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Abstract 

Snow avalanches are a major mountain hazard that kills hundreds of people 

and causes millions of dollars in damage worldwide annually.  Yet, the 

relationship between the well-documented spatial variability of the 

snowpack and the avalanche release process is not well understood.  We 

utilize a cellular automata model to show that the spatial structure of shear 

strength may be critically important for avalanche fracture propagation.  

Fractures through weak layers with large-scale spatial structure are much 

more likely to propagate over large areas than fractures through weak 

layers with smaller-scale spatial structure.  Our technique of integrating 

spatial structure into the model can improve many cellular automata 

models that aim to explain and predict other natural hazards, such as forest 

fires, landslides and earthquakes.   INDEX TERMS: 0742 Avalanches; 

0736 Snow; 0515 Cellular automata; 4430 Complex systems  

 

1.  Introduction 

For more than two decades, cellular automata (CA) models have been widely 

used to demonstrate everything from the dynamics of sandpiles [Bak, et al., 1987; Bak, et 

al., 1988] to the spatial patterns of shellfish beds [Wootton, 2001].  Researchers have 

used CA models to investigate natural hazards such as earthquakes [Olami, et al., 1992], 

landslides [Hergarten and Neugebauer, 1998] and forest fires [Bak, et al., 1990; Drossel 

and Schwabl, 1992].  These models are remarkably good at broadly explaining overall 

system behaviour, such as frequency-magnitude power laws [Turcotte and Malamud, 
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2004].  However, we believe more accurate models are possible by rigorously integrating 

observed spatial patterns.  To demonstrate, we use results from field measurements to 

simulate spatial patterns in a CA model for a better understanding of the fracture 

initiation and propagation processes that lead to snow avalanches, a hazard that kills 

hundreds of people worldwide annually [Atkins, 2004].  Here we show that including 

spatial structure in the model inputs, independent of the overall statistical characteristics 

of those inputs, is critically important for the propagation of fractures and the resultant 

release of snow avalanches.  A similar approach might help to better quantify the risk of 

other hazards investigated with CA models.  

Spatial structure can be quantified using standard geostatistical techniques 

[Cressie, 1993].  In essence, these techniques utilize the semivariogram to measure the 

spatial autocorrelation, or how correlated measurements are to adjacent measurements in 

a given spatial dataset.  The semivariogram provides a measure of the overall variance 

(sill), the average length of the spatial autocorrelation (range), and the amount of 

variation in the data that occurs at distances shorter than the smallest distance between 

measurements and due to measurement error (nugget).  The relative nugget is the ratio of 

the nugget to the sill.  Thus, a dataset with the same site-wide statistical characteristics 

(e.g., a normal distribution with a known mean and standard deviation) can have quite a 

different spatial structure, and this difference can be quantified with the associated 

semivariogram (Figures 1 and 2). 

Slab avalanches are the most dangerous type of snow avalanches, affecting lives 

and property in mountain communities worldwide.  They occur when a slab layer of 

relatively more cohesive snow fractures along a less cohesive weak layer or interface 
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underneath the slab [Schweizer, 1999].  After the slab fractures along its base, fractures 

initiate along the upper edge, sides and lower edge of the slab, releasing a large, plate-like 

block that slides downhill, entraining additional snow and becoming an avalanche.  Since 

fractures initiate along the interface or weak layer under the slab, and since this surface is 

typically orders of magnitude larger than the combined area of the other fracture surfaces, 

this is where most research has been focussed.  

In principle, snow avalanches should be easy to predict.  One needs only to 

measure the stresses applied to the weak layer or interface and the strength of that layer to 

determine whether avalanches are likely.  However, snow avalanches, like other 

geophysical phenomena, defy such easy explanations and avalanche forecasting remains 

complex [McClung, 2002a; McClung, 2002b].  Firstly, snow is a highly complicated and 

dynamic material that exists near its melting point; its material properties change with 

even small changes in snow grain type and snow temperature [McClung and Schweizer, 

1999].  Secondly, and most importantly for our work, snow cover properties are highly 

variable [Birkeland, et al., 1995; Conway and Abrahamson, 1984; Föhn, 1989; Kronholm 

and Schweizer, 2003].  This variability, widely explored in a number of field studies, is 

important for the avalanche release process since fractures initiate in zones of localized 

weakness within the weak layer and then grow to a critical size (thought to be on the 

order of 0.1 to 10 m) before rapidly propagating under a snow slope and triggering an 

avalanche [Schweizer, 1999].  

