<u>Mississippi CROP</u>

A Summary of CROP Landscape Analyses Results

Presented by Catherine M. Mater President—Mater Engineering Senior Fellow—The Pinchot Institute for Conservation Corvallis, Oregon; Washington, DC Tel: 541-753-7335 Fx: 541-752-2952 E-mail: catherine@mater.com

April 2007

Mater Engineering, Ltd.

Mississippi CROP: *Mt. Olive, MS (centerpoint)* (100 miles N/S; 60 miles E/W)

April 2007

- 4 National Forests
- 5 Ranger Districts
- 43 Counties
- State Lands
- 16th Section Lands
- Private Lands (Katrina-downed)

Mater Engineering, Ltd.

National Forests: 5 Ranger Districts

• <u>Bienville NF</u>:

Bienville RD

• <u>Delta NF</u>:

Delta RD

• <u>De Soto NF</u>:

De Soto RD Chickasawhay RD

• <u>Homochitto NF</u>:

Homochitto RD

State Lands:

 Mississippi Dept. of Wildlife, Fisheries, & Parks

April 2007

Mater Engineering, Ltd.

43 Counties:

- Sharkey
- Claiborne
- Amite
- Copiah
- Yazoo
- Attala
- Scott
- Lawrence
- Walthall
- Pearl River
- Jackson
- Forrest
- Wayne
- Jasper
- Newton

- Perry
- Jones

•

•

•

•

•

- Lauderdale
 - Warren
 - Franklin
- Lincoln
- Madison
- Holmes
 - Rankin
- Smith
- Covington
- Lamar
 - Harrison
 - George

- Clarke
- Neshoba
- Issaquena
- Jefferson
- Pike
- Hinds
- Humphreys
- Leake
- Simpson
- Jefferson Davis
- Marion
- Hancock
- Stone
- Greene

April 2007

Mater Engineering, Ltd.

CROP also includes <u>16th Section lands</u>: (lands managed by state for benefit of school systems)

- 43 counties in CROP landscape with 16th Section lands
- Data & diameter breakout received from MIFI.
- Between '01 through '05, amount in CROP landscape removed was:

Pine: 99 mmbf + 396,000 gT Hardwood: 32 mmbf + 114,000 gT

- Of 43 counties, only 18 experienced <u>annual</u> removals between '01 '05
- Estimates in CROP based only on those counties with historical annual removals. <u>Averaged annual removal</u> volumes calculated.

Mater Engineering, Ltd.

April 2007

CROP also included analysis on <u>Katrina-downed pine</u> <u>& hardwood</u>:

- Data for 15 southern counties supplied by MIFI.
- Assumption for diameter, decay rate, & remaining usable material (blue stain, heartwood, & hardwood) supplied by MIFI, with technical assistance also provided by MSU (Dr. Terry Amburgey

Mater Engineering, Ltd.

Catherine M. Mater

What we asked for:

- Volume (by mmbf, green tons, ccf, etc.)
- Diameter sizes <<4" 4"-7" 7"-9" 9"-12" >12"
- **Species** (all species evaluated for resource flow)
- Harvest "type": fuel load reduction, timber sale, etc.

USFS Pilots

- Location of resource offering
- NEPA Phase
- Road accessibility

April 2007

Mater Engineering, Ltd.

So, let's take a look at the final results . . .

Mater Engineering, Ltd.

Catherine M. Mater

Overall:

Year	Total Biomass (227,625 gT)	% of 5-yr volume	Tota (109	l Small Log 9.547 mmbf)	% of 5-yr volume	Total Large Log (111.491 mmbf)	% of 5-yr volume
2007	37,605	16%		21.855	20%	28.586	26%
2008	34,800	15%		16.92	15%	17.66	16%
2009	15,190	7%		25.677	24%	32.609	29%
2010	51,890	23%		24.815	23%	25.486	23%
2011	88,140	39%		20.28	18%	7.15	6%

Biomass = 17% (up to 7" dbh) Small Logs = 41% (>7" - 12" dbh) Large Logs = 42% (>12" dbh)

April 2007

Mater Engineering, Ltd.

