
Abstract
Increasing demands on the accuracy and thematic resolu-
tion of vegetation community maps from remote sensing
imagery has created a need for novel image analysis tech-
niques. We present a case study for vegetation mapping of
the Lake Tahoe Basin which fulfills many of the require-
ments of the Federal Geographic Data Committee base-level
mapping (FGDC, 1997) by using hyperspatial Ikonos imagery
analyzed with a fusion of pixel-based species classification,
automated image segmentation techniques to define vegeta-
tion patch boundaries, and vegetation community classifi-
cation using querying of the species classification raster
based on existing and novel rulesets. This technique led to
accurate FGDC physiognomic classes. Floristic classes such
as dominance type remain somewhat problematic due to
inaccurate species classification results. Vegetation, tree
and shrub cover estimates (FGDC required attributes) were
determined accurately. We discuss strategies and challenges
to vegetation community mapping in the context of stan-
dards currently being advanced for thematic attributes and
accuracy requirements.

Introduction
Advances in the techniques and technology of hyperspatial
image analysis are beginning to narrow the discrepancy
between the fields of ground-based forestry and terrestrial
remote sensing. With the need for increasingly larger scales
of study to understand landscape level processes, pressure
has been mounting for more accurate outputs from remote
sensing given the large expense associated with field cam-
paigns. However, to date, remote sensing has not approached
the degree of accuracy and precision in measuring vegetation
that an investigator on the ground achieves. In recent years,
the U.S. Forest Service has been developing standards for
vegetation classification and mapping using remote sensing
imagery (Franklin et al., 2000; USDA, 2002). This paper
details novel techniques by which most of the requirements
of base-level mapping can be fulfilled using a combination of
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hyperspatial image analysis including individual plant
mapping, automated image segmentation, and vector-raster
querying techniques.

A base-level map must contain the following informa-
tion: FGDC physiognomic classifications of order, class, and
subclass; floristic classifications of cover types, dominance
types and alliances; total vegetation, tree, and shrub cover
classes in increments of 10 percent; and mean tree diameter
classes ranging from 0 to 50� inches. The minimum accura-
cies of these attributes are 80 percent for physiognomy,
65 percent for floristics, 65 percent for cover class, and
65 percent for mean tree diameter class. The minimum
mapping unit (MMU) for a base-level map is defined as
“the smallest polygon feature to be mapped at a given map
level” (Warbington et al., 2002). We note the use of the term
“polygon”: the concept of vegetation mapping units is
based on the spatial extent of soil orders at different scales
(Warbington et al., 2002) and were historically performed
by manual digitization of aerial photographs outlining
patches of vegetation and soil. We hereafter refer to these
polygon mapping units as “patches” consistent with FGDC
terminology.

While few base-level maps have been produced to date,
coarser thematic-scale maps commonly employ one of two
approaches to produce maps: (a) pixel-based classifications
of medium- and coarse-scale imagery (ground resolution
�1 m, e.g., CALVEG, Parker and Matayas, 1979), and (b)
object-oriented analysis (OOA) of (typically) hyperspatial
imagery (ground resolution �1 m, e.g., Lobo et al., 1998).
Pixel-based classifications of medium and coarse-scale
imagery typically rely on training data of field plots, which
have been classified to a given physiognomic or floristic
level. Techniques such as maximum likelihood and classifi-
cation and regression trees (CART) are then used to produce
maps with the appropriate classification. Higher taxonomic
levels can be mapped by merging the classes into the
appropriate coarser floristic or physiognomic level, or by re-
classifying the field data into the coarser classes and then
re-training the classifier. OOA is a relatively new technique
for mapping which consists of two steps: (a) generation
of a vector layer of vegetation patches by automated image
segmentation algorithms (e.g., Baatz et al., 2003) and
(b) classification of patches using spectral and textural
data from raster pixels that fall within these patches. OOA
techniques are garnering more attention for vegetation
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Figure 1. Illustration of problem of relationship be-
tween information class and spectral information. (a)
has approximately 20 percent tree cover and is
labeled “shrub dominated,” (b) has approximately
30 percent tree cover and is labeled “tree domi-
nated,” and (c) has approximately 80 percent tree
cover and is labeled “tree dominated.” Spectrally and
texturally (a) and (b) are far more similar to one
another than (b) and (c).

mapping because they can, to some extent, replicate pho-
tointerpretive digitization techniques to produce more
realistic patch shapes and sizes than direct pixel-based
classifications. Both of these approaches are “top-down” or
“direct” classification techniques; they attempt to generate
a classification ruleset which directly relates a vegetation
class to image spectral data.

