1 2	Vertical movement and habitat of Opah (<i>Lampris guttatus</i>) in the central North Pacific recorded with pop-up archival tags
3	I I I I A A
4	
5	Jeffrey J. Polovina ¹ , Donald Hawn ² , and Melanie Abecassis ²
6	
7	1. Pacific Islands Fisheries Science Center, NOAA, 2570 Dole St.
8	Honolulu, HI 96822-2396, USA
9	2. Joint Institute for Marine and Atmospheric Research, University of
10	Hawaii, Honolulu, HI, USA
11	
12	Jeffrey J. Polovina
13 14	Fcosystem & Oceanography Division
15	Pacific Islands Fisheries Science Center NOAA Fisheries
16	2570 Dole St. Honolulu, HI 96822-2396 USA
17	E-mail: Jeffrey Polovina@noaa.gov
18	2 man <u>venrejn oronna e notango</u> -
19	Donald Hawn and Melanie Abecassis
20	Joint Institute for Marine and Atmospheric Research, University of Hawaii,
21	Honolulu, HI, USA
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36 27	
31 20	
38 20	
39 40	

41 Abstract

42	Data from 11 pop-up archival transmitting tags attached to opah (<i>Lampris</i>
43	guttatus, F. Lampridae) in the central North Pacific between November 2003
44	and March 2005 were used to describe their vertical movement and habitat.
45	In the subtropical gyre northwest of the Hawaiian Islands, opah generally
46	inhabited a 50-400 m depth range and $8-22^{\circ}$ C temperatures. They were
47	frequently found in depths of 50-150 m at night and in greater depths (100-
48	400 m) during the day, but were constantly moving vertically within this
49	broad range. At night, excursions below 200 m were not uncommon and
50	during the day they were very likely to spend some time at depths < 175 m.
51	Their vertical speeds were generally < 25 cm s-1 but on one occasion an
52	opah descended at a burst speed of 4 m s-1. Vertical habitat use by
53	individual opah apparently varied with local oceanographic conditions, but
54	over a 24-h period the average temperature experienced was always in the
55	narrow range of 14.7 to 16.5° C.

56

57 Introduction

Opah (*Lampris guttatus*) (Lampridae), also called moonfish, are mid-water
pelagic fish with worldwide distribution. Opah are typically found well
offshore in temperate and tropical waters of all the world's oceans, including
the Mediterranean and Caribbean Seas (Heemstra 1986). Opah reportedly

62	inhabit waters from the surface to the lower epipelagial-mesopelagic in
63	excess of 500 m (Nakano et al. 1997). They can reach 144kg in weight
64	(Jordan 1905).
65	In the Hawaii longline fishery, opah are generally caught on deep sets
66	targeting bigeye tuna; and, while not a target species, they represent an
67	important commercial component of the bycatch. In 2005, for example,
68	13,332 opah were caught ¹ .
69	In this paper, pop-up archival transmitting (PAT) tags are used to
70	describe the temperature and depth habitat and vertical movement of this
71	species in the central North Pacific.
72	1. Hawaii longline fishery logbook summary reports

1. Hawaii longline fishery logbook summary reports
 <u>http://www.pifsc.noaa.gov/fmsd/reports.php</u> (accessed February 1, 2007)

74 Methods

75

76 Study area

77

78	We deployed 16 Wildlife Computer (Redmond, Washington) PAT tags
79	(versions 3 and 4) and 1 Microwave Telemetry (Columbia, Maryland) high
80	frequency PAT-100 tag on opah caught and released from US commercial
81	longline vessels in the central North Pacific. These vessels typically set
82	about 2,000 hooks on a monofilament longline that spans a distance of about
83	40 km. The tags were deployed in 4 trips covering spring, summer, and fall
84	periods, over the period $10/11/2002$ to $29/3/2005$, and the spatial range from
85	about 21° to 30° N latitude and 138° to 157° W. longitude (Fig. 1, Table 1).
86	
87	Tagging
88	
89	All tags were attached by co-author Don Hawn. The hardware tethered to