10

Who's providing what?

Agency	5-yr total Biomass (gT)	5-yr total Small Log (mmbf)	5-yr total <i>Large Log (mmbf)</i>	% of 5-yr total
De Soto NF	136,250	63.123	38.063	48%
Bienville NF	62,400	25.32	25	24%
Homochitto NF	28,975	17.985	35.278	22%
Delta NF	0	3	12	6%
MS DWF & P	0	.119	1.15	<1%

April 2007

Mater Engineering, Ltd.

Is there a change? Overall – Yes!

A 3% *reduction* in planned removal off all National forests in CROP landscape.

	'01-'05 (mmbf)	'07-'11 (mmbf; includes gT)	% change
Delta NF	10.95	15	37%
Bienville NF	38.33	62.8	61%
De Soto NF	104.05	128.44	23%
Homochitto NF	120.48	59.06	(-51%)
Total	273.81	265.3	(-3%)

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

ĨĨ

Where's the change?

Let's look at the De Soto NF:

... an increase of 23% in planned volume removal.

	'01-'05 (mmbf)	'07-'11 (mmbf; includes gT)
Southern Yellow Pine	62.72	108.436
Waxy Species	0	20
Oaks (red, black, white)	1.78	0
Hardwoods	9.83	0
Other Softwoods	29.71	0
Total	104	128.436

Mater Engineering, Ltd.

But . . . for the Homochitto NF a different story . . .

... a more impactful change with 60% reduction in planned volume removal during the next 5 years

	'01-'05 (mmbf)	'07-'11 (mmbf; includes gT)
Southern yellow pine	72.62	49.43
Oaks (red, white, black)	2.07	3.84
Hardwood – other	11.371	5.76
Softwoods – other	34.39	0
Total	120.45	59.06

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

A closer look on resource offering . . .

De Soto NF: (gT=136,250; Small log = 63.123 mmbf; Large log = 38.063 mmbf)

Ranger Districts	5-yr total (Biomass = gT) <7" dbh	5-yr total Small log (mmbf) 7"-12" dbh	5-yr total Large log (mmbf) >12" dbh
De Soto RD	100,000	26.873	9.063
Chickaswawhay RD	36,250	36.25	29

Mater Engineering, Ltd.

A closer look on resource offering . . .

Bienville, Homochitto, & Delta NFs:

Ranger District	5-yr total (Biomass = gT) <7" dbh	5-yr total Small log (mmbf) 7"-12" dbh	5-yr total Large log (mmbf) >12" dbh
Bienville NF (RD)	62,400	25.32	25
Homochitto NF (RD)	1,592	2.092	1.435
Delta NF (RD)	0	3	12

Mater Engineering, Ltd.

A closer look on resource offering . . .

MS Agencies: (gT= 0; Small log = .119 mmbf; Large log = 1.15 mmbf)

Agency	5-yr total	5-yr total	5-yr total
	(Biomass = gT)	Small log (mmbf)	Large log (mmbf)
	<7" dbh	7"-12" dbh	>12" dbh
MS DWF &P	0	.119	1.15

Mater Engineering, Ltd.

NF & State removals by Species*	5-yr total (Biomass = gT)	5-yr total Small log (mmbf)	5-yr total Large log (mmbf)
Red oak (3% of 5-yr. total)	1,152	2.5386	6.387
Hardwoods (2% of 5-yr. total)	192	.9231	3.0645
Green ash (1% of 5-yr. total)	0	.36	1.44
Gum species (4% of 5-yr. total)	4,472	5.1311	3.9823
Southern yellow pine (80% of 5-yr. total)	157,245	87.4895	93.734
Oak species (2% of 5-yr. total)	3,000	3.365	1.9078
Poplar (1% of 5-yr. total)	974	1.0432	.5522
Hickory (0% of 5-yr. total)	590	.697	.4232
Waxy species (8% of 5-yr. total)	60,000	8	0

*9 species analyzed in CROP, but Southern Yellow Pine comprises 80% of the total 5-yr volume

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

16th Section lands:

- 1) Three regions (Delta River, Central, & Southern)
- 2) 43 counties in CROP but only 18 with <u>annual</u> removal performance from '01 through '05.
- 3) For this CROP, used averaged annual removal from those 18 counties to derive projected annual CROP offering.

