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Introduction and Summary 
 
Collaborative Research in Computational Neuroscience (CRCNS; http://www.nsf.gov/crcns) 
is an interagency program supporting interdisciplinary science and engineering research on 
brain function. The program stresses innovation and collaboration, supporting 
interdisciplinary teams that are tackling the complex problems of the nervous system by 
bringing together biological, computational, engineering, mathematical, statistical, and 
cognitive perspectives. 
 
As of this writing, the program supports 71 projects through the combined efforts of five 
participating Directorates of the National Science Foundation (NSF), nine Institutes of the 
National Institutes of Health (NIH), and the National Geospatial-Intelligence Agency. These 
projects address problems from the level of molecules and cells to systems, behavior, 
cognition and diseases, exploiting techniques including (but not limited to) computational 
modeling of phenomena ranging from the biophysical to the cognitive, numerical simulations 
of dynamical systems, and data mining, machine learning, and statistical approaches to large-
scale databases, imaging, and genomics. 
 
The program’s first Principal Investigators’ Meeting, held in April 2005, was attended by 
researchers from 45 of the 49 projects that were funded at the time; program officers from 
NSF, NIH, and other funding agencies; and international observers from Germany, Finland, 
and the United Kingdom. Research reports were organized into eight topical themes 
representing the breadth of this emerging field. An evening discussion session was led by 
Nancy Kopell, Dan Margoliash, Tomaso Poggio, and Rob de Ruyter. Breakout discussions 
covered seven topics that were identified by participating investigators and program directors 
as having greatest interest to the research community and relevance to the advancement of 
the field. 
 
The full proceedings of the meeting are available at http://www.nsf.gov/cise/iis/crcns2005. 
 
This report collates the summaries of the breakout discussions and their implications for the 
research and funding communities. The original capsule descriptions of the breakout 
discussion sessions follow below. 
 
Education, Training, and Career Development. How can CRCNS maximize the educational 
and training potential of collaborative research projects? What educational and training needs 
are most critical for the field? What should CRCNS do to encourage and support early career 
investigators? 
 
Collaborative Research. How has CRCNS worked for you? What have you achieved through 
collaboration that would have been difficult or impossible through other mechanisms of 
support? What have you needed, logistically, to make your collaborations productive? What 
future needs and opportunities do you anticipate? 
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International Collaboration. What types of international collaborations are most important 
for the field? What specific opportunities would be of greatest benefit to your projects? 
 
Data and Algorithm Sharing. What are the best ways for computational neuroscientists to 
share data and algorithms? If sharing is required, how should such a requirement be 
implemented? 
 
Brainstorming for FY07 and Beyond. In an era of increased competition for finite research 
funds, how should computational neuroscience be presented in order to ensure continued 
development of this inherently multidisciplinary field? 
 
Role of Computation in Functional Imaging. What is the current state of the art in imaging of 
biological processes, and what kinds of work are needed to facilitate development of new 
ways of visualizing and analyzing biological processes? 
 
Role of Computation in Multi-Neuron Analysis. With technology now developed to the point 
of making simultaneous recordings of hundreds, if not thousands, of individual nerve cells, 
how must the field be developed in terms of new computational, mathematical, and statistical 
tools to allow analysis and interpretation of such enormous data sets? 
 
Several common themes emerged across multiple breakout sessions along three main items 
of discussion: Research, Training, and Continuity. 
 
Regarding the theme of research content, two aspects were raised repeatedly. The first 
concerned the development and improvement of analytic, visualization and modeling tools. 
Examples of the neuroscience subfields and/or technique that embody this theme include the 
integrating of experimental results across data modalities (e.g., anatomy, physiology, and 
imaging); visualization tools, both for numerical and imaging data; and modeling tools for 
networks from small- to large-scale. The second element of intense discussion regarded the 
sharing of data, algorithms, tools and models. In particular, it was noted that the community 
is at an early stage of data and model sharing. Alternative models of sharing were discussed 
(e.g., informal vs. formal; central vs. distributed repositories; mandatory vs. recommended). 
The consensus was, on the one hand, to encourage greater, clearly documented contributions 
(both to existing and to-be-developed data repositories); and on the other hand, to support the 
continuous development of tools for data sharing, including the establishment of a one-stop-
shopping for theorists to obtain large and varied data sets, along with existing analytic tools, 
for incorporating into their models. 
 
With respect to training (including education, career development and, by extension, 
community building), several commonalities were singled out. Multidisciplinary programs 
should begin early in the students’ careers, and provide research opportunities, especially for 
undergraduates. “Re-training” programs (such as mentored career awards) of scientists not 
originally in biomedical field will enhance computational neuroscience. Early career support 
is needed for investigators whose work would fall between the cracks of the highly 
segmented academic community (e.g., doing biological work in a Physics Department). 
Traditional departmental structures and longstanding interdisciplinary barriers appear to 
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devalue crosscutting work. Yet the CRCNS PIs and computational neuroscience community 
should seek departments and institutional “buy in” support on cross-disciplinary training and 
career development in computational neuroscience. Opportunities for interactions (e.g., 
meetings, workshops, courses) should be fostered to help investigators from different 
disciplines develop common language, respect and trust that can lead to successful 
collaborations. One way to do this is by combining scholarly efforts (e.g., co-affiliating 
satellite symposia at conferences) and leveraging experience across communities (e.g., 
establishing working groups). The CRCNS web site is a potentially useful avenue to 
disseminate information related to research, training, and resources (e.g., course material and 
success stories), and for sharing data, algorithm, documentation, and tools. 
 