90 each tag consisted of a single strand of 1.8-mm diameter fluorocarbon line,

91 two stainless-steel sleeves, a single mechanical guillotine for the Wildlife

92 Computer tags (Wildlife Computers RD 1500/1800) (to prevent tag

93 implosion if the tag traveled deeper than 1500 m), and a 3.5 x 1.7 cm

94 modified titanium dart head. The length of fluorocarbon line used as a tether

95	was 12.7 cm. Opah selected for tagging were usually caught during the first
96	2 hours of the gear-hauling phase. Opah were selected at the beginning of
97	the gear-haul phase to reduce the physical exertion and physiological stress
98	(i.e., hooking trauma and anthropogenic noises) loads that accrued during
99	the soak period. Individual opah selected for this study were based on size
100	(> 30.0 kg). As they were brought along side of the vessel the general state
101	of their body condition was assessed. Visual assessment for body damage
102	included liveliness, body color, line damage to head and body, hooking
103	location, eye and fin movement, and the presence of blood. Once an opah
104	was selected for tagging, its branch line was released from the longline and
105	immediately transferred to a 40-m braided tarred line. The fish was then
106	brought to the side of the vessel and harpooned with a stainless steel
107	applicator head with the tag attached. The tag was anchored at a depth of 10
108	to 12 cm anterior to the base of the dorsal fin. The opah was subsequently
109	released by severing the leader closest to the hooking location. All opah
110	tagged had estimated weights between 30 and 50 kg.
111	The Wildlife Computer tags were programmed to collect time-at-
112	temperature and time-at-depth in 12 temperature and depth bins. The
113	temperature bins were in increments of 2°C between the top and bottom
114	bins, $> 26^{\circ}$ C and $< 6^{\circ}$ C, respectively. The depth bins were in 50-m

115	increments from surface to 300 m and 100 m increments to 600 m, followed
116	by bins of 600–750 m, 750–1000 m, and > 1000 m. Two tags (# 30568 and
117	30571 from Trip 2) were programmed to compile the depth and temperature
118	data in two 12-h time intervals representing day and night periods (in local
119	time: 6:00–18:00 and 18:00–6:00). For all the other tags, the depth and
120	temperature binned data were compiled in six 4-h time intervals (in local
121	time: 02:00-06:00, 06:00-10:00, 10:00-14:00, 14:00-18:00, 18:00-22:00,
122	and 22:00–02:00). Minimum and maximum depth and temperature plus six
123	pairs of temperature and depth readings distributed between the extremes
124	were also recorded for each 4-h or 12-h time interval.
125	The Wildlife Computer tags were programmed to pop-up after a fixed
126	time period, set at 6 months for most of the tags, and to transmit these
127	binned data after pop-up via the Argos satellite.
128	The single Microwave Telemetry tag used was a high temporal
129	resolution tag programmed to obtain temperature and depth data every 40
130	seconds over 28 days and transmit as much of these data as possible via the
131	Argos satellite. The format of the data returned from the Wildlife Computer
132	and Microwave Telemetry tags are so different that they will be analyzed
133	and reported separately.

135 Satellite data

136

137	Satellite altimetry data were used to identify an eddy encountered by an
138	opah. These data came from the Jason-1 altimeter, provided by AVISO, and
139	had weekly temporal and 0.3 $^{\circ}$ x 0.3 $^{\circ}$ spatial resolution. Geostrophic currents
140	were calculated from the gradient in sea surface height (Polovina et al.
141	1999).
142	
143	Data analysis
144	
145	Correspondence analysis was used to group the tags into clusters with
146	similar time-at-temperature distributions. Correspondence analysis is a form
147	of factor analysis used with contingency table data to describe the multi-
148	dimensional data with a reduced number of dimensions (axes) (Grower
149	1987). Time-at-temperature frequency distributions for the clusters were
150	computed as means of the individual tag frequency distributions. Mean daily
151	depth and mean daily temperature were estimated from the 24-h time-at-
152	depth and time-at-temperature distributions as the sum of the product of the
153	bin frequency multiplied by the bin interval mid-point. For several tags the
154	vertical temperature structure encountered by the fish was estimated from 8

155	discrete temperature and depth values collected during each time bin. The
156	tag reports minimum and maximum temperature at each discrete depth and
157	we used the mean of these two temperatures in the vertical temperature
158	structure calculation.
159	For the Microwave Telemetry tag the temperature and depth data
160	collected over the tag deployment period were pooled into 24 hourly bins.
161	Mean and standard deviation temperature and depth were computed for each
162	of the 24 hourly bins.
163	Results
164	
165	Tag returns
166	
167	We received some data from 15 of the 16 deployed Wildlife Computer tags.
168	Two tags transmitted pop-up locations but no subsequent data. Another three
169	tags detached from the fish within 2 days of deployment when the fish
170	reached depths in excess of 1000 m. These rapid descents shortly after
171	release suggested the opah suffered mortality. The very limited data obtained
172	from these tags were not used in subsequent analyses.
173	For another three tags (#s 30568, 40610, 41863), the tag and possibly the
174	opah were eaten by another animal some time after tagging. Evidence was

