Cooling for AIPM Using Carbon Foam

Dr. James Klett Metals and Ceramics Division P.O. Box 2008, Oak Ridge National Laboratory Oak Ridge, Tennessee, 37831-6087 (865) 574-5220 klettjw@ornl.gov

www.ms.ornl.gov/sections/mpst/Cimtech/default.htm

Keywords: Graphite Foam, Thermal Conductivity, Thermal Management

June 16, 2001

Power Electronics Cooling

Power Electronics Cooling

- Team effort with Materials Resources International (MRi) for development of braze/solder technology
- SBIR with BMDO (ORNL was subcontractor to MRi)
- MRi tested several fluxless brazing/soldering techniques (S-BondTM)
 - Vacuum brazing
 - Manual brushing
- > MRi evaluated thermal cycling effects on interface
- > ORNL tested effects of thermal interface

Model Heat Sink

Test heat sinks bonded to different plates

AlSiC Plate

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Copper Plate

Al Foam/Al Plate

Electronic Temperatures vs. Power Density

Air cooling with graphite foams versus water with other devices

UT-BATTELLE

Wetting Interface

- High conductivity interface compared to epoxies (45 W/m·K for solder)
- Good bonding and wetting results in excellent heat transfer

UT-BATTELLE

Results

- > Water cooling is most efficient
- Air cooling can perform very well (even better than water with some standard devices)
- High power densities (up to 23 W/cm²) at temperatures less than 60°C have been achieved
- Some apparent corrosion was experienced with aluminum substrates
 - Galvanic reaction?
- Develop coating technique for carbon foams which insulate foams electrically without impeding thermal performance
 - Prevent electrical shorting
 - Prevent galvanic reaction with aluminum and copper in system
 - Liquid or CVI process for putting thin ceramic on all surfaces of foam

Independent Prototype Testing

Foam brazed/soldered to Alumina substrate

► Brazed with MRi technique –S-bondTM

Design Engineering

Study different foam geometries to reduce pressure drop

Heat Sink Testing

> Utilize their proprietary heat sink

Thin printed resistor

Electronic Temperatures vs. Power Density

•Compare independent results to that previously reported

U. S. DEPARTMENT OF ENERGY

IR imaging of experiments in-situ

High Density – Vertical Blind Holes

Low Density

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

High Density – Horizontal Blind Holes

All tests at 45 W/cm² power density and 3 gpm water cooling

Results of Testing

Thermal Impedance vs. Water Flow Rate

Thermal Impedance vs. Pumping Power

Horizontal blind holes are more efficient in maintaining high heat transfer at the lowest pumping power required.

Optimized Designs?

Corrugation -decreased pressure drop - continued flow through foam

Air Foil Fins -Aerodynamics forces fluid to flow through porous fin - Reduced drag compared to pin fins yet porous flow attained

Evaporative Cooling Developed By National Security Agency (NSA) in Collaboration with ORNL

Modified Thermosyphon developed at NSA

Utilize evaporative cooling on back of silicon wafer chip to enhance cooling

Typical Performance

- Foams will be utilized to replace copper and diamond evaporators and condensers in thermosyphon
- Typical diamond evaporators yield ~ 28W/cm² maximum cooling power at 100°C max temperature
- Modify design to utilize graphite foam instead of diamond structures?

Silicon Chip Soldered to Graphite Foam

Improvements with Graphite Foam Evaporator

- First test of MRi soldered solid foam (density ~0.5 g/cc) to silicon die yielded 43W/cm² at same chip temperatures.
- 53% improvement in power density over current optimized design
- Realized that pressure in system was exceeding design specs (thermodynamically preventing more evaporation)
- Modified system to accommodate pressure which resulted in a power dissipation of 100 W/cm² (357 % improvement)

New Designs to Improve Performance

- Improve heat removal with carbon foam condenser
- Attach carbon foam to outside to improve heat removal

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Improved Thermosyphon

Conclusions

- Carbon foams have been demonstrated to be more efficient than typical heat sink materials
 - Power densities up to 100 W/cm² have been demonstrated at temperatures less than 100°C
- Reliable joining techniques have been developed
- Engineering designs can be optimized to minimize pressure drop (pumping power) while maintaining high heat transfer.
- Corrosion protection has been identified as area for future work

