Guide to Conducting
Experiments in the LSR

Rex, Mex, and GLvex

Arthur V. Hays, Lance M. Optican, Barry J. Richmond,
John W. McClurkin

Laboratory of Sensorimotor Research
National Eye Institute
National Institutes of Health

Rex At a Glance... 1

SPOT:

Data ACqUISTEION oottt e e 1
Data File Format. i 1
Laboratory Control i i 1
DiSplays . ..o 1
UserlInterface i e 1
PC to PC Communication.uutintineaennenn.. 2
Multi-Unit SOrters. e 2
Rex Structure and Operating System Environment 2
Availability 2
REX: A Unix-Based Multiple-Process System for Real-Time Data Acquisition and Control 3
Introduction. 3
Rex Structure 3
Previous Design Approach i 3
New AppProach.t 4
ReX Processeso 4
Data. . 4
ProcSwitch 4
N T Lo <P 5
It L 5
Running Line Displayo e 5
Window Display 5
Raster Displayo e 5
Laboratory Control i 6
State ConCePLS. . . ottt e 6
State Set Specification Language 7
Runtime Considerationsiuintit i i 7
Shared Data Structuresttt e 7
EventBuffer 7
Analog Buffer 8
Menu SyStem.o 8
DataFile Formats i, 8
Rex Header Block i e e 8
E-file Format. 9
A-file Format. 9
Data File ConsiStency . . . oot vttt e e et et 9
Data File Portability 9
DISCUSSION. . . ottt 10
References. 10
State Process Translator for REX 11
Introduction. 11

Page i

Process Control. 11

Spot Language Specification 11
Spot flle SECHIONS . . . o oot e 11
Include files. i 12
User defined actionsttt 12
Userdefined menus.t e 13
User defined functions 18
Realtime variablesot e 19
COMIMENLS . . o .ottt ettt et e e e e e 19
State set declaration.ttt 19
St . o et 20
Escapes . ..o 21
Error Handling: Abort List e 22
General Considerationsov vttt e 22
Example. 23
REX Actions Library 35
State Set Controls 36
(S]] P 36
set_times Pset timesttt 37
getClockTime, PgetClockTime.ot 38
Data Window Controls 39
awind 39
pre_post, Ppre post. 40
UW SBE e o ettt et e e e e e 41
Digital Output Controls, 42
dio_on, dio_off, dio_onoff, dio_out, Pdio_on, Pdio_off, Pdio_onoff, Pdio_out .42
Digital to Analog Controls 43
da_cntrl, da_cntrl 1, da cntrl 2 Pda cntrl, Pda_cntrl 1, Pda cntrl 2......... 43
da_set,da set 1,da set 2, Pda set,Pda set 1,Pda set 2................. 45
da modePda mode 46
da offset Pda offset 47
da cursor Pda cursor 48
Ramp Controls 49
Ta NEW Pra new 49
ra_compute time Pra_compute time, 51
ramptd Pramptd. 52
ra_tostart, Pra_tostart 53
ra_start Pra start 54
ra stop Pra Stopo 55
ra_phistart Pra_phistart............ 56
ra_phiend Pra phiend 57
Memory Array Controls 58

Page ii

ma cntrl Pma cntrl. 58

ma_reset Pma reset. 59
ma_start Pma start 60
ma_stop Pma_stop. 61
Running Line Controls i 62
TloSetbar. . ..o e 62
rl addbar 63
Fl SetSPIKE . ot 64
sd mark. ... 65
Saccade Detector Controls i 66
SA SBl. o vt 66
Eye Window Controls. i 67
wWd entrl. .. 67
WA POS .« ottt e 68
WA SIZ . o 69
wd _src pos,wd src check. 70
Obsolete ACLIONS. . . . oo v e 71
1 3 4 71
Tl OraSe . .o 71
1 0 o J 71
WA IS . oo 71
WA CUTSOT .« et e e 71
WA CONMLET . . .ttt 71
When Things Don't Work in REX 73
When and whattorecompile............. 73
No return value specified from actions. 73
Where is the moving display?. 73

Paradigm not behaving or operating properly times, arguments to actions incorrect, menu
variables mysteriously changed, nothing corresponds to initialized values.73

Roots take longer and longer toread... 73
Data Keeping Windows i 73
Astatenamed init 74
Menu variable names cannot have embedded spaces; symptom- can write a root, but then
notreaditbackin...... 74
Debugging Aidst 74
Endless abort loop. o 74
Arguments to actions are not passed correctly 74
REX Graphical User Interface 77
Introduction. 77
Process Switching Toolbar 78
Files . . oo 78

Page iii

Cntrl-B. . 80
Data. .. 80
Int Process Toolbar i 80
Controls MeNU.ottt 81
States MeNU.ottt 82
USETr MENUS .« .« ettt et e e e e e e e e e 83
Eye Win. ... 85
ANalog Sig. . .o 87
Sac Detect . . . oo 89
Bt Lot 89
Control Panel. 90
Data Displays 92
Window Display 92
Running Line Display e 95
Raster Displayo 97
REX Version Release Notes 103
REX 7.6, 1 Nov. 2002. e 103
REX 7.5,1S8ep. 2002 oo 103
REX 74,29 Mar. 2002. oo 103
REX 73,20 Aug. 2001. oo 103
REX 7.2, 1 Mar. 2001. e 103
REX 7.1,5Feb. 2001 o e 103
REX 54, 1Jan. 95 e 104
REX 5.0, 8 April 94o 104
REX 4.3c,4 April 1994 104
REX 4.3, 24 Nov. 93, . .o 105
REX 4.2, 9N0V. 93, .. e 106
REX 4.1b, I8NOV. 92, e e 107
REX 4.1,0ct. 2. ... e 107
REX4.0,Step 92 . ..o 107
CUITENt DUZS: .« ottt 109
REX 3. 11, Jul. 88 . ..o e 109
REX 3.10,Jun. 87o e 109
The following enhancements were made to REX:. 111
REX3.5,27May 86.ot e e 112
REX 3.4,30N0v. 84. e e 112
REX3.3,300ct. 84 e 112
Bugs fixed inthis version:.t 113
Bugs reported inthis version: 114

Page iv

Current bugs of Release 3.2:. i 115
REX Internal Calibrations 117
REX Internal Calibrationsc.co i, 117
A/D Full Scale Range Calibrations. 118
Configuring PC Systems for Running REX 119
REX Software Configuration i, 119
REX Hardware Configuration, 119
PO 119
Real-time Interface Cards i 120
D/ACardso 120
Digital /O . . .ot 121
Counter/Timer Card e 121
Device Addresses, Vectors, Jumpersc.oiiiinia... 121
EISA Configuration for HP Vectra (obvious settings not listed) 124
Analogics DAS-12/50. 124
Computer Boards CIO-DDA06, CIO-DACO0S, CIO-DAC16............... 124
Industrial Computer Source PCDIO i, 124
... 125
Digital I/0 Rack Panels and Circuits io.... 125
Appendix A: Example Orders. 133
Following are copies of the orders weused at NIH:. 133
For QN X . 135
Noise tests of: Adac 5508SHR, National ATMIO16-X 136
Appendix B: REX License Agreement.c...... 137
GLVEX User's Manual 139
OVEIVIEW. . o ottt e e e e e e e e 139
What's New. 139
Additions.ot 139
SUBLIACtIONS. . . . oottt 140
Starting GLVEX oo 141
Coordinate Systemottt 142
Video Fields 142
ANIMALION . . . oottt 142
Stimuli. . ..o 143
Calibration pattern.ottt e 144
Flow fields.o 144
ObJCtS .« oot 145
CommUNICAtIONSottt ettt et e e e 145
Communications with Rex 146
Synchronizing parallel I/O communications. 146

Page v

Parallel I/O Communication errors

Ethernet communications

Synchronizing ethernet communications

Synchronizing stimuli

KEYBOARD COMMANDS

Actions That Set Luminance and Color

Keyboard commands not terminated by a <return>

PAGE UP 150
PAGE DOWN 151
UP ARROW 151
DOWN ARROW 151
LEFT ARROW 151
RIGHT ARROW 151

Keyboard commands terminated by a <return> . . .

"b"; Set screen background color 151
"c"; Absolute clipping rectangle, Clear 151
"D"; Debug flag 152
"d"; Rex scaling 152
"e"; Set erase method 152
"F"; Fixation point properties 153
"f"; Switch fixation point, set video frame rate 153
"H h"; Help message 155
"k"; Start / stop okn stimulus 155
"L"; Look up table color 155
"I"; Foreground and background luminance 155
"M"; Start a movie clip 156
"m"; Link two objects on mouse 156
"O"; Flow fields 157
"o"; Foreground and background colors 159
"P"; Copy pattern 160
"p": Draw pattern 160
"q"; Quit 162
"r"; Absolute ramps 162
"S"; Switch all objects 163
"s"; Switch, set active object, set sync 164
"t"; Timing commands 164
"W", Video sync size 164
"w"; Set window size 164
"X"; Video Sync X and Y coordinates 165
"x"; Absolute X and Y coordinates 165
"Z"; Set the size of all objects. 165
"z"; Set the size of active object 165

REXACTIONS o ...