175	based on an abrupt change in the tag data. During the first portion of the data
176	time series, the depth data recorded minimum depths that were at least 50 m,
177	but then abruptly that changed to indicate regular excursions to the surface
178	during the remainder of the time series. At the same time the depth pattern
179	changed, the temperature data stopped varying with depth and temperature
180	remained constant a few degrees above surface temperature. Finally,
181	concurrent with the changes in depth and temperature patterns, the light
182	sensor stopped showing variation and remained constant at a low (dark)
183	level. Three tags exhibited these conditions for 5, 13, and 24 days
184	respectively, and we believe that during these periods they were inside an
185	endothermic shark (Kerstetter et al. 2003). Subsequently, the tags were
186	expelled from the predator, floated to the surface, and transmitted their data.
187	The data from the predation portion of the time series were not included in
188	our analyses; however, after removing those data, the three tags still
189	contained 6–46 days of usable opah data.
190	Thus, of the 16 deployed Wildlife Computer tags, 10 tags provided at
191	least 6 days of data that will be used in the subsequent analyses (Table 1).
192	

193 Time-at-depth/Time-at-temperature

195	We begin by presenting a composite or population picture of the opah
196	habitat over this broad spatial and temporal range by pooling data from all
197	10 tags and constructing time-at-depth and time-at-temperature distributions.
198	Specifically, we examined the time-at-depth and time-at-temperature
199	distributions from the eight Wildlife tags binned in 4-h time intervals for: (i)
200	the day, represented by the 4-h period (10:00–14:00); (ii) the night,
201	represented by the 4-h night period (22:00-02:00); and (iii) the daily, 24-h
202	period constructed by pooling the data from all 10 tags over all time periods
203	(Fig. 2). During the day, opah were generally distributed broadly between
204	100 and 400 m, while during the night they were shallower primarily, in the
205	range 50 to 150 m (Fig. 2). During the day, opah often inhabited a broad
206	range of 8–20°C water, while their night time temperature habitat was
207	warmer, primarily 16–22°C, with a peak frequency in the
208	18–20°C bin (Fig. 2). A chi-square test found day and night frequency
209	distributions both for depth and temperature were statistically different
210	(P<0.001). When the depth and temperature distributions are pooled over all
211	time periods, it showed the opah inhabit a broad depth distribution. They
212	spent about 40% of the time between 50 and 150 m and the remaining 60%
213	of the time distributed between 150 and 400 m (Fig. 2). They very rarely
214	spent time < 50 m or > 400 m (Fig. 2). The pooled time-at-temperature

215 distribution showed a broad temperature distribution, fairly uniformly

distributed from 8 to 22° C, with a slight peak between 18 to 20° C (Fig. 2).