Directly classifying vegetation communities using coarse-
scale pixels or image objects has a number of major chal-
lenges which may prevent accurate base-level mapping. For
one, vegetation patches are composed of a complex mixture
of vegetation, shadow, ground-cover, and other materials in
heterogeneous two- and three-dimensional spatial arrange-
ments. Since rules for classes from dominance type to
order are based on cover, often across a wide range of
cover values, difficulty arises in establishing a relationship
between the target vegetation classes and image spectra in
mixed communities. For instance, the FGDC (1997) defini-
tion of a tree-dominated order is a region in which tree
cover is greater than or equal to 25 percent. A region with
20 percent tree and 80 percent shrub would be classified
as “Shrub Dominated.” A region with 30 percent tree
and 70 percent shrub would be classified as “Tree Domi-
nated” as would a region with 80 percent tree and 20 percent
shrub. A difference in 10 percent of tree cover is unlikely
to consistently produce a significant change in spectral
signal, so as tree cover approaches the lower limit of
the class; they are frequently misclassified using direct
classification techniques. We illustrate this problem in
Figure 1.

The floristic levels of alliance pose an even more sig-
nificant problem which, in some cases, can be impossible
to circumvent using optical sensors. Alliances are defined
as: “A grouping of associations with a characteristic phys-
iognomy and habitat and which share one or more diagnostic
species typically found in the uppermost or dominant
stratum of the vegetation” (Jennings et al., 2003). While
dominance types and alliances have a similar definition
(indeed, dominance types are also referred to as “provi-
sional alliances”), alliances can be defined by subcanopy
species. Diagnostic vegetation which is found under a tree
or shrub canopy cannot be directly detected by an optical
sensor (although it can be inferred by non-remote sensing
information).

In addition to the problems of linking spectral informa-
tion to vegetation classes, the spatial extent of a vegetation
patch makes collecting both training and test data difficult.
Many medium and coarse-scale pixel analyses use 30 m
(e.g., Landsat) or larger pixels. Collecting training or test
data for these pixels usually requires subsampling the pixel
itself, which may cause errors if the subsampling is not
representative of the entire pixel. This problem becomes
even more pronounced when using OOA techniques to
generate vegetation patches. As seen in Figure 1a through
1c, vegetation patches can be large and irregularly shaped,
making subsampling extremely difficult.

Image analysis techniques that utilize hyperspatial
imagery can provide a new way to map vegetation at the-
matic levels from dominance type to division. We approach
the problem from a bottom-up perspective: first, we create
a pixel-based map of species and non-vegetated cover at
high-resolution; second, we define patch boundaries in a
separate analysis; and last, we merge the two using rulesets
for naming vegetation classes from dominance types to
division. This approach allows for: (a) repeatable vegeta-
tion mapping over time, (b) flexibility in modifying patch
and thematic class definitions, and (c) an easily validated
dataset, since individual plants or homogenous species at
a 1 m do not require subsampling of the pixels.

Methods
Our analysis consists of the following steps: (a) create a
pixel level (1 m) raster map of vegetated and non-vegetated
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TABLE 1. TREE/NOT TREE CLASSIFICATION ACCURACY FOR ALL COVER

CLASSES USED

Species/Cover Class, Fraction of Pixels 
Class Code Near Shadow Accuracy

Trees
Abies concolor, ABCO 0.98 98%
Abies magnifica, ABMA 0.92 92%
Juniperus occidentalis, JUOC 0.70 70%
Pinus albicaulis, PIAL 0.80 80%
Pinus contorta, PICO 0.92 92%
Pinus jeffreyi, PIJE 0.93 93%
Pinus monticola, PIMO 0.97 97%
Populus tremuloides, POTR 0.96 96%
Tsuga mertensiana, TSME 0.97 97%

Shrubs
Alnus incana, ALIN 0.77 77%
Arctostaphylos patula, ARPA 0.08 92%
Artemesia tridentate, ARTR 0.00 100%
Ceanothus cordulatus, CECO 0.09 91%
Ceanothus velutinus, CEVE 0.13 87%
Quercus vaccinifolia, QUVA 0.30 70%
Salix sp., SASP 0.76 76%

Herbs
Dry Graminoid, DRGR 0.00 100%
Green Graminoid, GRGR 0.05 95%
Carex sp., CASP 0.42 58%

Non-vegetated classes
Bright Impermeable, BRIM 0.00 100%
Dark Impermeable, DAIM 0.00 100%
Water, WATER 0.00 100%

Figure 2. Workflow of the dominance type mapping
process.

cover classes at the species level, (b) independently create
vector polygons which are used to define the extent of a
vegetation patch, (c) generate a formal ruleset that follows
FGDC naming conventions for physiognomic classes and the
creation of a dominance-type ruleset for floristic mapping,
and (d) use the patch geodata as the basis for querying the
raster class map using this ruleset. Figure 2 shows an overall
workflow of this analysis. Table 1, column 1 contains the
cover classes and their respective codes which are refer-
enced in the following sections.

