

A METALLURGIST LOOKS AT REVERSE ENGINEERING

Terry Khaled, Ph. D. Chief S/T Advisor, Metallurgy terry.khaled@faa.gov (562) 627-5267 June 2005

REVERSE ENGINEERING A UNIVERSAL CONCEPT

- CORPORATIONS OFTEN BENCHMARK OWN PRODUCTS
 VS THOSE OF COMPETITION
 - TEAR DOWN COMPETITOR'S PRODUCT
 - USE INFORMATION TO OWN ENDS
- SOUNDS LIKE REVERSE ENGINEERING?- IT IS
- FAA APPLICANTS PRODUCE REPLACEMENTS TO TYPE-CERTIFICATED PARTS, USING REVERSE ENGINEERING
- APPLICANTS STRIVE TO DEMONSTRATE SIMILARITY / IDENTICALITY TO CERTIFICATED PARTS
 - REDUCE TEST, COMPUTATION & ANALYSIS
 - COST SAVINGS TO APPLICANT

ISSUE

• PART MANUFACTURER APPROVAL PROCEDURES, ORDER 8110.42 Rev. A (31 MARCH 1999) STATES:

" WHILE APPLICANT COULD ESTABLISH THE USE OF IDENTICAL MATERIALS AND DIMENSIONS, IT IS UNLIKELY THAT A SHOWING COULD BE MADE THAT TOLERANCES, PROCESSES AND MANUFACTURING SPECIFICATIONS WERE IDENTICAL"

PURPOSE OF BRIEFING: CHECK VALIDITY OF
STATEMENT

• ANATOMY OF TYPE DESIGN

- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS

ANATOMY OF TYPE DESIGN

- FORM, FIT & FUNCTION
- MATERIALS & PROCESSES
- SUPPLIER INFORMATION
- OEM MATERIAL & PROCESS SELECTION CRITERIA

FORM, FIT & FUNCTION

FORM & FIT

• DEPICTED ON DRAWING (DIMENSIONS, TOLERANCES, ETC.)

FUNCTION

- FUNCTIONAL / PERFORMANCE REQUIREMENTS
 - MECHANICAL, PHYSICAL, ENVIRONMENTAL
- SPECIFIED ON DRAWING OR REFERENCED SPECS
- SOMETIMES
 - SPECIFIED ON HIGHER ASSEMBLY <u>OR</u> NOT SPECIFIED ANYWHERE (CORPORATE MEMORY)

CALLED OUT IN MATERIAL BLOCK AND / OR GENERAL NOTES OF DRAWING

- MATERIAL TYPE AND FORM (AISI 4130 PLATE; ETC.)
- STOCK CONDITION (ANNEALED; ROLLED; ETC.
- STOCK SIZE
- MATERIAL SPECIFICATION
 - COMPOSITION LIMITS, MELTING PRACTICE, INSPECTION & TEST REQUIREMENTS, ETC.
- MATERIAL SUBSTITUTION INFORMATION

CALLED OUT IN GENERAL NOTES SECTION

- <u>FABRICATION OPERATIONS</u>: HEAT TREAT, WELDING, BRAZING, FORGING, ETC.
- **SURFACE TREATMENTS:** COATINGS, SHOT PEENING, ETC.
- <u>AUXILIARY PROCESSES</u>: STRESS RELIEF, ANNEAL, ETC.
- **INSPECTION:** PENETRANT, MAGNETIC PARTICLE, ETC.
- <u>PROCESS SEQUENCE</u>: HEAT TREAT AFTER WELDING; INSPECT AFTER WELDING AND AFTER HEAT TREAT; ETC.
- <u>TOOLING</u>: FIXTURES, TEMPLATES, ETC.