217 They rarely spent time in water $< 8^{\circ}$ C or $> 22^{\circ}$ C (Fig. 2).

218

219 Correspondence analyses

220 Next we examine the differences in the distributions between the tags.

221 Mean daily time-at-depth and time-at-temperature distributions were

222 constructed for each tag as the mean frequency over all the daily frequency

223 distributions within each depth and temperature bin. A Chi-squared test was

used to test whether the underlying time-at-depth and time-at-temperature

225 distributions were the same for all tags. This hypothesis was rejected (P <

226 0.001). To explore this between tag variation we used time-at-temperature,

rather than time-at-depth, since the temperature bins provide slightly finer

resolution over the opah habitat range than the depth bins. Correspondence

analysis was applied to the daily (24-h) time-at-temperature distributions and

the first two factors explained 71% of the time-at-temperature variation

between the 10 tags. With two exceptions, the 10 tags plotted on these first

two factors showed a clustering by trip. All tags from Trip 2 clustered

233 together (Fig. 3). All tags from Trip 3 clustered together along with Tag #

41863 from Trip 4 (Fig. 3). Tag # 41867 from Trip 4 from other tags and

235	formed its own cluster (Fig. 3). The remaining two tags from Trip 4 formed
236	a cluster (Fig. 3). The time at-temperature distribution for the four clusters
237	showed considerable variation (Fig.4). Trips 2 and 4 both have bimodal
238	distributions, especially Trip 4, where most the time was spent either in 18–
239	22°C or 8–12°C water (Fig. 4). There were four tags and trip 2 and two tags
240	in trip 4 and all tags from both trips showed bimodal distributions. Trip 3
241	and Tag # 41867 have distributions that are more unimodal, especially Tag #
242	41867 which showed a very narrow temperature distribution with about 60%
243	of the time spent at $12-16^{\circ}C$ (Fig. 4). There were similar variations in the
244	time-at-depth distributions (not shown) between the clusters.
245	From the daily time-at-depth and time-at-temperature distributions for
246	each cluster we can compute cluster mean daily (24-h) depth and
247	temperature (Table 2). The mean daily depths ranged from 171 m to 225 m
248	while the mean daily temperatures ranged from 14.7 to 16.5°C with the
249	means from three clusters between 16.0 and 16.5°C (Table 2). While the
250	time-at-temperature distributions showed considerable variation between
251	clusters, the mean daily temperatures were remarkably similar.
252	The clustering of the time-at-temperature by trip is not unexpected since
253	the tags on each trip were deployed at about the same time and location
254	while the trips were separated from each other in both location and date

255 (Table 1). However, it is interesting that Tag # 41867, from Trip 4, did not cluster with the other tags from Trip 4. An examination of the sea surface 256 257 height from satellite altimetry for August 17–23, 2003, showed evidence of a cold-core or cyclonic eddy located between the Tag # 41867 deploy and 258 pop-up locations (Fig. 5). The geolocation estimation based on light levels 259 260 recorded by the tag provided only very approximate daily position estimates 261 with large confidence intervals so based on geolocation positions we cannot determine if the opah traveled through the center of the eddy or around the 262 263 edge. However, the temperature-depth structure constructed from the opah vertical movement showed that during the August 18–26 period, the opah 264 occupied a region with a broad temperature-depth relationship (Fig. 6). This 265 temperature-depth relationship suggests the opah was in the convergent or 266 downwelling edge of the eddy rather than the compact temperature-depth 267 relationship that would be expected if the opah were in the divergent or 268 upwelling center of the eddy (Fig. 6). The narrow time-at-temperature 269 270 distribution (Fig. 4) is also consistent with the opah's use of the edge of the 271 cyclonic eddy since that is where the isotherms are more vertical and the 272 opah would experience a narrower temperature range. The other tag that did not cluster with tags in the same trip was Tag 273

41863 from Trip 4 that clustered with Trip 3 tags. It is not clear why this

275	occurred except that Tag # 41863 had only 6 days of data and was the
276	southernmost tag of Trip 4, close in location to Trip 3 tags (Table 1, Fig. 1).
277	

278 Mean daily depth and temperature

279

The similarity of mean daily temperature between clusters with different 280 281 time-at-temperature distributions suggests the opah may be adjusting their vertical behavior so that the temperature encountered when averaged over 282 each 24-h period falls within a narrow range. We can further investigate the 283 temporal dynamics of mean daily depth and temperature in two opah that are 284 285 moving through an environment with a changing temperature-depth structure. This allows us to observe how these opah change mean depth in 286 287 response to a changing temperature-depth distribution. The temperaturedepth structure the opah encounters is estimated from a temporal 288 interpolation using the eight pairs of temperature and depth values from each 289 290 4-h period over the duration of the tag deployment (Fig. 7) Overlaid on this vertical structure is the mean daily opah depth (Fig. 7). Tag # 41869 291 292 recorded an opah's vertical movement and habitat from July 31 to December 10, 2003. The mean daily depth of this opah was about 200 m until about 293 October 21 when it suddenly shifted to about 150 m for most of the 294

295 remaining record (Fig. 7). The shift in mean depth occurred when there was a shoaling of the temperature-depth structure and it appeared the opah 296 moved shallower in response to a shoaling of the temperature structure (Fig. 297 7). The second Tag # 41867, is the opah that we believe used the edge of the 298 cyclonic eddy. After about 5 days with a mean depth of about 125 m the 299 300 opah appeared to have moved into a region with a deeper depth-temperature 301 structure (the edge of the eddy) and its mean daily depth increased to 225 m (Fig. 7). About a week later, the temperature-depth structure shoaled 302 303 somewhat and the opah moved shallower (Fig. 7). Thus, in both opah, their mean daily depths moved deeper or shallower coherent with changes in the 304 305 temperature-depth structure (Fig. 7). However, when the mean daily depth 306 and mean daily temperature for each of the two opahs were plotted together, the mean temperature exhibited a more constant long-term trend and did not 307 alter in response to changes in the vertical structure as did mean depth (Fig. 308 309 8).