Actions That Duplicate Command Line Arguments

PvexEraseMethod 167
PvexVideoSync 168
PvexDigitalSync 169
PvexSetRexScale 170

PvexSetBackLum 171
PvexSetFixColors 172
PvexSetStimLuminances 173
PvexSetStimColors 174
PvexSetGrayScale 175
PvexSetObjectGrayScale 176
PvexSetLutEntryClr 177
PvexSetObjectLutEntryClr 178
PvexSetColorMask 179
Actions That Switch Stimuli 180
PvexAIIOff 180

Page vi

PvexSwitchFix 181
PvexDimFix 182
PvexPreloadStim, PvexSwapBuffers 183
PvexSwitchStim 184
PvexSetStimSwitch 185
PvexTimeStim 186
PvexSequenceStim 187
Actions That Position Stimuli................ i .. 188

PvexSetFixLocation 188

PvexStimLocation, PvexStimFromFixPoint 189
PvexShiftLocation 190

PvexReportLocation 191

PvexMessage 192

PvexSetActiveObject 193

Actions That Draw Stimuli 194

PvexClipRectSet, PvexClipRectFromFixPoint 194
PvexClearClipRect 195
PvexDrawWalsh 196
PvexDrawHaar 197
PvexDrawRandom 198
PvexDrawAnnulus 199
PvexDrawBar 200
PvexDrawFlowField 201
PvexDrawEllipticalFlowField 202
PvexMaskFlowField 203
PvexDrawUserPattern 204
PvexDrawRgbUserPattern 206
PvexDrawTifflmage 208
PvexDrawOknGrating 209
PvexLoadPatterns 210
PvexLoadPointArray 211
PvexCopyObject 212
/rex/act/vexActions.c 212
PvexRotateObject 213
Actions That Control Ramps. 214

PvexNewRamp, PvexNewRampFromFixPoint 214
PvexLoadRamp 215

PvexToRampStart 216

PvexStartRamp 217

PvexResetRamps 218

Actions That Control OKN Stimuli i, 219

PvexStartOkn 219
PvexStopOkn 220

Actions That Control Flow Fields. 221

PvexNewFlow 221
PvexMakeFlowMovie 222
PvexToFlowMovieStart 223
PvexStartFlow 224
PvexTimeFlow 225
PvexShiftFlow 226
PvexShowFlowMovie 227
PvexStartFlowRamp 228
PvexStopFlowRamp 229
Actions That Control Object MOVIESviiiininennn.n. 230

PvexShowMovieClip 230
PvexStopMovie 231
Actions That Set Arbitrary Trigger Points 232

PvexSetTriggers 232

REX COMMANDS 233
SET ERASE METHOD i 234

Page vii

ENABLE REX VIDEO SYNCooiiiiiiiii .. 235

DISABLE REX VIDEO SYNC.oouimaieaaaneann.. 236
ENABLE_REX DIGITAL SYNCttt 237
DISABLE REX VIDEO SYNC.oouieaieiaaneann.. 238
SET REX SCALE.ttt e 239
SET BACK LUMttt e e e 240
SET FP_ON CLR ...\ttt e e 241
SET FP DIM CLR ...\ttt e e 242
SET STIM_LUMINANCESttt 243
SET STIM COLORS\ttt e 244
SET GRAY SCALEt 245
SET OBJECT GRAY SCALE.uuuiiiieeieei.. 246
SET LUT ENTRY CLR.ot 247
SET OBJECT LUT ENTRY CLRcoouniiieainanen... 248
ALL OFF .. oot 249
SWITCH FIX POINTttt 250
DIM FIX POINT.\t 251
PRELOAD STIM.ottt 252
SWAP BUFFERSottt e 253
SWITCH. STIM ...ttt e e 254
SET STIM SWITCH.\ttt e 255
TIME STIM .. .ottt e e e e 256
SEQUENCE STIMttt e 257
SET FP_LOCATION. . ..ottt 258
STIM LOCATIONottt e e 259
STIM_FROM FIX POINT\ttt 260
SHIFT LOCATIONottt et e e e 261
REPORT LOCATIONottt 262
SET ACTIVE OBJIECT ...\t e 264
SET FP_SIZE. . ..t 265
CLIP RECT SET.ot e e 266
CLIP_ RECT SET FROM FP........oiiiiii i, 267
FULL CLIP RECT ...\ttt et 268
DRAW_WALSH PATTERNouoiiei i, 269
DRAW HAAR PATTERNt 270
DRAW_RANDOM PATTERN.o, 271
DRAW ANNULUSottt e 272
DRAW BAR ...ttt 273
DRAW FLOW PATTERNitniiii e, 274
MASK_FLOW . ..\t 275
DRAW USER PATTERNoouiinine i 276
DRAW _RGB_USER PATTERNuuiiniiiinaaiinii... 278
DRAW TIFF IMAGE\ttt 280

Page viii

DRAW _OKN PATTERNot 281

LOAD PATTERN e e 282
COPY OBJECT ..t e e e 283
NEW RAMP ..o e e 284
NEW _RAMP FROM FP. i 285
LOAD RAMP ... e e e 286
LOAD PIXEL RAMP. e e 287
TO RAMP START .. .ot 288
START RAMP. ..o e e 289
RESET RAMPS ... e e 290
NEW FLOW o 291
START FLOW . ..o e e 292
TIME FLOW . . e e e e e 293
MAKE FLOW MOVIE. e 294
TO _FLOW_MOVIE START e 295
SHOW FLOW MOVIE. e 296
START FLOW RAMP e 297
STOP FLOW RAMP ... i 298
START OKN ..o e e e e 299
SHOW MOVE CLIP. e e 300
STOP MOVIE . . . e e e e 301
SET TRIGGERS e 302
ERRORS AND WARNINGS. i 303
Memory Management Errors i 304
ODbJECt MEMOTY CITOTS . « .+ et e ettt ettt e ettt e e e e e e 305
VEX-REX Parallel I/O Communication Errors. 306
Argument Errorso 308
Memory Management Warnings.uutntirenenenennenenenn.. 309
Pattern Specification Warnings. 310
Flow Field Transforms. e 311
Contrast Specification.ttt 312
Color, Luminance Specification Warnings. 313
Sample Spot File Demonstrating Socket Communication 313
MEX User's Manual 323
OVEIVIBW. . . o ettt et e e 323
Theory of Operation 323
Configuring MexX.ot 324
StINES .« vttt 325
TooIbar . .o 327
ROOTS . . o e 328
Running MeXt 329
Displaying Data. 329

Page ix

The Oscilloscope Display 329
The Time Amplitude Display 331
The Cluster Display 333
Combining Time Amplitude and Cluster Classification 335
The Waveform Display 335
Recording From Multiple Electrodes 336
The Signals Display 336
Saving Data. 337

Interfacing with Experimental Control 337
Waveform Data 338
Antidromic Data 338

Page x

Rex At a Glance...

Data Acquisition

Rex continually acquires samples from the a/d converter and stores the data to a circular memory
buffer. This data is stored to disk when a window is opened. Data is stored until the window is closed.
Each window has an associated pre-time and post-time. These times specify additional data that will be
saved before the window is opened and after the window is closed. Data stored to disk can originate
either from an a/d converter or from global memory variables.

i a/d sample rate (acquire rate) and disk store rate can be different- e.g. a signal can be sampled at
1000Hz and stored to disk at 250Hz.

i All rates (acquire rate and store rate) can be independently set on a per signal basis; all signals are
not required to be acquired or stored at the same rate.

i Maximum a/d sample rate (acquire rate) per channel: 2000Hz.

i Overall throughput to disk has been tested to at least 16k samples/sec on a 486/33 with SCSI disk.

i Each signal can be identified with an ascii string that is available to analysis programs.

Data File Format

Rex produces only two types of files: the E-file and the A-file. The E-file contains short fixed
records that identify epochs or times of occurrence. The A-file is composed of variable length data
records. The E-file indexes the A-file. Both files include additional information (such as sequence
numbers and magic numbers) that can be used to verify file integrity.

Laboratory Control

Rex includes a state-set interpreter and language, Spot, for laboratory control. Applications are
programmed using Spot and associated C functions (termed actions) that are called from the state-sets.
Users can also write custom actions in C. The state-set interpreter supports multiple, independent state
chains. Timing resolution for the interpreter is Imsec.

Rex supports industry standard 'Opto 22' type I/O modules for interfacing with devices in the
laboratory. These modules can interface with DC and AC voltages and provide optical isolation between
the computer and the laboratory.

Displays

Rex includes three displays. The running-line display is an oscilloscope simulation. The window
display is an X-Y display suitable for showing eye position and eye position windows. The raster
display shows on-line rasters and spike density functions. This display is completely user customizes in
terms of number of rasters, histograms displayed, size, position, triggers, etc.

User Interface

Users interact with Rex via a graphical interface consisting of pull-down menus, dialogs, and
toggle buttons. Variables and parameters in Rex are contained in structures. The contents of all
structures can be saved in ascii to a file (termed a root file).

