MMWR
 Morbidity and Mortality Weekly Report
 www.cdc.gov/mmwr

Weekly

American Diabetes Month and World Diabetes Day

November is American Diabetes Month, and November 14 is World Diabetes Day. In 2007, approximately 23.6 million persons in the United States had diabetes, and at least 57 million adults with impaired fasting glucose were at high risk for developing diabetes (1). Weight loss and physical activity can prevent or delay development of type 2 diabetes among adults at high risk. CDC supports pilot programs in five states to develop diabetes prevention interventions and policies to help persons reduce their risk (2).
This year, World Diabetes Day seeks to raise awareness about diabetes in children and adolescents. In the United States, in 2007, approximately 186,300 persons aged <20 years had diabetes (1). One of CDC's efforts to prevent diabetes in youth is The Eagle Books (http://www.cdc.gov/ diabetes/pubs/eagle.htm). Initially designed to promote culturally based information about diabetes prevention, physical activity, nutrition, and healthy eating among American Indian/Alaska Native children, The Eagle Books might appeal to children and parents of all cultures. Animated versions are available for viewing online at http://www.cdc.gov/cdctv.
Additional information on diabetes is available at http:// www.cdc.gov/diabetes. Information on American Diabetes Month and World Diabetes Day activities is available at http://www.diabetes.org/communityprograms-andlocalevents/americandiabetesmonth.jsp and at http:// www.worlddiabetesday.org.

References

1. CDC. National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2007. Atlanta, GA: US Department of Health and Human Services, CDC; 2008. Available at http://www.cdc.gov/diabetes/pubs/factsheet07.htm\#contents.
2. CDC. Diabetes 2008: disabling disease to double by 2050. Atlanta, GA: US Department of Health and Human Services, CDC; 2008. Available at http://www.cdc.gov/nccdphp/publications/aag/pdf/ diabetes.pdf.

October 31, 2008 / Vol. 57 / No. 43

State-Specific Incidence of Diabetes Among Adults - Participating States, 1995-1997 and 2005-2007

Diabetes is a major cause of morbidity and mortality in the United States (1), resulting in substantial human and economic costs (1,2). National survey data indicate that the incidence of diagnosed diabetes in the United States has increased rapidly and that obesity is a major predictor of diabetes incidence (3). However, data on diabetes incidence have not been analyzed by state. To assess the geographic distribution of diagnosed diabetes and to examine state-specific changes, CDC analyzed data from Behavioral Risk Factor Surveillance System (BRFSS) surveys for the periods 1995-1997 and 2005-2007. This report summarizes the results of that analysis, which indicated that, during 2005-2007, average, annual age-adjusted incidence of diabetes ranged from 5.0 to 12.8 per 1,000 persons among 40 participating states, the District of Columbia (DC), and two territories, with the greatest incidence observed in the South and Puerto Rico. In addition, among 33 participating states with data for both periods, the age-adjusted incidence of diabetes increased 90% from 4.8 per 1,000 in 1995-1997 to 9.1 in 2005-2007. Among persons at risk, diabetes can be prevented or delayed by moderate weight loss and increased physical activity (4,5). Development and delivery of interven-

[^0]The MMWR series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2008;57:[inclusive page numbers].

Centers for Disease Control and Prevention

Julie L. Gerberding, MD, MPH
Director
Tanja Popovic, MD, PhD
Chief Science Officer
James W. Stephens, PhD Associate Director for Science

Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing
Editorial and Production Staff
Frederic E. Shaw, MD, JD
Editor, MMWR Series
Susan F. Davis, MD
(Acting) Assistant Editor, MMWR Series
Teresa F. Rutledge
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Donald G. Meadows, MA
Jude C. Rutledge
Writers-Editors
Peter M. Jenkins
(Acting) Lead Visual Information Specialist
Malbea A. LaPete
Stephen R. Spriggs
Visual Information Specialists
Kim L. Bright, MBA
Quang M. Doan, MBA Erica R. Shaver
Information Technology Specialists

Editorial Board

William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN
David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ

Margaret A. Hamburg, MD, Washington, DC
King K. Holmes, MD, PhD, Seattle, WA
Deborah Holtzman, PhD , Atlanta, GA
John K. Iglehart, Bethesda, MD
Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Patricia Quinlisk, MD, MPH, Des Moines, IA
Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR
William Schaffner, MD, Nashville, TN Anne Schuchat, MD, Atlanta, GA
Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA
tions that result in weight loss and increased physical activity among those at risk are needed to halt the increasing incidence of diabetes in U.S. states.
BRFSS is a state-based, random-digit-dialed, landline telephone survey of the U.S. civilian noninstitutionalized population aged ≥ 18 years and is conducted in all 50 states, DC, Guam, Puerto Rico, and the U.S. Virgin Islands. In the 1995 BRFSS survey, Council of American Survey and Research Organizations (CASRO) participant response rates* among states ranged from 48.6% to 84.5% (median: 68.5\%), and cooperation rates ${ }^{\dagger}$ ranged from 50.9% to 84.6% (median: $71.4 \%)$. In 2007, CASRO response rates among states ranged from 26.9% to 65.4% (median: 50.6%), and cooperation rates ranged from 49.6% to 84.6% (median: 72.1%). State sample sizes for 1995-1997 ranged from 2,960 in New Mexico to 12,642 in Minnesota, and for 2005-2007 ranged from 7,091 in Alaska to 52,465 in Florida.

Persons with diagnosed diabetes were defined as those who answered "yes" to the question, "Have you ever been told by a doctor that you have diabetes?" Women who had been told that they had diabetes only during pregnancy and respondents told they had prediabetes or borderline diabetes were classified as not having diabetes. Those with diagnosed diabetes were then asked at what age they were diagnosed. Duration of diagnosed diabetes was calculated by subtracting the age at diagnosis from current age.

The number of incident cases of diagnosed diabetes was defined as those cases with duration of zero plus one half of the cases with duration of 1 year (3). To derive incidence rates, the number of incident cases was divided by the number of persons without diabetes plus the number of incident cases (3). Incidence was age adjusted according to the 2000 U.S. standard population and analyzed by state, territory, and U.S. Census region. ${ }^{\S}$ Average annual incidence was calculated from the 3 years of data collected during 1995-1997 and the 3 years collected during 2005-2007; states with <2 years of data for each period were excluded. During 2005-2007, 40 participating states, DC, and two territories had ≥ 2 years of data; 33 participating states had ≥ 2 years of data for both periods. For the 33 states, incidence rates were compared using t-tests for

[^1]significance. Data were weighted to respondents' probabilities of being selected and to age-, race-, and sex-specific populations from each state's annually adjusted census.
Among the 40 states, DC, and two territories with ≥ 2 years of 2005-2007 data, the average annual incidence rate for 20052007 was 9.0 new cases of diabetes per 1,000 population (95% confidence interval $[\mathrm{CI}]=8.6-9.4)$. By U.S. Census region, the average age-adjusted incidence was greatest in the South (10.5 per 1,000, CI =9.9-11.1), followed by the Northeast (8.6, CI $=7.8-9.4)$, West ($8.5, \mathrm{CI}=7.7-9.3$), and Midwest (7.4, CI $=6.6-8.2$). By state, age-adjusted incidence ranged from 5.0 per 1,000 population ($\mathrm{CI}=3.6-6.3$) in Minnesota to $12.8(\mathrm{CI}=10.0-15.5)$ in Puerto Rico. The 10 states in the highest quartile of age-adjusted diabetes incidence (10.3-12.8 per 1,000 population) included nine of the 16 states in the South region: Alabama, Florida, Georgia, Kentucky, Louisiana, South Carolina, Tennessee, Texas, and West Virginia (Figure). The other state in the highest quartile was Arizona.

For the 33 states with ≥ 2 years of data in both periods, ageadjusted incidence was 90% higher overall for 2005-2007 (9.1 per 1,000 population) compared with 1995-1997 (4.8) (Table). Age-adjusted incidence rates were significantly higher for 2005-2007 than for 1995-1997 in 27 of the 33 states ($\mathrm{p}<0.05$). During 2005-2007, the states with the greatest number of annual new cases were California (approximately $208,000)$, Texas $(156,000)$, and Florida $(139,000)$.
Reported by: KA Kirtland, PhD, YF Li, MPH, LS Geiss, MA, TJ Thompson, MS, Div of Diabetes Translation, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: This report is the first to provide state-specific incidence rates for diagnosed diabetes among adults and the first to describe geographic patterns in diabetes incidence. The findings indicate that the incidence of diagnosed diabetes has been particularly high in the South and the age-adjusted incidence for 33 states was 90% higher during 2005-2007 than during 1995-1997. These findings affirm previous projections that diabetes will continue to be a major public health problem (σ).
The 1995-1997 overall incidence of 4.8 per 1,000 for the 33 states is similar to a 1997 estimate of diabetes incidence (4.9 per 1,000) using National Health Interview Survey (NHIS) data (3). Although few diabetes incidence studies have been published, the state-based data in this report appear consistent with NHIS data indicating that the incidence of diabetes is increasing (3). Factors associated with an increased risk for diabetes included older age, lower educational attainment, physical inactivity, obesity, weight gain, and being categorized in a racial/ethnic minority population (3). Of these factors, obesity has been identified as a major risk factor in the increas-

FIGURE. Average, annual age-adjusted incidence rate of diagnosed diabetes* among adults aged ≥ 18 years - Behavioral Risk Factor Surveillance System, United States, 2005-2007

* Per 1,000 population.
ing incidence of diabetes (3); the growth in diabetes prevalence has been concomitant with growth in obesity prevalence (7).
The pattern of high incidence rates in the South is consistent with previously documented high prevalence of diabetes in this region. The South also has high prevalences of modifiable risk factors for type 2 diabetes ($90 \%-95 \%$ of all diabetes in the United States is type 2), including obesity (8) and physical inactivity (9). A recent study found the prevalence of obesity in 2007 was greatest in the South (27.3%) followed by the Midwest (26.5\%), Northeast (24.4\%), and West (23.1\%) (8). Obesity prevalence exceeded 30% in three southern states: Alabama, Mississippi, and Tennessee. Similar regional patterns have been found for physical inactivity, for which the South had greater prevalence (17.4%), compared with the Northeast (15.7\%), Midwest (14.1\%), and West (11.2\%) (9). Effective population-based approaches to prevent obesity and increase physical activity might help to reduce the incidence of diabetes. Efforts to prevent diabetes also should focus on persons at high risk for type 2 diabetes. In a study of persons at high risk, a $5 \%-10 \%$ reduction in body weight coupled with 30 minutes of moderate physical activity 5 days a week resulted in a 58% reduction in diabetes over a 3 -year period (5).
The findings in this report are subject to at least six limitations. First, because the diagnoses of diabetes did not distinguish between type 1 diabetes and type 2 diabetes and were self-reported by respondents, survey responses were subject to recall bias and misinterpretation. Second, BRFSS excludes certain populations, including those without landline telephones and those residing in institutions and on military bases,

[^2]TABLE. Average, annual crude and age-adjusted incidence rates of diagnosed diabetes* among adults aged ≥ 18 years, by state and U.S. Census region - Behavioral Risk Factor Surveillance System, 33 states, 1995-1997 and 2005-2007

Region/State	1995-1997					2005-2007					```% %```
	Crude rate	(95\% CI' ${ }^{\text {) }}$	Ageadjusted rate	(95\% CI)	No. of new cases $(1,000 \mathrm{~s})^{\text {s }}$	Crude rate	(95\% CI)	Ageadjusted rate	(95\% CI)	$\begin{gathered} \begin{array}{c} \text { No. } \\ \text { of new } \\ \text { cases } \\ (1,000 \mathrm{~s}) \end{array} \\ \hline \end{gathered}$	
Northeast	4.6	(3.8-5.4)	4.6	(3.8-5.4)	78	8.3	(7.5-9.1)	8.2	(7.4-9.0)	145	781
Maine	4.1	(2.3-5.7)	4.1	(2.4-5.9)	4	8.5	(6.9-10.2)	8.3	(6.6-10.0)	8	102"
New Hampshire	3.2	(1.8-4.6)	3.4	(1.9-4.9)	3	8.0	(6.4-9.6)	8.0	(6.4-9.6)	8	135 ${ }^{17}$
New Jersey	4.6	(2.9-6.1)	4.7	(3.0-6.3)	27	7.7	(6.5-8.8)	7.7	(6.6-8.9)	47	$64{ }^{11}$
Pennsylvania	4.8	(3.6-6.0)	4.7	(3.6-5.9)	42	8.9	(7.4-10.4)	8.6	(7.1-10.0)	79	83
Vermont	4.4	(2.8-6.0)	4.6	(2.9-6.2)	2	6.8	(5.6-8.0)	6.6	(5.4-7.8)	3	43^{11}
Midwest	4.2	(3.4-5.0)	4.2	(3.4-5.0)	92	7.5	(6.7-8.3)	7.4	(6.6-8.2)	174	761
Indiana	5.6	(3.4-7.6)	5.8	(3.6-8.0)	23	10.0	(8.5-11.5)	10.2	(8.6-11.7)	43	761
lowa	4.9	(3.3-6.5)	4.9	(3.3-6.5)	10	8.2	(6.8-9.6)	8.0	(6.6-9.3)	18	63^{11}
Minnesota	2.9	(2.1-3.7)	3.0	(2.1-3.9)	9	5.0	(3.6-6.3)	5.0	(3.6-6.3)	18	671
Missouri	5.4	(3.1-7.7)	5.2	(3.1-7.4)	21	8.8	(7.2-10.5)	8.8	(7.1-10.4)	36	697
Ohio	3.2	(2.0-4.4)	3.3	(2.0-4.5)	26	6.4	(4.6-8.2)	6.3	(4.6-8.1)	52	91^{17}
North Dakota	5.0	(3.1-6.9)	5.2	(3.2-7.1)	2	7.2	(5.8-8.5)	7.0	(5.7-8.3)	3	35
South Dakota	2.7	(1.3-4.1)	2.6	(1.3-4.0)	1	7.5	(6.2-8.8)	7.3	(6.1-8.6)	4	181π
South	4.3	(3.7-4.9)	4.5	(3.9-5.1)	234	10.3	(9.7-10.9)	10.5	(9.9-11.1)	642	133\%
Alabama	5.2	(3.2-7.2)	5.4	(3.3-7.5)	16	11.3	(9.4-13.2)	11.3	(9.4-13.1)	36	1097
Arkansas	4.5	(2.5-6.3)	4.6	(2.6-6.6)	8	10.4	(8.9-11.9)	10.2	(8.7-11.7)	20	122"
Florida	3.4	(2.2-4.6)	3.4	(2.2-4.6)	36	10.9	(9.5-12.3)	10.3	(9.0-11.7)	139	2037
Georgia	5.5	(3.2-7.8)	6.2	(3.5-8.8)	28	10.3	(8.5-12.1)	11.2	(9.3-13.0)	64	817
Kentucky	3.9	(2.6-5.2)	4.0	(2.7-5.3)	11	10.6	(8.9-12.2)	10.5	(8.8-12.1)	31	163"
North Carolina	5.4	(3.9-6.9)	5.7	(4.1-7.3)	29	9.8	(8.8-10.8)	10.1	(9.1-11.1)	59	771
South Carolina	5.2	(3.3-7.1)	5.4	(3.4-7.5)	13	11.4	(10.0-12.8)	11.5	(10.1-12.9)	34	113 "
Tennessee	5.1	(3.5-6.5)	5.2	(3.6-6.8)	19	11.0	(8.9-13.1)	11.0	(8.9-13.2)	46	$112^{\prime \prime}$
Texas	3.2	(2.0-4.4)	3.6	(2.2-4.9)	42	10.2	(8.2-12.2)	11.1	(9.0-13.3)	156	2081
Virginia	5.1	(3.3-6.9)	5.5	(3.6-7.5)	24	7.5	(6.1-8.9)	7.6	(6.2-9.0)	40	38
West Virginia	5.8	(3.4-8.2)	5.8	(3.5-8.2)	8	13.3	(11.2-15.4)	12.7	(10.7-14.7)	17	11971
West	5.3	(4.5-6.1)	5.7	(4.7-6.7)	189	8.1	(7.1-9.1)	8.6	(7.6-9.6)	332	511
Arizona	4.9	(2.3-7.5)	5.2	(2.3-8.0)	15	10.2	(7.6-12.8)	10.4	(7.7-13.1)	41	100\%
California	6.0	(4.5-7.5)	6.6	(5.0-8.1)	134	8.3	(6.8-9.7)	9.0	(7.4-10.6)	208	361
Colorado	3.2	(1.8-4.6)	3.6	(2.0-5.2)	9	5.8	(4.8-6.8)	6.2	(5.2-7.2)	20	72^{11}
Hawaii	4.0	(2.1-6.0)	4.2	(2.2-6.3)	3	6.1	(4.6-7.6)	5.9	(4.5-7.4)	6	40
Idaho	3.1	(2.1-4.1)	3.1	(2.1-4.2)	2	9.5	(7.9-11.2)	9.8	(8.1-11.5)	9	216
Montana	3.6	(2.0-5.2)	3.6	(2.0-5.2)	2	7.5	(6.3-8.7)	7.1	(6.0-8.3)	5	977
New Mexico	5.0	(2.2-7.8)	5.3	(2.2-8.5)	6	8.8	(7.0-10.6)	8.7	(6.8-10.6)	12	64
Oregon	4.6	(3.3-6.0)	4.7	(3.4-6.1)	11	6.9	(5.4-8.4)	6.7	(5.2-8.2)	18	43
Utah	3.7	(2.0-5.4)	4.5	(2.4-6.5)	5	6.4	(5.2-7.7)	7.8	(6.3-9.2)	11	73^{11}
Wyoming	5.0	(3.4-6.6)	5.3	(3.6-7.0)	2	6.3	(5.2-7.4)	6.1	(5.0-7.2)	2	15
All states combined	4.6	(4.2-5.0)	4.8	(4.4-5.2)	590	9.0	(8.6-9.4)	9.1	(8.7-9.5)	1,293	90