310

311 Minimum and maximum temperature and depth

312

313 So far we have examined the opah time-at-depth and time-at-temperature

314 distributions. We now examine the distribution of the minimum and

315	maximum habitat values. The distribution of the shallowest and deepest
316	depths and warmest and coolest temperatures occupied by the opah during
317	each 24-h period is plotted in Figure 9. The shallowest depth occupied each
318	day was primarily 50–100 m while the deepest depth reached each day was
319	often 350–450m (Fig. 9). The very shallowest and deepest depths recorded
320	were 28 m and 736 m, respectively. The warmest daily temperature was
321	generally 19–24°C while the coolest daily temperature was primarily 7–10°C
322	(Fig. 9). The warmest and coolest temperatures recorded were 25.6°C and
323	5.2°C respectively. It is interesting to note that the shallowest depths fall
324	largely in a narrow 50-m band while the deepest depths span a broad 150 m
325	range (Fig. 9). Yet the shallowest temperatures covered a broader 5°C range
326	while about 70% of the time the deepest temperatures were in a 1 °C range
327	$(8-9^{\circ}C)$ (Fig. 9). These results suggest that opah may define its habitat as
328	water deeper than 50 m and warmer than 7°C (Fig. 9).
329	The distribution of the deepest and shallowest depths for the mid-day, 4–
330	hour time bin (10:00–14:00) and the mid-night, 4-h time bin (22:00–02:00)
331	provides further insight into the opah's vertical dynamics. For the 10:00-
332	14:00 day bin the deepest depths recorded were below 200 m as expected
333	from the time-at-depth distribution (Fig. 10). However for this same period,
334	the shallowest depths were primarily shallower than 175 m, with a peak

335	between 100–125 m (Fig. 10). Thus, even during a daylight period, the opah
336	generally made at least one excursion in this 4-h period into depths
337	shallower than 175 m (Fig. 10). During the night bin, the shallowest depths
338	were all shallower than 125 m as expected but a portion of the deepest
339	depths extended from 125 m down to over 600 m (Fig. 10) Thus, at night
340	while the opah were generally shallow they sometimes also made at least
341	one excursion to deep depths.
342	The data from the Microwave Telemetry high frequency tag provides a
343	further picture of the opah's vertical dynamics. The tag recorded temperature
344	and depth every 40 seconds; unfortunately, limitations in battery power
345	allowed only a fraction of the data to be transmitted to the Argos satellite.
346	Analysis of the vertical depth change in successive 40-second intervals
347	showed that about 60% of the time the opah moved vertically less than 10 m
348	in 40 seconds or 0.25 m/s, while about 40% of the time it moved vertically
349	between 0.25 and 0.5 m/s. However, in one instance, it exhibited much faster
350	movement. At 07:15am the opah descended from 43 to 204.4 m in 40
351	seconds then in the next 40-second interval to 258 m where it remained. The
352	initial rapid descent of 161.4 m in 40 seconds or about 4 m/s may have been
353	a predator-avoidance response.

354 Lastly, mean hourly depth, temperature, and their standard deviations are computed from the Microwave Telemetry high-frequency tag for all data 355 pooled into 24 1-h depth bins (Fig. 11). The mean depth and temperature 356 357 showed a familiar diurnal pattern of shallower and warmer habitat during the night and deeper and cooler habitat during the day (Fig. 11). The large 358 359 standard deviation of depth and temperature at 3:00 and 4:00 hrs with means intermediate between day and night periods suggests that sometimes the 360 opah stayed at shallow depths during these hours while at other times it 361 362 remained at greater depths (Fig. 11).

363 **Discussion and Conclusions**

In the central North Pacific, opah generally inhabited a 50–400 m depth 364 range and a 8–22 °C temperature range. They often exhibited vertical 365 behavior like many other large pelagic visual predators, including swordfish 366 and bigeye tuna, with deeper day and shallower night depth distributions 367 (Musyl et al. 2003; Carey and Robinson 1981). At night, opah often 368 369 occupied the 50–150 m depth range, while during the day they inhabited a 370 broader range of 100–400 m. Further, opah frequently deviated from this 371 diurnal pattern. During the day opah made at least one excursion into shallow depths and at night they often descended deep, especially during the 372 373 hours of 3:00 and 4:00 hrs. Unlike many of the tunas and billfishes that