Page 1

PC to PC Communication

Rex provides two methods for PC to PC communication. The first system, pcmsg, is suitable for
real-time. 'pcmsg' requires two interface boards that include the Intel 8255 parallel interface chip
(commonly found on digital I/O boards). 'pcmsg' is designed so that the two boards can be cabled
together directly, pin for pin, without any external glue logic. 'pcmsg' provides an eight bit
communications channel between the PCs. This channel is full-duplex- information can travel in both
ways simultaneously. The handshaking protocol is designed to be independent of timing differences
between the PCs. The programming interface presents a messaging model- messages are packaged and
sent between the machines. Messages include checksum. The second method of communication is to use
Ethernet with TCP/IP sockets.

Multi-Unit Sorters

Rex communicates with the Mex multi-unit sorter program via parallel interface using one 8255
parallel chip. Rex will also communicate with the Spectrum Scientific MNAP system using counter-
timer boards. Each board will accept up to 20 units from the MNAP system. In order to accept more
units, the Rex PC must have available slots for more counter timer boards.

Rex Structure and Operating System Environment

Rex is composed of multiple cooperating processes. For example, keyboard commands, writing
to disk, raster display, data acquisition are all handled by different processes. This architecture,
originally designed to run on Unix, is not easily ported to DOS. Therefore the QNX real-time operating
system was chosen to support Rex on the PC. QNX provides a Unix foundation in a real-time context
with fast interrupt response and disk 1/0.

Availability

Rex is available free of charge via executing a short license agreement (the purpose of this
agreement is to preserve the government's rights to Rex and restrict re-distribution). The Rex manual
and a copy of the agreement can be obtained via anonymous ftp from Isr.nei.nih.gov.

Page 2

REX: A Unix-Based Multiple-Process System for Real-Time Data
Acquisition and Control

A.V. Hays, Jr. B.J. Richmond L.M. Optican J.W. McClurkin
National Eye Institute, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD., 20892

Introduction

Rex (Real-time EXperimentation) is a real-time system that utilizes a multiple process structure
to divide its functions among various cooperating processes. A running Rex system includes the
procSwitch process to control process interaction, the scribe process to write data on disk, an inf process
to respond to interrupts from clocks, analog-to-digital converters, etc., a running line process that
functions as a digital oscilloscope, an window process to display analog data in an X-Y coordinate
system, and a raster process to generate on-line displays of unit activity. A Rex system is not limited to
these processes and may include others. This modular architecture is flexible and easy to maintain.
Various applications may use the same procSwitch and scribe processes but different int, running line,
window or raster processes. The boundaries imposed by distributing Rex among multiple processes
afford some protection against code becoming excessively intertwined and difficult to modify. Rex is
written in C, a structured high level language.

Laboratory control is accomplished with a state-based interpreter in the int process. A state set
description language is translated into tables which drive the interpreter. Rex stores sampled analog data
in rotating buffers in a common memory area shared by all processes. Inter process communication
messages are also passed through this area. Rex produces only two types of data files. One stores
information characterized by epochs and contains long integer times of occurrence, the other stores
variable length records such as analog data or experimental parameters. The epoch file indexes the data
file. Both files contain additional information inserted by scribe that can be used to verify their integrity
or aid in their reconstruction in case of partial loss or corruption.

The original version of Rex ran on the pdp11 using a V6/V7 Unix kernel that was modified to
support real-time applications. The PC version of Rex currently runs with the Photon Window Manager
on the QNX operating system, a POSIX compliant real-time system.

Rex Structure

Rex is designed for an environment composed of multiple laboratories, each equipped with PCs.
These computers are devoted entirely to the on-line tasks in each laboratory. In addition larger machines
may exist for off-line tasks such as data analysis, data archiving, program development, etc.

Previous Design Approach

In a previous approach to developing software for this environment a single large program
performed all the functions of data acquisition, control, and display generation. To conserve space the
machines ran under a small operating system with real-time capability, RT-11. Coding was done in
assembly language for efficiency and access to hardware registers. As more laboratories with different
needs used this program, it became larger and more complex. Modularity broke down as different
programmers modified it. This single program was difficult to debug, maintain, and modify. Capabilities
not needed in one experiment were removed when memory space was critical, and other capabilities

Page 3

were added. A feature of one version was often difficult to transfer to another because of buried
differences.

Debugging problems were more difficult since the operating system did not run the program
under the protection of memory management. Stacks could overflow without being caught and the
operating system itself could be corrupted.

New Approach

The multiple-process structure of Rex solves many of these problems. With inexpensive solid
state memories the laboratory computers can be configured with enough memory to run a larger and
more sophisticated operating system such as Unix. A process in Unix consists of a program memory
image, register values, status of open files, etc. Unix is a timesharing system and schedules run time
among processes that reside in memory or are swapped out to secondary storage. Processes are executed
under the full protection of memory management; stack faults are caught, a process has access only to its
own address space, and execution of sensitive instructions such as halt or reset is prohibited. Each
process interacts with other processes only through inter process communication protocols.

The major functions of Rex exist as individual Unix processes. The boundaries thus imposed
enforce some degree of modularity in Rex. Of course any process can still be poorly constructed
internally. However, there is a i firewalli between it and the rest of the system. Its interactions are better
defined than if it were a section or overlay in a single large program, sharing the same address space and
registers.

The multiple-process structure facilitates maintenance and the development of new functions.
Rex systems may run different processes for various applications yet still include the same processes for
functions such as keyboard handling and file writing. When changes are made to processes each Rex
system needs only to run the new versions to be updated. When debugging, each process has its own
address space and can be traced separately. Multiple processes also provide a way for large systems to
effectively utilize the full memory capacity of machines such as the pdp11, which have a larger physical
memory space than virtual address space. For example, the pdp11/73 has a memory capacity of 4MB
and a virtual address space of 64KB text, 64KB data.

Rex is written in C, a structured high level language. C has separate compilation, provides full
access to hardware, and is very efficient. C is easily interfaced to assembly language.

Rex Processes

A typical Rex system is composed of five or more processes. The most common processes are
described below.

Data

The data process is a null process that declares the common in core data area and launches the
procSwitch process. It is executed before other Rex processes and remains in memory at all times. Since
the data process is the first process executed it is named Rex.

ProcSwitch

The procSwitch process supervises the launching of all other processes and the opening and
closing of files. ProcSwitch displays a small tool bar containing pull-down menus and toggle buttons
that provide user input. ProcSwitch maintains a table of all currently established Rex processes and their
status.

Page 4

Scribe

The scribe process writes and maintains data files on disk. When a Rex process desires that data
be saved on disk it sends a message to scribe telling it what the data is and where it is located. It is
scribe's responsibility to write the data into the proper file in the correct format. For example, the int
process might sample data from an analog-to-digital converter and store it in a rotating buffer. When a
high water mark is reached it sends a message to scribe to write the data to disk.

Int

Every experiment is unique, and hence some part of Rex must be easily adaptable to the
investigator's needs. This is accomplished in Rex by devoting one process, int, to the experiment-
specific code. The experiments currently running under Rex investigate the neurophysiology of the
visual and eye movement systems. Stimuli are presented to subjects according to a behavioral paradigm.
Analog signals are digitized and events (such as pressing a bar or the firing of cells in the brain) are
recorded by the computer. Since the control of the experiment and the collection of the data are
dependent on the behavior of the subject in these applications, a great deal of digital signal processing
must be done in real-time by Rex (e.g., the onset of a rapid eye movement is detected by a digital filter).

In its present configuration Rex is interrupt driven from the real-time clock, which normally
interrupts at a one kilohertz rate. (Other applications may have higher sampling rates when less
processing is required.) The int process is divided into two parts, an upper-level one that handles the
communication with the other Rex processes and the operator, and a lower-level one that responds to the
interrupts. The upper-level part displays a tool bar containing pull-down menus and toggle buttons to
handle user input. When a new int process is launched, its tool bar appears adjacent to the procSwitch
tool bar. The lower-level subroutine is divided into functionally discrete sections, making it simple to
modify. Rex provides a method for users to easily create new int processes (see next section). During an
experiment many int processes may be executed by Rex; the experimental paradigm can be changed
quickly by switching to a different int process.

Running Line Display

The running line display process provides the functions of a digital oscilloscope. It can display
analog data, neuronal units, and a timing bar. The time base of the display varies from 30 Hz to 1000
Hz. It has free running and triggered modes. In triggered mode, it has repeat and one-shot modes. Rex
supports multiple running displays.

Window Display

The window display process provides an X-Y display of analog data. It has immediate and
storage modes. In storage mode, the screen refresh rate can be set to any interval between 16 and 1024
milliseconds, or the screen refresh can be triggered. In triggered storage mode, users can vary the
number of draws between refresh cycles. Rex supports multiple window displays

Raster Display

The raster display provides T-Y plots of unit data. The data are grouped according to
experimental condition for each plot. Unit data can be displayed as spike rasters or as spike density
functions. The raster display can have multiple pages, each containing up to 64 plots. Data from up to 10
different units can be display in each plot. Rex supports multiple raster displays.

Page 5

Laboratory Control

To achieve useful control in the laboratory, timing and sequencing of events in real-time must
occur precisely and efficiently. State notation is a powerful tool for accomplishing this control. The
advantage of state notation is that it is simple and easy to learn, yet able to implement even the most
complex control sequences. The process of reducing a control problem to state notation often helps
clarify the problem and identify logical errors. Rex incorporates a state set processor for laboratory
control. This processor is a part of the int process; it is executed on interrupt from the clock, currently
every millisecond.