April 2007

Mater Engineering, Ltd.

16th Section lands:

18 counties (in CROP landscape) with <u>annual</u> removal performance:

South Region: (9 of 22 counties)

•Amite

•Copiah •Franklin	Central Region	: (7 of 14 counties)
•Jefferson Davis	•Clarke	
•Jones	•Hinds	
•Lincoln	•Jasper	
•Marion	•Newton	
•Walthall	•Scott	<u>Delta/River Region</u> : (2 of 7 counties)
•Wayne	•Simpson	•Jefferson
	•Smith	•Warren

Mater Engineering, Ltd.

16th Section lands:

Projected <u>annual</u> removal based on averaged annual removal from '01 – '05:

	Biomass gT	Small log (mmbf)	Large log (mmbf)
Central Region	31,621	2.18	2.65
South Region	35,910	3.16	3.77
Delta Region	3,581	.8	1.32
Annual totals	71,112	6.14	7.74

Mater Engineering, Ltd.

Catherine M. Mater

Katrina-downed resource (one-time volume):

- 15 southern counties evaluated.
- Initial downed data collected by Mississippi Institute of Forest Inventory (MIFI).
- Diameter breakout, decay rates, usable blue stain (pine) volume, heartwood (pine) volume, & hardwood volume determined (with MIFI & MSU guidance).
- Volume breakouts provided on county-bycounty basis.
- All volume <9" for pine and <7" for hardwood calculated as biomass.

April 2007

Mater Engineering, Ltd.

Collectively, four (4) of the 15 counties contribute the 40% or more of the total Katrina-downed <u>pine</u> volume:

Harrison
Pearl River
Perry
Stone

Five (5) of the 15 counties contribute 40% or more of the total Katrina-downed <u>hardwood</u> volume:

Greene
Harrison
Pearl River
Stone
Wayne

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

Katrina-downed resource:

Initial projections:

ightarrow

- pine:1.958 mmbf (7% in biomass; 48% mmbf in
small log; 40.1% mmbf in large log)
- <u>hardwood</u>: 1.358 mmbf (10.6% in biomass; 37.2% mmbf in small log; 52.2% mmbf in large log)

Current projections:

- pine (49% already removed): 994.3 mmbf (46% in biomass; 24% mmbf in small log; 30% mmbf in large log)
- <u>hardwood (39% already removed)</u>: 833.38 mmbf (31% in biomass; 35% mmbf in small log; 34% mmbf in large log)

April 2007

Mater Engineering, Ltd.

Katrina-downed resource: (Projections based on best guess current conditions)

		Small log – 7"-12" (mmbf)			L	arge log - >12 (mmbf)	2"
	biomass (gT)	blue stain	ue stain heartwood hardwood			heartwood	hardwood
pine	2,261,764	45.25	193.88		82.93	219.89	
hardwood	1,275,840			293.83			284.38

Summary:

usable blue stain (pine)	128 mmbf
usable heartwood (pine)	413.7 mmbf
usable hardwood	578.21 mmbf
biomass	3,537,604 gT

Mater Engineering, Ltd.