Finally, the theme of continuity elicited discussion in many breakout sessions. There was 
widespread agreement that the CRCNS program positively initiated a rich compendium of 
exciting projects. Overall consensus was expressed for the necessity to allow investigators to 
pursue what they were set up to achieve, even if it takes longer than the initial “seed support” 
period. In particular, adequate capability needs to be established at NIH to ensure appropriate 
review for competing continuations. Starting new multidisciplinary projects, e.g., through the 
CRCNS program, provides the “jump start” for establishing new research fields, which will 
eventually become mainstream science. The CRCNS program lacks the resources to provide 
continuous, renewable support to the large number of projects for which it has provided 
initial funds. It is therefore essential for the established research funding organizations be 
able to incorporate these projects into their programmatic portfolios. In addition, the need to 
leverage resources across agencies, institutions and even countries was stressed to provide 
broadly based support for a wide range of research projects while minimizing the cost to each 
participating unit. Multiple sources of funding reflect the needs (and biases) of different 
agencies. These areas of emphasis can be exploited by the computational neuroscience 
community to support widely varying research topics.  
 
This report, the 2005 PI meeting, and in fact the success of the whole CRCNS program, were 
made possible by the enthusiastic work and vision of several people. We heartfully 
acknowledge all breakout session chairs for leading the discussions, writing the summaries, 
and providing feedback on this report, and the agency leadership for promoting work that 
goes across individual shops and stovepipes. As Editor of this report, I personally thank Drs. 
Dennis Glanzman, Yuan Liu, and Ken Whang, for their continuous and substantive help, 
encouragement, and wisdom. 
 
Giorgio A. Ascoli, PhD 
(ascoli@gmu.edu) 
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Education, Training and Career Development 

Chaired and Summarized by Mark Nelson, University of Illinois 
 

The cross-disciplinary nature of computational neuroscience imposes challenges for ensuring 
effective training and productive career trajectories for members of the computational 
neuroscience community. This breakout session considered training-related issues at multiple 
career stages, from the undergraduate level through early career investigators. The session 
participants came from diverse backgrounds representing many of the disciplinary 
backgrounds within the computational neuroscience community, including mathematics, 
physics, biology, engineering and computer science. The group discussed strategies for 
addressing education and training needs, both in the context of programmatic approaches that 
could be facilitated by the funding agencies, as well as practices that could be implemented at 
home institutions or adopted by the community of currently funded CRCNS investigators. 
Following is a brief synopsis of the main discussion topics and the group’s recommendations.  
 
What are the most pressing educational and training issues for the field? 
 
At the undergraduate level, it is important to make students aware that the field exists and to 
provide appropriate courses and/or research opportunities that get them interested in 
computational neuroscience. This is particularly an issue for undergraduates in non-
biological fields (e.g., math, physics, engineering) who may never be exposed to 
computational neuroscience as a possible research area. Success will likely require getting 
departments to “buy in” to the benefit of exposing undergraduates to cross-disciplinary 
options. The graduate level is ideal for establishing and delivering effective cross-
disciplinary training. Funding mechanisms such as the NSF Integrative Graduate Education 
and Research Traineeship (IGERT) Program and the NIH Roadmap Initiative in 
Interdisciplinary Research Training are important at this stage. Successful training programs 
should have stable, long-term support mechanisms that continue after the initial seed phase. 
Beyond the graduate level, one of the biggest concerns is the potential “productivity hit” 
associated with the extra time needed to achieve cross-disciplinary expertise. Postdocs and 
early career investigators are concerned that their CV may not look as strong compared to 
peers that follow traditional disciplinary trajectories. Even when cross-disciplinary efforts are 
productive and successful, the contributions may be discounted due to disciplinary 
biases...“is this really math, physics, etc.?” 

                                                 
Illustration: Development of orientation maps in a silicon cortex chip.  Kwabena Boahen, University of 
Pennsylvania. 
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How can CRCNS and related programs maximize educational and training impact? 
 
The availability of external funding for interdisciplinary research and training programs can 
help promote the necessary institutional and cultural changes to ensure long-term success. 
Funding mechanisms that are explicitly cross-disciplinary such CRCNS, IGERT and certain 
Roadmap initiatives provide an incentive to institutions to help establish and develop serious 
cross-disciplinary training programs and research groups. CRCNS and related programs 
could provide modest supplements for course development and for sharing of course 
materials (with new money from educational sources). CRCNS can play an important role in 
community building. Community activities need to have representation from all levels of 
career development and facilitate mentoring relationships across levels and across fields 
(vertical and horizontal). Finally CRCNS investigators can play a key role in spreading 
enthusiasm for the field.  
 
What can programs do to encourage and support early career investigators? 
 
CRCNS and similar programs should continue to give a funding priority to independent, 
early career investigators for research awards. There is also a need for mechanisms that 
support cross-training and retraining of individuals at all career stages. Although mechanisms 
for early career individuals do exist (e.g., NSF Faculty Early Career Development Program; 
NIH Mentored Research Scientist Development Award), it is often difficult for young 
investigators to discover these and other appropriate sources of support for further cross-
training. CRCNS can help spread knowledge about the availability of new and existing 
support mechanisms across multiple funding agencies. The CRCNS web page could be used 
to disseminate this kind of information to the community. 
 
How can CRCNS PIs work together to improve education and training? 
 
Student exchanges between CRCNS-funded labs could be an effective mechanism for cross-
disciplinary training within the community. These exchanges could be supported by modest 
supplements to existing grants. The PI meeting serves as a good venue for finding out what 
other groups are doing and where students could productively cross train. Having a CRCNS 
meeting that includes student and postdoc poster presentations would be an effective 
mechanism for community building. This larger meeting could be held in addition to, or 
alternate with, the annual PI meeting. Another potential area for cooperation is in sharing 
information about training-related success stories at home institutions. Information on 
successful courses, graduate training programs, and strategies for promoting departmental 
and institutional support could be collected and posted on the CRCNS web site. 
 
Conclusions 
 
In summary, the group came up with the following general recommendations: 
 

• Find ways to get students informed and excited about computational neuroscience at 
an early stage; efforts at the undergraduate level are often very successful. 
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• Try to target funds directly to students/postdocs via training grants and individual 
fellowships, especially ones that allow a lot of freedom. 