State Concepts

State notation as implemented in Rex includes the following elements. A state is the current
condition or stage of a control sequence. A state consists of the specification of a function to occur when
the state is entered (actions) and the conditions that must be met for transition to occur to another state
(escapes). Escapes to other states can happen in the following ways:

i Countdown of a timer to zero.
Bit pattern set in a flag word.

Bit pattern not set in a flag word.
True return from a function call.
Variable equal to a constant.
Variable less than a constant.
Variable greater than a constant.

Each state contains a long integer (32 bits) to specify the time for escapes on timer countdown
(an integer random factor can also be specified). Upon entering a state this long time is loaded into a
counter which is then decremented each interrupt. States may contain multiple escapes of mixed types.
Each escape is evaluated in turn at interrupt time; transition occurs on the first escape found true.

The Rex state processor is small and designed for fast execution. It uses a linked list to
efficiently test escapes. State actions are not performed directly, but are accomplished by calls to
functions. The action is therefore the address of a function that is called by the state processor when the
state is entered. Up to ten arguments can be passed to the function. The arguments can be constants of
type long or pointers to global variables. Many standard actions are available in a system library, or
users may write their own. An example of a commonly used action is dio_on(BIT). This action sets a bit
(specified by the device id BIT) in the digital output interface word without disturbing other bits already
set.

NS~y SN SNy SN SNy~

A provision is made to store a record of state transitions and the time of the transition on disk.
This is done by specifying an integer event code contained either in the state or returned by an action.
When a state transition occurs this code is entered into the event buffer. If the action for that state returns
an event code it overrides the one stored in the state and is entered instead. A state in Rex, therefore, is
composed of:
i Event code.

i Action (function address) and up to ten long integer or global variable pointer arguments.
i Long time to initialize timer for timed escapes.

i Integer random factor for time.

i Escapes.

Page 6

State Set Specification Language

A user specifies state sets by writing in a language called Spot (State PrOcessor Translator). The
Spot compiler translates the language into the tables that drive the state processor. The Spot compiler is
implemented with the compiler writing tools of Unix: Lex and Yacc. Spot source files are divided into
two sections. The first section contains C source code and is passed through Spot untouched to the C
compiler. Functions for actions are placed in this section. The second section is the state set
specification.

The Spot source file is the primary user interface to the Rex system. Contained in the file is the
complete laboratory control specification for an experiment including the source for any specialized
actions not found in the system library. Usually, when modifying or creating new Rex applications, the
user will only have to be concerned with this one file. To further simplify the user interface the
generation of the Rex int process (as well as all Rex processes) is under the control of make, a Unix
utility. After the user edits the Spot source file he simply types the command make sf=spotname where
spotname is the name of the Spot source file. This utility then performs all necessary compilations
(including Spot), library searching, and loading, and yields a new int process.

Runtime Considerations

At runtime the state set processor begins execution when the real-time clock is started. Some of
the variables contained in a state can be changed at runtime. A special pull-down menu, accessed from
the int tool bar, exists to do this. The changeable variables are arguments to actions, times, and the event
code.

Shared Data Structures

The data process sets up a data space that is shared by all of the processes. A process adjusts its
memory map to reference the shared space. This space contains the data buffers and the inter process
communication area.

When an interrupt occurs, the int process may collect data. This data need not be saved on the
disk, but must be available for on-line display by other processes. Int keeps this data in two buffers in
the shared space. Data that can be described as an epoch (e.g., a single-unit's action potential, or when
the subject presses a bar) are stored in the event buffer. Any data that can not be described as an epoch
(e.g., eye position or target position) are stored in the analog buffer. The internal structures of the event
and analog buffers are different, and when the data are saved on the disk, two separate files are used (see
below).

Event Buffer

All event data can be identified by only two numbers: an event code and a time of occurrence.
The int process records epochs by entering them into a circular event buffer. If events are being saved,
scribe writes the data to the disk whenever a high water mark is reached. The circular buffer is large
enough to make many events available to the running line, window, and raster display processes. During
a neurophysiological experiment, the most common event is the single-unit action potential, or spike.
These can occur with average firing rates as low as 1 per second, or as high as 1000 per second. It is
essential that some representation of them be available on-line. The raster display process provides an
on-line version of the standard unit raster, built out of the incore event buffer.

Page 7

Analog Buffer

During the experiments run with Rex many analog signals must be sampled and saved.
Collection of analog data is greatly complicated by several factors. For example, the time from which to
begin saving may precede the actual time when recognition of the need to save occurs, e.g., one may
wish to save eye position from 100 milliseconds. before the beginning of an eye movement. Also, the
number of samples collected during the run may be greater than the storage capacity of the disk. The
approach taken in Rex is to collect the data continuously in rotating buffers, and only store data
according to requests in the state set.

A very large buffer is used to hold the analog samples, and when the buffer is full, the load
pointer wraps around to the beginning of the buffer. The user controls the saving of this data on the disk
with actions in the state set. These actions control the opening, closing and canceling of a data keeping
window. Scribe keeps all data collected from the time the window is opened until the window closes, no
matter how many times the buffer wraps around (within the limits of the computer's capacity). If a high
water mark is hit, scribe writes out a partial data record marked with a continuation flag.

The user also specifies the number of samples to be kept before the window is opened, and the
number of samples to be kept after the window is closed. The user need only be concerned with opening
and closing the data keeping window. The Rex system performs the bookkeeping necessary to store the
data on disk. In addition, every time an analog record is written out an event is generated that indexes
the analog record (see below).

Menu System

Rex provides a menu system that allows variables to be accessed and changed at run time.
Variables have different types including char, string, octal, decimal, etc. A function can be created to be
called when a menu or menu variable is accessed. This function may be called before access, after
access, or both. This function can affect how the variable is accessed. For example, the function might
prohibit a variable from being changed if the new value is not legal, or perform necessary initialization
when a variable is set to a new value.

Data File Formats

Rex data is stored in two files. The E-file contains data which can be described as epochs. The
A-file contains all other data, including information about the experimental run that created the data. The
E-file also indexes the A-file. Both files contain redundant information so that a complete loss of either
file does not preclude access to the other file, and that partial losses from one file can be bridged over.
The E-file has a fixed record length structure, while the A-file has a variable record length structure.
Both files begin with a one block header. The Unix system dynamically allocates file space; pre!
determination of file length is unnecessary.

Rex Header Block

A 512 byte header block is written for both files when they are created. The first word of the
header block is a size, in bytes. In the E-file this is the size of the fixed record length, in the A-file it is
the size of a fixed-length header associated with each variable length record. The next item in the header
block is the file name used to create the files. Then follows the version number for the Rex system that
created the file. These two items are stored as null-terminated ASCII strings, making them readable
without a special program. The rest of the header block is available for other information.

Page 8

E-file Format

After the header block, the E-file consists of an arbitrary number of records, each four words
long. The structure of each record is identical. The first word is a sequence number added by the scribe
process. The second word is the event code for this record. If the code is a positive number, it
corresponds to an event that occurred at a time which is stored in the next two words as a long integer.
(Time is kept as clock ticks, and the clock rate is kept in a standard header stored in the A-file.) If the
code is negative, the record is an index to a variable length record in the A-file; the next two words form
a long integer that is the offset in bytes from the beginning of the A-file to the record header.

A-file Format

After the header block the A-file consists of an arbitrary number of variable length records.
Every record is written in the same format: a ten word analog header followed by an arbitrary length
data field. The structure of the analog header is the same for every record. The first two words are a long
integer magic number. The third word is an unsigned ordinal sequence number assigned by the scribe
process. The fourth word is the event code for this record (the same as the event code in the E-file record
which indexes this A-file record). The next two words form a long integer containing the time of
occurrence of the epoch associated with this record. The following two words form a long integer
available to the user. The next word is an integer used to mark continuation records. The last word is the
length (in bytes) of the following data field.

Since Rex collects data in rotating buffers, it is possible to store arbitrarily long streams of data.
For practical reasons this stream is broken up into short data records that are stored on the disk. When
the data buffer pointer exceeds a high water mark, the scribe process writes a partial data record into the
A-file. Subsequent pieces of the data stream are then written as continuation records. Each continuation
record has the same format as all other A-file records, except for non-zero continuation words in the
headers.

Data File Consistency

The Rex file formats incorporate redundant information to allow the consistency of files to be
checked, and some effort to be made at restoring damaged files. Since data is often transferred from disk
to disk, or from disk to tape and back again, it is necessary to check that blocks have not been lost or
scrambled. Both files are consistent if their sequence numbers are correct and if the analog records in the
A-file are correctly indexed by the E-file. If the E-file becomes corrupted, it is easily re synchronized by
searching for a block boundary, since the event record size evenly divides the physical block size. If the
A-file becomes corrupted, it may be re synchronized by searching for the magic number. This number
(1210832817L) is four bytes long, chosen to be unique by word or byte search, and outside the range of
12 bit analog-to-digital converters. The amount of data missing can be determined from the gap in the
sequence numbers. A utility program exists (\f3srdd\f1) which checks the data files and verifies their
consistency.

