Appendix F ICSI Classification for Seasonal Snow on the Ground | | 1 | Morphological | Classificatio | on | Process-Ori | ented Classification | Additional Information on Physical and Strength | | | | |----------------------------|-------------|-----------------------|---------------|--|-----------------------|---------------------------------------|--|---|---------------------------|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of
Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on Strength | | | Precipitation
Particles | 1 | | PP | | Cloud | | | | | | | + | | | | | | | | | | | | | а | Columns | cl | Short prismatic crystal, solid or hollow | | | Growth at high supersaturation at –3° | | | | | | | | | | | | to –8°C and below –22°C | | | | | | b | Needles | nd | Needle-like approximately cylindrical | | | Growth at high supersaturation at –3°C | | | | | | | \leftrightarrow | | | | | to –5°C | | | | | | С | Plates | pl | Plate-like mostly hexagonal | | | Growth at high supersaturation at 0° | | | | | | | \Diamond | | · · | | | to -3°C and -8° to -25°C | | | | | | d | Stellars | sd | Six-fold star-like planar or spacial | | | Growth at high supersaturation at | | | | | | (dendrites) | | | | | temperatures
between -12° to -16°C | | | | | | | | Irrogular | in | Chiatara of vary amali | | | Delveryatele growing et | | | | | | е | Irregular
crystals | ir | Clusters of very small crystals | | | Polycrystals growing at
varying environmental
conditions | | | | | | | \nearrow | | | | | | | | | | | f | Graupel | gp | Heavily rimed particles | | | Heavy riming of particles by accretion of | | | | | | | X | | | | | supercooled water | | | | | | g | Hail | hl | Laminar internal structure, translucent or | | | Growth by accretion of supercooled water | | | | | | | A | | milky glazed surface | | | • | | | | | | h | Ice pellets | ip | Transparent, mostly small spheroids | | | Frozen rain | | | | | | | Δ | | | | | | | | | | | Morphological Classification | | | Process-Orien | ted Classification | Additional Information on Physical and Strength | | | | |-------------------------------|------------------------------|---|--------|--|-----------------------------|--|---|---|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on Strength | | Decomposing and fragmented | 2 | | DF | | | | | | | | precipitation particles | а | Partly decomposed precipitation particles | dc | Partly rounded particles,
characteristic shapes of
precipitation particles still
recognizable | Recently
deposited layer | Initial rounding
and separation | Decrease of surface area
to reduce surface free
energy at low temperature
gradients | Speed of
decomposition
decreases with
decreasing
snow
temperatures
and decreasing
temperature
gradients | Strength
decreases with
time; felt-like
arrangement of
dendrites has
modest initial
strength | | | b | Highly
broken
particles | bk | Packed, shards or rounded fragments of precipitation particles | Saltation layer | Wind-broken
particles; initially
fractured then
rapid rounding
due to small size | Fragmented particles are closely packed by wind; fragmentation followed by rounding and growth | Fragmentation
and packing
increase with
wind speed | Quick sintering
results in rapid
strength
increase | | Rounded grains (Monocrystals) | 3 | | RG | | Dry snow | | | | | | • | а | Small rounded particles | ST | Well rounded particles of
size <0.5 mm often well
bonded | | Small equilibrium form | Decrease of specific
surface area by slow
decrease of number of
grains and increase of
mean grain diameter;
equilibrium form may be
partly faceted at lower
temperatures | Growth rate increases with increasing temperature and temperature gradient; growth slower in high density snow with smaller pores | Strength
increases with
time, density
and decreasing
grain size | | | b | Large
rounded
particles | Ir | Well-rounded particles of size >0.5 mm | | Large equilibrium form | Grain-to-grain vapor
diffusion due to low to
medium temperature
gradients; mean excess
vapor density remains
below critical value for
kinetic growth | Same as above | Strength
increases with
time and
density and
decreasing
grain size | | | С | Mixed forms | mx | Rounded particles with few facets which are developing | | Transitional form as temperature gradient increases | Growth regime changes if
temperature gradient
increases above critical
value of about 10°C/m | Grains are changing in response to an increasing temperature gradient | De-sintering
could decrease
strength | | Morphological Classification | | | | | | Priented Classification | Additional Information on Physical and Strength | | | | |------------------------------|------|-------------------------|--------|--|-----------------------|---|---|---|---|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of
Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on Strength | | | Faceted crystals | 4 | | FC | | Dry snow | а | Solid faceted particles | fa | Solid faceted crystals;
