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GARP MODEL VALIDATION 
 
 The most rigorous evaluation of any model is a test of its ability to correctly predict 

independent data that have not been processed by the model.  In this report, Genetic Algorithm 

for Rule-set Production (GARP) models were evaluated by comparing the known occurrences of 

three invasive species already within the Great Lakes with the predictive ability of GARP models 

developed for these species using occurrence data from other regions.   

 Model performance was assessed using area under the curve of the receiver operating 

characteristic curve (Sing et al., 2005) using R 2.4.0 (R Development Core Team, 2006).  Area 

under the curve is a threshold-independent evaluation of model performance that, in this case, 

measures the ability of the model to differentiate between sites where a species is considered 

present versus where it is considered absent.  Area under the curve represents the probability 

that, when a predicted-present site and a predicted-absent site are drawn at random, the 

predicted-present site will have a higher predicted value than the predicted-absent site.  Because 

true absence data were not available, randomly generated absence data, termed pseudo-absence 

data (i.e., points selected randomly from sites where the species have not been recorded as 

present within the Great Lakes), were used to validate the GARP models.  This is a standard 

approach when true absence data are not available (Graham et al., 2004).   

 GARP produces predictions of habitat suitability ranging from 0 to 100 that can be 

converted to a binary prediction of presence or absence by selecting a threshold.  For the purpose 

of model validation, values above this threshold (i.e., 50) are considered present (assigned a 

value of 1) while values below this threshold are considered absent (assigned a value of 0).  The 

threshold that is selected is typically the threshold that maximizes model performance which 

may bias estimates of model performance.  Area under the curve avoids the subjectivity in the 

threshold selection process and, therefore, provides an unbiased evaluation of model 

performance by plotting the false-positive rate (i.e., over-prediction, the rate at which the model 

predicts the species to be present at sites at which it is considered absent) versus the true-positive 

rate (i.e., the rate at which the model correctly predicts known presences as present) across all 

possible thresholds.  For these reasons, area under the curve is considered one of the best 

approaches for model validation (Pearce and Ferrier, 2000).  Nonetheless, area under the curve 

poses three important limitations.  Notable to his study are that (1) it weights over-prediction and 
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under-prediction errors equally, (2) it does not give information about the spatial distribution of  

prediction errors, and (3) the size of the study area to which models are projected influences the 

rate of correctly predicted absences and the area under the curve scores.    

 

Explanation of figures 

 The first figure, Figure C-1, is explained to help interpret the set of three figures.  Figure 

C-1 shows the results from model validation for the zebra mussel, including a plot of the receiver 

operating characteristic curve with the area under the curve statistic.  The colors along this curve 

correspond to the colors in the map of the zebra mussel predicted habitat suitability.  Thus, by 

moving along the curve, one can stop at any color transition, say between yellow and orange (or 

a threshold value of 0.81 as determined by the right-hand y-axis or 81 from the legend in the 

map).  By moving horizontally from this threshold value to the left-hand y-axis, one can 

determine the rate at which known presence correctly are predicted as present, also known as the 

true-positive rate (about 0.75 in this example).  By moving vertically downward from this 

threshold to the x-axis, one can determine the rate at which pseudo-absences were predicted as 

present (the true-false rate, which is about 0.3 in this case).  In other words, if values greater than 

81 in the map are considered as present and values less than 81 as absent, we would get roughly 

75% of the known occurrences correctly predicted, but it would also predict roughly 30% of 

presumed absences as present.  In this manner, the receiver operating characteristic curve 

provides a means to assess the rates of false-positive predictions (predicting a species present 

where it is considered absent) and false-negative predictions (predicting a species absent where it 

is known to be present).      

 

Model Evaluation Results 

 Swets (1988) suggested the following scale for determining model performance using  

area under the curve:  0.90–1.00 = excellent; 0.80–0.90 = good; 0.70–0.80 = fair; 0.60–0.70 = 

poor; ≤0.60 = fail.  The area under the curve for all 3 species falls between 0.74 and 0.79, so the 

models would fall into the 0.70 to 0.80 category of “fair” (see Table C-1).   
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Table C-1.  Summary of area under the curve (AUC) values and occurrence 
data sets used for model construction (training points) and evaluation points.  
Evaluation points within the Great Lakes are shown as hollow points on 
Figures C-1 to C-3 

 
Species and common name 

No. of Great Lakes 
evaluation points 

No. and location of 
training points 

 
AUC 

Dreissena polymorpha 
     zebra mussel  

238 24 (Europe) 0.79 

Gymnocephalus cernuus 
     ruffe   

46 183 (Europe)  0.79 

Potamopyrgus antipodarum 
     New Zealand mud snail 

10 844 (Europe, Australia) 0.74 

 

Model Evaluation  
 All three model validation Figures (C-1 to C-3) show (1) the predicted habitat suitability 

for each species within the Great Lakes when using only occurrence data from outside the Great 

Lakes, (2) the corresponding receiver operating characteristic curve plot and area under the curve  

value and bootstrap statistics for each model, 

and (3) the occurrence data within the Great Lakes withheld from GARP and used for evaluation 

of predictive performance (hollow points).  Note that for reasons discussed under “Selecting 

Species to Model and Development of Occurrence Data” in Section 3.1, these occurrence points 

may not be inclusive of all known occurrences in the Great Lakes and represent only those 

suitable for model evaluation.   

Taken together, these area under the curve scores and the predicted distributions suggest 

three important conclusions.  First, in our tests, GARP models adequately predict the known 

distributions of potential invasive species within the Great Lakes and, therefore, may be capable 

of accurately identifying areas of the Great Lakes susceptible to aquatic invasive species that 

have yet to be introduced.  Thus, distribution data from a species’ existing range can produce 

useful predictions of invasion potential using these GARP methods.  Second, the observed 

patterns of invasion closely match those predicted for both known and potential invaders, 

suggesting that Lakes Erie and Ontario, near-shore areas of all of the Great Lakes in general, 

Saginaw Bay in Lake Huron, Lake St. Clair (located between Lakes Erie and Huron), and 

Thunder Bay in Lake Superior are particularly prone to future invasion when considering 

 C-4  



 C-5  

environmental tolerances alone.  Finally, the universally high area under the curve scores suggest 

that the six environmental data layers we selected as inputs for the GARP models provide useful 

information for predicting the potential distributions of invasive species within the Great Lakes.  

In sum, the model validation exercise suggests that GARP predictions provide a useful 

assessment of invasion potential, given the availability of adequate occurrence data outside the 

Great Lakes.  
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Figure C-1.  GARP model validation for zebra mussel showing predicted suitability and area under the curve (inset). 
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 Figure C-2.  GARP model validation for ruffe showing predicted suitability and area under the curve (inset). 
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 Figure C-3.  GARP model validation for New Zealand mud snail showing predicted suitability and area under the curve (inset). 
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