Data File Portability

Problems may arise when data files are moved to other computers. In general, data is not
portable across machine architectures. Differences may involve word size (e.g. 16 bits on pdp11, 32 bits
on VAX), byte ordering within words, and bit ordering (whether least significant bit is to left or right).
Because of alignment differences a structure used in a C program to access a data file on one machine
may not access the same fields properly on another machine.

Page 9

One solution to this problem is to add to analysis programs multiple ways of accessing data files
and multiple formats for each machine. A much simpler solution, however, is to instead change the data
file for each machine. This permits a uniform access method and single data file structure for all
architectures. With this solution porting analysis programs to new machines does not require new data
formats or changes to access methods. A utility program exists to convert the Rex data files to a new
format. The identification of the current format of the data file is stored in the data file header block.
Information is not lost during conversion- given the current format a data file can be again converted to
any other format.

Discussion

The prototype version of Rex was completed in March of 1981, and ran on the pdp11 processor.
The PC port of Rex was completed in Spring of 1992. Rex comprises about 8000 lines of C code
(comments not included).

Rex takes advantage of many Unix features to provide a real-time laboratory system that is easy
to use. The Spot language and the make utility allow the user to easily create new Rex modules to meet
his experimental needs. Hence the investigator has more time to spend on the design of the experiment
and the analysis of the data.

References

Unix is a trademark of the Bell Telephone Laboratories. RT-11, pdpl11, and DEC are trademarks
of Digital Equipment Corporation. QNX is a trademark of Quantum Software Systems, Ltd., 175
Terrence Matthews Crescent, Kanata, Ontario K2M 1W8, (613) 591-0931.

Ritchie, D.M. and Thompson, K., "The Unix Timesharing System," Bell System Technical
Journal, Vol. 57 (1978), pp. 1905-1929.

Kernighan, B.W. and Ritchie, D.M., The C Programming Language, Prentice-Hall, New Jersey,
1978. Snapper, A.G. and Inglis, G.B., "SKED Software System, Manual 3 Rev. D," State Systems, Inc.,
Kalamazoo, MI.

Lesk, M.E. and Schmidt, E., "Lex - A Lexical Analyzer Generator," Unix Programmer's Manual,
Seventh Edition (1979), Bell Telephone Laboratories, New Jersey. Johnson, S.C.,

"Yacc: Yet Another Compiler-Compiler," ibid. Feldman, S.1., "Make - A program for
Maintaining Computer Programs," ibid.

Page 10

SPOT: State Process Translator for REX

Barry J. Richmond Arthur V. Hays Lance M. Optican John W. McClurkin

Introduction

The REX real-time laboratory control and data acquisition system has been designed so control
paradigms for specific experiments can be flexibly implemented. During implementation the user's
attention is largely directed to features that are unique for the experiment being designed. This end is
realized through implementation of a translator for a state-set based control specification language, Spot
(State PrOcessor Translator). The Spot translator produces tables that are compiled by the C compiler.
These tables contain specifications that define states; associated with each state are conditions, escapes,
that govern transitions to other states. When a new state is entered a user written subroutine (termed an
action) can be called if its name is included in the specification of the new state. Virtually no restrictions
are placed upon the action. It may touch hardware, do calculations and set flags for later use, process
lists of stimuli, etc. The Spot translator makes the chain of states extremely easy to specify and edit.
Multiple, independent state chains are permitted and executed in parallel.

Process Control

REX process control is implemented using a logical structure which depends upon states,
actions, and escapes. This system is table driven, executed by an interpreter that runs every millisecond.
The tables are difficult to construct by hand, so a translatable language, Spot, has been implemented to
make the creation of the tables transparent to the user.

Control routines are always in a current state. When an appropriate condition, recognized in
either hardware or software, occurs, a transition or escape to another state takes place. When a new state
is entered after an escape has occurred two useful things happen. First, a function called an action, may
be called. Actions are usually written in the C language, and must be compatible with C calling
conventions. The action may be passed up to sixteen arguments. These arguments can be either long
integers or pointers to variables. Second, an event code composed of an integer number and a long
integer time-of-occurrence can be placed into the event buffer. The user selects the event code. Standard
event codes generally come from some #include file, while specific codes for the particular experiment
may be placed directly in the paradigm specification. If the user wishes, a code may be returned by the
action which will placed in the event buffer instead. For example, if the action was setting some
variables from a table, it might return a code that indicates which table entry was selected.

A state also contains the variables time (a long integer), and random (a short integer). When a
state is entered, a countdown timer is initialized to the time variable (if it is non-negative) plus a portion
of the random variable. The random variable is divided into quarters, with 0, 1/4, 1/2, 3/4, or the whole
added to the timer. Note if the time variable is negative, the countdown timer is not re-initialized when
the state is entered.

Spot Language Specification

Spot file sections

The Spot translator takes as input a specification file (termed a spot file) with suffix ".d". Each
Spot specification file is divided into two sections separated by the delimiter "%%". The first section is

Page 11

composed of include files, actions and other pre-initialized subroutines, user defined menus, user
defined functions, and user defined real time variables. Actions may also be placed in user libraries;
however, placing actions specific to individual paradigms in the paradigm's Spot file is usually much
more convenient. Between the first and second sections a "%2%" delimiter is placed. The second section
contains the Spot state set specification for the paradigm. The state set chains of the paradigm are
declared here. The Spot translator produces a C source file, with the suffix ".d.c" appended to the Spot
file name.

Include files

The following headers are included automatically in the C source produced by Spot.
#include <stdio.h>
#include <sys/types.h>
#include "../hdr/sys.h"
#include "../hdr/cnf.h"
#include "../hdr/proc.h"
#include "../hdr/buf.h"
#include "../hdr/menu.h"
#include "../hdr/state.h"
#include "../hdr/ecode.h”
#include "../hdr/device.h"
#include "../hdr/cdsp.h"
#include "../hdr/idsp.h"
#include "../hdr/int.h"

Since these headers are automatically added by Spot they should not be included again in the
".d" Spot file.

User defined actions

Rex includes a library of actions that can be called from states, but this library will probably not
be sufficient to build a complete experimental paradigm. In particular, if users want to present a number
of conditions in a random sequence they will need to write an action that selects the experimental
condition for each trial. For example:

#include "memSac.h" /* table of conditions */

I* global variables */
int mfTargX = 0;

int mfTargY = 0;

int antiTargX = 0;
int antiTargY = 0;
int trialCounter = -1;
int totalTrials = 0;
int currstim;

int blockcount = 0;

int pick_targ_location()
{
static int ptrist[2 * NUM_STIM] ={ 0 };
static int rs_shift = 10;
int targx;
int targy;

Page 12

* build list of conditions */

if(--trialCounter <= 0) {
trialCounter = NUM_STIM;
for(i = 0; i < trialCounter; i++) ptrist[i] = i;
shuffle(trialCounter, rs_shift, ptrist);
blockcount++;

}

currstim = ptrist[trialCounter - 1];

totalTrials++;

memSacTrialList[currstim].total++;

I* set the time of the target-fixation point gap state */
set_times("gap"”, memSacList[currstim].delay, -1);

I* set the location of the target window */
switch(memSacList[currstim].direction) {
case 1: [* target in movement field */
targx = mfTargX;
targy = mfTargy;
break;
case -1: I* target opposite movement field */
targx = antiTargX;
targy = antiTargY;
break;

}

[* action to set eye window position */
wd_pos(WIND1, targx, targy);

[* return code to enter into E file */
return(memsSacList[currstim].ecode);

}

Beginning with Rex 7.2, actions can have up to 10 arguments. The arguments can be either type
long constants, or pointers to global variables.

User defined menus

You may build menus to allow modification of variables at run time. The menus are accessed
from a dialog launched from the inf process tool bar. Prior to version 7.0, Rex allowed user menus to
access submenus. Submenus are no longer supported because they are no longer needed.

Default Menu. Spot will build one menu automatically. This menu is named state_vars. All that is
needed for this menu is a list of variables to display. The list of variables is defined in an array of
structures of type VLIST and must be named state vi. For example:

VLIST state_vi[] = {

{"clear_all_da", &clear_all, NP, clearVaf, ME_AFT, ME_DEC},

{"do_two_ramps", &do_two_ramps, NP, NP, 0, ME_DEC]},

{"ramp0_xda", &r0_xda, NP, NP, 0, ME_DEC},

{"ramp0_yda", &r0_yda, NP, NP, 0, ME_DEC]},

{"ramp1_xda", &r1_xda, NP, NP, 0, ME_DEC},

{"ramp1_yda", &r1_yda, NP, NP, 0, ME_DEC},

{"fix_xwind", &fxwd, NP, NP, 0, ME_DEC},

Page 13

{"fix_ywind", &fywd, NP, NP, 0, ME_DEC]},

{"fix_oxwind"”, &foxwd, NP, NP, 0, ME_DEC},

{"fix_oywind"”, &foywd, NP, NP, 0, ME_DEC},

{"user_msg"”, &tst_user, NP, NP, 0, ME_DEC,}
{"single_trace", &tst_single, NP, singleVaf, ME_AFT, ME_DEC},
{NS},

|5

The VLIST structure has the following format:

VI name is the character string that will identify the variable in the
Table 1: VLIST Structure meny. This character string may not have any imbedded spaces.
VI add is the address of the variable itself. This variable must be a

Member name | Example

global.
char *vl name | clear all V'l_basep is an amount that may be added to the Variablg pointer. For
- da simple global variables, vl basep should be NP (null pointer). If vl _add

is a pointer to the first element of an array, vl basep might be the offset
void *vl_add | &clear_al | into the array for this variable.

