 

different capacities as represented by the signs of the coefficients.  The inclusion of 

CanSolar in three different regressions was interesting, as it highlights the combined 

influence of solar input and canopy cover.  The coefficient on 1/7 was positive, while the 

other two on 12/20 and 2/4 were negative, which indicates that the nature of the 

relationship changes during the season, and suggests that controlling factors other than 

terrain parameters have an influence. 

The MaxTG regressions for individual datasets showed fluctuation throughout the 

season, with no discernable progression through types of variables or in the strength of 

individual variable relationships.  R2 values ranged from 0 to 0.68; thus even the best 

regression leaves approximately one-third of the variability in the data unexplained.  

Elevation and Cosine were included in several models, but not always with the same sign 

for the coefficients.  This would seem to indicate that the terrain variable in these 

instances, while an important influence, has a different effect on the snow temperature 

gradients depending on the behavior of other controlling factors.  Variables such as 

OCanopy, Solar, Slope and Aspect have the same coefficient sign for all regressions in 

which they were included, perhaps showing that these variables have a similar effect on 

snow temperature gradients in each case, independent of any non-terrain controlling 
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factors.  The presence of Cosine and absence of Sine in the regressions insinuates that 

maximum gradients were more sensitive to the north/south orientation of the sample site 

than the east/west orientation, as was also the case with the average temperature gradient 

data.  This suggests that maximum temperature gradients are influenced by the larger 

difference in solar input between north and south-facing slopes, as opposed to the 

moderate differences in solar input between east-facing and west-facing slopes.  Solar 

and vegetation variables were also frequently important, with negative coefficients 

indicating that smallest maximum gradients were associated with the largest potential 

solar input and with increased canopy cover.   

In summary, the regression results were generally similar to the correlation 

results, but the combined effects of the terrain variables were more significant than were 

the individual, pairwise correlation relationships.  This is the case for many multivariate 

relationships with snowpack and snow stability parameters, as found by Birkeland 

(2001).  For example, some variables that do not show strong correlation to AvgTG 

individually were significant in a predictive regression model when included with other 

variables (e.g. Slope).  This implies that the common practice of separating terrain 

components to relate them to snow parameters is perhaps not valid in all circumstances, 

because in reality the temperature-terrain relationship exhibits much complexity. 

Separate regression models for each dataset and both response variables varied in 

their ability to explain variability in the response, with R2 values between 0 (no 

significant models created) and 0.68.  The pattern of significant variables showed no 

seasonal trend.  The results implied that the Elevation, Slope, Aspect, Cosine, Solar, and 
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OCanopy variables, while important to the spatial variability of temperature gradients as 

evidenced by the regression models, could only explain a portion of the overall variability 

in the spatial patterns of snow temperature gradients.  Furthermore, coefficients of 

variables included in several models often were of opposite sign on different days.  This 

would suggest that terrain factors are too static to account for the variability in the 

temperature gradient data, and that more dynamic factors, such as weather variables, have 

a significant influence on the spatial patterns of deep snow temperature gradients. 

Sample Point Time Series Groupings 

The time series plots for each sample point were revealing of different seasonal 

trends throughout the basin, and provided a valuable perspective from which to examine 

the dataset (Appendix B).  The maps of sample point groupings showed no pronounced 

geographic pattern for the MaxTG response, but did display some aspect-dependency for 

the AvgTG data (Figures 4 and 5).  For each of the response variables (MaxTG and 

AvgTG), there was a group of points that exhibited a general pattern that showed no 

correlation to any of the predictor variables (Group 1 for each response).  These groups 

had no common predictor variable values, but did show a similar time series pattern, 

suggesting that the pattern was derived from basin-wide processes, such as weather 

patterns.  The other groups constructed were all very small in number, containing only 3 

to 6 points.  Therefore, though some potential correlations were observed, qualitative 

conclusions drawn from these groups must be viewed with caution. 
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Figure 4:  Map of sample point time series groupings for average temperature gradient 
response. 
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Figure 5:  Map of sample point time series groupings for maximum temperature gradient 
response.
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Group 2 for the MaxTG response, though showing similar low-variation patterns, 

did not seem to share any predictor variable characteristics.  The predictors available in 

this study were not able to discriminate this group from the rest of the points in the 

sample set. 

The sample points in Group 2 for the AvgTG response shared a west aspect 

component, as well as moderate profile curvature values.  This suggested that the 

defining characteristic of the time-series graphs in this group, a sharp decrease at sample 

date 2, was correlated to west-facing slopes with low to moderate slope angle curvature.  

This feature could be related to afternoon sun exposure, or potentially to weather variable 

influence in the days prior to the collection of the second sample dataset. 