* Per 1,000 population.
${ }^{\dagger}$ Confidence interval.
§ Annual weighted number of incident cases.
${ }^{1}$ Significant difference between age-adjusted rate for 1995-1997 and 2005-2007 (p<0.05, by t-test).
and thus might not be representative of the U.S. population. Third, because undiagnosed incidence of diabetes could not be assessed, diabetes incidence might have been underestimated. Fourth, the inability to detect significant increases in incidence in certain states might have resulted from small BRFSS sample sizes or small numbers of incident cases. Fifth, low 2007 BRFSS response rates for states such as New Jersey (26.9%) and Georgia (33.9%) might indicate potential for response bias. BRFSS weighting procedures partially correct for
nonresponse.** However, the effect of low response rates remains uncertain. Finally, the effects of enhanced detection of diabetes on increased incidence could not be assessed. However, a study of diabetes prevalence trends suggested that enhanced case detection might be occurring among persons who are extremely obese, but not among those who are obese or not obese (10).

[^3]Development and delivery of interventions that promote weight loss and increased physical activity among persons at high risk for diabetes are needed to reduce diabetes incidence. Also needed are public health interventions, including environmental and policy changes (e.g., creating or enhancing parks, walking trails, and access to healthier foods) that encourage healthy lifestyles and maintenance of healthy weight to prevent obesity (8) and reduce the risk for diabetes. Continued surveillance of diabetes incidence, risk factors, and prevention efforts is important to measure progress toward reducing the incidence of diabetes.

References

1. Engelgau MM, Geiss LS, Saaddine JB, et al. The evolving diabetes burden in the United States. Ann Intern Med 2004;140:945-50.
2. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008;31:596-615.
3. Geiss LS, Pan L, Cadwell B, Gregg EW, Benjamin SM, Engelgau MM. Changes in incidence of diabetes in U.S. adults, 1997-2003. Am J Prev Med 2006;30:371-7.
4. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001;344:1343-50.
5. Knowler WC, Barrett-Conner E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention. N Engl J Med 2002;346:393-403.
6. Boyle JP, Honeycutt AA, Narayan KM, et al. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care 2001;24:1936-40.
7. Mokdad AH, Ford ES, Bowman BA, et al. Diabetes trends in the U.S.: 1990-1998. Diabetes Care 2000;23:1278-83.
8. CDC. State-specific prevalence of obesity among adults-United States, 2007. MMWR 2008;57:765-8.
9. Reis JP, Bowles HR, Ainsworth BE, Dubose KD, Smith S, Laditka JN. Nonoccupational physical activity by degree of urbanization and U.S. geographic region. Med Sci Sports Exerc 2004;36:2093-8.
10. Gregg EW, Cadwell BL, Cheng YJ, et al. Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care 2004;27:2806-12.

Update: Progress Toward Global Eradication of Dracunculiasis, January 2007-June 2008

The World Health Assembly (WHA) first adopted a resolution calling for the eradication of dracunculiasis (Guinea worm disease) in 1986, when an estimated 3.5 million cases occurred annually in 20 countries (17 in Africa and three in Asia) and 120 million persons were at risk for the disease $(1,2)$. Because of slow mobilization in countries with endemic disease, the global dracunculiasis eradication program did not meet the 1995 target date for eradicating dracunculiasis that was set by African ministers of health in 1988 and confirmed by WHA in 1991 (3). In 2004, WHA established a new target date of 2009 (4). This report updates the progress of the
global dracunculiasis eradication program since January 2007 (5,6). At the end of December 2007, dracunculiasis remained endemic only in Sudan, Ghana, Mali, Nigeria, and Niger. During 2007, a total of 9,585 cases were reported worldwide from 3,573 villages with endemic disease, including 15 cases exported from one country to another (Table 1). From 2006 to 2007 , the number of indigenous cases decreased by 61% (from 25,195 to 9,770). Of the 2,308 cases occurring during January-June 2008, 98\% were reported from Sudan, Ghana, and Mali (Table 2). Sporadic violence in areas with endemic dracunculiasis in Sudan and Mali is a major concern and poses the greatest challenge to the success of the global dracunculiasis eradication program.
Dracunculiasis can be prevented by 1) filtering drinking water through a finely woven cloth, 2) treating contaminated water with Abate (temephos) larvicide, 3) providing clean water from borehole or hand-dug wells, and 4) educating persons to avoid entering water sources when Guinea worms are emerging from their bodies, thereby preventing contamination of water sources. Containment of transmission, achieved through voluntary isolation of each patient, provision of first aid, manual extraction of the emerging worm, and applying occlusive bandages, is a complementary component to the four main interventions.* Countries enter the World Health Organization (WHO) precertification stage of eradication approximately 1 year after reporting the last indigenous case (approximately one incubation period for Dracunculus medinensis). ${ }^{\dagger}$ Nine countries where dracunculiasis was formerly endemic (Benin, Burkina Faso, Chad, Côte d'Ivoire, Ethiopia, Mauritania, Kenya, Togo, and Uganda) are in the precertification stage of eradication. WHO already has certified 180 countries and territories as dracunculiasis-free; Cambodia and 20 African countries remain to be certified.
In each country affected by dracunculiasis, a national Guinea worm eradication program receives monthly reports of dracunculiasis ${ }^{\S}$ from every village with endemic transmission.

[^4]TABLE 1. Number of reported dracunculiasis cases, by country and local intervention — worldwide, 2007

Country	No. of reported cases in 2007*		\qquad	Villages/localities reporting cases in 2007			Villages/localities and interventions ${ }^{\dagger}$					
			No. reporting one or more cases	No. reporting only cases imported into village ${ }^{\text {§ }}$	No. reporting only cases indigenous to village§	No. of villages reporting indigenous cases in 2006-2007	\% reporting monthly	\% with cloth filters in all households	\% using Abate	\% with one or more sources of drinking water	\% provided health education	
	Indigenous	Imported										
Sudan	5,815	0	50	1,998	233	1,765	3,023	70	38	11	16	93
Ghana	3,358	0	84	406	226	180	386	98	70	65	47	100
Mali	313	0	36	71	9	62	113	100	100	90	27	100
Nigeria	73	0	60	4	1	3	9	100	100	100	100	100
Niger	11	3	93	9	3	6	19	100	100	100	37	100
Togo	0	2	50	2	2	0	10	100	100	100	75	100
Côte d'lvoire	0	0	0	0	0	0	1	100	100	100	100	100
Burkina Faso	0	3	33	3	3	0	7	100	100	57	43	100
Ethiopia	0	3	100	3	3	0	5	100	100	0	0	100
Total	9,570	11	61	2,496	480	2,016	3,573	78	48	27	24	95

* Excludes four cases of dracunculiasis reported from Uganda that were imported from southern Sudan.
\dagger Interventions include distribution of filters, use of Abate (temephos) larvicide, provision of one or more sources of safe water, and provision of health education.
§ Definitions of imported and indigenous cases as they relate to villages/localities are available at http://www.cartercenter.org/health/guinea_worm/program_definition.html.

Reporting rates are calculated by dividing the number of villages with endemic dracunculiasis reporting each month by the total number of reports expected each month from all villages with endemic disease. All villages where endemic transmission transmission of dracunculiasis is stopped are kept under active surveillance and response for 3 consecutive years.

Country Reports

Sudan. The last indigenous case of dracunculiasis in northern Sudan occurred in 2001, and all subsequent reported cases have occurred in southern Sudan. The civil war in Sudan ended in 2005, and the Southern Sudan Guinea Worm Eradication Program was created in 2006. Access to areas of southern Sudan that had been inaccessible during the civil war resulted in the discovery of a large number of previously unreported cases. Reported cases increased 179% from 2005 to 2006, from 5,569 cases in 1,293 villages to 15,539 cases in 3,345 villages. In 2007, the number of reported cases decreased by 63% (to 5,815), and the reporting rate increased to 70% (from 63% in 2006). Of the 5,815 cases reported in $2007,49 \%$ were contained. In January-June 2008, the number of reported cases decreased by 50% (to 1,777), and the rate of reporting increased to 85%. The Southern Sudan Guinea Worm Eradication Program has approximately 28,000 village volunteers and health staff members working in the program.

Ghana. Ghana's Guinea worm eradication program reported 26% fewer cases in 2007 compared with 2006, with cases decreasing from 4,134 in 606 villages in 2006 to 3,358 cases in 406 villages in 2007. A surge in cases occurred during October 2006-March 2007, when municipal water supplies were disrupted in the northern region's capital city of Tamale and in the nearby town of Savelugu. During January-June 2008, the
number of reported cases decreased by 86%, compared with the same period in 2007 (Table 2).
Mali. In 2006, Mali had an unexpected outbreak in the previously dracunculiasis-free region of Kidal, after an infected person from another Malian village where dracunculiasis was endemic contaminated a water source. This outbreak was reported 2 months after it was detected. Mali's Guinea worm eradication program began interventions in August 2007 but could not gain access to the affected area during SeptemberDecember 2007 because of insecurity. As a result of this and two smaller outbreaks discovered in Ansongo District, Gao Region (when Niger notified Mali regarding cases exported from Mali to Niger), the number of cases reported in Mali decreased by only 3% from 2006 (323 cases) to 2007 (313 cases). During January-June 2008, 78 cases were reported, compared with two cases for the same period in 2007.
Nigeria. Nigeria reported 16 cases during 2006 (69% of which were contained), compared with 73 cases (60% of which were contained) in 2007, amounting to an increase of 356% (Table 2). All 73 of the cases in 2007 were from one outbreak in a village that had never experienced endemic dracunculiasis. During January-June 2008, Nigeria reported 37 cases (100% of which were contained), compared with 42 cases (40% of which were contained) reported during the same period in 2007 , amounting to a decrease of 12%. Nigeria has reported no cases since March 2008.
Niger. In 2006, a total of 108 indigenous cases were reported in Niger. In 2007, this number decreased by 90% to 11 indigenous cases. In addition, Niger reported three imported cases in 2007. Since 2007, Niger has reported one imported case, which was contained in February 2008, and no indigenous cases.
Ethiopia. Before 2008, the most recent indigenous case of dracunculiasis reported in Ethiopia had occurred in June

TABLE 2. Number of reported indigenous* dracunculiasis cases, by country - worldwide, 2007 versus 2006 and January-June 2007 versus January-June $200 \boldsymbol{8}^{\dagger}$

Country	2006	2007	\% change	JanuaryJune 2007	JanuaryJune 2008	\% change
Sudan	20,580	5,815	-72	3,546	1,777	-50
Ghana	4,134	3,558	-14	2,780	416	-85
Mali	323	313	-3	2	78	3,800
Niger	108	11	-90	4	0	-100
Togo	25	0	-100	0	0	-
Nigeria	16	73	356	42	37	-12
Côte d'Ivoire	5	0	-100	0	0	-
Burkina Faso	3	0	-100	0	0	-
Ethiopia§	1	0	-100	0	0	-
Total	25,195	9,770	-61	6,374	2,308	-64

*Excludes 22 cases exported from one country to another during 2006, 15 during 2007, and three during January-June 2008.
${ }^{\dagger}$ Case counts for 2008 are provisional.
§ The origin of infections of 37 cases of dracunculiasis allegedly imported from southern Sudan during March-June 2008 is under investigation, and these cases are excluded. One other case imported from southern Sudan into Ethiopia in March (included) is not in dispute.

