These slides demonstrate the effects of the changes in pumping capacity.

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 100% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 0% Pumping Capacity Image © 2008 DigitalGlobe

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 50% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 100% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 50% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

meters of a hs and not Assumes 100% Pumping Capacity

These slides demonstrate the effects of the changes in levels of protection.

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 0% Pumping Capacity Image © 2008 DigitalGlobe

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 0% Pumping Capacity Image © 2008 DigitalGlobe

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 50% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 100% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

Assumes 100% Pumping Capacity

Notes:

- The depth map tool is a relative indicator of progress, over time, demonstrating risk reduction as a function of construction progress
- The water surface elevations are mean values
- The scale sensitivity of the legend is +/- 2 feet
- The info does not depict interior drainage modeling results
- The storm surge is characterized as the result of a probabilistic analysis of 5 to 6 storm parameters of a suite of 152 storms and not a particular event

Feet of Flooding

meters of a hs and not Assumes 100% Pumping Capacity