MMWR
Morbidity and Mortality Weekly Report
www.cdc.gov/mmwr

Weekly

December 5, 2008 / Vol. 57 / No. 48

Prevalence of Self-Reported Physically Active Adults - United States, 2007

The report, 2008 Physical Activity Guidelines for Americans (2008 Guidelines), released in October by the U.S. Department of Health and Human Services, provides new guidelines for aerobic physical activity (i.e., activity that increases breathing and heart rate) and muscle strengthening physical activity (1). Under the 2008 Guidelines, the minimum recommended aerobic physical activity required to produce substantial health benefits in adults is 150 minutes of moderate-intensity activity per week, or 75 minutes of vigorous-intensity activity per week, or an equivalent combination of moderate- and vigorous-intensity physical activity. Recommendations for aerobic physical activity in the 2008 Guidelines differ from those used in Healthy People 2010 (HP2010) objectives, which call for adults to engage in at least 30 minutes of moderate-intensity activity, 5 days per week, or 20 minutes of vigorous-intensity activity, 3 days per week (2). To establish baseline data for the 2008 Guidelines and compare the percentage of respondents who reported meeting these guidelines with the percentage who reported meeting HP2010 objectives, CDC analyzed data from the 2007 Behavioral Risk Factor Surveillance System (BRFSS) survey. This report summarizes the results of that analysis, which indicated that, overall, 64.5% of respondents in 2007 reported meeting the 2008 Guidelines, and 48.8% of the same respondents reported meeting HP2010 objectives. Public health officials should be aware that, when applied to BRFSS data, the two sets of recommendations yield different results. Additional efforts are needed to further increase physical activity.
BRFSS is a state-based, random-digit-dialed telephone survey of the noninstitutionalized U.S. civilian population aged ≥ 18 years. Data for the 2007 BRFSS survey were collected from 430,912 respondents (median response rate: 50.6\%; median cooperation rate: $72.1 \%^{*}$) and reported by the 50

[^0]states, District of Columbia, Puerto Rico, and U.S. Virgin Islands. Response rates were calculated using guidelines from the Council of American Survey and Research Organizations (CASRO). A total of 31,805 respondents with missing physical activity data were excluded, resulting in a final sample of 399,107.
Since 2001, in alternate years, BRFSS surveys have included the same questions regarding participation in moderateintensity and vigorous-intensity physical activities. In 2007, to assess participation in moderate activities, respondents were asked, "When you are not working, in a usual week, do you do moderate activities for at least 10 minutes at a time, such as brisk walking, bicycling, vacuuming, gardening, or anything else that causes some increase in breathing or heart rate." Respondents who answered "yes" were then asked, "How many days per week do you do these moderate activities for at least 10 minutes at a time?" Finally, they were asked, "On days when you do moderate activities for at least 10 minutes at a time, how much total time per day do you spend doing these activities?" To assess participation in vigorous-intensity activities, respondents were asked, "When you are not working, in a usual week, do you do vigorous activities for at least 10 minutes at a time, such as running, aerobics, heavy yard work, or anything else that causes large increases in breathing or heart rate?" Respondents who answered "yes" were then asked, "How many days per week do you do these vigorous activities for at least 10 minutes at a time?" Finally, they were

INSIDE

1300 Neurologic Illness Associated with Occupational Exposure to the Solvent 1-Bromopropane - New Jersey and Pennsylvania, 2007-2008
1303 Progress in Global Measles Control and Mortality Reduction, 2000-2007
1307 Notice to Readers

The $M M W R$ series of publications is published by the Coordinating Center for Health Information and Service, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services, Atlanta, GA 30333.
Suggested Citation: Centers for Disease Control and Prevention. [Article title]. MMWR 2008;57:[inclusive page numbers].

Centers for Disease Control and Prevention
Julie L. Gerberding, MD, MPH Director
Tanja Popovic, MD, PhD
Chief Science Officer
James W. Stephens, PhD Associate Director for Science
Steven L. Solomon, MD
Director, Coordinating Center for Health Information and Service Jay M. Bernhardt, PhD, MPH
Director, National Center for Health Marketing
Katherine L. Daniel, PhD
Deputy Director, National Center for Health Marketing

Editorial and Production Staff

Frederic E. Shaw, MD, JD
Editor, MMWR Series
Susan F. Davis, MD
(Acting) Assistant Editor, MMWR Series
Robert A. Gunn, MD, MPH
(Acting) Associate Editor, MMWR Series
Teresa F. Rutledge
Managing Editor, MMWR Series
Douglas W. Weatherwax
Lead Technical Writer-Editor
Donald G. Meadows, MA
Jude C. Rutledge Writers-Editors Martha F. Boyd
Lead Visual Information Specialist
Malbea A. LaPete
Stephen R. Spriggs
Visual Information Specialists
Kim L. Bright, MBA
Quang M. Doan, MBA Phyllis H. King
Information Technology Specialists
Editorial Board
William L. Roper, MD, MPH, Chapel Hill, NC, Chairman
Virginia A. Caine, MD, Indianapolis, IN David W. Fleming, MD, Seattle, WA William E. Halperin, MD, DrPH, MPH, Newark, NJ

Margaret A. Hamburg, MD, Washington, DC King K. Holmes, MD, PhD, Seattle, WA
Deborah Holtzman, PhD, Atlanta, GA John K. Iglehart, Bethesda, MD Dennis G. Maki, MD, Madison, WI Sue Mallonee, MPH, Oklahoma City, OK Patricia Quinlisk, MD, MPH, Des Moines, IA
Patrick L. Remington, MD, MPH, Madison, WI Barbara K. Rimer, DrPH, Chapel Hill, NC John V. Rullan, MD, MPH, San Juan, PR William Schaffner, MD, Nashville, TN Anne Schuchat, MD, Atlanta, GA Dixie E. Snider, MD, MPH, Atlanta, GA John W. Ward, MD, Atlanta, GA
asked, "On days when you do vigorous activities for at least 10 minutes at a time, how much total time per day do you spend doing these activities?"
Using the 2008 Guidelines, respondents were classified as physically active if they reported at least 150 minutes per week of moderate-intensity activity, or at least 75 minutes per week of vigorous-intensity activity, or a combination of moderateintensity and vigorous-intensity activity (multiplied by two) totaling at least 150 minutes per week. Using the HP2010 objectives, respondents were classified as physically active if they reported at least 30 minutes of moderate activity, 5 or more days per week, or at least 20 minutes of vigorous activity, 3 or more days per week. ${ }^{\dagger}$ Data were analyzed by selected characteristics, age adjusted to the 2000 U.S. standard population, and weighted to provide overall estimates; 95% confidence intervals were calculated. Statistically significant differences in prevalence were determined by t -test ($\mathrm{p}<0.05$).
Using the 2008 Guidelines, 64.5% of U.S. adults were classified as physically active in 2007, including 68.9% of men and 60.4% of women (Table). By age group, the percentage classified as physically active ranged from 51.2% (≥ 65 years) to 74.0% (18-24 years). Among racial/ethnic populations, prevalence was lower for non-Hispanic blacks (56.5\%) than for non-Hispanic whites ($67.5 \%, \mathrm{p}<0.01$). By education level, prevalence was lowest for persons with less than a high school diploma (52.2\%) and highest among college graduates (70.3%). By U.S. census region, ${ }^{\S}$ prevalence was lowest among respondents in the South (62.3%) and highest among those in the West (67.8\%). A smaller percentage of persons classified as obese (57.1%) were physically active than persons classified as overweight (67.3%, $\mathrm{p}<0.01$) or of normal weight ($68.8 \%, \mathrm{p}<0.01$). .
Applying the HP2010 objectives to the same respondents, the percentage of U.S. adults overall in 2007 classified as physically active was 48.8%, including 50.7% of men and 47.0% of women (Table). Greater prevalence estimates were noted across all variables when comparing the 2008 Guidelines with the HP2010 objectives; patterns by sex, age group, race/

[^1]TABLE. Percentage of self-reported physically active* adults aged ≥ 18 years, by recommendations met and selected characteristics - Behavioral Risk Factor Surveillance System, United States, $2007{ }^{\dagger}$

Characteristic§	Recommendations			
	2008 Physical Activity Guidelines for Americans"		Healthy People 2010**	
	\%	(95\% $\mathrm{Cl}^{\dagger+}$)	\%	(95\% CI)
Total	64.5	(64.2-64.9)	48.8	(48.4-49.2)
Sex				
Men	68.9	(68.3-69.4)	50.7	(50.1-51.3)
Women	60.4	(60.0-60.9)	47.0	(46.6-47.5)
Age group (yrs)				
18-24	74.0	(72.6-75.4)	59.0	(57.5-60.5)
25-34	69.5	(68.6-70.4)	53.2	(52.2-54.2)
35-44	67.4	(66.7-68.1)	49.5	(48.8-50.3)
45-54	65.2	(64.6-65.8)	47.6	(46.9-48.3)
55-64	60.0	(59.3-60.7)	45.2	(44.5-45.9)
≥ 65	51.2	(50.7-51.8)	39.3	(38.7-39.9)
Race/Ethnicity				
White, non-Hispanic	67.5	(67.1-67.8)	51.7	(51.4-52.1)
Black, non-Hispanic	56.5	(55.4-57.7)	40.4	(39.2-41.6)
Hispanic	57.2	(55.9-58.5)	42.1	(40.8-43.4)
Other race	62.1	(60.4-63.7)	45.3	(43.7-47.0)
Education level				
Less than high school graduate	52.2	(50.9-53.5)	38.4	(37.1-39.7)
High school graduate	61.5	(60.9-62.1)	46.1	(45.5-46.8)
Some college	65.1	(64.4-65.7)	49.2	(48.6-49.9)
College graduate	70.3	(69.7-71.0)	54.0	(53.4-54.7)
Census region§§				
Northeast	65.3	(64.5-66.1)	50.5	(49.7-51.4)
Midwest	65.2	(64.6-65.8)	49.9	(49.3-50.5)
South	62.3	(61.9-62.8)	46.0	(45.5-46.5)
West	67.8	(66.9-68.8)	51.9	(50.8-52.9)
Body mass index ${ }^{\text {T\%1 }}$				
Normal	68.8	(68.2-69.3)	54.0	(53.4-54.6)
Overweight	67.3	(66.7-67.9)	50.6	(49.9-51.2)
Obese	57.1	(56.3-57.8)	41.0	(40.2-41.8)

* Respondents who met recommendations for aerobic physical activity in the 2008 Physical Activity Guidelines for Americans or recommendations for regular physical activity in Healthy People 2010.
† Sample size $=399,107$. Prevalence estimates were age adjusted to the 2000 U.S. standard population, using six age groups: 18-24 years, 25-34 years, 35-44 years, 45-54 years, 55-64 years, and ≥ 65 years. Estimates by age group were not age adjusted.
§ Persons with unknown information were excluded as follows: age groups, 2,885; race/ethnicity, 3,445; education level, 723; and body mass index, 16,008.
ๆ 1 At least 150 minutes of moderate physical activity per week, or 75 minutes of vigorous physical activity per week, or an equivalent combination of moderate and vigorous physical activity.
** At least 30 minutes of moderate physical activity, 5 days per week, or at least 20 minutes of vigorous physical activity, 3 days per week.
${ }^{\dagger \dagger}$ Confidence interval.
§§ West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; and South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Virginia, West Virginia, Tennessee, and Texas.
ๆाी Body mass index $=$ weight $(\mathrm{kg}) /$ height $(\mathrm{m})^{2}$. Normal: 18.5-24.9, overweight: 25.0-29.9, and obese: ≥ 30.0.
ethnicity, education level, census region, and weight classification were similar.
Reported by: SA Carlson, MPH, JE Fulton, PhD, DA Galuska, PhD, J Kruger, PhD, Div of Nutrition, Physical Activity, and Obesity, National Center for Chronic Disease Prevention and Health Promotion; F Lobelo, MD, FV Loustalot, PhD, EIS officers, CDC.
Editorial Note: The findings in this report indicate that 64.5% of U.S. adults reported meeting the minimum level of aerobic physical activity in the 2008 Guidelines using BRFSS 2007 data. When HP2010 physical activity objectives were assessed using the same respondents, 48.8% reported meeting minimum levels of physical activity, a difference of 15.7 percentage points. Prevalence patterns by demographic variables were consistent with those reported previously for physical activity $(3,4)$. Similar to findings in this report, a 2000 study noted a greater prevalence of physically active persons by using >150 minutes per week as the criteria, compared with six other criteria for moderate acttivity (5). The 2008 Guidelines reflect the most recent major scientific review of the health benefits of physical activity. Officials at state and local health departments and other agencies and organizations that promote physical activity can utilize these evidence-based guidelines in developing physical activity initiatives. Findings from this report can serve as a baseline comparison with future estimates of physical activity using survey data.

Analysis of the findings in this report identified two main reasons why a higher proportion of respondents were classified as physically active based on the 2008 Guidelines than based on the HP2010 objectives: 1) removal of the frequency and duration requirement (i.e., 30 minutes of moderate activity, 5 days per week, or 20 minutes of vigorous activity, 3 days per week) and 2) addition of the criteria enabling respondents to meet the guidelines with a combination of moderate and vigorous (multiplied by two) activity. The report from the Physical Activity Guidelines Advisory Committee** emphasized total volume of activity for health benefits, independent of frequency. As explained in the 2008 Guidelines, existing scientific evidence cannot determine whether the health benefits of 30 minutes of activity, 5 days per week, are any different from the benefits of 50 minutes, 3 days per week. As a result, the 2008 Guidelines allow a person to accumulate 150 minutes a week in various combinations (1). Nonetheless, the 2008 Guidelines add that aerobic activity should be performed in periods of at least 10 minutes, and preferably, those periods should be spread throughout the week.

The findings in this study are subject to at least three limitations. First, BRFSS data are self-reported and subject to recall and social-desirability bias; compared with accelerometer-measured

[^2]physical activity, higher levels of self-reported physical activity were reported (σ). Second, BRFSS is a landline telephone survey and excludes persons in households without telephone access or persons who use only cellular telephones. Finally, the mean CASRO response rate was 50.6%, and low response rates can result in response bias; however, BRFSS estimates generally are comparable with estimates from surveys based on face-to-face interviews. In addition, weighting adjustments that account for sex, age group, and race/ethnicity attempt to minimize nonresponse, noncoverage, and undercoverage $(7,8)$.

Approximately one third of U.S. adults did not report meeting minimum levels of aerobic physical activity as defined by the 2008 Guidelines. Minimum levels were analyzed for this report because they provided the most direct comparison with Healthy People 2010 objectives. However, more extensive health benefits can be attained by engaging in physical activity beyond these levels (1). Increasing physical activity among U.S. adults can be accomplished through informational, behavioral, and environmental evidence-based approaches, such as those recommended in the Guide to Community Preventive Services. ${ }^{\dagger \dagger}$ Strong evidence of increased physical activity has been documented for communitywide campaigns, targeted health-behavior change programs, school-based physical education, nonfamily social support, and increased access to locations for physical activity combined with information outreach activities. Evidence of increased physical activity also has been documented for use of point-of-decision prompts and for community-scale and street-scale urban design and land-use policies and practices $(9,10)$.