1 VI accf() is the address of a function to be called when the variable is
changed. Variable access functions are useful for checking the range of

:?/idbasep NP a variable or doing some type of initialization. If you do not need a

- variable access function, the vl accf() member of the structure should
int clearVaf be NP.
(*vl_accf)() V1 flag is a flag variable that consist of the oried combination of any of

the following bits: ME_BEF, ME_AFT, ME LB, ME ILB, ME GB,
char v1_flag ME_AFT ME IGB. The ME BEF bit indicates that the variable access function
char vl _type ME DEC | Vl_accf() should be called before changing the value of the menu
variable. The ME AFT bit indicates that the variable access function
should be called after changing the value of the menu variable. The
ME LB bit indicates that the value of vl basep should be added directly to vl add. The ME ILB bit
indicates that vl _basep is the address of the value that should be added to vl add. The ME_GB bit
indicates that the menu contains a global pointer (me_basep) that must be added to vl _add. The

ME IGB bit indicates that the menu global pointer is the address of the value that must be added to

vl add.

VI type is a flag that indicates the variable type. Valid types are ME_ ACHAR, ME OCT,

ME DEC, ME HEX, ME LOCT, ME LDEC, ME LHEX, and ME STR. Me achar indicates that the
variable is a single ascii character. Me oct indicates that the variable is on octal value. Me_dec indicates
that the variable is a decimal value. Me hex indicates that the variable is a hexidecimal value. Me loct
indicates that the variable is a long octal value. Me_ldec indicates that the variable is a long decimal
value. Me_lhex indicates that the variable is a long hexidecimal value. Me_str indicates that the variable
is a string.

The last entry in any VLIST structure array must be NS, on a line by itself. NS stands for "null
string", and marks the end of the variable list. Note, failure to end the VLIST definition with an NS line
will cause REX to crash when it attempts to display the menu.

If you only use the default state_vars menu, then you must also define a help message. The name
of the help message must be "hm_sv_vl". For example:

char hm_sv_vi[] ="\
do_two_ramps-\n\
0: one ramp active\n\

Page 14

1: two ramps active";

If you donit want to define a help message, then the help message must be defined using a null

string. For example:

char hm_sv_vI[] ="";

MENU structure. The reason that submenus are no longer needed is that you are not limited to using
just the default menu. You may define as many menus as you wish. The menus will be displayed in a
pull down list. This makes accessing menus easier than using chains of submenus.

The list of menus to display is defined in an array of structures of type MENU and must be
named umenus. For example:

MENU umenusJ] = {
{"state_vars", &state_vl, NP, NP, 0, NP, hm_sv_vl},

{"separator”,
{"ramp_list",
{"separator”,
{"eye_winds",

NP},
&ramp_vl, NP, ral_maf, ME_BEF, ral_agf, hm_ramp},
NP},

&eyewnds_vl, NP, ral_maf, ME_BEF, ral_agf, hm_eyewnds},

{"eye_offsets", &eyeoffs_vl, NP, ral_maf, ME_BEF, ral_agf, hm_eyeoffs},

{NSs},
5

Table 2: MENU structure

Member Name Example
char * me name | ramp_list
VLIST *me_vlp | &ramp vl
unsigned NP
me_basep
int (*me_accf)() | ral maf
int me_flag ME BEF
int ral_afg
(*me_rtagen)()
char *me help | hm ramp

The MENU structure has the following format:

Me_name is the character string that will be displayed in the pull
down menu list. This character string may not have any imbedded
spaces.

Me vip is a pointer to the array of VLIST structures that define the
variables to be accessed from this menu.

Me_basep is a value that may be added to the address of each
variable in this menuis VLIST structures array.

Me_accf() is the address of the menu access function. This
function can be used to set the me_basep in cases where the menu
displays elements of an array of structures.

Me_flag is a flag variable that consists of the oried combination of
any of the following bits: ME BEF, ME AFT. The ME BEF bit
indicates that the menu access function should be called before
accessing the menu variables. The ME AFT bit indicates that the
menu access function should be called after accessing the menu
variables.

Me_rtagen() is the address of a the root argument generation
function. If the menu requires arguments, for example if it

accesses the members of an array of structures, this function will generate the array indices when writing

root files.

Me_help is a pointer to this menuis help message.

Rex 7.0 and later allow special menu entries marked by the me name "separator". The me_vip
member of these entries must be null (NP). The remaining MENU structure members may be left
undefined. If you do define the remaining members of a separator MENU structure, they must be
defined to be 0. Rex will put a separator line in the user menus pull down menu where ever there is a

separator entry.

Page 15

As with the arrays of VLIST structures, the last entry in the umenus array must be NS. Failure to
end the umenus definition with an NS line will cause Rex to crash when it attempts to display the user
menus pull down menu.

Rex will display the menus in the order they are listed in the umenus array. This allows you to
group menus as you like, separating logical groups of menus with separator entries.

More menu examples. The following code snippets illustrate how to use menus to access members of
a structure and how to access members of an array of structures. This example shows the menu access

for a single instance of a structure.
typedef struct {
int len;
int ang;
int vel;
int xoff;
int yoff;
int type;
int ecode;
} RMP_PAR;

RMP_PAR ramp;

VLIST ramp_vl[] = {

{"length", &((RMP_PAR *)NP)->len, NP, NP, ME_GB, ME_DEC},
{"angle”, &((RMP_PAR *)NP)->ang, NP, NP, ME_GB, ME_DEC},
{"velocity", & (RMP_PAR *)NP)->vel, NP, NP, ME_GB, ME_DEC},
{"xoff", &((RMP_PAR *)NP)->xoff, NP, NP, ME_GB, ME_DEC},
{"yoff", &((RMP_PAR *)NP)->yoff, NP, NP, ME_GB, ME_DEC},
{"type", &((RMP_PAR *)NP)->type, NP, NP, ME_GB, ME_DEC},
{"ecode”, &((RMP_PAR *)NP)->ecode, NP, NP, ME_GB, ME_DEC},
{NS},

k

char hm_ramp_vl[] ="";

MENU umenus[] ={
{"ramp_par", &ramp_vl, &ramp, NP, 0, NP, hm_ramp_vl},
{NS},
k
In this example the phrase &((RMP_PAR *)NP)->len in the ramp_vl definition indicates that
this variable address is the address of the /en member of a structure of type RMP PAR. The ME BG
notation indicates that a menu global base pointer must be added to this variable address. In the umenus
definition, the menu global base pointer me basep is given the value of &ramp, the instance of the
RMP_PAR structure being accessed by this menu. This example assumes that ramp is a globally defined
variable.
The next example shows a snippet of code for a menu that access members of an array of
structures.
typedef struct {
int len;
int ang;
int vel;
int xoff;
int yoff;

Page 16

int type;
int ecode;
} RMP_PAR;
RMP_PAR rampList[16];

int r_agf(int call_cnt, MENU *mp, char *astr)

{
if(call_cnt >= 16) *astr="\0";
else itoa_RL(call_cnt, 'd', astr, &astr[P_ISLEN]);
return(0);
}
int r_maf(int flag, MENU *mp, char *astr, ME_RECUR *rp)
{
int rampnum;
if(astr == "\0') rampnum = 0;
else rampnum = atoi(astr);
if((rampnum < 0) || (rampnum >= 16)) return(-1);
mp->me_basep = (unsign)&rampList[rampnum];
return(0);
}

VLIST ramp_vli[] = {

{"length", &((RMP_PAR *)NP)->len, NP, NP, ME_GB, ME_DEC},
{"angle”, &((RMP_PAR *)NP)->ang, NP, NP, ME_GB, ME_DEC},
{"velocity”, &((RMP_PAR *)NP)->vel, NP, NP, ME_GB, ME_DEC},
{"xoff", &((RMP_PAR *)NP)->xoff, NP, NP, ME_GB, ME_DEC},
{"yoff", &((RMP_PAR *)NP)->yoff, NP, NP, ME_GB, ME_DEC},
{"type", &((RMP_PAR *)NP)->type, NP, NP, ME_GB, ME_DEC},
{"ecode"”, &((RMP_PAR *)NP)->ecode, NP, NP, ME_GB, ME_DEC},
{NS},

5

char hm_ramp_vl[] ="";

MENU umenusJ] = {

{"rampList", &ramp_vl, NP, r_maf, ME_BEF, r_agf, hm_ramp_vl},
{NS},

5

This examples shows two functions, the root argument generation function »_agf and the menu
access function _maf that are needed for menu access to arrays of structures. The purpose of the root
argument generation function is to convert an integer array index value into an ascii string to be written
into a root file. In the argument list for »_agf, call cnt is the element of the array, mp is a pointer to the
menu struct (in this case &umenus[0]), and astr is a pointer to a string variable that holds the ascii
representation of the index.