Over the past four years, our field research in Switzerland and the western United 

States has quantified the spatial structure of various snow cover properties on potential 

avalanche slopes [Birkeland, et al., 2004; Kronholm, et al., 2004].  This work, as well as 
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work by others [Conway and Abrahamson, 1984], demonstrates that spatial patterns of 

weak layer shear strength, snow layer characteristics, and layer interface characteristics 

exist on some slopes (Figure 3).  Such spatial structure may prove to be critically 

important for assessing the avalanche danger.  Therefore, we test the effect of spatial 

structure on slope stability using our field data to initialize a physically-based CA model 

developed by Fyffe and Zaiser [2004]. 

 

2.  Methods 

We use a slightly modified version of an existing model [Fyffe and Zaiser, 2004].  

In the model, values of individual cells represent the shear strength of that area of the 

weak layer. The shear stress on the cells is increased until the weakest cell fractures. That 

fracture results in cell displacement and stress transfer to neighbor cells. This may cause 

some of the neighbor cells to fracture, resulting in fracture propagation through the model 

domain, but alternatively only one cell may fracture.  

Our model differs from Fyffe and Zaiser [2004] in four ways.  First, we use peak 

shear strength values taken from field measurements rather than assuming a ratio between 

the shear modulus and the mean peak shear strength.  Second, the statistical distribution 

of initial shear strength follows a normal distribution rather than a Weibull distribution 

since extensive field measurements show shear strength to be primarily normally 

distributed [Jamieson and Johnston, 2001].  Third, we investigate only the size of the 

fracture (number of cells and related area) caused by the initial cell fracture rather than 

increasing the stress on all cells until the last cell has fractured.  This gives us a measure 

of the potential for fracture propagation under the specific model settings.  Finally, and 
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most importantly for this paper, the spatial distribution of shear strength in our model is 

not completely random.  Instead, we use the turning bands method to generate grids of 

initial shear strength values with known statistical distributions and spatial structures 

[Chilès and Delfiner, 1999].  The grids used in the simulations (some examples are 

shown in Figure 1) represent spatial structures observed in field measurements (Figure 3) 

[Birkeland, et al., 2004; Kronholm, 2004; Kronholm, et al., 2004].  

We assume the fracture size to give a measure of slope stability since larger initial 

fractures are more likely to reach the critical crack size necessary to rapidly propagate 

under the slope and cause an avalanche.  The process is analogous to a snowfall 

uniformly blanketing a slope until the weakest part of that slope fractures. 

Our grid consists of 100 by 100 cells, each scaled at 0.15 m by 0.15 m, giving a 

total area representative of a small avalanche starting zone that is similar in size to our 

field studies.  We keep the snowpack parameters for the model runs constant, varying 

only the spatial structure (Table 1).  By running the model 1000 times for each defined 

spatial structure, each time with a different grid that has the same statistical distribution 

and semivariogram, we investigate the effect of spatial structure on snow avalanche 

release. 

 

3.  Results and Discussion 

Our results show that the model is likely to either produce a small fracture (only a 

few cells) or else nearly the whole grid catastrophically fractures, and the percentage of 

large fractures is strongly dependent on spatial structure (Figure 4).  Given identical 

marginal statistical distributions of shear strength, slopes with strong spatial structure 



 

 7

(highly autocorrelated with a low nugget to sill ratio, such as Figure 1c) are much more 

prone to propagating the large fractures necessary for avalanche initiation than slopes 

with weaker spatial structure (a high relative nugget, such as Figure 1a).  A strong spatial 

structure means that weaker cells are more likely to be near other weak cells.  Therefore, 

when fractures initiate in the weakest cell they will tend to spread throughout a weaker 

area, increasing the size of the initial fracture and possibly leading to an avalanche.  On 

slopes with weak spatial structure (high level of spatial randomness), fractures are more 

likely to be arrested by stronger adjacent areas, and therefore those slopes tend to be more 

stable.  Our results are consistent with recent work on systems without spatial 

autocorrelation; randomness in those systems also inhibits crack propagation [Zaiser, et 

al., 2004]. 

Our work has important practical implications.  For example, weather events 

forming spatially continuous weak layers with strong spatial structure should result in 

more hazardous conditions once the weak layer is buried in comparison to more variable 

weak layers.  Surface hoar is an example of a notably dangerous weak layer that forms 

remarkably uniform layers under specific weather that include cold, clear, calm and 

relatively humid night time conditions [Hachikubo and Akitaya, 1998].  This work also 

suggests methods for preventing snow avalanches, and increasing public safety in 

avalanche terrain.  Disrupting the spatial structure of the snowpack should inhibit 

avalanche formation in places like ski areas where public safety is a primary concern.  