Catherine M. Mater

Overall CROP Resource Offering: (total for 5 years)

	Small log		Large log		Biomass	
	(7 (mmbf)	7"-12") % of type offering	((mmbf)	>12") % of type offering	(gT)	% of type offering
NF & State	109.55	41%	111.49	42%	227,625	17%
16 th Section	30.795	22%	38.73	28%	355,560	50%
Katrina-downed (one-time volume)	532.46	29%	587.2	32%	3,537,604	39%
Totals	673.30		737.42		4,120,789	

April 2007

Mater Engineering, Ltd.

So . . . What does all this mean?

- Excluding Katrina-downed volume, opportunity for inviting new production investment into the region is tight, but do-able:
 - ~ 28 mmbf/yr of small logs available for processing (includes ~ 6 mmbf/yr of 16th Section lands removal) is less encouraging for investment, as *volume may be too small for a constructing a dedicated small-log processing mill*. The volume, however, is *sufficient to encourage the construction of a small log processing line* to an existing milling operation.
 - Another 30 mmbf/yr of large logs (includes ~ 7 mmbf/yr of 16th Section lands removal) for processing in existing operations may also be made available.

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

So . . . What does all this mean?

From a *biomass* basis:

- The proposed biomass to be generated from the National Forests is likely significantly underestimated. The 16th Section lands on average generated three times *less* small and large log volume over the last 5 years than what is expected from the National Forests in the CROP landscape during the next five years, but generated over 50% more biomass volume.
 - The NF and 16th Section biomass volumes combined at ~ 117,000 gT/yr is still considered a small volume offering for typical biomass investors. Further, high variability in annual biomass offering from NF lands in the CROP landscape make the risk factor even higher.
 - However, the six-fold increase per year in biomass that could be generated from Katrina-downed resource in the CROP landscape should be of interest to potential investors.

April 2007

Mater Engineering, Ltd.

So . . . What does all this mean?

- Aside from biomass, the updated volume of Katrina-downed resource for solid wood production should not be ignored!
 - 25 mmbf/year of *usable blue stain pine* to be sold into the characterwood market;
 - 82 mmbf/year of *usable heart pine*; and
 - Over 115 mmbf/year of *hardwood*.

Mater Engineering, Ltd.

Catherine M. Mater

 $\mathbf{28}$

Resource Offering Maps (ROMS): *Here's what you get <u>for each species</u>...*

- ✓ <u>Who</u> will supply?
- ✓ *When* will supply be offered?
- ✓ How much will be offered?
- ✓ *What diameter size* will it be offered in?
- ✓ Will supply be consistent and *levelized over* time to invite purchase and investment?

Mater Engineering, Ltd.

For each species:

- ✓ Locator map per specific supplier
- ✓ <u>Summary sheet</u>
- ✓ <u>Detailed supply breakouts</u> by volume, diameter, and year

Let's look at Southern Yellow Pine as an example ...

Mater Engineering, Ltd.

Locater Map

*italics/bold = species offering in CROP

April 2007

Mater Engineering, Ltd.

Mississippi: Southern Yellow Pine CROP offering/removal '07 - '11 ROM # SYP 1 (g1 157,245 / S = 87,489 mmbf / L = 93.734 mmbf)gT = green tons (up to 7" dbh) $S = small \log mmbf (>7"-12" dbh)$ $L = large \log mmbf (>12" dbh)$ **Summary Sheet** Delta NF Homochitto NF: 1 RD – 23% Bienville NF: 1 RD – 25% (gT = 24,995 / S = 12.746 / L = 31.691)(gT = 56.000 / S = 19.55 / L = 22.85)**Bienville NF** MS DWF & P – <1% De Soto NF: 2 RDs - 51% Homochitto NF (gT = 0 / S = 0.07 / L = 1.13)(gT = 76,250 / S = 55.123 / L = 38.063)De Soto N All Agencies: Southern Yellow Pine (5-yr total = 212.672 mmbf)31.449 mmbf is <7" = 15,724 gT of biomass 87.489 mmbf is >7"-12" = small logs gT mmbf 93.734 mmbf is >12" = large logs Biomass Small Log Large Log 2007 32725 17.51 25.153 12300 14.51 14.59 2008 >12 " 50 **-**>7" - 12 22.7815 2009 14190 28.392 >9 " - 12 " 2010 30890 17.918 21.269 40 □>7"-9" mmbf 67140 14.77 2011 4.33 **-**<7" 3(■>4"-7" Totals 157245 87.4895 93.734 •4" 15% 41% 44% % mmbi 31.449 212.6725 2007 2008 2010 2011 2009

Mater Engineering, Ltd.