[^3]
References

1. US Department of Health and Human Services. 2008 physical activity guidelines for Americans. Hyattsville, MD: US Department of Health and Human Services; 2008. Available at http://www.health.gov/paguidelines.
2. US Department of Health and Human Services. Objectives 22-2 and 22-3. In: Healthy people 2010 (conference ed, in 2 vols). Washington, DC: US Department of Health and Human Services; 2000. Available at http://www.healthypeople.gov.
3. CDC. Prevalence of physical activity, including lifestyle activities among adults-United States, 1994-2004, MMWR 2003;52:764-9.
4. CDC. Prevalence of regular physical activity among adults-United States, 2001 and 2005, MMWR 2007;56:1209-12.
5. Brownson RC, Jones DA, Pratt M, Blanton C, Smith GW. Measuring physical activity with the behavioral risk factor surveillance system. Med Sci Sports Exerc 2000;32:1913-8.
6. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008;40:181-8.
7. Fahimi M, Link M, Schwartz D, Levy P, Mokdad A. Tracking chronic disease and risk behavior prevalence as survey participation declines: statistics from the Behavioral Risk Factor Surveillance System and other national surveys. Prev Chronic Dis 2008;5(3). Available at http://www. cdc.gov/pcd/issues/2008/jul/07_0097.htm.
8. CDC. Comparability of data: BRFSS 2007. Atlanta, GA: US Department of Health and Human Services, CDC; 2007. Available at http:// www.cdc.gov/brfss/technical_infodata/surveydata/2007/compare_ 07.rtf.
9. CDC. Increasing physical activity: a report on recommendations of the Task Force on Community Preventive Services. MMWR 2001;50 (No. RR-18).
10. Heath GW, Brownson RC, Kruger J, Miles R, Powell KE, Ramsey LT, Task Force on Community Preventive Services. The effectiveness of urban design and land use and transport policies and practices to increase physical activity: a systematic review. J Phys Act Health 2006;3(Suppl 1):S55-76.

Neurologic Illness Associated with Occupational Exposure to the Solvent 1-Bromopropane New Jersey and Pennsylvania, 2007-2008

1-Bromopropane (1-BP) (n -propyl bromide) is a solvent increasingly used as a substitute for ozone-depleting chlorofluorocarbons and similar regulated compounds. 1-BP is used in vapor and immersion degreasing operations and other manufacturing processes, and as a solvent in industries using aerosol-applied adhesives. In some states, 1-BP is used as a solvent in dry cleaning because of restrictions on use of perchloroethylene (tetrachloroethylene), a possible human carcinogen (1). Published studies of workers exposed to 1-BP have raised concerns about occupational health risks associated with exposure (2-5). This report describes two cases involving workers exposed to 1-BP and diagnosed with clinical manifestations of neurotoxicity. The cases, when coupled with previously reported studies of workers exposed to 1-BP, illustrate potential health risks of 1-BP exposure. Clinicians and public health professionals should be alert to potential health effects among workers exposed to $1-\mathrm{BP}$, particularly in dry cleaning and other workplaces where 1-BP use might be increasing, and effective control methods to limit exposure to 1-BP should be implemented at worksites.
Both cases involved neurotoxic effects that likely resulted from occupational exposure to $1-\mathrm{BP}$ in the electronics and dry cleaning industries. The cases were reported to regional poison control centers in Pennsylvania (2007) and New Jersey (2008) by attending physicians who treated the affected workers. The cases were investigated by federal and state health agencies, and more in-depth investigations of the New Jersey case currently are being conducted by the New Jersey Department of Health and Senior Services and CDC.
Case 1. In 2007, a male aged 50 years visited an emergency department in Pennsylvania with a history of confusion,
dysarthria, dizziness, paresthesias, and ataxia for 24-48 hours. The patient had worked for 8 years at an electronics plant in Pennsylvania, where for 3 years 1-BP had been used to clean circuit boards by vapor and immersion degreasing. His duties at the plant included mechanically submerging and spraying circuit boards with 1-BP, and maintenance (draining, cleaning, and charging) of the bath tank. The patient typically did not use personal protective equipment (PPE), and ventilation was reported by the patient to be poor within the process room. Neurologic examination revealed that the patient was alert but had slowed mental activity and mild confusion. His cranial nerve function and motor strength were intact, but his gait was wide based and ataxic, and a Romberg's test was positive. Serum laboratory results were notable for an anion gap of $-31 \mathrm{mmol} / \mathrm{L}$ (normal range: $5-17 \mathrm{mmol} / \mathrm{L}$) and a chloride concentration of $146 \mathrm{mmol} / \mathrm{L}$ (normal range: 101-111 $\mathrm{mmol} / \mathrm{L}$). The patient was hospitalized. Mild sensory peripheral neuropathy was detected by electromyogram in his upper and lower extremities.

One week after the patient went to the emergency department, the Occupational Safety and Health Administration (OSHA) evaluated his workplace and found a 1-BP concentration of 178 ppm by short-term area air sampling. Two weeks after his initial visit to the emergency department, the patient's serum bromide concentration was $48 \mathrm{mg} / \mathrm{dL}$ (normal range: $0-10 \mathrm{mg} / \mathrm{dL}$). His peripheral neuropathy and ataxia persisted 1 year after the initial visit. The patient also reported having trouble maintaining mental focus and stopped working at the electronic plant because of continuing medical problems.

Case 2. A previously healthy male aged 43 years visited his primary-care physician in New Jersey in February 2008 with a history of headache, nausea, dizziness, and malaise, which began after he had begun using 1-BP in his dry cleaning facility. Six weeks earlier, the patient had switched from using perchloroethylene to DrySolv ${ }^{\text {mex }}$ (Enviro Tech International, Melrose Park, Illinois) ($>95 \%$ by weight 1-BP) as the solvent in his dry cleaning machine (7). The patient also used DrySolv as a cleaner to prepare the dry cleaning machine for use. In early February 2008, he manually charged the machine using 50-60 gallons of the solvent and did not use PPE. The patient then began using DrySolv in the daily operation of the dry cleaning machine. During the next 2 days, he reported unusual fatigue and headaches and developed arthralgias, visual disturbances (difficulty focusing), paresthesias, and muscular twitching.
The patient was referred by his personal physician to an emergency department, where physical examination and computed tomography of his head were normal, except for a slight tremor in his upper extremities. Tests of the patient's serum revealed an anion gap and chloride concentration within normal ranges. A site visit to the dry cleaning facility in April

2008 by the New Jersey Department of Health and Senior Services revealed background and high peak concentrations (75 to 250 times background levels) of 1-BP during the handling of clothes. The patient continued to use 1-BP in the dry cleaning machine but adjusted temperature settings on the machine to account for the physical properties of 1-BP, improved his use of ventilation, and began using PPE.
Reported by: JPerrone, MD, Univ of Pennsylvania School of Medicine. SM Marcus, MD, Univ of Medicine and Dentistry of New Jersey and New Jersey Poison Information and Education System; JD Blando, PhD, D Schill, MS, New Jersey Dept of Health and Senior Svcs. D Trout, MD, P Schulte, PhD, CL Geraci, PhD, GS Dotson, PhD, K Hanley, MSPH, KR Mead, PhD, DVL Myers, PhD, C Curran, PhD, National Institute for Occupational Safety and Health, CDC.
Editorial Note: 1-BP has received increased global attention since the 1990s as a potential alternative for ozone-depleting chlorofluorocarbons and similar regulated compounds. Since its introduction within the United States, 1-BP has been applied as a solvent in many industrial processes, including vapor degreasing, foam cushion manufacturing, and dry cleaning. The incidence of 1-BP toxicity is unknown, and the signs and symptoms are not described fully. In this report, case 1 demonstrated severe neurologic illness in a worker in the electronics industry using 1-BP as a cleaning solvent. The elevated serum bromide concentration and negative anion gap in a worker with neurologic abnormalities exposed to 1-BP provides strong evidence of occupational 1-BP toxicity. Although bromide levels were not measured in case 2 , the patient's clinical presentation and course, and his exposure to $1-\mathrm{BP}$, strongly favor the conclusion that his illness was caused by $1-B P$. However, the exact etiology of the neurologic illnesses of the two workers remains unclear and nonwork-related factors potentially contributing to the illnesses are not fully characterized. Additionally, personal exposure information was not available for these workers to help establish their workplace exposures to $1-\mathrm{BP}$ or to other potential workplace hazards.

CDC does not have a recommended exposure limit for 1-BP, nor does OSHA have a permissible exposure limit. Manufacturers of 1-BP and professional organizations, such as the American Conference of Governmental Industrial Hygienists, have recommended occupational exposure limits ranging from 10 ppm to 100 ppm as an 8 -hour time-weighted average (6). On the basis of limited exposure and human health effects data, the National Toxicology Program concluded that exposure to 1-BP is toxic to the developmental and reproductive health of animals (8). Animal toxicity studies with 1-BP and human case reports of occupational exposures to $1-\mathrm{BP}$ have raised concerns that exposure to $1-\mathrm{BP}$ might cause reproductive and neurologic effects (2-0). Workers exposed to 1-BP vapors from spray adhesives at
two seat-cushion-manufacturing facilities were found to have severe neurologic illnesses $(4,5)$. CDC evaluated workers at one of those facilities and found nonspecific acute effects (e.g., headache and feeling drunk) possibly associated with central nervous system responses to 1-BP exposure (2).
In accordance with its Significant New Alternatives Program, the Environmental Protection Agency (EPA) has reviewed available scientific literature on 1-BP and promulgated a final rule to accept 1-BP as an alternative for ozone-depleting solvents in the solvent cleaning sector.* EPA also published a proposed rule not to accept 1-BP for use as an aerosol solvent vehicle for adhesives because of higher exposures and the potential for adverse health effects to workers in these settings. ${ }^{\dagger}$ These new rules do not apply to dry cleaning.
Case 2 likely represents a sentinel case of neurologic toxicity in the dry cleaning industry, and additional cases could occur as dry cleaners switch from perchloroethylene use to 1-BP. The U.S. dry cleaning and laundry industry employs an estimated 110,000 persons at approximately 30,000 establishments and is one of the largest industry sectors characterized by small businesses with fewer than 10 employees. In recent years, an estimated $85 \%-90 \%$ of the dry cleaning industry has used perchloroethylene as a solvent. In response to environmental and health concerns, certain states, including California and New Jersey $(9,10)$, have passed or proposed legislation to eliminate use of perchloroethylene as the primary solvent in the dry cleaning industry. To use 1-BP as an alternative solvent, dry cleaning businesses must modify existing equipment to adjust heating/ drying cycles, upgrade solvent vapor control systems, replace natural rubber seals, and provide adequate exhaust ventilation. Manufacturer literature on the use of DrySolv recommends wearing a full-facepiece organic vapor respirator if ventilation is inadequate, and chemical-resistant gloves for skin protection (7). Previous CDC research and communication efforts have emphasized application of a hierarchy of controls (e.g., engineering controls and work practices) for reducing worker exposures to perchloroethylene. ${ }^{\S}$ Similar controls should be used within the dry cleaning industry to limit worker exposure to $1-\mathrm{BP}$.

Clinicians and public health officials should be alert to potential adverse health effects from exposures to $1-\mathrm{BP}$ in industries where such use might increase, such as the dry

[^4]cleaning industry, and in workplaces where 1-BP use might be more established. A thorough occupational history always should be part of the clinical evaluation of persons who have unexplained or onset of nonspecific neurologic symptoms. Exposure to electronics cleaning solvents or dry cleaning solvents should prompt a more through inquiry concerning exposure to 1-BP. In the evaluation of a worker with occupational exposure to $1-\mathrm{BP}$ and neurologic abnormalities, diagnosis of 1-BP poisoning is suggested by an elevated urinary or serum bromide concentration and a negative serum anion gap. Findings of potential 1-BP poisoning in a potentially exposed worker should prompt removal of the worker from the exposure while an evaluation of workplace exposures is conducted by a qualified professional.

Acknowledgment

The findings in this report are based, in part, on contributions by JB Nemhauser, MD, National Center for Environmental Health, CDC.

References

1. Drycleaning and Laundry Institute. A DLI white paper: key information on industry solvents. Laurel, MD: Drycleaning and Laundry Institute; 2007. Available at http://www.startadrycleaners.com/docs 2008/dli\%20white\%20paper.final.pdf.
2. CDC. Health hazard evaluation report: Marx Industries, Inc. Cincinnati, OH: US Department of Health and Human Services, Public Health Service, CDC, National Institute for Occupational Safety and Health; 2003. HETA 99-0260-2906. Available at http:// www.cdc.gov/niosh/hhe/reports/pdfs/1999-0260-2906.pdf.
3. Ichihara G. Neuro-reproductive toxicities of 1-bromopropane and 2-bromopropane. Int Arch Occup Environ Health 2005;78:79-96.
4. Raymond LW, Ford MD. Severe illness in furniture makers using a new glue: 1-bromopropane toxicity confounded by arsenic. J Occup Environ Med 2007;49:1009-19.
5. Majersik JJ, Caravati EM, Steffens JD. Severe neurotoxicity associated with exposure to the solvent 1 -bromopropane (n -propyl bromide). Clin Toxicol 2007;45:270-6.
6. Hanley KW, Petersen M, Curwin BD, Sanderson WT. Urinary bromide and breathing zone concentrations of 1-bromopropane from workers exposed to flexible foam spray adhesives. Ann Occup Hyg 2006;50:599-607.
7. Dry Cleaning Technologies. Material safety data sheet for DrySolv. Melrose Park, IL: Enviro Tech International; 2008. Available at http:// www.dctco.com/drysolv_msds.pdf.
8. National Toxicology Program-Center for the Evaluation of Risks to Human Reproduction. NTP-CERHR expert panel report on the reproductive and developmental toxicity of 1-bromopropane. Reproduc Toxicol 2004;18:157-88.
9. California Environmental Protection Agency. Dry cleaning alternative solvents: health and environmental impacts. Sacramento, CA: California Environmental Protection Agency, Air Resources Board; 2008. Available at http://www.arb.ca.gov/toxics/dryclean/ alternativesolvts_e.pdf.
10. New Jersey Department of Environmental Protection. Control and prohibition of air pollution by toxic substances. Trenton, NJ: New Jersey Department of Environmental Protection; 2007. Available at http://www.nj.gov/dep/rules/proposals/121707b.pdf.

Progress in Global Measles Control and Mortality Reduction, 2000-2007

Despite the availability of a safe and effective vaccine since 1963, measles has been a major killer of children in developing countries (causing an estimated 750,000 deaths as recently as 2000), primarily because of underutilization of the vaccine (1). At the World Health Assembly in 2008, all World Health Organization (WHO) member states reaffirmed their commitment to achieving a 90% reduction in measles mortality by 2010 compared with 2000 , a goal that was established in 2005 as part of the Global Immunization Vision and Strategy (2). This WHO-UNICEF comprehensive strategy for measles mortality reduction (1) focuses on 47 priority countries.* The strategy's components include 1) achieving and maintaining high coverage ($>90 \%$) with the routinely scheduled first dose of measles-containing vaccine (MCV1) among children aged 1 year; 2) ensuring that all children receive a second opportunity for measles immunization (either through a second routine dose or through periodic supplementary immunization activities $\left.[\mathrm{SIAs}]^{\dagger}\right) ; 3$) implementing effective laboratory-supported disease surveillance; and 4) providing appropriate clinical management for measles cases. This report updates previously published reports (3,4) and describes immunization and surveillance activities implemented during 2007. Increased routine measles vaccine coverage and SIAs implemented during 2000-2007 resulted in a 74% decrease in the estimated number of measles deaths globally. An estimated 197,000 deaths from measles occurred in 2007; of these, 136,000 (69\%) occurred in the WHO South-East Asian Region. Achievement of the 2010 goal will require full implementation of measles mortality reduction strategies, especially in the WHO SouthEast Asian Region.