2006 in Awukoy village of Gambella Region. However, during March-June 2008, 37 new indigenous cases were reported, of which 31 were contained. All but one or two of the cases were in persons who reportedly traveled to Pochalla County in southern Sudan in early 2007, where they allegedly became infected. Most of the patients were ethnic Agnuak farmers, who lived on both sides of the Ethiopia-Sudan border and crossed the border frequently. However, an investigation by the Southern Sudan Guinea Worm Eradication Program did not confirm endemic dracunculiasis in Pochalla County in 2007, and a team from WHO that visited the Gambella region in May 2008 reported that two of the patients interviewed said they did not travel to Sudan in 2007. Having reported no dracunculiasis for the past decade, Pochalla County was presumed to be free of endemic dracunculiasis and has had no formal surveillance for dracunculiasis except for questioning conducted during polio immunization days. The investigation is ongoing.
Reported by: DR Hopkins, MD, E Ruiz-Tiben, PhD, The Carter Center, Atlanta, Georgia. ML Eberhard, S Roy, Div of Parasitic Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases, CDC.
Editorial Note: Dracunculiasis is a parasitic infection caused by D. medinensis. Persons become infected by drinking water from stagnant sources (e.g., ponds, open wells, or pools) contaminated by copepods (water fleas) that contain immature forms of the parasite. After 1 year of development within the host's body, adult worms approximately 1 meter (39.4 inches) long emerge through skin lesions, usually on the lower limbs. These lesions frequently develop severe secondary bacterial infections. No effective antiparasitic drug or vaccine for dracunculiasis exists, and infected persons do not become immune to the parasite. The emergent Guinea worm is removed manually by rolling it on a stick or roll of gauze a few centimeters each day. Disabilities caused by dracunculiasis during the emergence of the worm are related to the invasion of bacteria that invade
the skin lesion and aggravate the pain, swelling, and cellulitis along the worm tract $(7,8)$.
The global campaign to eradicate dracunculiasis now has the support of all countries where the disease remains endemic, in addition to a large coalition of agencies, foundations, governments, and nongovernmental organizations. The major partners, apart from the ministries of health of the endemic countries, are the Carter Center, CDC, UNICEF, and WHO.
At the end of December 2007, dracunculiasis remained endemic only in Sudan, Ghana, Mali, Nigeria, and Niger. Niger and Nigeria might have interrupted all transmission of dracunculiasis, although that cannot be known until at least one full incubation period for D. mednienesis has elapsed (i.e., late 2008 for Niger and early 2009 for Nigeria). In Mali, sporadic violence in the newly endemic area is the main residual concern. After several years of delay, Ghana also now appears to be well under way toward stopping transmission. Despite its recent substantial progress, southern Sudan likely will harbor the last cases of dracunculiasis in the world, given the large number of cases still occurring, the sporadic insecurity that still occurs in some areas, and the uncertainty about future political developments.
The success of the 15 countries that have already stopped transmission of dracunculiasis has depended on adequate coverage and quality of surveillance, careful analysis of and rapid response to surveillance data, active supervision, effectiveness of implementation, and adequate political, financial, and technical assistance from national governments and partner organizations. Uganda's Guinea worm eradication program exemplifies this success (9). Eradication of dracunculiasis will mark the first worldwide elimination of a parasitic disease and the first time a disease will have been eradicated without benefit of a vaccine. Establishment of adequate surveillance for dracunculiasis in countries and areas that are dracunculiasis-
free or that appear to have recently interrupted transmission is a high priority for the countries and for WHO, which is responsible for eventual certification of eradication.

References

1. Watts SJ. Dracunculiasis in Africa: its geographical extent, incidence, and at-risk population. Am J Trop Med Hyg 1987;37:119-25
2. World Health Assembly. Elimination of dracunculiasis: resolution of the 39th World Health Assembly. Geneva, Switzerland: World Health Organization; 1986. Resolution no. 39.21.
3. Ruiz-Tiben E, Hopkins DR. Dracunculiasis (Guinea worm disease) eradication. Adv Parasitol 2006;61:275-309.
4. World Health Assembly. Eradication of dracunculiasis: resolution of the 57th World Health Assembly. Geneva, Switzerland: World Health Organization; 2004. Resolution no. WHA 57.9. Available at http://www. who.int/gb/ebwha/pdf_files/wha57/a57_r9-en.pdf.
5. World Health Organization. Dracunculiasis eradication: global surveillance summary, 2007. Wkly Epidemiol Rec 2008;83:159-67.
6. CDC. Progress toward global eradication of dracunculiasis, January 2005-May 2007. MMWR 2007;56:813-7.
7. Imtiaz R, Hopkins DR, Ruiz-Tiben E. Permanent disability from dracunculiasis. Lancet 1990;336:630.
8. Ruiz-Tiben E, Hopkins DR. In: Guerrant RL, Walker DH, Weller PF, eds. Tropical infectious diseases: principles, pathogens, and practice. 2nd ed. New York, NY: Elsevier; 2006:1204-7.
9. Rwakimari JB, Hopkins DR, Ruiz-Tiben E. Uganda's successful Guinea Worm Eradication Program. Am J Trop Med Hyg 2006;75:3-6.

Progress Toward Elimination of Rubella and Congenital Rubella Syndrome - the Americas, 2003-2008

In 2003, the Pan American Health Organization (PAHO) adopted a resolution calling for rubella and congenital rubella syndrome (CRS) elimination in the Americas by the year 2010 (1). Elimination was defined as the interruption of endemic rubella virus transmission in all countries of North America, Central America, South America, and the Caribbean for more than 12 months and no occurrence of CRS cases attributed to endemic transmission (2). To accomplish this goal, PAHO developed a rubella and CRS elimination strategy (3) to 1) introduce rubella-containing vaccine (RCV) into routine vaccination programs of all countries for children aged 12 months and reach $\geq 95 \%$ coverage in all municipalities, 2) conduct a one-time mass campaign among adolescents and adults and periodic follow-up campaigns among children aged <5 years (4), and 3) integrate rubella surveillance with measles surveillance and initiate CRS surveillance. During 1998-2006, confirmed rubella cases decreased 98% (from 135,947 to 2,998) in the Americas. However, in 2007, rubella outbreaks with a total of 13,014 cases occurred in three countries (Argentina, Brazil, and Chile), primarily in males not included in previous vaccination campaigns. This report summarizes overall progress
toward reaching the 2010 goal of eliminating rubella and CRS. With completion of campaigns in Argentina, Brazil, and Haiti, all countries will have implemented the recommended PAHO strategy by the end of 2008, with the expectation of reaching the 2010 rubella and CRS elimination goal.

Routine Vaccination

All 38 countries and territories in the Americas,* with the exception of Haiti, have introduced measles-mumps-rubella vaccine (MMR) in their routine immunization schedules. Beginning in 2009, Haiti will introduce measles-rubella (MR) vaccine in its routine immunization program, after completion of a one-time MR mass vaccination campaign.

In the Americas, routine MMR vaccination coverage is calculated by countries in one of three ways: based on the number of doses administered (34 countries), nominal registries (Mexico and Uruguay), and coverage surveys (Canada and the United States). Reported regional routine first dose MMR (MMR1) coverage at age 12 months was $93 \%-94 \%$ during 2003-2007 (Figure). In 2007, MMR1 coverage of $\geq 95 \%$ was reported in 19 (51%) countries, $90 \%-94 \%$ in seven (19\%) countries, $80 \%-89 \%$ in seven (19\%) countries, and $\angle 80 \%$ in four (11%) countries. ${ }^{\dagger}$ In 2007, of the 20 countries and territories reporting administration of a second routine MMR dose (MMR2), reported coverage was $\geq 95 \%$ in three (15%) countries, $90 \%-94 \%$ in three (15%) countries, $80 \%-89 \%$ in eight (40%) countries, and $<80 \%$ in six (30%) countries. In 2009, 10 additional countries ${ }^{\S}$ will begin monitoring and reporting MMR2 dose coverage. 9

Supplementary Immunization Activities

As part of the PAHO rubella and CRS elimination strategy, two different types of supplementary immunization activities (SIAs) are recommended: one-time SIAs targeting

[^5]FIGURE. Number of confirmed rubella cases and percentage coverage with first dose of measles-containing vaccine - the Americas, 1996-2008*

* Includes rubella cases reported to Pan American Health Organization as of September 20, 2008.
\dagger Increase in cases in 2007, mainly attributed to outbreaks in Argentina, Brazil, and Chile.
all adolescents and adults, and periodic follow-up SIAs usually targeting children aged 1-4 years. One-time SIAs targeting all adolescents and adults are intended to quickly interrupt rubella virus transmission and prevent future CRS cases (5). Periodic follow-up campaigns provide a second opportunity to vaccinate children who were never vaccinated or who failed to develop an immune response.
During 1998-2008, approximately 250 million adolescents and adults in 32 countries and territories were vaccinated against rubella in SIAs.** Three countries initially only vaccinated females during SIAs: Chile vaccinated females aged 10-29 years in 1999, Brazil vaccinated females aged 12-39 years during 2001-2002, and Argentina vaccinated females aged 18-39 years in 2006. After those SIAs, transmission and outbreaks of rubella mainly occurred among adolescent and adult males in the three countries. Subsequent SIAs were conducted during 2007 and 2008 in Chile (1.3 million males aged 19-29 years in 2007), Brazil (70 million males and females aged 20-39 years and 12-39 years in five selected states in 2008), and Argentina (6.5 million males aged 16-39 years in 2008). Aruba and Netherlands Antilles, Canada, the French departments (French Guiana, Guadeloupe, and Martinique), Panama, the United States, and Uruguay introduced RCV in the routine childhood schedule >20 years ago, thus protecting large cohorts of the adult population. As a result, these countries decided not to implement adolescent and adult SIAs. All Latin American and Caribbean countries that have

[^6]introduced RCV since 1995 have implemented at least one follow-up campaign (Table 1).

Surveillance Activities

Case-based measles and rubella surveillance is carried out in all countries of the Americas and reported weekly to the regional level. ${ }^{\dagger \dagger}$ All public and private health-care providers are required to report suspected measles and rubella cases, however reporting is incomplete, particularly in the private sector. Since 1996, serum specimens from patients with suspected measles testing negative for measles immunoglobulin $\mathrm{M}(\mathrm{IgM})$ antibody have been tested for rubella-specific IgM antibody. In 1999, regional rubella surveillance was integrated with existing case-based measles surveillance in the PAHO regional measles and rubella laboratory network of 21 national and 124 subnational laboratories. Within the integrated measles and rubella surveillance system, measles or rubella cases are counted as suspected when a health-care worker suspects that a patient has measles or rubella infection. Rubella cases are counted as confirmed when a patient has laboratory-confirmed rubella (IgM positive) or an infection that meets the clinical case definition and is linked epidemiologically to a laboratory-confirmed case. A suspected CRS case is defined in any infant whose mother had laboratory-confirmed rubella infection during pregnancy or in any infant who has congenital anomalies compatible with CRS. A confirmed CRS case is defined as infection in a child with compatible birth defects and documented laboratory evidence of rubella infection during the first year of life (6).
During 1998-2006, confirmed rubella cases decreased 98%, from 135,947 to 2,998 (Figure). A shift in distribution and increase in cases in 2007 resulted from outbreaks, particularly among males, in Argentina (96 cases), Brazil (8,683 cases), ${ }^{\text {ss }}$ and Chile (4,235 cases), countries that initially vaccinated only females in rubella SIAs (Table 2). During January 1September 20, 2008, a total of 2,039 confirmed rubella cases were reported in the PAHO region, of which Argentina, Brazil, and Chile accounted for 98%. In response to these outbreaks, countries intensified surveillance activities and vaccination interventions by conducting SIAs among adolescents and adults. Countries that have completed SIAs for all adolescents and adults have not reported any endemic rubella cases (Table 1).
In 2007, 975 suspected CRS cases were reported in the 34 countries with CRS surveillance; four countries (Brazil, Chile, Colombia, and Peru) accounted for 947 (97%) of these cases. Nineteen cases were confirmed by detection of rubella IgM

[^7]TABLE 1. Supplementary immunization activities (SIAs) with measles- and rubella-containing vaccines - the Americas,* 1995-2008

	First			Second			Third			Fourth		
Country	Year	Age (yrs)	\% \dagger	Year	Age (yrs)	\% ${ }^{+}$	Year	Age (yrs)	\% ${ }^{+}$	Year	Age (yrs)	\% \dagger
Argentina	2002	1-5	87	2005	1-4	78	2006	15-39 (females only)	98	2008	$\begin{gathered} 16-39 \\ \text { (males only) } \end{gathered}$	Ongoing
Bolivia	2003	1-4	95	2006	15-39	98	2007	2-15	96			
Brazil	2000	1-4	99	$\begin{gathered} 2001- \\ 2002 \end{gathered}$	$12-29$ (females only)	96	2004	1-4	93	2008	20-39	90§
Caribbean ${ }^{\square}$	$\begin{gathered} 1995- \\ 1997 \end{gathered}$	$1-5^{* *}$	92	$\begin{gathered} 2000- \\ 2001 \end{gathered}$	1-4	90	$\begin{gathered} 1998- \\ 2001 \end{gathered}$	20-39**	84			
Chile	1999	$10-29$ (females only)	$98^{\dagger t}$	2005	1-4	93	2007	$\begin{gathered} \text { 19-29 } \\ \text { (males only) } \end{gathered}$	93			
Colombia	2002	1-4	95	2005	14-39	99	2006	1-5	63			
Costa Rica	1997	1-4	87	2001	15-39	98	2002	1-5	89			
Cuba	2002	4-9	88	2007	12-24	97						
Dominican Republic	2004	1-4	96	2006	7-39	99						
Ecuador	2002	0.5-14	99	2004	16-39	98	2008	1-6	99			
El Salvador	2001	1-4	98	2004	15-39	98	2007	1-6	98	2008	12-18	98
Guatemala	2002	1-5	94	2007	9-39	99	2008	1-6	96§			
Haiti	2007	1-19	$95 §$									
Honduras	2000	2-4	99	2002	5-39	98	2004	1-4	94	2008	1-4	97
Mexico	2002	1-4	98	2006	1-4	75	2008	19-29	99			
Nicaragua	2000	2-4	99	2004	1-4	99	2005	6-39	99			
Panama	1996	1-4	94	2003	1-4	98	2008	1-4	94			
Paraguay	1998	1-4	99	2003	1-4	93	2005	5-39	99			
Peru	2001	1-4	97	2006	2-4	99	2006	5-39	99			
Uruguay	1998	0.5-14	95	2003	1-4	95						
Venezuela	2002	1-4	99	2005	12-17	86	2006	1-4	99	2007	18-39	99

SOURCE: Country reports to Pan American Health Organization.

* Includes 20 Latin American countries and 13 Caribbean countries (Antigua and Barbuda, Bahamas, Barbados, Belize, Dominica, Grenada, Guyana, Jamaica, St. Kitts and Nevis, St. Vincent and the Grenadines, St. Lucia, Suriname, and Trinidad and Tobago) plus United Kingdom territories that report to the Caribbean Epidemiology Centre. Aruba and Netherlands Antilles, French departments (French Guiana, Guadeloupe, and Martinique), Canada, and the United States did not conduct measles and rubella SIAs during this period.
\dagger Percentage of target population vaccinated after SIA.
§ Preliminary results.
Il 13 Caribbean countries and four United Kingdom territories that report to the Caribbean Epidemiology Centre.
** Most frequent age group selected.
†† Rubella-containing vaccine only.
antibody, 17 from Brazil and two from Peru. During January 1September 20, 2008, confirmed CRS cases were reported in Argentina (one), Brazil (three), and Chile (two).

During 2003-2007, wild-type rubella viruses of genotypes 1 C and 2 B were endemic in the Americas. Viruses of genotypes $1 \mathrm{E}, 1 \mathrm{G}, 1 \mathrm{j}$, and 2B have been linked to imported cases.
PAHO recommends the use of performance indicators to measure measles and rubella surveillance quality. The current standardized surveillance indicators and targets recommended in countries of the Americas to monitor progress toward rubella elimination include: 1) weekly notification by 80% of reporting units (i.e., health clinics, usually at least one for each municipality), 2) $\geq 80 \%$ of suspected measles/rubella cases investigated adequately, ${ }^{99} 3$) two or more suspected

[^8]cases of measles or rubella*** per 100,000 persons detected and reported (to monitor the sensitivity of the surveillance) ${ }^{\dagger \dagger \dagger}$ and 4$) \geq 80 \%$ of suspected measles/rubella cases with serologic testing. In 2007, among 34 reporting countries and territories in the region, these respective targets were met by $88 \%, 72 \%$, 71%, and 85% of countries. Aruba and Netherlands Antilles, Canada, the French departments, and the United States do not report indicator data regularly.
Beginning in 2009, two additional indicators and targets will be monitored by countries and PAHO: 1) $\geq 80 \%$ of confirmed cases are accompanied by follow-up of contacts for 30 days (to monitor occurrence of secondary cases) and 2) $\geq 80 \%$ of outbreaks have adequate specimens collected for virus detection and isolation.

