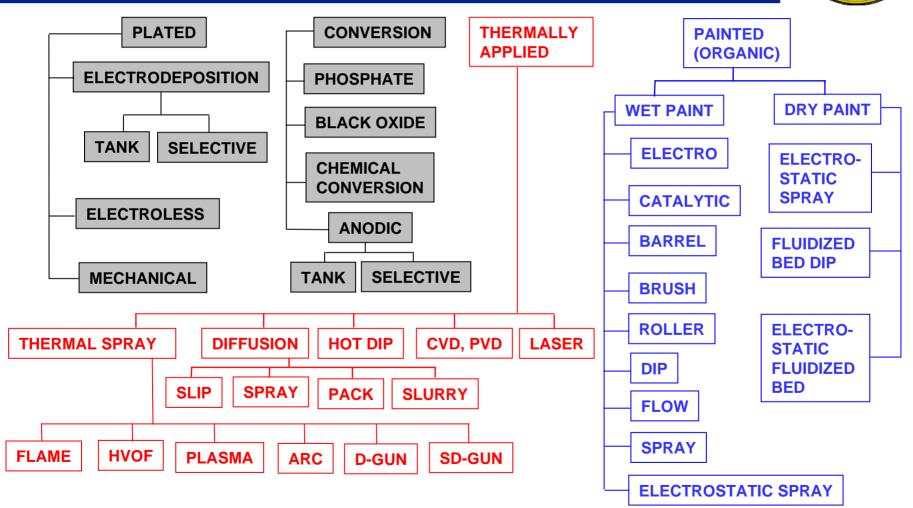


COATINGS PART I: PLATED & CONVERSION COATINGS

Terry Khaled, Ph. D. Chief S / T Advisor, Metallurgy

terry.khaled@faa.gov (562) 627-5267

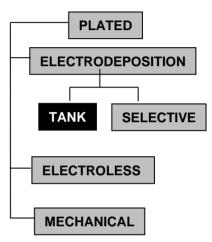
WHY COAT?

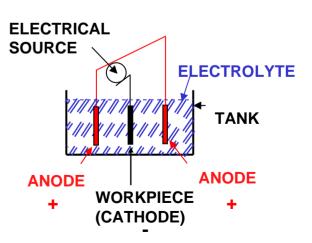


FOR ONE OR MORE OF FOLLOWING REASONS:

- TO PROVIDE CORROSION PROTECTION
- **2** TO ACHIEVE GALVANIC COMPATIBILITY
 - E.G., Cd ON STAINLESS IN CONTACT WITH ALUMINUM
- **10** TO PROMOTE / IMPROVE SPECIFIC CHARACTERISTICS
 - CASE: ACHIEVE EMC (ELECTROMAGNETIC COMPATIBILITY)
 - **E.G., ELECTROLESS NI ON MATING ALUMINUM DETAILS**
 - CASE: COMPLY WITH OPTICAL / COLOR REQUIREMENTS
 - **E.G., PAINTING, COLOR ANODIZING**
 - CASE: PROMOTE ADHESION
 - **E.G., PHOSPHATE BEFORE PAINT**
 - CASE: IMPROVE WEAR RESISTANCE:
 - **E.G., HARD ANODIZE ON ALUMINUM**
 - CASE: PROVIDE LUBRICATION
 - **E.G., Ag ON FASTENERS FOR ELEVATED TEMPERATURES**
- **9** TO SALVAGE / REPAIR DAMAGED / WORN DETAILS

COATINGS BY METHOD OF APPLICATION



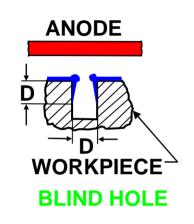


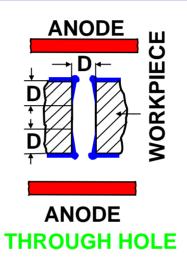
PLATED COATINGS TANK ELECTRODEPOSITION

- ❖ MOST METALS & MANY ALLOYS
 ELECTRODEPOSITED
 ❖ ON OTHER METALS & ALLOYS
- **❖ ELECTRICAL SOURCE**
- ❖ ELECTROLYTE
- **❖ CATHODE: WORKPIECE BEING PLATED**
- **❖** ANODE: TWO TYPES
 - **❖ SOLUBLE ANODE: DISSOLVES TO PROVIDE PLATING ION(S)**
 - ♦ E.G., Ni, Cd, Cu, Zn, Sn
 - **❖ INSOLUBLE ANODE: PLATING IONS COME FROM ELECTROLYTE**
 - ♦ E.G., Cr, Ag