usually hexagonal prisms | | Solid kinetic growth form | Strong grain-to-grain vapor
diffusion driven by large
temperature gradient;
excess vapor density
above critical value for
kinetic growth | Growth rate increases with temperature, temperature gradient, and decreasing density; may not occur in high density snow because of small pores | Strength
decreases with
increasing
growth rate and
grain size | | | | b | Small faceted particles | sf | Small faceted crystals in
surface layer; <0.5 mm in
size | Near
surface | Kinetic growth form at early stage of development | May develop directly from
1 or 2a due to large, near-
surface temperature
gradients | Temperature
gradient may
periodically change
sign but remains at
a high absolute
value | Low strength snow | | | | С | Mixed-
forms | mx | Faceted crystals with recent rounding of facets | | Transitional form as temperature gradient decreases | Faceted grains are rounding due to decrease in temperature gradient | | | | | | | | | | | | | | | | | | N | /lorphological | Classificat | tion | Process-Oriented Classification | | Additional Information on Physical and Strength | | | | |-------------------------|------|--------------------------|-------------|---|---------------------------------|--|--|--|--|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of
Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on
Strength | | | Cup-shaped crystals: | 5 | | DH | | Dry snow | | | | | | | Depth hoar | а | Cup crystal | ср | Cup-shaped, striated crystal; usually hollow | | Hollow or partly solid cup-shaped | Very fast growth at large temperature gradient | Formation increases with | Usually fragile but strength increases with | | | \wedge | | $\wedge \blacktriangle$ | | | | kinetic growth crystals | | increasing vapor flux | density | | | | b | Columns of depth hoar | dh | Large cup-shaped
striated hollow crystals
arranged in columns
(< 10 mm) | | Large cup-
shaped kinetic
growth forms
arranged in
columns | Intergranular arrangement
in columns; most of the
lateral bonds between
columns have disappeared
during crystal growth | Snow has almost
completely
recrystallized; high
recrystallization rate
for long period and
at low snow density
and high external
temperature
gradient facilitates
formation | Very fragile snow | | | | С | Columnar crystals | cl | Very large, columnar
crystals with c-axis
horizontal (10-20 mm) | | Final growth
stage of depth
hoar at high
temperature
gradient in low
density snow | Evolves from earlier stage described above; some bonding occurs and new crystals are initiated | Longer time
required than for
any other snow
crystal | Some strength returns | | | Wet grains | 6 | | WG | | Wet snow | | | | | | | 0 | a | Clustered rounded grains | cl | Clustered rounded
crystals held by large
ice-to-ice bonds; water
in internal veins
among three crystals
or two grain
boundaries | | Grain clusters
without melt-
freeze cycles | Wet snow at low water
content pendular regime;
clusters form to minimize
surface free energy | Meltwater can drain;
too much water
leads to slush;
freezing leads to
melt-freeze particles | Ice-to-ice bonds give strength | | | | b | Rounded poly crystals | mf | Individual crystals are frozen into a solid polycrystalline grain; may be seen either wet or refrozen | | Melt-freeze
polycrystals | Wet snow at low water
content, melt-freeze cycles
form polycrystals when
water in veins freezes | Particle size increases with number of melt-freeze cycles; radiation penetration over time restores 6a; excess water leads to 6c | High strength in the frozen state; lower strength in the wet state; strength increases with number of melt-freeze cycles | | | | 1 | Morphological (| Classificatio | n | Process-Orie | nted Classification | Additional Information on Physical and Strength | | | | |-------------------------|------|-----------------------------|---------------|--|---|---|---|---|--|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on Strength | | | | С | Slush | sl | Separated rounded crystals completely immersed in water | | Poorly bonded
rounded single
crystals | High liquid content equilibrium form of ice in water | Water drainage
blocked by
impermeable
layer or ground;
high energy
input to snow
cover by solar
radiation, high
air temperature
or water input | Little strength
due to decaying
bonds | | | Feathery crystals | 7 | | SH | | | | | | | | | V | а | Surface
hoar
crystals | sh | Striated, usually feathery
crystal; aligned; usually
flat, sometimes needle-
like | Cold snow
surface | Kinetic growth
form in air | Rapid kinetic growth of crystals at the snow surface by rapid transfer of vapor toward the snow surface; snow surface cooled to below ambient temperature by radiational cooling | Increasing
growth rate with
increased
cooling of the
snow surface
below air
temperature
and increasing
relative humidity
of the air | Fragile,
extremely low
shear strength;