SUPPLIER INFORMATION

PREFERRED SUPPLIERS MAY BE CALLED OUT ON DRAWING OR SPECIFICATIONS

- SPECIALIZED PROCESSING
 - CASTING, BRAZING, PLATING ON ALUMINUM OR TITANIUM, STRAIGHTENING, ETC.
- INTRICATE / SPECIALIZED COMPONENTS – BALL BEARINGS, GEARS, ETC.
- DIFFICULT TO PROCURE MATERIALS

 VACUUM MELTED 4340 OR 440, 17-4 PH SHEET OR PLATE, ETC.

OEM MATERIAL & PROCESS SELECTION CRITERIA

- DESIGN REQUIREMENTS
 - MECHANICAL, PHYSICAL, ENVIRONMENTAL
- FABRICATION CONSIDERATIONS – FORMING, DEPTH OF HARDENING, WELDING, ETC.
- THE ECONOMY FACTOR
 - COST & AVAILABILITY OF MATERIALS & PROCESSES
- MATERIAL COST VS PROCESSING ECONOMY
- COST = MATERIAL + FABRICATION + INSPECTION + FINISHING + REWORK

AGENDA

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS

THE AFTER - MARKET APPLICANT

- TYPE DESIGN DATA NOT AVAILABLE TO APPLICANT
 - MUST RELY ON REVERSE ENGINEERING
- CONFIGURATION
 - BY MEASURING PART DIMENSIONS
- MATERIAL & PROCESS REQUIREMENTS
 - ALLOY TYPE: BY CHEMICAL ANALYSES
 - HEAT TREAT: BY MECHANICAL TESTING

APPLICANT FEELS DESIGN REQUIREMENTS SUFFICIENTLY IDENTIFIED

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
 - CHEMICAL ANALYSIS METHODS
 - WHAT APPLICANT SHOULD DO
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS

CHEMICAL ANALYSES METHODS

- CLASSICAL WET ANALYTICAL CHEMISTRY (DIRECT)
 - ACCURATE, TIME CONSUMING & EXPENSIVE
- INSTRUMENTAL METHODS (INDIRECT)
 - ONLY COMPARATIVE- NOT ABSOLUTE
 MUST HAVE ADEQUATE STANDARDS
 - FAST & FAIRLY INEXPENSIVE
- ARC / SPARK OES (OPTICAL EMISSION SPECTROSCOPY) – MOST ACCEPTED METHOD
- EDS (ENERGY DISPERSIVE X-RAY SPECTROMETRY)
 FREQUENTLY USED BY APPLICANTS

OES CONSIDERATIONS / LIMITATIONS

- EXIT SLITS SET BY MANUFACTURER – SUITABLE FOR ONLY SOME ALLOY GROUPS
- RESULTS CAN VARY FROM LAB TO LAB
 - SPECTROMETER, STANDARDS & LINES USED
 - MONOCHROMATOR FOR A TRUE UNKNOWN
- NOT FOR ALL ELEMENTS
 - OLDER AIR-PASS SPECTROMETERS- NO C, S OR P
 - OES NOT YET ACCEPTED FOR H, O OR N

EDS LIMITATIONS

- ONLY SMALL VOLUME ANALYZED – NOT REPRESENTATIVE OF BULK CHEMISTRY
- MANY SYSTEMS CANNOT DETECT O, C, N, Be, Li, B
- SOME ENERGY PEAKS COINCIDE
 - DIFFICULT TO IDENTIFY GENERATING ELEMENT
- QUANTITATIVE ANALYSES REQUIRE STANDARDS
 - EVEN WITH STANDARDS
 - METHOD NOT ACCEPTED AS OES
 - ☺ SUPPLEMENT BY OTHER METHODS

CHEMICAL ANALYSIS WHAT APPLICANT SHOULD DO

SHOULD "INTERROGATE" LAB

- METHOD USED & ITS SUITABILITY FOR ELEMENTS PRESENT; CONCENTRATIONS IN STANDARDS ; SUPPLEMENTAL METHODS USED; ETC.
- IF EDS WAS USED, REQUEST ANOTHER METHOD

