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Abstract. This article reviews the performance 
of wood-frame buildings in recent earthquakes, 
and summarizes research performed to more fully 
understand their seismic behavior. 

Past experience has shown that properly con- 
structed wood-framed buildings can resist the 
damaging effects of seismic ground motion. 
Structures that are symmetrical in plan, built 
of lightweight materials and constructed of 
components that act as a unit generally perform 
well. The inherent damping found in wood and 
nailed and bolted connections also helps in the 
mitigation of earthquake damage. 

This paper is a review of recent research that 
has been performed to quantify the begavior of 
wood buildings subjected to seismic motion. 
The focus will be directed towards component 
response since most recent research has been 
performed in that area. Low-rise, wood-framed 
buildings will be emphasized. This type of 
construction represents most residential and a 
large numbere of commercial and industrial 
buildings constructed in the United States. 

PAST PERFORMANCE 

Damage to wood buildings resulting from the 
1964 Alaska earthquake (8.6 Richter) and the 
1971 San Fernando earthquake (6.6. Richter) has 
been well documented [1-9]. Although the Alas- 
kan earthquake was of higher magnitude, the 
damage to wood buildings was less severe than 
witnessed in San Fernando. The Alaskan homes 
were more symmetrical in cross section and had 
smaller openings than their San Fernando coun- 
terparts. 

In both events, the primary cause of damage was 
a lack of adequate lateral support [3,5,6,10, 
11]. The San Fernando event indicated that 
two-story and split-level homes with large 
garage openings at ground level are particu- 
larly susceptible to damage. Failures at sill 
plate connections and homes shifting off foun- 
dations were also observed. Fuller [2] noted 
that a deficiency of some buildings was a lack 
of resistance to torsional racking caused by 
the second story being stiffer than the first. 
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A more thorough discussion of these two events 
can be found in a 1984 paper by Soltis [8]. 

Two recent California earthquakes causing 
damage to wood homes were the 1983 coalinga 
event (Richter 6.2) and the 1984 Halls Valley 
event (Richter 6.5). Danage to wood houses 
resulted from the same basic failure mechanisms 
in both earthquakes. Short wood stud walls in 
the substructure (cripple walls) failed due to 
a lack of adequate lateral resistance. Shift- 
ing of houses off of their foundations dure to 
lack of anchor bolts was also observed [12-14]. 

COMPONENT RESEARCH 

Wall, floor and roof diaphragms are key fea- 
tures of light-frame wood buildings that pro- 
vide earthquake resistance. These panel-type 
substructures serve to resist and transfer 
in-plane shear forces developed in the build- 
ing. 

A comprehensive bibliography prepared by Carney 
[15] in 1975 and later updated by Peterson [16] 
in 1983 lists diaphragm research from as early 
as 1930. This research has provided valuable 
information on the relative influence of vari- 
ous parameters that affect diaphragm response, 
such as nail spacing, openings and framing and 
sheathing material properties. Currently used 
diaphragm design methodologies are a result of 
this research [17,18]. 

More recent studies include the testing of 
several shear walls by Patton-Mallory, et al. 
[19] to determine the effects of wall length 
and openings on stiffness and strength. It was 
found that racking strength was linearly pro- 
portional to wall length. Results confirmed 
the usual design assumption that the length of 
wall containing openings can be neglected in 
calculating racking resistance. 

Tests have also been performed to determine the 
effect of cyclic loading on racking wall behav- 
ior. Yasumura and Sugiyama [20] found a 10% to 
20% decrease in the ultimate strength of ply- 
wood sheathed walls due to cyclic loading. 
More recently, the effects of cyclic loading on 



the strength of gypsun board-sheathed walls 
have been investigated [21]. 