April 2007

Catherine M. Mater

Detailed Breakout by Supplier

Southern Yellow Pine De Soto NF: Chickasawhay RD	5-yr = 72.5 mmbf; 14.5 mmbf/yr			
	• Level supply from year to year			
gT = 36,250	 <4" = 0% (0 mmbf) >4"-7" = 0% (0 mmbf) <7" = 10% (7.25 mmbf) 			
S = .36.25	 >7"-9" = 0% (0 mmbf) >9"-12" = 0% (0 mmbf) >7"-12" = 50% (36.25 mmbf) 			
L = .29	• >12" = 40% (29 mmbf)			

'07 – '11

April 2007

Mater Engineering, Ltd.

SO . . . with CROP, we're able to look at:

- *performance between different public agencies* to identify needed levilization of supply; <u>and</u>
- performance between ranger districts in a single <u>NF</u> to see where levilization of supply offering might be needed .

Let's take a look ...

Mater Engineering, Ltd.

Southern Yellow Pine: De Soto NF - 2 RD - biomass offerings

(% of NF offering of 76,250 gT)

De Soto RD - 52%

De Soto NF: De Soto RD: Southern Yellow Pine Total 5-yr *Biomass* (up to <7" dbh) by Specie (8 mmbf = 40,000 gT)

Chickasawhay RD - 48%

35

Unlevelized supply in both RDs with no offering in most of the years.

Mater Engineering, Ltd.

Southern Yellow Pine: De Soto NF 2 ROS – <u>small log</u> offerings (% of NF offering of 55.123 mml.f)

De Soto RD - 34%

Chickasawhay RD - 66%

36

De Soto NF: Chickasawhay RD: Southern Yellow Pine Total 5-yr Small Log (>7"-12" dbh) by Specie (36.25 mmbf)

Unlevelized supply in 1 of 2 RDs

Mater Engineering, Ltd.

Southern Yellow Pine: De Soto NF 2 RDs – <u>large log</u> offerings (% of NF offering of 38.063 mmbf)

De Soto RD - 24%

De Soto NF: De Soto RD: Southern Yellow Pine Total 5-yr *Large Log* (up to >12" dbh) by Specie (9.063 mmbf)

Chickasawhay RD - 76%

Relatively levelized supply in only one RD.

Mater Engineering, Ltd.

How levelized will the supply be for all suppliers of Southern Yellow Pine compared to other species offering?

Let's take a look . . .

Mater Engineering, Ltd.

Catherine M. Mater

Levelized supply for five years?

(R = relatively)

	g Bior	T mass	Sn Lo	nall ogs	Large Logs	
(% of total CROP vol.)	yes	no	yes	no	yes	no
Southern yellow pine (80%)		\checkmark	R			~
Waxy species (8%)		\checkmark		✓	n/a	
Gum species (4%)		\checkmark	R		R	
Red oak (3%)	R			✓		✓
Hardwoods (2%)	R		✓		✓	
Oak species (2%)		✓		✓	R	
Poplar (1%)		✓		✓		✓
Green ash (1%)	n/a		✓		✓	
Hickory (<1%)		✓		\checkmark		~

April 2007

Mater Engineering, Ltd.

Looking at the *Southern Yellow Pine*...