SHOULD CONSULT

- WITH A CHEMIST
 - SUITABILITY & ACCURACY OF METHOD(S) USED
- WITH MILLS, CONSULTANTS, CSTA-METALLURGY
 - SELECTIONS IN SIMILAR APPLICATIONS IN INDUSTRY

CHEMICAL ANALYSIS WHAT APPLICANT SHOULD DO

SHOULD VALIDATE RESULTS IF IN DOUBT

- GET SAMPLE OF ALLOY PROPOSED BY LAB
- SUBMIT SAMPLE + OEM MATERIAL TO DIFFERENT LAB
 - FOR COMPARISON
- **REMEMBER**
 - MANY ALLOYS CLOSE IN CHEMISTRY

☺ SUPERALLOYS; CRES STEELS; 4340 & 300M; OTHERS

- BUT NOT IN PERFORMANCE

INCORRECT ANALYSIS \Rightarrow PROBLEMS LATER ON

AGENDA

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
- MECHANICAL TESTING
 - HARDNESS
 - HARDNESS & CONDUCTIVITY
 - TENSILE
 - ISSUES IN MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS

MECHANICAL TESTING

- PERFORMED TO
 - DETERMINE ALLOY HEAT TREAT / TEMPER
- TWO APPROACHES EXIST
 - INDIRECT METHODS

 - ☺ HARDNESS AND CONDUCTIVITY
 - THE DIRECT METHOD
 - TENSILE TESTING
- APPLICANTS PREFER INDIRECT METHODS
 - NONDESTRUCTIVE
 - LESS EXPENSIVE

INDIRECT METHODS HARDNESS TESTING

- HARDNESS SENSITIVE MEASURE OF HEAT TREATMENT
 FOR MANY STEELS (41XX, 43XX, 300M, 440, ETC.)
- HARDNESS-STRENGTH RELATIONSHIPS EXIST
 - CONSISTENT & REPRODUCIBLE (ASTM A370)
- TO DETERMINE STEEL HEAT TREATMENT
 - MEASURE HARDNESS & CONVERT TO STRENGTH
 - − FIND CORRESPONDING HEAT TREAT DETAILS

 ⇒ FROM AMS 2759, OTHER SPECS, DATA SHEETS, ETC.
- OFTEN, NO NEED TO CONVERT TO STRENGTH
 - HEAT TREAT RELATED DIRECTLY TO HARDNESS

HARDNESS TEST LIMITATIONS

- HARDNESS GENERALLY NOT SENSITIVE
 MEASURE OF HEAT TREATMENT / TEMPER
 - FOR NONFERROUS ALLOYS
 - FOR AUSTENITIC & PH CRES STEELS
 - MARAGING STEELS
- NO HARDNESS-STRENGTH RELATIONSHIPS
- \therefore HARDNESS CANNOT BE USED TO DETERMINE HEAT TREAT DETAILS

INDIRECT METHODS ALUMINUM ALLOYS

- VARIOUS (T) AND (O) TEMPERS IDENTIFIED BY
 - MEASURING HARDNESS & CONDUCTIVITY
 AMS 2658
- TEMPER FOR PARTICULAR ALLOY IDENTIFIED WHEN
 - HARNESS WITHIN SPECIFIED RANGE

<u>AND</u>

- CONDUCTIVITY WITHIN SPECIFIED RANGE
- METHOD NOT APPLICABLE TO
 - STRAIN HARDENED (H) TEMPERS
 - CASTINGS

THE DIRECT METHOD TENSILE TESTING

- USUALLY PERFORMED PER ASTM E 8 – ON SAMPLES MACHINED FROM PART
- PART SIZE IMPOSES LIMITS ON – SAMPLE LENGTH
 - ⇒ AFFECTS GRIP & GAGE LENGTHS
 -- GAGE LENGTH ↓: STRENGTH ↓ & DUCTILITY ↑
 NUMBER OF SAMPLES & CONFIDENCE LEVEL
- ∴ SMALL PARTS CAN RENDER TEST IMPOSSIBLE - RELY ON INDIRECT METHODS
 - **☺** SUBJECT TO THEIR LIMITATIONS

ISSUES IN MECHANICAL TESTING DRAWING CALLOUTS

- DRAWINGS CALL OUT STRENGTH / HARDNESS
 - AS A RANGE (e.g., HRC 50-54)
 - AS A MINIMUM (e.g., HRC 50 MIN.)
- APPLICANT HAS NO ACCESS TO OEM DRAWING

HOW DO APPLICANT'S RESULTS RELATE TO DRAWING CALLOUT?