374	generally reside at or near the surface at night, opah rarely occupied depths <
375	50 m. The deep habitat of opah from the time-at-depth and maximum daily
376	depth show they frequented 275-475 m daily but generally did not spend
377	much time at depths greater than 400 m. By comparison, bigeye tuna have a
378	broader habitat range than opah. They reside at or very near the surface
379	during the night and frequently descend and reside at depths between 400
380	and 500 m during the day to forage (Musyl et. al. 2003). However,
381	yellowfin tuna around Hawaii generally occupy depths < 100m during both
382	day and night (Brill and Lutcavage 2001). Thus at least when foraging
383	during the day opah appear to occupy a vertical niche deeper than yellowfin
384	tuna and shallower than bigeye tuna.
385	Diets of yellowfin, opah, and bigeye also suggest there may be some
386	partitioning of the forage base. While there are no published diet studies
387	available for opah in the North Pacific, observations of stomachs of opah
388	caught on Hawaii-based commercial longliners suggested the dominance of
389	squids in their diet (D. Hawn pers. comm.). A study on the diet of southern
390	opah (Lampris immaculatus) along the Patagonia Shelf showed they had a
391	narrow range of prey items with the most common being the deepwater

392 onychoteuthid squid (*Moroteuthis ingens*) (Jackson et al. 2000). By contrast

393 squids are not a large component of bigeye and yellowfin tunas diets

394	(Bertand et al. 2002). Bigeye tuna diets in the subtropical gyre include an
395	abundance of deepwater myctophids and crustaceans while yellowfin tuna
396	diets are dominated by shallow water fishes including juvenile reef fishes
397	and epipelagic fishes (Bertand et al. 2002).
398	Considerable variation occured in the opah's use of its vertical habitat.
399	Opah tagged close together in location and time generally had time-at-
400	temperature distributions that were similar compared to those tagged farther
401	apart in location and time. Further, when opah were tagged close in location
402	and time but one used the edge of an eddy with a temperature-depth
403	distribution different from that occupied by the other opah, their time-at-
404	depth distributions also differed. This suggested the opah's use of its vertical
405	habitat can vary in response to changes in local oceanography.
406	It has been suggested that the absolute temperature does not define tuna
407	and billfish habitat as well as the temperature range (Brill and Lutcavage
408	2001). The opah's upper limit of their temperature habitat varied somewhat,
409	22–26°C in Trip 2 to 20–22°C in Trip 3. However, the lower limit of their
410	temperature habitat was narrower at 8–9°C for all clusters. Also, the range
411	between warmest and coolest temperatures they inhabit varied from about
412	18°C in Trip 2 to 10°C for Tag # 41867. Based on the minimum and

413 maximum depth and temperature distributions, it appeared that the opah's habitat consisted of water deeper than 50 m and warmer than 7° C. 414 However, within these bounds the opah's vertical movement and habitat 415 416 were likely determined by finding prey and avoiding predators, while occupying water temperature such that the mean daily temperature it 417 occupied is limited to a narrow range from about 14.7 to 16.5°C. They 418 419 appeared to vary their time-at-depth and time-at-temperature so that over the course of 24 hours the average temperature they experienced remainded a 420 421 narrow range. This is true for both the same opah over several months moving through different habitats and different opah in habitats separated by 422 423 1000 km and 6 months. The narrow range of mean daily temperature is in 424 contrast to tuna that apparently have more ability to thermoregulate and hence can tolerate a wide variation in mean daily temperature. For example, 425 giant bluefin tuna mean daily temperatures that were also estimated with 426 PAT tags varied by as much as 10°C both for the same fish over time and 427 among fishes (Lutcavage et al. 1999). 428 Regarding predation, the opah's night depth limit of about 50 m may 429 represent a strategy to reduce encounters with predators using the surface 430

431 layer at night. The occurrence of potential predators in proximity to opah

432 was suggested by both the high loss of PAT tags (3 out of 15) on opah that

were likely ingested by a predator, possibly make or great white shark, and
the example of the opah's rapid descent as recorded by the high-frequency
tag.

