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Abstract. We study the chamfer distance transformations of binary digital
images and corresponding Lipschitz covers of grayscale images. Validity of the
double scan algorithm in arbitrary dimension is proved.
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1 Introduction

Distance transformation is an operation with a lot of applications in image processing and
in analysis of spatial patterns. Special distance transformations, e.g. chamfer or city block
distance, can be calculated especially easily by a sequential double scan algorithm [3,9].
The same algorithm can be used for the calculation of the lower Lipschitz cover of a
grayscale image [7] that is equivalent to a grayscale opening by a cone [4]. The Lipschitz
cover can be applied for the elimination of a slowly varying image background by
subtraction of the lower Lipschitz cover (a top-hat procedure).

The distance is usually defined as a symmetric function that is positive for distinct
points. If we relax these assumptions we obtain a function called quasi-distance that can
be useful to model e.g. directional positional relations in images [1], or real situations like
uphill and downhill paths. We will show that the quasi-distance can also be calculated by
the double scan algorithm. Moreover, the notion of quasi-distance can simplify
description and validation of the double scan algorithm that inherently contains the
measurements of the quasi-distance to the preceding image elements during the scan.

2 Chamfer quasi-distance in digital images

The elements of the n-dimensional digital image are arranged in a regular lattice and they
can be indexed by Z".

The digital image is a function f: X —>RU{— 00,+00}, where X CZ". The binary
image is a digital image with range in {0,1}.

Definition 2.1: Chamfer mask M is a digital image with a finite domain D(M ) such
that M =0 and M(0)=0.

The path from x to y, x, y€ X is a sequence of vectors v,,v,,..,v, € D(M) such that

m
X—y= ka .
=1

Chamfer quasi-distance betweenx,y€E X, X CZ", is



duley)=ip M) m

where sequence of vectors v,,v,,..,v, ED(M) is path v fromx to y.

The chamfer quasi-distance, defined in (1) fulfills 4,, (x,x)= 0,d, (x, y)z 0,
d, (x, )+ d, (»,z)=d(x,z). Related chamfer quasi-norm n, (x)= d,, (x,O) is positively
homogeneous #n,, (ax)= an,, (x) for a€EZ, a=0.

The notion of quasi-distance is more general than notion of distance:

a) d is symmetric, i.e. d,, (x,y)= d, (y,x) iff M is symmetric: M (x) = M(— x).

b) d,, (x,y)=0 does not imply x = y iff there is x =0 such that M(x)=0.

c)d, (x, y) attains infinite value for x, y that can not be connected by vectors from
D(M).
Definition 2.2: Letx,yEZ". Then x <, y lexicographically iff there is 0= j=n such
that x <y, and x,=y, fork > j. Let us define the two intervals bounded by 0 from one
sideZ" = {xEZ”,x <, 0 J, 7" = {xEZ”,x >, 0 Jl
Definition 2.3: Let f/ be a function and let d be a quasi-distance on D(f ), then f is
d -Lipschitz function with respect to d iff for every x,y from D(f)

f6)-r()=dx.y). (2)

Let / be a function. Then the greatest d -Lipschitz function f(x)- f(y)=d(x,y) is
called the lower d -Lipschitz cover of f. Lipschitz condition (2) represents continuity in
discrete spaces.

3 Chamfer distance transformation algorithms in 2D

The distance transformation converts a binary digital image into a gray-level image with
pixels having value of the distance to the nearest feature. It can be achieved using only
local operations of a small neighborhood of a pixel. The chamfer distance transformation
of a binary image can be computed either by a sequential algorithm or by a parallel
algorithm.

In next section we assume X C Z°. Then we can denote a pixel of the image as
a, ;= f(i,j). Computing algorithms for the chamfer distance transformation in arbitrary

dimensions are very similar and you can find them in [2].
The parallel algorithm uses a parallel chamfer mask (Fig.1) and is defined by the
recurrent relation

0 .
a; ;=0 if g, , =0,

agj=m+n if a,; =1, 3)

a'= inf{d" + M) |[uEDM), (i +u,, j+u, )ED(f)},

i,] i+uy,j+u,

where u is a vector, u = (u,,u,), m is the width of the image, » is the height of the image,
i€{l,..,m}, jELL,..,n}.
Algorithm stops on fixpoint, it means if a

k+1

k . .
i =a;; forallij.



We used in (3) the value m+n that represents the infinity in the algorithm, because
any real distance in the image is less than m+n.
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Fig. 1: 3 x 3 chamfer masks: a) parallel chamfer M, b) forward sequential M ",
¢) backward sequential M .

The sequential algorithm presented in [8] has two steps: forward and backward scan.
Both of these scans use its own chamfer masks M~ and M ™ (Fig.1), with the signs in the
sense of lexicographical order, defined in 2.2. The coefficients ¢, and ¢, represent the
gradient step in horizontal and vertical directions and in diagonal direction, respectively.
Usually ¢, =1,¢c, = V2 or if we require that these values are natural numbers, ¢ =2,c,=3.
A more precise calculation also with larger chamfer masks is possible to find in [6].