- ✓ There will be an <u>unlevelized supply of green tonnage biomass in this</u> <u>specie offering</u> over the next five years. Variations range from 15,000 to 88,000 gT per year.
- ✓ This will impact almost 70% of the total biomass volume for all species to be offered in the CROP landscape (excluding 16th Section & Katrina volumes).
- ✓ There will also be a <u>an unlevelized supply of large log volume in this</u> <u>specie offering</u> in the CROP landscape that will affect 84% of the total large log volume.
- ✓ Small log volume variations per year are less dramatic.

Here's how it looks on an agency-by-agency basis ...

April 2007

Mater Engineering, Ltd.

Levelized Annual Supply?

(Total 5-yr volume)

Y = yes $N = no$				
R = relati O = no oj N/A = no	Southern Yellow Pine (212.672 mmbf; includes gT) Biomass Small log Large log			
De Soto NF	(51% of 5-vr vol.)			
	De Soto	N/A	Ν	Ν
	Chickasawhay	N	Y	R
Bienville NF	(25% of 5-yr vol.) Bienville	R	R	R
Homochitto NF	(23% of 5-yr vol.) Homochittto	N	N	N
MS DWF & P	(<1% of 5-yr vol.)	N/A	Y	Ν

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

Levelized Supply? Southern Yellow Pine – <u>biomass</u> (157,245 gT)

K – retaitvety					
NS = no supply offering	yes	no	Comments		
Overall		✓	from 12,300 gT to 67,140 gT/yr		
De Soto NF					
De Soto RD		✓	from 0 gT to 20,000 gT/yr		
Chickasawhay RD		v	from 0 gT to 36,250 gT/yr		
Bienville NF		✓			
Bienville RD			from 8,800 to 17,800 gT/yr		
Homochitto NF					
Homochitto RD		\checkmark	from 1,090 to 4,390 gT/yr		
Delta NF					
Delta RD	NS				
MS DWF & P	NS				

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

Levelized Supply? Southern Yellow Pine – <u>small log</u> (87.489 mmbf)

R = relatively

NS = no supply offering	yes	no	Comments
Overall	R		from 14.51 mmbf – 22.781 mmbf variations/yr
De Soto NF			
De Soto RD		~	from 2 mmbf to 8.873 mmbf
Chickasawhay RD	✓		7.25 mmbf/yr
Bienville NF			
Bienville RD		✓	from 3.5 mmbf to 5.25 mmbf
Homochitto NF			
Homochitto RD		~	from 0 mmbf to 6.45 mmbf
Delta NF	NS		
MS DWF & P	R		from .01 mmbf to .02 mmbf/yr

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

Levelized Supply? Southern Yellow Pine – <u>large log</u> (93.734 mmbf)

R = relatively			
NS = no supply offering	yes	no	Comments
Overall		~	from 4.33 mmbf – 28.392 mmbf variations/yr
<i>De Soto NF</i> De Soto RD		✓	from 0 mmbf to 7.063 mmbf
Chickasawhay RD	R		7.25 mmbf/yr save for '11
<i>Bienville NF</i> Bienville RD	R		from 4.15 mmbf to 5.25 mmbf
<i>Homochitto NF</i> Homochitto RD		✓	from 0 mmbf to 12.413 mmbf
Delta NF	NS		
MS DWF & P	R		from .18 mmbf to .29 mmbf/yr

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

What about NEPA? It's important to know!

... here's how it looks

Mater Engineering, Ltd.

NEPA Picture for CROP Landscape

<u>All NF lands</u>: 99% of 5-yr total = (265.563 mmbf; includes gT as mmbf)

	mmbf	% of total
Approved	105.396	40%
In process	96.058	35%
Just started	0	0%
Not started	66.84	25%

75% of CROP resource offering either NEPA approved or in-process

Mater Engineering, Ltd.

... but story best told on agency-by-agency basis.

Let's look at the De Soto NF as an example . . .

Mater Engineering, Ltd.