Site Information
The Lake Tahoe Basin falls along the California and Nevada
border. The 82,000 ha basin is surrounded by the Carson and
Sierra Nevada mountain ranges. Elevation ranges between
1,900 m above sea level (ASL) to 3,400 m ASL, spanning the
montane (2,187 m to 2,656 m ASL) and subalpine (�2,656 m
ASL) elevation zones. Vegetation types are varied and include

diverse meadow and fen habitats, evergreen and deciduous
shrublands, and conifer dominated forests. The vegetation
communities have experienced significant anthropogenic
disturbances, including significant recent development and
urbanization within the basin. Moreover, roughly two-thirds
of the forests were clear-cut during the latter third of the
19th century (Elliot-Fisk et al., 1997).

Image Data
The imagery used in this analysis was from the Ikonos
polar-orbiting sensor. Ikonos has four 4 m ground resolution
multispectral bands (blue, green, red, and near-infrared)
and one 1 m panchromatic band. Four images swaths were
collected in July 2002 that covered the entire Lake Tahoe
Basin. The imagery was orthorectified and then radiomet-
rically corrected using (a) topographic shade correction,
(b) atmospheric correction, (c) empirical line calibration
using ground spectra, and (d) image-to-image normalization.
We performed principle components (PC) pan-sharpening
(Welch and Ahlers, 1987) on the radiometrically corrected
4 m multispectral images substituting the 1 m panchromatic
images as PC band 1, resulting in a set of 1 m multispectral
images. The images were then mosaiced. Greenberg et al.
(2005) describes the preprocessing of this image dataset in
more detail. All subsequent analyses with the exception of
the image segmentation were performed on the 1 m pan-
sharpened multispectral image. The image segmentation was
performed on the 4 m multispectral image.

In order to assist classification, grey-level co-occurrence
matrix (GLCM) texture images were produced using the
mosaicked near-infrared band. Eight texture images were
produced using the mean, contrast, entropy, and angular
second moment features (Haralick et al., 1973) with 3 m and
9 m windows. All GLCM calculations were performed using
32 grey-level quantization levels within ENVI® image analysis
software (Research Systems Inc., Boulder, CO).

Following the production of the texture images, a princi-
ple components transform was conducted on the 12 image
bands (4 pansharpened spectral bands and the 8 GLCM texture
images). The transform was conducted in order facilitate
classification by reducing the effects of collinearity between
image bands and to improve the multivariate normality of the
classification vectors used in the maximum likelihood algo-
rithm. Eigenvalues and eigenvectors were calculated from the
entire mosaicked image using the covariance matrix.

Field Data
Training data for image classification and map accuracy
test data were acquired for 19 vegetation classes represent-
ing prevalent species or genera, and three non-vegetated
classes including water, dark impermeable surfaces (vol-
canic substrates, asphalt), and bright impermeable surfaces
(granite, concrete). The vegetation classes included nine tree
species, six shrub species and one shrub genera, and three
herbaceous classes. Field data were collected using differen-
tial GPS linked in real-time to geo-referenced color-infrared
Ikonos imagery using SOLO Field software (Tripod Data
Systems Inc., Corvallis, OR). The goal of the field data
collection was to identify individual trees and patches of
shrub and herbaceous species. This was accomplished
by using in-field digitization techniques. GPS was used
to navigate to a cover class target visually identified both
within the image and on the ground. A pixel point was
manually selected on the imagery, vectorized, and converted
to a point shapefile. This technique allowed for much higher
spatial precision in pixel selection since there was no reliance
on GPS and image orthorectification accuracy.

Approximately 1,700 point features were delineated
representing individual tree crowns, patches of homogenous

HR-05-025.qxd  4/10/06  2:52 PM  Page 583



584 May 2006 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 3. Flowchart of pixel classification process.
Hyphenated outputs are used for the lifeform level
classification, and boldfaced outputs are used for
species level classification.

vegetation, and non-vegetated regions. Points were taken
across a wide range of elevations and geographic regions
within the basin to capture intra-class variability. Addition-
ally, the geomorphology of the basin allowed for several
sampling forays that traversed elevation profiles thus
maximizing exposure to different vegetation classes.

Along with the point vector data, crown radius and
diameter-at-breast-height (DBH) were collected and recorded
for all tree species. Non-tree cover classes were assigned
a patch radius (the largest circle which could be inscribed
in the particular patch). In cases where trees appeared as
multi-stemmed individuals (common in subalpine species),
crown radius was recorded, but not DBH. In cases where trees
could not be distinguished as individuals, but the cluster of
trees was homogenous in species composition, patch radius
and species was recorded (common in hardwoods and dense
stands of small trees). Both crown radius and patch radius
was then subsequently used in a GIS to create a circular
polygon buffer around each point feature by multiplying the
recorded radius by 75 percent. This ensured that pixels
found within the buffer were in the cover class in question.
In summary, this data was used to create a shapefile with
approximately 1,700 polygon features that was subsequently
used for image classification and accuracy assessment.