The points in Group 3 of the AvgTG series were characterized by the lowest 

variability in all the AvgTG time series plots.  The points in this group share a north 

aspect component, as well as low to moderate canopy coverage.  This combination of 

variable values would minimize solar input and longwave radiation effects of the tree 

canopy.  The north aspect at these sites would serve to keep the energy balance consistent 

throughout the season, relative to other topographic positions, explaining the low 

variability in the time series for these points. 

The results of the point time series groupings indicate that, at least for the AvgTG 

response, discriminatory statistical techniques, such as cluster analysis or principle 

components analysis, could be useful, given a larger dataset.  With the current dataset, the 

results lend qualitative support to Hypothesis 1, that some correlation exists between 

deep temperature gradients and topographic variables.  The lack of variable patterns in 
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the MaxTG groups suggests that other variable types, perhaps features local to the 

individual sample sites such as ground cover type or surface roughness, should be 

explored. 

Weather Data 

A qualitative assessment of weather data from the remote weather station in 

Wolverine Basin revealed relationships that aided in explaining the observed spatial 

variation in snow temperature gradients.  Four-day moving averages of snow depth, air 

temperature, snow surface temperature, daily upper quartile of reflected shortwave 

radiation, the average deep temperature gradient, and the maximum deep temperature 

gradient, calculated from data measured at the weather station (Figure 6), reveal trends 

that offer clues as to why some topographic variables were important predictors on 

certain sample days and not on others.  Weather variables are more dynamic than terrain 

variables, and as such may change in how they influence temperature gradients in 

different locations.  For example, while aspect affects the solar radiation balance of a site, 

the orientation of that site with respect to an individual storm or wind event may have a 

variety of effects on snow accumulation and air temperatures, and hence the magnitude of 

temperature gradients at that site. 

The fluctuations in model structure for AvgTG regressions on individual sample days 

were potentially explained by fluctuations in the measured weather parameters.  For 

example, Elevation was included only in the regression on 1/2, during a period of low air 

temperatures and clear skies (as indicated by the relatively high reflected shortwave 
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radiation), which would have served to enlarge differences in air temperature at different 

elevations.  That same model included two aspect components (Aspect and Cosine) as 

well as Solar, which demonstrated the influence of the clear sky conditions on the 

temperature gradients.  Periods of warm air temperatures, such as on 1/7, 1/14, and 4/1, 

seemed to coincide with poor regression results.  Warm air, as from warm front 

advection, rather than solar gain, would have tended to affect the snowpack on all terrain 

configurations, and therefore a topography-based regression would be expected to 

perform poorly. 

MaxTG generally shows stronger regression relationships in the early season 

datasets, likely due to the existence of larger temperature gradients in a shallow 

snowpack.  The MaxTG regressions for 12/4, 12/9, 12/20, and 1/2 show significant 

relationships to slope, aspect, and elevation variables, indicating a notable dependency on 

terrain factors in the early season.  Later datasets exhibit generally poor regression 

models for MaxTG, suggesting that terrain factors were inadequate to explain the spatial 

variability in the temperature gradients later in the snow season, or that maximum 

temperature gradients in the deeper snowpack of late season show less spatial variability. 

A local maximum in reflected shortwave occurred on 1/2, which may explain the 

inclusion of Solar in the AvgTG regression model for that sample day.  In contrast, the 

data from 3/8 and 4/1 coincided with local minima in the reflected shortwave curve, and 

therefore solar input was not affecting the snowpack to a large degree. 
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Figure 6:  Time series graphs of weather variables measured in Wolverine Basin.  Four-
day moving averages of hourly output data are shown.  Vertical dashed lines represent 
sample collection dates. 
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This may explain why Solar was not included in the AvgTG models for those 

datasets, and suggests that other variables such as air or snow surface temperature, which 

show marked fluctuation around these sample days, were responsible for the spatial 

patterns observed. 

OCanopy and Solar were included in the MaxTG regression for 12/20, where a 

relative high in reflected shortwave radiation also occurred.  The negative coefficients for 

these variables indicate that for that sample day, the maximum deep temperature 

gradients existed on slopes with high canopy cover and low solar input.  However, Solar 

was again included in the regression on 2/4, where the shortwave data showed no 

particular deviation.  Because this dataset also coincided with a previous period of low air 

temperatures, Elevation, with a positive coefficient, was included as a predictor in the 

regression, showing increasing temperature gradients with increasing elevation. 

The weather data measured in Wolverine Basin did help in the interpretation of 

the regression models developed with terrain data.  The regressions show that some static 

terrain parameters (e.g. aspect or canopy density) can in some cases represent the 

variability in the deep snow temperature gradients.  In most cases, however, terrain 

parameters are not dynamic enough to account for variations in the weather variables.  