PLATED COATINGS TANK ELECTRODEPOSITION

- COMPOSITE ELECTRODEPOSITION POSSIBLE- PROPRIETARY
 - **❖ PARTICLES SUSPENDED IN ELECTROLYTE**
 - ♦ Ni-WC: WC PARTICLES SUSPENDED IN WATTS NI BATH
 - ♦ Cr-GRAPHITE: GRAPHITE PARTICLES SUSPENDED IN CONVENTIONAL Cr BATH
 - **❖ ALLOY (Ni-Cr, Ni-Co) PLATING, FOLLOWED BY PTFE INFUSION**
 - **♦ AKA SYNERGISTIC COATINGS**
- **❖ LAYERED ELECTRODEPOSITS DEVELOPMENTAL STAGE**
 - **❖** FOR ELECTRONIC, MAGNETIC, MECHANICAL & ELEVATED TEMPERATURE APPLICATIONS
- **❖ SURFACE PREPARATION CRUCIAL**
 - **❖ FOR ADEQUATE ADHESION OF ELECTRODEPOSITS, SURFACES MUST BE PROPERLY CLEANED**
 - **♦ MECHANICALLY AND/OR CHEMICALLY**


TANK ELECTRODEPOSITION NOTES OF CAUTION

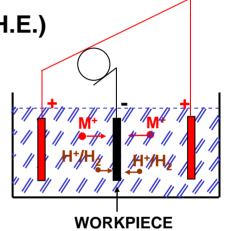


- DIFFICULT TO PLATE ON AI, TI & STAINLESS ALLOYS
 - **❖ SURFACE OXIDE LAYER**
 - **❖ CLEAN IMMEDIATELY BEFORE PLATING**
 - **♦ AI: ZINCATE AFTER CLEANING**
- DEPOSIT THICKNESS VARIES
 - **❖ EDGES: MORE BUILDUP**
 - **♦ HIGH CURRENT DENSITY**
 - **♦ THROWING POWER** → DEPTH OF COVERAGE LIMITATIONS
 - ♦ THICKNESS ■ WITH DISTANCE FROM ANODE
 - ♦ E.G., HOLES, RECESSES
 - ♦ BEYOND CERTAIN DISTANCE (DEPTH)-NO COVERAGE

TANK ELECTRODEPOSITION NOTES OF CAUTION

- ***THICKNESS VARIATION & DEPTH OF COVERAGE**
 - *** DEPEND ON OPERATING CONDITIONS**
 - **❖ DEPTH ESTIMATE FOR HOLES: 1 D OR LESS**
- **❖USE CONFORMING / SPECIAL ANODES & THIEVES ❖ FOR BETTER UNIFORMITY**

TANK ELECTRODEPOSITION NOTES OF CAUTION-HYDROGEN


- ❖ H₂ GENERATED DURING ELECTRODEPOSITION
 - **❖ AT WORKPIECE (-)**
 - **❖ CAN CAUSE "HYDROGEN EMBRITTLEMENT" (H.E.)**
- ❖ FOR STEELS
 - SUSCEPTIBILITY TO H.E. AS
 - ♦ HARDNESS / STRENGTH
 - ♦ RESIDUAL TENSILE STRESS

- **STRESS RELIEVE BEFORE PLATING**
 - **♦ TO REDUCE RESIDUAL STRESSES**

AND

- **❖ BAKE AFTER PLATING**
 - **♦ WITHIN A SPECIFIED TIME AFTER PLATING**
 - TYPICALLY 4 Hrs
 - ♦ TO REDISTRIBUTE / REDUCE H₂ LEVEL

TANK ELECTRODEPOSITION NOTES OF CAUTION-HYDROGEN

- **❖** STRESS RELIEF & BAKE (CARBON, ALLOY, TOOL & PH STEELS)
 - **❖ REQUIRED WHEN HARDNESS / STRENGTH > SET VALUE**
 - ♦ SET VALUE: DEPENDS ON SPECIFICATION
 - ◆ MOST IN HRC 35-40 (F₁₁₁ 150-180 KSI) RANGE
 - **❖ TEMPERATURE: LOWER THAN FINAL TEMPERING / AGING**
 - **♦ INDUSTRY PRACTICE: 375 F**
 - ♦ 800 F & HIGHER POSSIBLE FOR PH STAINLESS STEELS
 - **❖ TIMES: STRESS RELIEF, 3-8 HRS; BAKE, 3-23 HRS**
 - **♦ DEPENDING ON**
 - PLATING SPECIFICATION
 - REVISION OF PARTICULAR SPECIFICATION
- ❖ STRESS RELIEF REQUIRED ONLY IF PARTS WERE MACHINED OR FORMED AFTER TEMPERING / AGING
 - **❖ SOME SPECIFICATIONS FOLLOW THE SET VALUE APPROACH**
 - **❖ OTHERS MANDATE IT FOR FOR ALL PARTS**

