Topic 2:

Exploring Three Approaches for Handling Incomplete Patient Histories in a Computer-based Guideline for Childhood Immunization (completed)

Overview

- Data quality is an important concern in any clinical database.
- Immunization registries have several types of data quality problems, including:
 - data errors
 - duplicate records at the demographic level
 - duplicate records at the vaccination level
 - incomplete vaccination histories (missing doses)
- Incomplete vaccination histories (containing missing doses) typically prevent the automated generation of immunization recommendations.

Two Questions

- How prevalent are incomplete histories in real immunization registries?
- To what extent can an immunization forecasting program accommodate missing doses?
- We explored these questions using IMM/Serve, a forecasting program for childhood immunization.

IMM/Serve: An Immunization Forecasting Program

- takes as input a child's immunization history
- produces immunization recommendations:
 - which vaccine doses are due now
 - which vaccine doses should be scheduled next

IMM/Serve: Example Input

Date today: 11/1/96

Date of birth: 8/1/95

HepB: 8/1/95 [1], 10/2/95 [2], 2/4/96 [3]

DTP: 10/2/95 [1], 12/4/95 [2], 2/4/96 [3]

Hib: PRPOMP 10/2/95 [1], PRPOMP 12/4/95 [2]

OPV: 10/2/95 [1], 12/4/95 [2]

MMR: 8/3/96 [1]

IMM/Serve: Example Output

The following immunization(s) are due on 11/1/1996:

DTaP 4

Hib 3

OPV₃

VAR 1

The following immunization(s) will be due:

D/T Series dose 5, on or after 8/1/1999 but before 8/1/2001.

(if DTaP 4 is given on 11/1/1996)

OPV 4, on or after 8/1/1999 but before 8/1/2001.

(if OPV 3 is given on 11/1/1996)

MMR 2 or Me 2, on or after 8/1/2000.

The following vaccine series are either complete or no longer relevant for this case:

HepB

Advisory Notices:

In Oregon, the D/T Series dose 5 and the OPV/IPV Series dose 4 are due prior to kindergarten entry.

Examples Vaccination Histories

Complete Histories:

DTP: 1/1/97, 3/1/97, 5/1/97

DTP: 1/1/97 [1], 3/1/97 [2], 5/1/97 [3]

DTP: 1/1/97, 3/1/97 [2], 5/1/97 [3]

Incomplete Histories:

DTP: 1/1/97 [1], 5/1/97 [3]

DTP: 5/1/97 [3]

DTP: 6/1/97, 5/1/98 [4]

DTP: 1/1/97 [1], 3/1/97 [2], 2/1/98

DTP: 1/1/97 [1], 3/1/97 [2], ?/?/? [3]

Adapting IMM/Serve to Handle Incomplete Histories

Design philosophy

- Make as few changes as possible to the existing knowledge base (KB).
- To the extent possible, only modify the underlying inference engine.

• Overall approach

- "Manufacture" computer-generated doses that allow the KB logic to operate without modification. (Use earliest date possible.)
- Adapt the inference engine by disabling tests for minimum age & interval for the computer-generated doses.

Alternative Strategies for Handling Incomplete Histories

• Default strategy: Ignore dose numbers.

• Mandatory dose number strategy: Insist that all dose numbers

be present.

• Low dose number strategy: Lowest numbered dose is

treated as correct.

• Designated dose strategy: User designates a specific

dose number as correct.

Preliminary Assessment of the Approach

- We used the "low dose number" strategy with a State registry database containing 431,024 patient records.
- We first used IMM/Scrub to eliminate most duplicate doses.

Results

• 60,336 cases (14%) had one or more incomplete series history.

	Incomplete	Incomplete Series Histories	
DTP	32,659	7.6%	
Hepatitis A	34	0.008%	
Hepatitis B	17,910	4.2%	
Hib	12,409	2.9%	
MMR	5,765	1.3%	
Polio	28,929	6.7%	
Varicella	38	0.009%	
	97,744		

- These data suggest that:
 - Incomplete histories pose a significant problem.
 - An immunization forecasting program that accommodates such histories could be very helpful.

Results (continued)

• 82% (80,437) of the vaccine series with incomplete histories were able to be run by IMM/Serve.

Successful IMM/Serve Runs

DTP	28,065	86%
Hepatitis A	22	65%
Hepatitis B	15,873	89%
Hib	9,551	77%
MMR	5,631	98%
Polio	21,274	74%
Varicella	21	55%

- 16,822 failures (97%) were due to data quality problems:
 - dose number too high
 - dose numbers not in chronological order
 - other
- For 430 series (2%), there was an insufficient time interval for the missing dose(s).
- For 55 series (0.3%), IMM/Serve had to screen a real dose as invalid after inserting its manufactured dose(s) into the series history. In this circumstance, IMM/Serve aborts its analysis of the series.

Discussion: Lessons Learned

- The need for different strategies.
- Handling incomplete histories by modifying the inference engine vs. augmenting the KB.
- Placing limits on the allowed degree of incompleteness.
- Data cleaning vs. immunization forecasting: where to draw the line?

Summary

- There are many types of data quality problems in clinical databases.
- Incomplete vaccination histories are common in immunization registries.
- A computer-based immunization forecasting program can be designed to accommodate much of this incompleteness.
- Different strategies may be used.