[^9]TABLE 2. Number of confirmed rubella cases, by country the Americas,* 2006-2008

Country	Year		
	2006	2007	$2008{ }^{\dagger}$
Argentina	2998	961	630
Bermuda	0	0	1**
Bolivia	2	0	0
Brazil	1,646	8,683 ${ }^{17}$	1,351
Canada	7**	1**	0
Chile	0	4,235	15
Colombia	6	2	0
Dominican Republic	21	0	0
El Salvador	2	0	0
Guatemala	11	0	0
Haiti	11	0	0
Mexico	74	102	21
Peru	727	0	0
United States	4**	12**	11**
Venezuela	188	62	10
Total	2,998	13,193	2,039

SOURCE: Country reports to Pan American Health Organization.

* Limited to countries in which cases were confirmed and reported.
† Preliminary data as of September 20, 2008.
§ Clinically confirmed cases.
ๆl Provisional data.
** Imported or related to an importation.
Reported by: C Castillo-Solórzano, MD, C Marsigli, MPH, P Bravo Alcántara, MPH, JK Andrus, MD, AMB Filippis, PhD, MC Danovaro-Holliday, MD, C Ruiz Matus, MD, Comprehensive Family Immunization Project, Pan American Health Organization, Washington, DC. Ministries of health or public health authorities in the countries of the Regions of the Americas. S Reef, MD, SL Cochi, MD, Global Immunization Div, National Center for Immunization and Respiratory Diseases, $C D C$.
Editorial Note: In response to ongoing rubella circulation and the potential for major epidemics, PAHO developed a comprehensive strategy in 2004 to eliminate rubella and CRS from the Americas by 2010. Countries have demonstrated progress toward the rubella and CRS elimination goal; however, outbreaks have occurred, primarily among males, in countries that only vaccinated females during mass campaigns. By implementing the comprehensive strategy and including males in SIAs, countries are able to limit or prevent future outbreaks. By the end of 2008, all countries and territories of the Americas will have implemented the PAHO-recommended vaccination strategies.

In 2005, the United States was the first country in the Americas to declare it had eliminated endemic rubella virus transmission (7). In accordance with the PAHO biennial work plan, 20 additional countries are expected to begin the process of verifying interruption of rubella virus transmission in 2009. To prepare for verification of elimination of rubella and CRS in the Americas, PAHO is developing a strategic plan to guide countries on how to document elimination. In addition, in 2007, the 27th Pan American Sanitary Conference approved a resolution that defined the final steps for reaching
the rubella elimination goal by 2010, including formation of national commissions to compile and analyze data and an international committee to document progress toward interrupting transmission (8).
As the final stage of rubella elimination approaches, several challenges remain, including the continued risk for rubella importations and limited collection of specimens for virus detection and isolation. To confront the challenges, PAHO has been working with countries to 1) maintain high population immunity through high routine vaccination coverage and completion of high-quality SIAs; 2) maintain highquality integrated measles-rubella surveillance and CRS surveillance, including distributing practical field guides, monitoring confirmed CRS cases for virus excretion with at least two consecutive negative specimens, and improving the participation of clinicians in the private sector in surveillance activities; 3) strengthen the WHO regional measles and rubella laboratory network in the Americas, including emphasis on obtaining specimens for genotyping; and 4) increase training opportunities for health workers and interdisciplinary teams of epidemiologists, virologists, and clinicians.

References

1. Pan American Health Organization. Resolution CD44.R1. Sustaining immunization programs-elimination of rubella and congenital rubella syndrome (CRS). 44th Directing Council; 55th Session of the Regional Committee of the World Health Organization. Washington, DC: Pan American Health Organiztion; 2003.
2. Pan American Health Organization. 16th meeting of the PAHO Technical Advisory Group on Vaccine Preventable Diseases. EPI Newsletter 2004;26:1-7.
3. Pan American Health Organization. Rubella and congenital rubella syndrome elimination strategy: contributing to primary health care renewal. Immunization Newsletter 2005;27(4):2-3.
4. De Quadros CA, Andrus JK, Danovaro-Holliday MC, CastilloSolórzano C. Feasibility of global measles eradication after interruption of transmission in the Americas. Expert Rev Vaccines 2008;7:355-62.
5. Castillo-Solórzano C, de Quadros CA. Accelerated rubella control and the prevention of congenital rubella syndrome [Spanish]. Pan Am J Public Health 2002;11:273-6.
6. Castillo-Solórzano C, Carrasco P, Tambini G, Reef S, Brana M, de Quadros CA. New horizons in the control of rubella and prevention of congenital rubella syndrome in the Americas. J Infect Dis 2003;187(Suppl 1):S146-52.
7. CDC. Achievements in public health: elimination of rubella and congenital rubella syndrome-United States, 1969-2004. MMWR 2005;54:279-82.
8. Pan American Health Organization. Resolution CSP27.R2. Elimination of rubella and congenital rubella syndrome in the Americas. 27th Pan American Sanitary Conference; 59th Session of the Regional Committee of the World Health Organization. Washington, DC: Pan American Health Organiztion; 2007.
9. Andrus JK, Dietz V, FitzsimmonsJW, Castillo-Solórzano C. Accelerating policy, deployment, and access to new and underutilized vaccines in developing countries. Harv Health Policy Rev 2006;7:91-101.
10. Castillo-Solórzano C, Andrus JK. Rubella elimination and improving health care for women. Emerg Infect Dis 2004;10:2017-21.

Revised Product Labels for Pediatric Over-the-Counter Cough and Cold Medicines

October 7, 2008, the Consumer Healthcare Products Association announced that the leading manufacturers of pediatric over-the-counter cough and cold medicines would voluntarily modify the labels on these products to state that they should not be used in children aged <4 years.*
Previous product labels stated that these medicines should not be used in children aged <2 years. Existing products with these labels will not be removed immediately from store shelves but are expected to be replaced eventually with newly labeled products. Health-care providers should be aware of the new labels and should alert parents and caregivers to this change.

Serious injuries and deaths have been reported among infants and children who received over-the-counter cough and cold medicines, but most adverse events resulted from overdoses or unsupervised ingestions (1-3). To promote child safety, the Food and Drug Administration and CDC have developed materials to educate parents, health-care providers, and consumers about how and when these products can be used safely. Additional information is available at http://www.fda. gov/bbs/topics/news/2008/new01899.html.

References

1. Food and Drug Administration. Cold, cough, allergy, bronchodilator, antiasthmatic drug products for over-the-counter human use. Memorandum from the Nonprescription Drug Advisory Committee meeting, October 18-19, 2007. Available at http://www.fda.gov/ohrms/ dockets/ac/07/briefing/2007-4323b1-02-fda.pdf.
2. CDC. Infant deaths associated with cough and cold medications-two states, 2005. MMWR 2007;56:1-4.
3. Schaefer MK, Shehab N, Cohen AL, Budnitz DS. Adverse events from cough and cold medications in children. Pediatrics 2008;121:783-7.
[^10]
Notice to Readers

Application Deadline for The CDC Experience Applied Epidemiology Fellowship - December 5, 2008

The CDC Experience is a 1 -year fellowship in applied epidemiology that is designed for rising third- and fourth-year medical students and aims to develop a pool of physicians with a population health perspective. Eight competitively selected fellows spend 10-12 months at CDC in Atlanta, Georgia, where they conduct epidemiologic analyses in various areas of public health. The fellowship environment provides multiple opportunities to enhance skills in research and analytic thinking, written and oral scientific presentations, and preventive medicine and public health practices.
Previous experience in public health is not required to apply for this program. Through this training, fellows will acquire practical tools useful for approaching population-based health problems, whether in an entire community or among their own community of patients. Graduates will have an understanding of the role of epidemiology in medicine and health and will be able to apply their knowledge and skills to enhance their clinical acumen and help improve the quality of the U.S. health-care system.
Information on applying for The CDC Experience is available at http://www.cdcfoundation.org/thecdcexperience. Applications for the fellowship class of 2009-10 must be postmarked by December 5,2008 . Questions can be addressed to Catherine Piper, program coordinator, at e-mail, cpiper@cdc.gov.

Errata: Vol. 57, No. 42

In Table II, "Provisional cases of selected notifiable diseases, United States, weeks ending October 18, 2008, and October 20, 2007 (42nd week)," errors occurred in the United States totals for certain diseases. The cumulative 2008 totals for these diseases should read as follows: coccidiodomycosis, 5,113; giardiasis, 13,368; rabies, animal, 3,838; Rocky Mountain spotted fever, 1,751; Streptococcus pneumoniae, invasive disease, nondrug resistant, age <5 years, 1,239; Streptococcus pneumoniae, invasive disease, drug resistant, all ages, 2,287; Streptococcus pneumoniae, invasive disease, drug resistant, age <5 years, 334. In addition, the current week total for Streptococcus pneumoniae, invasive disease, nondrug resistant, age <5 years should read 11.

In the report, "Update: Creutzfeldt-Jakob Disease Associated with Cadaveric Dura Mater Grafts - Japan, 1978-2008," errors occurred in Figure 1 on page 1152. The corrected figure follows.

FIGURE. Number of cases of Creutzfeldt-Jakob disease (CJD) ($\mathrm{N}=132$) associated with dura mater grafts,* by year of procedure and illness onset - Japan, 1978-2006 ${ }^{\dagger}$

* A case of CJD associated with a dura mater graft was defined as physiciandiagnosed CJD in the recipient of a cadaveric dura mater graft whose disease was reviewed and accepted as CJD by a surveillance panel of neurologists.
${ }^{\dagger}$ As of February 2008, four additional cases were under investigation.

QuickStats

FROM THE NATIONAL CENTER FOR HEALTH STATISTICS

Percentage of Children Aged 5-17 Years Who Missed No Days of School Because of Illness or Injury During the Preceding 12 Months,* by Race ${ }^{\dagger}$ National Health Interview Survey, United States, 2007§

* In response to the question, "During the past 12 months about how many days did (child's name) miss school because of illness or injury?"
\dagger Limited to persons who indicated only a single racial group.
§ Estimates are based on household interviews with a sample of the civilian, noninstitutionalized U.S. population and are derived from the National Health Interview Survey sample child component. Estimates were age adjusted using the projected 2000 U.S. population as the standard population and using age groups 0-4 years, $5-11$ years, and 12-17 years.
§ 95% confidence interval.
** Includes children of single racial groups not otherwise listed because of small sample size.

In 2007, an estimated three out of 10 U.S. school children (aged 5-17 years) did not miss a day of school because of illness or injury during the preceding 12 months. Asian children were less likely to miss school days because of illness or injury than black children, white children, or American Indian/Alaska Native children. Approximately 4% of children missed 11 or more days of school.

SOURCE: Bloom B, Cohen R, Freeman G. Summary health statistics for U.S. children: National Health Interview Survey, 2007, Vital and Health Statistics Series 10, No. 239. Hyattsville, MD: National Center for Health Statistics; 2008. Available at http://www.cdc.gov/nchs/data/series/sr_10/sr10_239.pdf.

TABLE 1. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending October 25, 2008 (43rd week)*

| | | | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | | | | | | |

See Table 1 footnotes on next page.

TABLE 1. (Continued) Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) United States, week ending October 25, 2008 (43rd week)*
-: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2008 are provisional, whereas data for 2003, 2004, 2005, 2006, and 2007 are finalized.
\dagger Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 and 2008 for the domestic arboviral diseases and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
${ }^{\pi}$ Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** The names of the reporting categories changed in 2008 as a result of revisions to the case definitions. Cases reported prior to 2008 were reported in the categories: Ehrlichiosis, human monocytic (analogous to E. chaffeensis); Ehrlichiosis, human granulocytic (analogous to Anaplasma phagocytophilum), and Ehrlichiosis, unspecified, or other agent (which included cases unable to be clearly placed in other categories, as well as possible cases of E. ewingii).
${ }^{\dagger \dagger}$ Data for H. influenzae (all ages, all serotypes) are available in Table II.
§§ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
Ifl Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. Eighty-seven cases occurring during the 2007-08 influenza season have been reported.
*** No measles cases were reported for the current week.
${ }^{\dagger+\dagger}$ Data for meningococcal disease (all serogroups) are available in Table II.
§§ In 2008, Q fever acute and chronic reporting categories were recognized as a result of revisions to the Q fever case definition. Prior to that time, case counts were not differentiated with respect to acute and chronic Q fever cases.
ITा7 No rubella cases were reported for the current week.
**** Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals October 25, 2008, with historical data

* No measles cases were reported for the current 4-week period yielding a ratio for week 43 of zero (0).
${ }^{\dagger}$ Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

Notifiable Disease Data Team and 122 Cities Mortality Data Team
 Patsy A. Hall

Deborah A. Adams Rosaline Dhara
Willie J. Anderson Michael S. Wodajo
Lenee Blanton Pearl C. Sharp