Indeed, some ski resorts reduce avalanching on specific slopes using early season boot-

packing, whereby people walk down the slope without skis and break up the snowpack 
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layers [Heineken, In press].  We contend that the success of such programs is due, at least 

in part, to the decreased spatial structure of the treated slopes.  

Investigations of other natural hazards using CA models may benefit from these 

same techniques.  For example, the classic forest fire model looks at whether or not a tree 

occupies a specific grid cell and what the chances are of lighting that cell on fire [Bak, et 

al., 1990; Drossel and Schwabl, 1992].  An alternative model might employ a continuous 

variable like fuel load in each cell and then give those cells a spatial structure that 

represents the landscape to be investigated.  Like the snow avalanche example above, 

disrupting the spatial structure of the forest (through small fires, for example) decreases 

the probability of large fires [Malamud, et al., 1998].  Our approach, accompanied by 

site-specific field data, might provide additional information as to whether an area is 

vulnerable to catastrophic wildfires. 

 

4.  Conclusions   

Our model results show that fractures through snowpack weak layers with large-

scale spatial structure are much more likely to propagate over large areas than fractures 

through weak layers with smaller-scale spatial structure.  Though spatial structure 

appears to be important for snow avalanche release, practical field assessments remain 

elusive.  Such assessments must take only minutes to be useful to avalanche workers, but 

quantifying the spatial structure of a given slope has proven to be challenging even when 

using data from our extensive day-long field campaigns [Birkeland, et al., 2004; 

Kronholm, 2004].  Given the difficulties involved, avalanche forecasting for individual 
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slopes will continue to be a risk-based endeavour that emphasizes careful targeting 

sampling [McClung, 2002a].  
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Figure captions 

 

Figure 1:  Each grid above represents shear strength data with a mean of 1500 Pa and a 

standard deviation of 150 Pa.  However, the spatial structure of the three grids varies 

from essentially spatially random (a relative nugget of 100% (a)) to partially structured (a 

relative nugget of 50% (b)) to a strong spatial structure (a relative nugget of 0% (c)).  

These grids are representative of the data used for our model runs. 

 

Figure 2:  A conceptual representation of the semivariogram for each of the three grids in 

Figure 1, where the range and sill are constant while the relative nugget varies.  The 

letters correspond to the letters in Figure 1. 

 

Figure 3: A semivariogram for 68 shear strength measurements on a slope in southwest 

Montana, U.S.A. shows spatial autocorrelation with a relative nugget of about 44%. 

 

Figure 4:  Model avalanches tend to involve only a few cells, or to fracture the entire 

grid.  The percentage of avalanches where the initial fracture is large (more than 99% of 

the grid fractures) is highly dependent on the spatial structure of shear strength.  Strong 

autocorrelation (i.e., a low relative nugget) leads to relatively more large initial fractures.  

Since larger initial fractures are more likely to reach the critical size necessary to initiate 

an avalanche, the spatial structure of a slope strongly affects its avalanche potential. 
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Table 1.  Snowpack Parameters Used in the Model Runs.   

 
 

Parameter 
 

 
Value 

 
Peak shear strength, mean 

 
1500 Pa 

Peak shear strength, standard deviation 150 Pa 
Ratio peak shear strength/residual strength 1.5 
Slab density 200 kg m-3 
Slab thickness 0.5 m 
Displacement to failure 4 mm 
Autocorrelation length (range), peak shear strength 4 m 
Relative nugget, peak shear strength 
 

0% - 100% 
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Figure 1:  Each grid above represents shear strength data with a mean of 1500 Pa and a 

standard deviation of 150 Pa.  However, the spatial structure of the three grids varies 

from essentially spatially random (a relative nugget of 100% (a)) to partially structured (a 

relative nugget of 50% (b)) to a strong spatial structure (a relative nugget of 0% (c)).  

These grids are representative of the data used for our model runs. 
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Figure 2:  A conceptual representation of the semivariogram for each of the three grids in 

Figure 1, where the range and sill are constant while the relative nugget varies.  The 

letters correspond to the letters in Figure 1. 
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Figure 3: A semivariogram for 68 shear strength measurements on a slope in southwest 

Montana, U.S.A. shows spatial autocorrelation with a relative nugget of about 44%. 
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Figure 4:  Model avalanches tend to involve only a few cells, or to fracture the entire 

grid.  The percentage of avalanches where the initial fracture is large (more than 99% of 

the grid fractures) is highly dependent on the spatial structure of shear strength.  Strong 

autocorrelation (i.e., a low relative nugget) leads to relatively more large initial fractures.  

Since larger initial fractures are more likely to reach the critical size necessary to initiate 

an avalanche, the spatial structure of a slope strongly affects its avalanche potential. 

 

 