Large pelagic animals are thought to forage in association with ocean 436 features. Because of the difficulty in accurately estimating the daily 437 positions of opah with only light-based geolocation, we were not able to 438 examine possible associations between the movements of our tagged opah 439 and ocean features in most cases. However, in one instance, the opah was 440 tagged near an obvious eddy. The suggested use of the edge of a cyclonic 441 eddy by the opah was consistent with the hypothesis that new production 442 443 generated from water vertical upwelled at the center would be concentrated at the eddy's edge to support a food web (Seki et al.2001). Residence at the 444 edge of a cold core eddy has been documented for another pelagic animal, 445 the loggerhead turtle (Polovina et al. 2006). 446

448 Acknowledgements

449 We thank the captains and crews of the F/V Sea Pearl and F/V Kelly Ann

- 450 used to tag the opah. The Matlab scripts used in the correspondence analyses
- 451 were written and kindly provided by Profs. Jean-Philippe Labat and David
- 452 Pellicer, Laboratoire d'Océanographie de Villefranche, University Pierre et
- 453 Marie Curie, Paris, France. This work was partially funded by a grant from
- 454 the University of Hawaii Pelagic Fisheries Research Program under
- 455 Cooperative Agreement NA17RJ12301 from NOAA and a grant from the
- 456 Ocean Exploration Program, NOAA.

457

458

459

460

461

464	Table 1. Deployment and pop-up dates, locations, straight line distance, and days of data
465	for all tags. The (*) by 3 tags denotes tags believed ingested by a predator, the pop-up
466	date and location include the time and movement while the tag was in the predator,
467	however, the days of data provided cover only the period we have opah data.
468	

Trip #	Tag #	Deploy Date	Pop-up Date	Deploy long (°W)	Deploy lat (° N)	Pop-up long (° W)	Pop-up lat (° N)	Straight-line Distance (km)	Days of Data
2	30568 (*)	21/11/2002	27/12/2002	153.72	21.12	155.32	23.12	276.8	23
2	30571	21/11/2002	5/12/2002	153.87	21.15	157.58	22.27	403.0	12
2	30601	10/11/2002	24/11/2002	153.55	20.83	154.21	22.7	218.8	8
2	30628	21/11/2002	2/12/2002	153.82	21.13	154.5	21.68	93.3	8
3	30646	30/3/2003	19/4/2003	151.73	26.72	153.34	27.26	170.5	19
3	40610 (*)	30/3/2003	20/5/2003	151.97	26.08	152.19	25.05	116.6	46
4	41863 (*)	28/7/2003	28/8/2003	149.79	29.27	146.69	27.69	650.2	6
4	41867	12/8/2003	3/9/2003	150.29	31.04	151.99	29.73	218.6	22
4	41868	31/7/2003	15/1/2004	148.63	29.73	137.9	27.97	1062.8	168
4	41869	31/7/2003	16/12/2003	148.92	29.17	148.6	33.3	460.2	138
6	52494	29/3/2005	20/4/2005	146.87	24.37	148.75	26.88	336.8	23

Table 2. Mean daily depth and temperature with standard deviations by cluster.

		Trip3 +		
Cluster	Trip 2	# 41863	# 41867	Trip 4
mean 24h depth (SD) (m)	225 (34)	171 (32)	175 (40)	181 (28)
mean 24h T (SD) (C)	16.3 (1.6)	16.5 (1)	14.7 (0.8)	16 (1.2)

482 Refe	rences
-----------------	--------

483	Bertand A, Bard FX, Jose E (2002) Tuna food habits related to the
484	microneckton distribution in French Polynesia. Mar Bio 140:1023-1037
485	
486	Brill RW, Lutcavage ME (2001) Understanding environmental influences on
487	movements and depth distributions of tunas and billfishes can significantly
488	improve population assessments. AFS Symposium 25:179–198
489	
490	Carey FG, Robinson BH (1981) Daily patterns in the activities of swordfish,
491	Xiphias gladius, observed by acoustic telemetry. Fish Bull 79:277–292
492	
493	Grower JC (1987) Introduction to ordination techniques. In Legendre, P. and
494	Legendre, L. (eds), Developments in numerical ecology. NATO ASI Ser
495	G14:3-64. Kluwer Academic, Dordrecht
496	
497	Heemstra PC (1986) Family No. 117. Lampridae. In Smith MM, and
498	Heemstra PC (eds) Smiths' Sea Fishes. Springer-Verlag, Berlin
499	
500	Jackson GD, Buxton NG, George MJA (2000) Diet of the southern opah
501	Lampris immaculatus on the Patagonian Shelf: the significance of the squid