Immunization Activities

WHO and UNICEF use data from administrative records and surveys to estimate routine MCV1 coverage among

[^5]children aged 1 year (5). Coverage levels achieved during measles SIAs are estimated using the reported number of doses administered and dividing by the target population.
According to WHO and UNICEF estimates, global routine MCV1 coverage has continued to improve steadily since 2000, reaching 82% in 2007; however, coverage has varied substantially by geographic region (Table 1). Of 23.3 million infants in 2007 who missed receiving their first dose of measles vaccine through routine immunization services by the age of 1 year, 15.2 million (65%) resided in eight highly populated countries: India (8.5 million children), Nigeria (2.0 million), China (1.0 million), Ethiopia (1.0 million), Indonesia (0.9 million), Pakistan (0.8 million), the Democratic Republic of the Congo (0.6 million), and Bangladesh (0.5 million)
During 2000-2007, a second opportunity ${ }^{\S}$ for measles immunization was provided in the 47 priority countries to approximately 576 million children aged 9 months-14 years through SIAs. In 2007, 20 (43%) of these 47 countries conducted SIAs, reaching approximately 91 million children; 16 (80%) of these SIAs integrated at least one other child-survival intervention (e.g., insecticide-treated bed nets, vitamin A supplements, and deworming medication) (Table 2).

Surveillance Activities

Effective surveillance for measles entails establishing casebased surveillance that includes case investigation and laboratory testing of samples from all suspected measles cases (G). 9 In 2007, 162 (84%) of the 193 WHO member states had implemented case-based surveillance, compared with 120 (62%) countries in 2004 (the first year for which data are available). In 2007, 178 countries (92%), compared with 168 countries (88%) in 2000, reported measles surveillance data to WHO and UNICEF through the annual Joint Reporting Form. Worldwide, the number of reported measles cases decreased from 852,937 in 2000 to 279,006 in 2007 (a 67\% decrease). All regions reported a decrease in reported measles cases, with the highest percentage reduction occurring in the Americas** and the African regions (93% and 85%, respectively), and the lowest in the South-East Asian Region (12\%). The WHO measles and rubella laboratory network, which in 1998 consisted of fewer than 40 laboratories, by the end of

[^6]TABLE 1. Coverage with first-dose measles vaccine through routine immunization services among children aged 1 year* and estimated number of deaths from measles, by World Health Organization (WHO) region - worldwide, 2000 and $2007 \dagger$

WHO region	2000		2007		Decrease in measles deaths 2000-2007		Proportion of estimated global decrease attributable to region/priority countries (\%)
	\% coverage with firstdose measles vaccine	Estimated no. of measles deaths (95\% uncertainty interval ${ }^{\S}$)	\% coverage with first-	Estimated no. of measles deaths			
			vaccine	interval)	No.	\%	
African	56	$\begin{gathered} 395,000 \\ (287,000-513,000) \end{gathered}$	74	$\begin{gathered} 45,000 \\ (32,000-60,000) \end{gathered}$	350,000	89	63
Americas	92	<1,000 ${ }^{\text {® }}$	93	<1,000 ${ }^{\text {® }}$	-	-	-
Eastern Mediterranean	ก 73	$\begin{gathered} 96,000 \\ (71,000-123,000) \end{gathered}$	84	$\begin{gathered} 10,000 \\ (7,000-15,000) \end{gathered}$	86,000	90	16
European	91	<1,000 ${ }^{\text {I }}$	94	<1,000 ${ }^{\text {l }}$	-	-	-
South-East Asian	61	$\begin{gathered} 235,000 \\ (169,000-309,000) \end{gathered}$	73	$\begin{gathered} 136,000 \\ (98,000-180,000) \end{gathered}$	99,000	42	18
Western Pacific	86	$\begin{gathered} 25,000 \\ (17,000-35,000) \end{gathered}$	92	$\begin{gathered} 7,000 \\ (4,000-11,000) \end{gathered}$	18,000	73	3
Total	72	$\begin{gathered} 750,000 \\ (543,000-982,000) \end{gathered}$	82	$\begin{gathered} 197,000 \\ (141,000-267,000) \end{gathered}$	553,000	74	100
47 priority countries**	58	$\begin{gathered} 727,000 \\ (530,000-947,000) \end{gathered}$	72	$\begin{gathered} 194,000^{\text {tt }} \\ (139,000-261,000) \end{gathered}$	533,000	73	96

* WHO-UNICEF estimates available at http://www.who.int/immunization_monitoring/routine/immunization_coverage/en/index4.html.
t Coverage of routine first-dose immunization and second-opportunity coverage for measles vaccine are the major contributors to decreases in estimated deaths.
§ Based on Monte Carlo simulations that account for uncertainty in key input variables (i.e., vaccination coverage and case-fatality ratios).
I The static natural history model used for analysis is not sufficiently precise at low incidence levels.
** Afghanistan, Angola, Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Côte d’lvoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, India, Indonesia, Kenya, Laos, Liberia, Madagascar, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, Papua New Guinea, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Timor-Leste, Togo, Uganda, Tanzania, Vietnam, Yemen, and Zambia.
t† Numbers and percentages might not sum to totals because of rounding.

2007 had expanded to 679 national and subnational laboratories providing support for measles and rubella surveillance in 164 countries.

Mortality Estimates for 2007

Despite the progress made on measles surveillance and reporting globally, measles incidence remains underreported, and complete and reliable surveillance data on the number of measles deaths are lacking for many countries, particularly those with the highest disease burden. To estimate measles mortality, WHO used the published natural history model (7) and updated it with 1) the most recent time-series of population data (8), 2) WHO-UNICEF routine immunization coverage estimates and reported coverage of SIAs, and 3) measles incidence as reported to WHO. This process produced the 2007 mortality estimates and permitted updating of previous estimates for 2000-2006.

During 2000-2007, global mortality attributed to measles was reduced by 74%, from an estimated 750,000 deaths in 2000 to 197,000 deaths in 2007 (Table 1, Figure). Approximately 90% of estimated measles deaths occurred
among children aged <5 years: 679,000 (95\% uncertainty interval: 490,000-890,000) in 2000 and 177,000 (126,000240,000) in 2007. The largest regional percentage reduction in estimated measles mortality during 2000-2007 occurred in the Eastern Mediterranean (90\%) and African (89\%) regions, accounting for 16% and 63% of the global reduction in measles mortality, respectively. The 47 priority countries accounted for 98% of the total estimated number of deaths globally in 2007, whereas the reduction in measles deaths among these countries accounted for 96% of the global reduction in measles deaths during 2000-2007.
During 2000-2007, approximately 11 million measles deaths worldwide were averted because of measles control activities; of these, an estimated 3.6 million deaths (33%) were averted as a result of accelerated activities (i.e., increases in routine vaccination coverage and implementation of measles SIAs).
Reported by: A Dabbagh, PhD, M Gacic-Dobo, D Featherstone, PhD, P Strebel, MBChB, JM Okwo-Bele, MD, Dept of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland. E Hoekstra, MD, P Salama, MD, United Nations Children's Fund, New York, New York. A Uzicanin, MD, Global Immunization Div, National Center for Immunization and Respiratory Diseases, CDC.

TABLE 2. Measles supplementary immunization activities undertaken among the 47 World Health Organization (WHO)-UNICEF priority countries,* 2007

WHO region and country	Age group	Extent	No. of children reached	\% of targeted children reached ${ }^{\dagger}$	Other interventions delivered§				
					Oral polio vaccine	$\begin{gathered} \text { Vitamin } \\ \hline \end{gathered}$	```Insecticide- treated bednets```	Deworming medication	Tetanus toxoid vaccination
African									
Burkina Faso	9-59 mos	National	3,145,255	102		Yes			
Cameroon	9-59 mos	Subnational	1,763,167	94		Yes	Yes		
Democratic Republic of the Congo	6-59 mos	National	3,768,794	101		Yes	Yes	Yes	
Ethiopia	6-59 mos	Subnational	1,072,701	96		Yes			
Gabon	9-59 mos	National	190,035	83		Yes	Yes	Yes	
Liberia	9-59 mos	National	629,676	97		Yes	Yes	Yes	
Madagascar	9-59 mos	National	3,053,702	100		Yes	Yes	Yes	
Mali	9-59 mos	National	2,562,537	101	Yes	Yes	Yes	Yes	
Republic of the Congo	9-59 mos	National	677,390	95		Yes	Yes	Yes	
Zambia	9-59 mos	National	2,204,553	107		Yes		Yes	
Eastern Mediterranean									
Afghanistan	9-59 mos	Rollover-Nationalil	2,085,479	106	Yes				Yes
Djibouti	$9 \mathrm{mos}-5 \mathrm{yrs}$	Subnational	7,475	37					
Pakistan	$9 \mathrm{mos}-15 \mathrm{yrs}$	Rollover-national	2,511,837	98					
	$9 \mathrm{mos}-13 \mathrm{yrs}$	Rollover-national	1,282,232	105					
			6,906,376	100					
			20,566,497	97					
Somalia	$9 \mathrm{mos}-15 \mathrm{yrs}$	Rollover-national	2,774,178	87		Yes			
Sudan	$6 \mathrm{mos}-14 \mathrm{yrs}$	Subnational	1,698,058	72				Yes	
	9-59 mos	Rollover-national	1,491,612	96					
South-East Asian									
Indonesia	$6 \mathrm{mos}-5 \mathrm{yrs}$	Rollover-national	10,099,534	90	Yes	Yes			
	$6 \mathrm{mos}-12 \mathrm{yrs}$	Rollover-national	3,499,242	95					
			2,863,068	106					
			2,609,301	102					
Myanmar	$9 \mathrm{mos}-5 \mathrm{yrs}$	National	5,706,351	94					
Western Pacific									
Cambodia	9-59 mos	National	1,526,530	105		Yes		Yes	
Laos	$9 \mathrm{mos}-14 \mathrm{yrs}$	National	2,086,190	96		Yes		Yes	
Vietnam	$1-20 \mathrm{yrs}$	Subnational	3,729,848	97					
Total			90,511,618						

*Afghanistan, Angola, Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Côte d’lvoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, India, Indonesia, Kenya, Laos, Liberia, Madagascar, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, Papua New Guinea, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Timor-Leste, Togo, Uganda, Tanzania, Vietnam, Yemen, and Zambia.
${ }^{\dagger}$ Values $>100 \%$ indicate that the intervention reached more persons than the estimated target population.
§ Anthelminthics used for deworming. Tetanus toxoid vaccinations delivered to women of child-bearing age. Other interventions were distributed according to national plans and, in some cases, targeted only high-risk districts or age groups.
${ }^{1}$ Rollover-national: campaigns that were started the previous year or will continue into the next year.

Editorial Note: During 2007, further progress was made toward achieving the 2010 global measles mortality reduction goal of a 90% reduction in measles mortality compared with 2000. Increased MCV1 coverage, together with the accelerated efforts to vaccinate children through SIAs during 2000-2007, resulted in a 74% decrease in the estimated number of measles deaths globally during this period.
The largest percentage decrease in estimated measles deaths occurred in the Eastern Mediterranean Region, which appears to have already met the 2010 goal. An important contributor to the rapid reduction in measles mortality in the Eastern Mediterranean Region during 2007 is the intensification of

SIAs in the region, which resulted in more than twice the number of children reached through SIAs in 2007 compared with 2006. The African Region was the largest contributor to the global decline in measles mortality, accounting for 63% of the decline. However, a number of countries have experienced outbreaks of more than 1,000 cases in 2007 (e.g., the Democratic Republic of Congo, Nigeria, Uganda, and Tanzania) because of gaps in MCV1 coverage and children missed during SIAs. The reduction in the South-East Asian Region was substantially smaller because India, which alone accounts for 67% of the region's population, has not yet begun large-scale measles SIAs.

FIGURE. Estimated number of measles deaths - worldwide, 2000-2007

SOURCE: World Health Organization.

* 95\% uncertainty interval. Based on Monte Carlo simulations that account for uncertainty in key input variables (i.e., vaccination coverage and casefatality ratios).

The number of reported measles cases also declined by approximately two thirds worldwide during 2000-2007. However, direct comparisons between trends in estimated deaths and trends in reported cases should be made with caution because the static model used to estimate deaths does account for the cyclical nature of measles (7). Furthermore, measles incidence is grossly underreported, and the mathematical model used to estimate global measles mortality adjusts for underreporting of cases (7).
The prevention of an estimated 3.6 million additional deaths during 2000-2007 because of accelerated measles control activities highlights the potential future benefits of continuing the ongoing efforts of the Measles Initiative ${ }^{\dagger \dagger}$ and international partners (e.g., the GAVI Alliance and the International Finance Facility for Immunization) to support country efforts to strengthen routine immunization and implementation of SIAs. In addition to the primary objective, measles SIAs provide the platform for delivery of other child survival interventions, which attracts high-level political support, allows for resources to be pooled, and increases community participation (9).
As countries with high measles disease burden approach the Global Immunization Vision and Strategy goal of a 90% reduction in global measles mortality by 2010, major challenges should be addressed. First, accelerated measles mortality reduction activities (e.g., SIAs coupled with further efforts to improve routine MCV1 coverage) need to be successfully

[^7]implemented in the South-East Asian Region, especially in India, which contributes substantially to the global burden of measles. Second, to sustain the current reduction in measles deaths, vaccination systems need to be improved to ensure that $>90 \%$ of infants receive their MCV1 on schedule. Third, countries need to monitor accumulation of susceptible children (by evaluating routine MCV1 and SIA coverage data by birth cohort) and conduct follow-up SIAs when the number of susceptible children approaches the size of a birth cohort. Fourth, disease surveillance systems need to be strengthened at all levels to enable case-based surveillance with testing of clinical specimens from all suspected cases. Fifth, measles case management should be improved (e.g., by including use of vitamin A). Finally, further efforts are needed to ensure sustainability of measles control activities. Recent shortfalls in the donor funds available to support measles mortality reduction activities (10) make increased country responsibility and political commitment critical for both achieving and sustaining the goal of a 90% measles mortality reduction by 2010 .

References

1. World Health Organization, United Nations Children's Fund. Measles mortality reduction and regional elimination strategic plan 2001-2005. Geneva, Switzerland: World Health Organization; 2001. Available at http://www.who.int/vaccines-documents/docspdf01/www573.pdf.
2. World Health Organization. Global immunization vision and strategy 2006-2015. Geneva, Switzerland: World Health Organization; 2005. Available at http://www.who.int/vaccines-documents/docspdf05/givs_ final_en.pdf.
3. CDC. Progress in reducing global measles deaths, 1999-2004. MMWR 2006;55:247-9.
4. CDC. Progress in global measles control and mortality reduction, 2000-2006. MMWR 2007;56:1237-41.
5. World Health Organization, United Nations Children's Fund. WHO/ UNICEF reviewofnationalimmunizationcoverage, 1980-2006.Geneva, Switzerland: World Health Organization; 2007. Available at http://www. who.int/immunization_monitoring/routine/immunization_coverage/ en/index4.html.
6. World Health Organization. Module on best practices for measles surveillance. Geneva, Switzerland: World Health Organization; 2001. Available at http://www.who.int/vaccines-documents/docspdf01/www 617.pdf.
7. Wolfson L, Strebel P, Gacic-Dobo M, et al. Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 2007;369:191-200.
8. United Nations Secretariat, Population Division, Department of Economic and Social Affairs. World population prospects: the 2006 revision. New York, NY: United Nations Secretariat; 2007. Available at http://www.un.org/esa/population/publications/wpp2006/English.pdf.
9. CDC. Progress in measles control-Kenya, 2002-2007. MMWR 2007; 56:969-72.
10. American Red Cross. Urgent funding needed to reach the 2010 measles goal. Washington, DC: American Red Cross; 2008. Available at http:// www.redcross.org/pressrelease/0,1077,0_314_8274,00.html.