Species/Lifeform Classification Map
Vegetation classification was performed at two thematic reso-
lutions: lifeform and species. Lifeform classification allowed
“access” to all FGDC hierarchical levels from Division to Class.
Species cover was used for lower-level community classifica-
tions from subclass to dominance type, and used for lifeform
classification to reduce the classification complexity. Figure 3

shows a flowchart of the pixel-level classification process,
which is described below.

Green Vegetation versus Non-photosynthetic Vegetation
and Non-vegetation Classification
As detailed in Greenberg et al. (2005), we first split the
lifeforms into green vegetation (GV) and non-photosynthetic
vegetation/non-vegetation (collectively, NV) classes using
an NDVI threshold. Brewer et al. (2004) define a vegetated
region as being �1 percent (we slightly modify the pub-
lished definition of non-vegetation to be �1 percent as
opposed to the published �1 percent). The threshold was
determined by regressing aerial cover estimates from plots
acquired from local resource agencies against the mean
normalized difference vegetation index (NDVI) values for
pixels found in these plots. The regression yielded:

NDVI � 0.0033 � % aerial cover � 0.2511, RMSE 0.15

Substituting in 1 percent aerial cover, we found an NDVI
threshold of 0.25, above which a pixel was considered GV,
and below which it was considered NV.

Tree versus Non-tree Green Vegetation
The second step was to differentiate trees and tall shrubs
(hereafter all are referred to as “trees”) from all other vege-
tation. At 1 m ground resolution, trees and tall shrubs are
visually identifiable as multi-pixel objects. Currently, there
are two methods to identify a cluster of pixels as being
components of a crown: direct classification using standard
algorithms and image segmentation techniques to vectorize
individual tree crowns into unique polygons. Initial analysis
and results from other studies suggested individual pixel
classifications are fraught with errors, as a single tree crown
can have more spectral variation than between species
(Leckie et al., 1992). Segmentation of tree crowns has been
found to be useful in these cases, but previous studies
suggested that the spatial resolution was too coarse to
accurately delineate the borders of tree crowns. Using a
novel approach, we isolated tree crown pixels from pixels
belonging to other cover classes based on significant differ-
ences in shadows. Crown pixels, therefore, can be defined
as those pixels that are within a certain distance from a
crown shadow pixel in the solar direction.

To define a crown shadow, we follow the technique of
Greenberg et al. (2005, see Figure 4) to determine a red band
threshold that differentiates “shadow” from “not shadow.”
We calculated the mean � 2 standard deviations (stdev)
of red reflectance (�4.2 percent reflectance) from 100 ran-
domly chosen pixels that fell in a crown shadow. Values
higher than this threshold were classified as “not shadow”
and those below the threshold were classified as “shadow.”
To separate dark, non-vegetated pixels (such as asphalt and
water) from vegetation shadows, we joined the shadow/
not-shadow mask with the vegetation/not-vegetation mask
previously described. A crown shadow, therefore, is defined
as a pixel having a red reflectance of �4.2 percent and an
NDVI �0.25. A mask was created using this rule, so crown
shadows were assigned a value of 1 and all other pixels a
value of 0.

A filter was designed such that all pixels that were
within the approximate mean radius of trees found in the
basin (4 m) in the solar direction were defined as being a part
of a tree crown. We then applied the moving filter shown in
Figure 5 to the crown shadow mask image. If a pixel had a
value of �0.0 (it contained at least one shadowed vegetation
pixel in the solar direction), it was classified as a crown. If
the resultant filtered pixel had a value of 0.0, it was not near
a crown shadow and was classified as a non-crown.
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Figure 4. From Greenberg et al. (2005). (a) is a color
infrared image subset of a wet meadow to forest
transition, and (b) is the resultant mask showing
shadowed green vegetation (white).

Figure 5. Moving window used to determine if a pixel is
near shadowed vegetation (and therefore is part of a
tree). The center cell (boldfaced) indicates the reference
pixel.

Species Classification
Training and test data was extracted from the 12 band PCA
image using STARSPAN (Rueda et al., 2004) and the vector
coverage developed from the field sampling data (see
above). For each pixel located within one of the 1,700 train
and test vector polygon features (�90,000 pixels in total),
the following data was recorded in a database: (a) the
feature ID of the polygon that the pixel intersected, (b) the

map class associated with the polygon, and (c) all 12 PCA
image band values. A multivariate outlier analysis was
performed on the dataset using a jackknife technique with a
Mahalanobis distance statistic. The Mahalanobis distance
was calculated for each observation with estimates of the
mean, standard deviation, and correlation matrix that did
not include the observation itself. Observations falling
outside of the 99 percent quantile were dropped from the
analysis. This dataset was then split into training and test
data by stratifying the polygons by map class and then
randomly assigning 60 percent of the polygon features (and
their respective pixels) to a training set and the remaining
40 percent to a test set. Pattern vectors for classification
were calculated from this training data set for the 22 map
classes.

