Oxidation Protection of Graphite Foams

James Klett, April McMillan, Rick Lowden, Allen Haynes, Svetlana Zemskova, Oak Ridge National Laboratory Jerry Brockmeyer, Ultramet

Background

- High-temperature heat exchangers that utilize carbonaceous materials to reduce weight and improve efficiency are currently being explored.
- Graphite foams that exhibit more than an order of magnitude increase in efficiency for electronics cooling and other heat exchangers have been developed.
- Heat exchanger designs based on the graphite foam have been shown to reduce weight by up to 75%.
- The graphite foam must be protected from oxidation at elevated temperatures.
- Methods developed for protecting carbon-carbon composites, i.e. chemically vapor deposited silicon- and boron-containing ceramic layers, have been applied to the graphite foams.

Experimental

- Ceramic coatings have been applied to graphitic carbon foams to improve high-temperature oxidation resistance.
- Chemically vapor deposited layers; silicon carbide, mullite, and silicon-boron-carbide, and coatings applied using a liquid precursor with particulate fillers, SiC, have been investigated.
- Coating uniformity and integrity (bonding and microcracking) were characterized employing electron (SEM & TEM) and optical microscopy.
- Environmental stability was evaluated using thermogravimetric analysis. Samples were exposed to 1 SCFM of flowing air at 650°C for 8 hours and the weight change per unit mass of carbon was measured.

	Results and Discussion					
Coating	Optical Analysis		SEM Analysis	Coating Thickness [*]	Oxidation Rate ^{* *} [%/hr]	The str and inte deposit
Uncoated Foam					2.24	materia This str vapor i observ all micr
CVD SiC	5mm			~13 µm • very uniform coating • little microcracking	0.27	 Althoug sample conditi specific The CV than th
CVD Mullite (Al ₂ O ₃ rich)				-0.6 µm •very uniform coating •Not visible under optical image analysis	0.55	 Minima found. ligamen bulk mo to mining
CVD Mullite (SiO ₂ rich)	Jan Star			~ 0.6 μm • very uniform coating • Not visible under optical image analysis	0.20	protect charac conduc better
Liquid SiC Precursor "Duralco"				-75 µm • very poor coating • Particulates in liquid precursor did not sinter • Coating is not uniform	1.83	100% - 95% - % 90% -
CVD Si-B-C				10- 50 μm • Coating is mixed between hexagonal and cubic structure • Coating unifromity can be improved	0.10	85% 80% 75%

- The structure of the foam, with large, open and interconnected pores, allows for easy deposition of coatings through out the material
- This structure is well suited for chemical vapor infiltration as supported by the observation that the CVD coatings infiltrate all microcracks and pores throughout the entire foam samples.
- Although the coatings permeated the entire samples, coating thickness varied thus conditions need to be optimized for the specific layer composition and foam density.
- The CVD coatings provided better protection than the liquid-precursor coating.
- Minimal microcracking of the deposits was found. It is believed that the very high ligament conductivity (>1700 W/m K) and low bulk modulus (140 MPa) of the foam combine to minimize thermal stresses.
- The CVD Si-B-C layer provided the best protection, however, more detailed characterization of the coating is being conducted to determine composition and better understand its microstructure.

*Determined with SEM analysis

** Normalized to original carbon foam mass

Conclusions

- Ceramic coatings were readily applied to the porous graphite foams.
- The results, although preliminary with single samples and limited exposure data, were promising.
- The ceramic coatings significantly reduced the oxidation rate of the graphite foams at the given conditions.
- The Si-B-C coatings provided the best protection, thus it is hypothesized that as in previous work with
- carbonaceous materials, the lower-temperature glass former (B_2O_3) would seal microcracks that could form during cyclic operation.
- Coatings may prove to be useful for other applications such as enhanced wetting for infiltration with liquids, for brazing and joining, or for compatibility with other heat transfer medias.