Notice to Readers

National Influenza Vaccination Week December 8-14, 2008

To help raise awareness regarding the seriousness of influenza and the importance of annual vaccination throughout the influenza season (i.e., including into December, January, and beyond), the U.S. Department of Health and Human Services, National Influenza Vaccine Summit, CDC, and other partners are conducting activities during the third annual National Influenza Vaccination Week, December 8-14, 2008.
Throughout this week, CDC will highlight the importance of preventing influenza by vaccination of persons at high risk, their close contacts, and all those who want to be protected from influenza. CDC, Families Fighting Flu, and other partners also have designated Tuesday, December 9, as Children's Flu Vaccination Day to put a special focus on the importance of influenza vaccination to prevent influenza and its complications in children. Thursday, December 11, is Senior Vaccination Day, emphasizing the importance of vaccinating older persons, and

Friday, December 12, is designated as Health-Care Worker Vaccination Day, promoting influenza vaccination of healthcare workers.
Annual influenza vaccination is recommended for the following persons: children aged 6 months -18 years; pregnant women; persons aged ≥ 50 years; persons with certain chronic medical conditions; household contacts and caregivers of children aged <5 years (including household contacts and caregivers of children aged <6 months); children or adults with chronic health conditions; health-care workers; anyone else who wishes to decrease their risk of influenza (1).
Posters and educational materials for National Influenza Vaccination Week are available at http://www.cdc.gov/fu/ professionals/flugallery. Additional influenza information for health-care professionals and patients is available at http:// www.cdc.gov/flu.

Reference

1. CDC. Prevention and control of influenza: recommendations of the Advisory Committee on Immunization Practices (ACIP), 2007. MMWR 2007;56(No. RR-6).

TABLE 1. Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) - United States, week ending November 29, 2008 (48th week)*

Disease	Current week	$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	5-year weekly average ${ }^{\dagger}$	Total casesreported for previous years					States reporting cases during current week (No.)
				2007	2006	2005	2004	2003	
Anthrax	-	-	-	1	1	-	-	-	
Botulism:									
foodborne	-	12	1	32	20	19	16	20	
infant	2	83	2	85	97	85	87	76	PA (1), MN (1)
other (wound and unspecified)	3	21	1	27	48	31	30	33	CA (3)
Brucellosis	1	82	2	131	121	120	114	104	FL (1)
Chancroid	1	30	1	23	33	17	30	54	WA (1)
Cholera	-	2	0	7	9	8	6	2	
Cyclosporiasis§	1	119	1	93	137	543	160	75	NY (1)
Diphtheria	-	-	-	-	-	-	-	1	
Domestic arboviral diseases§,7:									
California serogroup	-	38	0	55	67	80	112	108	
eastern equine	-	2	0	4	8	21	6	14	
Powassan	-	1	0	7	1	1	1	-	
St. Louis	-	8	0	9	10	13	12	41	
western equine	-	-	-	-	-	-	-	-	
Ehrlichiosis/Anaplasmosis§,**:									
Ehrlichia chaffeensis	5	777	8	828	578	506	338	321	MN (3), GA (1), TN (1)
Ehrlichia ewingii	-	7	-	-	-	-	-	-	
Anaplasma phagocytophilum	5	404	12	834	646	786	537	362	MN (5)
undetermined	1	64	1	337	231	112	59	44	NY (1)
Haemophilus influenzae, ${ }^{\dagger \dagger}$									
invasive disease (age <5 yrs):									
serotype b	1	25	0	22	29	9	19	32	MN (1)
nonserotype b	2	148	2	199	175	135	135	117	NC (1), FL (1)
unknown serotype	1	171	4	180	179	217	177	227	AR (1)
Hansen disease§	1	67	2	101	66	87	105	95	FL (1)
Hantavirus pulmonary syndrome§	-	14	1	32	40	26	24	26	
Hemolytic uremic syndrome, postdiarrheal§	3	203	3	292	288	221	200	178	NC (1), CA (2)
Hepatitis C viral, acute	6	745	18	849	766	652	720	1,102	NY (1), PA (1), MD (1), NC (1), TN (2)
HIV infection, pediatric (age <13 years)§§	-	-	5	-	-	380	436	504	
Influenza-associated pediatric mortalitys,17\%	-	90	0	77	43	45	-	N	
Listeriosis	6	581	15	808	884	896	753	696	NY (1), KS (1), NC (1), FL (1), CA (2)
Measles***	-	132	0	43	55	66	37	56	
Meningococcal disease, invasive ${ }^{\text {ttt }}$									
A, C, Y, \& W-135	2	245	5	325	318	297	-	-	MN (1), FL (1)
serogroup B	-	137	3	167	193	156	-	-	
other serogroup	-	30	1	35	32	27	-	-	
unknown serogroup	2	550	11	550	651	765	-	-	NYC (1), IN (1)
Mumps	1	354	17	800	6,584	314	258	231	FL (1)
Novel influenza A virus infections	-	1	-	4	N	N	N	N	
Plague	-	1	0	7	17	8	3	1	
Poliomyelitis, paralytic	-	-	-	-	-	1	-	-	
Polio virus infection, nonparalytic§	-	-	-	-	N	N	N	N	
Psittacosis§	1	10	0	12	21	16	12	12	PA (1)
Qfever§,\$§§ total:	-	104	1	171	169	136	70	71	
acute	-	93	-	-	-	-	-	-	
chronic	-	11	-	-	-	-	-	-	
Rabies, human	-	-	0	1	3	2	7	2	
Rubella919]	-	16	-	12	11	11	10	7	
Rubella, congenital syndrome	-	-	-	-	1	1	-	1	
SARS-CoV§,****	-	-	-	-	-	-	-	8	
Smallpox§	-	-	-	-	-	-	-	-	
Streptococcal toxic-shock syndrome§	3	118	1	132	125	129	132	161	NY (3)
Syphilis, congenital (age <1 yr)	-	195	8	430	349	329	353	413	
Tetanus	-	12	1	28	41	27	34	20	
Toxic-shock syndrome (staphylococcal)§	1	60	2	92	101	90	95	133	CA (1)
Trichinellosis	-	6	0	5	15	16	5	6	
Tularemia	-	91	2	137	95	154	134	129	
Typhoid fever	2	362	5	434	353	324	322	356	TX (1), CA (1)
Vancomycin-intermediate Staphylococcus aureus§	-	29	0	37	6	2	-	N	
Vancomycin-resistant Staphylococcus aureus§	-	-	-	2	1	3	1	N	
Vibriosis (noncholera Vibrio species infections)§	6	411	3	447	N	N	N	N	CA (6)
Yellow fever	-	-	-	-	-	-	-	-	

See Table 1 footnotes on next page.

TABLE 1. (Continued) Provisional cases of infrequently reported notifiable diseases ($<1,000$ cases reported during the preceding year) United States, week ending November 29, 2008 (48th week)*
一: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts.

* Incidence data for reporting year 2008 are provisional, whereas data for 2003, 2004, 2005, 2006, and 2007 are finalized.
\dagger Calculated by summing the incidence counts for the current week, the 2 weeks preceding the current week, and the 2 weeks following the current week, for a total of 5 preceding years. Additional information is available at http://www.cdc.gov/epo/dphsi/phs/files/5yearweeklyaverage.pdf.
§ Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 and 2008 for the domestic arboviral diseases and influenza-associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
II Includes both neuroinvasive and nonneuroinvasive. Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, VectorBorne, and Enteric Diseases (ArboNET Surveillance). Data for West Nile virus are available in Table II.
** The names of the reporting categories changed in 2008 as a result of revisions to the case definitions. Cases reported prior to 2008 were reported in the categories: Ehrlichiosis, human monocytic (analogous to E. chaffeensis); Ehrlichiosis, human granulocytic (analogous to Anaplasma phagocytophilum), and Ehrlichiosis, unspecified, or other agent (which included cases unable to be clearly placed in other categories, as well as possible cases of E. ewingii).
${ }^{\dagger \dagger}$ Data for H. influenzae (all ages, all serotypes) are available in Table II.
§§ Updated monthly from reports to the Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention. Implementation of HIV reporting influences the number of cases reported. Updates of pediatric HIV data have been temporarily suspended until upgrading of the national HIV/AIDS surveillance data management system is completed. Data for HIV/AIDS, when available, are displayed in Table IV, which appears quarterly.
ITI Updated weekly from reports to the Influenza Division, National Center for Immunization and Respiratory Diseases. There are no reports of confirmed influenza-associated pediatric deaths for the current 2008-09 season.
*** No measles cases were reported for the current week.
${ }^{\dagger \dagger \dagger}$ Data for meningococcal disease (all serogroups) are available in Table II.
$\$ \S \$ \ln 2008, Q$ fever acute and chronic reporting categories were recognized as a result of revisions to the Q fever case definition. Prior to that time, case counts were not differentiated with respect to acute and chronic Q fever cases.
आाๆा No rubella cases were reported for the current week.
**** Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases.

FIGURE I. Selected notifiable disease reports, United States, comparison of provisional 4-week totals November 29, 2008, with historical data

* Ratio of current 4-week total to mean of 154-week totals (from previous, comparable, and subsequent 4-week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4 -week totals.

Notifiable Disease Data Team and 122 Cities Mortality Data Team

 Patsy A. HallDeborah A. Adams Rosaline Dhara
Willie J. Anderson Michael S. Wodajo
Lenee Blanton
Pearl C. Sharp

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Chlamydia ${ }^{\text {a }}$					Coccidiodomycosis					Cryptosporidiosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 week		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	7,763	21,247	28,892	995,239	1010488	196	122	341	6,239	7,038	55	98	427	7,007	10,648
New England	599	709	1,516	34,120	32,673	-	0	1	1	2	-	5	39	290	325
Connecticut	154	210	1,093	10,393	9,747	N	0	0	N	N	-	0	37	37	42
Maine§	-	51	72	2,289	2,337	N	0	0	N	N	-	1	6	42	52
Massachusetts	326	331	624	16,017	14,742	N	0	0	N	N	-	1	9	91	128
New Hampshire	19	41	64	1,956	1,921	-	0	1	1	2	-	1	4	56	47
Rhode Island§	100	54	208	2,754	2,952	-	0	0	-	-	-	0	2	7	11
Vermont§	-	15	52	711	974	N	0	0	N	N	-	1	7	57	45
Mid. Atlantic	1,725	2,834	4,970	135,630	132,393	-	0	0	-	-	5	12	34	669	1,323
New Jersey	182	412	535	19,225	19,934	N	0	0	N	N	-	0	2	26	65
New York (Upstate)	625	542	2,177	25,227	25,668	N	0	0	N	N	5	4	17	252	235
New York City	479	994	3,415	52,976	47,461	N	0	0	N	N	-	2	6	97	97
Pennsylvania	439	813	1,049	38,202	39,330	N	0	0	N	N	-	5	15	294	926
E.N. Central	621	3,502	4,373	159,478	165,517	-	1	3	38	34	5	25	122	1,852	1,822
Illinois	-	1,062	1,711	45,865	49,734	N	0	0	N	N	-	2	7	104	194
Indiana	235	375	688	18,755	19,392	N	0	0	N	N	-	3	41	177	106
Michigan	338	834	1,226	40,545	34,237	-	0	3	29	23	1	5	13	240	199
Ohio	11	828	1,261	39,240	43,934	-	0	1	9	11	3	6	59	661	546
Wisconsin	37	334	612	15,073	18,220	N	0	0	N	N	1	8	46	670	777
W.N. Central	306	1,268	1,700	59,355	58,684	-	0	77	4	8	11	15	71	915	1,553
lowa		165	240	8,182	8,102	N	0	0	N	N	1	3	30	268	604
Kansas	65	181	529	8,505	7,600	N	0	0	N	N	1	1	8	81	141
Minnesota		264	373	11,891	12,577	-	0	77	-	-	6	5	15	217	269
Missouri	188	485	566	22,539	21,641	-	0	2	4	8	1	3	13	159	176
Nebraska§	-	88	252	4,067	4,764	N	0	0	N	N	2	2	8	109	170
North Dakota	1	33	65	1,484	1,617	N	0	0	N	N	-	0	51	7	27
South Dakota	52	55	85	2,687	2,383	N	0	0	N	N	-	1	9	74	166
S. Atlantic	1,548	3,589	7,609	172,510	196,478	-	0	1	4	5	26	18	46	916	1,199
Delaware	70	67	150	3,433	3,235	-	0	1	1	-	1	0	2	11	20
District of Columbia	56	126	207	6,159	5,540	-	0	0	-	2	-	0	2	10	3
Florida	593	1,359	1,570	63,543	52,935	N	0	0	N	N	16	7	35	438	630
Georgia	-	205	1,338	17,186	39,269	N	0	0	N	N	8	4	13	220	225
Maryland ${ }^{\text {® }}$	196	450	696	21,026	20,918	-	0	1	3	3	1	0	4	37	34
North Carolina	-	0	4,783	5,901	24,581	N	0	0	N	N	-	0	16	67	113
South Carolina§	209	465	3,045	24,008	24,274	N	0	0	N	N	-	1	4	47	81
Virginia§	424	620	1,059	28,599	22,745	N	0	0	N	N	-	1	4	67	82
West Virginia	-	57	96	2,655	2,981	N	0	0	N	N	-	0	3	19	11
E.S. Central	603	1,566	2,394	75,367	76,850	-	0	0	-	-	-	3	9	151	603
Alabama ${ }^{\text {¢ }}$	14	458	589	19,734	23,440	N	0	0	N	N	-	1	6	62	119
Kentucky	130	239	373	11,234	7,928	N	0	0	N	N	-	0	4	31	247
Mississippi	147	378	1,048	18,785	20,287	N	0	0	N	N	-	0	2	16	101
Tennessee§	312	529	792	25,614	25,195	N	0	0	N	N	-	1	6	42	136
W.S. Central	195	2,777	4,426	130,602	114,957	-	0	1	3	2	3	5	144	1,346	428
Arkansas§	-	278	455	12,851	9,023	N	0	0	N	N	-	0	6	37	60
Louisiana	195	417	775	19,871	18,217	-	0	1	3	2	-	1	5	54	61
Oklahoma	-	195	392	7,668	11,729	N	0	0	N	N	3	1	16	128	116
Texas§	-	1,906	3,923	90,212	75,988	N	0	0	N	N	-	2	129	1,127	191
Mountain	686	1,252	1,811	58,486	68,213	124	86	170	4,085	4,436	2	9	37	498	
Arizona	419	470	651	21,955	22,990	124	86	168	4,006	4,287	1	1	9	87	51
Colorado	248	212	588	10,116	16,043	N	0	0	N	N	-	1	12	108	206
Idaho§	4	65	314	3,680	3,392	N	0	0	N	N	1	1	5	63	461
Montana§	-	58	363	2,414	2,328	N	0	0	N	N	-	1	6	39	65
Nevada§	-	179	416	8,242	8,908	-	1	6	44	63	-	0	1	1	36
New Mexico§	-	133	561	5,859	8,340	-	0	3	28	22	-	1	23	148	122
Utah	-	113	253	4,840	5,110	-	0	3	5	61	-	0	6	35	1,893
Wyoming§	15	30	58	1,380	1,102	-	0	1	2	3	-	0	4	17	54
Pacific	1,480	3,700	4,676	169,691	164,723	72	33	217	2,104	2,551	3	8	29	370	507
Alaska	70	88	129	4,098	4,488	N	0	0	N	N	-	0	1	3	3
California	820	2,878	4,115	133,470	128,763	72	33	217	2,104	2,551	-	5	14	225	263
Hawaii	-	102	155	4,729	5,273	N	0	0	N	N	-	0	1	2	6
Oregon§	415	191	631	9,815	8,857	N	0	0	N	N	-	1	4	50	123
Washington	175	372	634	17,579	17,342	N	0	0	N	N	3	2	16	90	112
American Samoa	-	0	20	73	95	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	-		-	-	-	-	-	-	-		-			-
Guam	-	5	24	123	774	-	0	0	-	-	-	0	0	-	-
Puerto Rico	44	121	612	6,392	6,734	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	12	23	502	150	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional. Data for HIV/AIDS, AIDS, and TB, when available, are displayed in Table IV, which appears quarterly.