TANK ELECTRODEPOSITION NOTES OF CAUTION-HYDROGEN

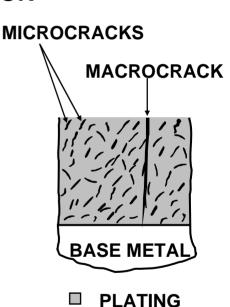
WARNING: H.E. RELIEF PROVISIONS NOT BASED ON SOLID, REPRODUCIBLE DATA

- THE SMART WAY IS TO FOLLOW THE CONTROLLING SPECIFICATION
- ❖ IF YOU DO NOT STRESS RELIEVE BEFORE PLATING
 - **❖ IT IS OF NO USE TO DO IT AFTER PLATING**
 - **❖ THE HARDWARE IS SUSPECT**
- IF YOU DO NOT BAKE WITHIN SET TIME AFTER PLATING
 - **❖ IT IS NO HELP TO DO IT LATER**
 - **❖ THE HARDWARE IS SUSPECT**
- **❖ IF YOU USE LOWER TEMPERATURES AND / OR SHORTER TIMES**
 - **❖ THE HARDWARE IS SUSPECT**
 - DIFFICULT TO SHOW OTHERWISE
- WHEN THE HARDWARE IS SUSPECT
 - *** THERE REALLY IS NO CORRECTIVE ACTION**

TANK ELECTRODEPOSITION HARD Cr PLATING

- AKA ENGINEERING / FUNCTIONAL Cr
 - **❖ SAME BATH AS FOR DECORATIVE Cr**
 - ♦ ELECTROLYTE: CHROMIC ACID + VARIOUS SALTS
 - **♦ INSOLUBLE ANODES**
- **❖** FOR WEAR APPLICATIONS & SALVAGE / REPAIR
 - ❖ THICKNESS: 0.001-0.020 IN (1-20 MILS) OR THICKER
 - **❖ AS DEPOSITED HARDNESS: HRC 67 OR HIGHER**
 - *** LOW FRICTION**
- DEPOSIT ORDINARILY CONTAINS MICROCRACKS
 - **❖ BELIEVED DUE TO COATING VOLUME SHRINKAGE:**

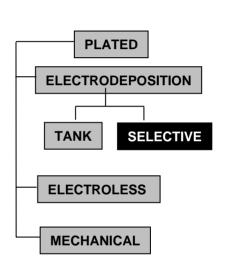
Cr HYDRIDES DEPOSITED DECOMPOSE TO Cr + H


RESIDUAL TENSILE STRESSES 15 VOL. % SHRINKAGE

TANK ELECTRODEPOSITION HARD Cr PLATING

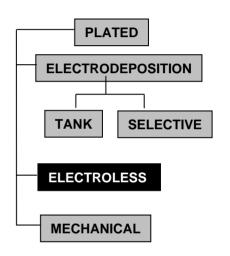
- MICROCRACKS
 - ❖ NO ADVERSE EFFECT ON CORROSION PROTECTION
 - **♦ DO NOT LINE UP**
 - ♦ NO PATH FROM TOP TO INTERFACE
 - **❖ RESIDUAL TENSILE STRESSES**
 - **♦ NOT FULLY RELIVED**
 - **♦** ∴ FATIGUE DEBIT
- MACROCRACKS
 - **❖ ADVERSELY AFFECT CORROSION RESISTANCE**
 - **♦ FROM TOP TO INTERFACE, LONGER, WIDER**
 - **❖ RESULT FROM**
 - **PLATING CONDITIONS**
 - **♦ PRECOATING RESIDUAL STRESSES**
 - **♦ THERMAL SHOCK AFTER PLATING**