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Chlamydia ${ }^{\text {¢ }}$					Coccidiodomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 week		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	13,964	21,175	28,892	885,773	905,462	89	122	341	5,234	6,167	70	102	424	5,588	9,868
New England	825	698	1,516	30,127	28,996	-	0	1	1	2	2	5	37	275	295
Connecticut	326	210	1,093	9,370	8,641	N	0	0	N	N	-	0	35	35	42
Maine§	54	49	72	2,122	2,123	N	0	0	N	N	1	1	6	40	44
Massachusetts	288	324	660	14,073	13,055	N	0	0	N	N	-	2	9	91	116
New Hampshire	31	40	65	1,750	1,723	-	0	1	1	2	-	1	4	49	45
Rhode Island§	104	54	90	2,195	2,572	-	0	0	-	-	-	0	2	7	9
Vermont§	22	15	52	617	882	N	0	0	N	N	1	1	7	53	39
Mid. Atlantic	1,867	2,749	4,921	119,593	118,377	-	0	0	-	-	8	13	34	617	1,253
New Jersey	-	413	520	15,469	17,865	N	0	0	N	N	-	1	2	25	61
New York (Upstate)	562	557	2,177	22,314	22,072	N	0	0	N	N	7	5	18	236	213
New York City	727	994	3,001	47,127	42,903	N	0	0	N	N	-	2	6	87	89
Pennsylvania	578	823	1,021	34,683	35,537	N	0	0	N	N	1	5	15	269	890
E.N. Central	1,105	3,502	4,373	143,296	147,710	-	1	3	38	30	20	26	121	1,668	1,653
Illinois	2	1,058	1,711	40,612	43,683	N	0	0	N	N	-	2	6	73	179
Indiana	227	377	656	16,644	17,390	N	0	0	N	N	4	3	41	166	83
Michigan	591	827	1,226	36,799	30,827	-	0	3	29	21	1	5	12	222	162
Ohio	5	868	1,261	35,107	39,400	-	0	1	9	9	11	6	59	610	506
Wisconsin	280	338	612	14,134	16,410	N	0	0	N	N	4	8	46	597	723
W.N. Central	881	1,237	1,701	53,590	52,468	-	0	77	1	7	8	16	71	822	1,426
lowa	179	166	240	7,397	7,277	N	0	0	N	N	1	4	30	250	579
Kansas	215	176	529	7,730	6,736	N	0	0	N	N	1	1	8	72	130
Minnesota	-	263	373	10,976	11,263	-	0	77	-	-	1	5	21	190	228
Missouri	423	473	566	20,185	19,340	-	0	1	1	7	2	3	13	141	155
Nebraska§	-	92	252	3,544	4,289	N	0	0	N	N	3	2	8	94	153
North Dakota	-	33	65	1,357	1,428	N	0	0	N	N	-	0	51	7	21
South Dakota	64	54	85	2,401	2,135	N	0	0	N	N	-	1	9	68	160
S. Atlantic	3,056	3,725	7,609	155,824	178,226	-	0	1	4	4	14	18	44	772	1,060
Delaware	125	67	150	3,061	2,777	-	0	1	1	-	-	0	2	10	20
District of Columbia	173	132	216	5,804	4,932	-	0	1	-	1	1	0	2	8	3
Florida	1,204	1,347	1,568	57,510	47,436	N	0	0	N	N	4	8	35	389	557
Georgia	10	348	1,338	14,588	35,454	N	0	0	N	N	2	4	14	175	205
Maryland§	423	456	667	18,790	18,384	-	0	1	3	3	2	0	4	26	32
North Carolina	-	19	4,783	5,901	23,380	N	0	0	N	N	5	0	16	59	101
South Carolina§	593	463	3,047	22,124	22,492	N	0	0	N	N	-	1	15	35	63
Virginia§	522	588	1,059	25,572	20,723	N	0	0	N	N	-	1	4	54	69
West Virginia	6	58	96	2,474	2,648	N	0	0	N	N	-	0	3	16	10
E.S. Central	1,516	1,565	2,394	67,198	68,759	-	0	0	N	-	3	3	17	133	569
Alabama§		465	589	17,172	21,033	N	0	0	N	N	-	1	9	55	106
Kentucky	294	234	370	9,964	6,769	N	0	0	N	N	-	0	4	28	243
Mississippi	607	369	1,048	16,978	18,134	N	0	0	N	N	-	0	3	16	94
Tennessee§	615	528	791	23,084	22,823	N	0	0	N	N	3	1	6	34	126
W.S. Central	2,045	2,729	4,426	116,953	102,897	-	0	1	3	2	1	6	130	506	375
Arkansas§	324	272	455	11,865	8,152	N	0	0	N	N	-	0	6	34	53
Louisiana	293	367	774	16,091	16,420	-	0	1	3	2	-	1	5	46	53
Oklahoma	-	201	392	7,668	10,874	N	0	0	N	N	1	1	16	116	107
Texas§	1,428	1,887	3,923	81,329	67,451	N	0	0	N	N	-	2	117	310	162
Mountain	541	1,210	1,811	47,469	60,871	54	89	170	3,523	3,838	5	9	45	456	2,774
Arizona	315	438	650	16,448	20,605	54	87	168	3,452	3,711	1	1	9	81	44
Colorado	68	196	488	7,747	14,297	N	0	0	N	N	3	1	12	93	196
Idaho§	20	61	314	2,870	3,025	N	0	0	N	N	1	1	26	51	404
Montana§	-	58	363	2,414	2,159	N	0	0	N	N	-	1	6	38	58
Nevada§	-	175	416	6,668	7,987	-	1	7	41	55	-	0	2	12	34
New Mexico§	-	136	561	5,293	7,431	-	0	3	24	19	-	2	23	137	111
Utah	120	119	253	4,803	4,367	-	0	5	4	50	-	0	19	31	1,876
Wyoming§	18	29	58	1,226	1,000	-	0	1	2	3	-	0	4	13	51
Pacific	2,128	3,699	4,676	151,723	147,158	35	31	217	1,664	2,284	9	8	29	339	463
Alaska	86	91	129	3,671	4,039	N	0	0	N	N	1	0	1	4	3
California	1,599	2,889	4,115	119,408	114,877	35	31	217	1,664	2,284	3	5	14	203	244
Hawaii	-	105	152	4,222	4,700	N	0	0	N	N	-	0	1	2	6
Oregon§	184	188	402	8,180	7,940	N	0	0	N	N	-	1	4	46	118
Washington	259	378	634	16,242	15,602	N	0	0	N	N	5	2	16	84	92
American Samoa	-	0	20	73	95	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-			-	-
Guam	-	5	24	115	710	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	117	612	5,622	6,225	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	12	23	502	146	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.
${ }^{\dagger}$ Chlamydia refers to genital infections caused by Chlamydia trachomatis.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	232	308	1,158	13,751	15,117	3,649	5,991	8,913	246,648	291,969	24	47	173	2,080	1,996
New England	9	24	49	1,064	1,251	100	103	227	4,333	4,574	-	3	12	125	154
Connecticut		6	11	256	312	75	51	199	2,160	1,744	-	0	9	35	41
Maine§	4	3	12	140	163	2	2	6	80	102	-	0	3	10	12
Massachusetts	-	9	17	343	530	18	38	127	1,718	2,207	-	1	5	57	75
New Hampshire	-	2	11	124	26	1	2	6	82	124	-	0	1	9	16
Rhode Island§	-	1	5	64	72	4	6	13	269	346	-	0	1	6	8
Vermont§	5	2	13	137	148	-	0	5	24	51	-	0	3	8	2
Mid. Atlantic	69	60	131	2,610	2,615	403	626	1,028	26,871	30,337	7	10	31	407	381
New Jersey		8	14	300	336	-	107	168	3,971	5,035	-	1	7	61	58
New York (Upstate)	51	23	111	970	952	115	124	545	4,986	5,595	4	3	22	126	106
New York City	-	16	27	652	714	138	179	516	8,708	8,960	-	1	6	67	85
Pennsylvania	18	15	45	688	613	150	222	394	9,206	10,747	3	4	8	153	132
E.N. Central	34	48	76	1,999	2,418	316	1,247	1,644	51,277	60,209	3	8	28	317	302
Illinois	-	10	20	434	768	4	370	589	14,136	16,426	-	2	7	100	96
Indiana	N	0	0	N	N	69	150	284	6,746	7,475	2	1	20	64	49
Michigan	3	11	21	460	518	177	329	657	14,001	12,800	-	0	3	16	23
Ohio	28	16	31	732	676	2	307	531	12,586	17,820	1	2	6	113	84
Wisconsin	3	9	23	373	456	64	100	183	3,808	5,688	-	1	2	24	50
W.N. Central	13	29	621	1,662	1,100	232	318	425	13,571	16,354	2	3	24	161	113
lowa	1	6	17	269	260	26	29	48	1,254	1,641	-	0	1	2	1
Kansas	4	3	11	140	155	65	41	130	1,904	1,924	-	0	3	11	11
Minnesota	-	0	575	590	6	-	58	92	2,422	2,871	1	0	21	54	49
Missouri	6	8	22	385	446	133	150	203	6,634	8,380	-	1	6	60	35
Nebraska§	2	4	10	163	129	-	25	47	995	1,219	1	0	2	22	14
North Dakota	-	0	36	18	16	-	2	6	82	104	-	0	3	12	3
South Dakota	-	1	10	97	88	8	6	15	280	215	-	0	0	-	-
S. Atlantic	32	54	85	2,179	2,528	938	1,234	3,072	52,769	68,248	7	11	29	528	512
Delaware		1	3	32	38	24	20	44	881	1,070	-	0	2	6	8
District of Columbia	2	1	5	47	63	60	47	104	2,197	1,970	-	0	1	8	3
Florida	25	22	52	1,040	1,058	372	453	549	19,195	19,323	3	3	10	150	139
Georgia	-	11	25	451	562	2	156	560	5,668	14,548	2	2	9	125	103
Maryland§	3	5	12	189	229	92	118	168	5,043	5,527	1	2	6	76	74
North Carolina	N	0	0	N	N	-	36	1,949	2,638	11,234	1	1	9	63	48
South Carolina ${ }^{\text {§ }}$	-	2	7	85	95	191	187	832	8,036	8,698	-	1	7	40	43
Virginia§	2	8	39	292	440	197	165	486	8,527	5,078	-	1	6	43	69
West Virginia	-	0	5	43	43	-	14	26	584	800	-	0	3	17	25
E.S. Central	3	8	21	346	470	526	558	945	24,130	26,794	1	3	8	107	113
Alabamas	-	5	12	192	221	-	180	287	6,804	9,011	-	0	2	16	24
Kentucky	N	0	0	N	N	107	90	153	3,825	2,677	-	0	1	2	8
Mississippi	N	0	0	N	N	213	131	401	6,099	6,935	-	0	2	13	7
Tennessee§	3	4	11	154	249	206	163	296	7,402	8,171	1	2	6	76	74
W.S. Central	7	7	41	335	366	653	959	1,355	40,018	42,755	-	2	29	93	85
Arkansas§	3	3	8	108	132	92	86	167	3,866	3,497	-	0	3	8	9
Louisiana	-	2	9	100	120	118	161	317	6,936	9,460	-	0	2	7	7
Oklahoma	4	2	35	127	114	-	72	124	2,903	4,223	-	1	21	70	60
Texas§	N	0	0	N	N	443	636	1,102	26,313	25,575	-	0	3	8	9
Mountain	20	29	59	1,200	1,486	111	209	337	8,211	11,471	3	5	14	235	213
Arizona	3	3	7	114	169	46	65	111	2,363	4,243	-	2	11	98	78
Colorado	14	11	27	453	466	55	58	100	2,543	2,824	3	1	4	47	51
Idaho§	2	3	19	155	154	-	3	13	123	225	-	0	4	12	5
Montana§	-	1	9	72	93	-	2	48	95	61	-	0	1	2	2
Nevada§	-	2	6	76	117	-	41	130	1,585	1,960	-	0	1	12	10
New Mexico§	-	2	7	75	102	-	23	104	978	1,456	-	0	4	29	36
Utah	-	6	27	235	347	10	11	36	418	636	-	1	6	32	27
Wyoming§	1	0	3	20	38	-	2	9	106	66	-	0	2	3	4
Pacific	45	55	185	2,356	2,883	370	617	746	25,468	31,227	1	2	7	107	123
Alaska	4	2	10	2,85	65	13	10	24	417	461	-	0	4	15	14
California	30	35	91	1,525	1,946	303	518	657	21,104	26,090	-	0	3	25	45
Hawaii	-	1	5	35	68	-	11	22	465	550	-	0	2	16	11
Oregon§	3	9	18	380	389	27	23	53	1,022	997	1	1	4	48	51
Washington	8	9	87	331	415	27	58	90	2,460	3,129	-	0	3	3	2
American Samoa	-	0	0	-	-	-	0	1	3	3	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	15	-	-	-	-	-	-	-
Guam	-	0	0	-	2	-	1	15	72	112	-	0	1	-	-
Puerto Rico	1	2	10	110	343	-	5	25	221	272	-	0	0	-	2
U.S. Virgin Islands	-	0	0	-	-	-	2	6	93	37	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
${ }^{\dagger}$ Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A			$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	B			$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$					
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$			Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$		Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	25	47	171	2,041	2,415	36	68	259	2,752	3,570	50	54	138	2,247	2,136
New England	-	2	7	95	115	-	1	7	50	106	1	3	14	107	126
Connecticut	-	0	4	26	21	-	0	7	19	34	1	0	5	38	32
Maine§	-	0	2	6	3	-	0	2	10	12	-	0	2	7	5
Massachusetts	-	1	5	38	59	-	0	3	9	40	-	0	3	13	35
New Hampshire	-	0	2	12	12	-	0	1	6	4	-	0	5	24	7
Rhode Island§	-	0	2	11	12	-	0	2	4	13	-	0	5	20	38
Vermont§	-	0	1	2	8	-	0	1	2	3	-	0	1	5	9
Mid. Atlantic	6	6	12	240	396	2	9	15	349	469	24	15	58	771	684
New Jersey	-	1	4	42	112	-	3	7	102	132	-	1	8	62	90
New York (Upstate)	2	1	6	56	64	-	1	5	55	77	17	5	19	281	185
New York City	-	2	6	86	143	-	2	6	69	101	-	2	11	89	156
Pennsylvania	4	1	6	56	77	2	3	7	123	159	7	6	33	339	253
E.N. Central	3	6	16	272	284	5	7	12	313	386	6	11	38	491	498
Illinois		2	10	85	102	5	1	5	73	117	6	1	5	59	101
Indiana	1	0	4	21	25	-	0	6	34	46	-	1	7	41	49
Michigan	-	2	7	99	74	5	2	6	103	96	3	2	16	137	142
Ohio	2	1	4	41	54	5	2	7	97	108	3	5	18	239	175
Wisconsin		0	2	26	29	-	0	1	6	19	-	0	3	15	31
W.N. Central	1	5	29	230	149	2	2	9	80	98	2	2	9	103	97
lowa	-	1	7	102	42	-	0	2	13	22	-	0	2	12	11
Kansas	-	0	3	12	6	-	0	3	6	8	-	0	1	2	9
Minnesota	-	0	23	36	62	2	0	5	10	17	1	0	4	17	23
Missouri	1	0	3	37	19	-	1	4	45	34	-	1	5	51	39
Nebraska§	-	0	5	39	14	-	0	1	5	11	1	0	4	19	11
North Dakota	-	0	2	4	-	-	0	1	1	-	-	0	2	-	-
South Dakota	-	0	1	4	6	-	0	1	-	6	-	0	1	2	4
S. Atlantic	4	7	15	319	413	13	16	60	695	845	7	9	28	371	343
Delaware	-	0	1	6	7	-	0	3	7	14		0	2	11	9
District of Columbia	U	0	0	U	U	U	0	0	U	U	-	0	1	13	13
Florida	3	2	8	130	130	8	6	12	280	285	4	3	7	124	121
Georgia	-	1	4	39	60	1	3	6	110	128	-	0	3	22	32
Maryland§	1	1	3	32	68	2	1	4	60	98	1	2	10	98	64
North Carolina	-	0	9	57	49	-	0	17	73	117	2	0	7	31	37
South Carolina§	-	0	2	11	15	1	1	6	47	54	-	0	2	10	16
Virginia§	-	1	5	39	76	1	2	16	79	110	-	1	6	42	41
West Virginia	-	0	2	5	8	-	1	30	39	39	-	0	3	20	10
E.S. Central	1	1	9	67	93	4	7	13	289	320	2	2	10	94	83
Alabama§	-	0	4	9	18	1	2	6	86	111	-	0	2	12	9
Kentucky	1	0	3	26	19	-	2	5	73	62	2	1	4	48	43
Mississippi	-	0	2	4	8	1	0	3	34	33	-	0	1	1	-
Tennessee§	-	0	6	28	48	2	2	8	96	114	-	1	5	33	31
W.S. Central	-	5	55	186	212	4	14	131	509	736	1	1	23	58	107
Arkansas§	-	0	1	5	11	-	1	4	30	64	,	0	2	9	13
Louisiana	-	0	1	10	27	-	2	4	67	84	-	0	2	8	4
Oklahoma	-	0	3	7	10	2	2	37	91	70	1	0	3	4	5
Texas§	-	4	53	164	164	2	8	107	321	518	-	1	18	37	85
Mountain	-	4	9	158	196	2	4	10	157	176	1	2	5	61	96
Arizona	-	2	8	73	132	-	1	5	55	72	1	0	2	17	36
Colorado	-	1	3	32	22	1	0	3	24	31	-	0	1	6	20
Idaho§	-	0	3	18	4	1	0	2	7	11	-	0	1	3	5
Montana§	-	0	1	1	9	-	0	1	2	$\bar{\square}$	-	0	1	4	3
Nevada§	-	0	2	5	10	-	1	3	30	39	-	0	1	8	8
New Mexico§	-	0	3	15	10	-	0	2	9	11	-	0	1	5	9
Utah	-	0	2	11	6	-	0	5	27	8	-	0	3	18	12
Wyoming ${ }^{\text {§ }}$	-	0	1	3	3	-	0	1	3	4	-	0	0	-	3
Pacific	10	11	51	474	557	4	7	30	310	434	6	4	18	191	102
Alaska		0	1	2	4	-	0	2	9	6	-	0	1	1	-
California	9	9	42	389	481	3	5	19	218	322	6	3	14	153	73
Hawaii	-	0	2	16	5	-	0	2	6	12	-	0	1	5	2
Oregon§	-	0	3	24	24	-	1	3	36	49	-	0	2	15	10
Washington	1	1	7	43	43	1	1	9	41	45	-	0	3	17	17
American Samoa	-	0	0	-	-	-	0	0	-	14	N	0	0	N	N
C.N.M.I.	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	1	$\bar{\square}$	2	-	0	0	-	-
Puerto Rico	-	0	4	16	56	-	1	5	36	74	-	0	1	1	4
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Data for acute hepatitis C, viral are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Lyme Disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serotypes				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	487	339	1,392	20,927	23,462	16	22	136	853	1,066	7	19	53	883	900
New England	31	47	248	3,014	7,236	-	1	35	32	51	-	0	3	21	40
Connecticut	-	0	35	,	2,884	-	0	27	11	1	-	0	1	1	6
Maine§	28	2	73	520	376	-	0	1	-	7	-	0	1	5	7
Massachusetts	-	14	114	1,039	2,854	-	0	2	14	30	-	0	3	15	19
New Hampshire	-	9	130	1,171	836	-	0	1	3	9	-	0	0	-	3
Rhode Island§	-	0	12	-	161	-	0	8	-	-	-	0	1	-	2
Vermont§	3	1	38	284	125	-	0	1	4	4	-	0	1	-	3
Mid. Atlantic	163	170	991	12,498	9,649	-	5	14	199	328	1	2	6	102	115
New Jersey	-	34	188	2,301	2,808	-	0	2	-	62	-	0	2	10	17
New York (Upstate)	128	53	453	4,179	2,826	-	1	8	28	56	-	0	3	25	31
New York City	-	0	10	25	379	-	3	10	139	173	-	0	2	24	20
Pennsylvania	35	56	519	5,993	3,636	-	1	3	32	37	1	1	5	43	47
E.N. Central	3	10	111	939	2,009	1	2	7	108	112	-	3	9	148	139
Illinois	-	0	9	70	148	-	1	6	46	51	-	1	4	52	53
Indiana	1	0	8	35	44	-	0	2	5	9	-	0	4	23	24
Michigan	-	1	11	85	50	-	0	2	13	16	-	0	3	26	24
Ohio	-	0	5	37	31	1	1	3	28	20	-	1	4	33	29
Wisconsin	2	7	98	712	1,736	-	0	3	16	16	-	0	2	14	9
W.N. Central	154	7	740	1,080	459	2	1	9	57	30	-	2	8	80	56
lowa	-	1	8	81	118	-	0	1	5	3	-	0	3	16	12
Kansas	1	0	1	5	8	-	0	2	9	3	-	0	1	4	4
Minnesota	153	1	731	941	315	1	0	8	23	11	-	0	7	22	16
Missouri	-	0	4	38	9	1	0	4	12	6	-	0	3	23	14
Nebraska§	-	0	2	11	6	-	0	2	8	6	-	0	1	11	5
North Dakota	-	0	9	1	3	-	0	2	-	-	-	0	1	2	2
South Dakota	-	0	1	3	-	-	0	0	-	1	-	0	1	2	3
S. Atlantic	128	60	172	3,029	3,874	2	4	15	221	226	1	3	10	136	148
Delaware	-	11	37	639	640	-	0	1	2	4	-	0	1	2	1
District of Columbia	3	3	11	146	109	-	0	2	3	2	-	0	0	-	-
Florida	1	1	10	87	24	1	1	7	49	49	1	1	3	47	56
Georgia	1	0	3	21	8	-	1	5	47	37	-	0	2	16	21
Maryland§	95	28	136	1,399	2,198	1	1	5	50	58	-	0	4	15	19
North Carolina	1	0	7	34	42	-	0	7	24	20	-	0	4	12	16
South Carolina§	-	0	3	19	25	-	0	2	9	6	-	0	3	19	16
Virginia§	27	11	68	622	761	-	1	7	37	49	-	0	2	20	17
West Virginia	-	1	11	62	67	-	0	0	-	1	-	0	1	5	2
E.S. Central	-	0	3	37	48	-	0	2	14	33	-	1	6	43	45
Alabama§	-	0	3	10	12	-	0	1	3	6	-	0	2	7	8
Kentucky	-	0	1	3	5	-	0	1	4	8	-	0	2	7	10
Mississippi	-	0	1	1	1	-	0	1	1	2	-	0	2	10	10
Tennessee§	-	0	3	23	30	-	0	2	6	17	-	0	3	19	17
W.S. Central	2	2	11	77	67	-	1	64	58	80	-	2	13	89	90
Arkansas§	-	0	1	2	1	-	0	1	-	1	-	0	2	7	9
Louisiana	-	0	1	3	2	-	0	1	3	14	-	0	3	21	25
Oklahoma	,	0	1	-	-	-	0	4	2	5	-	0	5	12	15
Texas§	2	2	10	72	64	-	1	60	53	60	-	1	7	49	41
Mountain	1	0	5	40	40	1	1	3	29	58	-	1	4	48	57
Arizona	-	0	2	6	2	-	0	2	13	12	-	0	2	9	12
Colorado	1	0	1	6	-	-	0	1	4	22	-	0	1	11	20
Idaho§	-	0	2	8	8	1	0	1	3	3	-	0	2	3	4
Montana§	-	0	1	4	4	-	0	0	-	3	-	0	1	5	2
Nevada§	-	0	2	9	11	-	0	3	4	2	-	0	2	6	4
New Mexico§	-	0	2	5	5	-	0	1	2	5	-	0	1	7	2
Utah	-	0	0	-	7	-	0	1	3	11	-	0	1	5	11
Wyoming§	-	0	1	2	3	-	0	0	-	-	-	0	1	2	2
Pacific	5	4	10	213	80	10	3	9	135	148	5	4	17	216	210
Alaska	-	0	2	5	8	-	0	2	5	2	1	0	2	4	1
California	3	3	9	157	63	8	2	8	100	107	2	3	17	151	153
Hawaii	N	0	0	N	N	-	0	1	2	2	-	0	2	4	8
Oregon§	1	0	5	41	6	-	0	2	4	14	2	1	3	33	27
Washington	1	0	7	10	3	2	0	3	24	23	-	0	5	24	21
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	0	0	-	-	-	0	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	2	3	1	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	1	3	-	0	1	3	6
U.S. Virgin Islands	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	122	150	849	6,622	8,075	31	96	142	3,896	5,258	43	29	195	1,861	1,787
New England	-	14	49	545	1,261	5	7	20	307	467	-	0	1	2	8
Connecticut	-	1	4	34	77	4	4	17	173	198	-	0	0		-
Maine ${ }^{\dagger}$	-	0	5	28	71	1	1	5	41	75	N	0	0	N	N
Massachusetts	-	12	33	420	980	N	0	0	N	N	-	0	1	1	7
New Hampshire	-	0	4	30	70	-	1	3	35	47	-	0	1	1	1
Rhode Island ${ }^{\dagger}$	-	0	25	22	19	N	0	0	N	N	-	0	0	-	-
Vermont ${ }^{\text {a }}$	-	0	6	11	44	-	1	6	58	147	-	0	0	-	-
Mid. Atlantic	19	18	43	758	1,059	8	22	43	1,029	869	1	1	5	62	71
New Jersey	-	0	9	4	189	-	0	0			-	0	2	2	26
New York (Upstate)	7	6	24	350	481	8	9	20	433	449	-	0	2	16	6
New York City	-	1	6	46	118	-	0	2	13	40	-	0	2	22	24
Pennsylvania	12	9	23	358	271	-	13	28	583	380	1	0	2	22	15
E.N. Central	19	21	189	1,120	1,357	1	4	28	233	391	-	1	13	122	55
Illinois		4	17	198	156	-	1	21	100	111	-	1	10	83	36
Indiana	9	1	15	78	52	-	0	2	9	11	-	0	3	7	5
Michigan	-	5	13	209	260	-	1	8	67	198	-	0	1	3	3
Ohio	10	6	176	574	586	1	1	7	57	71	-	0	4	28	10
Wisconsin	-	2	8	61	303	N	0	0	N	N	-	0	1	1	1
W.N. Central	22	13	142	630	580	2	3	12	161	239	1	4	34	447	350
lowa	-	1	9	64	131	2	0	2	24	30	-	0	2	6	15
Kansas	-	1	10	44	93	-	0	7	-	99	-	0	0	-	12
Minnesota	7	2	131	199	157	-	0	10	54	28	1	0	4	-	1
Missouri	8	4	18	221	76	-	0	9	47	38	1	3	34	418	304
Nebraska ${ }^{\dagger}$	7	1	9	86	60	-	0	0	-	-	-	0	4	20	13
North Dakota	-	0	5	1	7	-	0	8	24	21	-	0	0	-	
South Dakota	-	0	3	15	56	-	0	2	12	23	-	0	1	3	5
S. Atlantic	8	14	50	681	809	11	37	101	1,752	1,917	36	11	69	718	836
Delaware	-	0	3	14	11	-	0	0	-	-		0	3	25	16
District of Columbia	-	0	1	5	9	-	0	0	-	-	-	0	2	7	3
Florida	4	3	20	239	190	-	0	77	122	128	1	0	3	16	14
Georgia	-	1	6	59	33	-	6	42	288	256	2	1	8	66	56
Maryland ${ }^{\dagger}$	2	2	8	85	96	-	8	17	352	373	1	1	7	58	56
North Carolina	-	0	38	79	273	11	9	16	400	432	32	0	55	375	521
South Carolina ${ }^{\dagger}$	1	2	22	89	66	-	0	0	-	46	-	0	5	36	61
Virginia ${ }^{\dagger}$	1	2	8	106	103	-	12	24	518	618	-	1	15	129	104
West Virginia	-	0	2	5	28	-	1	11	72	64	-	0	1	6	5
E.S. Central	3	6	13	248	405	-	1	7	91	141	3	3	22	252	258
Alabama ${ }^{\text {a }}$	-	1	5	37	84	-	0	0	-	-	2	1	8	74	87
Kentucky	2	1	8	68	24	-	0	4	41	18	-	0	1	1	5
Mississippi	-	2	9	79	225	-	0	1	2	2	-	0	3	6	17
Tennessee ${ }^{\dagger}$	1	1	6	64	72	-	0	6	48	121	1	1	18	171	149
W.S. Central	11	20	198	1,037	903	-	2	40	83	937	2	1	153	227	173
Arkansas ${ }^{\dagger}$	-	1	11	46	154	-	1	6	45	27	-	0	14	44	90
Louisiana	-	1	7	65	20	-	0	0	-	6	-	0	1	5	4
Oklahoma	-	0	26	32	6	-	0	32	36	45	1	0	132	143	45
Texas ${ }^{\dagger}$	11	16	179	894	723	-	0	20	2	859	1	1	8	35	34
Mountain	5	16	37	655	922	-	1	8	71	84	-	0	3	27	33
Arizona	1	3	10	171	192	N	0	0	N	N	-	0	2	10	8
Colorado	4	3	13	126	257	-	0	0	-	-	-	0	1	1	3
Idaho ${ }^{\dagger}$	-	0	5	25	37	-	0	1	-	10	-	0	1	1	4
Montana ${ }^{\dagger}$	-	1	11	76	39	-	0	2	8	18	-	0	1	3	1
Nevada ${ }^{\dagger}$	-	0	7	24	35	-	0	1	7	12	-	0	1	1	-
New Mexico ${ }^{\dagger}$	-	0	5	31	67	-	0	3	24	10	-	0	1	2	5
Utah	-	5	27	188	275	-	0	6	13	16	-	0	0		
Wyoming ${ }^{\dagger}$	-	0	2	14	20	-	0	3	19	18	-	0	2	9	12
Pacific	35	21	303	948	779	4	4	13	169	213	-	0	1	4	3
Alaska	5	2	29	171	47	-	0	4	12	41	N	0	0	N	N
California	-	7	129	276	379	4	3	12	144	161	-	0	1	1	1
Hawaii	-	0	2	11	18	-	0	0	-	-	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	3	8	144	107	-	0	4	13	11	-	0	1	3	2
Washington	30	5	169	346	228	-	0	0	-	-	N	0	0	N	N
American Samoa	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-			-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	1	1	5	55	44	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N