strength may
remain low for
extended
periods when
buried in cold
snow | | | | b | Cavity hoar | ch | Striated, planar or
feathery crystals grown
in cavities; random
orientation | Cavities in
snow; same
form might
grow in very
low density
snow with
extreme
temperature
gradient | Kinetic growth
form in cavities | Plate or feathery crystals
may grow in high-
temperature gradient fields
in large voids in the snow,
e.g. in the vicinity of tree
trunks, buried bushes or
below sun crusts | | | | | Morphological Classification | | | | | Process-Ori | ented Classification | Additional Information on Physical and Strength | | | | |----------------------------------|------|------------|--------|---|--|--|--|---|---|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on
Strength | | | Ice masses | 8 | | IM | | | | | | | | | - | а | Ice layer | il | Horizontal ice layer | Buried layers
in snow
becoming
melted and
refrozen | Ice layer from
refreezing of draining
meltwater; usually
some degree of
permeability | Rain or meltwater from the
surface percolates into
cold snow where it
refreezes; water may be
preferentially held by fine-
grain layer such as a
buried wind crust | Depends on timing
of percolating
water and cycles
of melting and
refreezing; more
likely to occur if
snow is highly
stratified | Ice layers are strong but
strength decays once
snow is completely
wetted | | | | b | Ice column | ic | Vertical ice body | Within layers | Ice column from refreezing of draining meltwater | Water within flow fingers freezes due to heat conduction into surrounding snow at T<0°C | Flow fingers more
likely to occur if
snow is highly
stratified; freezing
greater if snow is
very cold | | | | | С | Basal ice | bi | Basal ice layer | Base of snow
cover | Ice forms from
freezing of ponded
meltwater | Water ponds above
substrate and freezes by
heat conduction into cold
substrate | Formation
enhanced if
substrate is
impermeable and
very cold (e.g.
permafrost) | Weak slush layer may form on top | | | Surface
deposits and
crust | 9 | | CR | | | | | | | | | XX | а | Rime 🗸 | rm | Soft rime: irregular
deposit; Hard rime:
small supercooled
water droplets
frozen in place | Surface | Surface rime | Accretion of supercooled fog droplets onto surface grains | Increases with fog
density and
exposure to wind | Thin breakable crust forms if process continues long enough | | | | b | Rain Crust | rc | Thin, transparent glaze or clear ice surface layer | Surface | Frozen rain water at snow surface | Result from freezing rain on snow; forms a surface glaze | Droplets have to
be supercooled but
coalesce before
freezing | Thin breakable crust | | | | Мо | orphological C | lassificat | tion | Process-Or | iented Classification | Additional Information on Physical and Strength | | | | |-------------------------|------|------------------------|------------|---|--------------------|------------------------------------|--|---|---|--| | Basic
Classification | Code | Subclass | Abbrev | Shape | Place of Formation | Classification | Physical Process | Dependence on
Most Important
Parameters | Common Effect on
Strength | | | | С | Sun crust, firnspiegel | sc | Thin, transparent glaze or surface film | Surface | Refrozen meltwater at snow surface | Refrozen surface layer partially melted by solar radiation; shortwave absorption in the glaze is decreased; cooling of the glaze by longwave radiation and evaporation; greenhouse effect for the underlying snow; water vapor condenses below the glaze; may develop into smooth, shiny layer of clear ice at surface | Builds during clear weather (longwave cooling), air temperatures below freezing and strong irradiation (not to be confused with melt-freeze crust); melting can occur below the crust in clean snow | Thin, often breakable crust | | | | d | Wind crust | wc | Small, broken or
abraded, closely-
packed particles;
well sintered | Surface | Wind crust | Fragmentation and packing of wind transported snow particles; high number of contact points and small size causes rapid strength increase through sintering | Hardness of
crust increases
with wind speed,
decreasing
particle size and
moderate
temperature | Hard, sometimes breakable crust | | | | е | Melt-freeze crust | mfc | Crust of recognizable melt-freeze polycrystals | Near surface | Crust of melt-freeze particles | Refrozen layer (e.g. wind crust) which was wetted with water at least once | Particle size and
density increases
with number of
melt-freeze
cycles | Hardness increases
with number of melt-
freeze cycles | | Note: Canadian modifications are employed for the crust symbol, surface deposit and for the rain crust symbols. Upper case and lower case abbreviations are used to distinguish between the basic classifications and the subclass. Refer to Colbeck and others, 1990 for further explanation of shapes, place of formation, process-oriented classifications, physical process, and common effects on strength.