Several mathematical models for the lateral 
load analysis of wall diaphragms have been 
developed and verified [22-30]. Amana and 
Booth [22] first presented the concept of nail 
joint slip modulus in 1967. Their theoretical 
and experimental studies showed that nail joint 
slip has a dominant effect on diaphragm deflec- 
tion. The nonlinear nature of nail joint slip 
is also important, and several mathematical 
models have accounted for this behavior. 
McCutcheon recently modified a linear nail 
joint slip model presented in 1978 [30] to 
account for nonlinear behavior [29]. In 1984, 
ltani and Cheung [27] presented a general 
finite element model used for stud wall analy- 
sis. This model accounts for nonlinear nail 
joint modulus and does not impose restrictions 
on sheathing arrangement, load application or 
diaphragm geometry. 

Fewer models have been developed for the analy- 
sis of floor, roof and ceiling diaphragms 
[22,24,25]. The larger sizes of these compo- 
nents and the common use of staggered sheathing 
arrangements complicate analysis. 

Though none of these models have yet to be 
accepted as advanced design procedures by 
building codes, they have been important in 
identifying how variations in construction 
configurations and materials affect diaphragm 
stiffness and strength. 

DlAPHRAGM MATERIALS 

Plywood has long been used as sheathing for 
wood diaphragms, however, wood composite 
sheathing materials, such as particleboard and 
fiberboard, have received recognition for their 
lateral load resistance in wall or floor dia- 
phragms or both [18]. Experimental tests 
performed by Price and Gromal a [31] on wood 
stud walls sheathed with flakeboard indicated 
that the strength of these walls was slightly 
higher than that of plywood-sheathed walls. 

Typically considered a "nonstructural" sheath- 
ing material, gypsun board can also contribute 
to the lateral load capacity of diaphragms. 
Though dependent on wall length and panel 
orientation, research has shown that gypsum 
board contributes significantly to the load 
capacity of interior and exterior shear walls 
[32,33]. The Uniform Building Code currently 
limits gypsum board's contribution, which 
cannot be added to the load capacity of other 
types of sheathing materials on the same wall 
[18]. 

DYNAMIC CHARACTERISTICS 

Though considerable research has been performed 
on diaphragm behavior, it has for the most part 
been limited to static testing and the mathe- 
matical modeling of static behavior. Little 
research has been performed to determine the 
seismic response of wood diaphragms [34]. 

Quantification of the dynamic properties of 
diaphragms, such as natural frequencies and 
damping ratios, has received more attentton 
[35-38]. Natural frequencies of walls, floors, 
cellings and roofs have been measured and are 
found to range between approximately 4 and 30 
hertz, depending on diaphragm type. Because 
wood diaphragms exhibit nonlinear Ioad/dis- 
placement response when subjected to lateral 
loads, stiffness and natural frequency are also 
dependent on displacement level. Quantifying 
natural frequency for these components is 
important since earthquake signals are known to 
contain frequencies between approximately 0.5 
and 8 hertz. 

Wood buildings with nailed components have a 
high damping capacity. Damping capacity is the 
ability of a structure to dissipate energy 
during vibration and is usually measured by the 
damping ratio. The dissipation of energy 
generated from earthquake motion is important 
in reducing the seismic forces the structure 
must resist. 

Tests on wall, floor, ceiling and roof dia- 
phragms indicate a range of damping ratios from 
0.03 to 0.34, the large values indicating 
higher levels of energy dissipation [24,37]. 
These values depend on diaphragm size and type, 
sheathing matertal, nail characteristics and 
displacement level. 

Intercomponent connections are also thought to 
play an important role in the damping capacity 
of a wood building, however, little research 
has been performed to quantify the behavior of 
these connections [39]. 

The single nail joints used to connect sheath- 
ing to framing play a major role in the damping 
capacity of wood-framed buildings. Because of 
their nonlinear hysteretic behavior, these 
joints dissipate a significant mount of energy 
[40-43]. Even at low displacement levels, 
damping associated with the use of nailed 
joints has been found to be about six times the 
damping capacity of the wood material itself 

Single nail joints are also Influenced by the 
rate of loading and effects of load cycling. 
At small deformations, an increase in joint 
strength due to a high rate of loading has been 
found to be offset by a decreased joint capac- 
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ity as a result of load cycling [42]. At Iarge 
deformations and numbers of load cycles, joint 
resistance decreases. 