[^11]U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	616	807	2,110	35,676	38,931	73	78	247	4,088	4,118	250	382	1,227	15,058	14,777
New England	1	20	445	1,541	2,079	3	3	45	197	287	-	2	34	146	229
Connecticut		0	415	, 415	2,431	-	0	42	42	71	-	0	33	33	44
Maine§	1	2	14	119	123	-	0	3	16	36	-	0	6	19	14
Massachusetts	-	14	52	741	1,208	-	1	11	80	131	-	2	5	78	145
New Hampshire	-	3	10	118	151	2	0	3	30	32	-	0	1	3	5
Rhode Island ${ }^{\text {§ }}$	-	1	6	77	93	-	0	3	8	7	-	0	2	10	18
Vermont§	-	1	7	71	73	1	0	3	21	10	-	0	1	3	3
Mid. Atlantic	50	93	164	4,194	5,206	4	7	192	540	451	9	37	94	1,819	656
New Jersey		13	30	488	1,090	-	1	4	25	102	-	8	37	568	148
New York (Upstate)	32	25	73	1,149	1,238	4	3	188	379	177	3	9	35	506	131
New York City	-	22	51	1,082	1,158	-	0	5	46	46	-	11	35	588	225
Pennsylvania	18	30	78	1,475	1,720	-	2	9	90	126	6	3	65	157	152
E.N. Central	44	88	177	3,982	5,150	8	10	53	664	643	51	70	145	2,933	2,372
Illinois		22	67	943	1,763	-	1	7	61	119		18	29	654	571
Indiana	16	9	53	512	572	-	1	14	80	84	6	12	83	544	106
Michigan	4	17	37	759	819	3	2	34	184	104	-	2	7	105	69
Ohio	24	25	65	1,092	1,131	5	2	17	175	143	43	21	76	1,308	1,043
Wisconsin	-	15	49	676	865	-	3	17	164	193	2	8	39	322	583
W.N. Central	26	49	126	2,328	2,436	4	14	57	699	688	8	18	39	749	1,617
lowa	1	8	15	347	416	-	2	20	186	163	2	3	11	132	79
Kansas	4	6	25	384	361	1	0	7	43	48	3	0	5	47	23
Minnesota	8	13	70	617	583	1	3	21	170	206	3	4	25	266	208
Missouri	11	14	36	623	660	1	2	9	127	140	-	5	29	184	1,165
Nebraska§	2	4	13	192	231	1	1	28	130	78	-	0	2	6	22
North Dakota	-	0	35	41	37	-	0	20	3	8	-	0	15	37	3
South Dakota	-	2	11	124	148	-	1	4	40	45	-	1	9	77	117
S. Atlantic	289	263	450	9,666	9,942	8	14	51	668	577	32	60	149	2,483	3,824
Delaware	1	3	9	135	128	-	0	1	10	14		0	1	7	-10
District of Columbia	1	1	4	46	49	-	0	1	11	-	-	0	3	13	15
Florida	172	102	181	4,196	3,834	6	3	18	135	111	11	16	75	699	1,954
Georgia	54	38	84	1,847	1,703	1	1	7	76	83	9	24	48	911	1,314
Maryland§	10	11	34	599	787	-	2	9	106	74	1	1	5	60	93
North Carolina	22	20	228	1,107	1,370	-	1	12	86	122	4	2	27	173	75
South Carolina§	8	17	55	793	926	-	0	4	34	11	4	9	32	450	145
Virginia§	21	20	49	808	990	1	3	25	184	144	3	4	13	154	158
West Virginia	-	3	25	135	155	-	0	3	26	18	-	0	61	16	60
E.S. Central	23	55	130	2,699	2,914	2	5	21	236	285	34	38	175	1,522	2,167
Alabama§	6	14	46	-702	809	-	1	17	53	60	1	8	43	, 331	- 596
Kentucky	5	9	18	390	493	-	1	7	81	108	1	5	24	233	412
Mississippi	-	14	57	944	901	-	0	2	5	6	-	6	102	286	942
Tennessee§	12	15	36	663	711	2	2	7	97	111	32	15	32	672	217
W.S. Central	27	96	894	4,167	4,152	21	4	25	190	227	43	68	748	3,162	1,813
Arkansas§	8	12	39	614	700	2	1	3	39	42	4	7	27	437	71
Louisiana	-	18	47	823	820	-	0	1	2	10	-	11	25	515	444
Oklahoma	19	16	72	702	539	19	0	14	44	16	6	3	32	145	107
Texas§	-	39	794	2,028	2,093	-	3	11	105	159	33	44	702	2,065	1,191
Mountain	27	56	114	2,633	2,288	7	9	23	452	515	11	18	45	818	810
Arizona	17	19	45	920	814	1	1	8	65	92	10	9	31	456	462
Colorado	8	11	43	595	496	4	2	14	142	145	1	2	9	102	103
Idaho§	2	3	14	140	121	2	2	12	100	117	-	0	1	11	11
Montana§	-	2	10	99	86	-	0	3	30	-	-	0	1	6	22
Nevada§	-	3	14	155	220	-	0	4	19	25	-	2	13	134	58
New Mexico§	-	6	32	428	246	-	1	6	43	37	-	1	7	74	92
Utah	-	6	17	260	243	-	1	6	49	84	-	1	4	30	30
Wyoming§	-	1	5	36	62	-	0	2	4	15	-	0	1	5	32
Pacific	129	111	399	4,466	4,764	16	8	50	442	445	62	30	82	1,426	1,289
Alaska	1	1	4	45	80	1	0	1	7	4	1	0	0	1	8
California	82	78	286	3,249	3,622	7	5	39	230	226	55	27	74	1,220	1,026
Hawaii	2	6	15	219	233	-	0	5	12	29	1	1	3	39	65
Oregon§	-	6	20	354	279	-	1	8	61	68	2	1	10	77	70
Washington	44	12	103	599	550	8	2	16	132	118	3	2	20	89	120
American Samoa	-	0	1	2	-	-	0	0	-	-	-	0	1	1	4
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	2	13	15	-	0	0	-	-	-	0	3	14	16
Puerto Rico	6	10	41	415	763	-	0	1	2	1	-	0	4	16	21
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Streptococcal diseases, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max		
United States	35	96	259	4,369	4,394	13	37	166	1,267	1,419
New England	1	6	31	309	342	-	1	14	59	105
Connecticut		0	26	95	106	-	0	11	-	13
Maine§	1	0	3	24	23	-	0	1	1	2
Massachusetts	-	3	8	138	164	-	1	5	39	71
New Hampshire	-	0	2	23	25	-	0	1	11	9
Rhode Island§	-	0	9	17	8	-	0	2	7	8
Vermont§	-	0	2	12	16	-	0	1	1	2
Mid. Atlantic	6	18	43	866	813	1	4	19	153	257
New Jersey	-	3	11	133	149	-	1	6	30	50
New York (Upstate)	2	6	17	283	251	1	2	14	82	85
New York City	-	4	10	159	191	-	1	8	41	122
Pennsylvania	4	6	16	291	222	N	0	0	N	N
E.N. Central	2	19	42	815	835	1	6	23	220	246
Illinois	-	5	16	211	252	-	1	6	48	62
Indiana	-	2	11	118	99	-	0	14	32	16
Michigan	1	3	10	152	175	1	1	5	59	61
Ohio	1	5	14	232	197	-	1	5	48	54
Wisconsin	-	2	10	102	112	-	1	3	33	53
W.N. Central	2	4	39	330	288	-	2	16	120	77
lowa	-	0	0	,	-	-	0	0	-	-
Kansas	-	0	5	34	28	-	0	3	16	1
Minnesota	-	0	35	154	137	-	0	13	53	43
Missouri	-	1	10	77	74	-	1	2	30	21
Nebraska§	2	0	3	35	23	-	0	3	7	11
North Dakota	-	0	5	10	15	-	0	2	7	1
South Dakota	-	0	2	20	11	-	0	1	7	-
S. Atlantic	12	22	37	928	1,059	1	6	16	229	255
Delaware	-	0	2	7	10	-	0	0	-	
District of Columbia	1	0	4	25	17	-	0	1	1	2
Florida	5	5	11	220	260	-	1	4	53	55
Georgia	3	5	14	207	207	-	1	5	57	57
Maryland§	1	4	8	146	176	1	1	5	46	55
North Carolina	-	3	10	125	143	N	0	0	N	N
South Carolina§	-	1	5	55	89	-	1	4	40	42
Virginia§	2	3	12	113	133	-	0	6	25	37
West Virginia	-	0	3	30	24	-	0	1	7	7
E.S. Central	1	4	9	149	182	2	2	11	77	81
Alabama§	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	3	34	36	N	0	0	N	N
Mississippi	N	0	0	N	N	-	0	3	18	5
Tennessee§	1	3	7	115	146	2	1	9	59	76
W.S. Central	7	8	85	373	264	5	5	66	209	195
Arkansas§	-	0	2	5	17	-	0	2	6	12
Louisiana	-	0	2	13	14	-	0	2	10	32
Oklahoma	2	2	19	95	59	1	1	7	57	42
Texas§	5	6	65	260	174	4	3	58	136	109
Mountain	3	10	22	467	487	3	5	12	187	190
Arizona	2	4	9	174	187	1	2	8	95	92
Colorado	1	3	8	134	120	1	1	4	53	39
Idaho§	-	0	2	12	16	1	0	1	4	2
Montana§	N	0	0	N	N	-	0	1	4	1
Nevada§	-	0	2	8	2	N	0	0	N	N
New Mexico§	-	2	8	85	83	-	0	3	15	31
Utah	-	1	5	48	74	-	0	3	15	25
Wyoming§	-	0	2	6	5	-	0	1	1	-
Pacific	1	3	10	132	124	-	0	2	13	13
Alaska	1	0	4	33	23	N	0	0	N	N
California	-	0	0	-	-	N	0	0	N	N
Hawaii	-	2	10	99	101	-	0	2	13	13
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	-	0	12	30	4	N	0	0	N	N
C.N.M.I.	-	-	-		-	-		-	-	-
Guam	-	0	0	-	14	-	0	0	-	-
Puerto Rico	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
\dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	A					B									
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	33	57	307	2,282	2,426	9	9	43	342	413	138	233	351	9,566	9,181
New England	1	1	49	52	101	-	0	8	8	13	2	6	14	251	224
Connecticut	-	0	44	7	55	-	0	7		4	-	0	6	25	28
Maine§	1	0	2	16	11	-	0	1	2	2	-	0	2	10	9
Massachusetts	-	0	0	-	2	-	0	0	-	2	2	4	11	181	132
New Hampshire	-	0	0	-	-	-	0	0	-	-	-	0	2	17	25
Rhode Island§	-	0	3	16	18	-	0	1	4	3	-	0	5	13	27
Vermont§	-	0	2	13	15	-	0	1	2	2	-	0	5	5	3
Mid. Atlantic	1	4	13	205	135	-	0	2	19	25	45	32	51	1,417	1,290
New Jersey	-	0	0	-	-	-	0	0	-	-	-	4	10	162	181
New York (Upstate)	-	1	6	53	47	-	0	2	6	9	6	3	13	116	113
New York City	-	1	5	63	-	-	0	0	-	-	35	21	37	924	768
Pennsylvania	1	2	9	89	88	-	0	2	13	16	4	5	12	215	228
E.N. Central	6	13	64	576	632	2	2	14	83	93	7	19	34	817	730
Illinois		1	17	71	146	-	0	6	14	31	-	5	19	205	378
Indiana	2	2	39	171	143	1	0	11	21	22	-	2	10	112	44
Michigan	-	0	3	14	2	-	0	1	2	1	1	3	17	170	97
Ohio	4	8	17	320	341	1	1	4	46	39	4	6	14	280	159
Wisconsin	-	0	0	-	-	-	0	0	-	-	2	1	4	50	52
W.N. Central	1	3	115	135	166	1	0	9	9	36	1	7	15	317	294
lowa	-	0	0	-		-	0	0	-		-	0	2	14	16
Kansas	1	1	5	58	77	1	0	1	4	8	1	0	5	26	17
Minnesota	-	0	114	-	23	-	0	9	-	22	-	2	5	82	52
Missouri	-	1	8	72	52	-	0	1	2	2	-	5	10	187	198
Nebraska§	-	0	0	-	2	-	0	0	-	-	-	0	2	8	4
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	1	-	-
South Dakota	-	0	2	5	12	-	0	1	3	4	-	0	0	-	7
S. Atlantic	23	22	53	993	1,056	6	4	10	165	191	38	50	215	2,104	2,086
Delaware		0	1	3	10	-	0	0	-	2	-	0	4	13	12
District of Columbia	-	0	3	14	19	-	0	1	1	1	5	2	9	109	153
Florida	17	13	30	582	583	4	2	6	108	104	15	20	36	827	726
Georgia	6	7	22	313	382	2	1	5	48	76	3	10	175	382	387
Maryland§	N	0	2	4	1	-	0	1	1	-	3	6	14	265	262
North Carolina	N	0	0	N	N	N	0	0	N	N	4	5	19	224	276
South Carolina§	-	0	0		-	N	0	0	-	-	-	1	5	68	82
Virginia§	N	0	0	N	N	N	0	0	N	N	11	5	17	214	182
West Virginia	-	1	9	77	61	-	0	2	7	8	-	0	1	2	6
E.S. Central	1	5	15	226	213	-	1	4	40	31	14	21	34	896	744
Alabama§	N	0	0	N	N	N	0	0	N	N	-	8	17	350	314
Kentucky	1	1	6	65	21	-	0	2	11	2	6	1	7	74	49
Mississippi	-	0	5	4	43	-	0	1	1	-	-	3	15	131	98
Tennessee§	-	3	13	157	149	-	0	3	28	29	8	8	17	341	283
W.S. Central	-	1	7	64	69	-	0	2	12	8	22	38	61	1,664	1,542
Arkansas§	-	0	2	12	5	-	0	1	3	2	6	2	19	143	104
Louisiana	-	1	7	52	64	-	0	2	9	6	3	9	22	380	436
Oklahoma	N	0	0	N	N	N	0	0	N	N	-	1	5	54	56
Texas§	-	0	0	-	-	-	0	0	-	-	13	25	48	1,087	946
Mountain	-	1	7	29	51	-	0	2	4	13	1	9	29	328	403
Arizona	-	0	0	-	-	-	0	0	-	-	-	4	21	145	214
Colorado	-	0	0	-	-	-	0	0	-	-	1	2	7	85	43
Idaho§	N	0	0	N	N	N	0	0	N	N	-	0	1	3	1
Montana§	-	0	0	-	-	-	0	0	-	-	-	0	3	-	4
Nevada§	N	0	0	N	N	N	0	0	N	N	-	1	6	58	92
New Mexico§	-	0	1	2	-	-	0	0	-	-	-	1	4	34	32
Utah	-	0	7	25	35	-	0	2	4	11	-	0	2	-	14
Wyoming ${ }^{\text {§ }}$	-	0	1	2	16	-	0	1	-	2	-	0	1	3	3
Pacific	-	0	1	2	3	-	0	1	2	3	8	42	65	1,772	1,868
Alaska	N	0	0	N	N	N	0	0	N	N	-	0	1	1	1,8
California	N	0	0	N	N	N	0	0	N	N	5	38	59	1,594	1,718
Hawaii	-	0	1	2	3	-	0	1	2	3	-	0	2	12	7
Oregon§	N	0	0	N	N	N	0	0	N	N	1	0	3	19	15
Washington	N	0	0	N	N	N	0	0	N	N	2	4	9	146	121
American Samoa	N	0	0	N	N	N	0	0	N	N	-	0	0	-	4
C.N.M.I.	N	0	0				-	-			-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	-	3	11	125	132
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: : Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
\dagger Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720),
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending October 25, 2008, and October 27, 2007 (43rd week)*