• Find mechanisms to ensure long-term stability of successful training programs. 
• For community building, consider holding a CRCNS meeting that includes students 

and postdocs; this could be in addition to, or alternating with, the annual PI meeting. 
• Use the CRCNS web site as a portal for sharing training-related information and 

resources. 
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Collaborative Research 

Chaired and Summarized by Otto Friesen, University of Virginia,  
and Bill Ditto, University of Florida 

 
Biosciences, medicine and engineering are merging in ways that were unimaginable just a 
few years ago. Collaborative labs need to flexibly pursue research directions in a 
multidisciplinary environment: where the physical and disciplinary infrastructure and 
distance is minimized to reduce communications problems and to encourage true 
collaborations. The engine that makes novel discoveries happen these days in the 
biosciences, biomedical and bioengineering fields are “true” collaborations that involve 
disciplinary, interdisciplinary and multidisciplinary researchers. Philosophically, we 
embraced the “laboratory without walls” concept that allows (and encourages) researchers, 
students and staff to commingle both casually and as part of particular research directions. 
Interestingly, many of the investigators in these sessions had a background in physics.  
 
What steps led up to your CRCNS application? 
 
Meetings that brought together experimentalists and computational scientists were 
considered critical for many of the successful applications. One person indicated that the 
collaboration was an outgrowth of a seminar series. Another person talked about a course 
that was taught 50/50 by physical scientists and biologists. It was felt that meetings held on a 
regular basis (monthly, biweekly, weekly) as well as cross-training would be important for 
continuation of these types of collaborations. One investigator indicated that it was exciting 
to do experiments based on theory. 
 
How has CRCNS worked for you? 
 
Frequent contact between researchers, by meeting, telephone, or email was considered an 
essential feature of these collaborations. 
 

                                                 
Illustration: Two views of a hippocampal pyramidal neuron.  Nelson Spruston, Northwestern University. 
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What have you achieved through collaboration that would have been difficult or 
impossible through other mechanisms of support? 
 
It was widely agreed that the CRCNS program has begun to accomplish its stated objectives 
of bringing together neuroscientists and quantitative scientists to apply their combined 
expertise to research questions of common interest. Research is now ongoing that would not 
have occurred without this program. It is very difficult to obtain other funding for the 
research funded through this initiative. One investigator indicated that when similar work 
was proposed to NIH, a reviewer commented that the computational/theoretical specific aims 
were tangential to the project. One investigator stated that being able to bring graduate 
students from other departments in to be involved in neuroscience research was a real plus 
and would not have been possible without this initiative. A proposal such as the one awarded 
in CRCNS would be considered risky in engineering. So it seems that mainstream 
communities in both biomedical and engineering would consider the work too much on the 
fringe. Therefore, having this particular initiative requiring the collaboration of a modeler 
and an experimentalist is unique, and much needed to expand both communities to “think 
outside of the box.” 
 
What have you needed, logistically, to make your collaborations productive?  
 
One participant indicated that he had not been able to organize an interdisciplinary course 
because the faculty couldn’t get release time for that. Another person pointed out that it was 
hard to get a department to focus on cross-disciplinary issues. This was thought to be a 
particular problem in medical schools.  
 
What future needs and opportunities do you anticipate? 
 
There is a concern of funding sources for continuing these collaborative research efforts. 
Collaborative, computational research requires broadly based reviewers. This approach may 
not be widely accepted in the next few years; hence grant applications that are explicitly 
collaborative may not be rated highly by mainstream review panels. It may be essential for 
the continuing success of collaborative research for the CRCNS program to fund renewals of 
current grants. Additional noted needs included: appropriate expertise for this field in review 
panels; fostering of interdisciplinary training; availability of seed money to create seminars 
and on-campus meetings to bring groups together; and development of training programs and 
grants. 
 
It was pointed out that it is critically important for future NIH funding that renewal 
applications submitted to NIH (for those projects that were funded by NIH) for the 
investigators to emphasize the relationship of the work to biomedical research (NIH’s 
mission). Likewise, it will be critical for NIH study sections to appoint members who have 
the expertise that is necessary to review computational applications. Four scientific review 
administrators from NIH were involved in the CRCNS reviews, so hopefully, they will be 
sensitive to the computational neuroscience community in terms of finding appropriate 
reviewers. A final question: How can women and underrepresented minorities be attracted to 
this research area?  
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Conclusions 
 
It was noted that real barriers to collaborative research exist and include: 
 

• Collaborations of narrow, disciplinary teams should be avoided. Collaborations of 
broad, multidisciplinary teams (with evidence of “true” collaborations) should be 
encouraged. 

• Study sections that are composed of narrow, disciplinary reviewers should be 
avoided. Study sections that are composed of reviewers with individually 
demonstrated breadth and depth should be encouraged. 

• The merging of multiple disciplines and teams should be integrated into all facets of 
research and education with an eye towards focusing the categorization of research by 
the class of problems/research (by the multidisciplinary teams) to be pursued rather 
than the individual disciplines and techniques. 

• Emphasize more multimodal approaches to research and training. 
 
Overall consensus was that the encouragement of multidisciplinary collaborative research, 
true collaborations, is critical moving forward to better the human condition and human 
knowledge. This non disciplinary approach, all too often espoused but rarely executed is 
where the CRCNS has shown real progress and should be expanded and encouraged. 
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International Collaboration 
Chaired and Summarized by Geoffrey Goodhill, University of Queensland 

 
The focus of this session was on issues regarding collaboration between US-based 
researchers are those in other countries. There was general agreement that while such 
collaborations are extremely important for the health of computational neuroscience as a 
research field, a number of real or perceived barriers currently exist to pursuing such 
collaborations. 
 
Why do we need international collaborations? 
 