The purpose of the menu access function is to convert an ascii string into an integer array index
and set a pointer to the appropriate array element. In the argument list for »_maf, mp is a pointer to the
menu struct (in this case &umenus/0]) and astr is a pointer to the string to be converted to an integer
index. The arguments flag and rp are required by the function protocol but are not used in this example.

Page 17

In the umenus definition, the value of me_basep is set to null (NP) because me basep is computed by the
access function.

User defined functions

In Rex, actions are just functions, but they are functions that are called by the state processor and
are only called once when the processor enters a state. Thus, they will only be called when the Rex clock
is running. Rex 7.0 also provides a mechanism for calling functions independently of the state processor.
This mechanism is to list the functions in an array of structures of type USER_FUNC. The name of the
USER FUNC array must be ufuncs. The functions themselves are ordinary C functions. They should be
of type int or void. The functions may have up to sixteen arguments and the arguments may be of type
int, float, or char *. The functions are called by entering values for their arguments in the user functions
dialog that can be displayed from a pull down menu in the int process tool bar. User defined functions
must be defined, then listed in the ufuncs array. For example:

void f_rampReset(void)

{
(body of function);

return;

}

void f_rampOffset(int Xoff, int Yoff)

{
(body of function);

return;

}

USER_FUNC ufuncs[] = {
{"reset", &f_rampReset, "void"},
{"offset”, &f_rampOffset, "%d %d"},
{NSs},
5
The USER_FUNC structure has the format: N _name is a

character string that identifies the function in the dialog. This

Table 3: USER_FUNC Structure string may have imbedded spaces.
N ptr() is the name of the function that will be called. To get the
function called, you enter values for the arguments in the
dialogis text widget, then enter a carriage return.
Format is a character string consisting of tokens that are used to
int (*n_ptr)() f rampOffset convert the text you enter in the widget to the values that are

N N passed to the function. The tokens are separated by a a space.
char format[] 7od od The meaning of the tokens is the same as in a C printf statement,
1.e."%d" indicates conversion to an integer value, "%f" indicates
conversion to a floating point value, etc. Currently, Rex supports conversion to integer, floating point
and character strings, i.e. "%d %f and %s". You must enter one token for each argument in your
function. This allows Rex to do some error checking. If your function doesnit take any arguments, they
you should set the format string to "void". If you want to write functions that take a variable number of
arguments, leave the format character string blank. This will cause Rex to parse what you enter in the
functionis widget into two character strings. The first will be all of the characters up to the first space.

Member name Example

char n_name[] "offset"

Page 18

The second will be the rest of the string. Rex will call your function with pointers to these two character
strings. In this case, you must define your function to take two char * arguments, i.e.
void function(char *str1, char *str2)

You will need to add code to your function to parse the two character strings to extract the
arguments.

As with the arrays of VLIST and MENU structures, the last entry in the ufuncs array must be NS.
Failure to end the ufuncs definition with an NS line will cause Rex to crash when it attempts to
display the user functions dialog.

Real time variables

Prior to Rex 7.0, values of variables could only be displayed by bringing up a menu or by typing
a command such as type trials. Once displayed the values were not updated. If you had variables that
tracked the subjectis performance such as percent correct or number of trials completed, you had to
repeatedly bring up the menu or type the command to see the new values for these variables. Rex 7.0
provides a mechanism to continuously display the values of variables. This mechanism is to list the
variables in an array of structures of type RTVAR. The name of the RTVAR array must be rtvars. For
example:
RTVAR rtvars[] = {
{"number of trials", &nTrials},
{"trials remaining”, &trialsRemaining},
{"blocks completed”, &nBlocks},
{"total trials”, &totalTrials},
{"number correct”, &correctTrials},
{"percent correct”, &percentCorrect},
{NS},
k
The RTVAR structure has the following format: Rt name
is a character string that identifies the variable in the dialog.
Table 4: RTVAR Structure This name may have imbedded spaces. Rt var is the

address of the variable to be displayed. Real time variables
Member Name Example must be of type int. You can display up to 64 variables in
char *rt name "number of trials" the dialog.)])
- Rex updates the display with the values of the variables
int *rt_var &nTrials every second for as long as the dialog is displayed.

As with the arrays of VLIST, MENU, and USER_FUNC
structures, the last entry in the rtvars array must be NS.
Failure to end the rtvars definition with an NS line will cause Rex to crash when it attempts to display
the real time variables dialog.

Comments

Comments are allowed anywhere, and unlike comments in the C compiler, they may be nested.
They are stripped out of the output file.

State set declaration

The beginning of the state set declaration is marked by the delimiter "%%". Following the "%%"
delimiter, each paradigm must start with the keyword ident or id, followed by the paradigm number
(which is displayed on the screen at run-time). This is not optional and Spot will give an error if it is

Page 19

not included. Optionally, the keyword restart followed by the name of an initialization subroutine
may follow.

%%

id 300

restart rinitf

(declaration of state set chains)

A Spot file may have multiple independent chains of states which are executed asynchronously.

Each of the asynchronous chains must start with a name followed by an open curly brace. The entire
chain must then be terminated by a close curly brace. After the opening curly brace the next statement
must be status or stat, followed by ON or OFF to indicate whether the chain is on or off at start or restart
time. For example:

chainA {

status ON

(state declarations...)

}

States

Each state begins with its name followed by a colon, e.g. fpon:. The initial state in each chain must
be indicated by preceding it with the keyword begin. An example of the first state in a chain:
begin fpon:

code FPONCD

rl +30

time 2000

rand 1000

to stimon

An example of a subsequent state in a chain:
stimon:

code STIMCD

do dio_on(LED2)

rl 50

time 500

to stimoff

If there 1s an event code to be put into the event buffer when the state is entered, it must be next.
The event code is specified using keyword code, for example code 1101 or code FPONCD. Beginning
with Rex7.2, you can specify the event code with a pointer to a global variable as well as with a constant
value. This allows you to drop trial specific event codes with out having to call an action. For example:
code &trialCode
Actions, running line levels, and times follow in any order with the following restriction: time
and random must be adjoining in either order.

Running line. The running line is used both to indicate state transitions in the running line display and
to trigger the running line and eye window displays. The running line level is displayed on the REX
moving display as a continuous line at different positions on the screen. Its keyword specifier is r/.
Running line levels are absolute when not preceded by a + or -, and relative when they are preceded by a
+or-.

Page 20

Actions. Actions are C-callable subroutines. One action is allowed per state, and is called immediately
when the state is entered. Note that the initial state of a chain cannot contain an action. An action is
identified by the keyword do. Beginning with Rex7.2, actions may have up to ten arguments. The
arguments may be either long integers or pointers to global variables. NOTE! If you write your own
actions, you must declare any arguments as longs or pointers so that they will be accessed properly by
the C compiler. Action arguments can be examined and changed through the REX menu system at run
time.

All actions must return an integer value. If the return value is non-zero, it is assumed to be an
ecode and is loaded into the event buffer. Note that only one ecode per state can be loaded into the
event buffer. An ecode returned by an action has priority over an ecode declared as part of the state
using the code keyword, and will be entered instead.

Escapes

Escapes have the following format [

to nextstate [on time]

to nextstate on +,-CONSTANT \ & int_variable_name_or_address
to nextstate on [+,-]CONSTANT > int_variable_name_or_address
to nextstate on [+,-]CONSTANT < int_variable_name_or_address
to nextstate on [+,-]CONSTANT = int_variable_name_or_address
to nextstate on [+,]CONSTANT ? int_variable_name_or_address
to nextstate on [+,-]CONSTANT % function_name_or_address

The keyword that indicates an escape is fo. The next word is the name of a state to go to on
transition. Conditions for transition are specified after the keyword on. A state may contain up to ten
escapes. Each escape is tested in sequence. A transition occurs upon the first escape that tests true. After
an escape tests true, transition occurs immediately- the remaining escapes in the state are not evaluated.

The tests for transition in an escape all have the same form: a constant (CONSTANT) is
evaluated against a memory location (int_variable name_or address), or the integer return from a
function call (function_name or address). The field int_variable name or address can be either the
name of a variable, or the address of a variable. Spot distinguishes between these two cases as follows. If
the name is a numeric constant, or the first letter is upper case, it is assumed to be the address of a
variable. Otherwise, it is assumed to be the name of a variable. Likewise, the field
function_name_or_address can either be the name of a function, or the address of a function. The same

rules are applied as for variables to distinguish between the two. Examples:
to nexstate on +01 & goo /* goo is name of variable */
to nexstate on +01 & 0x20 /* 0x20 is memory address */
#define FLAG 0x20
to nexstate on +01 & FLAG /* FLAG is memory address */

The PC architecture, as opposed to the pdp11, has separate memory and I/O address spaces. One
is forced to use I/O instructions to access I/O ports. The field int_variable_name_or_address is always
in the memory address space. There is no way to access the I/O address space in an escape test.

Transition on Timer Countdown to Zero: 'time'. This escape condition results in a transition when the
timer ticks down to zero. The last two words "on time" are assumed, and are optional.