Reporting area	Varicella (chickenpox)					West Nile virus disease ${ }^{\dagger}$									
						Neuroinvasive					Nonneuroinvasive§				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	328	652	1,660	21,302	32,254	-	1	78	542	1,209	-	2	82	645	2,383
New England	3	12	68	428	2,093	-	0	2	5	5	-	0	1	3	6
Connecticut	-	0	38	-	1,201	-	0	2	4	2	-	0	1	3	2
Mainef	-	0	14	-	288	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	1		-	0	0	-	3	-	0	0	-	3
New Hampshire	2	6	18	212	301	-	0	0	-	-	-	0	0	-	-
Rhode Island ${ }^{\text {l }}$	-	0	0	-	-	-	0	1	1	-	-	0	0	-	1
Vermont ${ }^{1}$	1	6	17	215	303	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	60	53	113	1,893	4,038	-	0	8	42	22	-	0	5	18	11
New Jersey	N	0	0	N	N	-	0	1	3	1	-	0	1	4	-
New York (Upstate)	N	0	0	N	N	-	0	5	20	3	-	0	2	7	1
New York City	N	0	0	N	N	-	0	2	8	13	-	0	3	5	5
Pennsylvania	60	53	113	1,893	4,038	-	0	2	11	5	-	0	1	2	5
E.N. Central	105	145	336	5,357	9,166	-	0	6	36	111	-	0	5	22	65
Illinois	11	14	63	866	931	-	0	4	11	61	-	0	2	8	38
Indiana	-	0	222	-	222	-	0	1	2	14	-	0	1	1	10
Michigan	41	62	154	2,270	3,352	-	0	3	7	16	-	0	2	7	1
Ohio	52	50	128	1,856	3,769	-	0	3	14	13	-	0	2	2	10
Wisconsin	1	4	38	365	892	-	0	1	2	7	-	0	1	4	6
W.N. Central	6	24	145	952	1,314	-	0	6	40	248	-	0	23	156	734
lowa	N	0	0	N	N	-	0	3	5	12	-	0	1	4	17
Kansas	1	5	36	316	473	-	0	2	6	14	-	0	4	25	26
Minnesota	-	0	0	-	-	-	0	2	3	44	-	0	6	18	57
Missouri	5	12	51	567	765	-	0	3	9	61	-	0	1	7	15
Nebraskå	N	0	0	N	N	-	0	1	4	20	-	0	8	33	141
North Dakota	N	0	140	49	,	-	0	2	2	49	-	0	12	41	318
South Dakota	-	0	5	20	76	-	0	5	11	48	-	0	6	28	160
S. Atlantic	43	89	167	3,540	4,313	-	0	3	13	43	-	0	3	12	38
Delaware	1	1	6	- 47	41	-	0	0		1	-	0	1	1	
District of Columbia	-	0	3	21	27	-	0	0	-	-	-	0	0	-	-
Florida	28	26	87	1,365	1,035	-	0	2	2	3	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	1	3	23	-	0	1	4	26
Maryland ${ }^{\text {d }}$	N	0	0	N	N	-	0	2	7	6	-	0	2	6	4
North Carolina	N	0	0	N	N	-	0	0	-	4	-	0	0	-	4
South Carolina ${ }^{\text {a }}$	4	15	66	675	899	-	0	0	-	3	-	0	0	-	2
Virginiall	-	20	81	848	1,355	-	0	0	-	3	-	0	1	1	2
West Virginia	10	13	66	584	956	-	0	1	1	-	-	0	0	-	-
E.S. Central	8	16	101	932	480	-	0	8	50	73	-	0	12	81	96
Alabamaø	8	16	101	922	478	-	0	3	11	17	-	0	3	9	7
Kentucky	N	0	0	N	N	-	0	1	2	4	-	0	0	-	-
Mississippi	-	0	2	10	2	-	0	6	32	47	-	0	10	66	83
Tennessee^	N	0	0	N	N	-	0	1	5	5	-	0	2	6	6
W.S. Central	86	182	886	6,561	8,585	-	0	7	56	262	-	0	8	52	152
Arkansas ${ }^{\text {l }}$	-	9	38	469	655	-	0	2	8	13	-	0	0	-	7
Louisiana	-	1	10	63	104	-	0	2	9	27	-	0	6	27	12
Oklahoma	N	0	0	N	N	-	0	1	3	59	-	0	1	5	46
Texas" ${ }^{\text {a }}$	86	166	852	6,029	7,826	-	0	6	36	163	-	0	4	20	87
Mountain	16	37	105	1,565	2,204	-	0	12	88	285	-	0	23	178	1,036
Arizona		0	0	1,56-	--	-	0	10	53	47	-	0	8	44	, 44
Colorado	16	14	43	694	901	-	0	4	13	99	-	0	12	64	477
Idahol	N	0	0	N	N	-	0	1	2	11	-	0	7	30	119
Montanå	-	6	27	261	330		0	0	-	37	-	0	2	5	165
Nevada"	N	0	0	N	N	-	0	2	8	1	-	0	3	7	10
New Mexicol	-	4	22	166	324	-	0	2	6	39	-	0	1	2	21
Utah	-	10	55	434	615	-	0	2	6	28	-	0	4	18	42
Wyoming ${ }^{\text {f }}$	-	0	4	10	34	-	0	0		23	-	0	2	8	158
Pacific	1	2	7	74	61	-	0	35	212	160	-	0	20	123	245
Alaska	1	1	5	53	33	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	-	-	0	35	211	153	-	0	19	118	226
Hawaii	-	0	6	21	28	-	0	0		-	-	0	0	-	
Oregon ${ }^{\text {d }}$	N	0	0	N	N	-	0	0	-	7	-	0	2	4	19
Washington	N	0	0	N	N	-	0	1	1	-	-	0	1	1	-
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	2	17	62	222	-	0	0	-	-	-	0	0	-	-
Puerto Rico	7	8	20	367	636	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
+ Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenza-
associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
${ }^{1}$ I Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending October 25, 2008 (43rd week)