Although the term “interdisciplinary” is now used quite frequently across many areas of 
science, Computational Neuroscience is more profoundly interdisciplinary than most areas. 
This is primarily because it brings together people trained in the physical, computational, and 
mathematical sciences with those trained in the biological sciences. In the US at least, these 
two streams of training tend to diverge very early in a student’s career, and by the time they 
are doing research they often find it almost impossible to understand the intellectual 
framework underlying the other stream. This immediately severely reduces the pool of 
potential collaborators for those wishing to reach across the gulf. Added to this, projects in 
computational neuroscience tend to be quite specialized. Building good models requires a 
good understanding of the data, and this is usually only obtained by a strong focus on 
specific questions. Therefore, the small pool of potential collaborators is reduced still further 
to those who have just the right combination of training and expertise. Finally, the usual set 
of personal compatibility issues comes into play, leaving a very small pool indeed. Thus, it is 
crucial to extend the net as widely as possible, including to other countries, to find the right 
combinations of people. 
 
Moreover, styles of scientific training vary between different countries. In particular, certain 
participants felt that some countries, for instance in Europe, teach biological science in a 
more “theoretically oriented” way. Thus, although the gulf mentioned above still exists, it 
may not be as wide in some countries as it is in the US. Therefore, overseas may be a 
particularly suitable place to find appropriate collaborators for computational neuroscience 
projects. 
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What programs currently exist for international collaboration? 
 
NSF supports workshops and planning visits for international collaboration, international 
research experiences for students, supplements to existing projects for international work, 
and larger-scale partnerships for international research and education. NSF’s Office of 
International Science and Engineering (OISE; http://www.nsf.gov/oise/) serves as the focal 
point for international science and engineering activities at NSF. 
 
Most NIH programs targeted for international scientists and/or collaborations are offered 
through the Fogarty International Center (http://www.fic.nih.gov/), but other specific 
opportunities exist, such as the US-Japan Brain Research Cooperation Program 
(http://grants.nih.gov/grants/guide/notice-files/NOT-NS-04-014.html). 
 
The participants in this session were largely unaware of these programs. While the funding 
agencies representatives obviously encouraged these researchers to examine their published 
materials more closely, many researchers felt that these opportunities could/should be better 
advertised. 
 
Perceived barriers to including an international component 
 
There seemed to be quite a lot of confusion regarding what international components were 
permissible on particular grant mechanisms, such as NIH R01s. For instance, some 
researchers had the impression that nothing was allowed, while others had heard that 
although not forbidden, an international component meant the whole grant had to jump over 
a higher bar to get funded. Such concerns obviously dampened people’s enthusiasm for 
international collaborations. The participants felt the funding agencies should make clearer 
and more definitive statements in this regard. The NIH position on grant applications from 
outside the United States is described in the All About Grants web site 
(http://www.niaid.nih.gov/ncn/grants/), especially the sections on foreign grants 
(http://www.niaid.nih.gov/ncn/grants/basics/basics_b6.htm and http://www.ninds.nih.gov/ 
funding/grants_eligibility.htm). 
 
What international programs would we like to see? 
 
Some currently existing programs were discussed whereby a cross-border grant is 
simultaneously reviewed in both countries. However, there was the perception of “double 
jeopardy” in these cases, whereby one was doubling one’s chance of receiving negative 
comments and, thus, the grant not getting funded. We suggest instead bilateral funding 
schemes, whereby governments of both countries contribute funds in a coordinated was and 
there is one coordinated review process. The Human Frontiers Science Program was cited as 
an example of how this can work. 
 
Furthermore, many researchers would like to see more funding for short-term visits to/from 
abroad, not just as an adjunct to an existing collaboration but also as a way of promoting new 
collaborations. They would also like to see more internationally oriented training 
opportunities, e.g., summer schools. 
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Conclusions 
 

• Computational Neuroscience is deeply interdisciplinary, more so than most areas. The 
intellectual distance between a mathematician and a biologist is usually greater than 
between, e.g., a chemist and an anatomist. 

• Each specific project is quite specialized, and people with the right combination of 
training/expertise for that project are rare. That small set of potential collaborators is 
then narrowed still further by the usual issues of compatibility on a personal level. So 
you need to cast a very broad net geographically to get the right people. 

• Styles of scientific training in some other countries are different from in the US, and 
may be more relevant for computational neuroscience. For instance, at least one 
member of the group felt that neuroscience training in Europe has a more 
“theoretical” perspective than in the US. 

• Many researchers are not aware of the NSF/NIH opportunities that currently exist for 
funding projects with an international component. This needs to be remedied 
somehow. 

• Many researchers felt including a foreign component in a grant application, especially 
a salary component, put the whole grant at risk, thereby dampening their enthusiasm 
for proposing such collaborations. How real this concern is should be clarified. 

• Many researchers would like to see bilateral funding schemes, whereby governments 
of both countries put in money and there is one coordinated review process. 

• Many researchers would like to see more funding for short-term visits to/from abroad, 
not just as an adjunct to an existing collaboration but also as a way of promoting new 
collaborations. They would also like to see more internationally oriented training 
opportunities, e.g., summer schools. 

 14 



 

 

 

 
 

Data and Algorithm Sharing 
Chaired and Summarized by Maryann Martone, University of California, San Diego 

 
The initial discussion focused on best ways for the computational neuroscience community to 
share models and data (rather than algorithms and tools). The CRCNS informatics 
community is nascent. This represents a challenge in that there are no obvious clusters of 
CRCNS investigators ready to engage in IT-intensive software and data sharing methods. It 
also represents an opportunity in that the community is potentially flexible to new ideas. 
Regular meetings of the CRCNS community may be able to forge new collaborations and use 
new methods for software and data sharing. Multiple issues were tackled during the breakout 
discussion. In particular: What are the best ways for computational neuroscientists to share 
data and algorithms? Is there a critical mass of investigators under CRCNS to develop 
common software repositories? Should a broader community be engaged? What are 
successful examples of data/tool sharing? What was the overhead required for the 
consumer/provider? If sharing is required, what will be the standard, how will it be 
implemented, and how will one know if it is being met? What informatics/infrastructure-
related research is required to meet the needs of the computational neuroscience community? 
What could we build using off-the-shelf technology and appropriate coordination and what 
would require research investment to meet the needs of the community 5 to 10 years from 
now? What are the main cyberinfrastructure, grid, and middleware issues? 
 
