US Forest Service
  
Treesearch

 
 

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

USA.gov  Government Made Easy

Publication Information

Mail this page   Give us your feedback on this publication

Title: Using neutral models to identify constraints on low-severity fire regimes.
Author(s): McKenzie, Donald; Hessl, Amy E.; Kellogg, Lara-Karena B.
Date: 2006
Source: Landscape Ecology. 21: 139-152
Description: Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes. With a suitable neutral model, characteristics of natural fire regimes estimated from fire history data can be compared to a "null hypothesis". We generated random landscapes of fire-scarred trees via a point process with sequential spatial inhibition. Random ignition points, fire sizes, and fire years were drawn from uniform and exponential family probability distributions. We compared two characteristics of neutral fire regimes to those from five watersheds in eastern Washington that have experienced low-severity fire. Composite fire intervals (CFIs) at multiple spatial scales displayed similar monotonic decreases with increasing sample area in neutral vs. real landscapes, although patterns of residuals from statistical models differed. In contrast, parameters of the Weibull distribution associated with temporal trends in fire hazard exhibited different forms of scale dependence in real vs. simulated data. Clear patterns in neutral landscapes suggest that deviations from them in empirical data represent real constraints on fire regimes (e.g., topography, fuels). As with any null model, however, neutral fire-regime models need to be carefully tuned to avoid confounding these constraints with artifacts of modeling. Neutral models show promise for investigating low-severity fire regimes to separate intrinsic properties of stochastic processes from the effects of climate, fuel loadings, topography, and management.
Keywords: fire regimes, hazard function, low-severity fire, neutral models, ponderosa pine, stochastic process, Weibull, WMPI
View and Print this Publication (541 KB)
Pristine Version: An uncaptured or "pristine" version of this publication is available. It has not been subjected to OCR (Optical Character Recognition) and therefore does not have any errors in the text. However it is a larger file size and some people may experience long download times. The "pristine" version of this publication is available here:

View and Print the PRISTINE copy of this Publication (1.50 MB)

Publication Notes:
  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
 [ Get Acrobat ] Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

Citation


McKenzie, Donald; Hessl, Amy E.; Kellogg, Lara-Karena B.  2006.  Using neutral models to identify constraints on low-severity fire regimes..   Landscape Ecology. 21: 139-152




US Forest Service - Research & Development
Last Modified:  January 12, 2009


USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.