TANK ELECTRODEPOSITION HARD Cr PLATING



- PROBLEMS WITH Cr PLATING
 - NOT ENVIRONMENTALLY FRIENDLY
 - **2** LONG PROCESSING TIMES
 - **⊗ SLOW DEPOSITION RATES (ABOUT 0.001 IN / HR)**
 - **49 H.E. PROVISIONS FOR STEELS**
 - **© NOT JUST Cr BUT ALL OTHER PLATES**
 - **6** FATIGUE DEBIT
 - **4** INCONSISTENT CORROSION PROTECTION
 - DUE TO MACROCRACKS
 - **© CAN BE AVOIDED**
- **❖** Cr REPLACEMENT EFFORTS UNDERWAY GLOBALLY
 - **EXECUTE** CO-WC, Co-Cr-WC COATINGS
 - * THERMALLY SPRAYED
 - **⇒** BY HVOF (HIGH VELOCITY OXY-FUEL)
- Cr WILL NOT GO AWAY
 - **■** THERMAL SPRAY LIMITATIONS

PLATED COATINGS SELECTIVE ELECTRODEPOSITION


- ❖ LOCALIZED ELECTRODEPOSITION
 ❖ AKA STYLUS / BRUSH PLATING
- NO DIPPING IN TANK
 ★ ELECTROLYTE BROUGHT TO STYLUS (ANODE)
 ★ STYLUS HAS ABSORBENT WRAPPING
- ❖ USED FOR Cr, Ni, Cd, Cu & OTHER METALS
 ❖ CLEAN SURFACES CRUCIAL FOR ADHESION
- ❖ ATTRACTIVE WHEN PLATED AREA IS SMALL
 ❖ MINIMUM MASKING REQUIRED
- ❖ MAY BE USED FOR SALVAGE & REPAIR
- ❖ H.E. PROVISIONS APPLY FOR STEELS
 ❖ EXCEPT FOR SPECIFIC PLATING SOLUTIONS: LHE Cd (Cd-Ni), Ni-W
- ❖ SELECTIVE PROCESSES ALSO USED FOR ANODIZING, ELECTRO- STRIPPING / MILLING / POLISHING / ETCHING
 - **STYLUS ANODE OR CATHODE, AS REQUIRED**

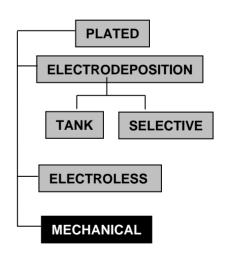
PLATED COATINGS ELECTROLESS PLATING

- **❖** BY CATALYTIC REDUCTION REACTION
 - **❖ NO ELECTRIC SOURCE REQUIRED**
 - **❖ DIPPING IN TANK REQUIRED**
- **❖** CAN PLATE ON METALS AND NONMETALS (E.G., PLASTICS)
- COATING IS UNIFORM
 - **❖ NO EDGE BUILDUP OR DEPTH OF COVERAGE LIMITATIONS**
- CLEAN SURFACES CRUCIAL FOR ADHESION
 - **❖ FOR ALUMINUM**
 - **♦ BEST TO ZINCATE AFTER CLEANING**
 - ♦ NOT MANDATORY IN SOME SPECIFICATIONS ⊗
- ❖ H₂ GENERATED
 - **❖ NOT AS MUCH AS IN ELECTRODEPOSTION**
 - STILL A PROBLEM
 - **❖ FOR STEELS: H.E. RELIEF PROVISIONS APPLY**

ELECTROLESS PLATING TYPES

- SINGLE METAL PLATING
 - **❖** Cu, Au, Pd FOR ELECTRONIC APPLICATIONS
- ALLOY PLATING
 - **❖ Ni-P (CONVENTIONAL ELECTROLESS Ni), Ni-B, Co-B, Ni-Mo-P, Co-Mo-P, OTHERS**
- ❖ COMPOSITE PLATING- PROPRIETARY
 - **❖ PARTICLES SUSPENDED IN ELECTROLYTE**
 - **♦ SOFT PARTICLES (LUBRICANTS)**
 - E.G., PTFE- AKA SYNERGISTIC COATINGS
 - **♦ HARD PARTICLES**
 - CARBIDES, CERAMICS OR DIAMOND
 - **❖ ELECTROLESS PLATING FOLLOWED BY PTFE INFUSION**
 - **♦ AKA SYNERGISTIC COATINGS**
- NOT AS MANY CHOICES AS IN ELECTRODEPOSITION