BUILDING BEHAVIOR 

The characteristics of a whole building differ 
from that of its components. To investigate 
the dynamic characteristics of wood-frame 
structures, Medearis [44] subjected 63 wood 
homes to low amplitude vibrations. These tests 
indicated a building frequency range of 4 to 18 
hertz, depending on building height. More 
recently, Sugiyama [44] tested wooden homes 
constructed of plywood shear walls (similar to 
North American construction) and found that 
natural frequencies ranged from about 3 to 7 
hertz. 

Wood buildings subjected to earthquake motion 
often undergo torsional motion. Observations 
have shown that the greatest deficiency of 
wood-frame construction is its lack of resis- 
tance to torsional racking [2]. The basic 
cause of this motion is the eccentricity 
between the centers of mass and resistance at 
various floors of the building. 

Theoretical models for the Iateral-torsional 
analysls of low-rise timber structures have 
been developed [46,47]. Using nonlinear 
springs to model the racking walls, Naik [47] 
analyzed a two-story house and found first mode 
building frequencies between 1.79 and 4.0 
hertz. Using a similar model, Moody [46] found 
reasonable agreement between experimental 
results and analytical predictions of lateral 
response for several wood buildings. Both 
models assume the ceiling diaphragms are rigid. 

Attempts have been made to model a whole wood 
building subject to lateral loading, however, a 
comprehensive model that accounts for component 
and intercomponent behavior has yet to be 
developed. Chehab [48] utilized the general 
structural analysls program SAPV to analyze a 
full-size home under simulated earthquake 
loadings. In spite of crudely estimated input 
properties for the various components and 
intercomponents, the results indicated (quali- 
tatively) many of the effects observed in 
earthquake-damaged houses. 

More recently, Gupta and Kuo [49] presented a 
model to analyze a wood building subjected to 

cated reasonable agreement. 

lateral loads. Comparisons with full-scale 
house tests by Tuomi and McCutcheon [50] indi- 

DESIGN ASPECTS 

Low-rise, timber, shear-wall buildings are low 
mass, high stiffness structures with relatively 
high natural frequencies. Current code re- 

quirements are based upon seismic surveys of 
steel and concrete frame buildings that are 
generally high mass, low stiffness structures 
with a relatively low natural frequency. Code 
formulas for determining lateral response 
forces are based upon the approximation of 
response spectra developed for Iumped mass, low 
frequency structures. These formulas may 
require revision for timber structures [47]. 

In Asian countries, old timber buildings such 
as pagodas, temples and pavilions have stood 
for thousands of years and withstood earth- 
quakes without much damage [51]. The ductiIity 
of these structures has allowed them to undergo 
large deformation without failure, while dissi- 
pating large amounts of energy. 

Designing structures to remain elastic during 
severe earthquake motion is usually uneconom- 
ical. Recent research in New Zealand has led 
to a ductility factor approach for determining 
design earthquake loads for timber structures 
[52]. Assuming the structure is well detailed 
and is able to withstand displacements greater 
than that attained at its design load, resis- 
tance to horizontal forces substantially less 
than those predicted by elastic response can be 
justified using this approach [41]. An advan- 
tage of this method is the utilization of 
reserve displacement capacity found in single 
nail joints. In the United States, little work 
has been performed on the ductility of wood 
structures [53]. 

Since the 1971 San Fernando event, earthquakes 
have provided little new information on the 
seismic behavior of low-rise, wood-frame build- 
ings, however, analytical and experimental 
research is continuing in an effort to more 
fully understand component and building re- 
sponse. Mathematical models have been devel- 
oped and verified to predict component 
response, however, additional study is needed 
regarding intercomponent behavior and ductiIity 
requirments for seismic design. The develop- 
ment of a comprehensive wood building mathe- 
matical model will need to account for the 
dynamic characteristics of components and 
intercomponents. The realization of such a 
model will allow a more accurate prediction of 
the magnitude and distribution of seismic 
forces, and as a result more efficient wood 
building designs. 
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