The first forward scan (with output matrix (al.l’ ;)) begins from the upper left corner of

the image and scans the rows all over the image to the bottom right corner. The second
backward scan (with output matrix (af ;) has the opposite direction of the scanning from

the bottom right corner to the upper left corner:
a, =0 if g, =0,
a, =inf{m+n}Ulal,, .. +M () |[u€DMH\{O},( +u,j+u,)ED(f)}
if a,; =1,
a2, =inflal } UG, ., + M) u€DM )0}, G +up, j +u, )ED(S)}

In the computation of the value of @' . we use the value of a' but we alread
p ij Y

i+up,j+u, 2
have these values from previous computation for all uED(M™), because u<, 0.
Analogous situation is in the second backward scan.

This algorithm can be easily extended for the calculation of the lower d-Lipschitz
cover of a grayscale image [7]:

a,=infla, }U{al,, ... +M (u)-slope|lu€D(M)\{O}, (i +u,, j+u, )ED(f)},
a;, =inf{a) }U{a}, ., +M"(u) slope|lu€D(M*)\{0},( +u,, j +u, )ED(f)},

where slope is a parameter controlling gradient in the resulting image.
A similar algorithm computes the upper d-Lipschitz cover:

a},j =supia, ;} U {ailwl,jm2 — M~ (u)- slope luEDMH\{OY, (i +u,, j +u, ED(f)},

a}, =supia }U{al,, .. —M*(u)-slope|lu€D(M)\{O}, (i +u, j+u, )ED(f)}.



The Lipschitz cover is a very useful tool for the elimination of a slowly varying image
background. There are some examples in the figures (Fig.2, Fig.3).

In 24-bit (or 32-bit) colored pictures the same algorithm is used for every color
channel.

Fig. 2: An original microscopic image (on the left), the Lipschitz lower cover (in the
middle) and the image after using a Lipschitz top-hat filter (on the right).

Fig. 3: An original electron-microscopic image of immunogold labels (on the left), the
Lipschitz lower cover (in the middle) and the image after using a Lipschitz top-hat filter (on
the right).

4 Chamfer distance in digital image of arbitrary dimension

Now we will assume that X CZ", n > 0. It can be proved that the lower d -Lipschitz
cover of f is

glx)= inf (1()+dx.y)). @

The sequential algorithm for the distance transformation scans the image elements in
the lexicographic order calculating the lower d, . -Lipschitz cover i of the image f

taking the minimum of A(x+ y)+ M *(y) for x+y€D(f), yED(M+), y<,0 and of
f (x) in the first step and then scans the image elements in the anti-lexicographic order
calculating lower d, _ -Lipschitz cover g of the image /s , taking minimum of

g(x+y)+ M"(y) for x+yED(f), yED(M+), y<,0 and of h(x) in the second step.



According to the following theorem the result of the double scan algorithm is the lower
chamfer quasi-distance Lipschitz cover of the digital image.

Theorem 4.1 : Let f be an image and M a chamfer mask. Let M* and M~ be chamfer
masks such that M*(x)=M(x) if x<,0 and M*(x) is not defined if x>, 0 ,
M~(x)=M(x)if x>, 0 and M~(x) is not defined if x<, 0. A lower d,, -Lipschitz
coverof f isalower d, _-Lipschitz cover of a lower d . -Lipschitz cover of f .

Proof: Let g be a lower d,,-Lipschitz cover of f, then g(x)= ir}f(f(y)+ d, (x,y)). The

path ¥, } (4) minimizing d,, (x,»)= i{?ﬁéM(vk) can be partitioned between Z™ and
zZ":
@ (s3)= 3 M )+ 3 M 6)
and the statement of the theorem follows from
g(x)= igf(ir;f(f(yﬁ d . (y)d (x,z)) .

Proposition 4.2: Let d be a quasi-distance. The distance transformation of a binary
digital image b is an image DT, , such that D(DTb)d )= D(b),

DT, ,(x)= jinf d(x,y).

It is easy to see that DT, , is a lower d -Lipschitz cover of the functiongob, g(0)= 0,

g(1)=1. Then by the theorem 4.1 the double scan algorithm calculates also the chamfer
quasi-distance transformation of the binary image.

5 Conclusion

The chamfer distance relatively well approximates the Euclidean distance and is widely
used because of its relatively small computational requirements as it imposes only 2
scans of the n-dimensional image independently of the dimension of the image. A more
precise approximation [5] requires 2" scans in n-dimensional image, hence for n > 2 the
algorithms for Euclidean distance transformation that are separable in dimension and
require n-scans are preferable [4].
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