	All causes, by age (years)						P\&I ${ }^{\dagger}$ Total	Reporting area	All causes, by age (years)						P\&I ${ }^{\dagger}$ Total
Reporting area	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
New England	454	313	90	30	13	8	37	S. Atlantic	1,124	695	294	81	24	29	78
Boston, MA	140	81	31	17	4	7	13	Atlanta, GA	114	69	26	12	4	3	5
Bridgeport, CT	37	24	8	2	3	-	3	Baltimore, MD	152	94	42	12	2	2	22
Cambridge, MA	17	15	2	-	-	-	3	Charlotte, NC	138	86	34	9	1	8	8
Fall River, MA	26	18	7	1	-	-	3	Jacksonville, FL	132	86	36	6	-	4	12
Hartford, CT	53	33	14	2	3	1	6	Miami, FL	113	73	24	10	3	3	9
Lowell, MA	25	20	4	1	-	-	3	Norfolk, VA	42	28	11	1	2	-	1
Lynn, MA	5	4	1	-	-	-	2	Richmond, VA	42	17	18	5	-	1	2
New Bedford, MA	26	22	2	2	-	-	2	Savannah, GA	52	30	12	6	2	2	2
New Haven, CT	U	U	U	U	U	U	U	St. Petersburg, FL	50	35	9	4	2	-	7
Providence, RI	U	U	U	U	U	U	U	Tampa, FL	182	123	42	12	2	3	8
Somerville, MA	3	2	1	-	-	-	-	Washington, D.C.	97	47	37	4	6	3	1
Springfield, MA	35	23	8	2	2	-	-	Wilmington, DE	10	7	3	-	-	-	1
Waterbury, CT	28	19	6	2	1	-	1	E.S. Central	896	580	206	66	19	25	59
Worcester, MA	59	52	6	1	-	-	1	Birmingham, AL	175	104	42	19	4	6	12
Mid. Atlantic	2,093	1,432	435	123	48	54	97	Chattanooga, TN	98	70	15	9	2	2	2
Albany, NY	58	41	7	3	2	5	-	Knoxville, TN	129	84	38	6	-	1	11
Allentown, PA	20	16	4	-	-	-	-	Lexington, KY	50	29	12	4	-	5	2
Buffalo, NY	66	47	14	1	2	2	5	Memphis, TN	148	99	32	12	4	1	12
Camden, NJ	36	21	9	3	-	3	1	Mobile, AL	89	64	18	3	1	3	2
Elizabeth, NJ	18	13	3	2	-	-	-	Montgomery, AL	52	28	16	5	2	1	6
Erie, PA	48	37	8	2	1	-	4	Nashville, TN	155	102	33	8	6	6	12
Jersey City, NJ	U	U	U	U	U	U	U	W.S. Central	1,439	902	374	109	29	25	90
New York City, NY	1,016	712	211	60	13	20	32	Austin, TX	+ 96	61	24	8	1	2	5
Newark, NJ	35	9	15	6	-1	5	3	Baton Rouge, LA	U	U	U	U	U	U	U
Paterson, NJ	13	4	3	3	1	2	1	Corpus Christi, TX	60	46	10	2	1	1	4
Philadelphia, PA	398	231	103	32	20	12	20	Dallas, TX	199	109	53	26	4	7	13
Pittsburgh, PA§	24	17	5	1	1	-	4	El Paso, TX	61	39	19	2	-	1	1
Reading, PA	26	19	5	2	5	3	4	Fort Worth, TX	120	70	37	10	1	2	4
Rochester, NY	136	110	15	3	5	3	11	Houston, TX	393	242	111	29	8	3	26
Schenectady, NY	20	17	3	-	-	-	1	Little Rock, AR	60	35	20	1	2	2	4
Scranton, PA	30	27	3	1	1	1	4	New Orleans, LA ${ }^{\text {a }}$	U	U	U	U	U	U	U
Syracuse, NY	80	63	14	1	1	1	5	San Antonio, TX	271	176	63	20	9	3	20
Trenton, NJ	36	21	8	4	2	1	3	Shreveport, LA	78	55	13	5	2	3	8
Utica, NY	9	7	1	-	-	-	3	Tulsa, OK	101	69	24	6	1	1	6
Yonkers, NY	24	20	4				3	Mountain	1,065	708	227	80	22	28	68
E.N. Central	1,894	1,225	451	127	47	41	116	Albuquerque, NM	1,065 117	76	24	10	3	4	5
Akron, OH	55	37	10	6	1	1	1	Boise, ID	68	52	7	7	2		4
Canton, OH	41	26	13	2	$\overline{11}$	5	31	Colorado Springs, CO	55	40	11	3	-	1	2
Chicago, IL	340	190	93	38	11	5	31	Denver, CO	80	51	18	7	2	2	8
Cincinnati, OH	U	U	U	U	U	U	U	Las Vegas, NV	259	181	57	19	1	1	25
Cleveland, OH	225	159	43	11	9	3	13	Ogden, UT	33	23	6	3	-	1	2
Columbus, OH	159	107	36	12	-	4	9	Phoenix, AZ	155	90	42	14	5	4	6
Dayton, OH	145	98	34	8	2	3	12	Pueblo, CO	36	23	12	1	-	-	3
Detroit, MI	152	80	48	13	6	5	7	Salt Lake City, UT	119	72	19	12	5	11	9
Evansville, IN	36	26	10	2	3	1	3	Tucson, AZ	143	100	31	4	4	4	4
Fort Wayne, IN	82	54	22	2	3	1	5								
Gary, IN	9	4	3	2	-	-	-	Pacific	1,574	1,098	314	102	41	19	144
Grand Rapids, MI	46	34	7	2	2	1	2	Berkeley, CA	17	12	2	3	2	-	3 11
Indianapolis, IN	202	113	53	23	5	8	8	Fresno, CA	97	67	20	8	2	1	11
Lansing, MI	39	31	7	-	-	1	1	Glendale, CA	34	26	4	3	-	1	8
Milwaukee, WI	80	57	16	-	2	5	8	Honolulu, HI	71	48	20	3	U	U	9
Peoria, IL	50	38	9	2	-	1	3	Long Beach, CA	U	U	U	U	U	U	U
Rockford, IL	61	45	8	2	4	2	3	Los Angeles, CA	238	151	56	18	10	3	27
South Bend, IN	48	35	12	1	-	-	4	Pasadena, CA	22	19	2	1	-	-	4
Toledo, OH	72	53	15	2	1	1	3	Portland, OR	120	85	24	7	2	2	11
Youngstown, OH	52	38	12	1	1	-	3	Sacramento, CA	224	160	38	16	8	2	22
W.N. Central	654	412	161	41	22	18	42	San Diego, CA	171	122	30	11	5	3	10
Des Moines, IA	79	61	13	3	2	2	3	San Francisco, CA	81	54	20	5	1	1	7
Duluth, MN	27	22	5	-	-	-	3	San Jose, CA	190	147	27	11	4	1	20
Kansas City, KS	20	11	5	3	1	-	4	Santa Cruz, CA	107	69	9 25	7	3	3	1
Kansas City, MO	101	61	27	7	3	3	1	Seattle, WA Spokane, WA	107	69 44	25 7	7 2	3 1	3 2	6 3
Lincoln, NE	39	33	5	5	1	-	3	Tacoma, WA	112	44 73	30	2 3	1 5	2 1	3 2
Minneapolis, MN	68	31	27	5	3	2	7	Tacoma, WA	112	73	30	3	5	1	2
Omaha, NE	100	65	25	3	2	5	8	Total**	11,193	7,365	2,552	759	265	247	731
St. Louis, MO	107	50	30	12	10	5	5								
St. Paul, MN	43	34	9	-	-	-	2								
Wichita, KS	70	44	15	8	2	1	6								

U: Unavailable. -:No reported cases.

* Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of $>100,000$. A death is reported by the place of its occur-
rence and by the week that the death certificate was filed. Fetal deaths are not included.
\dagger Pneumonia and influenza.
§ Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
${ }^{1}$ Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
** Total includes unknown ages.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe $m m w r-t o c$. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at $f t p: / / / t p . c d c$. gov/pub/publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, MMWR Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov.

All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.

References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: INSIDE
 1173 Update: Progress Toward Global Eradication of Dracunculiasis, January 2007-June 2008
 1176 Progress Toward Elimination of Rubella and Congenital Rubella Syndrome - the Americas, 2003-2008
 1180 Revised Product Labels for Pediatric Over-the-Counter Cough and Cold Medicines
 1180 Notice to Readers
 1182 QuickStats

[^1]: *The percentage of persons who completed interviews among all eligible persons, including those who were not successfully contacted.
 \dagger The percentage of persons who completed interviews among all eligible persons who were contacted.
 ${ }^{\S}$ West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; and South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Virginia, West Virginia, Tennessee, and Texas.

[^2]: Available at http://apps.nccd.cdc.gov/ddt_strs2/nationaldiabetesprevalence estimates.aspx.

[^3]: ** Additional information available at http://www.cdc.gov/brfss/technical_ infodata/surveydata/2007.htm.

[^4]: *Transmission from a patient with dracunculiasis is contained if all of the following conditions are met: 1) the disease is detected before or within 24 hours of worm emergence; 2) the patient has not entered any water source since the worm emerged; 3) a volunteer has managed the patient properly, by cleaning and bandaging the lesion until the worm is fully removed manually and by providing health education to discourage the patient from contaminating any water source (if two or more emerging worms are present, the case is not contained until the last worm is pulled out); and 4) the containment process, including verification of dracunculiasis, is validated by a supervisor within 7 days of emergence of the worm.
 ${ }^{\dagger}$ Certification of a country as "free of dracunculiasis" requires at least a 3 -year period after the last known indigenous case is reported, during which adequate surveillance and response to alleged cases of dracunculiasis must be maintained.
 ${ }^{\S}$ A case of dracunculiasis is defined as disease in a person exhibiting a skin lesion or lesions with emergence of one or more Guinea worms (each person should be counted only once in a calendar year).

[^5]: *Total includes 35 PAHO member states and three participating states (France, The Netherlands, and the United Kingdom) with affiliated territories in the Americas. The groups of territories include three French departments (French Guiana, Guadeloupe, and Martinique), the autonomous region of the Kingdom of the Netherlands (Aruba and Netherlands Antilles), and six United Kingdom overseas territories (Anguilla, Bermuda, British Virgin Islands, Cayman Islands, Montserrat, and Turks and Caicos Islands).
 ${ }^{\dagger}$ Reported coverage of $\geq 95 \%$: Antigua and Barbuda, Argentina, Bahamas, Belize, Brazil, Columbia, Cuba, Dominica, Dominican Republic, Ecuador, El Salvador, Grenada, Guyana, Mexico, Nicaragua, Peru, St. Kitts and Nevis, St. Vincent and the Grenadines, and Uruguay; 90\%-94\%: Canada, Chile, Costa Rica, Guatemala, St. Lucia, Trinidad and Tobago, and the United States; $80 \%-89 \%$: Bolivia, Honduras, Netherlands Antilles, Panama, Paraguay, Suriname, and United Kingdom overseas territories; <80\%: Barbados, Haiti, Jamaica, and Venezuela. The French departments did not report coverage.
 ${ }^{\S}$ Aruba and Netherlands Antilles, Bahamas, Canada, Costa Rica, French departments, St. Kitts and Nevis, St. Lucia, Suriname, United States, and Uruguay.
 Additional information available at http://www.paho.org/english/ad/fch/im/ im_brochure_2008_e.pdf.

[^6]: ${ }^{* *}$ Chile used the monovalent rubella vaccine in the 1999 campaign.

[^7]: \#† Weekly measles/rubella bulletin available at http://www.paho.org/english/ad/ fch/im/measlesweeklybulletin.htm.
 \$s Provisional data for Argentina and Brazil.

[^8]: I9 Includes two criteria: 1) percentage of persons with suspected measles or rubella with home visit within 48 hours following notification and 2) percentage of persons with the following relevant data: date of notification, date of investigation, date of rash onset, date sample taken, type of rash, presence of fever, date of prior vaccination, and pregnancy status.

[^9]: *** Cases must be investigated and discarded as nonmeasles or nonrubella cases.
 ${ }^{\dagger \dagger \dagger}$ For municipalities with less than 100,000 persons, at least one suspected case reported.

[^10]: *Additional information available at http://www.chpa-info.org/10_07_08_pedcc.aspx.

[^11]: C.N.M.I.: Commonwealth of Northern Mariana Islands.