Chlamydia refers to genital infections caused by Chlamydia trachomatis.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Giardiasis					Gonorrhea					Haemophilus influenzae, invasive All ages, all serotypes ${ }^{\dagger}$				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	196	308	1,158	15,680	17,124	1,857	5,945	8,913	273,555	325,996	26	48	173	2,309	2,202
New England	5	24	49	1,162	1,381	98	102	227	4,835	5,171	-	3	12	136	168
Connecticut	-	6	11	278	345	41	51	199	2,361	2,001	-	0	9	40	44
Maine§	5	3	12	170	183	-	1	6	84	114	-	0	2	16	13
Massachusetts	-	9	17	343	575	55	39	90	1,981	2,490	-	1	5	57	83
New Hampshire	-	2	11	140	33	1	2	6	94	133	-	0	1	9	17
Rhode Island§	-	1	8	76	79	1	6	13	289	377	-	0	1	6	8
Vermont§	-	3	13	155	166	-	0	5	26	56	-	0	3	8	3
Mid. Atlantic	30	60	131	2,937	2,974	336	625	1,028	30,113	33,546	9	10	31	452	427
New Jersey		7	14	302	385	43	96	167	4,604	5,624	-	1	7	71	65
New York (Upstate)	18	23	111	1,109	1,085	84	121	545	5,545	6,367	6	3	22	139	125
New York City	1	15	27	743	798	102	179	636	9,885	9,770	-	1	6	76	93
Pennsylvania	11	15	45	783	706	107	219	394	10,079	11,785	3	4	8	166	144
E.N. Central	18	47	78	2,291	2,687	332	1,234	1,647	56,698	67,154	1	7	28	334	334
Illinois		10	24	509	830	-	370	589	15,932	18,694	-	2	7	102	106
Indiana	N	0	0	N	N	88	149	284	7,532	8,288	-	1	20	66	54
Michigan	2	11	21	524	568	229	327	657	15,249	14,264	-	0	3	18	26
Ohio	14	17	31	830	759	5	301	531	13,914	19,599	1	2	6	121	95
Wisconsin	2	9	19	428	530	10	90	175	4,071	6,309	-	1	2	27	53
W.N. Central	64	27	621	1,881	1,393	61	317	425	15,001	18,128	3	3	24	183	130
Iowa	4	6	17	299	290	-	28	48	1,410	1,792		0	1	2	1
Kansas	1	3	11	154	173	15	41	130	2,112	2,141	1	0	3	16	11
Minnesota	54	0	575	666	168		57	92	2,597	3,234	2	0	21	56	56
Missouri	2	8	22	423	492	38	149	203	7,307	9,268	-	1	6	69	38
Nebraska§	3	4	10	193	149	-	25	47	1,158	1,346	-	0	2	27	18
North Dakota	-	0	36	23	23	-	2	6	91	110	-	0	3	13	6
South Dakota	-	2	10	123	98	8	7	15	326	237	-	0	0	-	-
S. Atlantic	39	55	87	2,577	2,843	433	1,201	3,072	57,885	76,806	11	11	29	619	550
Delaware	-	1	3	39	40	12	19	44	,948	1,213	-	0	2	7	8
District of Columbia	$\bar{\square}$	1	5	52	70	19	47	101	2,367	2,192	7	0	2	11	3
Florida	32	23	57	1,227	1,186	180	449	549	21,037	21,508	7	3	10	171	151
Georgia	-	9	27	511	633	1	112	560	6,557	16,233	-	2	9	133	110
Maryland§	5	5	12	234	252	48	117	206	5,649	6,215	1	2	6	88	80
North Carolina	N	0	0	N	N	-	0	1,949	2,638	13,339	3	1	9	72	51
South Carolina§	-	2	6	110	113	63	187	830	8,646	9,428	-	1	7	46	49
Virginia§	2	8	39	352	503	110	177	486	9,423	5,795	-	1	6	73	73
West Virginia	-	1	5	52	46	-	13	26	620	883	-	0	3	18	25
E.S. Central	1	9	21	430	529	223	556	945	26,882	29,936	-	2	8	118	130
Alabama§	-	5	12	239	245	5	177	287	7,825	10,070	-	0	2	18	28
Kentucky	N	0	0	N	N	44	91	153	4,252	3,111	-	0	1	2	9
Mississippi	N	0	0	N	N	59	131	401	6,674	7,788	-	0	2	13	9
Tennessee§	1	4	13	191	284	115	163	297	8,131	8,967	-	2	6	85	84
W.S. Central	3	7	41	401	407	57	953	1,355	44,358	47,804	1	2	29	97	93
Arkansas§	2	3	8	131	142	-	86	167	4,176	3,924	1	0	3	10	9
Louisiana	-	2	10	120	134	57	173	317	8,467	10,473	-	0	2	8	8
Oklahoma	1	3	35	150	131	-	66	124	2,903	4,520	-	1	21	71	66
Texas§	N	0	0	N	N	-	636	1,102	28,812	28,887	-	0	3	8	10
Mountain	3	28	60	1,349	1,722	83	210	338	9,708	12,844	1	5	14	258	233
Arizona	1	2	8	122	186	46	64	109	3,076	4,700	1	2	11	104	82
Colorado		11	27	521	535	37	58	100	2,847	3,130	-	1	4	52	55
Idaho§	2	4	14	183	192	-	3	13	165	250	-	0	4	12	7
Montana§	-	1	9	75	106	-	2	10	95	112	-	0	1	2	2
Nevada§	-	1	8	87	135	-	40	130	1,901	2,221	-	0	2	14	11
New Mexico§	-	1	7	81	112	-	24	104	1,094	1,617	-	0	4	34	39
Utah	-	5	22	256	414	-	10	36	418	742	-	0	6	36	32
Wyoming§	-	0	3	24	42	-	2	9	112	72	-	0	2	4	5
Pacific	33	54	185	2,652	3,188	234	603	746	28,075	34,607	-	2	7	112	137
Alaska	1	2	10	, 94	, 75	9	10	24	464	, 523	-	0	2	16	15
California	32	35	91	1,742	2,135	158	510	657	23,331	28,920	-	0	3	25	46
Hawaii	-	1	5	39	72		11	22	517	613	-	0	2	18	11
Oregon§	-	8	18	404	436	42	23	48	1,148	1,124	-	1	4	50	62
Washington	-	8	87	373	470	25	55	90	2,615	3,427	-	0	3	3	3
American Samoa	-	0	0	-	-	-	0	1	3	3	-	0	0	-	-
C.N.M.I.	-		-	-	-	-	-	-	-		-	-		-	-
Guam	-	0	0	-	2	-	1	15	73	122	-	0	0	-	1
Puerto Rico	1	2	13	128	361	1	5	25	254	289	-	0	0	-	2
U.S. Virgin Islands	-	0	0	-	-	-	2	6	93	39	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
${ }^{\dagger}$ Data for H. influenzae (age <5 yrs for serotype b, nonserotype b, and unknown serotype) are available in Table I.
\& Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Hepatitis (viral, acute), by type ${ }^{\dagger}$										Legionellosis				
	Current week	A			$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	B			$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$					
		Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$			Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$		Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	10	48	171	2,221	2,631	22	68	259	3,115	3,988	21	46	140	2,521	2,422
New England	1	2	7	101	125	-	1	7	54	118	-	2	16	121	144
Connecticut		0	4	26	25	-	0	7	19	36	-	0	5	38	38
Maine§	1	0	2	11	4	-	0	2	11	15	-	0	2	9	7
Massachusetts	-	0	5	38	63	-	0	1	9	41	-	0	3	13	44
New Hampshire	-	0	2	12	12	-	0	2	9	5	-	0	5	26	8
Rhode Island ${ }^{\text {§ }}$	-	0	2	12	13	-	0	1	4	16	-	0	14	30	38
Vermont§	-	0	1	2	8	-	0	1	2	5	-	0	1	5	9
Mid. Atlantic	2	6	12	277	427	2	9	15	390	524	5	13	58	859	785
New Jersey	-	1	4	56	119	-	2	7	111	150	-	1	7	79	107
New York (Upstate)	-	1	6	59	70	1	1	4	60	83	3	5	19	310	216
New York City	-	2	6	97	148	-	2	6	83	113	-	2	12	107	176
Pennsylvania	2	1	6	65	90	1	2	7	136	178	2	6	33	363	286
E.N. Central	-	6	16	286	320	5	7	13	357	426	3	10	40	534	544
Illinois	-	1	10	85	112	-	1	5	83	125	-	1	7	66	105
Indiana	-	0	4	21	27	4	1	6	46	53	-	1	7	49	57
Michigan	-	2	7	109	90	-	2	6	115	111	-	2	16	146	157
Ohio	-	1	4	45	62	1	2	8	107	117	3	4	18	255	193
Wisconsin	-	0	2	26	29	-	0	1	6	20	-	0	3	18	32
W.N. Central	-	5	29	239	157	-	2	9	92	105	-	2	9	115	109
lowa	-	1	7	104	43	-	0	2	14	24	-	0	2	15	11
Kansas	-	0	3	14	10	-	0	3	7	8	-	0	1	2	10
Minnesota	-	0	23	36	62	-	0	5	10	17	-	0	4	21	28
Missouri	-	1	3	41	20	-	1	4	53	38	-	1	5	54	43
Nebraska§	-	0	5	40	16	-	0	2	7	11	-	0	4	20	13
North Dakota	-	0	2	-	-	-	0	1	1	-	-	0	2	-	-
South Dakota	-	0	1	4	6	-	0	0	-	7	-	0	1	3	4
S. Atlantic	-	7	15	351	444	11	16	60	795	913	8	9	28	429	400
Delaware	U	0	1	7	8	U	0	3	10	14	-	0	2	11	11
District of Columbia	U	0	0	U	U	U	0	0	U	U	-	0	2	15	15
Florida	-	2	8	137	139	10	6	12	310	312	6	3	7	139	133
Georgia	-	1	4	45	64	1	3	6	129	139	-	1	4	32	38
Maryland§	-	1	3	37	71	-	2	4	75	107	-	2	10	109	78
North Carolina	-	0	9	59	57	-	0	17	74	124	-	0	7	36	42
South Carolina§	-	0	3	16	17	-	1	6	55	60	-	0	2	11	17
Virginia§	-	1	5	45	79	-	2	16	94	118	2	1	6	56	50
West Virginia	-	0	2	5	9	-	1	30	48	39	-	0	3	20	16
E.S. Central	-	1	9	76	101	1	7	13	337	350	2	2	10	107	94
Alabama§	-	0	4	12	20	-	2	6	93	120	-	0	2	15	11
Kentucky	-	0	3	29	19	-	2	5	82	71	1	1	4	53	46
Mississippi	-	0	2	5	8	1	0	3	42	37	-	0	1	1	-
Tennessee§	-	0	6	30	54	-	3	8	120	122	1	1	5	38	37
	2	4	55	188	244	-	12	131	575	867	-	1	23	70	126
Arkansas§		0	1	5	12	-	0	4	30	68	-	0	2	11	15
Louisiana	-	0	1	10	27	-	1	4	73	93	-	0	2	9	5
Oklahoma	-	0	3	7	10	-	2	22	105	122	-	0	6	10	6
Texas§	2	4	53	166	195	-	8	107	367	584	-	1	18	40	100
Mountain	1	4	12	196	212	-	4	10	178	197	1	2	6	73	103
Arizona	1	2	11	100	140	-	1	5	64	78	1	0	2	18	36
Colorado	-	0	3	35	24	-	0	3	30	34	-	0	2	10	21
Idaho§	-	0	3	18	8	-	0	2	8	13	-	0	1	3	6
Montana§	-	0	1	1	9	-	0	1	2	-	-	0	1	4	3
Nevada§	-	0	3	9	11	-	1	3	32	45	-	0	2	10	9
New Mexico§	-	0	3	17	11	-	0	2	10	12	-	0	1	6	10
Utah	-	0	2	13	6	-	0	5	28	10	-	0	2	22	15
Wyoming§	-	0	1	3	3	-	0	1	4	5	-	0	0	-	3
Pacific	4	11	51	507	601	3	7	30	337	488	2	4	18	213	117
Alaska	-	0	1	3	4	-	0	2	9	9	-	0	1	2	-
California	4	9	42	415	515	2	5	19	240	358	2	3	14	171	85
Hawaii	-	0	2	17	7	-	0	1	7	16	-	0	1	8	2
Oregon§	-	0	3	26	28	-	1	3	38	55	-	0	2	15	11
Washington	-	1	7	46	47	1	1	9	43	50	-	0	3	17	19
American Samoa	-	0	0	-	-	-	0	0	-	14	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	1	-	2	-	0	0	-	-
Puerto Rico	-	0	4	17	58	-	0	5	38	81	-	0	1	1	4
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
\dagger Data for acute hepatitis C, viral are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Lyme disease					Malaria					Meningococcal disease, invasive ${ }^{\dagger}$ All serotypes				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	286	390	1,439	24,258	25,398	8	22	136	967	1,200	4	18	53	962	978
New England	6	47	257	3,526	7,656	-	0	35	33	57	-	0	3	22	42
Connecticut	-	0	35	,	3,020	-	0	27	11	3	-	0	1	1	6
Maine§	3	2	73	810	491	-	0	0	-	8	-	0	1	6	7
Massachusetts	-	12	114	1,039	2,953	-	0	2	14	33	-	0	3	15	19
New Hampshire	-	11	139	1,336	882	-	0	1	4	9	-	0	0	-	3
Rhode Island§	-	0	0		177	-	0	8	-	-	-	0	0	-	3
Vermont§	3	2	40	341	133	-	0	1	4	4	-	0	1	-	4
Mid. Atlantic	254	197	1,010	14,194	10,481	-	4	14	226	367	1	2	6	111	120
New Jersey	-	32	209	2,701	3,042	-	0	2	-	68	-	0	2	10	18
New York (Upstate)	223	66	453	4,941	3,156	-	0	7	28	67	-	0	3	29	35
New York City	-	0	7	30	406	-	3	10	159	192	1	0	2	26	20
Pennsylvania	31	62	529	6,522	3,877	-	1	3	39	40	-	1	5	46	47
E.N. Central	1	9	135	1,166	2,075	-	2	7	120	130	1	3	9	159	156
Illinois	-	0	9	75	149	-	1	6	52	59	-	1	4	54	57
Indiana	-	0	8	38	48	-	0	2	5	10	1	0	4	25	27
Michigan	-	1	11	90	51	-	0	2	16	19	-	0	3	28	25
Ohio	-	1	5	45	32	-	0	3	29	25	-	1	4	38	35
Wisconsin	1	7	121	918	1,795	-	0	3	18	17	-	0	2	14	12
W.N. Central	1	8	740	1,180	617	1	1	9	64	54	1	2	8	90	66
lowa	-	1	8	82	122	-	0	3	8	3	-	0	3	18	15
Kansas	-	0	1	5	8	-	0	2	9	3	-	0	1	5	5
Minnesota	1	2	731	1,035	467	1	0	8	25	28	1	0	7	24	19
Missouri	-	0	4	42	10	-	0	4	14	8	-	0	3	25	17
Nebraska§	-	0	2	12	7	-	0	2	8	7	-	0	1	12	5
North Dakota	-	0	9	1	3	-	0	2	-	4	-	0	1	3	2
South Dakota	-	0	1	3	-	-	0	0	-	1	-	0	1	3	3
S. Atlantic	23	68	187	3,758	4,311	3	5	15	249	243	1	3	10	144	164
Delaware	3	12	37	721	685	-	0	1	2	4	-	0	1	2	1
District of Columbia	5	2	11	161	116	-	0	2	4	2	-	0	0	-	-
Florida	3	1	10	104	27	3	1	7	56	50	1	1	3	49	61
Georgia	-	0	3	22	10	-	1	5	48	37	-	0	2	16	24
Maryland§	11	30	125	1,878	2,483	-	1	6	63	67	-	0	4	17	19
North Carolina	1	0	7	44	46	-	0	7	27	21	-	0	4	12	22
South Carolina§	-	0	2	22	29	-	0	1	9	7	-	0	3	22	16
Virginia§	-	11	68	738	842	-	1	7	40	54	-	0	2	21	19
West Virginia	-	1	11	68	73	-	0	0	-	1	-	0	1	5	2
E.S. Central	-	0	3	43	51	-	0	2	18	35	-	1	6	50	49
Alabama§	-	0	3	10	13	-	0	1	4	6	-	0	2	10	9
Kentucky	-	0	1	3	6	-	0	1	4	8	-	0	2	8	12
Mississippi	-	0	1	1	1	-	0	1	1	2	-	0	2	11	11
Tennessee§	-	0	3	29	31	-	0	2	9	19	-	0	3	21	17
W.S. Central	-	2	11	97	75	1	1	64	74	85	-	2	13	100	93
Arkansas§	-	0	0	-	1	-	0	0	-	2	-	0	2	7	9
Louisiana	-	0	1	3	2	-	0	1	3	14	-	0	3	22	25
Oklahoma	-	0	1	-	-	-	0	4	2	5	-	0	5	17	16
Texas§	-	2	10	94	72	1	1	60	69	64	-	1	7	54	43
Mountain	-	0	4	40	44	-	1	3	29	62	-	1	4	51	64
Arizona	-	0	2	8	2	-	0	2	14	12	-	0	2	10	12
Colorado	-	0	2	7	-	-	0	1	4	23	-	0	1	14	21
Idaho§	-	0	2	9	9	-	0	1	3	5	-	0	1	4	7
Montana§	-	0	1	4	4	-	0	0	-	3	-	0	1	5	2
Nevada§	-	0	2	4	14	-	0	3	3	3	-	0	1	4	6
New Mexico§	-	0	2	6	5	-	0	1	2	5	-	0	1	7	2
Utah	-	0	0	-	7	-	0	1	3	11	-	0	1	5	12
Wyoming§	-	0	1	2	3	-	0	0	-	-	-	0	1	2	2
Pacific	1	5	11	254	88	3	3	10	154	167	-	5	19	235	224
Alaska	-	0	2	5	10	-	0	2	6	2	-	0	2	5	1
California	-	3	10	193	69	1	2	8	114	119	-	3	19	168	163
Hawaii	N	0	0	N	N	-	0	1	3	2	-	0	1	5	10
Oregon§	-	0	5	45	6	-	0	2	4	17	-	1	3	33	28
Washington	1	0	7	11	3	2	0	3	27	27	-	0	5	24	22
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	0	0	-	-
Guam	-	0	0	-	-	-	0	2	3	1	-	0	0	-	-
Puerto Rico	N	0	0	N	N	-	0	1	1	3	-	0	1	3	8
U.S. Virgin Islands	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Data for meningococcal disease, invasive caused by serogroups A, C, Y, \& W-135; serogroup B; other serogroup; and unknown serogroup are available in Table I.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Pertussis					Rabies, animal					Rocky Mountain spotted fever				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	115	169	849	8,144	9,000	27	96	151	4,381	5,666	7	41	195	2,166	1,916
New England	-	14	49	567	1,412	6	7	20	344	502	-	0	1	2	8
Connecticut	-	0	4	34	83	3	4	17	190	210	-	0	0	-	-
Maine ${ }^{\dagger}$	-	1	5	38	76	-	1	5	54	83	N	0	0	N	N
Massachusetts	-	10	33	420	1,089	N	0	0	N	N	-	0	1	1	7
New Hampshire	-	0	4	34	78	-	1	3	35	52	-	0	1	1	1
Rhode Island ${ }^{\dagger}$	-	0	25	29	30	N	0	0	N	N	-	0	0	-	-
Vermont ${ }^{\text {a }}$	-	0	4	12	56	3	1	6	65	157	-	0	0	-	-
Mid. Atlantic	8	19	43	922	1,193	4	22	50	1,192	950	1	2	5	77	79
New Jersey	-	1	9	50	211		0	0	-		-	0	2	12	31
New York (Upstate)	2	7	24	398	502	4	9	20	468	494	1	0	2	17	6
New York City	-	1	6	46	143	-	0	2	19	42	-	0	2	24	26
Pennsylvania	6	9	23	428	337	-	14	35	705	414	-	0	2	24	16
E.N. Central	20	22	189	1,332	1,429	1	3	28	244	402	-	1	13	127	59
Illinois		3	18	230	181	-	1	21	103	113	-	0	10	84	39
Indiana	5	1	15	100	53	-	0	2	10	12	-	0	3	8	5
Michigan	-	5	14	243	276	-	1	8	71	200	-	0	1	3	4
Ohio	15	8	176	691	596	1	1	7	60	77	-	0	4	31	10
Wisconsin	-	1	7	68	323	N	0	0	N	N	-	0	1	1	1
W.N. Central	13	15	142	977	682	6	3	12	181	251	-	5	36	499	361
lowa	-	1	9	71	142	1	0	5	28	31	-	0	2	6	17
Kansas	-	1	13	59	101	-	0	7	-	99	-	0	0	-	12
Minnesota	-	2	131	224	211	4	0	10	65	38	-	0	4	1	2
Missouri	10	5	48	378	95	1	0	9	52	38	-	4	35	469	311
Nebraska ${ }^{\dagger}$	3	2	33	217	68	-	0	0	-	-	-	0	4	20	14
North Dakota	-	0	5	1	7	-	0	8	24	21	-	0	0	-	-
South Dakota	-	0	3	27	58	-	0	2	12	24	-	0	1	3	5
S. Atlantic	12	15	50	789	881	10	37	101	1,911	2,074	4	15	70	836	909
Delaware	-	0	3	16	11	-	0	0	1,011	2,074	-	0	4	31	16
District of Columbia	1	0	1	7	9	-	0	0	-	-	-	0	2	7	3
Florida	6	5	20	272	202	-	0	77	135	128	1	0	3	18	15
Georgia	-	1	6	59	35	10	6	42	298	279	-	1	8	72	59
Maryland ${ }^{\dagger}$	4	2	9	113	113	-	8	17	399	409	-	1	7	67	62
North Carolina	-	0	38	79	288	-	9	16	430	457	3	2	55	441	578
South Carolina ${ }^{\dagger}$	-	2	22	103	72	-	0	0	-	46	-	1	9	51	61
Virginia ${ }^{\dagger}$	1	3	10	134	121	-	12	24	576	679	-	2	15	142	110
West Virginia	-	0	2	6	30	-	1	9	73	76	-	0	1	7	5
E.S. Central	1	7	16	306	443	-	3	7	165	147	-	3	23	305	271
Alabama ${ }^{\text {r }}$	1	1	5	48	87	-	0	0			-	1	8	86	93
Kentucky	1	1	8	92	28	-	0	4	45	18	-	0	1	1	5
Mississippi	-	2	6	89	249	-	0	1	2	2	-	0	1	6	20
Tennessee \dagger	-	1	6	77	79	-	2	6	118	127	-	2	19	212	153
W.S. Central	27	27	198	1,443	1,024	-	1	40	85	1,010	2	2	153	282	191
Arkansas ${ }^{\dagger}$	5	1	18	73	159	-	0	6	47	30	-	0	14	65	100
Louisiana	1	1	7	70	21	-	0	0	-	6	-	0	1	5	4
Oklahoma	-	0	26	53	49	-	0	32	36	45	2	0	132	170	49
Texas ${ }^{\dagger}$	21	22	179	1,247	795	-	0	12	2	929	-	1	8	42	38
Mountain	1	15	37	710	1,030	-	1	8	75	96	-	0	3	34	35
Arizona	1	3	10	187	201	N	0	0	N	N	-	0	2	15	9
Colorado	-	3	13	140	285	-	0	0	-	-	-	0	1	1	3
Idaho ${ }^{\dagger}$	-	0	5	29	43	-	0	0	-	12	-	0	1	1	4
Montana ${ }^{\dagger}$	-	1	11	77	46	-	0	2	8	21	-	0	1	3	1
Nevada ${ }^{+}$	-	0	7	19	37	-	0	4	5	13	-	0	2	2	-
New Mexico ${ }^{+}$	-	1	8	53	71	-	0	3	25	14	-	0	1	2	5
Utah	-	4	27	189	324	-	0	6	13	16	-	0	0	-	-
Wyoming ${ }^{\dagger}$	-	0	2	16	23	-	0	3	24	20	-	0	2	10	13
Pacific	33	21	303	1,098	906	-	3	13	184	234	-	0	1	4	3
Alaska	16	2	19	220	86	-	0	4	14	43	N	0	0	N	N
California		7	129	328	418	-	3	12	157	179	-	0	1	1	1
Hawaii	-	0	2	11	18	-	0	0	-	-	N	0	0	N	N
Oregon ${ }^{\dagger}$	-	3	9	156	115	-	0	4	13	12	N	0	1	3	2
Washington	17	5	169	383	269	-	0	0	-	-	N	0	0	N	N
American Samoa	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N
C.N.M.I.	-	0	0	-	-	-	0	0	-	-	N	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	N	0	0	N	N
Puerto Rico	-	0	0	-	-	-	1	5	59	47	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Salmonellosis					Shiga toxin-producing E. coli (STEC) ${ }^{\dagger}$					Shigellosis				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	424	863	2,110	41,099	43,425	45	86	250	4,765	4,501	256	428	1,227	18,186	17,084
New England	-	19	474	1,621	2,172	-	3	47	210	305	-	2	37	151	238
Connecticut	-	0	445	, 445	-431	-	0	44	44	71	-	0	36	36	44
Maine§	-	3	8	139	132	-	0	3	22	40	-	0	6	21	14
Massachusetts	-	14	52	741	1,263	-	1	11	80	138	-	2	5	78	149
New Hampshire	-	3	10	132	162	-	0	3	32	35	-	0	1	3	5
Rhode Island§	-	1	8	92	105	-	0	3	8	7	-	0	1	10	23
Vermont§	-	1	7	72	79	-	0	3	24	14	-	0	1	3	3
Mid. Atlantic	68	87	177	4,749	5,604	1	6	192	568	499	9	42	96	2,137	810
New Jersey		14	30	634	1,169	-	0	4	26	115	-	9	38	728	173
New York (Upstate)	49	25	73	1,320	1,343	1	3	188	395	194	7	10	35	545	150
New York City	2	22	53	1,186	1,240	-	1	5	57	47	1	12	35	666	259
Pennsylvania	17	27	78	1,609	1,852	-	1	8	90	143	1	3	65	198	228
E.N. Central	36	88	180	4,380	5,607	4	11	67	835	702	77	71	145	3,464	2,765
Illinois	-	21	67	1,022	1,876	-	1	8	81	130	-	16	29	723	679
Indiana	-	9	53	566	622	-	1	14	88	96	-	11	83	565	162
Michigan	3	17	38	823	907	3	2	39	205	116	5	2	8	141	80
Ohio	31	25	65	1,223	1,255	-	3	17	187	151	68	27	80	1,636	1,153
Wisconsin	2	15	50	746	947	1	4	20	274	209	4	8	39	399	691
W.N. Central	25	49	134	2,606	2,666	2	13	59	764	739	7	16	39	821	1,740
lowa		7	15	380	454	-	2	20	192	173	-	3	11	149	95
Kansas	3	7	31	447	394	-	1	7	51	50	2	1	5	60	25
Minnesota	6	13	70	672	641	1	3	21	190	220	4	5	25	283	223
Missouri	8	13	51	707	717	1	2	9	137	150	1	4	14	204	1,243
Nebraska§	5	4	13	218	258	-	1	29	142	90	-	0	3	12	27
North Dakota	3	0	35	45	45	-	0	20	3	9	-	0	15	37	5
South Dakota	-	2	11	137	157	-	1	4	49	47	-	0	9	76	122
S. Atlantic	161	252	458	11,203	11,405	13	13	50	741	643	46	57	149	2,824	4,249
Delaware	-	2	9	142	134	2	0	1	12	15	-	0	1	9	10
District of Columbia	-	1	4	50	59	-	0	1	12	-		0	3	13	18
Florida	85	102	174	4,835	4,550	4	2	18	142	136	15	16	75	763	2,063
Georgia	19	41	86	2,088	1,908	1	1	7	86	93	18	21	48	1,025	1,510
Maryland§	7	13	35	702	862	1	2	9	115	78	6	2	5	87	106
North Carolina	46	22	228	1,322	1,523	4	1	12	105	136	5	3	27	217	97
South Carolina§	1	20	55	1,006	1,076	,	1	4	40	14	1	9	32	500	191
Virginia§	3	18	49	913	1,110	1	3	25	200	153	1	4	13	194	174
West Virginia	-	3	25	145	183	-	0	3	29	18	-	0	61	16	80
E.S. Central	8	56	136	3,138	3,270	2	5	21	267	310	5	38	95	1,740	2,768
Alabama§	-	15	47	873	910	-	1	17	57	63	-	8	24	366	691
Kentucky	4	9	18	448	543	2	1	7	98	121	-	4	24	251	472
Mississippi	-	13	57	981	1,010	-	0	2	6	7	-	6	51	288	1,296
Tennessee§	4	15	56	836	807	-	2	7	106	119	5	17	43	835	309
W.S. Central	29	109	894	5,375	4,831	-	6	27	293	247	73	89	748	4,318	2,159
Arkansas§	11	12	40	735	786	-	1	3	41	42	11	10	27	536	82
Louisiana	-	16	49	916	936	-	0	1	2	11	-	10	25	549	474
Oklahoma	3	15	72	760	599	-	0	19	50	16	2	3	32	165	124
Texas§	15	49	794	2,964	2,510	-	4	11	200	178	60	59	702	3,068	1,479
Mountain	10	58	109	2,929	2,572	7	9	36	543	564	11	18	54	1,092	904
Arizona	6	19	47	1,029	937	2	1	5	67	103	11	9	35	587	520
Colorado		12	43	651	533	-	3	17	187	151	-	2	9	117	115
Idaho§	4	3	14	177	147	5	2	15	141	128	-	0	2	14	13
Montana§	-	2	10	111	100	-	0	3	31	-	-	0	1	8	24
Nevada§	-	3	9	168	247	-	0	2	10	30	-	4	13	214	62
New Mexico§	-	6	33	459	276	-	1	6	48	39	-	1	10	110	101
Utah	-	5	17	290	263	-	1	6	54	93	-	1	4	37	37
Wyoming§	-	1	4	44	69	-	0	1	5	20	-	0	1	5	32
Pacific	87	113	399	5,098	5,298	16	8	49	544	492	28	30	82	1,639	1,451
Alaska	4	1	4	53	, 85		0	1	7	4		0	1	1	8
California	59	81	286	3,730	4,001	7	5	39	289	255	24	27	74	1,414	1,166
Hawaii	-	5	15	238	292	-	0	5	13	30	-	1	3	40	67
Oregon§	-	6	20	376	309	-	1	8	62	74	-	2	10	86	73
Washington	24	13	103	701	611	9	2	16	173	129	4	2	13	98	137
American Samoa	-	0	1	2	-	-	0	0	-	-	-	0	1	1	5
C.N.M.I.	-	\bigcirc	-	-	17	-	-	\bigcirc	-	-	-	-	-	-	-
Guam	-	0	2	13	17	-	0	0	-	\bigcirc	-	0	3	15	17
Puerto Rico	1	10	41	471	861	-	0	1	2	1	-	0	4	18	24
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. —: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
† Includes E. coli O157:H7; Shiga toxin-positive, serogroup non-O157; and Shiga toxin-positive, not serogrouped.
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Streptococcal diseases, invasive, group A					Streptococcus pneumoniae, invasive disease, nondrug resistant ${ }^{\dagger}$ Age <5 years				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	
		Med	Max				Med	Max		
United States	36	96	259	4,717	4,778	18	34	166	1,483	1,673
New England	-	6	31	315	362	-	1	14	71	116
Connecticut	-	0	26	96	112	-	0	11	11	13
Maine§	-	0	3	25	26	-	0	1	2	3
Massachusetts	-	3	8	138	173	-	0	5	39	78
New Hampshire	-	0	2	26	26	-	0	1	11	12
Rhode Island§	-	0	9	18	8	-	0	2	7	8
Vermont§	-	0	2	12	17	-	0	1	1	2
Mid. Atlantic	7	18	43	923	873	5	4	19	198	294
New Jersey	-	3	11	138	158	-	1	6	59	61
New York (Upstate)	5	6	17	300	261	5	2	14	98	98
New York City	-	3	10	173	216	-	0	8	41	135
Pennsylvania	2	6	16	312	238	N	0	0	N	N
E.N. Central	1	19	42	852	895	1	6	23	244	286
Illinois	-	4	16	223	265	-	1	5	48	77
Indiana	-	2	11	122	109	-	0	14	36	19
Michigan	-	3	10	159	191	-	1	5	70	74
Ohio	1	5	14	244	212	1	1	5	55	58
Wisconsin	-	1	10	104	118	-	1	4	35	58
W.N. Central	-	5	39	358	318	3	2	16	137	97
lowa	-	0	0			-	0	0	-	-
Kansas	-	0	5	36	31	-	0	3	18	2
Minnesota	-	0	35	166	153	3	0	13	63	52
Missouri	-	2	10	83	80	-	1	2	31	25
Nebraska§	-	1	3	39	24	-	0	2	8	17
North Dakota	-	0	5	12	18	-	0	2	8	1
South Dakota	-	0	2	22	12	-	0	1	9	-
S. Atlantic	18	21	37	1,026	1,175	5	6	16	275	303
Delaware	1	0	2	9	10		0	0	-	
District of Columbia	-	0	4	24	17	-	0	1	2	3
Florida	8	5	10	254	292	1	1	4	62	61
Georgia	4	4	14	223	238	2	1	5	64	73
Maryland§	-	4	8	167	197	2	1	5	54	61
North Carolina	4	2	10	130	155	N	0	0	N	N
South Carolina§	-	1	5	65	96	-	1	4	47	54
Virginia§	1	3	12	122	144	-	1	6	38	44
West Virginia	-	0	3	32	26	-	0	1	8	7
E.S. Central	2	4	9	163	196	-	2	11	93	93
Alabama§	N	0	0	N	N	N	0	0	N	N
Kentucky	-	1	3	38	37	N	0	0	N	N
Mississippi	N	0	0	N	N	-	0	3	20	8
Tennessee§	2	3	6	125	159	-	1	9	73	85
W.S. Central	8	9	85	427	288	2	5	66	244	247
Arkansas ${ }^{\text {§ }}$		0	2	5	17	1	0	2	7	14
Louisiana	-	0	2	16	16	-	0	2	10	35
Oklahoma	4	2	19	108	64	-	1	7	59	54
Texas§	4	6	65	298	191	1	3	58	168	144
Mountain	-	10	22	500	536	2	4	12	206	224
Arizona	-	3	9	187	199	2	2	8	105	111
Colorado	-	3	8	137	133	-	1	4	55	44
Idaho§	-	0	2	15	18	-	0	1	5	2
Montana§	N	0	0	N	N	-	0	1	4	1
Nevada§	-	0	1	12	2	N	0	0	N	N
New Mexico§	-	2	8	92	97	-	0	3	17	38
Utah	-	1	5	51	82	-	0	3	19	28
Wyoming§	-	0	2	6	5	-	0	1	1	-
Pacific	-	3	10	153	135	-	0	2	15	13
Alaska	-	0	4	36	25	N	0	0	N	N
California	-	0	0	-	-	N	0	0	N	N
Hawaii	-	2	10	117	110	-	0	2	15	13
Oregon§	N	0	0	N	N	N	0	0	N	N
Washington	N	0	0	N	N	N	0	0	N	N
American Samoa	-	0	12	30	4	N	0	0	N	N
C.N.M.I.	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	14	-	0	0	-	-
Puerto Rico	N	0	0	N	N	N	0	0	N	N
U.S. Virgin Islands	-	0	0	-	-	N	0	0	N	N