Transition On Bit Test: '&'. This escape condition performs a bitwise and between the CONSTANT
and the integer variable. If the CONSTANT is preceded by a +, transition occurs if the result of the test
is true. If the CONSTANT is preceded by a -, transition occurs if the result of the test if false. This test,

Page 21

then, will result in a transition for the + case when any of the bits set in the CONSTANT are also set in
the variable. For the - case transition results only when all of the bits set in the CONSTANT are also not
set in the variable. Note that the + or - sign is required in this condition.

Transition on Comparison Test: '>', '<’, '=', This escape condition performs a comparison between
the CONSTANT and the integer variable. If the CONSTANT is greater than (>), less than (<), or equal
to (=) the integer variable, transition occurs. The sign is optional. If it is not present, the CONSTANT is
assumed to be positive.

Transition on Query: '?". This escape condition first performs a comparison between the CONSTANT
and the integer variable, then decrements the integer variable. If the integer variable is less than or equal
to the CONSTANT, transition occurs.

Transition on Return Value of Function: '%'. This escape condition first calls the function whose
name or address is specified by function name or address. The integer return value from this function
is then compared to CONSTANT. If they are equal, transition occurs.

Error Handling: Abort List

When an error or special condition occurs during state set processing it is often necessary for
certain actions to be executed to effect a reinitialization or resetting to known conditions (for example,
turning off stimuli, returning mirrors to center, etc.). A special action exists to facilitate this named
reset_s(arg). The state names containing the actions that should be executed on error are listed after the
keyword abort list.. When the action reset_s(arg) is called, the actions specified in the abort list will be
executed in sequence. If arg is -1 (the usual case) the abort list of all chains will be executed. If arg is a
positive number, the abort list of only that chain will be executed.

Note the following distinctions between the abort list keyword and the restart keyword. After
the abort list keyword one places the name of states. The actions of these states are called whenever the
reset_s() action is executed, or during a reset statelist command. Note, however, ecodes will not be
entered into the event buffer from actions called in this manner from the abort list.

After the restart keyword one places a single C function name (not a state name). This function
may in turn call actions, or other C functions. The function specified after the restart keyword will be
executed the first time the clock is begun, and afterwards whenever a reset statelist command is issued.

When the reset statelist command is issued, the state processor does the following:
Calls reset_s(-1) which results in the abort list actions being executed.
Executes the function specified after the restart keyword.
Re initializes the state list chains to the first state.
Enters into the event buffer an ecode composed of the paradigm number specified after the 'id'
keyword or'ed with the INIT MASK.

Lt

General Considerations

Numbers preceded by a zero are passed on to the C compiler as they are, so they will be treated
as octal. White space is free, so use it liberally to make your code clear to the users and yourself.

Error checking by Spot is miniscule. If a syntax error is detected the line number at which it is
recognized will be reported, and Spot will terminate. Line numbers reported by Spot refer to lines in the
".d" Spot file. Errors might also be reported later by the C compiler when the C source file generated by
Spot, the ".d.c" file, is compiled. In this case the error line numbers will refer to the ".d.c" file.
Corrections must be made, however, to the input to Spot, the ".d" file, and not to the intermediate ".d.c"

Page 22

file. The user is responsible for seeing that escapes actually go to existing states. The C compiler might
catch this error, but it is not guaranteed.

A few debugging aids exist at run-time. The running line display is often useful for debugging
since its level is determined by values specified in the state declarations. Clicking on the debug button in
the int process tool bar brings up a dialog displaying buttons for all the states, grouped by chain. As each
state is entered, the color of its button is toggled between yellow and blue, and the time the state was
entered is printed on the button.

Debugging messages can be printed by using the routines dprintf(), dputchar(), dputs() and
rxerr(). If one of these routines is called from the interrupt level, or when the variable doutput_inmem in
the control-param menu is non-zero, the results are not printed on the console. They are instead stored in
a rotating buffer in memory. This buffer can be printed by issuing the command int print_debug. The
variable doutput rotate determines whether the memory buffer rotates when filled: if non-zero the buffer
rotates, if zero the buffer freezes when filled and does not accept further input. The buffer is initialized
with a '$' as the first character. If the variable doutput tofile is non-zero, the contents of the buffer are
also printed to a file in /tmp when the int print_debug command is issued. For more information about
these debugging routines, see the comments in the source files "sys/rlib/dprintf.c" and "sys/rlib/dputs.c".

Example

An example of a complete spot file with multiple chains of states follows:
/*
* Rex ramp test paradigm.
*
#include <stdlib.h>
#include "../hdr/ramp.h"
#include "ldev_tst.h"
#include "Icode_tst.h"

#define RAMPO 0 /* ramps and windows used in paradigm */

#define RAMP1 1

#define WINDO 0

#define WIND1 1

#define EYEALL ((WDO_XY << (WINDO * 2)) | (WDO_XY << (WIND1 * 2)))
#define EYEH_SIG 0 /* signal numbers for eyes */

#define EYEV_SIG 1

#define OEYEH_SIG 2

#define OEYEV_SIG 3

typedef struct {
int len;
int ang;
int vel;
int xoff;
int yoff;
int xwind;
int ywind;
int oxwind;
int oywind;
int eyehoff;
int eyevoff;

Page 23

int oeyehoff;
int oeyevoff;
int type;
int ecode;

} RA_LIST;

#define E_D0 2000 /* ramp direction series */
#define E_D45 2001

#define E_D90 2002

#define E_D135 2003

#define E_D180 2004

#define E_D225 2005

#define E_D270 2006

#define E_D315 2007

/*

* Direction series for tracking.
*

RA_LIST list0[] = {

, 40,0, 0, RA_CENPT, E_D315,
20,0, 0

200, 315, 5,0, 0, 50, 50, 40, 40, 40
200, 90, 10, 0, 0, 50, 50, 40, 40, 20, 20, 0, 0, RA_CENPT, E_D90,
200, 225, 15,0,0

0, 50, 40, 40, 10, 10, 0, 0, RA_CENPT, E_D225,

H H 5
200, o0, 20,0, 0, 50, 50, 40, 40, 30, 30, 0, 0, RA_CENPT, E_DO,

200, 180, 25, 0, 0, 50, 50, 40, 40, 40, 40,0, 0
200, 45, 30, 0, 0, 50, 50, 40, 40, 20, 20, 0, O,
200, 270, 35, 0, 0, 50, 50, 40, 40, 10, 10, 0, O,
200, 135, 40, 0, 0, 50, 50, 40, 40, 30, 30,0, 0
200, 0, 5,0,0, 50, 50, 40, 40, 20, 40,0, 0
200, 315, 10, 0, 0, 50, 50, 40, 40, 0, 0, 40, 40
200, 45, 15,0, 0, 50, 50, 40, 40, 0, 0, 20, 20,
200, 225, 20, 0, 0, 50, 50, 40, 40, 0, 0, 10, 10
200, 90, 25, 0, 0, 50, 50, 40, 40, 0, 0, 30, 30
200, 180, 30, 0, 0, 50, 50, 40, 40, 0, 0, 40, 4
200, 135, 35, 0, 0, 50, 50, 40, 40, 0, 0, 20, 2
200, 270, 40, 0, 0, 50, 50, 40, 40, 0, 0, 10,1
-1, 1,-1,1,1, -1,-1,-1,-1,-1,-1,-1, -1 0, -1,

b

RA_LIST *rlp = &list0[0];

int rxwind = 0, rywind = 0;

int roxwind = 0, roywind = 0;

int fxwd = 100, fywd = 100;

int foxwd = 50, foywd = 50;

int do_two_ramps = 1;

intr0_xda =0, r0_yda=1,r1_xda=2,r1_yda=3;
int clear_all= 0;

int tst_single= 0; single_step= 0;

RL rl_sav;

int nTrials;

int trialsRemaining = 16;
int nBlocks = 0;

int correctTrials = 0;

int errorTrials = 0;

Page 24

RA_CENPT, E_D180,
RA_CENPT, E_D45,
RA_CENPT, E_D270,
, RA_CENPT, E_D135,
, RA_CENPT, E_DO,

, RA_CENPT, E_D315,
RA_CENPT, E_D45,

, RA_CENPT, E_D225,
, RA_CENPT, E_D90,
0, RA_CENPT, E_D180,
0, RA_CENPT, E_D135,
0, RA_CENPT, E_D270,

int totalTrials = 0;
int percentCorrect = 0;

int
nextramp(long flag)

}

if(flag || (rlp->len == -1)) {
rip= &list0[0];
nBlocks++;
nTrials = 0;
trialsRemaining = 16;

}

else {
nTrials++;
totalTrials++;
trialsRemaining--;

}

ra_new(RAMPO, rip->len, rip->ang, rip->vel, rlp->xoff, rip->yoff,
rlp->ecode, rip->type);
if(do_two_ramps) {
ra_new(RAMP1, rlp->len, ((rlp->ang + 180) % 360),
rip->vel, rlp->xoff, rip->yoff, rip->ecode, rip->type);
}

rxwind= rlp->xwind;
rywind= rlp->ywind;
roxwind= rlp->oxwind;
roywind= rlp->oywind;

off_eye(rlp->eyehoff, rlp->eyevoff);
off_oeye(rlp->oeyehoff, rip->oeyevoff);

rip++;

return(rip->ecode);

int
rampstart(long LED)

}

ra_start(RAMPO, 1, LED);
if(do_two_