ELECTROLESS PLATING CONVENTIONAL ELECTROLESS NICKEL

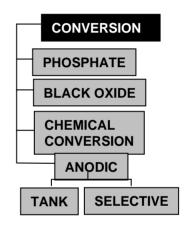


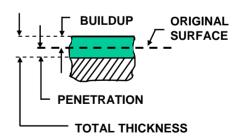
- MOST WIDELY USED ELECTROLESS PLATING
 - **❖ SODIUM HYPOPHOSPHITE SOLUTION**
 - **❖ FOR STEEL & ALUMINUM**
- ❖ ALLOY OF Ni & P
 - *** HIGH HARDNESS-LOW FRICTION**
 - **♦ GOOD FOR WEAR APPLICATIONS**
 - **❖** GENERALLY POROUS
 - **♦** FOR ADEQUATE CORROSION PROTECTION, NEED 0.0015 IN. MIN.
- P CONTENT DETERMINES PROPERTIES
 - **❖ LOW P: HIGH HARDNESS, LOW CORROSION RESISTANCE, HIGH RESIDUAL TENSILE STRESSES (FATIGUE DEBIT)**
 - ❖ HIGH P: LOW HARDNESS, HIGH CORROSION RESISTANCE, LOW RESIDUAL TENSILE STRESSES (COMPRESSIVE ABOVE 11% P)
- **❖ AGING: HIGHER HARNESS& LOWER CORROSION RESISTANCE**
 - **❖** E.G., HIGH P (8-10%) ELECTROLESS Ni
 - ♦ AS DEPOSITED HRC 46-52
 - ♦ HARDNESS OVER 70 HRC AFTER 750 F / 1 HR AGE

PLATED COATINGS MECHANICAL PLATING

- ❖ AKA PEEN / IMPACT / BARREL PLATING, MECHANICAL GALVANIZING
- FOR APPLYING
 - **❖ MALLEABLE (SOFT) METAL OR ALLOY COATINGS**
 - ♦ Pb, Zn, Cd, Sn, Cu, Al, COMBINATIONS
 - IN POWDER FORM
 - ONTO STEEL AND Cu ALLOY PARTS
 - **♦ APPLIED @ ROOM TEMPERATURE**
 - **♦ NO ELECTRICAL CURRENT**
- PARTS TUMBLED IN BARREL WITH
 - **❖ PEENING MEDIUM**
 - ♦ GLASS BEADS, METAL SHOT
 - **❖ CHEMICALS**
 - **♦ TO PROMOTE ADHESION**
 - **❖ COATING POWDER(S)**
 - **❖ WATER**
 - **♦ CARRIER**

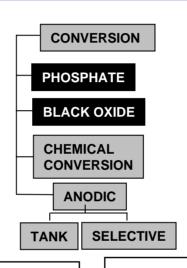
PLATED COATINGS MECHANICAL PLATING




- ❖ BEADS / SHOT PROVIDE HAMMERING ENERGY
 - **❖ POUND COATING MATERIAL AGAINST PART SURFACES**
 - **♦ ADHESION BY COLD WELDING**
- CLEAN SURFACES ESSENTIAL
 - **❖ JUST LIKE ALL PLATING PROCESSES**
- THIN Cu LAYER BARREL PLATED BEFORE DESIRED COATING
 - **❖ TO PROMOTE ADHESION**
- ❖ SOME H₂ GENERATED BUT NOT TRAPPED
 - **♦ H.E. NOT A PROBLEM**
- HOLES PLATED IF BEADS OR SHOT CAN GET IN
- FOR SMALL PARTS & MASS PRODUCTION
 - * FASTENERS, COIL SPRINGS, TORSION BARS
- **❖** GENERALLY NOT FOR PRECISION PARTS
- VARIANT WITH MESH
 - **❖ ELECTROMECHANICAL**
 - ♦ H.E. PROVISIONS APPLY FOR STEELS

CONVERSION COATINGS

- FORMED BY DISSOLVING METAL & DEPOSITING LAYER
 - **❖ LAYER INTEGRAL**
 - **♦ PENETRATION + BUILD UP**
- TWO MAJOR CLASSES OF COATINGS
 - **❖ CHEMICALLY APPLIED**
 - ♦ DIP, SPRAY AND / OR BRUSH
 - ♦ PHOSPHATE, BLACK OXIDE, CHEMICAL CONVERSION COATINGS
 - **❖ ELECTROCHEMICALLY APPLIED**
 - **♦ ANODIC COATINGS (ANODIZING)**
 - ELECTRICAL SOURCE NEEDED
- GOOD AS PAINT BASE