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
\dagger Includes cases of invasive pneumococcal disease, in children aged <5 years, caused by S. pneumoniae, which is susceptible or for which susceptibility testing is not available (NNDSS event code 11717).
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area	Streptococcus pneumoniae, invasive disease, drug resistant ${ }^{\dagger}$										Syphilis, primary and secondary				
	A					B									
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	38	56	307	2,573	2,771	7	9	43	387	485	78	241	351	11,007	10,339
New England	-	1	49	100	106	-	0	8	13	13	-	6	13	280	252
Connecticut	-	0	48	55	55	-	0	7	5	4	-	0	6	30	33
Maine§ ${ }^{\text {® }}$	-	0	2	16	12	-	0	1	2	2	-	0	2	10	9
Massachusetts	-	0	0	-	2	-	0	0	-	2	-	4	11	201	149
New Hampshire	-	0	0	-	-	-	0	0	-	-	-	0	2	19	27
Rhode Island ${ }^{\text {§ }}$	-	0	3	16	20	-	0	1	4	3	-	0	5	13	31
Vermont§	-	0	2	13	17	-	0	1	2	2	-	0	5	7	3
Mid. Atlantic	2	4	13	217	152	-	0	2	20	29	25	33	51	1,564	1,417
New Jersey	-	0	0	-	-	-	0	0	-	-	1	4	10	190	207
New York (Upstate)	1	1	6	58	50	-	0	2	6	10	5	3	13	126	127
New York City	-	1	5	64	-	-	0	0	-	-	16	22	37	1,012	835
Pennsylvania	1	2	9	95	102	-	0	2	14	19	3	5	12	236	248
E.N. Central	6	13	64	632	723	1	2	14	88	118	5	20	34	937	822
Illinois	-	0	17	71	190	-	0	4	14	45	-	5	14	243	423
Indiana	-	2	39	187	153	-	0	11	21	24	-	2	10	127	51
Michigan	-	0	3	14	3	-	0	1	2	2	2	3	19	203	107
Ohio	6	8	17	360	377	1	1	4	51	47	2	6	15	311	183
Wisconsin	-	0	0	-	-	-	0	0	-	-	1	1	4	53	58
W.N. Central	-	2	115	142	184	-	0	9	10	41	-	8	15	355	329
lowa	-	0	0	-	-	-	0	0	-	-	-	0	2	15	18
Kansas	-	1	5	58	84	-	0	1	4	9	-	0	5	26	23
Minnesota	-	0	114	-	26	-	0	9	-	25	-	2	5	96	55
Missouri	-	1	8	78	58	-	0	1	3	3	-	5	10	209	222
Nebraska§	-	0	0	-	2	-	0	0	-	-	-	0	2	8	4
North Dakota	-	0	0	-	-	-	0	0	-	-	-	0	1	-	-
South Dakota	-	0	2	6	14	-	0	1	3	4	-	0	1	1	7
S. Atlantic	27	21	53	1,112	1,209	6	4	10	193	221	29	51	215	2,479	2,359
Delaware		0	1	3	11	-	0	0		2		0	4	15	15
District of Columbia	-	0	3	17	20	-	0	1	1	1	2	2	8	124	167
Florida	24	13	30	661	654	6	3	6	125	118	7	20	36	928	816
Georgia	3	7	23	345	457	-	1	5	56	92	1	11	175	532	456
Maryland§	-	0	2	4	1	-	0	1	1	-	1	6	14	297	310
North Carolina	N	0	0	N	N	N	0	0	N	N	10	5	19	260	292
South Carolina§	-	0	0	-	-	-	0	0	-	-	1	2	6	82	88
Virginia§	N	0	0	N	N	N	0	0	N	N	8	4	17	239	209
West Virginia	-	1	9	82	66	-	0	2	10	8	-	0	1	2	6
E.S. Central	2	5	15	251	253	-	1	4	43	36	11	21	37	1,045	842
Alabama§	N	0	0	N	N	N	0	0	N	N	2	8	17	414	354
Kentucky	-	1	6	71	26	-	0	2	12	3	1	1	7	78	53
Mississippi	-	0	2	4	55	-	0	1	1	-	1	3	19	161	108
Tennessee§	2	3	13	176	172	-	0	3	30	33	7	9	19	392	327
W.S. Central	1	2	7		85	-	0	2	12	11	1	41	61	1,969	1,744
Arkansas§	1	0	2	16	6	-	0	1	3	2	-	2	19	158	114
Louisiana	-	1	6	66	79	-	0	2	9	9	1	11	30	529	490
Oklahoma	N	0	0	N	N	N	0	0	N	N	-	1	5	54	59
Texas§	-	0	0	-	-	-	0	0	-	-	-	25	48	1,228	1,081
Mountain	-	1	7	35	56	-	0	2	6	13	-	9	22	404	492
Arizona	-	0	0	-	-	-	0	0	-	-	-	5	17	200	277
Colorado	-	0	0	-	-	-	0	0	-	-	-	2	7	91	48
Idaho§	N	0	0	N	N	N	0	0	N	N	-	0	2	6	1
Montana§	-	0	0	-	-	-	0	0	-	-	-	0	3	-	5
Nevada§	N	0	0	N	N	N	0	0	N	N	-	1	6	68	99
New Mexico§	-	0	1	2	-	-	0	0	-	-	-	1	4	36	41
Utah	-	0	7	30	40	-	0	2	6	11	-	0	2	-	17
Wyoming§	-	0	1	3	16	-	0	1	-	2	-	0	1	3	4
Pacific	N	0	1	2	3	-	0	1	2	3	7	44	65	1,974	2,082
Alaska	N	0	0	N	N	N	0	0	N	N	-	0	1	1	7
California	N	0	0	N	N	N	0	0	N	N	5	39	59	1,778	1,910
Hawaii	-	0	1	2	3	-	0	1	2	3	-	0	2	18	8
Oregon§	N	0	0	N	N	N	0	0	N	N	1	0	3	24	17
Washington	N	0	0	N	N	N	0	0	N	N	1	3	9	153	140
American Samoa	N	0	0	N	N	N	0	0	N	N	-	0	0	-	4
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-
Puerto Rico	-	0	0	-	-	-	0	0	-	-	1	3	11	152	155
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
\dagger Includes cases of invasive pneumococcal disease caused by drug-resistant S. pneumoniae (DRSP) (NNDSS event code 11720).
§ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE II. (Continued) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 2008, and December 1, 2007 (48th week)*

