Integrated Bioinformatics and Molecular Identification of *cis*-Elements Responsible for Dopamine-Response Gene Expression (1R01DA019362-01-FY04) Jiang-Fan Chen Boston University Medical Campus Adenosine A_{2A} receptors (A_{2A}Rs) are colocalized with dopamine D2 receptors to exert profound modulatory effect on dopamine-mediated motor and emotional behaviors. As the first step toward our dissecting the molecular mechanism underlying dopamine-gene expression, we tested our microarray and bioinformatics tools to study gene expression profiles by genetic and pharmacological inactivation of A_{2A}Rs and inferred an A_{2A}R-controlled transcription network in the mouse striatum. A comparison between A_{2A}R KO-vehicle and WT-vehicle revealed 36 upregulated genes that were partially mimicked by SCH58261 treatment, and 54 down-regulated genes that were not mimicked by SCH58261 treatment. We validated the A_{2A}R as a specific drug target for SCH58261 by comparing A_{2A}RKO-SCH and A_{2A}RKO-vehicle groups. The unique down-regulation effect of A_{2A}R KO was confirmed by comparing A_{2A}R KO-SCH and WT-SCH gene groups. The distinct striatal gene expression profiles induced by A2AR KO and SCH58261 should provide clues to the molecular mechanisms underlying the different phenotypes observed after genetic and pharmacological inactivation of A_{2A}Rs. Bioinformatics analysis discovered that the Egr-2 binding sites are statistically over-represented in the proximal promoters of A_{2A}R KOaffected genes relative to the unaffected genes. This finding was further substantiated by the demonstration that Egr-2 mRNA level increased in the striatum of both A2AR-KO and SCH58261-treated mice and that striatal Egr-2 binding activity in the promoters of two $A_{2A}R$ KO-affected genes was enhanced in A_{2A}R KO mice as assayed by chromatin immunoprecipitation. Theses combined results strongly support the existence of an Egr-2directed transcriptional regulatory network controlled by striatal A_{2A}Rs. ## **Project Website** http://www.bumc.bu.edu/Dept/ContentPF.aspx?PageID=8429&DepartmentID=60 ## **Publications** Yu L, Haverty P, Mariani J, Schwarzschild MA, Weng Z, Chen J-F (2005) Egr-2-mediated transcriptional regulatory network in striatum by genetic and pharmacological inactivation of the adenosine A_{2A} receptor as revealed by microarray and bioinformatics analyses. <u>Physiology Genomics</u> (submitted)