- COATINGS GENERALLY POROUS TO VARIOUS DEGREES
- **❖ OFFER VARIOUS DEGREES OF CORROSION PROTECTION**

CONVERSION COATINGS BLACK OXIDE & PHOSPHATE COATINGS

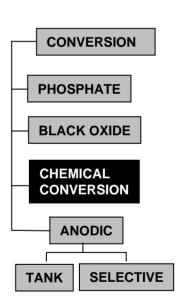
BLACK OXIDE

- **❖** FOR STEELS, STAINLESS STEELS, AI, Cu, Zn, Cd
- ❖ DIP IN HOT OXIDIZING SALTS❖ FORM THIN OXIDE LAYER
- **❖** THIN: < 0.0001IN. (< 0.1MIL)

PHOSPHATE

- ❖ FOR STEELS, AI, Zn, Cd
- **❖** DIP, SPRAY
 - **❖ PHOSPHORIC ACID + SALTS**
 - **❖ FORM PHOSPHATE LAYER**
- **❖** STEELS: H.E. RELIEF PROVISIONS APPLY (BECAUSE OF THE ACID)
- **THIN 0.0001-0.002 IN. (0.1-2.0 MIL)**

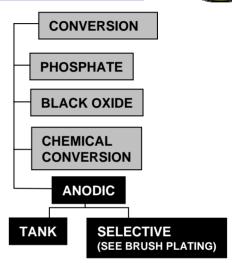
CONVERSION COATINGS BLACK OXIDE & PHOSPHATE COATINGS

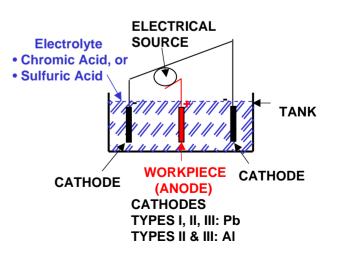


- ❖ NOT ADEQUATE FOR LONG TERM CORROSION PROTECTION
 - **♦ PHOSPHATE GENERALLY BETTER-THICKER**PHOSPHATE BEST
- ❖ IMPROVE PROTECTION BY
 - **❖ SUPPLEMENTARY OIL OR LUBRICANTS**
- ❖ PHOSPHATE + SOLID FILM LUBRICANT / OIL ON STEELS
 - COMMON IN WEAR APPLICATIONS
 - GOOD CORROSION PROTECTION

CONVERSION COATINGS CHEMICAL CONVERSION COATINGS

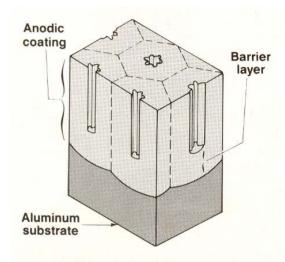
- FOR AI, Mg, Be, Cd, Zn, Sn, Cu
 YELLOW COLOR ON AI-ALLOYS & Cd PLATED HARDWARE
- **❖** APPLY BY BRUSH, SPAY OR DIP
 - CHROMIC ACID + Cr SALTS OR ACIDS
 - **❖ FORM CHROMATE LAYER**
- **❖** TOO THIN 0.000005-0.00001 IN. (0.005-0.010 MIL)
- ❖ WATER SOLUBLE REMOVED BY ERASER
- ❖ NOT ADEQUATE FOR LONG TERM CORROSION PROTECTION
- CHROMATE NOT ENVIRONMENTALLY FRIENDLY


CONVERSION COATINGS ANODIC COATINGS



- ELECTROCHEMICAL CONVERSION
 - **❖FORM OXIDE LAYER**
 - ❖ FOR AI, Be, Ti, Zn

ALUMINUM ANODIZING


- **❖ THREE MAIN TYPES**
 - ❖ TYPES I, II
 - **♦ FOR CORROSION PROTECTION**
 - **❖TYPE III**
 - **♦ FOR WEAR APPLICATIONS**
- ❖ SUPERIOR TO CHROMATE
 CONVERSION COATINGS
 ❖ IN PROTECTION & DURABILITY
- ❖ EASIER THAN PLATING❖ NO ZINCATE

- DYING & SEALING POSSIBLE
- SEQUENCE
 - **1** ANODIZE
 - ② DYE FOR COLOR♦ IF POSSIBLE, REQUIRED
 - ③ SEAL
 - ♦ IN BOILING DI WATER OR ACIDIFIED HOT WATER
 - **♦ ONLY IF PERMITTED**
- SEALING CAUSES COATING TO EXPAND & CLOSE PORES
 - **❖ IMPROVES CORROSION PROTECTION**
 - **❖ ADVERSELY AFFECTS**
 - **♦ PAINT ADHESION**
 - **♦ WEAR PERFORMANCE**