Reporting area						West Nile virus disease ${ }^{\dagger}$									
	Varicella (chickenpox)					Neuroinvasive					Nonneuroinvasive§				
	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \\ & \hline \end{aligned}$	Current week	Previous 52 weeks		$\begin{aligned} & \text { Cum } \\ & 2008 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cum } \\ & 2007 \end{aligned}$
		Med	Max				Med	Max				Med	Max		
United States	189	498	1,660	24,127	36,076	-	1	80	625	1,223	-	2	84	712	2,402
New England	4	11	68	476	2,356	-	0	2	6	5	-	0	1	3	6
Connecticut	-	0	38	-	1,339	-	0	2	5	2	-	0	1	3	2
Maine ${ }^{\text {l }}$	-	0	14	-	326	-	0	0	-	-	-	0	0	-	-
Massachusetts	-	0	1	1	-	-	0	0	-	3	-	0	0	-	3
New Hampshire	2	5	13	235	343	-	0	0	-	-	-	0	0	-	-
Rhode Island"	-	0	0	-	-	-	0	1	1	-	-	0	0	-	1
Vermontl]	2	6	17	240	348	-	0	0	-	-	-	0	0	-	-
Mid. Atlantic	39	47	80	2,096	4,425	-	0	8	45	22	-	0	5	19	11
New Jersey	N	0	0	N	N	-	0	1	3	1	-	0	1	4	1
New York (Upstate)	N	0	0	N	N	-	0	5	23	3	-	0	2	7	1
New York City	N	0	0	N	N	-	0	2	8	13	-	0	2	6	5
Pennsylvania	39	47	80	2,096	4,425	-	0	2	11	5	-	0	1	2	5
E.N. Central	65	134	336	6,114	10,277	-	0	7	43	112	-	0	5	22	65
Illinois		14	63	1,013	1,066	-	0	4	11	62	-	0	2	8	38
Indiana	-	0	222	-	222	-	0	1	2	14	-	0	1	1	10
Michigan	21	58	154	2,548	3,811	-	0	4	11	16	-	0	2	6	1
Ohio	41	48	128	2,137	4,193	-	0	3	16	13	-	0	2	3	10
Wisconsin	3	4	39	416	985	-	0	1	3	7	-	0	1	4	6
W.N. Central	24	21	145	1,139	1,476	-	0	6	45	249	-	0	23	172	739
lowa	N	0	0	N	N	-	0	3	5	12	-	0	1	5	18
Kansas	8	6	40	423	526	-	0	2	8	14	-	0	4	29	26
Minnesota	-	0	0	-	-	-	0	2	3	44	-	0	6	18	57
Missouri	16	10	51	647	868	-	0	3	11	61	-	0	1	7	16
Nebraskall	N	0	0	N	N	-	0	1	5	21	-	0	8	44	142
North Dakota	N	0	140	49	-	-	0	2	2	49	-	0	12	41	320
South Dakota	-	0	5	20	82	-	0	5	11	48	-	0	6	28	160
S. Atlantic	33	91	173	4,204	4,793	-	0	3	14	43	-	0	3	13	39
Delaware	3	1	5	+ 44	+47	-	0	0	-	1	-	0	1	1	-
District of Columbia	-	0	3	21	29	-	0	0	-	-	-	0	0	-	-
Florida	30	29	87	1,516	1,177	-	0	2	2	3	-	0	0	-	-
Georgia	N	0	0	N	N	-	0	1	4	23	-	0	1	4	27
Maryland ${ }^{\text {l }}$	N	0	0	N	N	-	0	2	7	6	-	0	2	7	4
North Carolina	N	0	0	N	N	-	0	0		4	-	0	0	-	4
South Carolinal	-	15	66	763	1,007	-	0	0	-	3	-	0	0	-	2
Virginial	-	22	81	1,230	1,436	-	0	0	-	3	-	0	1	1	2
West Virginia	3	12	66	630	1,097	-	0	1	1	-	-	0	0	-	-
	2	18	101	1,054	646	-	0	9	56	74	-	0	12	84	99
Alabamal	2	18	101	1,041	644	-	0	3	11	17	-	0	3	10	7
Kentucky	N	0	0	N	N	-	0	1	3	4	-	0	0	-	
Mississippi	-	0	2	13	2	-	0	6	32	48	-	0	10	67	86
Tennessee ${ }^{\text {l }}$	N	0	0	N	N	-	0	1	10	5	-	0	3	7	6
W.S. Central	16	122	886	7,174	9,533	-	0	7	56	269	-	0	8	58	158
Arkansas ${ }^{\text {d }}$	-	9	38	514	709	-	0	1	7	13	-	0	1	2	7
Louisiana	-	1	10	69	111	-	0	2	9	27	-	0	6	27	13
Oklahoma	N	0	0	N	N	-	0	1	2	59	-	0	1	5	48
Texas ${ }^{\text {¹ }}$	16	121	852	6,591	8,713	-	0	6	38	170	-	0	4	24	90
Mountain	1	36	90	1,745	2,505	-	0	12	99	288	-	0	23	184	1,040
Arizona	-	0	0	-	-	-	0	10	62	49	-	0	8	47	47
Colorado	-	15	43	778	987	-	0	4	13	99	-	0	12	64	477
Idaho"	N	0	0	N	N	-	0	1	3	11	-	0	6	30	120
Montanal	-	5	27	290	385	-	0	0	\bigcirc	37	-	0	2	5	165
Nevada"	N	0	0	N	N	-	0	2	9	2	-	0	3	7	10
New Mexicol	1	3	22	189	385	-	0	2	6	39	-	0	1	3	21
Utah	-	9	55	478	714	-	0	2	6	28	-	0	5	20	42
Wyoming ${ }^{\text {l }}$	-	0	4	10	34	-	0	0	-	23	-	0	2	8	158
Pacific	5	2	8	125	65	-	0	36	261	161	-	0	24	157	245
Alaska	5	1	5	68	35	-	0	0	-	-	-	0	0	-	-
California	-	0	0	-	-	-	0	36	257	154	-	0	19	143	226
Hawaii	-	1	6	57	30	-	0	0	-	-	-	0	0	-	-
Oregon ${ }^{\text {a }}$	N	0	0	N	N	-	0	2	3	7	-	0	4	13	19
Washington	N	0	0	N	N	-	0	1	1	-	-	0	1	1	-
American Samoa	N	0	0	N	N	-	0	0	-	-	-	0	0	-	-
C.N.M.I.	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Guam	-	1	17	62	233	-	0	0	-	-	-	0	0	-	-
Puerto Rico	4	8	20	388	681	-	0	0	-	-	-	0	0	-	-
U.S. Virgin Islands	-	0	0	-	-	-	0	0	-	-	-	0	0	-	-

C.N.M.I.: Commonwealth of Northern Mariana Islands.

