VKORC1 ${ }^{\text { }}$								
VKORC1				Material Source				
Genotype ${ }^{3}$	Haplotype ${ }^{4}$	Allele 1	Allele 2	Cell Bank	Human Variation Panel	Cell Line Number	DNA Number	Characterization ${ }^{2}$ Methods (\# labs)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17201	NA17201	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17202	NA17202	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17203	NA17203	sequence (2)
AA	AA	$-1639 \mathrm{G}>\mathrm{A}$	$-1639 G>A$	Coriell	HD100CAU	GM17204	NA17204	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17205	NA17205	sequence (2)
GG	BB			Coriell	HD100CAU	GM17206	NA17206	sequence (2)
GG	BB			Coriell	HD100CAU	GM17207	NA17207	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17208	NA17208	sequence (2)
GG	BB			Coriell	HD100CAU	GM17209	NA17209	sequence (2)
AA	AA	$-1639 \mathrm{G}>\mathrm{A}$	$-1639 G>A$	Coriell	HD100CAU	GM17210	NA17210	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17211	NA17211	sequence (2)
GG	BB			Coriell	HD100CAU	GM17212	NA17212	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17213	NA17213	sequence (2)
GG	BB			Coriell	HD100CAU	GM17214	NA17214	sequence (2)
GG	BB			Coriell	HD100CAU	GM17215	NA17215	sequence (2)
AA	AA	$-1639 G>A$	-1639G>A	Coriell	HD100CAU	GM17216	NA17216	sequence (2)
GG	BB			Coriell	HD100CAU	GM17217	NA17217	sequence (2)
GG	BB			Coriell	HD100CAU	GM17218	NA17218	sequence (2)
GG	BB			Coriell	HD100CAU	GM17219	NA17219	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17220	NA17220	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17221	NA17221	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17222	NA17222	sequence (2)
GG	BB			Coriell	HD100CAU	GM17223	NA17223	sequence (2)
GG	BB			Coriell	HD100CAU	GM17224	NA17224	sequence (2)
GG	BB			Coriell	HD100CAU	GM17225	NA17225	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17226	NA17226	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17227	NA17227	sequence (2)
GG	BB			Coriell	HD100CAU	GM17228	NA17228	sequence (2)
AA	AA	$-1639 \mathrm{G}>\mathrm{A}$	-1639G>A	Coriell	HD100CAU	GM17229	NA17229	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17230	NA17230	sequence (2)
GG	BB			Coriell	HD100CAU	GM17231	NA17231	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17232	NA17232	sequence (2)
GG	BB			Coriell	HD100CAU	GM17233	NA17233	sequence (2)
GG	BB			Coriell	HD100CAU	GM17234	NA17234	sequence (2)
GG	BB			Coriell	HD100CAU	GM17235	NA17235	sequence (1)
GG	BB			Coriell	HD100CAU	GM17236	NA17236	sequence (2)
AA	AA	$-1639 \mathrm{G}>\mathrm{A}$	$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17237	NA17237	sequence (2)
GG	BB			Coriell	HD100CAU	GM17238	NA17238	sequence (2)
GG	BB			Coriell	HD100CAU	GM17239	NA17239	sequence (2)
AA	AA	$-1639 \mathrm{G}>\mathrm{A}$	-1639G>A	Coriell	HD100CAU	GM17240	NA17240	sequence (2)
GG	BB			Coriell	HD100CAU	GM17241	NA17241	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17242	NA17242	sequence (2)
AA	AA	$-1639 G>A$	-1639G>A	Coriell	HD100CAU	GM17243	NA17243	sequence (2)
AA	AA	$-1639 G>A$	-1639G>A	Coriell	HD100CAU	GM17244	NA17244	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17245	NA17245	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17246	NA17246	sequence (1)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17247	NA17247	sequence (2)

VKORC1				Material Source				Characterization ${ }^{2}$ Methods (\# labs)
Genotype ${ }^{3}$	Haplotype ${ }^{4}$	Allele 1	Allele 2	Cell Bank	Human Variation Panel	Cell Line Number	DNA Number	