We conducted Gaussian maximum likelihood classifica-
tion (MLC) using all 12 PCA bands for feature vectors, resulting
in a 22 band likelihood image with each band corresponding
to one of the 22 map classes. The 22 band likelihood image
was spectrally subset by the 19 bands representing vegetation
classes. For this image, we assumed that all pixels belonged
to one of the described vegetation classes, and as such, nor-
malized the likelihood values to sum to 1. This resulted in a
maximum likelihood probability image for each species/cover
class. Species/land-cover classification was performed by
dividing the entire set of classes into three categories: NV, non-
crown vegetation and trees/tall shrubs. Figure 3 details the
decision tree used to perform the classification.

NV classification was performed by choosing the highest
ML value from the four NV classes: water, bright imperme-
able, dark impermeable, and dry graminoids. In the case of a
tie, the pixel was labeled “unclassified.”

The non-tree vegetation and tree branches of the ML
classification were combined with species prediction surfaces
developed using general additive modeling (GAM) using a
consensus theoretic approach. Dobrowski et al. (2006)
describe in detail the production of the species prediction
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TABLE 2. LIFEFORM ACCURACY RESULTS: OVERALL ACCURACY 86.2; 
KAPPA 0.81

Life Form Producer’s User’s

Non-vegetated 97.1% 100.0%
Trees 81.3% 94.2%
Shrubs 73.8% 47.6%
Herbs 82.0% 92.6%
Average 83.6% 83.6%

surfaces using GAM, and the process by which the ML/species
prediction surfaces were weighted.

Lifeform Classification
We recognized four lifeforms in our analysis: non-vegetation,
trees, shrubs, and herbaceous vegetation. The fifth lifeform
recognized by the FGDC, nonvascular plants, did not appear
in sufficiently large covers to warrant inclusion in the
classification. Each pixel was assigned a lifeform as follows:
if the pixel was non-vegetated, it was classified as non-
vegetation unless it was determined to be dry graminoid, in
which case it was classified as herbaceous. If the pixel was
part of a crown, it was classified as a tree unless the species
classification was Alnus incana or Salix sp., in which case
the pixel was classified as a shrub. If the pixel was found to
be vegetated, but not part of a tree or tall shrub crown, it
was assigned to the shrub or herbaceous class depending on
the particular species designation.

Accuracy Assessment
We used the 40 percent of remaining field collected data to
perform an accuracy assessment on the decision tree. We
determined the accuracy for the vegetation/non-vegetation
split, crown/non-crown vegetation, species classification and
lifeform classification. A confusion matrix was generated
and user’s, producer’s, overall, and Kappa accuracies were
calculated.

Vegetation Patch Map
Automated image segmentation was conducted on the Ikonos
4 m resolution mosaiced image. We used a region-based
segmentation algorithm (Baatz et al., 2003) in which a seed of
pixels are grown into an object, continuing until a homogene-
ity defined threshold was reached (see Benz et al., 2004 for
further details). The selection of the parameters that define
this threshold were iteratively determined using subsets of
the imagery and a qualitative assessment by an analyst (scale
� 160, shape � 0.63, smoothness/compactness � 0.7). This
resulted in a vector layer of approximately 21,000 polygons
that were spatially continuous over the entire study area and
represented vegetation patches identified primarily on
the basis of unique textural and tonal information.

Attributing Vegetation Patches With Species Cover
Despite the need for providing efficient attributing of vector
geodata from raster data, no software package was capable
of dealing with a dataset the size of the one generated. As
such, we developed a program, STARSPAN (Rueda et al., 2004),
which quickly attributes a vector layer with either raw or
summarized pixel data for a given polygon’s extent. For
each vegetation patch, we determined the pixel coverage of
each species/cover class used in the analysis. From this, we
generated relative cover of each species/cover class, as well
as relative physiognomic cover (tree, shrub, herbaceous and
non-vegetated). In addition, we determined the mean ele-
vation for each patch for use in distinguishing subalpine
from montane dominance types.

Applying Rulesets to Generate Vector Based Vegetation Maps
Division to Subclass
Using these patch data, we followed the FGDC existing vege-
tation hierarchy down to the level of subclass. Division,
order and class require relative lifeform covers (tree, shrub,
herbaceous, and non-vegetated). We found no evidence of
large areas of nonvascular vegetation cover, and no cover
class was identified in the field of this lifeform, so the non-
vascular vegetation class was not used. Subclass requires
two additional pieces of information: determining whether a
pixel is evergreen or deciduous for tree and shrub domi-

nated classes, and the inundation status of herbs. These data
were extracted from our species raster layer.