Catherine M. Mater

NEPA Risk Rating

1	2	3	4	5
Lowest	Low	Medium	High	Highest

For low risk rating, 3 key desired attributes:

- ✓ Volume *approved* in first 2 years, followed by *in-process*.
- Consistency in supply; no dramatic gaps from year to year (eg: *approved/not started/in-process*).
- ✓ Overall no major emphasis on *just started* or *not started*.

Mater Engineering, Ltd.

NEPA Phase

<u>De Soto NF</u>: Total 5-yr volume (128.436 mmbf; includes gT as mmbf)

	mmbf	% of total
Approved	29	23%
In process	44.936	35%
Just started	0	0%
Not started	54.5	42%

April 2007

Mater Engineering, Ltd.

50

NEPA Risk Rating

Agencies: Ranger Districts in the <u>De Soto NF</u>

(includes gT as mmbt)	1 Lowest	2 Low	3 Medium	4 High	5 Highest	Comments
De Soto (55.936 mmbf)					~	72% of 5-yr volume not started in NEPA process
Chickasawhay (72.5 mmbf)			✓			80% approved or in process years 1 - 4

Mater Engineering, Ltd.

<u>NEPA Phase</u>

De Soto RD: (55.936 mmbf; includes gT as mmbf)

	mmbf	% of total
Approved	0	0%
In process	15.936	28%
Just started	0	0%
Not started	40	72%

HEPA Process: De Soto NF De Soto RD (5-yr: 55.936 mmbf)

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

not started

just started in process approved

NEPA Phase

<u>Chickasawhay RD</u>: (72.5 mmbf; includes gT as mmbf)

	mmbf	% of total
Approved	29	40%
In process	29	40%
Just started	0	0%
Not started	14.5	20%

NEPA Process: De Soto NF Chickasawhay RD (5-yr: 72.5 mmbf)

Mater Engineering, Ltd.

Catherine M. Mater

not started

」 just started □ in process ■ approved

What about road access to supply? No problem here . . .

Agency	5-yr total volume mmbf	Affected by No Current Road Access	
Agency	(includes gT as mmbf)	% of total volume affected	species affected
Delta NF	15	0%	none
Homochitto NF	59.058	0%	none
De Soto NF	128.4365	0%	none
Bienville NF	62.8	0%	none
MS DWF & P	1.269	0%	none
Total	266.5635	0%	

April 2007

Mater Engineering, Ltd.

Conclusions for Mississippi CROP

Opportunity in the making!...

➢ Excluding Katrina-downed material, annual volumes in the small & large log stratums sufficient to re-open closed milling operations in the region, and establish new small log processing line.

>NEPA risk looks very good for NF projections, but . . .

➢ More levelization & coordination between public agencies from year to year required to invite investor interest.

April 2007

Mater Engineering, Ltd.

Conclusions for Mississippi CROP

Opportunity in the making!...

For Katrina-downed material, annual volumes in biomass, small & large log stratums sufficient to:

Construct new biomass & solid wood processing facilities in the CROP landscape.

Create new markets for 'Hurricane Pine' (blue stain pine) product. Demand already there, but nation-wide marketing campaign needed to standardize new characterwood grade.

But, obstacles are no light matter . . .

Access to Katrina-downed material difficult as it is primarily located on private lands, and federal funding to help clean-up efforts on private lands returned to Congress in December 2006!

April 2007

Mater Engineering, Ltd.

Catherine M. Mater

Catherine M. Mater:

President – Mater Engineering Senior Fellow – The Pinchot Institute for Conservation Corvallis, Oregon; Washington, DC tel: (541) 753-7335 fax: (541) 752-2952; cell: (541) 760-5526 *E-mail: catherine@mater.com*

Edmund Gee:

Nat'l Woody Biomass Utilization Team Leader Nat'l Partnership Coordinator USFS Washington DC tel: (202) 205-1787 fax: (202) 205-1045 cell: (202) 236-5153 *E-mail: eagee@fs.fed.us*

April 2007

Mater Engineering, Ltd.