Central repositories vs. personal venues 
 
Participants acknowledged that centralized repositories have had significant impact in the 
genomic community but questioned whether they were appropriate for this community. Some 
were familiar with some of the databases that have been created for modeling data, e.g., the 
Machine Learning database at UC Irvine and ModelDB at Yale, yet a perception was voiced 
that these efforts have not had the impact in this community that the genomic databases have 
had on the biomolecular community. Nevertheless, the Machine Learning database at UC 
Irvine was mentioned as a successful resource and has been very useful for providing 
benchmark data. It was estimated that 40 to 50% of the machine learning community used 
this resource, although only 1% contributed to it. There was some support for establishing 
groups to consider standards for model annotation and exchange. It was noted, however, that 

                                                 
Photo: A high-resolution “bio wall” at the National Center for Microscopy and Imaging Research.  Maryann 
Martone, University of California, San Diego. 
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this effort was not likely to occur without some outside push and would probably prove 
difficult. 
 
An alternative to the use of centralized repositories is for more informal sharing through e-
mail and other forms of personal contact. The concern was voiced that models and resulting 
simulation data cannot be properly understood without sufficient context, which needs to be 
given in person. Without this personal contact, a model might be misused. Perhaps 
researchers should set up their own web sites for sharing of their models—this represents a 
typical and appropriate approach for nascent communities. It was suggested that the 
community develop a set of tags that could indicate the existence of a resource willing to 
share through Google. On the other hand, it was noted that using this mechanism does little 
to further the development of standards for sharing models/code and lacks persistence. 
Consideration of centralized vs. distributed models of sharing need not be exclusive; there 
are probably cases where both would work. 
 
Implementation of data sharing 
 
The next major topic of discussion concerned how a data sharing requirement could be 
implemented, if it were required. The two major venues for this requirement were funding 
agencies vs. journals. Journals have a vested interest in promoting data sharing because it can 
potentially give the model more impact. Access to models was also viewed as important for 
reproducibility of results. Such a requirement would have to specify what exactly should be 
shared: Simulation data? Models? The issue of what is useful to the community has not yet 
been determined and because simulations have the ability to generate voluminous amounts of 
data, the requirement to share everything might place an undue burden on the researcher. 
Better tools for management and annotation of models are certainly needed to reduce the 
burden on researchers. At this point, it was felt that a recommendation for appropriate data 
sharing was more appropriate than an across-the-board requirement.  
 
Cyberinfrastructure for data sharing 
 
Towards the end of the discussion, we had a brief presentation by Dr. Sangte Kim, head of 
NSF’s Division of Shared Cyberinfrastructure. He pointed out that heterogeneity and 
maturity for data sharing and infrastructure already exists in some fields (e.g., the Protein 
Data Bank), but other fields are more nascent—CRCNS is likely somewhere in between. The 
new emphasis in cyberinfrastructure is on data, rather than computation and networking, as 
in the past. In his experience, every scientific community feels that their needs are different 
and cannot be served by existing resources. He stressed the need to move beyond “not 
invented here” attitudes, because government agencies cannot fund every community 
separately. Scientific communities need to leverage experience across disciplines. There was 
some brief discussion about “middleware” and what it might constitute in the computational 
neuroscience community, but there wasn’t time to explore the level of knowledge about grids 
and what they might mean to the computational community.  
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Conclusions 
 
Following the formal discussion period, the chairs got together to summarize the discussion 
and their overall impressions regarding the stage of the community in considering data 
sharing issues. The impression was that the computational neuroscience community 
represented by CRCNS was at a fairly early stage in considering data sharing mechanisms, 
although some groups, e.g., machine learning, have started using repositories and recognizing 
their value. Some members were content with informal sharing; others felt the need for 
standards and venues for model sharing, particularly to provide benchmark data sets. Little 
discussion occurred specifically on the issue of sharing of algorithms and code, and it was 
perhaps surprising that no call was made for a central repository or a managed federation of 
repositories. If a requirement is going to be made for data/tool sharing, then one of the first 
issues that needs to be tackled is what needs to be shared and what tools can be used to 
reduce the administrative overhead of making one’s data available. Several members felt that 
this breakout session was a useful starting point to open discussion, although there was no 
simple or clear path for moving forward. 
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Brainstorming for FY07 and Beyond 

Chaired and Summarized by Giorgio Ascoli, George Mason University 
 
The goal of this session was to provide government agencies with ideas to optimally present 
computational neuroscience in their effort to grow the field and ensure funding at an 
adequate level. The session was attended by over 30 CRCNS participants, and a broad 
consensus emerged that the CRCNS program is filling a very essential and unique niche, and 
should be emphatically supported, maintained, and continued. Detailed discussion developed 
over several lines.  
 
How can we facilitate the development of a synergistic community? What are our 
success stories (within CRCNS and beyond)?  
 
The widespread sentiment was that successful research often implies interactions among 
different specializations and across the experimental/computational divide. Yet the type of 
neuroscience in which a project goes back and forth between “wet” bench and computer 
simulation is not as common as in other fields of science. It was proposed that computational 
neuroscience will achieve real success only when it finally “disappears” by becoming a part 
of the fabric of all of neuroscience, i.e., when the inclusion of quantitative models into 
research becomes standard. There was general agreement that exchange of trainees (students 
and postdocs) is particularly essential. This is the hands-on education that will create the next 
generation of thinkers (and referees). 
 