Dominance Type
Dominance types have a range of definitions, and no official
ruleset had been generated for the basin. Jennings et al. (2003)
refers to a dominance type as “one or more species which are
usually the most important ones in the uppermost or dominant
layer of the community, but sometimes of a lower layer of
higher coverage.” To formalize this definition, we generated the
following ruleset by which to generate a dominance type name.
First, the dominance status of the dominant lifeform for each
vegetated polygon was determined (e.g., the FGDC Division). For
each polygon the following attributes were used (note: we did
not include all of these attributes in the final database):

• Relative cover rank (e.g. percent covered by Jeffrey Pine
divided by total tree cover, or percent covered by Huckle-
berry Oak divided by total shrub cover) for each species
used in the analysis.

• Mean elevation for each polygon.

If the top ranked species (by relative cover) of the dominant
life form has �10 percent cover than the second ranked
species, the polygon is single-species dominant. If the top
two ranked species have less than a 10 percent difference in
relative cover, but rank 2 has a relative cover �10 percent
higher than rank 3, the polygon is dual-species dominant. If
the top three ranked species are within 10 percent relative
cover of one another, the polygon is labeled mixed-domi-
nant. Single species dominated polygons are given the
dominant species as the label. Dual species dominated
polygons are given the top two ranked species (alphabeti-
cally ordered and hyphenated) as the label. Mixed dominant
polygons were assigned the subclass name with an elevation
modifier: “montane” if the mean elevation for that polygon
is �7,000 ft. (2,133.6 m), “subalpine” if mean elevation
�7,000 ft. (2,133.6 m). For tree-dominant polygons, we
substituted the word “conifer” for “evergreen.”

Polygons with no dominant lifeform were labeled “No
Dominant Life Form.” Non-vegetated polygons were labeled
“Water” if water �50 percent of the cover, “Impermeable”
otherwise.

Results
Species/Lifeform Classification Accuracy
The NDVI threshold resulted in an accurate GV/NPV split: no
non-vegetation pixels were labeled vegetation and only a
single vegetation pixel out of 32,016 pixels was labeled non-
vegetation. The proximity to vegetation filter resulted in
�90 percent tree/not-tree accuracy for 15/22 classes, and
�70 percent accuracy for every class except for the inun-
dated herbaceous class, which was 58 percent accurate (see
Table 1 for a summary of results). Lifeform overall accuracy
was 86.2 percent, kappa � 0.81 (see Table 2). Producer’s
accuracy for lifeform ranged from 73.8 percent (shrubs) to
97.1 percent (non-vegetated). User’s accuracy ranged from
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9TABLE 3. COVER CLASS ACCURACY

Species/Cover Class, Producer’s User’s 
Class Code Accuracy Accuracy

Trees
Abies concolor, ABCO 69.2% 52.4%
Abies magnifica, ABMA 36.3% 29.5%
Juniperus occidentalis, JUOC 9.6% 38.3%
Pinus albicaulis, PIAL 27.1% 54.9%
Pinus contorta, PICO 32.6% 35.6%
Pinus jeffreyi, PIJE 47.4% 48.9%
Pinus monticola, PIMO 21.0% 20.8%
Populus tremuloides, POTR 44.5% 70.4%
Tsuga mertensiana, TSME 18.2% 36.7%

Shrubs
Alnus incana, ALIN 31.3% 93.5%
Arctostaphylos patula, ARPA 74.6% 26.3%
Artemesia tridentate, ARTR 65.0% 27.0%
Ceanothus cordulatus, CECO 47.6% 11.4%
Ceanothus velutinus, CEVE 47.3% 70.3%
Quercus vaccinifolia, QUVA 57.4% 8.8%
Salix sp., SASP 37.5% 32.9%

Herbs
Dry Graminoid, DRGR 84.9% 68.4%
Green Graminoid, GRGR 80.4% 27.0%
Carex sp., CASP 63.8% 98.8%

Non-vegetated classes
Bright Impermeable, BRIM 97.3% 98.9%
Dark Impermeable, DAIM 80.0% 99.8%
Water, WATER 100.0% 100.0%
Average 53.3% 52.3%

47.6 percent (shrubs) to 100 percent (non-vegetated). Mean
Producer’s accuracy for species was 53.3 percent, and
User’s accuracy or 52.3 percent. Producer’s accuracy for
species ranged from 9.6 percent (JUOC) to 84.9 percent
(DRGR). User’s accuracy for species ranged from 8.8 percent
(QUVA) to 98.8 percent (CASP). Table 3 details species accu-
racy results and Table 4 details the confusion matrix. We
note that accuracy results presented here are different than
those published in Dobrowski et al. (2006) as they pertain to
a different stage of the workflow.

Vegetation Cover
Tree dominance types accounted for 67 percent of the total
vegetated area, followed by shrub dominated (31 percent),
not dominant (1 percent) and herb dominated (1 percent).
In total, 67 vegetation dominance types were identified.
Of these, 17 account for 90 percent of the total vegetated
area of the basin. Jeffrey Pine Forest, White Fir Forest, and
Red Fir Forest are the most common dominance types
found in the basin, and account for over 50 percent of the
total vegetated area. Table 5 lists the dominance type
names and their covers, ranked by most coverage to least
coverage.