502	Moroteuthis ingens and anthropogenic plastic. Mar Ecol Prog Ser
503	206:261–271
504	
505	Jordan DS (1905) A guide to the study of fishes Vol 1. Holt and Co. New
506	York
507	
508	Kerstetter DW, Polovina JJ, Graves JE (2004) Evidence of shark predation
509	and scavenging of fishes equipped with pop-up satellite archival tags. Fish
510	Bull 102(4): 750–756
511	
512	Lutcavage ME, Brill RW, Somai GB, Chase BC, Howey PW (1999) Results
513	of pop-up satellite tagging of spawning size class fish in the Gulf of Maine:
514	do North Atlantic bluefin tuna spawn in the mid-Atlantic? Can J Fish Aquat
515	Sci 56:173–177
516	
517	Musyl MK, Brill RW, Boggs CH, Curran DS, Kazama TK, Seki MP (2003)
518	Vertical movement of bigeye tuna (Thunnus obesus) associated with islands,
519	buoys, and seamounts near the main Hawaiian Islands from archival tagging
520	data. Fish Oceanogr 12(3): 152–169
521	

522	Nakano H, Okazaki M, Okamoto H (1997) Analysis of catch depth by
523	species for tuna longline fishery based on catch by branch lines. Bull, Nat,
524	Res, Inst, Far, Seas, Fish 34:43–62
525	
526	Polovina JJ, Kleiber P, Kobayashi D (1999) Application of
527	TOPEX/POSEIDON satellite altimetry to simulate transport dynamics of
528	larvae of the spiny lobster (Panulirus marginatus), in the Northwestern
529	Hawaiian Islands, 1993–96. Fish Bull 97:132–143
530 531	Polovina JJ, Uchida I, Balazs G, Howell E, Parker D, Dutton P (2006)
532	The Kuroshio Extension Current Bifurcation Region: A pelagic hotspot for
533	juvenile loggerhead sea turtles. Deepsea Res.II (53):326-339
534	
535	Seki, MP, Polovina JJ, Brainard RE, Bidigare RR, Leonard CL, and Foley
536	DG(2001) Biological enhancement at cyclonic eddies tracked with GOES
537	thermal imagery in Hawaiian waters. GRL:28(8):1583-1586.
538	
539	
540	
541	
542	

Figure Captions

- ⁵⁵⁷ up locations indicated as the base and head of each arrow respectively.
- 558 Dotted, solid, and dashed arrows represent tags deployed on Trips 2, 3, and
- 559 4, while large solid arrow denotes the Microwave Telemetry Tag. Islands
- shown are the main Hawaiian Islands.
- 561 Figure 2. *Lampris guttatus*. a. Time-at-depth for day (10:00–14:00) and
- 562 night (22:00–02:00). b. Time-at-temperature for day (10:00–14:00) and

⁵⁵⁶ Figure 1. Lampris guttatus. Map with tag numbers and deployment and pop-

- night (22:00–02:00). c. Time-at-depth and time-at-temperature pooled overall time periods. Bars indicate standard errors.
- 565 Figure 3. Lampris guttatus. Plot of the time-at-temperature distributions for
- all 10 tags on the first two axes obtained from correspondence analysis.
- 567 Figure 4. Time-at-temperature distributions for tag clusters determined from
- 568 correspondence analyses.
- 569 Figure 5. Sea surface height plot with geostrophic currents estimated from
- satellite altimetry 17-23/8/03, with a possible track line for opah (*Lampris*)
- 571 *guttatus*)Tag # 41867 from deployment (solid box) to pop-off (arrow).
- 572 Figure 6. Contoured temperature-depth structure along the track of opah
- 573 (*Lampris guttatus*) Tag # 41867 based on eight temperature and depth points
- 574 collected during each 4-h time bin (black dots).
- 575 Figure 7. *Lampris guttatus*. Mean daily depth overlaid with the track
- 576 contoured temperature-depth structure for opah # 41869 (top) and opah #
- 577 41867 (bottom).
- 578 Figure 8. *Lampris guttatus*. Mean daily depth (solid line) and mean daily
- temperature (dashed line) for opah Tag # 41869 (top) and opah Tag # 41867

580 (bottom).

- 581 Figure 9. Lampris guttatus. Over a 24-h period, the minimum and
- 582 maximum a. depth and b. temperature.

- 583 Figure 10. *Lampris guttatus*. Minimum and maximum depth for a. day
- 584 (10:00–14:00) and b. night (22:00–02:00).
- 585 Figure 11. *Lampris guttatus*. Mean and standard deviation (bars) of hourly
- temperature (top) and depth (bottom) from the Microwave Telemetry high-
- 587 frequency Tag # 52494 from all data pooled over a 24-h period.

589

598 Figure 2.

602 Figure 3.

610 Figure 6

612 Figure 7.

613

619 Figure 9.

622 Figure 10.