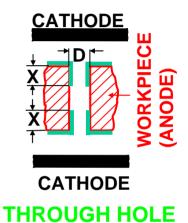
TYPE I: CHROMIC ACID

- ❖ THICKNESS: 0.00002-0.0007 IN.
 ❖ 0.02-0.7 MIL
- NOT SUITABLE FOR ALLOYSWITH Cu > 5 %OR
 - **❖ WITH TOTAL ALLOYING** ELEMENTS > 7.5 %
- **❖ NOT ENVIRONMENTALLY** FRIENDLY
- **❖** DIFFICULT / IMPOSSIBLE TO DYE
- ❖ MAY BE SEALED

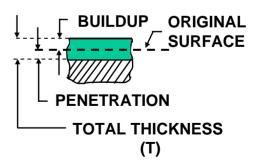
TYPE II: SULFURIC ACID

- THICKNESS: 0.00007-0.0010 IN.
 0.07-1.0 MIL
- ❖ PORES❖ LARGER THAN TYPE I
- ❖ MAY BE DYED

 ❖ MANY COLORS
- ***** BRIGHT ANODIZE POSSIBLE
 - **❖** GET Cr-LIKE FINISH
 - **♦ SOME ALLOYS**
 - ♦ ONLY IF POLISHED
- MAY BE SEALED


TYPE III: HARD ANODIZE

- **❖** SULFURIC ACID @ TEMPERATURES < TYPE II
- NOT SUITABLE FOR ALLOYS
 - ♦ WITH Cu > 5 % OR
 - **❖** WITH Si > 7 %
- ❖ THICKNESS: 0.0005-0.0050 IN. (0.5-5.0 MIL)
- ❖ FILE HARD- HRC > 60❖ MAY LAP TO DIMENSIONS
- NOT NORMALLY DYED
- ❖ NOT SEALED UNLESS OTHERWISE SPECIFIED
 - **❖ SMALL PORES**
 - **❖ SEALING NOT GOOD FOR WEAR PERFORMANCE**



- THICKNESS OF ANODIC COATINGS
 - **❖** GENERALLY UNIFORM
 - **❖ MAYBE LITTLE THIN ON EDGES**
- DEEP HOLES MAY NOT BE FULLY COATED
 - X = 1.25 D (FOR D < 0.50 IN)
 - **❖** X = 1.75 D (D ≥ 0.50 IN)
- ❖ PENETRATION & BUILDUP
 - **❖** AS SHOWN IN BOX

CATHODE
X
WORKPIECE (ANODE)
BLIND HOLE

TYPES I & II * TYPE III
BUILDUP 1/3 T 2/3 T 1/2 T 1/2 T
PENETRATION 2/3 T 1/3 T 1/2 T 1/2 T

^{*} REFERENCES VARY AS TO PENETRATION AND BUILDUP IN TYPES I & II

CONVERSION COATINGS MISCELLANEOUS ANODIC COATINGS

- OTHER ANODIC PROCESSES USED FOR ALUMINUM
 - **❖ PHOSPHORIC**
 - **♦ TO PROMOTE PLATING OR ADHESIVE BONDING**
 - SULFURIC-OXALIC
 - ♦ FOR COATING THICKNESS BETWEEN TYPE II & TYPE III
 - **❖ SYNERGISTIC (COMPOSITE) : HARD ANODIZE + TEFLON (PTFE)**
 - **♦ FOR IMPROVED WEAR PERFORMANCE**
 - **♦ PTFE INFUSED OR CODEPOSITED**
 - **❖ SELECTIVE (BRUSH) ANODIZING POSSIBLE**
- ANODIZING TITANIUM (E.G., TIODIZING)
 - **❖ FOR WEAR APPLICATIONS**
 - **❖ 10 % PENETRATION & 90 %BUILDUP-CAN BE BURNISHED**
 - *** DECORATIVE COLORING POSSIBLE**
- ❖ ANODIZING MAGNESIUM
 - **❖ FOR CORROSION PROTECTION OR FOR COLOR (BLACK)**