Map and Map Attributes
The resulting Tahoe Basin Existing Vegetation Map (TBEVM)
contained nearly all base level attributes required to meet
FGDC mapping standards. All FGDC physiognomic levels,
dominance type, and vegetation, tree and shrub cover could
be generated from these techniques. Greenberg et al. (2005)
describe the generation of mean DBH classes for all vegetation
patches. In addition to the required attributes, TBEVM also
contains species cover, herbaceous and non-vegetated cover,
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TABLE 5. DOMINANCE TYPES OF THE LAKE TAHOE BASIN ORDER BY COVER

Dominance Type Cover (hectares)

Jeffrey Pine 15346
White Fir 14927
Red Fir 14146
Sagebrush Scrub 10215
Huckleberry Oak 5250
Mixed Subalpine Conifer 1864
Lodgepole Pine 1725
Greenleaf Manzanita 1655
Non-inundated Herbaceous 1380
Willow Scrub 1324
Jeffrey Pine-Red Fir 1299
Mixed Subalpine Evergreen Shrubland 1269
Whitebark Pine 1142
Quaking Aspen 1083
Huckleberry Oak-Sagebrush Scrub 923
Sparse vegetation 837
Huckleberry Oak-Mountain Whitethorn 702
Lodgepole Pine-Red Fir 679
Mixed Montane Evergreen Shrubland 531
Mixed Montane Conifer-Deciduous 427
Jeffrey Pine-Lodgepole Pine 379
Mountain Whitethorn-Sagebrush Scrub 372
Tobacco Brush 341
Jeffrey Pine-Quaking Aspen 334
Western White Pine 289
Red Fir-White Fir 288
Lodgepole Pine-White Fir 165
Mixed Montane Conifer 156
Mountain Whitethorn 145
Lodgepole Pine-Western White Pine 144
Mountain Hemlock 141
Huckleberry Oak-Tobacco Brush 130
Mixed Subalpine Conifer-Deciduous 123
Inundated Herbaceous 114
Red Fir-Whitebark Pine 113
Red Fir-Western White Pine 103
Greenleaf Manzanita-Huckleberry Oak 101
Mountain Juniper-Red Fir 97
Quaking Aspen-Red Fir 94
Lodgepole Pine-Whitebark Pine 86
Jeffrey Pine-White Fir 84
Sagebrush Scrub-Tobacco Brush 72
Mountain Alder 53
Greenleaf Manzanita-Mountain Whitethorn 34
Huckleberry Oak-Willow Scrub 34
Mountain Hemlock-Western White Pine 34
Mixed Herbaceous 32
Mixed Subalpine Evergreen-Deciduous Shrubland 30
Quaking Aspen-White Fir 28
Mixed Montane Evergreen-Deciduous Shrubland 27
Mountain Juniper 26
Jeffrey Pine-Mountain Juniper 19
Western White Pine-White Fir 18
Lodgepole Pine-Mountain Juniper 15
Western White Pine-Whitebark Pine 14
Tobacco Brush-Willow Scrub 13
Mountain Hemlock-White Fir 13
Mountain Hemlock-Red Fir 12
Mountain Alder-Willow Scrub 12
Mountain Whitethorn-Willow Scrub 8
Greenleaf Manzanita-Sagebrush Scrub 8
Huckleberry Oak-Mountain Alder 7
Lodgepole Pine-Quaking Aspen 7
Mountain Juniper-Whitebark Pine 6
Lodgepole Pine-Mountain Hemlock 5
Greenleaf Manzanita-Tobacco Brush 4
Mountain Juniper-Western White Pine 2

Matayas, 1979) and California Wildlife Habitat Relationships
(CWHR, Mayer and Laundenslayer Jr., 1988). TBEVM (version
4.1 at the time of this publication) is hosted under the Open
Content License at http://casil.ucdavis.edu/projects/ tbevm.

Discussion
We have demonstrated the ability of hyperspatial remote
sensing data to produce vegetation maps at different thematic
scales (from dominance type to division) by fusing species
mapping, automated vegetation patch generation, and
intelligent querying. A focus on species-level cover mapping
using hyperspatial image analysis has several strengths over
a direct vegetation community classification techniques:

1. Bottom-up vegetation class mapping provides a flexible
framework in which changes in the vegetation classification
rules, be it cover class percentages or the size/shape of
stands, do not require a time-consuming re-classification.
Instead it requires a requerying/attributing step which can be
performed rapidly.

2. There are frequently a smaller number of cover species than
dominance types, so the classification problem at this
thematic scale is reduced.

3. Hyperspatial data allows for complex spectral and textural
relationships to be decoupled (e.g., removing shadows from
a spectral analysis).