Weather is certainly affected by terrain, yet it would appear that terrain was not an 

adequate surrogate for atmospheric controls at the scale examined in this study.   

Inclusion of weather parameters in the regression models, unfortunately, is limited 

by the non-spatial nature of the weather data.  The weather data collected were not 

distributed spatially and as such represented a single point.  Despite the high temporal 
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resolution, these data only provided a qualitative explanation for the component of spatial 

temperature gradient variation not explained by terrain.  An estimation of the spatial 

variation in time series of weather parameters could be useful in improving understanding 

of the relationship between terrain, weather, and snowpack temperature profiles. 
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CONCLUSIONS 

This study explored the spatial variability of snow temperature gradients by 

examining their relationships with topography.  Results show a significant correlation of 

temperature gradients with some topographic variables.  The regression relationships 

developed did not completely explain the variability in the temperature gradient data, 

however.  It is concluded that while the influences of terrain factors are important, more 

dynamic controls of snow temperature gradients, such as weather, must be assessed. 

Temperature gradients showed a significant correlation to some of the 

topographic attributes of the measurement sites, supporting Hypothesis #1.  However, 

neither the highest average nor maximum temperature gradients were always found on 

high-elevation, north-facing slopes, contrary to the specific assertions made in 

Hypothesis #1.  A positive relationship with elevation only existed in one of three models 

that included elevation, indicating that in datasets where elevation was an important 

factor, highest temperature gradients were more commonly found at lower elevations.  

This is consistent with the results of Dexter (1986), where it was concluded that the lower 

snow accumulations at lower elevations contributed to higher temperature gradients at 

those sites. 

Aspect variables showed inconsistent results, with a mixture of positive and 

negative coefficients, demonstrating that the highest gradients were not always found on 

the north-facing aspects.  Planform curvature, or the "sharpness" of the terrain in 

planform, was insignificant in any of the correlation or regression relationships. 
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Slope variables, including slope angle and profile curvature, were occasionally 

important in several regression models, and always had a negative influence on 

temperature gradients.  This showed the existence of higher temperature gradients on 

lower-angled terrain, or on smooth slopes that did not change steepness quickly.  This 

result is counterintuitive, as one would expect higher snow accumulations on low-angled 

or smooth slopes, and a corresponding reduction in temperature gradients, as per Dexter’s 

(1986) results.  This could be an artifact of sampling bias, as higher-angle slopes were not 

sampled, and a full distribution of profile curvature was not obtained in the sample route.  

It could also be a result of cold air pooling in the bottom of the basin, where the lowest 

slope angles were found. 

Solar and canopy cover variables proved to be very important in the regression 

models.  They exhibited significant correlations with both maximum and average 

temperature gradients, and throughout the season.  These results were consistent with 

previous studies referencing the effects of these variables on the energy balance of the 

snowpack (Gray and Male, 1981; McClung and Schaerer, 1993; Cline et al., 1998).  The 

interaction of these two variables was interpreted as the modified level of potential solar 

input reaching the snow surface.  Solar and canopy variables were included in many, but 

not all, models indicating that early in the season, or during periods of high cloud cover, 

the importance of these variables was overwhelmed by other influences, such as simple 

terrain effects or weather-related phenomena. 

The overall results suggest that other factors influence snow temperature gradients 

more than does topography.  For some days topographic variables are strongly related to 
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the spatial pattern observed in the temperature gradients, while on other days the 

temperature gradient patterns are essentially independent of the terrain characteristics. 

There was a definite decrease in temperature gradients later in the snow season.  

This supports Hypothesis #2.  The trend was also seen in the snow temperature data 

recorded at the Wolverine Basin weather station, which shows a downward trend in the 

average deep temperature gradient throughout the season.   

The pooled maximum deep temperature gradients data showed no relationship 

with date, however, suggesting that the maximum gradient in a temperature profile was 

more sensitive to factors that change on time scale shorter than the season.  In fact, the 

maximum deep temperature gradients recorded at the weather station displayed an almost 

perfectly flat trend throughout the season.  Had data been collected past the late season 

isothermal date, I perhaps would have observed a drop in maximum gradient as the 

isothermal date approached.  In that case, a relationship between maximum temperature 

gradient and date could have been apparent. 

Time-series plots of each response variable for each data collection point allowed 

the construction of point groups, based on the shape of the curves.  Exploration of the 

predictor variables represented by these groups suggested that aspect was a useful 

discriminatory variable in dividing the dataset.  Cluster analysis or principle components 

analysis would likely be useful if a larger dataset were available. 