As for the importance of research in this area, it is clear that any clinical treatments or novel 
engineering devices that emerge from computational neuroscience should be prominently 
featured. It is also important, however, to argue for the importance of basic research. 
Computational neuroscience is an unfamiliar field, often confused with artificial intelligence. 
It is important to convince funding agencies and the public of the fundamental importance of 
not overly targeting efforts before the basic science has developed. There is an inevitable 
time lag between fundamental basic science and development and applications, which cannot 
be shortened without losing many of the most creative, exciting and productive discoveries. 
 
One of the reasons for the resounding success of bioinformatics is the clarity of the content: 
the code is known, and when you clone something, it’s there. In comparison, neuroscience 
                                                 
Illustration: Key areas of the macaque brain involved in decision-making. Daeyeol Lee, University of 
Rochester. 
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may appear mushy, and we do not yet agree as to what to model, and how to model it. Yet 
this situation can be turned into a strength. In neuroscience (unlike molecular biology) 
computational models are used to quantify hypotheses, and ultimately to define the field. 
Here computational neuroscientists are a step ahead other biological fields, as a summary 
diagram is viewed as a starting rather than ending point. 
 
What will the next generation of computational neuroscientists look like? What are the 
growth areas, and how can we encourage new and non-traditional computational 
models? How about important frontiers in theoretical neuroscience and 
neuroinformatics beyond the central activity of modeling neural systems (e.g., data 
mining, information theory, etc.)? 
 
One of the impressive features of CRCNS that was noted is the actual variety of topics and 
approaches. Although physiology appears to be predominant in CRCNS (and in 
computational neuroscience in general), developmental and molecular approaches are 
growing more rapidly than physiology in the broad neurobiology community. Rather than 
seeing this as a threat to computational neuroscience, we have an opportunity to integrate 
computational genomics into neuroscience models. Similarly, and more generally, a higher 
degree of synergy and cross-fertilization with computational cognitive modeling (including 
artificial intelligence), and behavioral sciences, on one hand, and molecular biology, on the 
other, would be desirable. Same for the integration between numerical simulations (“classical 
models”), theoretical approaches, and data mining, all the way to machine learning. Finally, 
computational neuroscience with its increasing emphasis on the network level can naturally 
interact with several theoretical and applied fields of “network sciences” (e.g., the grid, social 
networks, etc.). 
 
In a period of budget uncertainty and tight competition for resources, computational 
neuroscience risks getting caught in the middle, viewed as an essentially biomedical 
endeavor by programs supporting engineers, and considered too theoretical by the 
biomedical community (thus funded by neither). Is it possible to expand the funding 
horizon by involving other government agencies, even companies? How did the PIs 
interact with other funding sources to extend the appeal of computational 
neuroscience? How were the PIs’ research interests connected with the agency funding 
priorities, and vice versa? 
 
Several PIs reported on their experience with the Office of Naval Research and the 
Department of Energy. These agencies were seen as extremely supportive, but with a strong 
emphasis on the eventual need to “build something”. In addition, when they stop funding, 
they typically do so fairly precipitously. The Defense Advanced Research Projects Agency 
continues to have very unconventional (and often high-risk/high-payoff) programs in 
neuroscience. Traditional funding agencies, such as NIH, are still quite interested in subjects 
that resonate with computational neuroscience. A recent council report of NIMH indicated a 
change in priorities, favoring basic research to integrate across levels of analysis, 
interdisciplinary research and training, and emphasizing computational models. The Conte 
centers were brought as examples reflecting the desire by NIMH officials to push toward 
computation and interdisciplinarity. 
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Yet several PIs felt that (unlike NSF) NIH was not particularly open to computer-based 
research strategies, with informatics grants getting a deflation of grades. There are 
exceptions, however, such as the dynamical systems community, which according to some 
PIs has been more generously funded by NIH than by NSF. Others disagreed however, and 
felt that, while NSF grants are generally smaller than NIH grants, NSF has been a steady 
supporter of the dynamical systems community for a much longer period of time (and for a 
larger number of investigators) than NIH. The need was raised for robust statistics to track 
these types of issues. Several NIH program were also mentioned that encourage 
computational proposals, such as the Biomedical Information Science and Technology 
Initiative (BISTI), the Neuroimaging Informatics Technology Initiative (NIfTI), etc. In recent 
times NIH has been seeing more computational applications and computationally oriented 
reviewers, but necessarily has a problem with applications so theoretical that they lack a clear 
biomedical application. Again, CRCNS was highlighted for the broad range of research it is 
supporting. Such breadth is the result, at least in part, of the “broad spectrum” concept of 
computational neuroscience in the announcement, as well as of the openness of the panels 
and style of review. 
 
Needs and recommendations. What would PIs like to see as opportunities for 
computational neuroscience? What works well and what doesn’t in the CRCNS 
mechanisms? How about the format of the CRCNS meeting, from the PI’s perspective? 
 
The issue of grant review was discussed at length. Certainly one of the advantages of 
CRCNS is to have a special review panel that is entirely dedicated to computational and 
collaborative proposals. The same proposals might not fare as well in traditional study 
sections. This is not an NSF or NIH problem, it is an issue of educating our own colleagues. 
It would be tragic to stop CRCNS now, as the field has not had the time to develop: what it 
takes is a change in culture, and this cannot be done in 4 to 5 years. At the same time, it 
would be beneficial to create piloting mechanisms to “insert” successful CRCNS PIs into 
standard NIH/NSF panels, perhaps at the time of renewal (a seamless follow-on to the 
program), to help bootstrapping computational research into traditional study sections.  
 