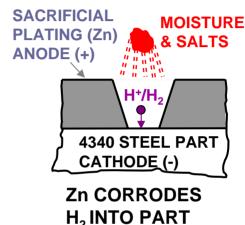
PLATED & CONVERSION COATINGS DIMENSIONS

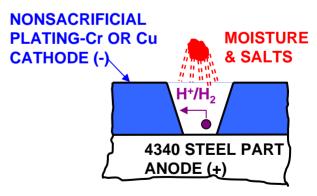
- ❖ DRAWING DIMENSIONS TYPICALLY APPLY BEFORE COATING
- **❖ USUALLY, ONLY MINIMUM COATING THICKNESS SPECIFIED**
 - **❖ DIMENSIONS BEFORE COATING CONTROLLED BY DRAWING**
 - **❖ DIMENSIONS AFTER COATING NOT CONTROLLED**
- TO CONTROL DIMENSIONS AFTER COATING
 - ADD MAXIMUM COATING THICKNESS
 - > TO DRAWING OR SPECIFICATION REQUIREMENTS
 - **2** ADD AN AFTER COATING SET OF DIMENSIONS
 - **➣** TO DRAWING
 - **⇒** ONLY ONE SET DEPICTED?: IT IS BEFORE COATING
- **❖ PLATED COATINGS CAN BE SO CONTROLLED**
 - PRECISE THICKNESS CONTROL DURING PLATING
 - **2** HARD PLATES: GROUND, HONED OR LAPPED TO DIMENSIONS

PLATED & CONVERSION COATINGS DIMENSIONS

- ❖ CONVERSION COATINGS CAN NOT BE SO CONTROLLED
 - **❖ DUE TO PENETRATION & BUILDUP**
- AFTER COATING CONTROL
 - BLACK OXIDE, CHEMICAL CONVERSION COATINGS
 - IN TOO THIN TO WORRY ABOUT
 - **2** ANODIC ALUMINUM COATINGS
 - **▼ TYPE III (HARD) COATINGS**
 - ⇒ HONE OR LAP TO DIMENSIONS
 - **IX TYPES I & II**
 - ⇒ TOO THIN FOR "SAFE" LAPPING OR HONING
 - **⇒ MAY WISH TO EXPERIMENT**
 - **9** PHOSPHATE COATINGS
 - **IDENTIFY AND SECOND S**
 - **IN THIN: MAY WISH TO EXPERIMENT**
 - **4** ANODIC COATINGS ON OTHER METALS
 - **DEALT WITH ON CASE BY CASE BASIS**
 - ⇒ E.G., FOR TITANIUM: BURNISH TO DIMENSIONS

PLATED & CONVERSION COATINGS HYDROGEN-AGAIN




- **❖ HYDROGEN EMBRITTLEMENT (H.E.) A CONCERN IN**
 - *** ELECTRO & ELECTROLESS PLATING**
 - **❖ PHOSPHATE COATINGS**
- H.E. ALSO A CONCERN IN
 - **❖ NONELECTROLYTIC OPERATIONS IN ACIDS**
 - ♦ CLEANING, DESCALING, PICKLING, STRIPPING, ETCHING, CHEMICAL-MILLING, ETC.
 - *** ELECTROLYTIC SURFACE PREPARATION METHODS**
 - **♦ ELECTROPOLISHING, ELECTROCHEMICAL MACHINING, ETC.**
 - ONLY IF WORKPIECE IS CATHODE (TYPICALLY, WORKPIECE IS ANODE) OR
 - + IF AC IS USED
- ★ H.E. RELIEF PROVISIONS MUST ADDRESS <u>ALL</u> CONCERNS
 ★ E.G., STRESS RELIEF, PICKLE, BAKE, PLATE, BAKE

PLATED & CONVERSION COATINGS SOME MORE HYDROGEN

- ❖ APART FROM STEELS
 - **❖ H.E. IN ALLOYS OTHER THAN STEEL**
 - ♦ E.G., Ti & Ni ALLOYS
 - **❖ RELIEF PROCEDURES NOT READILY AVAILABLE**
 - ♦ FOR Ti & ALLOYS
 - + 4-6 HRS VACUUM BAKE (10-4 TORR OR BETTER)
 - @ 1200-1400 F
 - **◆ 375 F NOT ADEQUATE**
- H.E. ALSO
 - *** FROM GALVANIC COUPLING**
 - **♦ BREAK IN SACRIFICIAL PLATING**
- ❖ IF H IS PROBLEM, USE ORGANIC, VACUUM, THERMAL OR MECHANICAL COATINGS

STEEL CORRODES
H₂ AWAY FROM PART