GA	BA		-1639G>A	Coriell	HD100CAU	GM17249	NA17249	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17250	NA17250	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17251	NA17251	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17252	NA17252	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17253	NA17253	sequence (2)
GG	BB			Coriell	HD100CAU	GM17254	NA17254	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17525	NA17255	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17526	NA17256	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17257	NA17257	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17258	NA17258	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17259	NA17259	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17260	NA17260	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17261	NA17261	sequence (2)
GG	BB			Coriell	HD100CAU	GM17262	NA17262	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17263	NA17263	sequence (2)
GG	BB			Coriell	HD100CAU	GM17264	NA17264	sequence (2)
AA	AA	$-1639 G>A$	$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17265	NA17265	sequence (2)
GG	BB			Coriell	HD100CAU	GM17266	NA17266	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17267	NA17267	sequence (2)
GG	BB			Coriell	HD100CAU	GM17268	NA17268	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17269	NA17269	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17270	NA17270	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17271	NA17271	sequence (2)
AA	AA	-1639G>A	-1639G>A	Coriell	HD100CAU	GM17272	NA17272	sequence (2)
GG	BB			Coriell	HD100CAU	GM17273	NA17273	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17274	NA17274	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17275	NA17275	sequence (2)
GG	BB			Coriell	HD100CAU	GM17276	NA17276	sequence (2)
AA	AA	$-1639 G>A$	-1639G>A	Coriell	HD100CAU	GM17277	NA17277	sequence (2)
GG	BB			Coriell	HD100CAU	GM17278	NA17278	sequence (2)
GG	BB			Coriell	HD100CAU	GM17279	NA17279	sequence (2)
GG	BB			Coriell	HD100CAU	GM17280	NA17280	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17281	NA17281	sequence (2)
GG	BB			Coriell	HD100CAU	GM17282	NA17282	sequence (2)
GG	BB			Coriell	HD100CAU	GM17283	NA17283	sequence (2)
GG	BB			Coriell	HD100CAU	GM17284	NA17284	sequence (2)
AA	AA	$-1639 G>A$	$-1639 G>A$	Coriell	HD100CAU	GM17285	NA17285	sequence (1)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17286	NA17286	sequence (2)
GG	BB			Coriell	HD100CAU	GM17287	NA17287	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17288	NA17288	sequence (2)
AA	AA	-1639G>A	-1639G>A	Coriell	HD100CAU	GM17289	NA17289	sequence (2)
GG	BB			Coriell	HD100CAU	GM17290	NA17290	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17291	NA17291	sequence (2)
GA	BA		-1639G>A	Coriell	HD100CAU	GM17292	NA17292	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17293	NA17293	sequence (2)
GG	BB			Coriell	HD100CAU	GM17294	NA17294	sequence (2)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	HD100CAU	GM17295	NA17295	sequence (2)
GA	BA		$-1639 G>A$	Coriell	HD100CAU	GM17296	NA17296	sequence (1)

VKORC1				Material Source				Characterization ${ }^{2}$ Methods (\# labs)
Genotype ${ }^{3}$	Haplotype ${ }^{4}$	Allele 1	Allele 2	Cell Bank	Variation Panel	Cell Line Number	DNA Number	
AA	AA	-1639G>A	-1639G>A	Coriell	EUR-CAU24	GM12547	NA12547	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM10845	NA10845	sequence (1)
GA	BA		-1639G>A	Coriell	EUR-CAU24	GM10853	NA10853	sequence (1)
GA	BA		-1639G>A	Coriell	EUR-CAU24	GM10860	NA10860	sequence (1)
GA	BA		-1639G>A	Coriell	EUR-CAU24	GM10830	NA10830	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM10842	NA10842	sequence (1)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	EUR-CAU24	GM10851	NA10851	sequence (1)