The need for considerable funding was raised specifically for successful collaborative 
research (which typically takes more than one-student collaborations). For example, there are 
funding programs that look for innovation in data sharing (considered a very important 
problem by researchers and agencies alike) and data management. In many cases, it is the 
nuts and bolts of data sharing that are relevant to computational neuroscience, not 
particularly novel technical solutions. It is still hard to propose often expensive 
infrastructures that are not necessarily innovative for the informatics experts. It was also felt 
that computational neuroscience specifically needs long-term, reliable funding more than 
substantial one-time funding. 
 
CRCNS was viewed as serving as a nucleus for computational neuroscience, and in this 
sense it might be useful to involve other organizations, events, and courses into future 
CRCNS PI meetings (e.g., NIPS, Woods Hole, etc.). The need was also stressed to educate 
the computational neuroscience community. Rather than a large number of models all 
developed independently (and often independent of experimental evidence too), we should 
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strive to seriously build on each other’s work. Appropriate workshops could be organized to 
build the core of a more scholarly scientific community. 
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Role of Computation in Multi-Neuron Analysis 

Chaired and Summarized by Michael Black, Brown University 
 
A variety of multi-electrode devices have made it possible to record populations of neurons 
ranging from 10’s of cells to upwards of 500 cells. This breakout session addressed the issues 
and opportunities that arise as a result of this fairly recent technological shift. The 
participants represented a wide variety of opinions and included modelers and 
experimentalists with experience recording in slices, invertebrates and vertebrates including 
chronic recoding in awake behaving animals. While the definition of “multi-neuron” varied 
among the participants from 2 to 1000 or more cells, the consensus was that it was common 
now to record from 150 cells simultaneously and that in a few years this will increase by an 
order of magnitude. Our breakout session focused on the issues of multi-electrode extra-
cellular recordings. We did not cover issues in multi-neuron intracellular recording or 
emerging recording techniques such as fluorescent dye imaging. The group identified five 
primary areas in which multi-neuron recordings differ from single-neuron recordings and 
require special attention.  
  
Spike Sorting 
 
Manual sorting of 1000 cells is impractical, laborious and error prone. Experiments with 
awake behaving animals are delayed while spike sorting is performed. In human clinical 
settings spike sorting must happen every day and involves the assistance of a trained 
technician. Accepted, reliable, automated methods are needed. For comparison of results, 
common methods are required. At the same time, the accuracy of manual sorting is variable 
and suspect. Studies of human spike sorting performance have suggested that there is wide 
variability in the spike trains sorted by humans. Experimenter bias is a concern that would be 
reduced by standardized automated methods. Moreover, there are no accepted measures of 
reliability/confidence. Errors induced by human sorters are not well understood and 
confidence measures are not provided for manually sorted data. Automated methods should 
be evaluated on a variety of data and their error rates and failure modes quantified. Results 
based on sorted data should include the method of sorting and the confidence in the derived 
results. It is important to note that just because humans do not report reliability of sorting 
does not mean that there are no errors in the sorted spike trains. In summary, there is a need 
for a widely available and accepted methods for automated sorting (with confidence 
measures). 
 
                                                 
Illustration: Multi-array recordings from the respiratory brainstem. Bruce Lindsey, University of South 
Florida. 
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Statistical Analysis 
 
Most statistical methods assume independent and identically distributed data. In behaving 
animals this assumption is almost certainly violated. Statistical analysis methods do exist for 
dealing with large populations and point process data (e.g., tests for excess synchrony). An 
emphasis should be placed on formulating clear null hypotheses that can be tested. Most 
techniques are based on firing rates. There are no accepted statistical models for multivariate 
point processes. The analysis of data from large populations often relies on probabilistic 
models of firing rate or point-process data. This is true for both information theoretic 
analyses and methods for population decoding. Such data are characterized by being non-
Gaussian and highly correlated and consequently are poorly represented by currently 
available parametric models. At the same time researchers are increasing the complexity of 
stimuli and behaviors resulting in even more complex probabilistic relationships to neural 
activity. The large amounts of data from multi-neuron recordings make the task of fitting 
complex probabilistic models computationally challenging. In conclusion, existing statistical 
methods need to be more widely disseminated to the community. There is a need for more 
sophisticated statistical tests and appropriate hypotheses and new probabilistic modeling 
tools for high dimensional population data. Support from programs like CRCNS is critical for 
engaging statisticians and computer scientists in the mathematical and computational 
challenges. 
 
Modeling Neural Architecture and Dynamics 
 
How are the cells related when 100 electrodes are inserted? Multi-neuron recordings provide 
large amounts of data but typically do not provide information about the spatial connectivity 
of the cells. Correlation resulting from un-modeled connectivity may result in colored noise 
which may violate modeling assumptions. Such recordings pose problems and opportunities 
for modelers. Representing the micro-architecture and the network dynamics to model large 
populations is a challenge. Local field potentials should be recorded and rhythmic and 
synchronous activity may provide clues to the dynamics. Thus, tools are needed for modeling 
dynamics in networks of 100’s of cells. While models of the neural architecture and 
dynamics are needed, so too are methods for fitting these models to large amounts of data. 
Given the complexity of realistic models, the computational challenges of fitting and 
simulation are great. On the other hand, multi-neuron recordings rarely include information 
about what types of cells are being recorded. Incorrectly categorizing different neuron types 
may invalidate statistical analyses. Not knowing the types of cells exacerbates the problems 
of modeling network dynamics. This points to the need for better models to relate spikes and 
local field potentials to the architecture and dynamics; there is a large gap between the 
current theory and the ability to record large populations. 
 