U: Unavailable. -: No reported cases. N: Not notifiable. Cum: Cumulative year-to-date counts. Med: Median. Max: Maximum.

* Incidence data for reporting year 2008 are provisional.
+ Updated weekly from reports to the Division of Vector-Borne Infectious Diseases, National Center for Zoonotic, Vector-Borne, and Enteric Diseases (ArboNET Surveillance). Data for California serogroup, eastern equine, Powassan, St. Louis, and western equine diseases are available in Table I.
s Not notifiable in all states. Data from states where the condition is not notifiable are excluded from this table, except in 2007 for the domestic arboviral diseases and influenza-
associated pediatric mortality, and in 2003 for SARS-CoV. Reporting exceptions are available at http://www.cdc.gov/epo/dphsi/phs/infdis.htm.
${ }^{1}$ Contains data reported through the National Electronic Disease Surveillance System (NEDSS).

TABLE III. Deaths in 122 U.S. cities,* week ending November 29, 2008 (48th week)

Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total	Reporting area	All causes, by age (years)						P\& ${ }^{\dagger}$ Total
	All Ages	≥ 65	45-64	25-44	1-24	<1			All Ages	≥ 65	45-64	25-44	1-24	<1	
New England	415	297	83	17	7	11	36	S. Atlantic	817	527	190	61	16	21	51
Boston, MA	154	100	36	7	6	5	16	Atlanta, GA	U	U	U	U	U	U	U
Bridgeport, CT	U	U	U	U	U	U	U	Baltimore, MD	184	111	43	19	4	7	17
Cambridge, MA	8	6	2	-	-	-	-	Charlotte, NC	73	49	17	4	1	2	4
Fall River, MA	22	19	2	1	-	-	5	Jacksonville, FL	92	59	20	11	2	-	2
Hartford, CT	29	23	2	3	-	1	3	Miami, FL	122	82	21	15	1	3	5
Lowell, MA	24	18	4	2	-	-	-	Norfolk, VA	27	18	4	1	1	1	3
Lynn, MA	5	4	1	-	-	-	1	Richmond, VA	20	11	8	-	1	-	-
New Bedford, MA	15	9	5	1	-	-	1	Savannah, GA	47	33	10	1	-	3	6
New Haven, CT	U	U	U	U	U	U	U	St. Petersburg, FL	31	19	7	3	1	1	3
Providence, RI	44	37	7	-	-	-	2	Tampa, FL	124	86	32	3	1	2	7
Somerville, MA	1	1	-	-	-	-	-	Washington, D.C.	92	55	27	4	4	2	3
Springfield, MA	29	15	10	3	-	1	2	Wilmington, DE	5	4	1	-	-	-	1
Waterbury, CT	33	24	5	-	1	3	1	E.S. Central	621	406	152	33	16	14	49
Worcester, MA	51	41	9	-	-	1	5	Birmingham, AL	105	67	21	10	2	5	11
Mid. Atlantic	1,791	1,223	406	100	32	29	92	Chattanooga, TN	61	42	11	3	2	3	2
Albany, NY	41	, 24	9	2	3	3	2	Knoxville, TN	52	34	14	2	1	1	7
Allentown, PA	36	28	6	2	-	-	3	Lexington, KY	18	13	5	-	-	-	-
Buffalo, NY	73	54	16	1	-	1	7	Memphis, TN	164	104	48	5	5	2	19
Camden, NJ	17	6	4	4	2	1	1	Mobile, AL	69	48	13	4	2	2	1
Elizabeth, NJ	8	7	1	-	-	-	2	Montgomery, AL	17	10	4	2	1	-	-
Erie, PA	35	23	11	1	-	-	2	Nashville, TN	135	88	36	7	3	1	9
Jersey City, NJ	20	16	3	-	1	0	1	W.S. Central	863	529	232	65	20	17	49
New York City, NY	882	604	203	52	13	10	38	Austin, TX	54	37	14	2	2	1	8
Newark, NJ	25	9	9	3	2	2	-	Baton Rouge, LA	U	U	U	U	U	U	U
Paterson, NJ	12	5	5	2	7	-	2	Corpus Christi, TX	33	26	6	1	-	-	4
Philadelphia, PA	371	241	94	19	7	10	9	Dallas, TX	126	69	36	12	4	5	4
Pittsburgh, PA§	18	12	4	2	-	-	1	El Paso, TX	50	33	15	2	-	-	2
Reading, PA	31	26	3	2	2	,	4	Fort Worth, TX	61	35	23	1	1	1	-
Rochester, NY	98	76	12	6	2	2	8	Houston, TX	234	131	71	22	5	5	15
Schenectady, NY	15	9	5	-	1	-	4	Little Rock, AR	53	24	16	9	1	3	2
Scranton, PA	26	22	3	-1	1	-	2	New Orleans, LA ${ }^{\text {a }}$	U	U	U	U	U	\cup	\cup
Syracuse, NY	25	20	4	1	-	-	2	San Antonio, TX	129	91	20	9	7	2	8
Trenton, NJ	20	13	4	3	-	-	-	Shreveport, LA	42	32	9	-	1	-	6
Utica, NY	18	15	3	-	-	-	3	Tulsa, OK	81	51	22	7	1	-	-
Yonkers, NY	20	13	7	-		-	1	Mountain	908	575	217		19	16	
E.N. Central	1,540	1,056	349	66	23	44	100	Albuquerque, NM	908 98	575	17	12	1	16 1	11
Akron, OH	41	29	6	5	-	1	2	Boise, ID	41	32	7	1	1	-	1
Canton, OH	38	31	5	2	6	8	4	Colorado Springs, CO	47	28	12	5	1	1	1
Chicago, IL	273	169	74	14	6	8	28	Denver, CO	81	53	18	8	-	2	4
Cincinnati, OH	U	U	U	U	U	${ }^{7}$	U	Las Vegas, NV	208	123	54	21	7	3	16
Cleveland, OH	202	138	53	2	2	7	8	Ogden, UT	25	17	8	2	-	3	2
Columbus, OH	149	104	29	6	4	6	6	Phoenix, AZ	192	119	49	17	2	5	10
Dayton, OH	100	69	24	4	1	2	3	Pueblo, CO	20	13	5	1	-	1	2
Detroit, MI	124	59	43	10	5	7	5	Salt Lake City, UT	76	44	16	12	3	1	5
Evansville, IN	44	32	10	2	1	-	2	Tucson, AZ	120	79	31	4	4	2	6
Fort Wayne, IN	52	38	12	1	1	-	3								
Gary, IN	11	8	2	1	-	-	4	Pacific	1,119	748	274	53	17	27	103
Grand Rapids, MI	40	27	7	3	-	3	4	Berkeley, CA	8	6	1	1	-	-	1
Indianapolis, IN	158	111	30	8	2	7	10	Fresno, CA	U	U	U	U	U	U	U
Lansing, MI	34	27	6	1	-	-	1	Glendale, CA	33	24	8	1	?	-1	5
Milwaukee, WI	45	37	7	-	-	1	6	Honolulu, HI	55	36	13	3	2	1	7
Peoria, IL	28	24	4	-	-	-	5	Long Beach, CA	41	30	9	1	-	1	6
Rockford, IL	37	29	5	3	-	-	4	Los Angeles, CA	172	111	47	8	2	4	19
South Bend, IN	39	28	9	1	1	-	2	Pasadena, CA	20	16	3	-	-	1	1
Toledo, OH	72	55	12	3	1	1	3	Portland, OR	103	67	29	5	1	1	7
Youngstown, OH	53	41	11	-	-	1	4	Sacramento, CA	131	83	35	7	2	4	12
W.N. Central	444	295	104	18	12	14	31	San Diego, CA	97	65 54	26	3 5	1	2	11 9
Des Moines, IA	99	64	23	8	3	1	7	San Francisco, CA San Jose, CA	171	54	22 34	5 7	4	2	9
Duluth, MN	15	12	2	1	1	1	-	Santa Cruz, CA	17	124 12	34	1	1	1	15
Kansas City, KS	15	9	4	1	1	-	4	Seattle, WA	69	43	18	5	1	2	3
Kansas City, MO	63	43	13	1	4	3	4	Spokane, WA	44	30	12	2	-	2	4
Lincoln, NE	16	14	13	1	-	1	-	Tacoma, WA	70	47	15	4	3	1	3
Minneapolis, MN	38	20	13	3	-	2	4	Tacoma, WA	- 518	- 47	2,007	4	162	193	5
Omaha, NE	67	45	18	-	1	3	7	Total**	8,518	5,656	2,007	494	162	193	569
St. Louis, MO	36	19	11	2	2	1	2								
St. Paul, MN	50	36	9	3	1	1	5								
Wichita, KS	45	33	11	-	-	1	2								

U: Unavailable. -:No reported cases.

and by the week that the death certificate was filed. Fetal deaths are not included.
\dagger Pneumonia and influenza.

${ }^{1}$ Because of Hurricane Katrina, weekly reporting of deaths has been temporarily disrupted.
** Total includes unknown ages.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format. To receive an electronic copy each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's Internet server at http://www.cdc.gov/mmwr or from CDC's file transfer protocol server at ftp://fttp.cdc.gov/pub/publications/mmwr. Paper copy subscriptions are available through the Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone 202-512-1800.

Data in the weekly $M M W R$ are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Data are compiled in the National Center for Public Health Informatics, Division of Integrated Surveillance Systems and Services. Address all inquiries about the MMWR Series, including material to be considered for publication, to Editor, $M M W R$ Series, Mailstop E-90, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333 or to mmwrq@cdc.gov.
All material in the $M M W R$ Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.
Use of trade names and commercial sources is for identification only and does not imply endorsement by the U.S. Department of Health and Human Services.
References to non-CDC sites on the Internet are provided as a service to $M M W R$ readers and do not constitute or imply endorsement of these organizations or their programs by CDC or the U.S. Department of Health and Human Services. CDC is not responsible for the content of these sites. URL addresses listed in $M M W R$ were current as of the date of publication.

[^0]: *The response rate is the percentage of persons who completed interviews among all eligible persons, including those who were not successfully contacted. The cooperation rate is the percentage of persons who completed interviews among all eligible persons who were contacted.

[^1]: ${ }^{\dagger}$ For example, both of the following persons would be considered physically active under the 2008 Guidelines but would not be considered physically active under HP2010 objectives: a person who did moderate activity for 25 minutes, 7 days per week, and a person who did vigorous activity for 40 minutes, 2 days per week.
 \$ West: Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming; Midwest: Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin; Northeast: Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont; and South: Alabama, Arkansas, Delaware, District of Columbia, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, Oklahoma, South Carolina, Virginia, West Virginia, Tennessee, and Texas.
 ${ }^{9}$ Normal, overweight, and obese classifications are on the basis of body mass index, which is weight $(\mathrm{kg}) /$ height $(\mathrm{m})^{2}$. Normal: 18.5-24.9, overweight: $25.0-29.9$, and obese: ≥ 30.0.

[^2]: ** Available at http://www.health.gov/paguidelines/report.

[^3]: $\dagger \dagger$ Available at http://www.thecommunityguide.org/pa.

[^4]: *Environmental Protection Agency. 40 CFR part 82. Protection of stratospheric ozone: listing of substitutes for ozone depleting substances; n-Propyl bromide in solvent cleaning; final rule. Federal Register 2007;72:30142-67. Available at http://www.epa.gov/fedrgstr/EPA-AIR/2007/May/Day-30/a9707.pdf.
 ${ }^{\dagger}$ Environmental Protection Agency. 40 CFR part 82. Protection of stratospheric ozone: listing of substitutes for ozone depleting substances; n-Propyl bromide for use in adhesives, coatings, and aerosols; notice of proposed rulemaking. Federal Register 2007;72:30168-207. Available at http://www.epa.gov/fedrgstr/ EPA-AIR/2007/May/Day-30/a9706.pdf.
 § Available at http://www.cdc.gov/niosh/topics/dryclean.

[^5]: *Afghanistan, Angola, Bangladesh, Benin, Burkina Faso, Burundi, Cambodia, Cameroon, Central African Republic, Chad, Côte d'Ivoire, Democratic Republic of the Congo, Djibouti, Equatorial Guinea, Eritrea, Ethiopia, Gabon, Ghana, Guinea, Guinea-Bissau, India, Indonesia, Kenya, Laos, Liberia, Madagascar, Mali, Mozambique, Myanmar, Nepal, Niger, Nigeria, Pakistan, Papua New Guinea, Republic of the Congo, Rwanda, Senegal, Sierra Leone, Somalia, Sudan, Timor-Leste, Togo, Uganda, Tanzania, Vietnam, Yemen, and Zambia.
 ${ }^{\dagger}$ SIAs generally are carried out using two approaches. An initial, nationwide catch-up SIA targets all children aged 9 months-14 years; it has the goal of eliminating susceptibility to measles in the general population. Periodic follow-up SIAs then target all children born since the last SIA. Follow-up SIAs generally are conducted nationwide every 2-4 years and target children aged 9-59 months; their goal is to eliminate any measles susceptibility that has developed in recent birth cohorts and to protect children who did not respond to the first measles vaccination.

[^6]: § Second opportunity for immunization is provided to all children, including those who were not reached with MCV1 and those who were previously vaccinated (because approximately 15% of children vaccinated with a single dose at age 9 months will fail to develop immunity to measles).

 - Case-based surveillance includes investigation of every suspected measles case and routine reporting of detailed epidemiologic and laboratory data for each confirmed measles case.
 ** The Region of the Americas interrupted indigenous measles transmission in November 2002; cases reported since 2002 are imported or linked to importation.

[^7]: $\dagger \dagger$ The Measles Initiative comprises the American Red Cross, CDC, the United Nations Foundation, UNICEF, and WHO.