GA	BA		-1639G>A	Coriell	EUR-CAU24	GM07349	NA07349	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM10857	NA10857	sequence (1)
AA	AA	-1639G>A	-1639G>A	Coriell	EUR-CAU24	GM10858	NA10858	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM10848	NA10848	sequence (1)
GA	BA		$-1639 G>A$	Coriell	EUR-CAU24	GM10844	NA10844	sequence (1)
GA	BA		$-1639 G>A$	Coriell	EUR-CAU24	GM10854	NA10854	sequence (1)
GA	BA		$-1639 G>A$	Coriell	EUR-CAU24	GM10861	NA10861	sequence (1)
AA	AA	-1639G>A	$-1639 \mathrm{G}>\mathrm{A}$	Coriell	EUR-CAU24	GM10831	NA10831	sequence (1)
AA	AA	$-1639 G>A$	$-1639 G>A$	Coriell	EUR-CAU24	GM10843	NA10843	sequence (1)
GA	BA		$-1639 \mathrm{G}>\mathrm{A}$	Coriell	EUR-CAU24	GM10850	NA10850	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM07348	NA07348	sequence (1)
GA	BA		-1639G>A	Coriell	EUR-CAU24	GM10852	NA10852	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM06990	NA06990	sequence (1)
GG	BB			Coriell	EUR-CAU24	GM07019	NA07019	sequence (1)
$\begin{aligned} & { }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \\ & \hline \end{aligned}$	BB	3730G>A	3730G>A	ParagonDx			004-GGCCAA	$\begin{gathered} \text { sequence (1), Real } \\ \text { Time } \text { PCR }^{6}(1) \\ \hline \end{gathered}$
$\begin{aligned} & \hline{ }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \\ & \hline \end{aligned}$	BB		3730G>A	ParagonDx			004-GGCCGA	sequence (1), Real Time PCR ${ }^{6}$ (1)
$\begin{aligned} & { }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \end{aligned}$	BB			ParagonDx			004-GGCCGG	$\begin{gathered} \text { sequence (1), Real } \\ \text { Time PCR }{ }^{6}(1) \\ \hline \end{gathered}$
$\begin{aligned} & \hline{ }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \\ & \hline \end{aligned}$	AB		$\begin{gathered} -1639 G>A ; \\ 1173 C>T \end{gathered}$	ParagonDx			004-GACTGG	$\begin{gathered} \text { sequence (1), Real } \\ \text { Time } \text { PCR }^{6}(1) \\ \hline \end{gathered}$
$\begin{aligned} & { }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \\ & \hline \end{aligned}$	AA	$\begin{array}{\|c\|} \hline-1639 G>A ; \\ 1173 C>T \end{array}$	$\begin{gathered} -1639 G>A ; \\ 1173 C>T \end{gathered}$	ParagonDx			004-AATTGG	$\begin{gathered} \text { sequence (1), Real } \\ \text { Time } \text { PCR }^{6}(1) \\ \hline \end{gathered}$
$\begin{aligned} & { }^{5} \mathrm{GG} \\ & \mathrm{CC} \\ & \mathrm{AA} \end{aligned}$	AB	$\begin{array}{\|c\|} \hline-1639 G>A ; \\ \text { 1173C }>\mathrm{T} ; \\ 3730 \mathrm{G}>\mathrm{A} \end{array}$	$\begin{gathered} -1639 G>A ; \\ \text { 1173C>T; } \\ 3730 G>A \end{gathered}$	ParagonDx			004-GACTGA	sequence (1), Real Time PCR^{6} (1)
								last updated 02-25-200

${ }^{1}$ Information provided with permission from Institute of Biomedical Sciences, Academia Sinica, Taiwan; Dept. of Genome Sciences, University of Washington, Seattle, WA
${ }^{2}$ Yuan H-Y et al. 2005 Human Molecular Genetics 14:1745, Rieder et al. 2005 New England Journal of Medicine 352:2287.
${ }^{3} \mathrm{G}=-1639 \mathrm{G} ; \mathrm{A}=-1639 \mathrm{G}>\mathrm{A}, \mathrm{rs} 1787836$
${ }^{4}$ Haplotype A $(\mathrm{H} 1, \mathrm{H} 2)$ defined by -1639 A allele and Haplotype B (H7, H8, H9) defined by -1639 G allele as reported by Reider et al. 2005 NEJM 352:2285-2293.
${ }^{5}$ Genotypes presented for polymorphisms -1639G>A, $+1173 C>T$, and $+3730 G>A$, respectively.
${ }^{6}$ Only $1173 \mathrm{C}>$ T and $3730 \mathrm{G}>\mathrm{A}$ SNPs tested using Real-time PCR.