4. Species-to-dominance type mapping can provide a larger,
continuous dataset of community attributes (e.g., percent
cover by species) in addition to the single dominance type
designation.

5. Ecological information characterizing species distributions
can be incorporated into the classifier, whereas modeling
vegetation classes is problematic.

6. Accuracy assessment is far easier to perform on a 1 m2

of species cover than it is in a large, irregularly spaced
dominance type polygon.

Hyperspatial data appears to be giving accurate estima-
tions of lifeform cover, but species classifications remain
problematic. As discussed in Dobrowski et al. (2006), the
incorporation of modeled species distribution data can
improve classification accuracy substantially, but there
remains significant error at this level of spatial and thematic
resolution. This likely stems from several issues:

1. Complex phenological characteristics of herbs and shrubs
which can cause significant variation in spectral signals
within a single species.

2. Variations in vegetation density (e.g., LAI and biomass), the
spectral effects of which will be pronounced in herbaceous
and shrub cover classes, and

3. Plant crown variation in density and shadowing, particularly
in trees and large shrubs.

In addition, species level information tends to over-
predict common species and underpredict rare species.
These problems will have profound effects on the accuracy
of our dominance type layer, and need to be solved in order
to better map floristic classes. Despite our approach to
subsetting the image using shadow proximity to define tree
pixels, the approach remained a pixel-level classification. A
more object-oriented approach to classifying tree crowns is
likely to significantly improve classification (e.g., Gougeon,
1995). In addition, hyperspatial sensors with higher spectral
resolution such as CASI, Hymap, and SpecTIR may allow for
more accurate species classifications to be made than lower
spectral resolution sensors such as Ikonos and Quickbird.

Accuracy assessment of hyperspatial pixels is relatively
simple to perform, since subsampling is not needed to
identify a 1 m2 region. With that said, an accuracy assess-
ment of the vegetation community classes is more compli-
cated, and techniques to link species level accuracies and

mean crown size, basal area, and aboveground biomass (see
Greenberg et al., 2005), and crosswalks to other major
vegetation classifications including CALVEG (Parker and
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vegetation community class accuracies are needed. We can
make the statement that if our species layer was 100 percent
accurate, by definition all vegetation classes based on query-
ing this layer would be 100 percent accurate. We have
begun to develop techniques to simulate vegetation class
accuracies based on these inputs. In addition to vegetation
class accuracy, there remain issues of whether or not our
patch layer is accurate: is our segmentation method produc-
ing patches of more or less homogenous vegetation? Natural
communities do not necessarily have clean spatial divisions
(ecotones being an extreme example of this), so homogenous
patches of repeatable composition may not truly exist in a
given landscape. More techniques need to be developed to
determine if the patches represent “ecologically meaningful”
landscape units.

Hyperspatial data has unique attributes that separates it
from coarser level image products in that individual plants
can be readily identified as unique objects. This creates an
ability to directly map individual plants (or small homogenous
patches of smaller plants), rather than classifying complex
mixtures of plants of different species and structure, ground
cover, and shadow. Dominance type and coarser level commu-
nity designations can be directly generated from species
maps. In addition, species maps provide a wealth of informa-
tion including vegetation, tree and shrub cover, and species
distributions (which can be related to continuous climate
maps). Using more complex individual tree crown recognition
techniques (e.g., Gougeon, 1995; Brandtberg and Walter, 1998),
tree crown attributes such as size and shape can be deter-
mined on an individual tree basis. In Greenberg et al. (2005)
we demonstrated that we can link crown level information to
tree characteristics that can not be directly measured such as
DBH, leaf area index (LAI), and biomass. The parameters,
particularly biomass, allow for a direct link between hyperspa-
tial image analysis outputs and regional climate models.

Currently, FGDC attribute and accuracy requirements
for base-level maps have not been fulfilled by any publi-
shed effort. One issue is that alliances, as they are currently
defined, pose an essentially insurmountable problem to
mapping: the inability to remotely detect subcanopy vegeta-
tion which may be part of an alliance definition. We propose
that base-level mapping should target dominance types as
their finest floristic unit, rather than alliances, as dominance
types are restricted to canopy species which can be directly
detected through remote sensing. Hyperspatial image analysis
techniques can provide improvements over previous attempts
to perform base level mapping, but there remains significant
uncertainty in the products that can lessen their usefulness
to managers. We see several research topics which are
likely to improve these mapping efforts: (a) improved species
mapping using OOA and hyperspectral techniques, (b) for-
malization of vegetation patch definitions and validation
of these patches, (c) development of vegetation mapping
rulesets which are informed by the remote sensing commu-
nity, (d) allometric links between canopy attributes and
attributes which cannot be directly estimated (e.g., DBH, LAI,
and biomass), and (e) continuing research into the integration
of ecological information into mapping efforts.
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