Visualization 
 
Exploratory visualization facilitates understanding and helps experimenters generate 
hypotheses. Historically neuroscientists use various visualization methods to the behavior of 
individual cells and the relationship between their activity and simple stimuli. Beyond tens of 
cells and with complex stimuli or behavior such methods break down. Exploratory data 
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analysis is unlikely to be supplanted by fully automated statistical tools and consequently 
methods for visualizing population activity, correlations, and network dynamics will be 
necessary. Visualization is likely to remain important as a first step in understanding what are 
the relevant variables (these are often not know a priori) and for hypothesis generation. At 
the same time, standard single cell or small population methods (PSTHs, cross-correlation, 
etc) break down when looking at 100’s of cells. During the discussions one of the 
experimentalists talked about the problem of visualizing the correlations in a population of 
100 cells. Using traditional cross-correlation methods they manually viewed 10,000 cross-
correlation plots. Of course, such a method is impractical and doesn’t scale to higher-order 
correlations. The take-home message here is that new visualization tools are needed and the 
CRCNS community should engage the scientific visualization community in multi-neuron 
analysis problems.  
 
What role does CRCNS play? 
 
One key aspect is to encourage sharing of data and software. The discussion of data sharing 
in this community is always complex (see summary of related breakout session). Many of the 
issues above, however, involve data or software sharing between researchers or communities. 
The discussion raised common concerns about such efforts including the large time 
commitment this requires on part of PIs. The social barriers are strong and can be 
summarized as “it took months to gather and I want to mine it before others do.” Sharing 
requires annotation of data and this implies some agreed-upon standards. One of the benefits 
of sharing data with colleagues from mathematical and computational disciplines is that it 
helps expose them to how “ugly” real data are. In summary, a high priority for sharing of 
data and software is in the area of automated spike sorting. To address this we propose a 
CRCNS-sponsored workshop on spike sorting that would provide challenge data sets on 
which participants would test their algorithms (or human sorting) and compare results. This 
would serve the purpose of “a community lab meeting” to understand what works and what 
does not. CRCNS could help by providing resources to maintain and manage a repository of 
data. This would relieve the PIs who contribute data of some of the burden of dealing with 
queries. 
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Role of Computation in Functional Imaging 

Chaired and Summarized by Tom Mitchell, Carnegie Mellon University 
 

Our subgroup took a broad view of functional imaging, including imaging methods such as 
functional MRI, diffusion tensor imaging and diffusion tensor tractography, MEG, PET, 
evoked response potentials, and guided multi-resolution imaging of living nerve cells. The 
group discussed a variety of needs and opportunities to develop computer algorithms and 
new software to support functional brain imaging. The following three primary themes 
emerged from this discussion. 
 
There is a significant need within the computational neuroscience community for new 
computer tools for analysis, visualization, and modeling for many of these imaging 
methods, along with a need for improvements to imaging resolution and sensitivity. 
 
Improvements to imaging resolution/sensitivity/directability will be increasingly coupled to 
improvements in computational methods. For example, to achieve guided, real-time imaging 
of living nerve cells at multiple resolutions (e.g., as discussed by Peter Saggau at this 
meeting), it will be essential to provide real-time computation to allow researchers to 
navigate the image. Furthermore, informed navigation will require more than mere 
visualization in real time; it will also require real-time analysis and modeling to support 
intelligent decisions regarding where to focus next. 
 
There are two distinct computational needs here. First, there is a need for research to develop 
new, more powerful and more targeted computer algorithms for modeling, analysis, 
visualization of the growing types of functional imaging data. Second, a need for robust, 
well-documented software implementations of these algorithms, that can be easily 
disseminated and used by computational neuroscience researchers. It is important to realize 
these are distinct, and that funding for either one alone will fail to fill the need. 
 

                                                 
Illustration:  fMRI voxels color-coded by their predictiveness of semantic categories. Tom Mitchell, Carnegie 
Mellon University. 
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We need to develop community-wide toolkits for specific imaging modalities, and for 
integrating data collected from multiple imaging modalities. 
 
Within the fMRI research community, software packages such as AFNI and SPM are in 
widespread use. While these packages do not fulfill every need of fMRI researchers, they do 
cover a large fraction of what is needed, and they provide an example of the great utility of 
shared software. For example, these packages enable researchers everywhere to benefit from 
the insights of the developers regarding how best to handle image noise of various types, and 
how best to extract the essential signal from the data. Similar tools are needed for newer 
imaging modalities such as DTI and MEG. 
 
A major opportunity/need is for algorithms and software to integrate data from multiple 
imaging methods (e.g., fMRI, MEG, and ERP). Multi-modal analysis is likely to become 
more common over the next few years, and the lack of algorithms to merge these data could 
easily become a bottleneck to its widespread use. 
 
There is a strong opportunity to leverage research on statistical machine learning to 
support cognitive neuroscience. Statistical machine learning is a rapidly developing 
research field dealing with computational/statistical approaches to data analysis and 
automatic hypothesis formation and refinement. 
 
Many problems in functional neuroimaging involve observing brain activation that is the 
combined result of multiple overlapping sources occurring simultaneously (e.g., multiple 
cognitive processes and noise sources contributing to the single observed functional image). 
Statistical learning algorithms such as Independent Components Analysis (ICA) provide a 
means of automatically inferring the most probable set of independent sources reflected in 
the combined data. As a second example, many functional imaging data sets are time series 
data that are the combined result of multiple hidden processes that change/appear/disappear 
over time. Statistical learning algorithms such as Dynamic Bayesian Networks provide a 
principled probabilistic approach to estimating the most probable sequence of hidden 
processes that could have generated these data. Both of these examples highlight active 
research areas in statistical machine learning that are of broad relevance to computational 
neuroscience. 
 
We recommend a more aggressive approach to enlist the statistical machine learning 
community in computational neuroscience problems. Current efforts in the form of joint 
meetings (e.g., the recent Statistical Analysis of Neuronal Data (SAND) meetings, and 
similar meetings at Woods Hole) have brought together statisticians and researchers in some 
types of neuronal data. Additional meetings of this type should be held to cover a broad 
variety of functional imaging methods, and to enlist researchers whose emphasis is on new 
algorithm development (e.g., by holding a workshop at the annual International Conference 
on Machine Learning, or NIPS meetings). 
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