ISSUES IN MECHANICAL TESTING NON-EQUIVALENT SPECIFICATIONS

- INCONEL 718 SHEET: AMS 5596 AND AMS 5597
 - DIFFERENT HEAT TREATMENTS
 - DIFFERENT CREEP PROPERTIES
 - NEARLY IDENTICAL TENSILE PROPERTIES
- AISI 4340 BAR : MiI-S-5000 (AIR MELTED) AND MiI-S-8844 (VACUUM MELTED)
 - IDENTICAL TENSILE PROPERTIES & HARDNESS
 - MIL-S-8844 HAS SUPERIOR TOUGHNESS AND LOW TEMPERATURE PROPERTIES

TENSILE (OR HARDNESS) TESTING MAY NOT REVEAL ALL PROPERTY ASPECTS

- ANATOMY OF TYPE DESIGN
- THE AFTER-MARKET APPLICANT
- CHEMICAL ANALYSES
- MECHANICAL TESTING
- APPLICANT SCORE SHEET
- CONCLUSIONS

APPLICANT SCORE SHEET FORM, FIT & FUNCTION

- FORM
 - FROM OEM PART DIMENSIONS
- FIT
 - DIMENSIONS FROM SMALL NUMBER OF PARTS
 - OEM TOLERANCES NOT KNOWN

WILL ALL PARTS FIT & BE INTERCHANGEABLE?

- FUNCTION
 - OEM FUNCTIONAL TESTS NOT KNOWN

DID APPLICANT PERFORM RELEVANT FUNCTIONAL TESTS? IF NOT, WILL PART PERFORM INTENDED FUNCTION?

APPLICANT SCORE SHEET MATERIALS & PROCESSES

- MATERIAL TYPE DETERMINED
 - BY CHEMICAL ANALYSIS
- HEAT TREAT / TEMPER DETERMINED
 BY MECHANICAL TESTING
 SUBJECT TO LIMITATIONS
- MELTING PRACTICE; INSPECTION; AUXILIARY PROCESSES; MANUFACTURING SPECIFICATIONS; PROCESS SEQUENCE
 - NOT ADDRESSED

.: MATERIAL & PROCESS CHARACTERIZATION INCOMPLETE

APPLICANT SCORE SHEET OTHER FACETS OF TYPE DESIGN

- SUPPLIER INFORMATION
 - NOT AVAILABLE
 - ☺ WHAT IF OEM USED A SPECIAL SUPPLIER, SAY IN SWEDEN
- OEM MATERIAL & PROCESS SELECTION CRITERIA
 - NOT AVAILABLE
 - WHAT IF OEM MATERIAL IS NOT AVAILABLE
 TO APPLICANT

-- ON WHAT BASIS CAN APPLICANT SELECT AN ALTERNATE MATERIAL?

CONCLUSIONS

- COMMONLY USED REVERSE ENGINEERING
 PRACTICES
 - DO NOT REVEAL MANY TYPE DESIGN FACETS
- THE STATEMENT CONTAINED IN ORDER 8110.42 REV. A (31 MARCH 1999) IS VALID

"WHILE APPLICANT COULD ESTABLISH THE USE OF IDENTICAL MATERIALS AND DIMENSIONS, IT IS UNLIKELY THAT A SHOWING COULD BE MADE THAT TOLERANCES, PROCESSES AND MANUFACTURING SPECIFICATIONS WERE IDENTICAL"