Qualitative interpretation of the weather parameters measured at the Wolverine 

Basin weather station provided some insight as to potential controlling factors that may 

aid in explaining the variability in the temperature gradient data left unexplained by the 
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topographic variables.  Air temperature and reflected shortwave radiation seemed 

particularly relevant, as fluctuations in these variables seemed to correlate with terrain, 

solar, and canopy variables in the regression models.  Early season temperature gradients 

were particularly sensitive to changes in air temperature, as affected by the shallow 

snowcover during that period.  This sensitivity appeared to decrease as the snow cover 

accumulates through the season. 

Reflected shortwave radiation seemed to distinguish cloudy periods from clear 

periods.  Regression models for days following periods of clear weather (i.e. high solar 

input) tended to include solar and canopy variables, whereas these variables were 

generally not included in models representing cloudy periods. 

If the spatial variability in the temperature gradient data was partially explained 

by the occurrence or convergence of weather events, the result would point to the 

complex dynamics of the seasonal snow system.  Furthermore, it would appear that part 

of the variability could be explained by the relatively static (i.e. non-dynamic) terrain 

features, while the remainder must be attributed to dynamic, potentially non-linear 

interactions with the atmosphere.  In this situation, modeling efforts that depend on only 

static parameters may be expected to fall short of explaining or predicting the true level 

of spatial variability in the snow cover. 

The regression relationships developed here would have benefited from much 

larger datasets.  It would be instructive to repeat the sampling using more data points.  

Perhaps two or three probe units and more personnel would facilitate this.  More data 

would allow a greater range of each variable to be sampled, and would make the 
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regressions more robust.  Other variable interactions (such as slope and canopy, or 

elevation and slope) that were not used in this project could certainly be important for 

describing temperature gradient/terrain relationships, leaving room for future exploration. 

It was assumed in the analysis methodology that the relationships between 

individual topographic variables and temperature gradients are linear.  It may be that the 

relationships observed in this study were the best linear approximations of more complex 

interactions.  Any future work on this subject would seem incomplete without some 

investigation of nonlinear interactions in this complex system.  This effort would entail 

the exploration of more interaction variables, in addition to nonlinear regressions. 

A quantitative analysis of contributing weather factors was beyond the scope of 

this study.  However, future studies could be designed to integrate an analysis of weather 

parameters with the effects of topography.  Measured weather parameters could be 

included as potential predictor variables.  Using multiple-day moving averages of 

parameters such as air temperature or snow surface temperature would serve to include a 

"recent history" of the weather effects on the snowpack.  It would also be particularly 

interesting to conduct the sampling days soon before or after dramatic weather changes, 

as well as bracketing periods of unchanging weather.  This would help test the possibility 

that the variability in the data from certain sample days is dependent on the relatively 

static terrain variables, while on other days the variability is explained by the rapidly 

changing, dynamic weather factors.   

Multiple weather stations would undoubtedly be useful, as spatial variability in 

measured weather parameters is perhaps even greater than that observed in the seasonal 
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snowpack.  The weather station used in this study was located on a flat, low-elevation 

site.  Additional data from a higher elevation station could provide wind speeds and snow 

surface temperatures from a more exposed location.  The comparison of data between the 

two stations would give some measure of the variation of air temperatures with elevation.  

This would assist in determining whether assumptions regarding the standard 

atmospheric lapse rate are reasonable for the local environment. 

Measuring and analyzing the spatial variability in snow temperature gradients is a 

complex task that could benefit from the suggestions above.  It is also a specifically 

geographic problem, which the geographer's toolbox can uniquely address through the 

issues of scale in space and time. 
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Average temperature gradient response, pairwise scatter plots, with linear best-fit.
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Average temperature gradient response, pairwise scatter plots, with linear best-fit.
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Average temperature gradient response, pairwise scatter plots, with linear best-fit.
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Maximum temperature gradient response, pairwise scatter plots, with linear best-fit.
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Maximum temperature gradient response, pairwise scatter plots, with linear best-fit.
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Maximum temperature gradient response, pairwise scatter plots, with linear best-fit.

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 5000 10000 15000 20000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 5000 10000 15000 20000 25000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 10000 20000 30000 40000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 10000 20000 30000 40000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 10000 20000 30000 40000 50000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 20000 40000 60000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60

0

0.1

0.2

0 20000 40000 60000 80000 10000
0

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 50000 100000 150000 200000

0

0.1

0.2

0 1000 2000 3000 4000 5000
0

0.1

0.2

0 20 40 60
0

0.1

0.2

0 100000 200000 300000

Slope X DFN Canopy Solar

12
/4

/0
1

12
/9

/0
1

12
/2

0/
01

1/
2/

02
1/

7/
02

1/
14

/0
2

2/
4/

02
3/

8/
02

4/
1/

02



 73

 

 

 

 

 

 

 

 

 

APPENDIX B 

 

SAMPLE POINT TIME SERIES PLOTS 
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